WO2007138840A1 - 弾性境界波装置 - Google Patents

弾性境界波装置 Download PDF

Info

Publication number
WO2007138840A1
WO2007138840A1 PCT/JP2007/059760 JP2007059760W WO2007138840A1 WO 2007138840 A1 WO2007138840 A1 WO 2007138840A1 JP 2007059760 W JP2007059760 W JP 2007059760W WO 2007138840 A1 WO2007138840 A1 WO 2007138840A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
acoustic wave
temperature coefficient
boundary acoustic
electrode
Prior art date
Application number
PCT/JP2007/059760
Other languages
English (en)
French (fr)
Inventor
Hajime Kando
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP20070743195 priority Critical patent/EP2023485A4/en
Priority to CN2007800192122A priority patent/CN101454974B/zh
Priority to JP2008517819A priority patent/JP4715922B2/ja
Publication of WO2007138840A1 publication Critical patent/WO2007138840A1/ja
Priority to US12/270,895 priority patent/US7772742B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence

Definitions

  • the present invention relates to a boundary acoustic wave device used as, for example, a resonator or a filter. More specifically, an electrode is disposed between the first and second media, and further on the second medium.
  • the present invention relates to a boundary acoustic wave device having a structure in which third and fourth media are laminated.
  • boundary acoustic wave devices have attracted attention as resonators and bandpass filters, since they can simplify the knock structure.
  • Patent Document 1 discloses a boundary acoustic wave device having a propagation loss with a large electromechanical coupling coefficient and a frequency temperature coefficient TCF with a small power flow angle in an appropriate range.
  • the boundary between the first medium made of the piezoelectric substrate and the second medium made of the SiO film is a boundary between the first medium made of the piezoelectric substrate and the second medium made of the SiO film.
  • An IDT electrode is formed on the surface. Then, it is described that the electromechanical coupling coefficient and temperature characteristics can be adjusted by adjusting the orientation of the piezoelectric single crystal used as the piezoelectric substrate, the material constituting the IDT electrode, the film thickness, and the electrode finger pitch! The
  • Patent Document 2 discloses a boundary acoustic wave device 101 schematically shown in FIG.
  • the boundary acoustic wave device 101 the first Y-cut X-propagation LiNbO substrate cover is used.
  • An IDT electrode 115 is disposed at the interface between the medium 111 and the second medium 112 made of SiO film.
  • a fourth medium 114 composed of 2 is laminated in this order.
  • frequency adjustment can be performed by stacking the second medium to the fourth medium 112 to 114. That is, an electrode 115 is formed between a first medium 111 having a film thickness HI and a second medium 112 having a film thickness H2, and a third medium 113 having a film thickness H3 is further stacked. can get. Frequency adjustment is performed in this layered body stage. Then, a fourth medium 114 having a thickness H4 is stacked on the third medium 113. In the elastic boundary wave device 101 thus obtained, the energy of the boundary wave is as shown on the right side of FIG. In other words, in the fourth medium, the energy of the boundary wave is only partially distributed. Then, if frequency adjustment is performed at the layered body stage and the frequency variation is remarkably reduced,
  • Patent Document 1 WO2004-070946
  • Patent Document 2 WO2005— 093949
  • the second to fourth media can be stacked to easily adjust the frequency in the manufacturing stage.
  • a boundary acoustic wave device with little variation can be provided.
  • the frequency temperature coefficient TCF is shown, and as a result of the third medium layer having the polycrystalline Si layer force being laminated, the frequency temperature coefficient TCF There was a risk of deterioration.
  • An object of the present invention is to provide an elastic boundary wave device in which a characteristic change due to temperature is small in an elastic boundary wave device formed by laminating a plurality of media in view of the above-described state of the prior art.
  • the first medium to the fourth medium force S are stacked in this order, and the electrode is disposed at the interface between the first medium and the second medium.
  • the fourth or second medium has a positive sonic temperature coefficient TCV
  • the first medium has a negative sonic temperature coefficient TCV
  • the transverse wave of the third medium A boundary acoustic wave device is provided, characterized in that the sound speed is made slower than the sound speed of the transverse wave of the fourth medium and Z or the second medium.
  • the first medium is a piezoelectric substrate force, and the second medium is oxidized.
  • the third medium is made of an acid tantalum film or an acid zinc film
  • the fourth medium is made of an acid film.
  • a third wave consisting of an acid-tantalum film or an acid-zinc film having a slower acoustic velocity than that of the acid key film is interposed between the second and fourth media consisting of the acid key film.
  • a medium will be arranged. Therefore, according to the present invention, since the third medium having the sound velocity of the transverse wave slower than the sound velocity of the transverse wave of the fourth and second media is arranged, the absolute value of the delay time temperature coefficient TCD is small. Therefore, it is possible to reliably provide a boundary acoustic wave device having good temperature characteristics.
  • the first medium to the fourth medium force S are stacked in this order, and the electrode is disposed at the interface between the first medium and the second medium.
  • the fourth or second medium has a negative sonic temperature coefficient TCV
  • the first medium has a positive sonic temperature coefficient TCV
  • the transverse wave of the third medium A boundary acoustic wave device is provided, characterized in that the sound speed is made slower than the sound speed of the transverse wave of the fourth medium and Z or the second medium.
  • the first medium to the fourth medium force S are stacked in this order, and the electrode is disposed at the interface between the first medium and the second medium.
  • the delay time temperature coefficient TCD of the boundary acoustic wave or the surface acoustic wave in the structure in which the fourth medium Z, the second medium Z electrode Z, and the first medium are laminated.
  • the fourth or second medium has a negative sonic temperature coefficient TCV
  • the first medium has a positive sonic temperature coefficient TCV
  • the transverse wave of the third medium A boundary acoustic wave device is provided in which the sound velocity is higher than the sound velocity of the transverse wave of the fourth medium and Z or the second medium.
  • the first medium to the fourth medium force S are stacked in this order, and the electrode is disposed at the interface between the first medium and the second medium.
  • the delay time temperature coefficient TCD of the boundary acoustic wave or the surface acoustic wave in the structure in which the fourth medium Z, the second medium Z electrode Z, and the first medium are laminated. Is a negative value
  • the fourth or second medium has a positive sonic temperature coefficient TCV
  • the first medium has a negative sonic velocity.
  • a device is provided.
  • the first medium also has a piezoelectric substrate force
  • the second medium and the fourth medium are made of an acid film
  • the third medium Consists of a key film or a nitride key film.
  • a third medium made of a key film or a nitride film having a faster acoustic velocity of the transverse wave than the acid key film is interposed between the second and fourth medium made of the key film. Will be placed.
  • the third medium having the acoustic velocity of the transverse wave higher than the acoustic velocity of the transverse wave of the fourth and second media is arranged, the temperature characteristic of the temperature characteristic of the delay time temperature coefficient TCD is small. A good boundary acoustic wave device can be reliably provided.
  • At least one IDT electrode is formed as an electrode. That is, the boundary acoustic wave is efficiently excited by at least one IDT electrode, and according to the present invention, an elastic boundary wave device using the boundary acoustic wave and having a good delay time temperature characteristic can be provided.
  • the first to fourth media are laminated in this order, and are formed at the interface between the first and second media.
  • the sound speed of the transverse wave of the third medium is slower than the sound speed of the transverse wave of the fourth medium and Z or the second medium. It is possible to provide a boundary acoustic wave device that can be reduced in value and has good temperature characteristics. This is thought to be due to the following reasons. The vibrational energy tends to concentrate on the medium side where the sound velocity is low.
  • the transverse wave vibration energy is strongly distributed in the third medium.
  • the distribution of the vibration energy of the transverse wave to the second and fourth media is also strengthened, and this is considered to be due to the fact that the delay time temperature coefficient TCD of the boundary acoustic wave can be reduced.
  • the transverse wave energy distribution to the second and fourth media is increased by conversely increasing the sound velocity of the transverse wave of the third medium. Can be reduced, and the effect is obtained.
  • FIG. 1 (a) and FIG. 1 (b) are schematic front sectional views and electrode schematics for illustrating a boundary acoustic wave device according to an embodiment of the present invention. It is.
  • FIG. 2 is a schematic diagram for explaining a distribution state of vibration energy in each medium layer in the boundary acoustic wave device according to the embodiment.
  • Figure 3 shows the sound of boundary acoustic waves when the thickness of the third medium, which also has Ta O force, is changed.
  • Figure 4 shows the boundary acoustic wave scan when the thickness of the third medium, which also has TaO force, is varied.
  • Fig. 12 is a diagram showing changes.
  • Fig. 5 shows the delay of the boundary acoustic wave when the film thickness of the third medium that also has TaO force is changed.
  • Figure 6 shows the boundary acoustic wave power when the thickness of the third medium, which also has TaO force, is varied.
  • FIG. 7 shows an embodiment in which the thickness of Ta O constituting the third medium is 0.03 ⁇ .
  • FIG. 8 shows an embodiment in which the thickness of Ta O constituting the third medium is 0.20 ⁇ .
  • Fig. 9 shows the case where the thickness of the third medium of Ta O force is 0.02 ⁇ and 0.05 mm.
  • FIG. 6 is a diagram showing a frequency temperature coefficient TCF in a structure in which the mediums are stacked.
  • FIG. 10 shows the results when the thickness of the third medium that is Ta O force is 0.02 ⁇ and 0.05 mm.
  • FIG. 6 is a diagram illustrating a specific band of a resonator in a structure in which the medium 3 is not stacked.
  • FIG. 11 shows that the thickness of Ta O as the third medium is 0.02 ⁇ and 0.05 ⁇ and the third
  • FIG. 6 is a diagram showing impedance and phase frequency characteristics of each boundary acoustic wave device in which a medium is stacked.
  • FIG. 12 is a schematic front sectional view for explaining an example of a conventional boundary acoustic wave device. It is.
  • FIGS. 1 (a) and 1 (b) are a schematic front sectional view and a schematic plan view showing an electrode structure of a boundary acoustic wave device according to an embodiment of the present invention.
  • the boundary acoustic wave device 1 includes a laminate 15 in which a first medium 11 to a fourth medium 14 are laminated in this order.
  • An electrode structure shown in FIG. 1B is formed at the interface between the first medium 11 and the second medium 12.
  • the electrode structure includes the IDT electrode 16 and the reflectors 17 and 18 provided outside the IDT electrode 16 in the boundary acoustic wave propagation direction.
  • the first medium 11 is made of a 15 ° Y-cut X-propagation LiNbO substrate.
  • the first medium 11 is a LiNbO substrate of another crystal orientation or a LiTaO substrate.
  • the first medium 11 may be made of another piezoelectric material, for example, piezoelectric ceramics, or may be made of a structure in which a piezoelectric thin film is laminated on an insulating material.
  • the second medium 12 is formed of an SiO film as an oxide film in this embodiment.
  • the third medium 13 is made of Ta 2 O as an oxide-tantalum film.
  • the fourth medium 14 is made of an SiO film serving as an oxide film.
  • the sound velocity of the transverse wave in the third medium 13 having Ta O force is 1580 mZ seconds.
  • the sound velocity of the transverse wave in the second and fourth media which has two forces, is 3757 mZ seconds. That is, the sound velocity of the transverse wave in the third medium 13 is made slower than the sound velocity of the transverse wave in the second and fourth media 12 and 14.
  • ZnO also has a shear wave velocity of 2826 mZs, so it can be used as a third medium.
  • the delay time temperature coefficient TCD of the boundary acoustic wave is a positive value.
  • the delay time temperature coefficient TCD is an index of the propagation performance of elastic waves directly connected to the performance index of the device.
  • TCF the frequency temperature coefficient
  • the sound velocity of the transverse wave in the third medium 13 is slower than the sound velocity of the transverse wave in the second medium 12 and the sound velocity of the transverse wave in the fourth medium 14.
  • the sound speed of the transverse wave in the third medium 13 may be slower than at least one of the sound speed of the transverse wave in the second medium 12 or the sound speed of the transverse wave in the fourth medium 14.
  • the sonic temperature coefficient TCV is a positive value.
  • the Sonic temperature coefficient TCV is an index of elastic wave propagation performance excluding the influence of the coefficient of linear expansion, and shows the tendency of the sound speed to change with temperature excluding the effect of the coefficient of linear expansion.
  • the LiNbO substrate constituting the first medium 11 has a negative sonic temperature coefficient TCV.
  • the IDT electrode 16 and the reflectors 17 and 18 are made of a laminated metal film in which an A1 layer is laminated on an Au layer, and the duty of the IDT electrode is 0.6.
  • the absolute value of the delay time temperature coefficient TCD of the boundary acoustic wave propagating through the interface between the first and second media 11 and 12 can be reduced, and good temperature characteristics can be obtained. This will be described more specifically while comparing with a conventional boundary acoustic wave device.
  • Table 1 below shows conventional boundary acoustic wave devices configured in the same manner as the boundary acoustic wave device 1 of the above embodiment, except that the third and fourth media 13 and 14 are not included.
  • Article to show The IDT electrode, reflector, and first and second media were constructed.
  • This conventional boundary acoustic wave device is described in “Fine Element Analysis of Periodic Structure Piezoelectric Waveguide” (Volume J68-C Nol. 1985/1, pp. 21-27). The proposed finite element method was extended, and a strip was placed in the half-wavelength section, and the sound velocity at the upper and lower ends of the stopband of the electrically open strip and the shorted strip was determined.
  • the vibration energy of the boundary wave is mostly concentrated in the upper part of the IDT electrode up to 1 ⁇ and the lower part of the IDT electrode up to 1 ⁇ . Therefore, the 8th thick part in the vertical direction of the IDT electrode was used as the analysis region, and the boundary condition between the front and back surfaces of the analysis region was fixed elastically.
  • K 12 Zk 0 is the frequency because the acoustic velocity frequency dispersion in the boundary acoustic wave device prepared as the above conventional example is large. Determined by considering the effect of dispersion.
  • the delay time temperature coefficient TCD was obtained from the following formula (1) from the phase velocities V 1, V 2, and V at the lower end of the stop band of the short-circuit strip at 15 ° C, 25 ° C, and 35 ° C.
  • TCD a-(V -V) / V (35- 15) ...
  • the configurations of the IDT electrode 16 and the first to fourth media 11 14 of the boundary acoustic wave device of the above embodiment are collectively shown in Table 3 below.
  • the propagation characteristics of the boundary acoustic wave device according to the embodiment set as shown in Table 3 below were calculated in the same manner as the conventional boundary acoustic wave device. The results are shown in Table 4.
  • the delay time temperature coefficient TCD is significantly improved as described above, and it can be said that the change is within the allowable range.
  • the reason why the absolute value of the delay time temperature coefficient TCD is reduced and improved is as follows.
  • the delay time temperature coefficient TCD of the boundary acoustic wave is determined by the balance between the linear expansion coefficient ⁇ in the entire plurality of media forming the boundary and the sonic temperature coefficient TCV in each medium.
  • the delay time temperature coefficient TCD of the boundary acoustic wave is a positive value.
  • the shear wave temperature energy coefficient TCV of the shear wave is made stronger, the boundary wave vibration energy distribution TCD becomes smaller.
  • the vibrational energy of boundary acoustic waves tends to concentrate on a medium with low acoustic velocity. Therefore, if the vibrational energy of the boundary acoustic wave is to be concentrated on one of the two layers, a low sound velocity material may be used as one of the layers. Also, if one medium is separated into two layers and a relatively low sound velocity medium is inserted between the two separated layers, vibration energy is concentrated on the low sound velocity medium, thereby The vibrational energy distribution to the two separated layers becomes stronger
  • the delay time temperature coefficient TCD has a positive value. Therefore, increase the vibration energy on the SiO layer side where the sonic temperature coefficient TCV is positive.
  • the delay time temperature coefficient TCD can be improved. Therefore, in the above embodiment, as shown in Table 3, the third film is interposed between the SiO films constituting the second and fourth media.
  • TaO having a relatively low sound velocity of the transverse wave is arranged. Therefore, sound
  • Rapid temperature coefficient TCV is positive Boundary between second medium 12 and fourth medium 14 with SiO force
  • the vibration energy of the field wave can be increased.
  • FIG. 2 is different from the above embodiment in the case of the above embodiment, and the third medium having Ta 2 O force.
  • FIG. 5 is a schematic diagram showing a displacement distribution of boundary acoustic waves in the conventional case.
  • the solid line shows the case of the above embodiment, and the broken line shows the conventional case.
  • the second medium 12 and the fourth medium are arranged by arranging the third medium 13 having Ta O force.
  • FIG. 3 to 6 are diagrams showing the relationship between the thickness of the third medium 13 and the boundary acoustic wave propagation characteristics. Specifically, FIG. 3 is a diagram showing a change in sound velocity when the film thickness of the third medium 13 is changed, FIG. 4 is a diagram showing a change in strip reflection index, and FIG. FIG. 6 is a diagram showing a change in delay time temperature coefficient TCD, and FIG. 6 is a diagram showing a change in electromechanical coupling coefficient K 2 (%).
  • Fig. 7 shows the vibration energy in the third medium with TaO force having a thickness of 0.03 ⁇ .
  • Figure 8 is a schematic diagram showing the distribution of, and Fig. 8 shows a third medium with a TaO force with a thickness of 0.20.
  • the acoustic velocity of the boundary acoustic wave is reduced because the influence of the third medium increases.
  • the speed of sound when the third medium is not provided is 3394 mZs
  • the speed of sound when the thickness of the third medium is 0.03 m is 3332 mZs.
  • the delay time temperature coefficient TCD moves to the negative side as shown in Fig. 5 according to the above principle.
  • the TCD without the third medium is 27 ppm / ° C
  • the TCD with the third medium having a thickness of 0.03 is 18 ppm Z ° C.
  • the thickness of Ta O is as thick as 0.20 mm.
  • Coupling coefficient K 2 is 2. as small as 4%, practicability is lowered.
  • the thickness of the third medium 13 that also has TaO force increases.
  • the boundary acoustic wave device is increased in size, which is not preferable.
  • the thickness of the third medium 13 having 2 5 force is 0.30 ⁇ or less, more preferably 0.20 ⁇ or less.
  • a 1-port boundary acoustic wave device was specifically manufactured, and the temperature coefficient TCF of the resonance frequency and the specific bandwidth were measured.
  • the period ⁇ of the IDT electrode 16, the configuration and film thickness of the IDT electrode 16, and the film thickness and material of the first to fourth media 11 to 14 were set.
  • the design parameters for the IDT electrode 16 were as follows.
  • Period of IDT and reflector ⁇ 3.42 m (electrode finger placement pitch 0.8 m)
  • Electrode finger line width 0.855 m
  • the thickness of the third medium 13 is 170 nm as described above, that is, 0.05, it is separately modified in which the thickness of the third medium 13 is 0.02 ⁇ (68 nm).
  • a boundary acoustic wave device was fabricated.
  • a boundary acoustic wave device was manufactured in the same manner as in the above prototype except that the thickness of the third medium was reduced to 0, that is, the third medium 13 was not provided. .
  • the frequency temperature coefficient TCF and specific bandwidth of the resonance frequency were determined. The results are shown in FIG. 9 and FIG. Here, the specific bandwidth is calculated as (resonance frequency minus one resonance frequency) Z resonance frequency.
  • FIG. 11 is a diagram showing the impedance and phase characteristics of the three types of boundary acoustic wave devices fabricated as described above.
  • the impedance at the resonance frequency of the impedance at the anti-resonance frequency is obtained.
  • the impedance ratio that is, the Yamatani ratio, which is the ratio to the
  • the characteristics are improved.
  • Many piezoelectric materials have a negative sonic temperature coefficient TCV, and the device has a negative frequency temperature coefficient TCF. Therefore, by using a material having a positive sonic temperature coefficient TCV as the second medium 12 and the fourth medium 14, the frequency temperature coefficient TCF of the device can be corrected to the brass side. SiO with positive sonic temperature coefficient TCV second medium 12
  • the practicality can be enhanced. That is, the absolute value of the frequency temperature coefficient TCF can be reduced.
  • Ta O is replaced with Si.
  • Si 2 O and Ta 2 O are excellent in heat resistance and are chemically stable. Therefore, the above embodiment
  • This boundary acoustic wave device 1 has excellent heat resistance and stability as well as small changes in characteristics due to temperature, and is also excellent in terms of reliability.
  • the second medium 12 and the fourth medium 14 may be made of different materials.
  • the delay time temperature coefficient TCD of the boundary acoustic wave in the structure in which the fourth medium Z, the second medium Z electrode Z, and the first medium are stacked has a positive value. 4 or the second medium has a positive sonic temperature coefficient TCV, and the first medium has a negative sonic temperature coefficient TCV.
  • the present invention is limited to such a structure.
  • the third medium In the second structure below, where the sound velocity of the transverse wave of the third medium is slower than the sound velocity of the transverse wave of the fourth medium and Z or the second medium, the third medium In the third and fourth structures, in which the speed of the transverse wave is increased, the delay time temperature characteristics can be improved.
  • Second structure example fourth medium Z second medium Z electrode Z delay time temperature coefficient TCD of the boundary acoustic wave in a structure in which the first medium is laminated, 4 or the second medium has a structure with a negative sonic temperature coefficient TCV and the first medium has a positive sonic temperature coefficient TCV.
  • Third structure example fourth medium Z second medium Z electrode Z delay time temperature coefficient TCD of the boundary acoustic wave in a structure in which the first medium is laminated, 4 or the second medium has a negative sonic temperature coefficient TCV, and the first medium has a positive sonic temperature coefficient TCV. Made.
  • Fourth structure example fourth medium Z second medium Z electrode Z delay time temperature coefficient TCD of the boundary acoustic wave in a structure in which the first medium is stacked has a negative value.
  • the boundary acoustic wave device may be configured to have various electrode structures. That is, it may be a longitudinally coupled or laterally coupled boundary acoustic wave resonator filter using two or more IDTs, or a ladder type filter in which a plurality of boundary acoustic wave resonators are connected in a ladder configuration.
  • the elastic wave device of the present invention can also be used for optical devices such as boundary acoustic wave optical switches and boundary acoustic wave optical filters, and can be widely used in general for devices using boundary acoustic waves.
  • the boundary acoustic wave device of the present invention prior to forming the second medium 12 to the fourth medium 14, reverse sputtering, ion beam milling, reactive ion etching, wet etching or
  • the IDT electrode 16, the second medium 12, and the IDT electrode 16, the second medium 12, and the third medium 12, 13 can be thinned by polishing, or can be additionally formed by a deposition method such as sputtering or vapor deposition. Z or the thickness of the third medium 13 can be adjusted. And frequency adjustment can be performed by these thickness adjustments.
  • the electrode structure may be formed of a multilayer film made of a plurality of metals.
  • the materials constituting the first to fourth media in the present invention are not particularly limited. That is, various dielectric materials can be used as the medium. Examples of such a medium include lithium niobate, potassium niobate, lithium tantalate, lithium tetraborate, langasite and langanite, crystal, PZT, ⁇ , ⁇ 1 ⁇ , silicon oxide, glass, silicon, sapphire, and nitride. Silicon and carbon nitride power group power One kind selected.
  • the medium may have a laminated structure in which a plurality of medium layers are not necessarily formed of a single material. That is, at least one of the first to fourth media Alternatively, one medium may have a stacked structure in which a plurality of material layers are stacked.
  • a protective layer may be formed on the outside to increase the strength or prevent the invasion of corrosive gas or the like.
  • the boundary acoustic wave device may have a structure enclosed in a package as long as the size of the component is not increased.
  • the protective layer may be made of an insulating material such as titanium oxide, aluminum nitride, or aluminum oxide, and may be made of a metal film such as Au, A, or W! / It may be composed of a resin film such as epoxy resin.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 第1~第4の媒質が積層されており、第1,第2の媒質間に電極が配置されている弾性境界波装置であって、遅延時間温度係数の絶対値が小さく、温度特性が良好な弾性境界波装置を提供する。  第1~第4の媒質11~14がこの順序で積層されており、第1の媒質11と第2の媒質12との間の界面にIDT電極16を含む電極が配置されており、第4の媒質14/第2の媒質12/電極/第1の媒質11を積層してなる構造における弾性境界波の遅延時間温度係数TCDが正の値であり、第4または第2の媒質が正の音速温度係数TCVを有し、第1の媒質11が負の音速温度係数TCVを有し、第3の媒質13の横波の音速が、第4の媒質14及び/または第2の媒質12の横波の音速よりも遅くされている、弾性境界波装置1。

Description

明 細 書
弾性境界波装置
技術分野
[0001] 本発明は、例えば共振子やフィルタとして用いられる弾性境界波装置に関し、より 詳細には、第 1,第 2の媒質間に電極が配置されており、第 2の媒質上に、さらに第 3 及び第 4の媒質が積層されている構造を有する弾性境界波装置に関する。
背景技術
[0002] 近年、共振子や帯域フィルタとして、ノ ッケージ構造の簡略ィ匕を図り得るため、弾性 境界波装置が注目されて 、る。
[0003] 下記の特許文献 1には、電気機械結合係数が大きぐ伝搬損失及びパワーフロー 角が小さぐ周波数温度係数 TCFが適度な範囲にある弾性境界波装置が開示され ている。ここでは、圧電基板からなる第 1の媒質と、 SiO膜からなる第 2の媒質との界
2
面に IDT電極が形成されている。そして、圧電基板として用いる圧電単結晶の方位、 IDT電極を構成する材料、膜厚及び電極指ピッチを調整することにより、電気機械結 合係数や温度特性を調整し得る旨が記載されて!、る。
[0004] 他方、下記の特許文献 2には、図 12に模式的に示す弾性境界波装置 101が開示 されている。弾性境界波装置 101では、 Yカット X伝搬の LiNbO基板カゝらなる第 1の
3
媒質 111と、 SiO膜からなる第 2の媒質 112との界面に IDT電極 115が配置されて
2
いる。そして、第 2の媒質 112上に、多結晶 Si層からなる第 3の媒質 113と、 SiO膜
2 からなる第 4の媒質 114とがこの順序で積層されて 、る。
[0005] ここでは、第 2の媒質〜第 4の媒質 112〜114を積層することにより、周波数調整を 行うことができるとされている。すなわち、膜厚 HIの第 1の媒質 111と、膜厚 H2の第 2の媒質 112との間に電極 115が形成され、さらに膜厚 H3の第 3の媒質 113が積層 されて、積層体が得られる。この積層体段階で周波数調整が行われる。そして、第 3 の媒質 113上に、膜厚 H4の第 4の媒質 114が積層される。このようにして得られた弾 性境界波装置 101では、境界波のエネルギーは、図 12の右側に示す通りとなる。す なわち、第 4の媒質においては、境界波のエネルギーはごく一部にしか分布しないの で、上記積層体段階で周波数調整を行い、周波数ばらつきを著しく小さくすると、第
4の媒質 114を形成したとしても、周波数ばらつきを小さくすることが可能とされている 特許文献 1: WO2004- 070946
特許文献 2 :WO2005— 093949
発明の開示
[0006] 特許文献 1に記載の弾性境界波装置では、圧電基板を構成して!/ヽる圧電単結晶 の基板方位、 IDT電極の構成が決定されると、周波数温度係数 TCFや遅延時間温 度係数 TCDが自ずと決定されることになる。従って、所望の温度特性を有する弾性 境界波装置を得ることは困難であった。
[0007] 他方、特許文献 2に記載の弾性境界波装置では、上記のように、第 2〜第 4の媒質 を積層することにより、製造段階における周波数調整を容易に行うことができ、周波 数ばらつきの少ない弾性境界波装置を提供することができる。しかしながら、特許文 献 2の図 10にお 、て周波数温度係数 TCFが示されて 、るように、上記多結晶 Si層 力 なる第 3の媒質層が積層されていることにより、周波数温度係数 TCFが劣化する おそれがあった。
[0008] 本発明の目的は、上述した従来技術の現状に鑑み、複数の媒質を積層してなる弾 性境界波装置において、温度による特性変化の小さい弾性境界波装置を提供する ことにある。
[0009] 本願の第 1の発明によれば、第 1の媒質〜第 4の媒質力 Sこの順序で積層されており 、第 1の媒質と第 2の媒質との間の界面に電極が配置されている弾性境界波装置に おいて、前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造にお ける弾性境界波または弾性表面波の遅延時間温度係数 TCDが正の値であり、前記 第 4または第 2の媒質が正の音速温度係数 TCVを有し、前記第 1の媒質が負の音速 温度係数 TCVを有し、前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまた は第 2の媒質の横波の音速よりも遅くされていることを特徴とする、弾性境界波装置 が提供される。
[0010] 本発明のある特定の局面では、第 1の媒質が圧電基板力 なり、第 2の媒質が酸化 ケィ素膜からなり、第 3の媒質が酸ィ匕タンタル膜または酸ィ匕亜鉛膜からなり、第 4の媒 質が酸ィ匕ケィ素膜からなる。この場合、酸ィ匕ケィ素膜からなる第 2,第 4の媒質間に、 酸ィ匕ケィ素膜よりも横波の音速が遅い酸ィ匕タンタル膜または酸ィ匕亜鉛膜からなる第 3 の媒質が配置されることになる。従って、本発明により、横波の音速が第 4,第 2の媒 質の横波の音速よりも遅い第 3の媒質が配置されることになるため、遅延時間温度係 数 TCDの絶対値が小さ ヽ、温度特性の良好な弾性境界波装置を確実に提供するこ とがでさる。
[0011] 本願の第 2の発明によれば、第 1の媒質〜第 4の媒質力 Sこの順序で積層されており 、第 1の媒質と第 2の媒質との間の界面に電極が配置されている弾性境界波装置に おいて、前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造にお ける弾性境界波または弾性表面波の遅延時間温度係数 TCDが負の値であり、前記 第 4または第 2の媒質が負の音速温度係数 TCVを有し、前記第 1の媒質が正の音速 温度係数 TCVを有し、前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまた は第 2の媒質の横波の音速よりも遅くされていることを特徴とする、弾性境界波装置 が提供される。
[0012] 本願の第 3の発明によれば、第 1の媒質〜第 4の媒質力 Sこの順序で積層されており 、第 1の媒質と第 2の媒質との間の界面に電極が配置されている弾性境界波装置に おいて、前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造にお ける弾性境界波または弾性表面波の遅延時間温度係数 TCDが正の値であり、前記 第 4または第 2の媒質が負の音速温度係数 TCVを有し、前記第 1の媒質が正の音速 温度係数 TCVを有し、前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまた は第 2の媒質の横波の音速よりも速くされていることを特徴とする、弾性境界波装置 が提供される。
[0013] 本願の第 4の発明によれば、第 1の媒質〜第 4の媒質力 Sこの順序で積層されており 、第 1の媒質と第 2の媒質との間の界面に電極が配置されている弾性境界波装置に おいて、前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造にお ける弾性境界波または弾性表面波の遅延時間温度係数 TCDが負の値であり、前記 第 4または第 2の媒質が正の音速温度係数 TCVを有し、前記第 1の媒質が負の音速 温度係数 TCVを有し、前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまた は第 2の媒質の横波の音速よりも速くされていることを特徴とする、弾性境界波装置 が提供される。
[0014] また、第 4の発明では、好ましくは、前記第 1の媒質が圧電基板力もなり、前記第 2 の媒質と第 4の媒質が酸ィ匕ケィ素膜からなり、前記第 3の媒質がケィ素膜または窒化 ケィ素膜からなる。この場合には、酸ィ匕ケィ素膜からなる第 2,第 4の媒質間に、酸ィ匕 ケィ素膜よりも横波の音速が速いケィ素膜または窒化ケィ素膜からなる第 3の媒質が 配置されることになる。従って、本発明により、横波の音速が第 4,第 2の媒質の横波 の音速よりも速い第 3の媒質が配置されることになるため、遅延時間温度係数 TCD の絶対値が小さい温度特性の良好な弾性境界波装置を確実に提供することができ る。
[0015] 本発明(第 1〜第 4の発明)では、好ましくは、電極として、少なくとも 1つの IDT電極 が形成されている。すなわち、少なくとも 1つの IDT電極により、弾性境界波が効率良 く励振され、本発明に従って、弾性境界波を利用し、遅延時間温度特性が良好な弾 性境界波装置を提供することができる。
(発明の効果)
[0016] 本発明(第 1,第 2の発明)に係る弾性境界波装置では、第 1〜第 4の媒質がこの順 序で積層されており、第 1,第 2の媒質間の界面に電極が配置されている構造におい て、第 3の媒質の横波の音速が、第 4の媒質及び Zまたは第 2の媒質の横波の音速 よりも遅くされているので、遅延時間温度特性 TCDの絶対値を小さくすることができ、 良好な温度特性を有する弾性境界波装置を提供することができる。これは、以下の 理由によると考えられる。振動エネルギーは、音速が低い媒質側に集中しやすい傾 向がある。従って、第 3の媒質における横波の音速が、第 4の媒質及び Zまたは第 2 の媒質の横波の音速よりも遅くされている場合、第 3の媒質において、横波の振動ェ ネルギ一が強く分布することになるため、それによつて、第 2,第 4の媒質への横波の 振動エネルギーの分布も強くなり、弾性境界波の遅延時間温度係数 TCDを小さくす ることができることによると考えられる。また、第 3,第 4の発明においては、第 3の媒質 の横波の音速を逆に速くすることにより第 2,第 4の媒質への横波のエネルギー分布 を小さくでき、効果を得ているものである。
[0017] よって、本発明によれば、温度による特性の変化が小さい弾性境界波装置を確実 にかつ容易に提供することが可能となる。
図面の簡単な説明
[0018] [図 1]図 1 (a)及び (b)は、本発明の一実施形態に係る弾性境界波装置を説明するた めの略図的正面断面図及び電極構造を示す模式的平面図である。
[図 2]図 2は、実施形態の弾性境界波装置における各媒質層における振動エネルギ 一の分布状態を説明するための模式図である。
[図 3]図 3は、 Ta O力もなる第 3の媒質の膜厚を変化させた場合の弾性境界波の音
2 5
速の変化を示す図である。
[図 4]図 4は、 Ta O力もなる第 3の媒質の膜厚を変化させた場合の弾性境界波のス
2 5
ブリット反射指標 κ の
12 変化を示す図である。
[図 5]図 5は、 Ta O力もなる第 3の媒質の膜厚を変化させた場合の弾性境界波の遅
2 5
延時間温度係数 TCDの変化を示す図である。
[図 6]図 6は、 Ta O力もなる第 3の媒質の膜厚を変化させた場合の弾性境界波の電
2 5
気機械結合係数 κ2の変化を示す図である。
[図 7]図 7は、第 3の媒質を構成している Ta O厚みが 0. 03 λである場合の実施形
2 5
態の弾性境界波装置の振動エネルギー分布を模式的に示す図である。
[図 8]図 8は、第 3の媒質を構成している Ta O厚みが 0. 20 λである場合の実施形
2 5
態の弾性境界波装置の振動エネルギー分布を模式的に示す図である。
[図 9]図 9は、 Ta O力 なる第 3の媒質の厚みが 0. 02 λ及び 0. 05えの場合、第 3
2 5
の媒質が積層されて ヽな 、構造における周波数温度係数 TCFを示す図である。
[図 10]図 10は、 Ta O力 なる第 3の媒質の厚みが 0. 02 λ及び 0. 05えの場合、第
2 5
3の媒質が積層されていない構造における共振子の比帯域を示す図である。
[図 11]図 11は、第 3の媒質としての Ta Oの厚みが 0. 02 λ及び 0. 05 λ及び第 3の
2 5
媒質が積層されて ヽな ヽ各弾性境界波装置のインピーダンス及び位相周波数特性 を示す図である。
[図 12]図 12は、従来の弾性境界波装置の一例を説明するための模式的正面断面図 である。
符号の説明
[0019] 1…弾性境界波装置
11· ··第 1の媒質
12· ··第 2の媒質
13· ··第 3の媒質
14· ··第 4の媒質
15…積層体
16- IDT電極
17, 18…反射器
発明を実施するための最良の形態
[0020] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。
[0021] 図 1 (a)及び (b)は、本発明の一実施形態に係る弾性境界波装置の模式的正面断 面図及び電極構造を示す模式的平面図である。
[0022] 弾性境界波装置 1は、第 1の媒質 11〜第 4の媒質 14をこの順序で積層した積層体 15を有する。そして、第 1の媒質 11と第 2の媒質 12との界面に、図 1 (b)に示す電極 構造が形成されている。すなわち、上記電極構造として、 IDT電極 16と、 IDT電極 1 6の弾性境界波伝搬方向外側に設けられた反射器 17, 18とを有する。
[0023] 本実施形態では、第 1の媒質 11は、 15° Yカット X伝搬の LiNbO基板からなる。
3
なお、第 1の媒質 11は、他の結晶方位の LiNbO基板、あるいは LiTaO基板などの
3 3 他の圧電単結晶基板を用いて構成されてもよい。第 1の媒質 11は、他の圧電材料、 例えば圧電セラミックスにより構成されていてもよぐさら〖こは、絶縁性材料に圧電薄 膜を積層した構造により構成されてもよい。
[0024] また、第 2の媒質 12は、本実施形態では酸ィ匕ケィ素膜としての SiO膜により形成さ
2
れている。本実施形態で、第 3の媒質 13は、酸ィ匕タンタル膜としての Ta Oからなる
2 5
。また、第 4の媒質 14は、酸ィ匕ケィ素膜としての SiO膜からなる。
2
[0025] Ta O力 なる第 3の媒質 13における横波の音速は 1580mZ秒である。他方、 Si O
2力もなる第 2,第 4の媒質中の横波の音速は 3757mZ秒である。すなわち、第 3の 媒質 13における横波の音速は、第 2,第 4の媒質 12, 14における横波の音速よりも 遅くされている。また、 ZnOも横波音速 2826mZsであるので、第 3の媒質として利用 できる。
[0026] なお、上記第 4の媒質 14Z第 2の媒質 12ZIDT電極 16Z第 1の媒質 11を積層し た積層構造では、弾性境界波の遅延時間温度係数 TCDは正の値とされている。な お、遅延時間温度係数 TCDは、デバイスの性能の指標と直結する弾性波の伝搬性 能の指標であり、デバイス性能の指標となる周波数温度係数 TCFとの間には、 TCF =—TCDの関係がある。
[0027] また、本実施形態では、第 3の媒質 13における横波の音速は、第 2の媒質 12にお ける横波の音速及び第 4の媒質 14における横波の音速よりも遅くされていたが、第 3 の媒質 13における横波の音速は、第 2の媒質 12における横波の音速または第 4の 媒質 14における横波の音速の少なくとも一方よりも遅くされていればよい。
[0028] また、 SiO力 なる第 2,第 4の媒質においては、音速温度係数 TCVは正の値であ
2
る。音速温度係数 TCVとは、線膨張係数の影響を除いた弾性波の伝搬性能の指標 であり、線膨張係数の影響を除いた音速の温度による変化傾向を示す。
[0029] なお、第 1の媒質 11を構成して 、る LiNbO基板は、音速温度係数 TCVは負の値
3
である。
[0030] 本実施形態では、 IDT電極 16及び反射器 17, 18は、 Au層上に、 A1層を積層した 積層金属膜からなり、 IDT電極のデューティは 0. 6とされている。
[0031] 本実施形態の弾性境界波装置 1では、第 3の媒質 13を構成している Ta Oの横波
2 5 の音速が、第 2,第 4の媒質 12, 14における横波の音速よりも遅いため、横波のエネ ルギ一は第 3の媒質に集中することとなる。従って、第 1,第 2の媒質 11, 12の界面を 伝搬する弾性境界波の遅延時間温度係数 TCDの絶対値を小さくすることができ、良 好な温度特性を得ることができる。これを、従来の弾性境界波装置と対比しつつ、より 具体的に説明する。
[0032] 第 3及び第 4の媒質 13, 14を有しないことを除いては、上記実施形態の弾性境界 波装置 1と同様に構成された従来の弾性境界波装置について、下記の表 1に示す条 件で IDT電極、反射器及び第 1,第 2の媒質を構成した。この従来の弾性境界波装 置について、「周期構造圧電性導波路の有限要素法解析」(電子通信学会論文誌 V ol. J68-C Nol. 1985/1,第 21頁〜第 27頁)に提案されている有限要素法を 拡張し、半波長区間に 1本のストリップを配置し、電気的に開放したストリップと、短絡 したストリップとの阻止域の上端と下端とにおける音速を求めた。境界波の振動エネ ルギ一は、 IDT電極の上方 1 λまでの部分及び下方 1 λまでの部分に大半のェネル ギ一が集中している。従って、 IDT電極の上下方向に 8えの厚みの部分を解析領域 とし、解析領域の表面と裏面の境界条件は弾性的に固定した。
[0033] 次に、「モード結合理論による弾性表面波すだれ状電極の励振特性評価」(電子情 報通信学会技術報告、 MW90-62, 1990,第 69頁〜第 74頁)に提案されている 方法に基づ 、て、ストリップにおける境界波の反射量を表す κ /kと電気機械結
12 0
合係数 κ2を求めた。なお、「周期構造圧電性導波路の有限要素法解析」で扱った構 造に比べると、上記従来例として用意した弾性境界波装置における音速の周波数分 散が大きいため、 K 12 Zk 0は周波数分散の影響を考慮して求めた。
[0034] また、遅延時間温度係数 TCDは、 15°C、 25°C及び 35°Cにおける短絡ストリップの 阻止域下端の位相速度 V 、V 及び V より下記の式(1)により求めた。
15¾ 25¾ 35¾
[0035] TCD= a - (V —V ) /V (35— 15) …式(1)
s 35¾ 15 25¾
なお、式(1)において、ひは境界波伝搬方向における LiNbO基板の線膨張係数 s 3
である。
[0036] [表 1]
Figure imgf000010_0001
[0037] 上記計算により求めた従来の弾性境界波装置の特性を下記の表 2に示す。
[0038] [表 2] 項目 伝搬特性
音速 v25 c 3495mZ秒
TCD 26. 8ppmZ C
K2 1 7. 4%
K 12 k0 0. 096
[0039] 他方、上記実施形態の弾性境界波装置の IDT電極 16及び第 1〜第 4の媒質 11 14の構成を下記の表 3にまとめて示す。そして、下記の表 3のように設定された上記 実施形態の弾性境界波装置について、上記従来の弾性境界波装置と同様にして、 伝搬特性を計算した。結果を表 4に示す。
[0040] [表 3]
Figure imgf000011_0001
[0041] [表 4]
Figure imgf000011_0002
[0042] 表 2と表 4とを比較すれば明らかなように、本実施形態の弾性境界波装置によれば 、遅延時間温度係数は 18. 7ppmZ°Cと良化していることがわかる。すなわち、音速 、電気機械結合係数 K2、及び K /kは若干変化したものの、これらの変化は実用
12 0
上十分許容され得る範囲内の変化であり、他方、遅延時間温度係数 TCDは上記の ように大幅に良化して 、ることがわ力る。
[0043] 本実施形態において、遅延時間温度係数 TCDの絶対値が小さくなり、良化する理 由は、以下の通りであると考えられる。
[0044] 弾性境界波の遅延時間温度係数 TCDは、境界を形成する複数の媒質全体にお ける線膨張係数 αと、個々の媒質における音速温度係数 TCVとのバランスにより決 s
定されることになる。例えば、弾性境界波の遅延時間温度係数 TCDが正の値である 場合、横波の音速温度係数 TCVが正の材料における境界波の振動エネルギー分 布を強くすると、境界波の遅延時間温度係数 TCDは小さくなる。弾性境界波の振動 エネルギーは、低音速である媒質に集中しやすい。従って、 2つの層の一方の層に 弾性境界波の振動エネルギーを集中させたい場合には、一方の層として、低音速の 材料を用いればよい。また、 1つの媒質を 2つの層に分離し、分離された 2つの層の 間に、相対的に低い音速の媒質を挿入すれば、該低い音速の媒質に振動エネルギ 一を集中し、それにより、前記分離された 2つの層への振動エネルギー分布が強まる
[0045] 表 1に示した従来の弾性境界波装置では、遅延時間温度係数 TCDが正の値とな る。従って、音速温度係数 TCVが正である SiO層側の振動エネルギーを高めること
2
ができれば、遅延時間温度係数 TCDを改善し得ると考えられる。そこで、上記実施 形態では、表 3に示したように、第 2,第 4の媒質を構成している SiO膜間に、第 3の
2
媒質として、相対的に横波の音速が低速である Ta Oが配置されている。従って、音
2 5
速温度係数 TCVが正である SiO力もなる第 2の媒質 12と第 4の媒質 14における境
2
界波の振動エネルギーを高めることができる。
[0046] 図 2は、上記実施形態の場合と、上記実施形態とは異なり、 Ta O力 なる第 3の媒
2 5
質が配置されて!ヽな 、従来の場合の弾性境界波の変位分布を示す模式図である。 実線が上記実施形態の場合を、破線が従来の場合を示している。図 2から明らかな ように、 Ta O力もなる第 3の媒質 13を配置することにより、第 2の媒質 12と第 4の媒
2 5
質 14における弾性境界波の振動エネルギーが大幅に高められることがわかる。
[0047] 図 3〜図 6は、第 3の媒質 13の厚みと、弾性境界波伝搬特性との関係を示す図で ある。具体的には、図 3は、第 3の媒質 13の膜厚を変化させた場合の音速の変化を 示す図であり、図 4は、ストリップ反射指標の変化を示す図であり、図 5は、遅延時間 温度係数 TCDの変化を示す図であり、図 6は、電気機械結合係数 K2 (%)の変化を 示す図である。
[0048] また、図 7は、厚みが 0. 03 λの Ta O力 なる第 3の媒質における振動エネルギー
2 5
の分布を示す模式図であり、図 8は、厚みが 0. 20えの Ta O力 なる第 3の媒質に
2 5
おける振動エネルギーの分布を示す模式図である。 [0049] 図 3から明らかなように、第 3の媒質 (Ta O )の厚みを厚くすることにより、音速が遅
2 5
い第 3の媒質の影響が高くなるため、弾性境界波の音速が低下していることがわかる 。例えば、第 3の媒質を設けない場合の音速が 3394mZsであるのに対し、第 3の媒 質の厚みが 0. 03えの場合の音速が 3332mZsとなる。また、第 3の媒質 (Ta O )の
2 5 厚みが厚くなると、遅延時間温度係数 TCDは上記の原理に従って、図 5に示すよう に負の側に移動していくことになる。例えば、第 3の媒質を設けない場合の TCDが 2 7ppm/°Cであるのに対し、第 3の媒質の厚みが 0. 03えの場合の TCDが 18ppm Z°Cとなる。さらに、図 7及び図 8に示したように、 Ta Oの膜厚が 0. 20えと厚くなる
2 5
に従って、 LiNbO基板に分布する振動エネルギーが減少し、電気機械結合係数 K
3
2が低くなる。すなわち、 Ta Oの厚みが 0. 3えの場合、図 6から明らかなように、電気
2 5
機械結合係数 K2は 2. 4%と小さくなり、実用性が低下する。
[0050] また、図 4から明らかなように、 Ta O力もなる第 3の媒質 13の厚みが厚くなつていく
2 5
と、ストリップの反射係数を示す κ
12は低くなつていく。特に、 Ta Oの
2 5 厚みが 0. 2 λ で κ は 0. 026と/ J、さくなる。従って、 κ カ^). 026より/ J、さくなると、 IDT電極 16の
12 12
左右にストリップ型反射器 17, 18を配置した上記実施形態の 1ポート型弾性境界波 共振子や、あるいは縦結合型の共振子フィルタを構成した場合、すなわち共振子構 造を利用した弾性境界波装置では、反射器の本数を多くしなければならなくなる。そ のため、弾性境界波装置の大型化を招き、好ましくない。よって、好ましくは、 Ta O
2 5 力もなる第 3の媒質 13の厚みは、 0. 30 λ以下、より好ましくは 0. 20 λ以下とするこ とが望ましい。
[0051] 次に、上記実施形態に従って、 1ポート型弾性境界波装置を具体的に作製し、共 振周波数の温度係数 TCFと、比帯域幅を測定した。
[0052] すなわち、下記の表 5に示すように、 IDT電極 16の周期 λ、 IDT電極 16の構成及 び膜厚、第 1〜第 4の媒質 11〜14の膜厚及び材料を設定した。
[0053] さらに、 IDT電極 16における設計パラメータは以下の通りとした。
[0054] 電極指の対数: 60対
交差幅: 30 λ
開口幅: 30. 4 λ アポタイズ:有、 IDT中央が交差幅 30 λ、 IDT両端が交差幅 15 λ
反射器の電極指の本数: 51本
IDTと反射器の周期 λ: 3. 42 m (電極指配置ピッチ 0. 8 m)
電極指のライン幅: 0. 855 m
電極指間のスペース幅: 0. 855 /z m
[表 5]
Figure imgf000014_0001
[0056] なお、第 3の媒質 13の厚みについては、上記のように 170nm、すなわち 0. 05えと したが、別に、第 3の媒質 13の厚みを 0. 02 λ (68nm)とした変形例の弾性境界波 装置を作製した。さらに、比較のために、第 3の媒質の厚みを 0え、すなわち第 3の媒 質 13を設けな力つたことを除いては、上記試作例と同様にして弾性境界波装置を作 製した。これらの弾性境界波装置について、共振周波数の周波数温度係数 TCFと 比帯域幅を求めた。結果を図 9及び図 10に示す。ここで、比帯域幅は (***振周波 数一共振周波数) Z共振周波数として求める。
[0057] 図 9及び図 10から明らかなように、具体的に試作された上記実施形態及び変形例 の弾性境界波装置によれば、第 3の媒質を有しない弾性境界波装置に比べて、周波 数温度係数 TCFの絶対値を小さくすることができ、かつ比帯域幅については、さほど 変化しないことがわかる。従って、比帯域幅を狭めることなぐ周波数温度特性を改善 し得ることがゎカゝる。
[0058] 図 11は、上記のようにして作製された 3種類の弾性境界波装置のインピーダンス及 び位相特性を示す図である。図 11から明らかなように、第 3の媒質を有しない比較例 に比べ、第 3の媒質 13を用いた実施形態及び変形例の弾性境界波装置では、*** 振周波数におけるインピーダンスの共振周波数におけるインピーダンスに対する比 であるインピーダンス比すなわち山谷比が大きくなり、特性が改善されていることがわ 力る。 [0059] 多くの圧電材料は負の音速温度係数 TCVを有し、そのデバイスは負の周波数温 度係数 TCFを有する。従って、第 2の媒質 12及び第 4の媒質 14として、正の音速温 度係数 TCVをもつ材料を用いることにより、デバイスの周波数温度係数 TCFをブラ ス側に補正することができる。正の音速温度係数 TCVを有する SiOを第 2の媒質 12
2
及び第 4の媒質 14として用いることにより、実用性を高めることができる。すなわち、 周波数温度係数 TCFの絶対値を小さくすることができる。他方、 Ta Oは低音速で
2 5
あり、かつ重ぐ硬い誘電体材料である。従って、第 3の媒質 13として、 Ta Oを、 Si
2 5
O力もなる第 2の媒質 12と第 4の媒質 14との間に薄く配置することにより、エネルギ
2
一を効率的に第 1の媒質 11から第 2の媒質 12側に移動させることができる。また、 Si O及び Ta Oは耐熱性に優れており、化学的に安定である。従って、上記実施形態
2 2 5
の弾性境界波装置 1は、温度による特性の変化が小さいだけでなぐ耐熱性及び安 定性に優れており、信頼性の点においても優れている。また、第 2の媒質 12と第 4の 媒質 14は別の材料で構成してもよ 、。
[0060] なお、上記実施形態では、第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層し てなる構造における弾性境界波の遅延時間温度係数 TCDが正の値であり、第 4また は第 2の媒質が正の音速温度係数 TCVを有し、第 1の媒質が負の音速温度係数 TC Vを有する構造とされていた力 本発明においては、このような構造に限定されるもの ではなぐ第 3の媒質の横波の音速が、第 4の媒質及び Zまたは第 2の媒質の横波の 音速よりも遅くされている下記の第 2の構造においても、また、第 3の媒質の横波の音 速を逆に速くしている第 3,第 4の構造においても、遅延時間温度特性を改善するこ とがでさる。
[0061] 第 2の構造例:第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造に おける弾性境界波の遅延時間温度係数 TCDが負の値であり、第 4または第 2の媒質 が負の音速温度係数 TCVを有し、第 1の媒質が正の音速温度係数 TCVを有する構 造。
[0062] 第 3の構造例:第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造に おける弾性境界波の遅延時間温度係数 TCDが正の値であり、第 4または第 2の媒質 が負の音速温度係数 TCVを有し、第 1の媒質が正の音速温度係数 TCVを有する構 造。
[0063] 第 4の構造例:第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造に おける弾性境界波の遅延時間温度係数 TCDが負の値であり、第 4または第 2の媒質 が正の音速温度係数 TCVを有し、第 1の媒質が負の音速温度係数 TCVを有する構 造。
[0064] なお、上記実施例では、 1ポート型の弾性境界波共振子につき説明したが、本発明 に係る弾性境界波装置は、様々な電極構造を有するように構成され得る。すなわち、 2個以上の IDTを用いた縦結合型もしくは横結合型の弾性境界波共振子フィルタや 、複数個の弾性境界波共振子をラダー型に接続してなるラダー型フィルタであっても よい。また、本発明の弾性波装置は、弾性境界波光スィッチや弾性境界波光フィルタ などの光デバイスにも用いることができ、弾性境界波を利用した装置一般に広く用い ることがでさる。
[0065] なお、本発明の弾性境界波装置の製造に際しては、第 2の媒質 12〜第 4の媒質 1 4を形成するに先立ち、逆スパッタ、イオンビームミリング、反応性イオンエッチング、 ウエットエッチングまたは研磨などにより、 IDT電極や第 2もしくは第 3の媒質 12, 13 を薄くしたり、スパッタリングもしくは蒸着などの堆積法により追加成膜して厚くすること により、 IDT電極 16、第 2の媒質 12及び Zまたは第 3の媒質 13の厚みを調整するこ とができる。そして、これらの厚み調整により、周波数調整を行うことができる。
[0066] また、本発明においては、表 5に示したように、電極構造は、複数の金属からなる積 層膜により構成されてもよい。
[0067] さらに、本発明における第 1〜第 4の媒質を構成する材料についても特に限定され ない。すなわち、様々な誘電体を媒質として用いることができる。このような媒質として は、例えば、ニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、四ほう酸リチウ ム、ランガサイトやランガナイト、水晶、 PZT、 ΖηΟ、 Α1Ν、酸化珪素、ガラス、シリコン 、サファイア、窒化シリコン及び窒化炭素力 なる群力 選択される 1種などが挙げら れる。
[0068] また、媒質は、単一材料で構成されている必要は必ずしもなぐ複数の媒質層を積 層してなる積層構造を有していてもよい。すなわち、第 1〜第 4の媒質のうち少なくと も 1つの媒質が、複数の材料層を積層した積層構造を有するものであってもよい。
[0069] カ卩えて、本発明に係る弾性境界波装置では、外側に、強度を高めたり、腐食性ガス などの浸入を防止するための保護層を形成してもよい。また、弾性境界波装置は、部 品サイズが大きくなることを厭わな 、のであれば、パッケージに封入された構造を有 していてもよい。
[0070] なお、上記保護層としては、酸化チタン、窒化アルミニウム、酸ィ匕アルミニウムなど の絶縁性材料により構成されていてもよぐ Au、 Aほたは Wなどの金属膜により構成 されて!/、てもよく、エポキシ榭脂などの榭脂膜により構成されて 、てもよ 、。

Claims

請求の範囲
[1] 第 1の媒質〜第 4の媒質がこの順序で積層されており、第 1の媒質と第 2の媒質との 間の界面に電極が配置されている弾性境界波装置において、
前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造における弾 性境界波または弾性表面波の遅延時間温度係数 TCDが正の値であり、
前記第 4または第 2の媒質が正の音速温度係数 TCVを有し、前記第 1の媒質が負 の音速温度係数 TCVを有し、
前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまたは第 2の媒質の横波 の音速よりも遅くされていることを特徴とする、弾性境界波装置。
[2] 前記第 1の媒質が圧電基板力 なり、前記第 2の媒質が酸ィヒケィ素膜からなり、前 記第 3の媒質が酸ィ匕タンタル膜または酸ィ匕亜鉛膜からなり、前記第 4の媒質が酸ィ匕ケ ィ素膜からなる、請求項 1に記載の弾性境界波装置。
[3] 第 1の媒質〜第 4の媒質がこの順序で積層されており、第 1の媒質と第 2の媒質との 間の界面に電極が配置されている弾性境界波装置において、
前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造における弾 性境界波または弾性表面波の遅延時間温度係数 TCDが負の値であり、
前記第 4または第 2の媒質が負の音速温度係数 TCVを有し、前記第 1の媒質が正 の音速温度係数 TCVを有し、
前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまたは第 2の媒質の横波 の音速よりも遅くされていることを特徴とする、弾性境界波装置。
[4] 第 1の媒質〜第 4の媒質がこの順序で積層されており、第 1の媒質と第 2の媒質との 間の界面に電極が配置されている弾性境界波装置において、
前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造における弾 性境界波または弾性表面波の遅延時間温度係数 TCDが正の値であり、
前記第 4または第 2の媒質が負の音速温度係数 TCVを有し、前記第 1の媒質が正 の音速温度係数 TCVを有し、
前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまたは第 2の媒質の横波 の音速よりも速くされていることを特徴とする、弾性境界波装置。
[5] 第 1の媒質〜第 4の媒質がこの順序で積層されており、第 1の媒質と第 2の媒質との 間の界面に電極が配置されている弾性境界波装置において、
前記第 4の媒質 Z第 2の媒質 Z電極 Z第 1の媒質を積層してなる構造における弾 性境界波または弾性表面波の遅延時間温度係数 TCDが負の値であり、
前記第 4または第 2の媒質が正の音速温度係数 TCVを有し、前記第 1の媒質が負 の音速温度係数 TCVを有し、
前記第 3の媒質の横波の音速が、前記第 4の媒質及び Zまたは第 2の媒質の横波 の音速よりも速くされていることを特徴とする、弾性境界波装置。
[6] 前記第 1の媒質が圧電基板力 なり、前記第 2の媒質と第 4の媒質が酸ィヒケィ素膜 からなり、前記第 3の媒質がケィ素膜または窒化ケィ素膜からなる、請求項 5に記載 の弾性境界波装置。
[7] 前記電極として、少なくとも 1つの IDT電極を有する、請求項 1〜6のいずれか 1項 に記載の弾性境界波装置。
PCT/JP2007/059760 2006-05-30 2007-05-11 弾性境界波装置 WO2007138840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20070743195 EP2023485A4 (en) 2006-05-30 2007-05-11 RAND SOUND WAVE DEVICE
CN2007800192122A CN101454974B (zh) 2006-05-30 2007-05-11 声界面波装置
JP2008517819A JP4715922B2 (ja) 2006-05-30 2007-05-11 弾性境界波装置
US12/270,895 US7772742B2 (en) 2006-05-30 2008-11-14 Boundary acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006149854 2006-05-30
JP2006-149854 2006-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/270,895 Continuation US7772742B2 (en) 2006-05-30 2008-11-14 Boundary acoustic wave device

Publications (1)

Publication Number Publication Date
WO2007138840A1 true WO2007138840A1 (ja) 2007-12-06

Family

ID=38778360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059760 WO2007138840A1 (ja) 2006-05-30 2007-05-11 弾性境界波装置

Country Status (5)

Country Link
US (1) US7772742B2 (ja)
EP (1) EP2023485A4 (ja)
JP (1) JP4715922B2 (ja)
CN (1) CN101454974B (ja)
WO (1) WO2007138840A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486001B2 (en) * 2004-01-19 2009-02-03 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
WO2009098840A1 (ja) * 2008-02-05 2009-08-13 Murata Manufacturing Co., Ltd. 弾性境界波装置
US7642694B2 (en) * 2006-09-21 2010-01-05 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2010028517A (ja) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd 弾性波装置の製造方法及び弾性波装置
JP2011087282A (ja) * 2009-09-15 2011-04-28 Murata Mfg Co Ltd 弾性境界波フィルタ及びそれを備える分波器
JP2011130006A (ja) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd 弾性波素子、通信モジュール、通信装置
JP2012209841A (ja) * 2011-03-30 2012-10-25 Kyocera Corp 弾性波素子およびそれを用いた弾性波装置
WO2014103953A1 (ja) * 2012-12-26 2014-07-03 株式会社村田製作所 ラダー型フィルタ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279609A (ja) * 2005-03-29 2006-10-12 Fujitsu Media Device Kk 弾性境界波素子、共振子およびラダー型フィルタ
US8154171B2 (en) * 2007-10-23 2012-04-10 Panasonic Corporation Boundary acoustic wave device
JP4460612B2 (ja) * 2008-02-08 2010-05-12 富士通メディアデバイス株式会社 弾性表面波デバイス及びその製造方法
WO2011007690A1 (ja) * 2009-07-17 2011-01-20 株式会社村田製作所 弾性表面波装置
JP5588836B2 (ja) * 2010-11-12 2014-09-10 太陽誘電株式会社 弾性波デバイス
US9065424B2 (en) 2011-03-25 2015-06-23 Skyworks Panasonic Filter Solutions Japan Co., Ltd Acoustic wave device with reduced higher order transverse modes
SG11201600283XA (en) * 2013-08-21 2016-02-26 Murata Manufacturing Co Piezoelectric resonator and method for manufacturing the same
JP6812998B2 (ja) * 2018-03-19 2021-01-13 株式会社村田製作所 弾性波装置
CN110601677A (zh) * 2018-06-13 2019-12-20 天工方案公司 铌酸锂滤波器中添加高速层的杂散剪切水平模式频率控制

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212174A (ja) * 1994-01-11 1995-08-11 Hitachi Ltd 弾性境界波装置
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JPH1155070A (ja) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd 弾性表面波素子とその製造方法
JP2003512637A (ja) * 1999-10-15 2003-04-02 トルノワ,ピエ−ル インターフェース音波フィルタ、特に無線接続用
WO2004070946A1 (ja) 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2005093949A1 (ja) 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. 弾性境界波装置の製造方法及び弾性境界波装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044787A (ja) * 1999-07-30 2001-02-16 Kyocera Corp 弾性表面波装置
JP3894917B2 (ja) * 2003-11-12 2007-03-22 富士通メディアデバイス株式会社 弾性境界波デバイス及びその製造方法
CN1788415B (zh) * 2004-01-19 2012-09-12 株式会社村田制作所 边界声波装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212174A (ja) * 1994-01-11 1995-08-11 Hitachi Ltd 弾性境界波装置
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JPH1155070A (ja) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd 弾性表面波素子とその製造方法
JP2003512637A (ja) * 1999-10-15 2003-04-02 トルノワ,ピエ−ル インターフェース音波フィルタ、特に無線接続用
WO2004070946A1 (ja) 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2005093949A1 (ja) 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. 弾性境界波装置の製造方法及び弾性境界波装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Finite-Element Analysis of Periodically Perturbed Piezoelectric Waveguides", TRANSACTIONS OF INSTITUTE OF ELECTRONICS AND COMMUNICATION ENGINEERS OF JAPAN, vol. J68-C, no. 1, January 1985 (1985-01-01), pages 21 - 27
"Information and Communication Engineers of Japan", 1990, INSTITUTE OF ELECTRONS, article "Analysis of Excitation Characteristics of Interdigital SAW Transducers Using Coupling Modes Theory", pages: 69 - 74
See also references of EP2023485A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486001B2 (en) * 2004-01-19 2009-02-03 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
US7642694B2 (en) * 2006-09-21 2010-01-05 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
WO2009098840A1 (ja) * 2008-02-05 2009-08-13 Murata Manufacturing Co., Ltd. 弾性境界波装置
JPWO2009098840A1 (ja) * 2008-02-05 2011-05-26 株式会社村田製作所 弾性境界波装置
JP2010028517A (ja) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd 弾性波装置の製造方法及び弾性波装置
JP2011087282A (ja) * 2009-09-15 2011-04-28 Murata Mfg Co Ltd 弾性境界波フィルタ及びそれを備える分波器
JP2011130006A (ja) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd 弾性波素子、通信モジュール、通信装置
JP2012209841A (ja) * 2011-03-30 2012-10-25 Kyocera Corp 弾性波素子およびそれを用いた弾性波装置
WO2014103953A1 (ja) * 2012-12-26 2014-07-03 株式会社村田製作所 ラダー型フィルタ

Also Published As

Publication number Publication date
US7772742B2 (en) 2010-08-10
CN101454974B (zh) 2012-05-30
EP2023485A4 (en) 2010-02-03
CN101454974A (zh) 2009-06-10
JPWO2007138840A1 (ja) 2009-10-01
EP2023485A1 (en) 2009-02-11
JP4715922B2 (ja) 2011-07-06
US20090066189A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4715922B2 (ja) 弾性境界波装置
JP4178328B2 (ja) 弾性境界波装置
US7456544B2 (en) Boundary acoustic wave device
US9276558B2 (en) Surface acoustic wave device including a confinement layer
US9190981B2 (en) Elastic wave device including a supporting substrate, medium layer, and piezoelectric body
JP4356613B2 (ja) 弾性境界波装置
JP4760911B2 (ja) 弾性境界波装置
JP4483785B2 (ja) 弾性境界波装置
JP4466655B2 (ja) 弾性境界波装置
WO2012086441A1 (ja) 弾性波装置及びその製造方法
JP5187444B2 (ja) 弾性表面波装置
WO2005086345A1 (ja) 弾性境界波装置
WO2009139108A1 (ja) 弾性境界波装置
JP5581739B2 (ja) 弾性境界波装置
JP4001157B2 (ja) 弾性境界波装置
WO2023003005A1 (ja) 弾性波装置
TW202310459A (zh) 彈性波裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019212.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517819

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007743195

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE