WO2007142327A1 - 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法 - Google Patents

変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法 Download PDF

Info

Publication number
WO2007142327A1
WO2007142327A1 PCT/JP2007/061633 JP2007061633W WO2007142327A1 WO 2007142327 A1 WO2007142327 A1 WO 2007142327A1 JP 2007061633 W JP2007061633 W JP 2007061633W WO 2007142327 A1 WO2007142327 A1 WO 2007142327A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
capacitor
conversion
output
analog
Prior art date
Application number
PCT/JP2007/061633
Other languages
English (en)
French (fr)
Inventor
Shoji Kawahito
Original Assignee
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Shizuoka University filed Critical National University Corporation Shizuoka University
Priority to JP2008520635A priority Critical patent/JP4817399B2/ja
Priority to US12/303,852 priority patent/US7893859B2/en
Priority to EP07744949A priority patent/EP2037583B1/en
Publication of WO2007142327A1 publication Critical patent/WO2007142327A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/069Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
    • H03M1/0695Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal

Definitions

  • the present invention relates to a conversion circuit for an analog-digital converter, an analog digital converter including the conversion circuit, and a method for generating a digital signal corresponding to an analog signal.
  • Non-Patent Documents 1 and 2 describe a no-line analog-to-digital converter (ADC), and each stage of the analog-to-digital converter includes a multiplying D / A that includes a switched capacitor circuit.
  • a converter MDAC
  • these analog-digital converters include capacitors, and these capacitors inevitably have mismatches.
  • Non-Patent Documents 1 and 2 describe canceling this mismatch.
  • Non-Patent Document 3 describes that after converting an input analog signal into a digital value, a mismatch of capacitors used in each stage of the analog-digital converter is corrected.
  • Patent Document 1 describes a multi-stage analog-digital converter (ADC) and describes correcting a mismatch of capacitors digitally.
  • Patent Document 2 describes a pipeline type A / D conversion circuit capable of correcting a gain error in each stage and suppressing deterioration of linearity characteristics.
  • Patent Document 3 describes an A / D converter with high accuracy and small area penalty.
  • the A / D converter includes a pipeline 'stage and an error correction circuit that performs error correction processing on the bit data provided from each stage and generates an n-bit digital signal.
  • Non-Patent Document 1 Bang 3 ⁇ 4u Song, Michael F. Tompsett, and Kadaba R. Lakshmi kumar, A 12 bit 1 Msample / s capacitor error averaging pipelined A / D connverter, IEEE Journal of Solid State Circuits, vol. 23, pp 1324-1333, De cember 1988.
  • Non-Patent Document 2 You Chiu, "Inherently linear capacitor error-averaging techniques for pipelined A / D converters," IEEE Trans, (circuits and Systems II, vol.
  • Non-Patent Document 3 H. S. Chen, K. Bacrania, B. S. Song, "A 14b 20M Sample / s
  • Patent Document 1 US Patent, No. 5,510,789
  • Patent Document 2 JP 2004-343163 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-72844
  • the unit MDAC requires 3 clocks for one cycle of operation.
  • the unit MDAC requires two clocks for one cycle operation.
  • the unit MDAC can operate for one cycle with 1.5 clocks, but an additional amplifier is required to correct the capacitor mismatch.
  • it is necessary to measure an error of correction performed digitally, and a digital circuit for correction is required.
  • the present invention has been made in view of such circumstances, and is a conversion circuit for an analog-to-digital converter capable of compensating for a capacitor mismatch with a minimum 1.5 clock operation.
  • an analog-to-digital converter including this conversion circuit is provided, and a digital signal corresponding to an analog signal is compensated by compensating for capacitor mismatch with a minimum of 1/5 clock operation.
  • the purpose is to provide a method for generating
  • One aspect of the present invention is a conversion circuit for an analog-digital converter.
  • the conversion circuit receives the input analog signal in the first period and supports the input analog signal.
  • a first input for receiving the converted analog signal in a second period different from the first period; receiving the input analog signal in the first period; and receiving the converted analog signal in the first and second periods.
  • a gain stage having a second input for receiving in a third period different from the first period, first to third capacitors, and an operational amplifier circuit.
  • the first and second capacitors are connected between the first and second inputs and the inverting input of the operational amplifier circuit, respectively, and the charge corresponding to the analog signal is previously transferred. It is stored in the first and second capacitors via the first and second inputs, respectively.
  • the second capacitor is connected between the output and the inverting input of the operational amplifier circuit, and the conversion received by the first capacitor via the first input.
  • a first calculation value is generated at the output of the operational amplifier circuit, and the first calculation value is stored in the third capacitor.
  • the second capacitor is connected between the second input and the output of the operational amplifier circuit, and the first and third capacitors are connected to the output of the operational amplifier circuit.
  • the inverting input respectively, and in response to the converted analog signal received by the second capacitor via the second input, a second calculated value is output to the output of the operational amplifier circuit. Is generated.
  • the conversion circuit provides: (a) a conversion analog signal that receives an input analog signal in the first period and that is in any of the second and third periods different from the first period; And a second input for receiving the input analog signal in the first period and receiving the converted analog signal in any of the second and third periods
  • a gain stage is provided.
  • the gain stage includes: (al) an operational amplification circuit; (a2) a first capacitor having one end connected to the first input and the other end connected to an inverting input of the operational amplification circuit; (A3) one end connected to the second input And a second capacitor having the other end connected to the inverting input of the operational amplifier circuit; and (a4) connected between the one end of the second capacitor and the output of the operational amplifier circuit.
  • A6) a third capacitor having one end and the other end connected to the output of the operational amplifier circuit; and (a7) the other end of the third capacitor and the inversion thereof.
  • a fourth switch for providing a reference potential to the other end of the third capacitor during the first and second periods.
  • the second capacitor is connected to the second input, and the first capacitor is connected to the first input, so that charges corresponding to the analog signal are supplied to the first and second capacitors. It can be accumulated in the first period in 2 kyapashita.
  • the second capacitor is connected between the inverting input and the output of the operational amplifier circuit, and the first capacitor is connected between the first input and the inverting input of the operational amplifier circuit.
  • the first conversion value can be generated in the second period. In the second period, the charge corresponding to the first conversion value can be stored in the third capacitor.
  • the first and third capacitors are connected between the inverting input and the output of the operational amplifier circuit, and the second capacitor is connected between the second input and the output of the operational amplifier circuit.
  • a second conversion value can be generated in the third period at the output of the amplifier circuit.
  • the generation of the second conversion value also takes into account the charge stored in the third capacitor, so that the mismatch of the first to third capacitors is compensated.
  • the mismatch between the first to third capacitors and the conversion of the analog signal can be performed using three periods.
  • a conversion circuit includes: (b) an analog input that receives the input analog signal; and (c) connected between the first input and the analog input.
  • a logic circuit for providing a control signal according to the second period and the third period, and (g) connected to the logic circuit, and converting the analog signal during the second and third periods.
  • a DZA conversion circuit for providing a signal, and the converted analog signal is generated according to the control signal.
  • the input analog signal can be supplied to the first and second capacitors in the first period using the first and second sampling switches, and the second and third Converted analog signals can be supplied to the first and second inputs of the gain stage during the period.
  • a digital signal including one or more bits is generated according to the input analog signal using the sub A / D conversion circuit.
  • the sub A / D conversion circuit may include a comparator that compares the input analog signal with a predetermined reference signal and provides a comparison result signal.
  • a 1-bit digital value is obtained by using this conversion circuit. Also, if the number of comparators is increased, a digital signal with more than 1 bit can be obtained.
  • the sub A / D conversion circuit generates a ternary redundant digital signal by comparing the input analog signal with two predetermined reference signals.
  • Power S can be.
  • the gain stage receives (a9) an input analog complementary signal during the first period and a conversion analog complementary signal during the second and third periods.
  • a first complementary input for receiving and (alO) a second complementary for receiving the input analog complementary signal in the first period and receiving the converted analog complementary signal in the second and third periods Input and (al l) one connected to the first complementary input.
  • a fourth capacitor having an end and the other end connected to the non-inverting input of the operational amplifier circuit; and (al 2) one end connected to the second complementary input and the non-capacitor of the operational amplifier circuit.
  • a fifth capacitor having the other end connected to the inverting input; (al 3) connected between the one end of the fifth capacitor and a complementary output of the operational amplifier circuit; A fifth switch for connecting the fifth capacitor between the non-inverting input and the complementary output of the operational amplifier circuit during a period; (al4) the one end of the fourth capacitor and the A sixth capacitor connected between the complementary output of the operational amplifier circuit and connecting the fourth capacitor between the complementary output of the operational amplifier circuit and the non-inverting input during the third period. (Al5) connected to the complementary output of the operational amplifier circuit A sixth capacitor having one end and the other end; and (al 6) connected between the other end of the sixth capacitor and the non-inverting input, and the sixth capacitor in the third period.
  • a seventh switch for connecting a capacitor between the complementary output and the non-inverting input of the operational amplifier circuit; (al 7) the other end of the sixth capacitor and a reference potential line; And an eighth switch for providing a reference potential to the other end of the sixth capacitor in the first and second periods.
  • the analog digital converter includes (a) a first AD conversion stage, the first AD conversion stage having an input for receiving an input analog signal and an analog output for providing a residual analog signal. .
  • the analog-digital converter includes (b) —or a plurality of second AD conversion stages, and each of the second AD conversion stages has an input for receiving a residual analog signal from the preceding AD conversion stage and the corresponding AD converter stage.
  • An analog output for providing a residual analog signal of the AD conversion stage; the first and second AD conversion stages are connected in series; and the first AD conversion stage is the conversion circuit described above.
  • the first AD conversion stage has a digital output for providing a digital signal having a predetermined number of bits
  • each of the second AD conversion stages has a digital signal having the predetermined number of bits. Has a digital output to provide.
  • the second AD conversion stage includes the conversion circuit described above. According to this analog-digital converter, the capacitor mismatch can be compensated for in the conversion circuit after the first stage.
  • the analog-digital converter includes: (c) a sample Z hold circuit that is connected to the input of the first AD conversion stage and holds the analog signal; and (d) the series An additional analog-to-digital conversion circuit having a digital output connected to the output of the final conversion stage of the first and second AD conversion stages connected to the base and providing a digital signal; And a digital logic circuit connected to the digital output of the AD conversion stage, the digital output of the second AD conversion stage, and the digital output of the additional analog-digital conversion circuit.
  • the digital logic circuit provides a digital signal corresponding to the analog signal.
  • a pipeline type analog-digital converter is provided.
  • the number of the second AD conversion stages is 1, and the analog-digital converter includes the input of the first AD conversion stage and the second AD conversion stage.
  • a feedback switch connected between the analog output of the AD conversion stage is further provided.
  • the analog-digital converter according to the present invention provides a cyclic analog-digital converter using two conversion stages.
  • the analog-digital converter according to the present invention may further include a digital logic circuit connected to the digital output of the first AD conversion stage and the digital output of the second AD conversion stage. .
  • the digital logic circuit corresponds to the analog signal and provides a digital signal having a plurality of bits.
  • a digital signal corresponding to an analog signal which is composed of one or a plurality of bits per stage, is provided.
  • the analog-digital converter according to the present invention includes a sample Z hold circuit for holding the analog signal, and between the input of the first AD conversion stage and the output of the sample / honored circuit. Connected to the analog signal during the sampling period. And a switch for receiving. The feedback switch provides a path from the output of the second AD conversion stage to the input of the first AD conversion stage during a feedback period different from the sampling period.
  • the sampling period and the feedback are obtained by using the switch and the feedback switch connected between the input of the first AD conversion stage and the output of the sample / hold circuit.
  • the period can be switched.
  • Yet another aspect of the present invention is a method of generating a digital signal corresponding to an analog signal using a gain stage.
  • the gain stage includes first to third capacitors and an operational amplifier circuit. One end of each of the first and second capacitors is connected to an inverting input of the operational amplifier circuit, and one end of the third capacitor. Is connected to the output of the operational amplifier circuit.
  • (a) charges corresponding to an input analog signal are accumulated in each of the first capacitor and the second capacitor, and a digital value having a predetermined number of bits is included.
  • a first step of generating a digital signal corresponding to the analog signal and (b) connecting the second capacitor between the output and the inverting input of the operational amplifier circuit and the first capacitor.
  • a first conversion value related to the input analog signal is generated at the output of the operational amplifier circuit, and the first and second A second step of rearranging the charge of the first capacitor and storing the charge corresponding to the first conversion value in the third capacitor; and (c) the first and third capacitors in front of each other.
  • the input analog signal is converted to the input analog signal.
  • the second conversion value related to the analog signal is obtained by performing these three steps.
  • This second conversion value compensates for the capacitor mismatch used in the three steps.
  • This method is not The steps for the input analog signal are described, and therefore, the three steps apply to a fully differential circuit, not just a single-ended circuit.
  • the method according to the present invention provides the second conversion value in the gain stage to the next gain stage as the analog signal, and the first to second gain stages in the next gain stage. 3 steps can be further provided.
  • the method according to the present invention provides a step of performing the first to third steps in a previous gain stage, and a second conversion value of the previous gain stage as the analog signal to the gain stage. Further comprising the step of:
  • a conversion circuit capable of compensating for a capacitor mismatch with a minimum 1.5 clock operation is provided.
  • an analog / digital converter including the conversion circuit is provided.
  • a method for generating a digital signal corresponding to an analog signal by compensating for a capacitor mismatch with a minimum 1.5 clock operation is provided.
  • FIG. 1 is a circuit diagram showing a conversion circuit for an analog-digital converter.
  • FIG. 2 is a drawing showing a timing chart for the conversion circuit shown in FIG.
  • FIG. 3 is a drawing showing conversion characteristics of a D / A conversion circuit.
  • FIG. 4 is a diagram showing three steps for compensating for capacitor mismatch in the converter circuit.
  • FIG. 5 is a circuit diagram showing a conversion circuit having a configuration that does not compensate for mismatch in capacitance values of capacitors.
  • FIG. 6 is a circuit diagram showing a conversion circuit for an analog-digital converter.
  • FIG. 7 is a block diagram schematically showing an analog-digital converter according to the present embodiment.
  • FIG. 8 is a block diagram showing a configuration of the analog-digital converter according to the present embodiment.
  • Switch, 25 ... first capacitor, 27 ... second capacitor, 29 ... first switch, 31 ... second switch, 33 ... third Canon, 35 ... third switch, 37 ... fourth Switch 39 ... Reference potential line 41 ... Sub A / D converter circuit 43 ... Logic circuit — Conversion circuit V ... Digital signal V ... Control signal V and V ... Reference signal D and D ...
  • V Conversion analog signal
  • V Conversion analog signal
  • V Input analog port
  • FIG. 1 is a circuit diagram showing a conversion circuit for an analog-digital converter.
  • FIG. 2 is a timing chart for the conversion circuit shown in FIG.
  • the conversion circuit 11 includes an input 13, a gain stage 15, a first sampling switch 17, and a second sampling switch 19.
  • Input 13 receives the input analog signal V.
  • the gain stage 15 includes a first input 15a and a second input 15b.
  • the first input 15a is an analog signal of one of the input analog signal V and the converted analog signal V.
  • the second input 15b is provided to receive one of the input analog signal V and the converted analog signal V.
  • the first sampling switch 17 is connected between the first input 15a and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the second sampling switch 19 is connected between the second input 15b and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the gain stage 15 includes an operational amplifier circuit 21, a feedback switch 23, a first Canon / ° -sita 25, a second Canon 27, a first switch 29, a second switch 31, 3 capacitors 33, a third switch 35, and a fourth switch 37 are included.
  • the operational amplifier circuit 21 includes an inverting input 21a, a non-inverting input 21b, and an output 21c.
  • the feedback switch 23 is connected between the inverting input 2 la of the operational amplifier circuit 21 and the output 21c of the operational amplifier circuit 21, and the output 21c of the operational amplifier circuit 21 is connected to the operational amplifier circuit 21 in the first period T.
  • the first capacitor 25 has one end 25a connected to the first input 15a and the other end 25b connected to the inverting input 21a.
  • the second capacitor 27 has a second input It has one end 27a connected to 15b and the other end 27b connected to the inverting input 21a.
  • the first switch 29 is connected between one end 27a of the second capacitor 27 and the output 21c of the operational amplifier circuit 21, and in the second period T different from the first period T, the second capacitor 27 27
  • the second switch 31 is connected between one end 25a of the first capacitor 25 and the output 21c of the operational amplifier circuit 21, and has a third period different from the first period T and the second period T.
  • the first capacitor 25 is connected to T between the output 21c of the operational amplifier circuit 21 and the inverting input 21a.
  • the third capacitor 33 has one end 33a connected to the output 21c of the operational amplifier circuit 21 and the other end 33b.
  • the third switch 35 is connected between the other end 33b of the third capacitor 33 and the inverting input 21a, and in the third period T, the third key 35 is connected.
  • Capacitor 33 is provided to connect the output 21c of the operational amplifier circuit 21 and the inverting input 21a.
  • the fourth switch 37 is connected between the other end 33b of the third capacitor 33 and the reference potential line 39 connected to the ground line, and the first period T and the second period T.
  • the output 15c of the gain stage 15 is connected to the output 21c of the operational amplifier circuit 21.
  • charges corresponding to the input analog signal V can be stored in the first and second capacitors 25 and 27 in the first period T.
  • the second capacitor 27 In the second period T, the second capacitor 27
  • Charge corresponding to the first conversion value of 2 can be stored in the third capacitor 33. Further, in the third period T, the first and third capacitors 25 and 33 are connected to the inverting input 21a of the operational amplifier circuit 21.
  • the second capacitor 27 is connected between the second input 15b and the output 21c of the operational amplifier circuit 21 and connected to the output 21c of the operational amplifier circuit 21. Can be generated. In the generation of the second conversion value, the charge stored in the third capacitor 33 is also taken into consideration, so that the mismatch of the first to third capacitors 25, 27, 33 is compensated. Therefore, using the three periods T, T, T, the first to third capacitors 25, 27, 33
  • the conversion circuit 11 can include a sub A / D conversion circuit 41, a logic circuit 43, and a D / A conversion circuit 45.
  • the sub A / D conversion circuit 41 is connected to the input 13 and generates a digital signal V according to the input analog signal V. De
  • the digital signal V takes a predetermined number of values, for example two values (“0”, “1”) or three values (“_ 1”).
  • the logic circuit 43 is connected to the sub-AZD conversion circuit 41 and generates a control signal V in accordance with the digital signal V. D
  • the / A converter circuit 45 is connected to the logic circuit 43 and provides the converted analog signal V
  • the converted analog signal V is the control signal V
  • control signal V is changed to the second period T and the third period T.
  • SWCONT 2 3 Used to provide converted analog signal V to gain stage 15.
  • the sub A / D conversion circuit 41 can include, for example, one comparator.
  • the comparator compares the input analog signal with a predetermined reference signal and provides a signal indicating the comparison result. Using this conversion circuit, a 1-bit digital value can be obtained. If the number of comparators is increased, a digital signal with more than one bit can be obtained.
  • the sub A / D conversion circuit 41 can include, for example, two comparators. Each comparator compares the input analog signal to a predetermined reference signal V
  • 0 1 REF1 can be Vref / 4, for example, as shown in Figure 3, and the reference signal V is an example
  • REF2 can be + Vref / 4.
  • the sub A / D conversion circuit 41 can generate a ternary redundant digital signal by comparing the input analog signal with two predetermined reference signals. According to this conversion circuit 11, since the input analog signal is compared with two predetermined reference signals, a ternary digital signal can be obtained.
  • the sub A / D conversion circuit 41 is preferably activated, for example, in the first period T as shown in FIG. Also, instead of the first period T or the first period In addition to T, the sub A / D conversion circuit 41 may be activated during the third period.
  • the D / A conversion circuit 45 includes a first voltage source 47 and a second voltage source 49.
  • the first voltage source 47 provides the voltage V.
  • the second voltage source 49 provides the voltage V.
  • the output 47a of the voltage source 47 is connected to the first input 15a via the first switch 51a and the first output 45a, and is connected to the first input 15a via the second switch 51b and the second output 45b. 2 connected to input 15b.
  • the output 49a of the second voltage source 49 is connected to the first input 15a via the third switch 51c and the first output 45a, and the fourth switch 51d and the second output 45b.
  • the first output 45a is connected to one end of the fifth switch 51e, and the other end of the fifth switch 51e is connected to the ground line.
  • the second output 45b is connected to one end of the sixth switch 51f, and the other end of the sixth switch 51f is connected to the ground line.
  • the logic circuit 43 includes control signals ⁇ 1, ⁇ 2, and f 1 for controlling the first to sixth switches 51a to 15f, respectively.
  • is provided in the second period ⁇ .
  • the value of digital signal D, D is the control signal ⁇
  • the D / A conversion circuit 45 In response to a control signal from the logic circuit 43, the D / A conversion circuit 45, for example,
  • V Vref when the condition (one Vref / 4> V) is met.
  • V 0 when the condition (Vref / 4 ⁇ V ⁇ —Vref / 4) is met.
  • V — Vref when the condition (V> + Vref / 4) is met.
  • V 2 X V -D XVref
  • this operation performs AZD conversion in order from the upper digit, doubles the input of the gain stage, and by the AZD conversion value of the gain stage,
  • the clock generator 40 provides the clock signals described in FIGS.
  • the capacitance value C 1 of the first capacitor 25 is equal to the capacitance value C 2 of the second capacitor 27.
  • the capacitance value C1 of the first capacitor 25 does not coincide with the capacitance value C2 of the second capacitor 27. That is, there is a mismatch between the capacitance value C1 of the first capacitor 25 and the capacitance value C2 of the second capacitor 27. In order to perform more accurate analog-digital conversion, it is necessary to compensate for this mismatch.
  • Mismatch compensation is realized in the process of generating a digital signal corresponding to an analog signal using the gain stage 11.
  • switches 29 and 30 are turned on in response to clocks ⁇ and ⁇ .
  • the sub AZD conversion circuit 41 Connect between output 21c and ground.
  • the sub AZD conversion circuit 41 generates a digital signal V corresponding to the analog signal V.
  • Digital signal V is a predetermined number of bits
  • the first capacitor 25 and the second capacitor have a powerful digital value (eg D, D).
  • D digital value
  • the electric charge corresponding to the input analog signal V is stored in each of the capacitors 27.
  • First carrier The charge 25 is stored in the capacitor 25, and the charge Q is stored in the second capacitor 27.
  • Both the output 21c and the inverting input 21a have the same value as the potential of the non-inverting input 21b.
  • Disconnect capacitor 27 from input 13. In response to the clock ⁇ , one end 27a of the second capacitor 27 is connected to the output 21c of the inverting amplifier 21. In response to clocks ⁇ and ⁇ , the third
  • the capacitor 33 is connected between the output 21c of the operational amplifier circuit 21 and the ground line. In response to the clock ⁇ , the inverting input 21a of the operational amplifier circuit 21 is disconnected from the output 21c.
  • the second capacitor 27 is connected between the output 21c of the operational amplifier circuit 21 and the inverting input 21a, and the converted analog signal V corresponding to the digital signal V is connected.
  • the second capacitor 27 has a sampling voltage.
  • V X C is equal to C X V + C X V—C X D XVref from the law of conservation of charge.
  • the switch 29 is opened in response to the clock ⁇ , and the second capacitor 27 is connected to the inverting amplifier 21.
  • One end 25a of 25 is connected to the output 21c of the operational amplifier circuit 21. In response to clocks ⁇ and ⁇
  • the other end 33b of the third capacitor 33 is connected to the output 21c of the inverting amplifier 21.
  • the first and third capacitors 25 and 33 are connected to the output of the operational amplifier circuit 21.
  • the second converted value V is connected to the operational amplifier 21 by supplying the converted analog signal V to one end 27a of the second capacitor 27.
  • the second conversion value V is related to the input analog signal V
  • Charges (C + C) XV are stored in the first and third capacitors 25 and 33.
  • XVref C XV + C XV—C XDX Vref- C X D X Vref moves (the value of D is
  • the total charge on the first and third capacitors 25, 33 is the following three charges:
  • V (1 + C / C) XV-DXVrefXC / C
  • V V X (C + C) X
  • V V X (2+ (AC -AC) XAC / (2XAC + AC) / (C + AC)) -D
  • the value is about 0.0001. In other words, even if the variation in the capacitance value is about 1%, if the conversion circuit according to this embodiment is used, the contribution of the variation in the capacitance value can be reduced to about 0.01%. As a result, this conversion circuit is used. An analog digital converter with 13-bit precision to 14-bit precision can be realized.
  • FIG. 5 is a circuit diagram showing a conversion circuit having a configuration that does not compensate for the mismatch of the capacitance values of the capacitors.
  • the conversion circuit 12 includes an input 13, a gain stage 55, a first sampling switch 17, and a second sampling switch 19.
  • Input 13 receives the input analog signal.
  • the gain stage 55 includes a first input 55a and a second input 55b.
  • the first input 55a is provided for receiving the input analog signal V.
  • the second input 55b is provided for receiving the input analog signal V and the converted analog signal V.
  • the first sampling switch 17 is connected between the first input 55a and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the second sampling switch 19 is connected between the second input 55b and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the gain stage 55 includes an operational amplifier circuit 21, a feedback switch 23, a first Canon 25, a second Canon 27, and a switch 32.
  • the feedback switch 23 is connected between the inverting input 21a of the operational amplifier circuit 21 and the output 21c of the operational amplifier circuit 21.
  • the first capacitor 25 has one end 25a connected to the first input 55a and the other end 25b connected to the inverting input 21a.
  • Second capacitor 2 7 has one end 27a connected to the second input 55b and the other end 27b connected to the inverting input 21a.
  • the switch 32 is connected between one end 25a of the first capacitor 25 and the output 2 lc of the operational amplifier circuit 21, and has a first capacitor in a second period T different from the first period T.
  • the output 55c of the gain stage 55 is connected to the output 21c of the operational amplifier circuit 21.
  • the conversion circuit 12 can include a sub-AZD conversion circuit 41, a logic circuit 53, and a DZA conversion circuit 57.
  • the logic circuit 53 is connected to the sub-AZD conversion circuit 41 and generates a control signal V in accordance with the digital signal V.
  • the DZA converter circuit 57 is connected to the logic circuit 43 and provides the converted analog signal V.
  • control signal V is converted to the converted analog signal V in the second period T.
  • the sub A / D conversion circuit 41 can generate a 1.5-bit redundant digital signal by comparing the input analog signal with two predetermined reference signals. According to this conversion circuit, the input analog signal is compared with two predetermined reference signals, so that a digital signal consisting of 1 and 5 bits can be obtained.
  • the D / A conversion circuit 57 includes a first voltage source 47 and a second voltage source 49.
  • the first voltage source 47 provides the voltage V.
  • the second voltage source 49 provides the voltage V.
  • the output 47a of the voltage source 47 is connected to the second input 55b via the first switch 59a and the output 57a, and the output 49a of the second voltage source 49 is connected to the second switch 59b and the output It is connected to the second input 55b via 57a.
  • the output 57a is connected to the ground line via the third switch 51c.
  • the logic circuit 53 generates control signals ⁇ 1, ⁇ 2 and ⁇ 3 for controlling the first to third switches 59a to 59c, respectively.
  • the value of the digital signal D, D depends on which of the control signals ⁇ , ⁇ , ⁇
  • Digital signal V is a digital signal consisting of a predetermined number of bits.
  • the output 21c of the operational amplifier circuit 21 is connected to the inverting input 21a.
  • Both the output 21c and the inverting input 21a have the same value as the potential of the non-inverting input 21b.
  • the first capacitor 25 is connected between the output 21c of the operational amplifier circuit 21 and the inverting input 21a, and the one end 27a of the second capacitor 27 is connected to the one end 27a. Supply the converted analog signal V according to the digital signal V. As a result, input
  • the first conversion value V related to the switching signal V is generated at the output 21c of the operational amplifier circuit 21, and the first conversion value V is generated.
  • the first capacitor 25 has a sampling voltage.
  • V XC is equal to C XV + C XV— C XDXVref. That means
  • V (1 + C / C) XV-DXVref XC / C
  • V (2 + AC / C) XV-DXVrefX
  • the second conversion value related to the analog signal is obtained by performing three steps. This second conversion value compensates for the mismatch of the capacitors used in the three steps.
  • this implementation According to the embodiment, there is provided a method of generating a digital signal corresponding to an analog signal by compensating for a mismatch of three capacitors with a minimum of 1 ⁇ 5 clock operation.
  • This procedure describes a step for one input analog signal in a fully differential circuit, and therefore, the three steps are also applied to a fully differential circuit that can only be a single-ended circuit. It is understood that it applies.
  • FIG. 6 is a circuit diagram showing a conversion circuit for the analog-digital converter. As shown in Figure 6, this conversion circuit has a fully differential configuration.
  • the conversion circuit 61 includes an input 13, a first sampling switch 17, a second sampling switch 19, and a gain stage 65 in place of the gain stage 15.
  • the gain stage 65 includes a first input 65a, a second input 65b, an output 65c, a first complementary input 65d, a second complementary input 65e, and a complementary output 65f.
  • the first input 65a has an input analog signal V and a converted analog signal V (
  • the second input 65b is the analog signal of either the input analog signal V or the converted analog signal V (P).
  • the first complementary input 65d is the input analog complementary signal V
  • the second complementary input 65e is the input analog complementary signal V and the conversion
  • the first sampling switch 17 is connected between the first input 65a and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the second sampling switch 19 is connected between the second input 65b and the input 13, and is provided for sampling the input analog signal V in the first period T.
  • the conversion circuit 61 can further include a complementary input 63, a third sampling switch 67, and a fourth sampling switch 69.
  • the third sampling switch 67 is connected between the first complementary input 65d and the complementary input 63 of the gain stage 65, and is used to sample the input analog complementary signal V in the first period T.
  • the fourth sampling switch 69 is connected between the second complementary input 65e and the complementary input 63. Connected and sample the input analog complementary signal V in the first period T
  • the gain stage 65 includes an operational amplifier circuit 21, a feedback switch 23, a first scanner, a ° -sita 25, a second Canona- tor 27, a first switch 29, and a second switch 31.
  • a feedback switch 23 In addition to the third Canon 33, the third switch 35, and the fourth switch 37, the feedback switch 73, the fourth capacitor 75, the fifth capacitor 77, and the fifth switch A switch 79, a sixth switch 81, a sixth capacitor 83, a seventh switch 85, and an eighth switch 87 are included.
  • the fourth capacitor 75 has one end 75a connected to the first complementary input 65d and the other end 75b connected to the non-inverting input 2 lb.
  • the fifth capacitor 77 has one end 77a connected to the second complementary input 65e and the other end 77b connected to the non-inverting input 21b.
  • the sixth switch 81 is connected between one end 75a of the fourth capacitor 75 and the complementary output 21d of the operational amplifier circuit 21, and in the second period T, the fourth capacitor 75 is non-inverted. Complementary to 21b
  • the fifth switch 79 is connected between one end 77a of the fifth capacitor 77 and the complementary output 21d of the operational amplifier circuit 21, and in the third period T, the fifth capacitor 77 is connected to the operational amplifier circuit. 21 complementary outputs 21d and non-inverting input
  • the sixth capacitor 83 has one end 83a and the other end 83b connected to the complementary output 21d of the operational amplifier circuit 21.
  • the seventh switch 85 is connected between the other end 83b of the sixth capacitor 83 and the non-inverting input 21b, and the sixth capacitor 83 is connected to the operational amplifier circuit 21 in the third period T. Complementary output 21d and non-inverted
  • the eighth switch 87 is connected between the ground, the reference potential line, and the other end 83b of the sixth capacitor 83, and is connected to the sixth capacitor during the first and second periods T and T. Reference voltage such as ground potential is applied to the other end 83b of 83.
  • the feedback switch 73 is connected between the complementary output 21d of the operational amplifier circuit 21 and the non-inverting input 21b.
  • the sub A / D conversion circuit 90 includes, for example, two comparators 90a and 90b having a fully differential configuration.
  • the comparator 90a generates a conversion result D.
  • Comparator 90b
  • the logic circuit 43 includes control signals ⁇ , ⁇ , ⁇ according to the digital signals (D, D).
  • the first input 65a and the first complementary input 65d are connected via a switch, and the second input 65b and the second complementary input 65e are connected via a switch.
  • V V —V.
  • the gain stage 65 having a fully differential configuration is provided.
  • FIG. 7 is a block diagram schematically showing the analog-digital converter according to the present embodiment.
  • the analog-digital converter 91 includes a first AD conversion stage 93 and one or a plurality of second AD conversion stages 95 (97, 99).
  • the first and second AD conversion stages 93 and 95 are connected in series.
  • the first AD conversion stage 93 includes an input 93a that receives an analog signal V, an analog output 93b that provides a residual analog signal V, and digital signals (D (0), D (0)
  • the first AD conversion stage 93 includes any of the conversion circuits 15 and 65 described above.
  • the second AD conversion stage 97 has an input 97a that receives the analog signal from the previous stage, an analog output 97b that provides the residual analog signal V, and a digital signal.
  • the second AD conversion stage 97 can use the conversion circuits 12, 15, and 65. According to the analog-digital converter 91, the capacitor mismatch can be compensated in the first stage conversion circuit.
  • the multiplication type DZA converter (MDAC) shown in Fig. 7 includes, for example, the gain stage shown in Figs. Includes logic circuits and D / A conversion circuits.
  • part or all of the second AD conversion stage sequence 95 includes conversion circuits 15 and 65. According to this analog-digital converter, it is possible to compensate for the capacitor mismatch in the conversion circuit after the first stage.
  • the analog-digital converter 91 can include a sample / hold (SZH) circuit 101, an additional analog-digital conversion circuit 103, and a logic circuit 105.
  • the sample / hold circuit 101 is connected to the analog input 93a of the first AD conversion stage 93, holds the analog signal A, and provides the held analog signal V.
  • the additional analog-digital conversion circuit 103 includes an input 103a connected to the analog output of the final conversion stage 99 of the first and second AD conversion stages 93, 97, 99 connected in series, and a digital signal ( D (N — 2), D (N ⁇ 2)) and a digital output 103c.
  • the logic circuit 105 has inputs connected to the digital output 93c of the first AD conversion stage 93, the digital output 97c, 99c of the second AD conversion stage 97, 99 and the digital output 103c of the additional analog-digital conversion circuit 103. Includes 105a.
  • the logic circuit 105 includes an output 105b that provides a digital signal V corresponding to the analog signal A. Digital signal V
  • the converter 91 a pipeline type analog-digital converter is provided.
  • the timing signals necessary for the operation of the analog to digital converter 91 are provided by the clock generator 107.
  • the logic circuit 105 includes, for example, a data delay circuit 105c such as a shift register and a redundant binary-non- A redundant binary conversion circuit 105d. If necessary, the digital outputs of the AD conversion stages 93, 97, 99 and the additional analog-to-digital conversion circuit 103 can provide a 1-bit digital signal in place of the redundant binary digital signal.
  • the power described for the configuration in the case of performing a 1.5-bit operation can be realized in the case of performing a 1-bit operation using one comparator. .
  • the variation in capacitors that can be achieved only with a single-ended circuit is eliminated.
  • a fully differential circuit can also be used to yancel.
  • the resistance to errors and noise increases as the downstream stage of the pipeline of the A / D conversion stage increases, so several stages close to the input of the pipelined A / D converter.
  • a conversion circuit using three capacitors can be used, and a conversion circuit using two capacitors can be used for the remaining stages. This makes it possible to reduce the area of the AZD converter using a conversion circuit with a small number of capacitors.
  • an analog-digital converter including a conversion circuit capable of compensating for a capacitor mismatch with a minimum 1.5 clock operation is provided.
  • FIG. 8 is a block diagram showing the configuration of the analog-digital converter according to the present embodiment.
  • the analog-digital converter 111 includes a first AD conversion stage 113, a second AD conversion stage 115, and a feedback switch 117.
  • the first and second AD conversion stages 113 and 115 are connected in series.
  • the first AD conversion stage 113 has an input 113 a that receives an analog signal Vi, an analog output 113 b that provides a residual analog signal V, and a digital signal (D
  • the first AD conversion stage 93 is
  • the second AD conversion stage 115 has an input 115a that receives the analog signal from the previous stage, an analog output 115b that provides the residual analog signal V,
  • the second AD conversion stage 115 can include conversion circuits 15 and 65. According to the analog-digital converter 111, the capacitor mismatch can be compensated for in the first and subsequent conversion circuits.
  • the feedback switch 117 is connected between the input 113a of the first AD conversion stage 113 and the analog output 115b of the second AD conversion stage 115. The feedback switch 117 provides a path from the output 115b of the second AD conversion stage 115 to the input 113a of the first AD conversion stage 113.
  • the multiplication type D / A converter (MDAC) shown in FIG. 8 includes, for example, a gain stage, a logic circuit, and a DZA conversion circuit shown in FIG. 1 and FIG.
  • this analog-digital converter 111 a plurality of conversion stages, for example, two conversion stages Is used to provide a cyclic analog-digital converter. Further, according to the AD conversion stages 113 and 115, a digital signal having one or a plurality of bits per stage is provided.
  • the analog-digital converter 111 can further include a logic circuit 119.
  • the logic circuit 119 includes an input 119 a connected to the digital output 113 c of the first AD conversion stage 113 and the digital output 115 c of the second AD conversion stage 115.
  • Logic circuit 119 provides a digital signal V containing one or more bits corresponding to analog signal A
  • the logic circuit 119 includes output 119b in DIGITAL.
  • the logic circuit 119 generates, for example, a data register 119c for storing redundant digital signals from each of the AD conversion stages, and a set of redundant digital signal power provided from the individual data registers 119c. Conversion circuit 119d.
  • the digital signal V corresponding to the analog signal A per stage of the first and second AD conversion stages 113, 115 is provided.
  • DIGITAL Contains one or more bits.
  • the analog-digital converter 111 includes a sampled / hold (S / H) circuit 121.
  • the S / H circuit 121 receives the analog signal A at the input 121a, samples the received analog signal, and holds the sampled analog signal.
  • the analog-digital converter 111 can further include a switch 121 connected between the input 113a of the first AD conversion stage 113 and the output 121b of the S / H circuit 121.
  • Switch 121 is controlled by clock signal ⁇ and is closed to receive analog signal A during a different sampling period than during the feedback period.
  • the feedback switch 117 is closed and is open during the feedback period, hence the switch 121 and feedback switch connected between the input 113a of the first AD conversion stage 113 and the output 119b of the sample / hold circuit 119. 117 can be used to switch between the sampling period and the feedback period.
  • Timing signals necessary for the operation of the analog-to-digital converter 111 are provided by a clock generator 123.
  • an analog-digital converter including a conversion circuit capable of compensating for a capacitor mismatch with a minimum 1.5 clock operation is provided.
  • the conversion circuits and A / D converters shown in the first to third embodiments can be configured, for example, as MOS transistors, and the switches are realized by MOS analog switches. Power S can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

アナログ信号Viに応じた電荷を第1及び第2のキャパシタ25、27の各々に蓄積する。アナログ信号Viに対応したディジタル値(例えばD1、D0)を有するディジタル信号VDIGNを生成する。第2のキャパシタ27を演算増幅回路21の出力21cと反転入力21aとの間に接続すると共にディジタル信号VDIGNに応じたアナログ信号VD/Aを第1のキャパシタ端25aに供給して、第1の変換値VOUT1を演算増幅回路21の出力21cに生成する。第1及び第3のキャパシタ25、27を演算増幅回路21の出力21cと反転入力21aとの間に接続すると共に第2のキャパシタ端27aにアナログ信号VD/Aを供給して、第2の変換値VOUT2を演算増幅回路21の出力21cに生成する。

Description

明 細 書
変換回路、アナログディジタル変換器、およびアナログ信号に対応したデ イジタル信号を生成する方法
技術分野
[0001] 本発明は、アナログディジタル変換器のための変換回路、この変換回路を含むァ ナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する 方法に関する。
背景技術
[0002] 非特許文献 1および 2には、ノ ィプライン型のアナログディジタル変換器 (ADC)が 記載されており、アナログディジタル変換器の各ステージにはスィッチトキャパシタ回 路を含む乗算型 D/A変換器 (MDAC)が用いられている。また、これらのアナログ ディジタル変換器はキャパシタを含んでおり、これらのキャパシタには不可避的にミス マッチが存在する。非特許文献 1および 2には、このミスマッチをキャンセルすることが 記載されている。
[0003] 非特許文献 3には、入力アナログ信号からディジタル値に変換した後に、アナログ ディジタル変換器の各ステージに用いられるキャパシタのミスマッチを補正することが 記載されている。
[0004] 特許文献 1には、多段型のアナログディジタル変換器 (ADC)が記載されており、キ ャパシタのミスマッチをディジタル的に補正することが記載されている。特許文献 2に は、各ステージにおけるゲインエラーを補正しリニアリティ特性の劣化を抑制可能な パイプライン型 A/D変換回路が記載されている。特許文献 3には、高精度かつエリ ァペナルティの小さい A/Dコンバータが記載されている。 A/Dコンバータは、パイ プライン 'ステージと、各ステージから提供されるビットデータにエラー補正処理を行 レ、 nビットのディジタル信号を生成するエラーコレクション回路とを含む。
非特許文献 1 : Bang ¾u Song, Michael F. Tompsett, and Kadaba R. Lakshmi kumar, A 12 bit 1 Msample/ s capacitor error averaging pipelined A/D co nverter, IEEE Journal of Solid State Circuits, vol. 23, pp. 1324 - 1333, De cember 1988.
非特許文献 2 : You Chiu, "Inherently linear capacitor error-averaging techniqu esfor pipelined A/D converters," IEEE Trans, (circuits and Systems II, vol.
47, no. 3, pp. 229—232, 2000.
非特許文献 3 : H. S. Chen, K. Bacrania, B. S. Song, "A 14b 20M Sample/s
CMOS pipelined ADC," Deg. Tech. Papers, IEEE Int. Solid—State Circuits
Conf., pp. 46-47, 2000.
特許文献 1 : US Patent, No. 5,510,789
特許文献 2 :特開 2004— 343163号公報
特許文献 3:特開 2005— 72844号公報
発明の開示
発明が解決しょうとする課題
[0005] 非特許文献 1に記載された手法では、単位 MDACは 1サイクルの動作のために 3ク ロックを必要とする。非特許文献 2に記載された手法では、単位 MDACは 1サイクノレ の動作のために 2クロックを必要とする。非特許文献 3に記載された手法では、単位 MDACは 1. 5クロックで 1サイクルの動作を行うことが可能でるけれども、キャパシタ のミスマッチの補正のために追加の増幅器が必要である。特許文献 1に記載された 手法では、ディジタル的に行われた補正の誤差を測定する必要があり、また補正の ためのディジタル回路が必要になる。
[0006] 本発明は、このような事情を鑑みて為されたものであり、最小 1. 5クロック動作でキ ャパシタのミスマッチを補償することが可能な、アナログディジタル変換器のための変 換回路を提供することを目的とし、またこの変換回路を含むアナログディジタル変換 器を提供することを目的とし、さらに、最小 1 · 5クロック動作でキャパシタのミスマッチ を補償して、アナログ信号に対応したディジタル信号を生成する方法を提供すること を目的とする。
課題を解決するための手段
[0007] 本発明の一側面は、アナログディジタル変換器のための変換回路である。この変換 回路は、入力アナログ信号を第 1の期間に受けると共に該入力アナログ信号に対応 した変換アナログ信号を前記第 1の期間と異なる第 2の期間に受けるための第 1の入 力、前記入力アナログ信号を前記第 1の期間に受けると共に前記変換アナログ信号 を前記第 1および第 2の期間と異なる第 3の期間に受けるための第 2の入力、第 1〜 第 3のキャパシタ並びに演算増幅回路を有するゲインステージを備える。前記第 1の 期間に、前記第 1および第 2のキャパシタが前記第 1および第 2の入力と前記演算増 幅回路の反転入力との間にそれぞれ接続され、前記アナログ信号に応じた電荷が前 記第 1および第 2の入力を介してそれぞれ前記第 1および第 2のキャパシタに蓄積さ れる。前記第 2の期間に、前記演算増幅回路の前記出力と前記反転入力との間に前 記第 2のキャパシタが接続され、前記第 1の入力を介して前記第 1のキャパシタに受 けた前記変換アナログ信号に応答して前記演算増幅回路の出力に第 1の演算値が 生成されると共に前記第 1の演算値が前記第 3のキャパシタに格納される。前記第 3 の期間に、前記第 2のキャパシタが前記第 2の入力と前記演算増幅回路の前記出力 との間に接続されると共に前記第 1および第 3のキャパシタが前記演算増幅回路の 前記出力と前記反転入力との間にそれぞれ接続され、前記第 2の入力を介して前記 第 2のキャパシタに受けた前記変換アナログ信号に応答して前記演算増幅回路の前 記出力に第 2の演算値が生成される。
[0008] この変換回路によれば、第 2の期間に第 1の演算値が第 3のキャパシタに格納され るので、第 2の変換値の発生において、第 3のキャパシタに蓄積された電荷も考慮さ れる。これ故に、第 1〜第 3のキャパシタのミスマッチが補償される。したがって、 3つ 号の変換を行うことができる。
[0009] また、本発明に係る変換回路は、(a)入力アナログ信号を第 1の期間に受けると共 に前記第 1の期間と異なる第 2および第 3の期間のいずれかに変換アナログ信号を 受けるための第 1の入力と、前記入力アナログ信号を前記第 1の期間に受けると共に 前記第 2および第 3の期間のいずれかに前記変換アナログ信号を受けるための第 2 の入力とを有するゲインステージを備える。前記ゲインステージは、(al)演算増幅回 路と、 (a2)前記第 1の入力に接続された一端と前記演算増幅回路の反転入力に接 続された他端とを有する第 1のキャパシタと、(a3)前記第 2の入力に接続された一端 と前記演算増幅回路の前記反転入力に接続された他端とを有する第 2のキャパシタ と、(a4)前記第 2のキャパシタの前記一端と前記演算増幅回路の出力との間に接続 されており前記第 2の期間に前記第 2のキャパシタを前記演算増幅回路の前記反転 入力と前記演算増幅回路の前記出力との間に接続するための第 1のスィッチと、 (a5 )前記第 1のキャパシタの前記一端と前記演算増幅回路の前記出力との間に接続さ れており前記第 3の期間に前記第 1のキャパシタを前記演算増幅回路の前記出力と 前記反転入力との間に接続するための第 2のスィッチと、(a6)前記演算増幅回路の 前記出力に接続された一端と他端とを有する第 3のキャパシタと、 (a7)前記第 3のキ ャパシタの前記他端と前記反転入力との間に接続されており前記第 3の期間に前記 第 3のキャパシタを前記記演算増幅回路の前記出力と前記反転入力との間に接続 するための第 3のスィッチと、 (a8)前記第 3のキャパシタの前記他端と基準電位線と の間に接続されており前記第 1および第 2の期間に前記第 3のキャパシタの前記他端 に基準電位を提供するための第 4のスィッチとを含む。
[0010] この変換回路によれば、第 2のキャパシタを第 2の入力に接続すると共に、第 1のキ ャパシタを第 1の入力に接続して、アナログ信号に応じた電荷を第 1および第 2のキヤ パシタに第 1の期間に蓄積できる。第 2のキャパシタを演算増幅回路の反転入力と出 力との間に接続すると共に、第 1のキャパシタを第 1の入力と演算増幅回路の反転入 力との間に接続して、演算増幅回路の出力に第 1の変換値を第 2の期間に発生でき る。また、第 2の期間には、この第 1の変換値に対応する電荷を第 3のキャパシタに蓄 積できる。さらに、第 1および第 3のキャパシタを演算増幅回路の反転入力と出力との 間に接続すると共に、第 2のキャパシタを第 2の入力と演算増幅回路の出力との間に 接続して、演算増幅回路の出力に第 2の変換値を第 3の期間に発生できる。第 2の変 換値の発生は、第 3のキャパシタに蓄積された電荷も考慮されるので、第 1〜第 3の キャパシタのミスマッチが補償される。また、 3つの期間を用いて、第 1〜第 3のキャパ シタのミスマッチのキャンセルおよびアナログ信号の変換を行うことができる。
[0011] 本発明の一側面に係る変換回路は、(b)前記入力アナログ信号を受けるアナログ 入力と、(c)前記第 1の入力と前記アナログ入力との間に接続されており前記第 1の 期間に前記入力アナログ信号のサンプリングを行うための第 1のサンプリングスィッチ と、(d)前記第 2の入力と前記アナログ入力との間に接続されており前記第 1の期間 に前記入力アナログ信号のサンプリングを行うための第 2のサンプリングスィッチと、 ( e)前記アナログ入力に接続されており、所定のビット数からなるディジタル信号を前 記入力アナログ信号に応じて生成するサブ AZD変換回路と、 (f)前記サブ AZD変 換回路に接続されており、前記ディジタル信号に応じて制御信号を前記第 2の期間 および前記第 3の期間に提供するための論理回路と、(g)前記論理回路に接続され ており、前記第 2および第 3の期間に前記変換アナログ信号を提供する DZA変換回 路とを備え、前記変換アナログ信号は、前記制御信号に応じて生成される。
[0012] この変換回路によれば、第 1および第 2のサンプリングスィッチを用いて入力アナ口 グ信号を第 1および第 2のキャパシタに第 1の期間に供給できると共に、第 2および第 3の期間に変換アナログ信号をゲインステージの第 1および第 2の入力に供給できる 。また、サブ A/D変換回路を用いて、一または複数のビットを含むディジタル信号が 入力アナログ信号に応じて生成される。
[0013] 本発明の一側面に係る変換回路では、前記サブ A/D変換回路は、前記入力アナ ログ信号を所定の基準信号と比較すると共に比較結果信号を提供するコンパレータ を含むことができる。
[0014] この変換回路を用いて、 1ビットのディジタル値が得られる。また、コンパレータの数 を増やせば、 1ビットを越えるビット数のディジタル信号が得られる。
[0015] 本発明の一側面に係る変換回路では、前記サブ A/D変換回路は、前記入力アナ ログ信号を所定の 2つの基準信号と比較することによって 3値の冗長ディジタル信号 を生成すること力 Sできる。
[0016] この変換回路によれば、入力アナログ信号を所定の 2つの基準信号と比較するの で、 3値のディジタル信号が得られる。
[0017] 本発明の一側面に係る変換回路では、前記ゲインステージは、(a9)入力アナログ 相補信号を前記第 1の期間に受けると共に前記第 2および第 3の期間に変換アナ口 グ相補信号を受けるための第 1の相補入力と、(alO)前記入力アナログ相補信号を 前記第 1の期間に受けると共に前記第 2および第 3の期間に前記変換アナログ相補 信号を受けるための第 2の相補入力と、(al l)前記第 1の相補入力に接続された一 端と前記演算増幅回路の前記非反転入力に接続された他端とを有する第 4のキャパ シタと、(al 2)前記第 2の相補入力に接続された一端と前記演算増幅回路の前記非 反転入力に接続された他端とを有する第 5のキャパシタと、(al 3)前記第 5のキャパ シタの前記一端と前記演算増幅回路の相補出力との間に接続されており前記第 2の 期間に前記第 5のキャパシタを前記演算増幅回路の前記非反転入力と前記相補出 力との間に接続するための第 5のスィッチと、(al4)前記第 4のキャパシタの前記一 端と前記演算増幅回路の前記相補出力との間に接続されており前記第 3の期間に 前記第 4のキャパシタを前記演算増幅回路の前記相補出力と前記非反転入力との 間に接続するための第 6のスィッチと、 (al5)前記演算増幅回路の前記相補出力に 接続された一端と他端とを有する第 6のキャパシタと、(al 6)前記第 6のキャパシタの 前記他端と前記非反転入力との間に接続されており前記第 3の期間に前記第 6のキ ャパシタを前記記演算増幅回路の前記相補出力と前記非反転入力との間に接続す るための第 7のスィッチと、(al 7)前記第 6のキャパシタの前記他端と基準電位線との 間に接続されており前記第 1および第 2の期間に前記第 6のキャパシタの前記他端に 基準電位を提供するための第 8のスィッチとを含む。
[0018] この変換回路によれば、全差動構成のゲインステージが提供される。
[0019] 本発明の別の側面は、アナログディジタル変換器に係る。このアナログディジタノレ 変換器は、(a)第 1の AD変換段を備え、前記第 1の AD変換段は、入力アナログ信 号を受ける入力および残余アナログ信号を提供するアナログ出力を有している。この アナログディジタル変換器は、(b)—又は複数の第 2の AD変換段を備え、前記第 2 の AD変換段の各々は、前段の AD変換段からの残余アナログ信号を受ける入力お よび当該 AD変換段の残余アナログ信号を提供するアナログ出力を有しており、前記 第 1および第 2の AD変換段は直列に接続されており、前記第 1の AD変換段は、上 記の変換回路を含み、前記第 1の AD変換段は、所定のビット数から成るディジタル 信号を提供するディジタル出力を有し、前記第 2の AD変換段の各々は、前記所定 のビット数力 成るディジタル信号を提供するディジタル出力を有する。
[0020] このアナログディジタル変換器によれば、初段の変換回路においてキャパシタのミ スマッチの補償を行うことができる。 [0021] 本発明に係るアナログディジタル変換器では、前記第 2の AD変換段は、上記の変 換回路を含むことが好ましい。このアナログディジタル変換器によれば、初段以降の 変換回路においてキャパシタのミスマッチの補償を行うことができる。
[0022] 本発明に係るアナログディジタル変換器は、 (c)前記第 1の AD変換段の前記入力 に接続されており前記アナログ信号を保持するためのサンプル Zホールド回路と、 ( d)前記直列に接続された第 1および第 2の AD変換段のうちの最終変換段の出力に 接続されておりディジタル信号を提供するディジタル出力を有する追加のアナログデ イジタル変換回路と、 (e)前記第 1の AD変換段の前記ディジタル出力、前記第 2の A D変換段の前記ディジタル出力および前記追加のアナログディジタル変換回路の前 記ディジタル出力に接続されたディジタル論理回路とを備えることができる。前記ディ ジタル論理回路は前記アナログ信号に対応したディジタル信号を提供する。
[0023] 本発明の別の側面に係るアナログディジタル変換器によれば、パイプライン型のァ ナログディジタル変換器が提供される。
[0024] 本発明に係るアナログディジタル変換器では、前記第 2の AD変換段の数は 1であ り、当該アナログディジタル変換器は、前記第 1の AD変換段の前記入力と前記第 2 の AD変換段の前記アナログ出力との間に接続されたフィードバックスィッチを更に 備える。
[0025] 本発明に係るアナログディジタル変換器によれば、 2つの変換段を用いて巡回型の アナログディジタル変換器が提供される。
[0026] 本発明に係るアナログディジタル変換器は、前記第 1の AD変換段の前記ディジタ ル出力および前記第 2の AD変換段の前記ディジタル出力に接続されたディジタノレ 論理回路を更に備えることができる。前記ディジタル論理回路は、前記アナログ信号 に対応しており複数のビット数からなるディジタル信号を提供する。
[0027] 本発明に係るアナログディジタル変換器の AD変換段によれば、一段当たり一また は複数のビット数から成りアナログ信号に対応したディジタル信号が提供される。
[0028] 本発明に係るアナログディジタル変換器は、前記アナログ信号を保持するためのサ ンプル Zホールド回路と、前記第 1の AD変換段の前記入力と前記サンプル/ホー ノレド回路の出力との間に接続されておりサンプリング期間中に前記アナログ信号を 受けるためのスィッチとを更に備えることができる。前記フィードバックスィッチは、前 記サンプリング期間中と異なるフィードバック期間中に、前記第 2の AD変換段の前記 出力から前記第 1の AD変換段の前記入力への経路を提供する。
[0029] 本発明に係るアナログディジタル変換器によれば、第 1の AD変換段の入力とサン プノレ/ホールド回路の出力との間に接続されたスィッチおよびフィードバックスィッチ を用いて、サンプリング期間とフィードバック期間とを切り換えできる。
[0030] 本発明の更なる別の側面は、ゲインステージを用いて、アナログ信号に対応したデ イジタル信号を生成する方法である。前記ゲインステージは第 1〜第 3のキャパシタぉ よび演算増幅回路を含み、前記第 1および第 2のキャパシタの一端は前記演算増幅 回路の反転入力に接続されており、前記第 3のキャパシタの一端は前記演算増幅回 路の出力に接続されている。この方法は、 (a)前記第 1のキャパシタおよび前記第 2 のキャパシタの各々に、入力アナログ信号に応じた電荷を蓄積すると共に、所定のビ ット数からなるディジタル値を有しており前記アナログ信号に応じたディジタル信号を 生成する第 1のステップと、(b)前記第 2のキャパシタを前記演算増幅回路の前記出 力と前記反転入力との間に接続すると共に前記第 1のキャパシタの前記他端に該デ イジタル信号に応じた変換アナログ信号を供給することによって、前記入力アナログ 信号に関連した第 1の変換値を前記演算増幅回路の前記出力に生成し、前記第 1 および第 2のキャパシタの前記電荷を再配置すると共に前記第 1の変換値に対応す る電荷を前記第 3のキャパシタに蓄積する第 2のステップと、(c)前記第 1および第 3 のキャパシタを前記演算増幅回路の前記出力と前記反転入力との間に接続すると共 に前記第 2のキャパシタの前記他端に該ディジタル信号に応じた D/A変換信号を 供給することによって、前記入力アナログ信号に関連した第 2の変換値を前記演算 増幅回路の前記出力に生成すると共に、前記第 1、第 2および第 3のキャパシタの前 記電荷を再配置する第 3のステップとを備え、前記第 2の変換値は次段のゲインステ ージのためのアナログ信号である。
[0031] この方法によれば、これら 3つのステップを行うことによって、アナログ信号に関連し た第 2の変換値が得られる。この第 2の変換値では、 3つのステップにおいて用いられ たキャパシタのミスマッチが補償されている。この方法は、全差動回路における一方 の入力アナログ信号のためのステップを記述しており、これ故に、 3つのステップは、 シングノレエンド回路だけでなぐ全差動回路にも適用される。
[0032] 本発明に係る方法は、当該ゲインステージにおける前記第 2の変換値を前記アナ ログ信号として次段のゲインステージに提供するステップと、前記次段のゲインステー ジにおいて前記第 1〜第 3のステップを行うステップとを更に備えることができる。
[0033] 本発明に係る方法は、前段のゲインステージにおいて前記第 1〜第 3のステップを 行うステップと、前記ゲインステージに前記アナログ信号として当該前段のゲインステ 一ジの第 2の変換値を提供するステップとを更に備えることができる。
発明の効果
[0034] 以上説明したように、本発明の一側面によれば、最小 1. 5クロック動作でキャパシタ のミスマッチを補償することが可能な変換回路が提供される。また、本発明の別の側 面によれば、この変換回路を含むアナログディジタル変換器が提供される。さらに、 本発明の更なる別の側面によれば、最小 1. 5クロック動作でキャパシタのミスマッチ を補償して、アナログ信号に対応したディジタル信号を生成する方法が提供される。 図面の簡単な説明
[0035] 本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して 進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らか になる。
[図 1]図 1はアナログディジタル変換器のための変換回路を示す回路図である。
[図 2]図 2は、図 1に示された変換回路のためのタイミングチャートを示す図面である。
[図 3]図 3は、 D/A変換回路の変換特性を示す図面である。
[図 4]図 4は、変換回路のキャパシタのミスマッチの補償のための 3ステップを示す図 面である。
[図 5]図 5は、キャパシタの容量値のミスマッチを補償しない構成の変換回路を示す 回路図である。
[図 6]図 6は、アナログディジタル変換器のための変換回路を示す回路図である。
[図 7]図 7は、本実施の形態に係るアナログディジタル変換器を概略的に示すブロッ ク図である。 [図 8]図 8は、本実施の形態に係るアナログディジタル変換器の構成を示すブロック 図である。
符号の説明
11…変換回路、 13…入力、 15…ゲインステージ、 17…第 1のサンプリングスィッチ、 19…第 2のサンプリングスィッチ、 V…入力アナログ信号、 15a、 15b…ゲインステー ジの入力、 V …変換アナログ信号、 17…第 1のサンプリングスィッチ、 19…第 2の
D/A
サンプリングスィッチ、 T、T、T…期間、 21 · · ·演算増幅回路、 23· · ·フィードバックス
1 2 3
イッチ、 25…第 1のキャパシタ、 27…第 2のキャパシタ、 29…第 1のスィッチ、 31…第 2のスィッチ、 33…第 3のキヤノ シタ、 35…第 3のスィッチ、 37…第 4のスィッチ、 39 …基準電位線、 41…サブ A/D変換回路、 43…論理回路、 — 変換回路、 V …ディジタル信号、 V …制御信号、 V 、 V …基準信号、 D、 D…
DIGN SWCONT REF1 REF2 0 1 比較結果信号、 47…第 1の電圧源、 49…第 2の電圧源、 51a〜15f…第 1〜第 6の スィッチ、 φ 、 φ 、 φ 、 φ 、 φ 、 φ …制 ί卸信号、 40…クロック発生器
DOl DPI DN1 D02 DP2 DN2
、 C…第 1のキャパシタの容量値、 C…第 2のキャパシタの容量値、 C…第 3のキヤ
1 2 3
パシタの容量値、 12…変換回路、 55…ゲインステージ、 55a、 55b…ゲインステージ の入力、 53…論理回路、 57. DZA変換回路、 59a〜59c…第 1〜第 3のスィッチ、 Φ 、 小 、 Φ …制御信号、 61…変換回路、 63…相補入力、 65…ゲインステー
DO DP DN
ジ、 65a、 65b…ゲインステージの入力、 65c…ゲインステージの出力、 65d、 65e- - - ゲインステージの相補入力、 65f…ゲインステージの相補出力、 V …入力アナログ
Φ
信号、 V …変換アナログ信号、 V …変換アナログ信号、 V …入力アナ口
D/A(N) D/A(P) in
グ相補信号、 73…フィードバックスイツ、 75…第 4のキャパシタ、 77…第 5のキヤノ タ、 79…第 5のスィッチ、 81…第 6のスィッチ、 83…第 6のキヤノ シタ、 85…第 7のス イッチ、 87…第 8のスィッチ、 89- - -D/A変換回路、 90…サブ A,D変換回路、 90a 、 90b. - -コンノ レータ、 91 · . ·アナログディジタノレ変換器、 93. · -第 1の AD変換段、 95 ー八0変換段歹、 97、 99ー第2の八0変換段、 101 · · ·サンプノレ/ホーノレド回路、 10 3…追加のアナログディジタル変換回路、 105…ディジタル論理回路、 111…アナ口 グディジタル変換器、 113…第 1の AD変換段、 115…第 2の AD変換段、 117…フィ ード/ ックスィッチ、 119…ディジタノレ論理回路、 121…サンプノレ/ホーノレド回路 発明を実施するための最良の形態
[0037] 本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考 慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発 明の変換回路、アナログ信号に対応したディジタル信号をゲインステージを用いて生 成する方法、ノ ィプライン型アナログディジタル変換器および巡回型アナログデイジ タル変換器に係る実施の形態を説明する。可能な場合には、同一の部分には同一 の符号を付する。
[0038] (第 1の実施の形態)
図 1は、アナログディジタル変換器のための変換回路を示す回路図である。図 2は、 図 1に示された変換回路のためのタイミングチャートを示す図面である。この変換回 路 11は、入力 13と、ゲインステージ 15と、第 1のサンプリングスィッチ 17と、第 2のサ ンプリングスィッチ 19とを備える。入力 13は、入力アナログ信号 Vを受ける。
[0039] ゲインステージ 15は、第 1の入力 15aおよび第 2の入力 15bを含む。第 1の入力 15 aは、入力アナログ信号 V及び変換アナログ信号 V のいずれか一方のアナログ信
i D/A
号を受けるために設けられている。第 2の入力 15bは、入力アナログ信号 V及び変換 アナログ信号 V のいずれか一方のアナログ信号を受けるために設けられている。
D/A
第 1のサンプリングスィッチ 17は、第 1の入力 15aと入力 13との間に接続されており、 また第 1の期間 Tに入力アナログ信号 Vのサンプリングを行うために設けられている
1
。第 2のサンプリングスィッチ 19は、第 2の入力 15bと入力 13との間に接続されており 、また第 1の期間 Tに入力アナログ信号 Vのサンプリングを行うために設けられてい る。ゲインステージ 15は、演算増幅回路 21と、フィードバックスィッチ 23と、第 1のキヤ ノ、°シタ 25と、第 2のキヤノ シタ 27と、第 1のスィッチ 29と、第 2のスィッチ 31と、第 3の キャパシタ 33と、第 3のスィッチ 35と、第 4のスィッチ 37とを含む。演算増幅回路 21は 、反転入力 21aと、非反転入力 21bと、出力 21 cとを含む。フィードバックスィッチ 23 は、演算増幅回路 21の反転入力 2 laと演算増幅回路 21の出力 21cとの間に接続さ れており、第 1の期間 Tに演算増幅回路 21の出力 21cを演算増幅回路 21の反転入 力 21aに接続する。第 1のキャパシタ 25は、第 1の入力 15aに接続された一端 25aと 反転入力 21aに接続された他端 25bとを有する。第 2のキャパシタ 27は、第 2の入力 15bに接続された一端 27aと反転入力 21aに接続された他端 27bとを有する。第 1の スィッチ 29は、第 2のキャパシタ 27の一端 27aと演算増幅回路 21の出力 21cとの間 に接続されており、また第 1の期間 Tと異なる第 2の期間 Tに第 2のキャパシタ 27を
1 2
演算増幅回路 21の反転入力 21aと出力 21 cとの間に接続するために設けられている 。第 2のスィッチ 31は、第 1のキャパシタ 25の一端 25aと演算増幅回路 21の出力 21c との間に接続されており、また第 1の期間 Tおよび第 2の期間 Tと異なる第 3の期間
1 2
Tに第 1のキャパシタ 25を演算増幅回路 21の出力 21cと反転入力 21aとの間に接
3
続するために設けられている。第 3のキャパシタ 33は、演算増幅回路 21の出力 21c に接続された一端 33aと他端 33bとを有する。第 3のスィッチ 35は、第 3のキャパシタ 33の他端 33bと反転入力 21aとの間に接続されており、また第 3の期間 Tに第 3のキ
3 ャパシタ 33を演算増幅回路 21の出力 21cと反転入力 21aとの間に接続するために 設けられている。第 4のスィッチ 37は、第 3のキャパシタ 33の他端 33bと、接地線とレヽ つた基準電位線 39との間に接続されており、また第 1の期間 Tおよび第 2の期間 T
1 2 に第 3のキャパシタ 33の他端 33bに基準電位を提供するために設けられている。ゲイ ンステージ 15の出力 15cは、演算増幅回路 21の出力 21cに接続されている。
この変換回路 11によれば、入力アナログ信号 Vに応じた電荷を第 1および第 2のキ ャパシタ 25、 27に第 1の期間 Tに蓄積できる。第 2の期間 Tに、第 2のキャパシタ 27
1 2
を演算増幅回路 21の反転入力 21 aと出力 21cとの間に接続すると共に、第 1のキヤ パシタ 25を第 1の入力 15aと演算増幅回路 21の反転入力 21cとの間に接続して、演 算増幅回路 21の出力 21cに第 1の変換値を発生できる。また、第 2の期間 Tには、こ
2 の第 1の変換値に対応する電荷を第 3のキャパシタ 33に蓄積できる。さらに、第 3の 期間 Tに、第 1および第 3のキャパシタ 25、 33を演算増幅回路 21の反転入力 21aと
3
出力 21cとの間に接続すると共に、第 2のキャパシタ 27を第 2の入力 15bと演算増幅 回路 21の出力 21cとの間に接続して、演算増幅回路 21の出力 21cに第 2の変換値 を発生できる。第 2の変換値の発生においては、第 3のキャパシタ 33に蓄積された電 荷も考慮されるので、第 1〜第 3のキャパシタ 25、 27、 33のミスマッチが補償される。 したがって、 3つの期間 T、 T、 Tを用いて、第 1〜第 3のキャパシタ 25、 27、 33のミ
1 2 3
スマッチの補償およびアナログ信号をディジタル信号へ変換することができる。 [0041] 図 1に示されるように、変換回路 11は、サブ A/D変換回路 41と、論理回路 43と、 D/A変換回路 45とを備えることができる。サブ A/D変換回路 41は、入力 13に接 続されており、また入力アナログ信号 Vに応じてディジタル信号 V を生成する。デ
i DIGN
イジタル信号 V は、所定の数の値を取り、例えば 2値(「0」、「1」)または 3値(「_ 1
DIGN
」、「0」、「 + 1」)を有することが好ましい。論理回路 43は、サブ AZD変換回路 41に 接続されており、またディジタル信号 V に応じて制御信号 V を生成する。 D
DIGN SWCONT
/A変換回路 45は、論理回路 43に接続されており、変換アナログ信号 V を提供
D/A するための出力 45a、 45bを有する。変換アナログ信号 V は、制御信号 V
D/A SWCONT に応じて生成される。制御信号 V は、第 2の期間 Tおよび第 3の期間 Tに変
SWCONT 2 3 換アナログ信号 V をゲインステージ 15に提供するために用いられる。
D/A
[0042] サブ A/D変換回路 41は、例えば 1つのコンパレータを含むことができる。コンパレ ータは、入力アナログ信号を所定の基準信号と比較すると共に、比較結果を示す信 号を提供する。この変換回路を用いて、 1ビットのディジタル値が得られる。コンパレ 一タの数を増やせば、 1ビットを越えるビット数のディジタル信号が得られる。サブ A/ D変換回路 41は、例えば 2つのコンパレータを含むことができる。コンパレータは、そ れぞれ、入力アナログ信号を所定のそれぞれの基準信号 V
REF1、 V と比較すると REF2
共に、図 1に示されるように、比較結果信号 D、 Dを提供する。基準信号 V は、
0 1 REF1 図 3に示されるように、例えば Vref/4であることができ、また基準信号 V は、例
REF2 えば +Vref/4であることができる。
入力アナログ信号 Vの範囲 ディジタル信号
(1) Vref/4 >V 1 (D =0、D =0)
i 1 0
(2) Vref/4≥V≥ -Vref/4, 0 (D =0、 D = 1)
i 1 0
(3) V > +Vref/4, + 1 (D = 1、D = 1)
i 1 0
となる。サブ A/D変換回路 41が入力アナログ信号を所定の 2つの基準信号と比較 することによって 3値の冗長ディジタル信号を生成することができる。この変換回路 11 によれば、入力アナログ信号を所定の 2つの基準信号と比較するので、 3値のディジ タル信号が得られる。サブ A/D変換回路 41は、図 2に示されるように、例えば第 1の 期間 Tに活性化されることが好ましい。また、第 1の期間 Tに替えて又は第 1の期間 Tに加えて、第 3の期間 Τに、サブ A/D変換回路 41を活性化するようにしてよい。
1 3
[0043] また、 D/A変換回路 45は、第 1の電圧源 47および第 2の電圧源 49を含む。第 1 の電圧源 47は電圧 V を提供する。第 2の電圧源 49は電圧 V を提供する。第 1の
RP RN
電圧源 47の出力 47aは、第 1のスィッチ 51aおよび第 1の出力 45aを介して第 1の入 力 15aに接続されており、また第 2のスィッチ 51bおよび第 2の出力 45bを介して第 2 の入力 15bに接続されている。第 2の電圧源 49の出力 49aは、第 3のスィッチ 51cお よび第 1の出力 45aを介して第 1の入力 15aに接続されており、また第 4のスィッチ 51 dおよび第 2の出力 45bを介して第 2の入力 15bに接続されている。また、第 1の出力 45aは第 5のスィッチ 51eの一端に接続されており、第 5のスィッチ 51eの他端は接地 線に接続される。第 2の出力 45bは第 6のスィッチ 51fの一端に接続されており、第 6 のスィッチ 51fの他端は接地線に接続される。図 1に示されるように、論理回路 43は、 第 1〜第 6のスィッチ 51a〜15fをそれぞれ制御するための制御信号 φ 、 φ 、
DOl DPI
Φ 、 Φ 、 Φ 、 Φ を生成する。図 2に示されるように、制御信号 φ 、 φ
DN1 D02 DP2 DN2 D02 DP2
、 φ は第 2の期間 Τに提供される。ディジタル信号 D、 Dの値は、制御信号 φ
DN2 2 1 0 DO
、 Φ 、 Φ のうちのいずれがアクティブになるかを決定する。また、制御信号 Φ
2 DP2 DN2 DO
、 φ 、 φ は第 3の期間 Tに提供される。ディジタル信号 D、 Dの値は、制御信
1 DPI DN1 3 1 0
号 Φ 、 φ 、 φ のうちのいずれがアクティブになるかを決定する。
DOl DPI DN1
[0044] D/A変換回路 45は、論理回路 43からの制御信号に応答して、例えば
(1)条件(一 Vref/4 >V )が満たされるとき、 V =Vrefを提供する。
i D/A
(2)条件 (Vref/4≥V≥— Vref/4)が満たされるとき、 V =0を提供する。
i D/A
(3)条件 (V > + Vref/4)が満たされるとき、 V =— Vrefを提供する。
i D/A
[0045] これらの 3領域に対して 3値の A/D変換を行って「_ 1」、「0」、「 + 1」のディジタル コードを割り当てる。最初のコードは最上位桁になる。図 3に示された特性に従って 下記の演算が行われる。
[0046] V = 2 X V -D XVref
OUT in
すなわち、この演算は、上位桁から順に AZD変換し、ゲインステージの入力を 2倍し て、ゲインステージの AZD変換値によって、
(1)一定値 Vrefの減算、 (2)—定値 Vrefの加算、
(3)ゼロを与える
のいずれかを行うことにより、ゲインステージの出力を必ず Vref〜+Vrefの範囲に おさめる。
[0047] このように 3値で A/D変換を行うによって、ディジタル値には冗長性が生じる。この 冗長性により、サブ A/D回路内の比較器に対する精度要求が大きく緩和される一 方で、高精度な AZD変換が可能となる。 2進数の各桁は「0」と「1」の 2値を取る。ゲ インステージ毎のディジタル信号は「_ 1」、「0」、「 + 1」の 3値を取るので、ーゲインス テージあたり 1. 5ビットの A/D変換を行っていると考えることができる。
[0048] クロック発生器 40は図 1および図 2に記載されたクロック信号を提供する。
[0049] 好適な実施例では、第 1のキャパシタ 25の容量値 C1は第 2のキャパシタ 27の容量 値 C2と等しい。し力 ながら、様々な要因による誤差のために、第 1のキャパシタ 25 の容量値 C1は、第 2のキャパシタ 27の容量値 C2と一致しなレ、。つまり、第 1のキャパ シタ 25の容量値 C1と第 2のキャパシタ 27の容量値 C2との間にはミスマッチが存在 する。より高精度のアナログディジタル変換を行うために、このミスマッチを補償するこ とが求められる。
[0050] 引き続いて、図 2および図 4を参照しながら、変換回路の動作およびミスマッチの補 償を説明する。ミスマッチの補償は、ゲインステージ 11を用いて、アナログ信号に対 応したディジタル信号を生成する過程において実現される。
[0051] まず、図 4の(A)部に示されるように、クロック φ 、 φ に応答してスィッチ 29、 30を
1 2
開き、クロック φ に応答してスィッチ 17、 19を閉じて、第 1のキャパシタ 25および第
Od
2のキャパシタ 27が入力 13に接続される。クロック φ に応答して、演算増幅回路 21
0
の反転入力 21aを出力 21cに接続する。クロック φ に応答してスィッチ 35を開き、ク
2
ロック Φ に応答してスィッチ 37を閉じて、第 3のキャパシタ 33を演算増幅回路 21の
3
出力 21cと接地線との間に接続する。サブ AZD変換回路 41は、アナログ信号 Vに 対応したディジタル信号 V を生成する。ディジタル信号 V は、所定のビット数
DIGN DIGN
力 なるディジタル値 (例えば D、 D )を有する。また、第 1のキャパシタ 25および第 2
1 0
のキャパシタ 27の各々に、入力アナログ信号 Vに応じた電荷を蓄積する。第 1のキヤ パシタ 25には電荷 Q =C XVが蓄積されると共に、第 2のキャパシタ 27には電荷 Q
1 1 i
=C XVが蓄積される。演算増幅回路 21の出力 21cは反転入力 21aと接続されて
2 2 i
おり、出力 21cおよび反転入力 21aは共に、非反転入力 21bの電位と同じ値である。
[0052] クロック φ に応答してスィッチ 17、 19を開いて、第 1のキャパシタ 25および第 2の
Od
キャパシタ 27を入力 13から切り離す。クロック φ に応答して、第 2のキャパシタ 27の 一端 27aを反転増幅器 21の出力 21cに接続する。クロック φ 、 φ に応答して、第 3
2 3
のキャパシタ 33を演算増幅回路 21の出力 21cと接地線との間に接続する。クロック Φ に応答して、演算増幅回路 21の反転入力 21aを出力 21cから切り離す。図 4の(
0
B)部に示されるように、第 2のキャパシタ 27を演算増幅回路 21の出力 21cと反転入 力 21 aとの間に接続すると共に該ディジタル信号 V に応じた変換アナログ信号 V
DIGN
を第 1のキャパシタ 25の一端 25aに供給する。これによつて、入力アナログ信号 V
D/A
に関連した第 1の変換値 V を演算増幅回路 21の出力 21cに生成し、第 1および i OUT1
第 2のキャパシタ 25、 27の電荷を再配置する。
[0053] 変換アナログ信号 V の印加により、第 1のキャパシタ 25から第 2のキャパシタ 27
D/A
へ電荷 =C XV— C X D X Vrefが移動する(Dの値は変換アナログ信号 V
1 1 i 1 D/ の値に応じて「 + 1」、「0」、「一 1」を取る)。第 2のキャパシタ 27には、サンプリング電
A
荷 C XVと移動電荷 とが蓄積される。演算増幅回路 21の非反転入力 21bは接
2 i 1
地線に接続されているので、第 2のキャパシタ 27には電荷 V X Cが蓄積される。
OUT1 2
この電荷 V X Cは、電荷の保存則より C X V +C X V— C X D XVrefに等し
OUT1 2 2 i 1 i 1 い。故に、
V = (C XV + C XV -C X D X Vref) /C = (1 + C /C ) X V— D XVref
Figure imgf000018_0001
となる。また、第 3のキャパシタ 33には、電荷 V X Cが蓄積される。
OUT1 3
クロック φ に応答してスィッチ 29を開いて、第 2のキャパシタ 27を反転増幅器 21の
1
出力 21cから切り離す。クロック φ に応答してスィッチ 31を閉じて、第 1のキャパシタ
2
25の一端 25aを演算増幅回路 21の出力 21cに接続する。クロック φ 、 φ に応答し
2 3
て、第 3のキャパシタ 33の他端 33bを反転増幅器 21の出力 21cに接続する。図 4の( C)部に示されるように、第 1および第 3のキャパシタ 25、 33を演算増幅回路 21の出 力 21cと反転入力 21aとの間に接続すると共に第 2のキャパシタ 27の一端 27aに変 換アナログ信号 V を供給することにより、第 2の変換値 V を演算増幅回路 21
D/A OUT2
の出力 21cに生成する。第 2の変換値 V は、入力アナログ信号 Vに関連している
OUT2 i
。第 1および第 3のキャパシタ 25、 33には電荷(C +C ) XV が蓄積される。
1 3 OUT2
[0055] この後に、クロック φ に応答して、アナログ信号 Vに対応したディジタル信号 V
0 i DIGN を出力する。
[0056] 上記の説明より、第 2のキャパシタ 27には電荷 XC ( = C XV+C XV—C
VOUT1 2 2 i 1 i 1
XDX Vref)が蓄積されており、変換アナログ信号 V の印加によって、第 2のキヤ
D/A
パシタ 27から第 1および第 3のキャパシタ 25、 33へ電荷 =V XC— C XD
2 OUT1 2 2
XVref = C XV+C XV—C XDX Vref- C X D X Vrefが移動する(Dの値は
2 i 1 i 1 2
変換アナログ信号 V の値に応じて「 +1」、「0」、「_1」を取る)。この移動の結果、
D/A
第 1および第 3のキャパシタ 25、 33の全電荷は、以下の 3つの電荷:
移動電荷: C XV+C XV— C XDXVref-C XDX Vref
2 i 1 i 1 2
第 3のキャパシタの電荷: C XV
3 OUT1
第 2のキャパシタの電荷: C XDXVref
の和で表され、つまり、
C XV+C XV— C XDXVref + C XV
2 i 1 i 2 3 OUT1
である。一方、第 1および第 3のキャパシタ 25、 33の全電荷は、
(C +C ) XV
1 3 OUT2
であり、電荷保存則により、両者は等しいので、
(C +C ) XV =C XV+C XV-C XDXVref + C XV
1 3 OUT2 2 i 1 i 2 3 OUT1
となる。この式に、
V =(1 + C /C ) XV-DXVrefXC /C
OUTl 1 2 i 1 2
を代入すると、
(C +C ) XV = (C +C + (1 + C ) XC ) xv +C
1 3 OUT2 1 2 1 -(c XC /C ) X
DXVref
と表され、第 2の変換値は
V =V X (C +C ) X
OUT2 i 1 2 -DXVref X (C +C XC /C )
2 3 1 2
と表される。
[0057] この式を、△〇 =C -C、 AC =C— Cを用いて書き換えると、
3 3 1 2 2 1
V =V X (2+ (AC -AC ) XAC /(2XAC + AC )/(C +AC )) -D
OUT2 i 2 3 2 1 3 1 2
XVref X (l + AC X (4XAC -3XAC )/2/(2XC + AC )/(C + AC )
2 2 3 1 3 1 2
)
で表される。誤差の項は
(AC -AC ) XAC /(2XAC +AC )/(C +AC )
2 3 2 1 3 1 2
である。例えば△〇 /C =0.01、 AC /C =0.01であるとすると、誤差の項の寄
2 1 3 1
与は 0.0001程度になる。つまり、容量値のばらつきが 1%程度であっても、本実施 の形態に係る変換回路を用いると、容量値のばらつきの寄与が 0.01%程度にまで 小さくでき、この結果、この変換回路を用いると、 13ビット精度から 14ビット精度のァ ナログディジタル変換器が実現できる。
[0058] 図 5は、キャパシタの容量値のミスマッチを補償しない構成の変換回路を示す回路 図である。この変換回路 12は、入力 13と、ゲインステージ 55と、第 1のサンプリングス イッチ 17と、第 2のサンプリングスィッチ 19とを備える。入力 13は、入力アナログ信号 を受ける。ゲインステージ 55は、第 1の入力 55aおよび第 2の入力 55bを含む。第 1 の入力 55aは、入力アナログ信号 Vを受けるために設けられている。第 2の入力 55b は、入力アナログ信号 V及び変換アナログ信号 V を受けるために設けられている
i D/A
。第 1のサンプリングスィッチ 17は、第 1の入力 55aと入力 13との間に接続されており 、また第 1の期間 Tに入力アナログ信号 Vのサンプリングを行うために設けられてい る。第 2のサンプリングスィッチ 19は、第 2の入力 55bと入力 13との間に接続されてお り、また第 1の期間 Tに入力アナログ信号 Vのサンプリングを行うために設けられて いる。ゲインステージ 55は、演算増幅回路 21と、フィードバックスィッチ 23と、第 1の キヤノ シタ 25と、第 2のキヤノ シタ 27と、スィッチ 32とを含む。
[0059] フィードバックスィッチ 23は、演算増幅回路 21の反転入力 21aと演算増幅回路 21 の出力 21cとの間に接続されている。第 1のキャパシタ 25は、第 1の入力 55aに接続 された一端 25aと反転入力 21aに接続された他端 25bとを有する。第 2のキャパシタ 2 7は、第 2の入力 55bに接続された一端 27aと反転入力 21aに接続された他端 27bと を有する。スィッチ 32は、第 1のキャパシタ 25の一端 25aと演算増幅回路 21の出力 2 lcとの間に接続されており、また第 1の期間 Tと異なる第 2の期間 Tに第 1のキャパ
1 2
シタ 25を演算増幅回路 21の出力 21cと反転入力 21aとの間に接続するために設け られている。ゲインステージ 55の出力 55cは、演算増幅回路 21の出力 21cに接続さ れている。
[0060] 図 5に示されるように、変換回路 12は、サブ AZD変換回路 41と、論理回路 53と、 DZA変換回路 57とを備えることができる。論理回路 53は、サブ AZD変換回路 41 に接続されており、またディジタル信号 V に応じて制御信号 V を生成する。
DIG SWCONTO
DZA変換回路 57は、論理回路 43に接続されており、変換アナログ信号 V を提
D/A 供するための出力 57aを有する。変換アナログ信号 V は、制御信号 V に
D/A SWCONTO 応じて生成される。制御信号 V は、第 2の期間 Tに変換アナログ信号 V を
SWCONTO 2 D/A ゲインステージ 55に提供するために用いられる。サブ A/D変換回路 41は、入力ァ ナログ信号を所定の 2つの基準信号と比較することによって 1. 5ビットからなる冗長デ イジタル信号を生成することができる。この変換回路によれば、入力アナログ信号を 所定の 2つの基準信号と比較するので、 1 · 5ビットからなるディジタル信号が得られる
[0061] また、 D/A変換回路 57は、第 1の電圧源 47および第 2の電圧源 49を含む。第 1 の電圧源 47は電圧 V を提供する。第 2の電圧源 49は電圧 V を提供する。第 1の
RP RN
電圧源 47の出力 47aは、第 1のスィッチ 59aおよび出力 57aを介して第 2の入力 55b に接続されており、また第 2の電圧源 49の出力 49aは、第 2のスィッチ 59bおよび出 力 57aを介して第 2の入力 55bに接続されている。出力 57aは、第 3のスィッチ 51cを 介して接地線に接続されている。図 5に示されるように、論理回路 53は、第 1〜第 3の スィッチ 59a〜59cをそれぞれ制御するための制御信号 φ 、 φ 、 φ を生成する
DO DP DN
。ディジタル信号 D、 Dの値は、制御信号 φ 、 φ 、 φ のうちのいずれがァクテ
1 0 DO DP DN
イブになるかを決定する。
[0062] この変換回路 12の動作は、図 4の(A)部および(B)部を参照しながら行われた説 明から理解される。簡単に説明すれば、図 4の (A)部に示されるように、第 1のキャパ シタ 25および第 2のキャパシタ 27の各々に、入力アナログ信号 に応じた電荷を蓄 積する。第 1のキャパシタ 25には電荷 Q =C XVが蓄積されると共に、第 2のキャパ
1 1 i
シタ 27には電荷 Q =C XVが蓄積される。また、アナログ信号 Vに対応したデイジ
2 2 i i
タル信号 V を生成する。ディジタル信号 V は、所定のビット数からなるディジタル
DIG DIG
値 (例えば D、 D )を有する。演算増幅回路 21の出力 21cは反転入力 21aと接続さ
1 0
れており、出力 21cおよび反転入力 21aは共に、非反転入力 21bの電位と同じ値で ある。
[0063] 図 4の(B)部に示されるように、第 1のキャパシタ 25を演算増幅回路 21の出力 21c と反転入力 21aとの間に接続すると共に第 2のキャパシタ 27の一端 27aに該デイジタ ル信号 V に応じた変換アナログ信号 V を供給する。これによつて、入力アナ口
DIG D/A
グ信号 Vに関連した第 1の変換値 V を演算増幅回路 21の出力 21cに生成し、第
i OUT1
1および第 2のキャパシタ 25、 27の電荷を再配置する。
[0064] 変換アナログ信号 V の印加により、第 2のキャパシタ 27から第 1のキャパシタ 25
D/A
へ電荷 =C XV— C XDXVrefが移動する(Dの値は変換アナログ信号 V
0 2 i 2 D/ の値に応じて「 +1」、「0」、「一 1」を取る)。第 1のキャパシタ 25には、サンプリング電
A
荷 C XVと移動電荷 とが蓄積される。演算増幅回路 21の非反転入力 21bは接
1 i 0
地線に接続されているので、第 1のキャパシタ 25には、電荷 V XCが蓄積される
OUT1 1
。この電荷 V XCは C XV+C XV— C XDXVrefに等しい。つまり、
OUT1 1 1 i 2 i 2
V =(1 + C /C ) XV-DXVref XC /C
OUTl 2 1 i 2 1
である。△〇 =c -cとすると、
2 2 1
V =(2 + AC /C ) XV-DXVrefX
OUTl 2 1 i (l + AC /C )
2 1
と書き換えられる。 AC /C =0. 01であるとすると、誤差の項の寄与は 0. 01となる
2 1
[0065] 以上説明したように、本実施の形態によれば、最小 1. 5クロック動作でキャパシタの ミスマッチを補償することが可能な変換回路が提供される。
[0066] 図 4の(A)部〜(C)部に示された手順によれば、 3つのステップを行うことによって、 アナログ信号に関連した第 2の変換値が得られる。この第 2の変換値では、 3つのス テツプにおいて用いられたキャパシタのミスマッチが補償されている。また、本実施の 形態によれば、最小 1 · 5クロック動作で 3つのキャパシタのミスマッチを補償して、ァ ナログ信号に対応したディジタル信号を生成する方法が提供される。
[0067] この手順は、全差動回路における一方の入力アナログ信号のためのステップを記 述しており、これ故に、 3つのステップは、シングノレエンド回路だけできなぐ全差動回 路にも適用されることが理解される。
[0068] 図 6は、アナログディジタル変換器のための変換回路を示す回路図である。図 6に 示されるように、この変換回路は全差動構成である。変換回路 61は、入力 13と、第 1 のサンプリングスィッチ 17と、第 2のサンプリングスィッチ 19と、ゲインステージ 15に替 えてゲインステージ 65とを備える。ゲインステージ 65は、第 1の入力 65a、第 2の入力 65b、出力 65c、第 1の相補入力 65d、第 2の相補入力 65e、および相補出力 65fを 含む。第 1の入力 65aは、入力アナログ信号 V及び変換アナログ信号 V ( の
ip D/A いずれか一方のアナログ信号を受けるために設けられている。第 2の入力 65bは、入 力アナログ信号 V及び変換アナログ信号 V (P)のレ、ずれか一方のアナログ信号
ip D/A
を受けるために設けられている。第 1の相補入力 65dは、入力アナログ相補信号 V
m 及び変換アナログ相補信号 V (N)のいずれか一方のアナログ相補信号を受ける
D/A
ために設けられている。第 2の相補入力 65eは、入力アナログ相補信号 V 及び変換
in
アナログ相補信号 V (P)のいずれか一方のアナログ相補信号を受けるために設
D/A
けられている。
[0069] 第 1のサンプリングスィッチ 17は、第 1の入力 65aと入力 13との間に接続されており 、また第 1の期間 Tに入力アナログ信号 V のサンプリングを行うために設けられてい
1
る。第 2のサンプリングスィッチ 19は、第 2の入力 65bと入力 13との間に接続されてお り、また第 1の期間 Tに入力アナログ信号 V のサンプリングを行うために設けられて
1 ip
いる。
[0070] この変換回路 61は、さらに、相補入力 63と、第 3のサンプリングスィッチ 67と、第 4 のサンプリングスィッチ 69とを備えることができる。第 3のサンプリングスィッチ 67は、 ゲインステージ 65の第 1の相補入力 65dと相補入力 63との間に接続されており、ま た第 1の期間 Tに入力アナログ相補信号 V のサンプリングを行うために設けられて
1 in
いる。第 4のサンプリングスィッチ 69は、第 2の相補入力 65eと相補入力 63との間に 接続されており、また第 1の期間 Tに入力アナログ相補信号 V のサンプリングを行う
1 m
ために設けられている。
[0071] ゲインステージ 65は、演算増幅回路 21と、フィードバックスィッチ 23と、第 1のキヤ ノ、°シタ 25と、第 2のキヤノ シタ 27と、第 1のスィッチ 29と、第 2のスィッチ 31と、第 3の キヤノ シタ 33と、第 3のスィッチ 35と、第 4のスィッチ 37とに加えて、フィードバックスィ ッ 73と、第 4のキャパシタ 75と、第 5のキャパシタ 77と、第 5のスィッチ 79と、第 6のス イッチ 81と、第 6のキャパシタ 83と、第 7のスィッチ 85と、第 8のスィッチ 87とを含む。
[0072] 第 4のキャパシタ 75は、第 1の相補入力 65dに接続された一端 75aと非反転入力 2 lbに接続された他端 75bとを有する。第 5のキャパシタ 77は、第 2の相補入力 65eに 接続された一端 77aと非反転入力 21bに接続された他端 77bとを有する。第 6のスィ ツチ 81は、第 4のキャパシタ 75の一端 75aと演算増幅回路 21の相補出力 21dとの間 に接続されており、また第 2の期間 Tに第 4のキャパシタ 75を非反転入力 21bと相補
2
出力 21dとの間に接続するために設けられている。第 5のスィッチ 79は、第 5のキャパ シタ 77の一端 77aと演算増幅回路 21の相補出力 21dとの間に接続されており、また 第 3の期間 Tに第 5のキャパシタ 77を演算増幅回路 21の相補出力 21dと非反転入
3
力 21bとの間に接続するために設けられている。第 6のキャパシタ 83は、演算増幅回 路 21の相補出力 21dに接続された一端 83aと他端 83bとを有する。第 7のスィッチ 8 5は、第 6のキャパシタ 83の他端 83bと非反転入力 21bとの間に接続されており、ま た第 3の期間 Tに第 6のキャパシタ 83を演算増幅回路 21の相補出力 21dと非反転
3
入力 21bとの間に接続するために設けられている。第 8のスィッチ 87は、接地といつ た基準電位線と第 6のキャパシタ 83の他端 83bとの間に接続されており、また第 1お よび第 2の期間 T、Tに第 6のキャパシタ 83の他端 83bに接地電位といった基準電
1 2
位を提供するために設けられている。フィードバックスィッチ 73は、演算増幅回路 21 の相補出力 21dと非反転入力 21bとの間に接続されている。
[0073] サブ A/D変換回路 90は、例えば全差動構成の 2つのコンパレータ 90a、 90bを含 む。コンパレータ 90aは変換結果 Dを生成する。コンパレータ 90bは変換結果 Dを
0 1 生成する。これらの変換結果は、ディジタル信号として論理回路 43に提供されると共 に、変換回路 61のディジタル出力に提供される。 [0074] 論理回路 43は、ディジタル信号 (D、 D )に応じた制御信号 、 φ 、 φ 、
0 1 φ DOl DPI DN1
Φ 、 Φ 、 Φ を生成する。
D02 DP2 DN2
[0075] D/A変換回路 89は、論理回路 43からの制御信号に応答して、
( 1 )条件(一 Vref/4 > V )を満たすとき、
V (N) =V (P) =Vrefを提供する。
D/A D/A
(2)条件(Vref Z4≥ V≥ _ Vref/4)を満たすとき、
第 1の入力 65aと第 1の相補入力 65dとをスィッチを介して接続すると共に、第 2の入 力 65bと第 2の相補入力 65eとをスィッチを介して接続する。
(3)条件 (V > +Vref/4)が満たされるとき、
V (N) = V (P) = _ Vrefを提供する。ここで、 V = V —V である。
D/A D/A i ip in
[0076] 以上説明したように、この変換回路 61によれば、全差動構成のゲインステージ 65 が提供される。
[0077] (第 2の実施の形態)
図 7は、本実施の形態に係るアナログディジタル変換器を概略的に示すブロック図で ある。アナログディジタル変換器 91は、第 1の AD変換段 93と、一又は複数の第 2の AD変換段 95 (97、 99)とを備える。第 1および第 2の AD変換段 93、 95は直列に接 続されている。第 1の AD変換段 93は、アナログ信号 Vを受ける入力 93a、残余アナ ログ信号 V を提供するアナログ出力 93b、およびディジタル信号 (D (0)、 D (0)
RES0 0 1
)を提供するディジタル出力 93cとを含む。第 1の AD変換段 93は、上記いずれかの 変換回路 15、 65を含む。第 2の AD変換段 97は、前段からのアナログ信号を受ける 入力 97a、残余アナログ信号 V を提供するアナログ出力 97b、およびディジタル
RES1
信号 (D (1)、D (1) )を提供するディジタル出力 97cとを含み、第 2の AD変換段 99
0 1
は、前段からのアナログ信号を受ける入力 99a、残余アナログ信号 V を提供す
RESN- 3 るアナログ出力 99b、およびディジタル信号 (D (N_ 3)、D (N— 3) )を提供するデ
0 1
イジタノレ出力 99cとを含む。また、第 2の AD変換段 97は、変換回路 12、 15、 65を用 レ、ることができる。このアナログディジタル変換器 91によれば、初段の変換回路にお いてキャパシタのミスマッチの補償を行うことができる。図 7に示された乗算型 DZA 変換器 (MDAC)には、例えば、図 1、図 5および図 6に示されるゲインステージ、論 理回路および D/A変換回路が含まれる。
[0078] 或いは、アナログディジタル変換器 91では、第 2の AD変換段列 95の一部または 全部は、変換回路 15、 65を含むことが好ましい。このアナログディジタル変換器によ れば、初段以降の変換回路において、キャパシタのミスマッチの補償を行うことがで きる。
[0079] アナログディジタル変換器 91は、サンプル/ホールド(SZH)回路 101と、追加の アナログディジタル変換回路 103と、論理回路 105とを備えることができる。サンプル /ホールド回路 101は、第 1の AD変換段 93のアナログ入力 93aに接続されており、 またアナログ信号 A を保持すると共に保持したアナログ信号 Vを提供する。追加の アナログディジタル変換回路 103は、直列に接続された第 1および第 2の AD変換段 93、 97、 99のうちの最終変換段 99のアナログ出力に接続された入力 103aと、ディ ジタル信号 (D (N_ 2)、 D (N— 2) )を提供するディジタル出力 103cとを有する。
0 1
論理回路 105は、第 1の AD変換段 93のディジタル出力 93c、第 2の AD変換段 97、 99のデイジタノレ出力 97c、 99cおよび追加のアナログディジタル変換回路 103のディ ジタル出力 103cに接続された入力 105aを含む。論理回路 105は、アナログ信号 A に対応したディジタル信号 V を提供する出力 105bを含む。ディジタル信号 V
DIGITAL DI
は、(B、 B、 · · ·Β 、 Β )力 なるビットを有する。このアナログディジタノレ
GITAL 0 1 N-2 N- 1
変換器 91によれば、パイプライン型のアナログディジタル変換器が提供される。アナ ログディジタル変換器 91の動作のために必要なタイミング信号は、クロック発生器 10 7によって提供される。 AD変換段 93、 97、 99が例えば冗長 1. 5ビット構成のデイジ タル信号を論理回路 105に提供する場合、論理回路 105は、例えば、シフトレジスタ といったデータ遅延回路 105cと、冗長 2進—非冗長 2進変換回路 105dとを含むこと ができる。必要な場合には、 AD変換段 93、 97、 99および追加のアナログディジタル 変換回路 103のディジタル出力は、冗長 2進ディジタル信号に替えて一ビットのディ ジタル信号を提供することができる。
[0080] 本実施の形態では、 1. 5ビットの演算を行う場合の構成について説明した力 本形 態は、 1個の比較器を用いた 1ビットの演算を行う場合についても実現可能である。ま た、本実施の形態では、シングルエンド型回路だけでなぐキャパシタのバラツキをキ ヤンセルするために全差動回路を用いることもできる。さらに、ノ ィプライン型 A/D 変換器においては、 A/D変換段のパイプラインの後段になるほど誤差やノイズに対 する耐性が高くなるので、ノ ィプライン A/D変換器の入力に近い数段に、 3つのキ ャパシタを用いた変換回路を用レ、、残りの段に、 2つのキャパシタを用いた変換回路 を用いることができる。これにより、キャパシタの数の少ない変換回路を用いて、 AZ D変換器の面積の低減をすることも可能である。
[0081] 以上説明したように、本実施の形態によれば、最小 1. 5クロック動作でキャパシタの ミスマッチを補償することが可能な変換回路を含むアナログディジタル変換器が提供 される。
[0082] (第 3の実施の形態)
図 8は、本実施の形態に係るアナログディジタル変換器の構成を示すブロック図であ る。アナログディジタル変換器 111は、第 1の AD変換段 113と、第 2の AD変換段 11 5と、フィードバックスィッチ 117とを備える。第 1および第 2の AD変換段 113、 115は 直列に接続されている。第 1の AD変換段 113は、アナログ信号 Viを受ける入力 113 a、残余アナログ信号 V を提供するアナログ出力 113b、およびディジタル信号 (D
RESO
(0)、 D (0) )を提供するディジタル出力 113cとを含む。第 1の AD変換段 93は、上
0 1
記いずれかの変換回路 15、 65を含む。第 2の AD変換段 115は、前段からのアナ口 グ信号を受ける入力 115a、残余アナログ信号 V を提供するアナログ出力 115b、
RES1
およびディジタル信号 (D (1)、D (1) )を提供するディジタル出力 115cとを含み、
0 1
第 2の AD変換段 115は、変換回路 15、 65を含むことができる。このアナログディジタ ル変換器 111によれば、初段以降の変換回路において、キャパシタのミスマッチの補 償を行うことができる。フィードバックスィッチ 117は、第 1の AD変換段 113の入力 11 3aと第 2の AD変換段 115のアナログ出力 115bとの間に接続されてレ、る。フィードバ ックスィッチ 117は、第 2の AD変換段 115の出力 115bから第 1の AD変換段 113の 入力 113aへの経路を提供する。図 8に示された乗算型 D/A変換器 (MDAC)には 、例えば、図 1および図 6に示されるゲインステージ、論理回路および DZA変換回 路が含まれる。
[0083] このアナログディジタル変換器 111によれば、複数の変換段、例えば 2つの変換段 を用いて巡回型のアナログディジタル変換器が提供される。また、 AD変換段 113、 1 15によれば、一段当たり一または複数のビット数のディジタル信号が提供される。
[0084] アナログディジタル変換器 111は、論理回路 119を更に備えることができる。この論 理回路 119は、第 1の AD変換段 113のディジタル出力 113cおよび第 2の AD変換 段 115のディジタル出力 115cに接続された入力 119aを含む。論理回路 119は、ァ ナログ信号 A に対応した一または複数のビットを含むディジタル信号 V を提供
in DIGITAL する出力 119bを含む。論理回路 119は、例えば AD変換段の各々からの冗長ディジ タル信号を格納するためのデータレジスタ 119cと、個々のデータレジスタ 119cから 提供される一組の冗長ディジタル信号力 非冗長ディジタル信号を生成する変換回 路 119dとを含むことができる。
[0085] アナログディジタル変換器 111によれば、第 1および第 2AD変換段 113、 115の一 段当たりアナログ信号 A に対応したディジタル信号 V が提供される。ディジタ
in DIGITAL
ル信号 V は
DIGITAL 一または複数のビット数を含む。
[0086] アナログディジタル変換器 111はサンプノレ/ホールド(S/H)回路 121を含む。こ の S/H回路 121は、入力 121aにアナログ信号 A を受けて、受けたアナログ信号を サンプリングすると共に、サンプリングしたアナログ信号を保持する。また、アナログデ イジタル変換器 111は、第 1の AD変換段 113の入力 113aと S/H回路 121の出力 1 21bとの間に接続されたスィッチ 121を更に備えることができる。スィッチ 121は、クロ ック信号 φ によって制御されており、フィードバック期間中と異なるサンプリング期間 にアナログ信号 A を受けるために閉じられ。フィードバックスィッチ 117が閉じられる フィードバック期間に開かれている、これ故に、第 1の AD変換段 113の入力 113aと サンプル/ホールド回路 119の出力 119bとの間に接続されたスィッチ 121およびフ イードバックスイッチ 117を用いて、サンプリング期間とフィードバック期間とを切り換え ること力 Sできる。アナログディジタル変換器 111の動作に必要なタイミング信号は、ク ロック発生器 123によって提供される。
[0087] 以上説明したように、アナログディジタル変換器 111によれば、最小 1. 5クロック動 作でキャパシタのミスマッチを補償することが可能な変換回路を含むアナログデイジ タル変換器が提供される。 [0088] 第 1〜第 3の実施の形態に示された変換回路および A/D変換器は、例えば MOS 型トランジスタ等に構成されることができ、またスィッチが MOSアナログスィッチにより 実現されること力 Sできる。
[0089] 好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そ のような原理から逸脱することなく配置および詳細において変更され得ることは、当 業者によって認識される。本実施の形態では、例えば、 2段巡回型 AZD変換器を説 明したけれども、本発明は、本実施の形態に開示された特定の構成に限定されるも のではない。また、本発明は、 3段以上の巡回型 AZD変換器にも適用されることが できる。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正およ び変更に権利を請求する。

Claims

請求の範囲
[1] アナログディジタル変換器のための変換回路であって、
入力アナログ信号を第 1の期間に受けると共に該入力アナログ信号に対応した変 換アナログ信号を前記第 1の期間と異なる第 2の期間に受けるための第 1の入力、前 記入力アナログ信号を前記第 1の期間に受けると共に前記変換アナログ信号を前記 第 1および第 2の期間と異なる第 3の期間に受けるための第 2の入力、第 1〜第 3のキ ャパシタ並びに演算増幅回路を有するゲインステージを備え、
前記第 1の期間に、前記第 1および第 2のキャパシタが前記第 1および第 2の入力と 前記演算増幅回路の反転入力との間にそれぞれ接続され、前記アナログ信号に応 じた電荷が前記第 1および第 2の入力を介してそれぞれ前記第 1および第 2のキャパ シタに蓄積され、
前記第 2の期間に、前記演算増幅回路の前記出力と前記反転入力との間に前記 第 2のキャパシタが接続され、前記第 1の入力を介して前記第 1のキャパシタにカ卩えら れた前記変換アナログ信号に応答して前記演算増幅回路の出力に第 1の演算値が 生成されると共に前記第 1の演算値が前記第 3のキャパシタに格納され、
前記第 3の期間に、前記第 2のキャパシタが前記第 2の入力と前記演算増幅回路の 前記出力との間に接続されると共に前記演算増幅回路の出力と前記反転入力との 間に前記第 1および第 3のキャパシタが接続され、前記第 2の入力を介して前記第 2 のキャパシタに加えられた前記変換アナログ信号に応答して前記演算増幅回路の前 記出力に第 2の演算値が生成される、ことを特徴とする変換回路。
[2] 前記入力アナログ信号を受ける入力と、
前記第 1の入力と前記入力との間に接続されており前記第 1の期間に前記入力ァ ナログ信号のサンプリングを行うための第 1のサンプリングスィッチと、
前記第 2の入力と前記入力との間に接続されており前記第 1の期間に前記入力ァ ナログ信号のサンプリングを行うための第 2のサンプリングスィッチと、
前記入力に接続されており、所定のビット数からなるディジタル信号を前記入力ァ ナログ信号に応じて生成するサブ A/D変換回路と、
前記サブ A/D変換回路に接続されており、前記ディジタル信号に応じて制御信 号を前記第 2の期間および前記第 3の期間に提供するための論理回路と、 前記論理回路に接続されており、前記第 2および第 3の期間に前記変換アナログ 信号を提供する D/A変換回路と
を備え、
前記変換アナログ信号は前記制御信号に応じて生成される、ことを特徴とする請求 項 1に記載された変換回路。
[3] 前記サブ A/D変換回路は、前記入力アナログ信号を所定の基準信号と比較する と共に比較結果信号を提供するコンパレータを含む、ことを特徴とする請求項 2に記 載された変換回路。
[4] 前記サブ A/D変換回路は、前記入力アナログ信号を所定の 2つの基準信号と比 較することによって 3値の冗長ディジタル信号を生成する、ことを特徴とする請求項 2 に記載された変換回路。
[5] 前記第 1のキャパシタは、前記第 1の入力に接続された一端と前記演算増幅回路 の反転入力に接続された他端とを有し、
前記第 2のキャパシタは、前記第 2の入力に接続された一端と前記演算増幅回路 の前記反転入力に接続された他端とを有し、
第 3のキャパシタは、前記演算増幅回路の前記出力に接続された一端と他端とを 有し、
前記ゲインステージは、
前記第 2のキャパシタの前記一端と前記演算増幅回路の出力との間に接続されて おり前記第 2の期間に前記第 2のキャパシタを前記演算増幅回路の前記反転入力と 前記演算増幅回路の前記出力との間に接続するための第 1のスィッチと、
前記第 1のキャパシタの前記一端と前記演算増幅回路の前記出力との間に接続さ れており前記第 3の期間に前記第 1のキャパシタを前記演算増幅回路の前記出力と 前記反転入力との間に接続するための第 2のスィッチと、
前記第 3のキャパシタの前記他端と前記反転入力との間に接続されており前記第 3 の期間に前記第 3のキャパシタを前記記演算増幅回路の前記出力と前記反転入力 との間に接続するための第 3のスィッチと、 前記第 3のキャパシタの前記他端と基準電位線との間に接続されており前記第 1お よび第 2の期間に前記第 3のキャパシタの前記他端に基準電位を提供するための第 4のスィッチと
を含む、ことを特徴とする請求項 1〜請求項 4のいずれか一項に記載された変換回 路。
前記ゲインステージは、
入力アナログ相補信号を前記第 1の期間に受けると共に前記第 2の期間に変換ァ ナログ相補信号を受けるための第 1の相補入力と、
前記入力アナログ相補信号を前記第 1の期間に受けると共に前記第 3の期間に前 記変換アナログ相補信号を受けるための第 2の相補入力と、
前記第 1の相補入力に接続された一端と前記演算増幅回路の前記非反転入力に 接続された他端とを有する第 4のキャパシタと、
前記第 2の相補入力に接続された一端と前記演算増幅回路の前記非反転入力に 接続された他端とを有する第 5のキャパシタと、
前記第 5のキャパシタの前記一端と前記演算増幅回路の相補出力との間に接続さ れており前記第 2の期間に前記第 5のキャパシタを前記演算増幅回路の前記非反転 入力と前記相補出力との間に接続するための第 5のスィッチと、
前記第 4のキャパシタの前記一端と前記演算増幅回路の前記相補出力との間に接 続されており前記第 3の期間に前記第 4のキャパシタを前記演算増幅回路の前記相 補出力と前記非反転入力との間に接続するための第 6のスィッチと、
前記演算増幅回路の前記相補出力に接続された一端と他端とを有する第 6のキヤ パシタと、
前記第 6のキャパシタの前記他端と前記非反転入力との間に接続されており前記 第 3の期間に前記第 6のキャパシタを前記記演算増幅回路の前記相補出力と前記非 反転入力との間に接続するための第 7のスィッチと、
前記第 6のキャパシタの前記他端と基準電位線との間に接続されており前記第 1お よび第 2の期間に前記第 6のキャパシタの前記他端に基準電位を提供するための第 8のスィッチと を含む、ことを特徴とする請求項 5に記載された変換回路。
[7] 第 1の AD変換段を備え、前記第 1の AD変換段は、入力アナログ信号を受ける入 力および残余アナログ信号を提供するアナログ出力を有しており、
一又は複数の第 2の AD変換段を備え、前記第 2の AD変換段の各々は、前段の A D変換段からの残余アナログ信号を受ける入力および当該 AD変換段の残余アナ口 グ信号を提供するアナログ出力を有しており、前記第 1および第 2の AD変換段は直 列に接続されており、
前記第 1の AD変換段は、請求項 1から請求項 6のいずれか一項に記載された変換 回路を含み、
前記第 1の AD変換段は、所定のビット数力 成るディジタル信号を提供するデイジ タル出力を含み、
前記第 2の AD変換段の各々は、前記所定のビット数から成るディジタル信号を提 供するディジタル出力を含む、ことを特徴とするアナログディジタル変換器。
[8] 前記第 2の AD変換段は、請求項 1から請求項 6のいずれか一項に記載された変換 回路を含む、ことを特徴とする請求項 7に記載されたアナログディジタル変換器。
[9] 前記第 1の AD変換段の前記入力に接続されておりアナログ信号を保持するため のサンプ/レ /ホー/レド回路と、
前記直列に接続された第 1および第 2の AD変換段のうちの最終変換段のアナログ 出力に接続されておりディジタル信号を提供するディジタル出力を有する追加のァ ナログディジタル変換回路と、
前記第 1の AD変換段の前記ディジタル出力、前記第 2の AD変換段の前記ディジ タル出力および前記追加のアナログディジタル変換回路の前記ディジタル出力に接 続されたディジタル論理回路と
を備え、
前記ディジタル論理回路は前記入力アナログ信号に対応したディジタル信号を提 供する、ことを特徴とする請求項 7または請求項 8に記載されたアナログディジタル変 換器。
[10] 前記第 2の AD変換段の数は 1であり、 当該アナログディジタル変換器は、前記第 1の AD変換段の前記入力と前記第 2の AD変換段の前記アナログ出力との間に接続されたフィードバックスィッチを更に備 える、ことを特徴とする請求項 8に記載されたアナログディジタル変換器。
[11] 前記第 1の AD変換段の前記ディジタル出力および前記第 2の AD変換段の前記 ディジタル出力に接続されたディジタル論理回路を更に備え、
前記ディジタル論理回路は、前記入力アナログ信号に対応しており複数のビット数 からなるディジタル信号を提供する、ことを特徴とする請求項 10に記載されたアナ口 グディジタル変換器。
[12] アナログ信号を保持するためのサンプル Zホールド回路と、
前記第 1の AD変換段の前記入力と前記サンプノレ/ホールド回路の出力との間に 接続されておりサンプリング期間中に前記入力アナログ信号を提供するためのスイツ チとを更に備え、
前記フィードバックスィッチは、前記サンプリング期間中と異なるフィードバック期間 中に、前記第 2の AD変換段の前記出力から前記第 1の AD変換段の前記入力への 経路を提供する、ことを特徴とする請求項 10または請求項 11に記載されたアナログ ディジタル変換器。
[13] ゲインステージを用いて、入力アナログ信号に対応したディジタル信号を生成する 方法であって、前記ゲインステージは第 1〜第 3のキャパシタおよび演算増幅回路を 含み、前記第 1および第 2のキャパシタの一端は前記演算増幅回路の反転入力に接 続されており、
前記第 3のキャパシタの一端は前記演算増幅回路の出力に接続されており、 当該方法は、
前記第 1のキャパシタおよび前記第 2のキャパシタの各々に、前記入力アナログ信 号に応じた電荷を蓄積すると共に、所定のビット数からなるディジタル値を有しており 前記入力アナログ信号に応じたディジタル信号を生成する第 1のステップと、 前記第 2のキャパシタを前記演算増幅回路の前記出力と前記反転入力との間に接 続すると共に前記第 1のキャパシタの前記一端に該ディジタル信号に応じた変換ァ ナログ信号を供給することによって、前記入力アナログ信号に関連した第 1の変換値 を前記演算増幅回路の前記出力に生成し、前記第 1および第 2のキャパシタの前記 電荷を再配置すると共に前記第 1の変換値に対応する電荷を前記第 3のキャパシタ に蓄積する第 2のステップと、
前記第 1および第 3のキャパシタを前記演算増幅回路の前記出力と前記反転入力 との間に接続すると共に前記第 2のキャパシタの前記一端に該ディジタル信号に応じ た変換アナログ信号を供給することによって、前記入力アナログ信号に関連した第 2 の変換値を前記演算増幅回路の前記出力に生成すると共に、前記第 1、第 2および 第 3のキャパシタの前記電荷を再配置する第 3のステップと
を備える、ことを特徴とする方法。
[14] 当該ゲインステージにおける前記第 2の変換値を前記アナログ信号として次段のゲ インステージに提供するステップと、
前記次段のゲインステージにおいて前記第 1〜第 3のステップを行うステップとを更 に備える、ことを特徴とする請求項 13に記載された方法。
[15] 前段のゲインステージにおいて前記第 1〜第 3のステップを行うステップと、
前記前段のゲインステージの第 2の変換値を前記アナログ信号として当該ゲインス テージに提供するステップと
を更に備える、ことを特徴とする請求項 13または請求項 14に記載された方法。
PCT/JP2007/061633 2006-06-08 2007-06-08 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法 WO2007142327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008520635A JP4817399B2 (ja) 2006-06-08 2007-06-08 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法
US12/303,852 US7893859B2 (en) 2006-06-08 2007-06-08 Converter circuit, analog/digital converter, and method for generating digital signals corresponding to analog signals
EP07744949A EP2037583B1 (en) 2006-06-08 2007-06-08 Converter circuit, analog/digital converter, and method for generating digital signals corresponding to analog signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160152 2006-06-08
JP2006-160152 2006-06-08

Publications (1)

Publication Number Publication Date
WO2007142327A1 true WO2007142327A1 (ja) 2007-12-13

Family

ID=38801571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061633 WO2007142327A1 (ja) 2006-06-08 2007-06-08 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法

Country Status (4)

Country Link
US (1) US7893859B2 (ja)
EP (1) EP2037583B1 (ja)
JP (1) JP4817399B2 (ja)
WO (1) WO2007142327A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114587A (ja) * 2008-11-05 2010-05-20 Asahi Kasei Electronics Co Ltd スイッチトキャパシタ回路およびパイプライン型a/dコンバータ
WO2011027465A1 (ja) * 2009-09-04 2011-03-10 富士通株式会社 スイッチドキャパシタ回路およびad変換回路
JP2011228778A (ja) * 2010-04-15 2011-11-10 Denso Corp A/d変換器および信号処理回路
JP2018110455A (ja) * 2018-04-12 2018-07-12 株式会社日立製作所 アナログデジタル変換器および診断用プローブ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948410B2 (en) * 2009-07-20 2011-05-24 Texas Instruments Incorporated Multibit recyclic pipelined ADC architecture
US7969334B2 (en) * 2009-10-30 2011-06-28 Texas Instruments Incorporated Apparatus for correcting setting error in an MDAC amplifier
KR101689053B1 (ko) * 2010-05-14 2016-12-22 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 A/d 변환기
KR101743800B1 (ko) * 2011-02-18 2017-06-05 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 A/d 변환기, 이미지 센서 디바이스 및 아날로그 신호로부터 디지털 신호를 생성하는 방법
TWI454066B (zh) * 2011-03-02 2014-09-21 Himax Media Solutions Inc 用於管線式類比至數位轉換器之乘積數位至類比轉換器
US8643527B2 (en) 2012-02-17 2014-02-04 Analog Devices, Inc. Switched-capacitor MDAC with common-mode hop regulation
JP2015103820A (ja) * 2013-11-20 2015-06-04 株式会社東芝 アナログ/ディジタル変換器及びアナログ/ディジタル変換方法
JP6436022B2 (ja) * 2015-09-03 2018-12-12 株式会社デンソー A/d変換器
JP2017192099A (ja) * 2016-04-15 2017-10-19 ローム株式会社 逐次比較型a/dコンバータ
US10715757B2 (en) * 2016-11-11 2020-07-14 National University Corporation Shizuoka University A/D converter
US10200052B2 (en) * 2017-07-06 2019-02-05 Texas Instruments Incorporated Analog-to-digital converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510789A (en) 1993-05-12 1996-04-23 Analog Devices, Incorporated Algorithmic A/D converter with digitally calibrated output
JPH08505273A (ja) * 1992-11-19 1996-06-04 ヴィエルエスアイ テクノロジー インコーポレイテッド パイプライン化されたアナログ・デジタルコンバータ及びそのコンバータ用の内部段増幅器及びその方法
JP2004343163A (ja) 2003-05-13 2004-12-02 Kawasaki Microelectronics Kk パイプライン型a/d変換回路
JP2005072844A (ja) 2003-08-22 2005-03-17 Sharp Corp A/dコンバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499027A (en) * 1994-02-24 1996-03-12 Massachusetts Institute Of Technology Digitally self-calibrating pipeline analog-to-digital converter
US6166675A (en) * 1997-09-03 2000-12-26 Texas Instruments Incorporated Pipeline analog-to-digital conversion system using double sampling and method of operation
US6362755B1 (en) * 2000-04-18 2002-03-26 Sigmatel, Inc. Method and apparatus for sample rate conversion and applicants thereof
US6518907B2 (en) * 2000-11-27 2003-02-11 Micron Technology, Inc. System with high-speed A/D converter using multiple successive approximation cells
JP2006086981A (ja) * 2004-09-17 2006-03-30 Fujitsu Ltd スイッチトキャパシタ回路およびパイプラインa/d変換回路
US7015842B1 (en) * 2005-01-12 2006-03-21 Teranetics, Inc. High-speed sampling architectures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505273A (ja) * 1992-11-19 1996-06-04 ヴィエルエスアイ テクノロジー インコーポレイテッド パイプライン化されたアナログ・デジタルコンバータ及びそのコンバータ用の内部段増幅器及びその方法
US5510789A (en) 1993-05-12 1996-04-23 Analog Devices, Incorporated Algorithmic A/D converter with digitally calibrated output
JP2004343163A (ja) 2003-05-13 2004-12-02 Kawasaki Microelectronics Kk パイプライン型a/d変換回路
JP2005072844A (ja) 2003-08-22 2005-03-17 Sharp Corp A/dコンバータ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BANG SUP SONG; MICHAEL F. TOMPSETT; KADABA R. LAKSHMIKUMAR: "A 12 bit 1 M sample/s capacitor error averaging pipelined A/D converter", IEEE JOURNAL OF SOLID STATE CIRCUITS, vol. 23, December 1988 (1988-12-01), pages 1324 - 1333, XP002261540, DOI: doi:10.1109/4.90028
H. S. CHEN; K. BACRANIA; B. S. SONG: "A 14b 20M Sample/s CMOS pipelined ADC", DEG. TECH. PAPERS, IEEE INT. SOLID-STATE CIRCUITS CONF., 2000, pages 46 - 47
See also references of EP2037583A4
SEONGHWANG CHO ET AL.: "A low power pipelined analog-to-digital converter using series sampling capacitors", IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2005. ISCAS 2005, vol. 6, 2005, pages 6178 - 6181, XP010816947 *
YOU CHIU: "Inherently linear capacitor error-averaging techniques for pipelined A/D converters", IEEE TRANS. CIRCUITS AND SYSTEMS II, vol. 47, no. 3, 2000, pages 229 - 232, XP011013191

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114587A (ja) * 2008-11-05 2010-05-20 Asahi Kasei Electronics Co Ltd スイッチトキャパシタ回路およびパイプライン型a/dコンバータ
WO2011027465A1 (ja) * 2009-09-04 2011-03-10 富士通株式会社 スイッチドキャパシタ回路およびad変換回路
JP5252085B2 (ja) * 2009-09-04 2013-07-31 富士通株式会社 スイッチドキャパシタ回路およびad変換回路
US8629797B2 (en) 2009-09-04 2014-01-14 Fujtisu Limited Switched capacitor circuit and stage circuit for AD converter
JP2011228778A (ja) * 2010-04-15 2011-11-10 Denso Corp A/d変換器および信号処理回路
JP2018110455A (ja) * 2018-04-12 2018-07-12 株式会社日立製作所 アナログデジタル変換器および診断用プローブ

Also Published As

Publication number Publication date
US20100182176A1 (en) 2010-07-22
JP4817399B2 (ja) 2011-11-16
EP2037583A4 (en) 2010-05-12
EP2037583A1 (en) 2009-03-18
JPWO2007142327A1 (ja) 2009-10-29
US7893859B2 (en) 2011-02-22
EP2037583B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2007142327A1 (ja) 変換回路、アナログディジタル変換器、およびアナログ信号に対応したディジタル信号を生成する方法
JP5299876B2 (ja) アナログディジタル変換器およびアナログ信号に対応したディジタル信号を生成する方法
US5710563A (en) Pipeline analog to digital converter architecture with reduced mismatch error
EP0739553B1 (en) Radix 2 architecture and calibration technique for pipelined analog to digital converters
US7911370B2 (en) Pipeline analog-to-digital converter with programmable gain function
US5861832A (en) Analog-to-digital converter having amplifier and comparator stages
US20070052573A1 (en) Pipeline ADC with Minimum Overhead Digital Error Correction
US20060125676A1 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
KR100294787B1 (ko) 개방루프차동증폭기를갖는서브레인지아날로그/디지털컨버터
US7573417B2 (en) Multi-bit per stage pipelined analog to digital converters
US6859158B2 (en) Analog-digital conversion circuit
JP3559534B2 (ja) アナログ・ディジタル変換回路
JP4454498B2 (ja) スイッチトキャパシタシステム、方法、および使用
JP3560433B2 (ja) A/d変換器
US6762706B2 (en) Reduced power analog-to-digital converter and method thereof
TW202222042A (zh) 管線式類比數位轉換器與類比數位轉換方法
JP2705585B2 (ja) 直並列型アナログ/ディジタル変換器
CN111295843B (zh) 具有至少三条采样信道的流水线模数转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520635

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007744949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12303852

Country of ref document: US