WO2007142352A1 - めっき膜の形成方法および材料 - Google Patents

めっき膜の形成方法および材料 Download PDF

Info

Publication number
WO2007142352A1
WO2007142352A1 PCT/JP2007/061726 JP2007061726W WO2007142352A1 WO 2007142352 A1 WO2007142352 A1 WO 2007142352A1 JP 2007061726 W JP2007061726 W JP 2007061726W WO 2007142352 A1 WO2007142352 A1 WO 2007142352A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
force sword
plating film
pure
force
Prior art date
Application number
PCT/JP2007/061726
Other languages
English (en)
French (fr)
Inventor
Yasuhide Ohno
Toshiyuki Kozuka
Yasuhiro Morizono
Keisuke Tsutsumi
Original Assignee
National University Corporation Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kumamoto University filed Critical National University Corporation Kumamoto University
Priority to JP2008520647A priority Critical patent/JPWO2007142352A1/ja
Publication of WO2007142352A1 publication Critical patent/WO2007142352A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets

Definitions

  • the present invention relates to a plating film forming method and material for performing pure tin (Sn) plating using a strong magnetic field.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-230830
  • Sn-Pb As an alternative material to Sn-Pb, there is a binary Sn alloy such as pure Sn, Sn-Ag, 311-01 and 311-: 3 ⁇ 4. As pure Sn. This pure Sn is harmless to the human body and, in addition, has the characteristics that solderability is good and the cost is low, but there is a problem that whisker is likely to occur. Some whiskers that occur in pure Sn can be as long as several tens of meters to several hundreds / zm, which can cause short circuits. However, it was extremely difficult to suppress the occurrence of whiskers in the pure Sn plating film with many unexplained parts regarding the whisker generation mechanism. In addition, whiskers may occur in Sn alloy plating films.
  • Patent Document 1 an electromagnetic coil is disposed so as to surround the central axis of the deposition electrode, and a magnetic field is formed in the plating tank, so that an electric current flowing as much as possible to the deposition electrode is obtained.
  • a technique for bending the flow toward the center of the deposition electrode is disclosed.
  • the present invention has been made in view of serious problems, and an object of the present invention is to form a plating film that can prevent whiskers from occurring in a pure Sn plating film or a Sn alloy plating film. It is to provide a method and material.
  • the plating film forming method of the present invention includes the following steps (A) and (B).
  • (B) A step of applying a strong magnetic field to the force sword electrode from a direction intersecting with a predetermined angle of the surface facing the anode electrode of the force sword electrode and causing a current to flow between the anode electrode and the force sword electrode.
  • the material of the present invention comprises a substrate having copper or copper alloy strength, and a plating film made of pure tin (Sn) or Sn alloy and having a Sn crystal orientation of at least a (101) plane. .
  • pure Sn refers to Sn having a purity power of 9% or more.
  • the Sn alloy is, for example, Sn—Ag, Sn—Cu, Sn—Bi, and the copper alloy is, for example, Cu—Zn.
  • a strong magnetic field refers to a magnetic field of 0.1 T or more.
  • the term “opposite” refers to a concept that includes a case where the opposing surface of the force sword electrode and the opposing surface of the anode electrode face each other at a predetermined angle. Further, the force sword electrode and the anode electrode need not have the same shape or size.
  • the surface of copper or copper alloy may be plated with nickel-nickel (Ni), for example, several micrometers!
  • the Sn plating film of the Cu or Cu alloy substrate has at least the (101) plane as the preferential orientation in the Sn crystal orientation pattern.
  • a pair of force sword electrodes made of copper or copper alloy force is used.
  • a strong magnetic field was applied to the force sword electrode from the direction intersecting the surface facing the anode electrode of the force sword electrode at a predetermined angle. It is possible to prevent whiskers from occurring in a pure Sn plating film or a Sn alloy plating film.
  • the Sn crystal orientation of the plating film has at least the (101) plane, the growth of the whisker is suppressed.
  • the reason for this is not necessarily clear, but the reason why whiskers are generated in the Sn plating film on Cu or Cu alloy substrate is that the Cu-Sn intermetallic compound is contained in Sn due to the diffusion of Cu element into Sn. It grows by increasing the internal stress of Sn and by diffusing Sn element on the surface to eliminate it.
  • having (101) as the preferred orientation of Sn can suppress the diffusion of Cu elements, suppress the generation of internal stress, and prevent the diffusion of Sn elements. Therefore, if this material is applied to an electronic component, the occurrence of a short circuit in an electronic circuit can be suppressed.
  • FIG. 1 is a flowchart of a method for forming a pure Sn plating film according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a manufacturing apparatus used when the forming method of FIG. 1 is performed.
  • FIG. 3 is a schematic configuration diagram of the adhesive film forming unit of FIG. 2.
  • FIG. 4 is a schematic configuration diagram for explaining an angle of the force sword electrode of FIG. 3 with respect to a strong magnetic field.
  • FIG. 5 is a crystal orientation pattern diagram measured by an X-ray diffraction method.
  • FIG. 6 is a relationship diagram between the angle of the force sword electrode and the luminance ratio when the force sword electrode is composed of a brass plate.
  • FIG. 7 is an SEM photograph of a pure Sn plating film according to an example of the present embodiment.
  • FIG. 8 is an SEM photograph of a pure Sn plating film according to a comparative example.
  • FIG. 9 Relationship between the size of a strong magnetic field and the occurrence of a whisker.
  • FIG. 10 is a relationship diagram between the angle of the force sword electrode and the luminance ratio when the force sword electrode is formed of a copper plate.
  • FIG. 1 shows the flow of a method for forming a pure Sn plating film according to an embodiment of the present invention.
  • FIG. 2 shows a schematic configuration of the manufacturing apparatus 1 used when carrying out the forming method of the present embodiment
  • FIG. 3 shows an internal configuration of the plating film forming portion 10 of FIG.
  • the manufacturing apparatus 1 includes a plating film forming unit 10 and a magnetic field generation unit 20.
  • This plating film forming part 10 is obtained by immersing three electrodes (anode electrode 12, force sword electrode 13 and salt bridge 14) in plating solution 11, and adopts a triode electrode method as an electrodeposition method. It is.
  • the plating film forming unit 10 is disposed in the plating solution 15, the plating tank 15 filled with the plating solution 11, the anode electrode 12 and the force sword electrode 13 that are disposed to face each other in the plating solution 11, and the plating solution 11.
  • a salt bridge 14 The anode electrode 12 is connected to the positive terminal 31 of the voltage source 30, and the cathode electrode 13 is connected to the negative terminal 32 of the voltage source 30.
  • One end of the salt bridge 14 is immersed in the plating solution 11, and the other end is immersed in the internal solution 17 in the internal solution tank 16. In the internal liquid 17, a reference electrode 18 connected to the ground terminal 33 of the voltage source 30 is further immersed.
  • the plating solution 11 is obtained by electrolyzing tin sulfate, for example, and contains Sn 2+ ions and SO 2 ions.
  • Anode electrode 12 is made of pure Sn plate, plus terminal 31
  • the force sword electrode (substrate) 13 has a brass (Cu—Zn) plate force and is connected to the tip of the wiring 13 A extending from the negative terminal 32.
  • the brass plate has a rectangular parallelepiped shape of, for example, 1 Omm ⁇ 10 mm square and a thickness of 0.3 mm, and the surface facing the anode electrode 12 is the direction (vector) of the strong magnetic field B generated from the magnetic field generator 20. They are arranged so that they intersect at an angle ⁇ (see Figure 4).
  • the brass plate preferably has a surface finished to a mirror surface by polishing and pretreated.
  • the plating film formed on the surface plated with several meters of nickel and the plating film directly formed on copper or copper alloy are the same quality, nickel ( Ni), for example, several / zm may be plated.
  • the salt bridge 14 can be a mixture of agar and salt potassium (KC1).
  • the internal liquid 17 also has, for example, saturated salt / potassium strength, and the reference electrode 18 is made of AgZAgCl.
  • the magnetic field generator 20 is for applying a strong magnetic field B of 0.1 T or more to the brass plate 13B, and is composed of, for example, a superconducting coil having a high superconducting transition temperature or a strong magnet. .
  • the surface of the force sword electrode 13 is mirror-finished, and then the surface is pretreated (step S1).
  • the surface of the force sword electrode 13 is ground using an abrasive containing abrasive grains having a particle diameter of 400 ⁇ m to 1550 ⁇ m, and then the surface is finished to a mirror surface by puffing.
  • ultrasonic cleaning with acetone is performed for 15 minutes to degrease the surface, and then the surface is deoxidized by exposure to 0.05 molZl of hydrochloric acid for 1 minute. In this way, the surface of the force sword electrode 13 is kept in a state suitable for fitting.
  • the angle 0 of the force sword electrode 13 with respect to the strong magnetic field B is set to 5 ° to 53 °, or 75 ° to 90 ° (step S2).
  • step S3 After driving the magnetic field generator 20 and applying a strong magnetic field B of 5 T, for example, to the force sword electrode 13 (step S3), between the anode electrode 12 and the force sword electrode 13, for example Apply current for 20 minutes (step S4).
  • the voltage source 30 is set so that a potential difference (for example, 0.45 V) is generated between the force sword electrode 13 and the anode electrode 12 so that the current density in the force sword electrode 13 is, for example, 15 mA / mm 2. Keep it.
  • pure Sn begins to be electrodeposited on the surface of the force sword electrode 13 facing the anode electrode 12, and a pure Sn plating film is gradually formed. In this way, the pure Sn plating film of the present embodiment is formed.
  • FIG. 5 (A) shows the force sword electrode 13 when the angle ⁇ force is 15 ° or 45 °
  • Fig. 5 (B) shows the force sword electrode 13 when the angle ⁇ force is 3 ⁇ 40 °. Represents each.
  • FIG. 5C shows a case where the angle 0 of the force sword electrode 13 is 75 ° or 90 °.
  • the angle 0 of the force sword electrode 13 is 0 ° or The case at 60 ° is shown in FIG. 5 (D), and the case when the strong magnetic field B is not applied to the force sword electrode 13 is shown in FIG. 5 (E).
  • the horizontal axis represents the angle of diffraction angle
  • the vertical axis represents the intensity of diffracted light.
  • the angle ⁇ of the force sword electrode 13 and the crystal orientation Table 1 summarizes the relationship with turns.
  • a pure magnetic field B is applied to the opposing surface of the force sword electrode 13 with the strong magnetic field B applied to the force sword electrode 13 at an angle 0 of 15 ° to 45 °.
  • a strong magnetic field B is applied to the force sword electrode 13, and in this case (FIG. 5 (E)), the crystal orientation pattern of the pure Sn plating film formed on the force sword electrode 13 ( It can be seen that a pure Sn plating film with a crystal orientation pattern (pattern Y) that is dissimilar to pattern X) is formed (Fig. 5 (A) to (B)).
  • dissimilarity means, for example, the case where the preferential orientation included in the pattern X and the preferential orientation included in the pattern Y do not match each other, or the size of the diffraction peaks of each preferential orientation included in the pattern X. This refers to the case where the magnitude relationship between the relationship and the diffraction peak of each preferred orientation included in pattern Y does not agree with each other.
  • the crystal orientation pattern when the force sword electrode 13 has an angle of 0 force of 15 ° or 45 ° is as shown in FIG. 5 (A), as shown by (101), (211), (112). It has three crystal orientations (preferential orientation).
  • the crystal orientation pattern when the force sword electrode 13 angle ⁇ force is 30 ° is divided into three crystal orientations (101), (211), and (321) (priority orientation) as shown in Fig. 5 (B). have.
  • the crystal orientation pattern when the strong magnetic field B is not applied to the force sword electrode 13 is divided into two crystals (211) and (321) as shown in FIG. 5 (E). It has only orientation (priority orientation).
  • the pure Y-plated film of pattern Y has Sn crystal orientation. And at least the (101) plane.
  • each ratio of diffraction peaks of three crystal orientations (priority orientation) of (101), (211), and (321) of the pure Sn plating film formed on the opposing surface of the force sword electrode 13 Focusing on I (hkl) / (1 (101) +1 (21 1) +1 (321)), it is formed on the opposing surface of the force sword electrode 13 when the angle 0 of the force sword electrode 13 is changed.
  • 6 is analyzed, the horizontal axis of FIG. 6 shows the angle ⁇ of the force sword electrode 13, and the vertical axis shows the graph. Represents the luminance ratio, where (hkl) is (101), (211) or (321).
  • pure Sn is applied to the opposing surface of the force sword electrode 13 in the state where the strong magnetic field B is applied to the force sword electrode 13 at an angle ⁇ of 5 ° to 53 ° and 85 ° to 90 °.
  • 5 ° to 53 ° and 85 ° to 90 °.
  • Fig. 8 (A) and Fig. 8 (B) (enlarged view of Fig. 8 (A)) and Fig. 8 (C) show the case where the strong magnetic field B is not applied to the force sword electrode 13.
  • Fig. 8 (D) (an enlarged view of Fig. 8 (C)).
  • Table 2 summarizes the relationship between the angle ⁇ of the force sword electrode 13 and the presence or absence of the whisker.
  • the force sword electrode 13 is strong at an angle 0 of 15 ° to 45 °, or 75 ° to 90 °. It can be seen that pure Sn plating film without whiskers is formed when pure Sn is deposited on the opposing surface of the force sword electrode 13 with the magnetic field B applied (Figs. 7 (A) to (C)). On the other hand, when pure Sn is deposited on the opposing surface of the force sword electrode 13 with a strong magnetic field B applied to the force sword electrode 13 at an angle ⁇ of 0 ° or 60 °, It can be seen that a pure Sn plating film with whiskers is formed (Figs. 8 (A) and (B)), as in the case where no strong magnetic field B is applied (Figs. 8 (C) and (D)). ).
  • the three crystalline orientations of the pure Sn plating film formed on the opposing surface of the force sword electrode 13 without applying the strong magnetic field B to the force sword electrode 13 ((101), (211), (321) ) Diffraction peaks with dissimilar proportions of diffraction peak ratios are formed, and this dissimilarity is assumed when the angle ⁇ of the force sword electrode 13 is within the above range. May have hindered whisker growth.
  • the force sword electrode 13 is opposed to the force sword electrode 13 in a state where a strong magnetic field B is applied at an angle 0 of 5 ° to less than 15 ° and greater than 45 ° to 53 °. Even when pure Sn is deposited on the surface, this dissimilarity may hinder the growth of whisker.
  • a pure Sn plating film without a whisker formed with a strong magnetic field B applied at an angle 0 between 15 ° and 45 ° with respect to the force sword electrode 13 is Unlike the pure Sn plating film formed without applying the strong magnetic field B, the Sn crystal orientation has at least the (101) plane. Therefore, when the Sn crystal orientation of the plating film has at least the (101) plane, there is a possibility that the whisker of the plating film is eliminated.
  • FIG. 9 shows the frequency of whisker generation when pure Sn is electrodeposited on the opposing surface of the anode electrode 12 with the angle ⁇ of the force sword electrode 13 set to 30 °. From Fig. 9, it is possible to reduce the frequency of whisker generation by increasing the magnitude of the strong magnetic field B to 0.1 T or more, and to eliminate the occurrence of whisker by increasing the magnitude of the strong magnetic field B to 0.3 T or more. It is powerful. Note that this tendency is not limited to the case where the angle ⁇ of the force sword electrode 13 is set to 30 °. If the angle ⁇ is set to 5 ° to 53 ° or 75 ° to 90 °, a similar tendency can be obtained. it can.
  • a strong magnetic field B is applied to the force sword electrode 13 at an angle 0 of 5 ° to 53 °, or 75 ° to 90 °. Since pure Sn is deposited on the opposing surface of the force sword electrode 13 in a state where the sword is applied, a pure Sn plating film can be formed without whisker.
  • the force S in which the anode electrode 12 is constituted by a pure Sn plate You may comprise by Sn alloys, such as n-Ag, Sn-Cu, or Sn-Bi. In this case, a Sn alloy plating film is formed on the opposing surface of the force sword electrode 13.
  • the force sword electrode 13 may be composed of a copper alloy plate or a copper plate other than the force composed of a brass plate.
  • the case where the force sword electrode 13 is made of a copper plate will be described below.
  • FIG. 10 shows (101), (220), (211), (301), (112) of the pure Sn plating film when the pure Sn plating film is formed on the force sword electrode 13 having a copper plate force. ), (321) diffraction peak ratios of six crystal orientations (I (hkl) / (1 (101), I (220), I (211), I (301), I (112), I ( 32 1)) is expressed in relation to the angle ⁇ of the force sword electrode 13. Note that (hkl) is ((101), (220), (211), (301), (112) or (321).
  • the strong magnetic field B is applied to the force sword electrode 13 at an angle 0 of 5 ° to 53 ° and 85 ° to 90 °.
  • the pure Sn plating formed on the opposing surface of the force sword electrode 13 without applying a strong magnetic field B to the force sword electrode 13 It can be seen that a pure Sn plating film having diffraction peaks with dissimilar ratios to the ratios of the diffraction peaks of the six crystal orientations of the film is formed.
  • whisker is deposited even when pure Sn is deposited on the opposite surface of the cathode electrode 13 with a strong magnetic field B applied at an angle 0 between 75 ° and less than 85 ° with respect to the cathode electrode 13 that also has copper plate force. It was found that no occurred.
  • the strong magnetic field B is applied to the force sword electrode 13 at an angle 0 of 5 ° to 53 ° or 75 ° to 90 °.
  • a pure Sn plating film without a whisker can be formed.
  • the present invention is not limited to this, and the opposing surface of the anode electrode 12 and the force sword The facing surface of the electrode 13 may face the surface at a predetermined angle.
  • the plating film forming method of the present invention can be applied to various electronic components that can be plated, such as semiconductor ICs, various passive components, connectors, substrates, sockets, and switches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 純Snめっき膜にウィスカーが発生するのを防止することの可能なめっき膜の形成方法を提供する。カソード電極13の表面を鏡面に仕上げたのち、その表面に前処理を行ったのち、カソード電極13の強磁場Bに対する角度θを5°以上53°以下、または75°以上90°以下に設定する。次に、カソード電極13に対して強磁場Bを印加しつつ、アノード電極12とカソード電極13との間に電流を流す。これにより、上記した角度θの範囲のうち5°以上53°以下、または85°以上90°以下の場合には、カソード電極13に対して強磁場Bを印加していないときにカソード電極13に形成される純Snめっき膜の結晶配向パターンと非類似の結晶配向パターンの純Snめっき膜が形成される。このめっき膜は、Snの結晶方位として少なくとも(101)面を有する。    

Description

明 細 書
めっき膜の形成方法および材料
技術分野
[0001] 本発明は、強磁場を用いて純錫(Sn)めっきを行うめっき膜の形成方法および材料 に関する。
背景技術
[0002] 電気'電子製品は、不燃性の製品であることから、耐用年数の経過などによって廃 棄物となった場合に、そのままの形で、または粉砕されて地中に埋められることがある 。このような電気 ·電子製品にはめつき材として錫鉛 (Sn— Pb)が主に利用されている 力 この Sn—Pbに含まれる鉛は人に対する毒性を有している。そのため、 Sn— Pb に含まれる鉛が地中に埋められた廃棄物から酸性雨などにより溶出し、地下水に混 入したり河川に流れて、何らかの形で人々に取り込まれた場合には、鉛が人体に対 して悪影響を及ぼす虞がある。そこで、近年では、 Sn—Pbに替わる材料の検討が電 子業界にお 、て活発に進められて 、る。
[0003] 特許文献 1:特開 2005— 230830号公報
発明の開示
[0004] Sn—Pbに替わる材料としては純 Snや、 Sn— Ag、 311—01ぉょび311—:¾などの2 元系の Sn合金がある力 この中で最も有力視されている材料として純 Snが挙げられ る。この純 Snは人体に無害であり、その上、はんだ付け性がよぐコストが安価である という特徴を有している一方で、ゥイスカーが発生し易いという問題がある。純 Snめつ きに発生するゥイスカーは最長で数十 m〜数百/ z mの長さになるものもあり、電子 回路のショート (短絡)を引き起こす虞がある。ところが、ゥイスカーの発生メカニズムに ついては未解明な部分が多ぐ純 Snめっき膜にウイスカーが発生するのを抑制する ことが極めて困難であった。また、 Sn合金めつき膜においてもゥイスカーが発生する ことがある。
[0005] なお、特許文献 1には、析出電極の中心軸を取り囲むように電磁石コイルを配置し て、めっき槽内に磁場を形成することにより、対極力 析出電極に向力つて流れる電 流を析出電極の中心方向に曲げる技術が開示されている。
[0006] 本発明は力かる問題点に鑑みてなされたもので、その目的は、純 Snめっき膜また は Sn合金めつき膜にウイスカーが発生するのを防止することの可能なめっき膜の形 成方法および材料を提供することにある。
[0007] 本発明のめっき膜の形成方法は、以下の (A)および (B)の各工程を含むものであ る。
(A)純錫(Sn)または Sn合金力もなるアノード電極と銅または銅合金力もなる力ソード 電極とをめつき槽内にぉ 、て互いに対向配置する工程
(B)力ソード電極のうちアノード電極との対向面と所定の角度で交差する方向から力 ソード電極に対して強磁場を印加すると共に、アノード電極と力ソード電極との間に 電流を流す工程
[0008] 本発明の材料は、銅または銅合金力もなる基板に、純錫(Sn)または Sn合金よりな ると共に Snの結晶方位が少なくとも (101)面を有するめっき膜を備えたものである。
[0009] ここで、純 Snとは純度力 9%以上の Snを指している。 Sn合金は、例えば、 Sn — Ag、 Sn— Cu、 Sn— Biであり、銅合金は、例えば、 Cu— Znなどである。また、強 磁場とは 0. 1T以上の磁場のことを指している。また、対向とは正対だけを指すもの ではなぐ力ソード電極の対向面とアノード電極の対向面とが所定の角度で向き合つ ている場合も含まれる概念である。また、力ソード電極とアノード電極とが互いに等し い形状や大きさとなっている必要はない。なお、拡散防止のために、銅または銅合金 の表面に-ッケノレ (Ni)を例えば数 μ mめっきしてお!/、てもよ!/ヽ。
[0010] 本発明のめっき膜の形成方法では、銅または銅合金力もなる力ソード電極の対向 面に純 Snまたは Sn合金を析出させる際に、力ソード電極のうちアノード電極との対 向面と所定の角度で交差する方向から力ソード電極に対して強磁場を印加している
[0011] 本発明の材料では、 Cuまたは Cu合金基板の Snめっき膜において Sn結晶配向パ ターンにおける優先配向として少なくとも(101)面を有しているために、めっき膜にゥ イスカーの発生が無くなって 、る。
[0012] 本発明のめっき膜の形成方法によれば、銅または銅合金力 なる力ソード電極の対 向面に純 Snまたは Sn合金を析出させるときに、力ソード電極のうちアノード電極との 対向面と所定の角度で交差する方向から力ソード電極に対して強磁場を印加するよ うにしたので、純 Snめっき膜または Sn合金めつき膜にウイスカーが発生するのを防止 することができる。
[0013] 本発明の材料によれば、めっき膜の Snの結晶方位が少なくとも (101)面を有する ようにしたので、ゥイスカーの成長が抑えられている。この理由は必ずしも明確ではな いが、 Cuまたは Cu合金基板上の Snめっき膜にウイスカーが発生する原因は、 Cu元 素が Sn中に拡散することにより Sn中に Cu— Snの金属間化合物が成長し、 Snの内 部応力を高め、それを解消するために Sn元素が表面に拡散することによっている。 S nの優先方位として(101)を有することにより、 Cu元素の拡散を抑制する力、内部応 力の発生を抑え Sn元素の拡散が防止されることなどが考えられる。よって、この材料 を電子部品に適用すれば、電子回路の短絡などの発生を抑えることができる。
図面の簡単な説明
[0014] [図 1]本発明の一実施の形態に係る、純 Snめっき膜の形成方法の流れ図である。
[図 2]図 1の形成方法を実施する際に用いる製造装置の概略構成図である。
[図 3]図 2のめつき膜形成部の概略構成図である。
[図 4]図 3の力ソード電極の強磁場に対する角度について説明するための概略構成 図である。
[図 5]X線回折法により計測された結晶配向パターン図である。
[図 6]力ソード電極を黄銅板により構成した場合における、力ソード電極の角度と輝度 比との関係図である。
[図 7]本実施の形態の一例に係る純 Snめっき膜の SEM写真である。
[図 8]比較例に係る純 Snめっき膜の SEM写真である。
[図 9]強磁場の大きさとゥイスカーの発生との関係図である。
[図 10]力ソード電極を銅板により構成した場合における、力ソード電極の角度と輝度 比との関係図である。
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について図面を参照して詳細に説明する。 [0016] 図 1は本発明の一実施の形態に係る、純 Snめっき膜の形成方法の流れを表すもの である。図 2は本実施の形態の形成方法を実施する際に用いる製造装置 1の概略構 成を表すものであり、図 3は図 2のめつき膜形成部 10の内部構成を表すものである。
[0017] この製造装置 1は、めっき膜形成部 10と、磁場発生部 20とを備えたものである。こ のめつき膜形成部 10は、めっき液 11中に 3つの電極(アノード電極 12、力ソード電極 13および塩橋 14)を浸したものであり、電析の方式として三極電極方式を採用したも のである。
[0018] めっき膜形成部 10は、めっき液 11で満たされためっき槽 15と、めっき液 11中に互 いに対向配置されたアノード電極 12および力ソード電極 13と、めっき液 11中に配置 された塩橋 14とを備えている。アノード電極 12は電圧源 30のプラス端子 31に、カソ ード電極 13は電圧源 30のマイナス端子 32にそれぞれ接続されている。塩橋 14につ いては、一端がめっき液 11に浸され、他端が内部液槽 16内の内部液 17に浸されて いる。内部液 17には電圧源 30のグラウンド端子 33に接続された参照電極 18がさら に浸されている。
[0019] ここで、めっき液 11は、例えば、硫酸錫が電気分解されたものであり、 Sn2+イオンと 、 SO 2イオンとを含有している。アノード電極 12は、純 Sn板カゝらなり、プラス端子 31
4
力 延在する配線 12Aの先端に接続されている。純 Sn板の Snの純度は、 99. 9% 以上であることが好ましい。力ソード電極 (基板) 13は、黄銅 (Cu— Zn)板力もなり、マ ィナス端子 32から延在する配線 13Aの先端に接続されている。黄銅板は、例えば 1 Omm X 10mm角で、厚さが 0. 3mmの直方体形状となっており、アノード電極 12と の対向面が磁場発生部 20から発生する強磁場 Bの方向(ベクトル)と角度 Θで交わ るように配置されている(図 4参照)。なお、黄銅板はその表面が研磨により鏡面に仕 上げられると共に前処理が施されたものであることが好ましい。また、ニッケルを数 mめっきした表面に形成しためっき膜と、銅や銅合金に直接形成しためっき膜とは互 いに同質であることから、拡散防止のために、黄銅板の表面にニッケル (Ni)を例え ば数/ z mめっきしておいてもよい。塩橋 14は、例えば寒天に塩ィ匕カリウム (KC1)を混 ぜたもの力もなる。内部液 17は、例えば飽和塩ィ匕カリウム力もなり、参照電極 18は、 AgZAgClからなる。 [0020] 磁場発生部 20は、黄銅板 13Bに対して 0. 1T以上の強磁場 Bを印加するためのも のであり、例えば、超伝導転移温度の高い超伝導コイルや、強力な磁石からなる。
[0021] 次に、純 Snめっき膜の形成方法について説明する。まず、力ソード電極 13の表面 を鏡面に仕上げたのち、その表面に前処理を行う (ステップ S l)。例えば、粒径 400 μ m〜1550 μ mの砥粒を含む研磨剤を用いて力ソード電極 13の表面を研削し、続 いてその表面をパフ研磨することにより鏡面に仕上げる。次いで、例えば、アセトンに よる超音波洗浄を 15分間行って表面を脱脂したのち、その表面を 0. 05molZlの塩 酸に 1分間曝すことにより脱酸する。このようにして、力ソード電極 13の表面をめつき に適した状態にしておく。
[0022] 次に、力ソード電極 13の強磁場 Bに対する角度 0を、 5° 以上 53° 以下、または 7 5° 以上 90° 以下に設定する (ステップ S2)。
[0023] 次に、磁場発生部 20を駆動して、力ソード電極 13に対して例えば 5Tの強磁場 Bを 印加したのち(ステップ S3)、アノード電極 12と力ソード電極 13との間に例えば 20分 間、電流を流す (ステップ S4)。このとき、力ソード電極 13における電流密度が例えば 15mA/mm2となるような電位差(例えば一 0. 45V)が力ソード電極 13とアノード電 極 12との間に生じるように電圧源 30を設定しておく。すると、力ソード電極 13のうちァ ノード電極 12との対向面に純 Snが電析し始め、次第に純 Snめっき膜が形成される。 このようにして、本実施の形態の純 Snめっき膜が形成される。
[0024] ところで、力ソード電極 13の対向面に形成された純 Snめっき膜の結晶配向パター ンを X線回折法(X-Ray Diffraction ;XRD)を用いて分析すると、図 5 (A)〜(B)に示 したような回折線の強度プロファイルとなる。ここで、図 5 (A)は力ソード電極 13の角 度 Θ力 15° または 45° のときのものを、図 5 (B)は力ソード電極 13の角度 Θ力 ¾0° のときのものをそれぞれ表すものである。
[0025] なお、参考例として、力ソード電極 13の角度 0が 75° または 90° のときのものを図 5 (C)に示し、比較例として、力ソード電極 13の角度 0が 0° または 60° のときのもの を図 5 (D)に示し、力ソード電極 13に対して強磁場 Bを印加していないときのものを図 5 (E)に示している。ただし、図 5 (A)〜(E)の横軸は回折角の角度を、縦軸は回折 光の強度をそれぞれ表すものである。また、力ソード電極 13の角度 Θと、結晶配向パ ターンとの関係をまとめたものを表 1に示す。
[0026] [表 1]
Figure imgf000008_0001
[0027] 図 5 (A)〜(E)から、力ソード電極 13に対して 15° 以上 45° 以下の角度 0で強磁 場 Bを印加した状態で、力ソード電極 13の対向面に純 Snを析出させると、力ソード電 極 13に対して強磁場 Bを印加して 、な 、場合(図 5 (E) )に力ソード電極 13に形成さ れる純 Snめっき膜の結晶配向パターン (パターン X)と非類似の結晶配向パターン( ノ ターン Y)の純 Snめっき膜が形成されることがわかる(図 5 (A)〜(B) )。
[0028] ここで、非類似とは、例えば、パターン Xに含まれる優先配向とパターン Yに含まれ る優先配向とが互いに一致しない場合や、ノターン Xに含まれる各優先配向の回折 ピークの大小関係とパターン Yに含まれる各優先配向の回折ピークの大小関係が互 Vヽに一致しな 、場合などを指す。
[0029] すなわち、力ソード電極 13の角度 0力 15° または 45° のときの結晶配向パターン は、図 5 (A)力も分力るように、(101)、 (211)、 (112)の 3つの結晶配向(優先配向) を有している。力ソード電極 13の角度 Θ力 30° のときの結晶配向パターンは、図 5 ( B)から分力るように、(101)、 (211)、 (321)の 3つの結晶配向(優先配向)を有して いる。これに対して、力ソード電極 13に対して強磁場 Bを印加していない場合の結晶 配向パターンは、図 5 (E)から分力るように、(211)、 (321)の 2つの結晶配向(優先 配向)しか有していない。つまり、パターン Yの純 Snめっき膜は、 Snの結晶方位とし て少なくとも(101)面を有している。
[0030] 一方、力ソード電極 13に対して 75° 以上 90° 以下の角度 0で強磁場 Bを印加し た状態で、力ソード電極 13の対向面に純 Snを析出させると、パターン X(図 5 (E) )と 比較的類似した結晶配向ノターンの純 Snめっき膜が形成されることがわかる(図 5 ( C) )。また、力ソード電極 13に対して 0° または 60° の角度 0で強磁場 Bを印加した 状態で、力ソード電極 13の対向面に純 Snを析出させると、パターン Xと比較的類似 した結晶配向パターンの純 Snめっき膜が形成されることがわかる(図 5 (D) )。
[0031] 次に、力ソード電極 13の対向面に形成された純 Snめっき膜の(101)、(211)、 (3 21)の 3つの結晶配向(優先配向)の回折ピークの各比率 (I (hkl) / (1 (101) +1 (21 1) +1 (321) )に着目して、力ソード電極 13の角度 0を変化させたときに力ソード電極 13の対向面に形成された純 Snめっき膜のそれぞれの結晶配向パターンの類似性を 分析すると、図 6に示したようなグラフとなる。ここで、図 6の横軸は力ソード電極 13の 角度 Θを、縦軸は輝度比をそれぞれ表すものである。なお、(hkl)は(101)、 (211) または(321)である。
[0032] 図 6から、力ソード電極 13に対して 5° 以上 53° 以下、および 85° 以上 90° 以下 の角度 Θで強磁場 Bを印加した状態で、力ソード電極 13の対向面に純 Snを析出さ せると、力ソード電極 13に対して 0° の角度で強磁場 Bを印加した状態で力ソード電 極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向の回折ピークの各比率 と非類似の比率の回折ピークを有する純 Snめっき膜が形成されることがわかる。
[0033] 一方、上記以外の角度 Θで強磁場 Bを印加した状態で、力ソード電極 13の対向面 に純 Snを析出させると、力ソード電極 13に対して 0° の角度で強磁場 Bを印加した 状態で力ソード電極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向の回 折ピークの各比率と比較的類似した比率の回折ピークを有する純 Snめっき膜が形成 されることがゎカゝる。
[0034] なお、図示していないが、力ソード電極 13に対して 0° の角度で強磁場 Bを印加し た状態で力ソード電極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向の 回折ピークの各比率と、力ソード電極 13に対して強磁場 Bを印加しない状態でカソー ド電極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向の回折ピークの各 比率とは、互いに類似している。
[0035] 従って、力ソード電極 13に対して 5° 以上 53° 以下、および 85° 以上 90° 以下 の角度 Θで強磁場 Bを印加した状態で、力ソード電極 13の対向面に純 Snを析出さ せると、力ソード電極 13に対して強磁場 Bを印加しない状態で力ソード電極 13の対 向面に形成される純 Snめっき膜の 3つの結晶配向の回折ピークの各比率と非類似 の比率の回折ピークを有する純 Snめっき膜が形成されるといえる。
[0036] 一方、上記以外の角度 Θで強磁場 Bを印加した状態で、力ソード電極 13の対向面 に純 Snを析出させると、力ソード電極 13に対して強磁場 Bを印加しない状態でカソ ード電極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向の回折ピークの 各比率と比較的類似した比率の回折ピークを有する純 Snめっき膜が形成されるとい える。
[0037] 次に、力ソード電極 13に対して 15° 、30° 、45° 、75° および 90° の角度 0で 強磁場 Bを印加したときにそれぞれ得られた純 Snめっき膜に、 50°C、 3000時間の 熱処理を行ったのち、走査電子顕微鏡 (Scanning Electron Microscope; SEM)を用 V、て各純 Snめっき膜の表面を観察すると、図 7 (A)〜(C)に示したような表面となる。 ここで、図 7 (A)は力ソード電極 13の角度 0力 15° または 45° のときのものであり、 図 7 (B)は力ソード電極 13の角度 Θ力 30° のときのものであり、図 7 (C)は力ソード電 極 13の角度 0力 75° または 90° のときのものである。
[0038] なお、比較例として、力ソード電極 13の角度 0が 0° または 60° のときのものを図 8
(A)と、図 8 (B) (図 8 (A)を拡大したもの)とに示し、力ソード電極 13に対して強磁場 Bを印加していないときのものを図 8 (C)と、図 8 (D) (図 8 (C)を拡大したもの)とに示 している。また、力ソード電極 13の角度 Θと、ゥイスカーの有無との関係をまとめたも のを表 2に示す。
[0039] [表 2] 角度 Θ (度) ウイスカ
0 あり
15 なし
30 なし
45 なし
60 あり
75 なし
90 なし
[0040] 図 7 (A)〜(C)および図 8 (A)〜(D)から、力ソード電極 13に対して 15° 以上 45° 以下、または 75° 以上 90° 以下の角度 0で強磁場 Bを印加した状態で、力ソード電 極 13の対向面に純 Snを析出させると、ゥイスカーの無い純 Snめっき膜が形成される ことがわかる(図 7 (A)〜(C) )。一方、力ソード電極 13に対して 0° または 60° の角 度 Θで強磁場 Bを印加した状態で、力ソード電極 13の対向面に純 Snを析出させると 、力ソード電極 13に対して強磁場 Bを印加していないとき(図 8 (C) , (D) )と同様、ゥ イスカーの形成された純 Snめっき膜が形成されることがわかる(図 8 (A) , (B) )。
[0041] 以下、図 5 (A)〜 (E)〜図 8のそれぞれの結果を総合的に検討する。まず、力ソード 電極 13に対して 15° 以上 45° 以下、および 85° 以上 90° 以下の角度 0で強磁 場 Bを印加した状態で、力ソード電極 13の対向面に純 Snを析出させると、ゥイスカー の無い純 Snめっき膜を形成することができる。このとき、力ソード電極 13に対して強 磁場 Bを印加しない状態で力ソード電極 13の対向面に形成される純 Snめっき膜の 3 つの結晶配向((101)、 (211)、 (321) )の回折ピークの各比率と非類似の比率の回 折ピークを有する純 Snめっき膜が形成されるので、力ソード電極 13の角度 Θを上記 した範囲内とした場合には、この非類似性がウイスカーの成長を阻害した可能性があ る。このように考えた場合には、力ソード電極 13に対して 5° 以上 15° 未満、および 45° より大きく 53° 以下の角度 0で強磁場 Bを印加した状態で、力ソード電極 13の 対向面に純 Snを析出させた場合についても、この非類似性によってゥイスカーの成 長が阻害されている可能性がある。 [0042] 特に、力ソード電極 13に対して 15° 以上 45° 以下の角度 0で強磁場 Bを印加し た状態で形成されたゥイスカーの無い純 Snめっき膜は、力ソード電極 13に対して強 磁場 Bを印カロしない状態で形成された純 Snめっき膜と異なり、 Snの結晶方位が少な くとも(101)面を有している。よって、めっき膜の Snの結晶方位が少なくとも(101)面 を有することにより、めっき膜のウイスカーが無くなつている可能性がある。
[0043] また、力ソード電極 13に対して 75° 以上 85° 未満の角度 0で強磁場 Bを印加した 状態で、力ソード電極 13の対向面に純 Snを析出させても、ゥイスカーの無い純 Snめ つき膜を形成することができる。このとき、力ソード電極 13に対して強磁場 Bを印加し ない状態で力ソード電極 13の対向面に形成される純 Snめっき膜の 3つの結晶配向( (101)、 (211)、 (321) )の回折ピークの各比率と比較的類似した比率の回折ピーク を有する純 Snめっき膜が形成されるので、力ソード電極 13の角度 Θを上記した範囲 内とした場合には、上記したケースとは異なる要因がゥイスカーの成長を阻害したと 思われる。
[0044] 次に、力ソード電極 13に印加する強磁場 Bの大きさと、ゥイスカーの発生との関係に ついて説明する。図 9は、力ソード電極 13の角度 Θを 30° に設定してアノード電極 1 2の対向面に純 Snを電析させたときの、ゥイスカーの発生頻度を表すものである。図 9から、強磁場 Bの大きさを 0. 1T以上にするとゥイスカーの発生頻度を低減すること ができ、強磁場 Bの大きさを 0. 3T以上にするとゥイスカーの発生をなくすることができ ることがわ力る。なお、この傾向は力ソード電極 13の角度 Θを 30° に設定した場合 に限られるものではなぐ 5° 以上 53° 以下、または 75° 以上 90° 以下に設定すれ ば同様の傾向を得ることができる。
[0045] 以上のことから、本実施の形態の純 Snめっき膜の形成方法では、力ソード電極 13 に対して 5° 以上 53° 以下、または 75° 以上 90° 以下の角度 0で強磁場 Bを印加 した状態で、力ソード電極 13の対向面に純 Snを析出させるようにしたので、ウイスカ 一の無 、純 Snめっき膜を形成することができる。
[0046] 以上、実施の形態を挙げて本発明を説明した力 本発明は上記の実施の形態に 限定されるものではなぐ種々変形可能である。
[0047] 例えば、上記実施の形態では、アノード電極 12を純 Sn板により構成していた力 S n— Ag、 Sn—Cuまたは Sn—Biなどの Sn合金により構成してもよい。なお、この場合 には、力ソード電極 13の対向面に Sn合金めつき膜が形成される。
[0048] また、上記実施の形態では、力ソード電極 13を黄銅板により構成していた力 他の 銅合金板や、銅板により構成してもよい。以下に、力ソード電極 13を銅板により構成 した場合について説明する。
[0049] 図 10は、銅板力もなる力ソード電極 13に純 Snめっき膜を形成したときの、その純 S nめっき膜の(101)、(220)、(211)、(301)、(112)、(321)の 6つの結晶配向の 回折ピークの各比率 (I (hkl) / (1 (101) , I (220)、 I (211)、 I (301)、 I (112)、 I (32 1) )を、力ソード電極 13の角度 Θとの関係で表したものである。なお、(hkl)は((101 )、 (220)、(211)、(301)、(112)または(321)である。
[0050] 図 10から、力ソード電極 13を黄銅板により構成した場合と同様、力ソード電極 13に 対して 5° 以上 53° 以下、および 85° 以上 90° 以下の角度 0で強磁場 Bを印加し た状態で、力ソード電極 13の対向面に純 Snを析出させると、力ソード電極 13に対し て強磁場 Bを印加しない状態で力ソード電極 13の対向面に形成される純 Snめっき膜 の 6つの結晶配向の回折ピークの各比率と非類似の比率の回折ピークを有する純 S nめっき膜が形成されることがわかる。一方、上記以外の角度 Θで強磁場 Bを印加し た状態で、力ソード電極 13の対向面に純 Snを析出させると、力ソード電極 13に対し て強磁場 Bを印加しない状態で力ソード電極 13の対向面に形成される純 Snめっき膜 の 6つの結晶配向の回折ピークの各比率と比較的類似した比率の回折ピークを有す る純 Snめっき膜が形成されることがわかる。そして、このような条件で形成された純 S nめっき膜にはゥイスカーが発生していないことがわ力つた。また、銅板力もなるカソー ド電極 13に対して 75° 以上 85° 未満の角度 0で強磁場 Bを印加した状態で、カソ ード電極 13の対向面に純 Snを析出させた場合にもゥイスカーが発生していないこと がわかった。
[0051] このことから、力ソード電極 13を銅板により構成した場合においても、力ソード電極 1 3に対して 5° 以上 53° 以下、または 75° 以上 90° 以下の角度 0で強磁場 Bを印 加した状態で、力ソード電極 13の対向面に純 Snを析出させることにより、ゥイスカー の無 、純 Snめっき膜を形成することができる。 [0052] また、上記実施の形態では、アノード電極 12と力ソード電極 13とが互いに正対して 配置されていた力 本発明はこれに限定されるものではなぐアノード電極 12の対向 面と力ソード電極 13の対向面とが所定の角度で向き合つていてもよい。また、ァノー ド電極 12と力ソード電極 13とが互いに等 、形状や大きさとなって 、る必要はな!/、。
[0053] 本発明のめっき膜の形成方法は、めっき可能な種々の電子部品、例えば、半導体 I Cや、各種受動部品、コネクタ、基板、ソケット、スィッチに適用可能である。

Claims

請求の範囲
[1] 純錫(Sn)または Sn合金力もなるアノード電極と銅または銅合金力もなる力ソード電 極とをめつき槽内にぉ 、て互いに対向配置する工程と、
前記力ソード電極のうち前記アノード電極との対向面と所定の角度で交差する方向 力 前記力ソード電極に対して強磁場を印加すると共に、前記アノード電極と前記力 ソード電極との間に電流を流す工程と
を含むことを特徴とするめつき膜の形成方法。
[2] 前記所定の角度は、 15° 以上 45° 以下、または 75° 以上 90° 以下である
を含むことを特徴とする請求項 1記載のめっき膜の形成方法。
[3] 銅または銅合金力もなる基板に、純錫(Sn)または Sn合金よりなると共に Snの結晶 方位が少なくとも(101)面を有するめっき膜を備えた
ことを特徴とする材料。
[4] 前記めつき膜は、純錫(Sn)または Sn合金力 なるアノード電極と銅または銅合金 力 なる力ソード電極とをめつき槽内において互いに対向配置し、前記力ソード電極 のうち前記アノード電極との対向面と 15° 以上 45° 以下の角度で交差する方向か ら前記力ソード電極に対して強磁場を印加すると共に、前記アノード電極と前記カソ ード電極との間に電流を流すことにより形成されたものである
ことを特徴とする請求項 3記載の材料。
PCT/JP2007/061726 2006-06-09 2007-06-11 めっき膜の形成方法および材料 WO2007142352A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008520647A JPWO2007142352A1 (ja) 2006-06-09 2007-06-11 めっき膜の形成方法および材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-161606 2006-06-09
JP2006161606 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007142352A1 true WO2007142352A1 (ja) 2007-12-13

Family

ID=38801594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061726 WO2007142352A1 (ja) 2006-06-09 2007-06-11 めっき膜の形成方法および材料

Country Status (2)

Country Link
JP (1) JPWO2007142352A1 (ja)
WO (1) WO2007142352A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065166A1 (ja) * 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 リフローSnめっき部材
JP2011527100A (ja) * 2008-06-30 2011-10-20 アギア システムズ インコーポレーテッド 金属フィルム上の成長形成物の防止または軽減
JP2013206898A (ja) * 2012-03-27 2013-10-07 Tdk Corp チップ型電子部品
JP2015179879A (ja) * 2012-12-27 2015-10-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品内蔵印刷回路基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239887A (ja) * 1999-02-19 2000-09-05 Univ Nagoya 磁場による電析または無電解析出膜の結晶方位制御方法
JP2002266095A (ja) * 2001-03-13 2002-09-18 Kobe Steel Ltd 電子・電気部品用銅合金材料
JP2006009039A (ja) * 2004-06-21 2006-01-12 Rambo Chemicals (Hong Kong) Ltd ウィスカー成長が抑制されたスズ系めっき皮膜及びその形成方法
JP2006104273A (ja) * 2004-10-04 2006-04-20 Toppan Printing Co Ltd 導電性接着剤及び導電性フィルム及び、これを用いたプリント配線版

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239887A (ja) * 1999-02-19 2000-09-05 Univ Nagoya 磁場による電析または無電解析出膜の結晶方位制御方法
JP2002266095A (ja) * 2001-03-13 2002-09-18 Kobe Steel Ltd 電子・電気部品用銅合金材料
JP2006009039A (ja) * 2004-06-21 2006-01-12 Rambo Chemicals (Hong Kong) Ltd ウィスカー成長が抑制されたスズ系めっき皮膜及びその形成方法
JP2006104273A (ja) * 2004-10-04 2006-04-20 Toppan Printing Co Ltd 導電性接着剤及び導電性フィルム及び、これを用いたプリント配線版

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527100A (ja) * 2008-06-30 2011-10-20 アギア システムズ インコーポレーテッド 金属フィルム上の成長形成物の防止または軽減
WO2011065166A1 (ja) * 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 リフローSnめっき部材
JP2011111663A (ja) * 2009-11-30 2011-06-09 Jx Nippon Mining & Metals Corp リフローSnめっき部材
CN102666938A (zh) * 2009-11-30 2012-09-12 Jx日矿日石金属株式会社 回焊镀Sn构件
KR101214421B1 (ko) 2009-11-30 2012-12-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리플로우 Sn 도금 부재
TWI409128B (zh) * 2009-11-30 2013-09-21 Jx Nippon Mining & Metals Corp Reflow Sn plating components
US8865319B2 (en) 2009-11-30 2014-10-21 Jx Nippon Mining & Metals Corporation Reflow Sn plated material
JP2013206898A (ja) * 2012-03-27 2013-10-07 Tdk Corp チップ型電子部品
JP2015179879A (ja) * 2012-12-27 2015-10-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品内蔵印刷回路基板
US10015884B2 (en) 2012-12-27 2018-07-03 Samsung Electro-Mechanics Co., Ltd. Printed circuit board including embedded electronic component and method for manufacturing the same
US10887995B2 (en) 2012-12-27 2021-01-05 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing a printed circuit board including an embedded electronic component

Also Published As

Publication number Publication date
JPWO2007142352A1 (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
KR101310400B1 (ko) 위스커 억제 표면 처리 방법
TWI335943B (en) Whiskerless plated structure and plating method
US20070158204A1 (en) Tin and tin alloy electroplating method with controlled internal stress and grain size of the resulting deposit
US20110244261A1 (en) Member formed with coating film having tin as its main component, coating film forming method and soldering method
US10006125B2 (en) Gold plate coated material
WO2007142352A1 (ja) めっき膜の形成方法および材料
JP2006009039A (ja) ウィスカー成長が抑制されたスズ系めっき皮膜及びその形成方法
JP3711141B1 (ja) Sn−Ag−Cu三元合金薄膜を形成する方法
JP4894304B2 (ja) 無鉛Snベースめっき膜及び接続部品の接点構造
WO2003078698A1 (fr) Procede de depot d'une couche de cuivre par galvanoplastie, anode contenant du phosphore destinee au depot d'une couche de cuivre par galvanoplastie, et plaquette semi-conductrice sur laquelle adherent peu de particules obtenue a partir de ce procede et de cette anode
Borra et al. Sn whisker growth mitigation by using NiO sublayers
KR20090010406A (ko) 주석-나노다이아몬드 복합 도금액 및 이를 이용한 전해도금방법
TW506100B (en) Plating method
Hua et al. Electrochemical migration and rapid whisker growth of Zn and Bi dopings in Sn-3.0 Ag-0.5 Cu solder in 3wt.% NaCl solution
JP7356047B2 (ja) 金属体の形成方法および金属体、ならびにその金属体を備える嵌合型接続端子
WO2020006761A1 (zh) 电解液、使用该电解液以电沉积制备单晶铜的方法以及电沉积设备
JP6948000B1 (ja) 嵌合型接続端子、および嵌合型接続端子の形成方法
JP3662577B1 (ja) Sn−Ag−Cu三元合金薄膜を形成する方法
KR101427388B1 (ko) 인쇄회로기판 지지용 보강판 및 그 제조방법
US20180355499A1 (en) Manufacturing method of ultra-large copper grains without heat treatment
TW201033404A (en) Method for forming projection electrode and substituted gold plating solution
JP2017082319A (ja) 銅三次元ナノ構造体の製造方法
Garich et al. Controlling whisker formation in tin-based solders using electrically mediated electrodeposition
JP3741709B1 (ja) Sn−Ag−Cu三元合金薄膜を形成する方法
JP2006322014A (ja) めっき液、めっき膜及びその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745016

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008520647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745016

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)