WO2007136066A1 - Basal plate deformation detecting system and deformation detecting method - Google Patents

Basal plate deformation detecting system and deformation detecting method Download PDF

Info

Publication number
WO2007136066A1
WO2007136066A1 PCT/JP2007/060453 JP2007060453W WO2007136066A1 WO 2007136066 A1 WO2007136066 A1 WO 2007136066A1 JP 2007060453 W JP2007060453 W JP 2007060453W WO 2007136066 A1 WO2007136066 A1 WO 2007136066A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
substrate
deformation
optical path
supported
Prior art date
Application number
PCT/JP2007/060453
Other languages
French (fr)
Japanese (ja)
Inventor
Kohei Mori
Jyunji Kume
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007136066A1 publication Critical patent/WO2007136066A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion

Definitions

  • the present invention relates to a deformation detection system and a deformation detection method for detecting deformation in the vicinity of a central portion due to warpage or the like in a substrate such as a semiconductor wafer.
  • the present invention also relates to a substrate processing system provided with the deformation detection system and a computer-readable storage medium storing a control program for executing the deformation detection method.
  • a single-wafer type substrate processing apparatus for cleaning semiconductor wafers (hereinafter referred to as “wafers”) as a substrate one by one is used.
  • a powerful substrate processing apparatus is equipped with a spin chuck that holds and rotates a single wafer substantially horizontally, and supplies the processing liquid to the upper surface of the wafer while rotating the wafer by this spin chuck.
  • cleaning is performed by supplying the processing liquid to the entire upper surface of the wafer.
  • a processing system in which various apparatuses such as such a substrate processing apparatus and a substrate transfer apparatus for transferring a wafer are incorporated is known.
  • the wafers are stored in an aligned state in the carrier, and are loaded into the processing system together with the carrier. Then, the substrate is taken out from the carrier by the substrate carrying device and is carried into the substrate processing device.
  • a configuration is known in which an inspection (mapping) is performed in which a wafer is stored in a carrier before the wafer is taken out of the carrier, and the alignment state of the wafer is confirmed using an optical sensor. (Refer to Unexamined-Japanese-Patent No. 2003-168715).
  • the wafer in a normal state (non-deformed state), the wafer has a thin flat plate shape having a flat upper surface and a lower surface that are parallel to each other in a horizontal posture.
  • the effects of thermal stress etc. As a result, the wafer may be distorted.
  • the wafer may be slightly warped in a convex shape with the center of the wafer at the bottom.
  • a mechanical chuck that mechanically holds a wafer that is, a spin chuck configured to hold a plurality of abutting members in contact with the peripheral edge of the wafer is known. Even when such a chuck is used, if the wafer is deformed as described above, the wafer may be broken by the pressing force applied from the contact member. Further, when the wafer is rotated by the spin chuck, the space below the wafer becomes negative pressure, and a downward force acts on the wafer. At this time, if the wafer is deformed as described above, the wafer may be damaged by the downward force.
  • mapping inspection it is possible to detect the thickness of the wafer and the like, and the deformation of the wafer may be detected by this inspection.
  • the light emitted from the optical sensor is irradiated only to a part of the peripheral part of the wafer (the part close to the opening of the carrier), if the peripheral part is defective such as large deformation or defect Although it could be detected, it was impossible to detect deformation near the center of the wafer. For this reason, it was impossible to detect deformations such as warping as described above.
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide a technique for detecting deformation in the vicinity of a central portion due to warpage or the like in a substrate such as a semiconductor wafer.
  • a system for inspecting a substrate having a flat upper surface and a lower surface that are parallel to each other in an undeformed state and detecting the deformation is provided.
  • a support member that supports a standard posture When the non-deformable substrate is supported by the support member, a first optical path that passes immediately above the upper surface of the non-deformable substrate is formed, and the first optical path by the substrate to be inspected supported by the support member is formed.
  • deformation determination means for determining the presence or absence of deformation exceeding a reference deformation degree of the substrate to be inspected
  • a deformation detection system for a substrate is provided.
  • the first optical sensor includes a first projector, and a first receiver that receives the light projected by the first projector force, and the second optical sensor.
  • a transfer unit provided between the carrier port and the processing apparatus; a transfer apparatus for transferring a substrate between the carrier port and the processing apparatus via the transfer unit;
  • a substrate processing system characterized in that the transfer unit is provided with the substrate deformation detection system.
  • This substrate processing system determines whether or not the processing apparatus is capable of processing the inspected substrate based on the determination result of the deformation determination means for the inspected substrate in the detection system! It is preferable to further include a processing discriminating means for performing the above.
  • the substrate processing apparatus can prevent the substrate from being damaged by not processing the deformed substrate.
  • a method for inspecting a substrate having a flat upper surface and a lower surface that are parallel to each other in an undeformed state, and detecting the deformation When the non-deformable substrate is supported at a reference position in a substantially horizontal reference posture, first and second optical paths are formed that pass directly above the upper surface and immediately below the lower surface of the non-deformable substrate, respectively. Support the posture,
  • a method for detecting deformation of a substrate is provided.
  • At least one of the first optical path and the second optical path is preferably parallel to the upper surface and the lower surface of the non-deformable substrate supported by the support member.
  • At least one of the first optical path and the second optical path pass through a central portion of the non-deformable substrate supported by the support member in a plan view.
  • a computer-readable storage medium storing a control program for executing the deformation detection method.
  • FIG. 1 is a schematic plan view of a processing system according to the present embodiment
  • FIG. 2 is a schematic side view of the processing system
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of a processing unit
  • FIG. 4 is a perspective view of the carrier
  • FIG. 5 is a plan view of the wafer transfer device
  • FIG. 6 is a side view of the wafer transport device and a side view explaining its operation
  • FIG. 8 is a perspective view of the main wafer transfer device
  • FIG. 9 is a plan view illustrating the configuration of the wafer delivery unit
  • FIG. 10 is a side view illustrating the configuration of the deformation detection system
  • FIG. 11 is a side view illustrating the arrangement of the photoreceiver
  • FIG. 12 is a side view illustrating the configuration of the substrate cleaning unit
  • FIG. 13 is a side view for explaining a state in which wafer deformation is detected in the deformation detection system.
  • a preferred embodiment of the present invention is based on a processing system that performs a cleaning process on a wafer (silicon wafer) as a substrate! / Explain.
  • FIG. 1 is a plan view of a processing system 1 according to the present embodiment, and FIG. 2 is a side view thereof.
  • FIG. 3 is a longitudinal sectional view taken along the X-Z plane (substantially vertical plane) of the processing unit 3 to be described later.
  • the processing system 1 includes a loading / unloading unit 2 for loading / unloading carrier C to / from the external force processing system 1 and a processing unit 3 for performing a cleaning process on the wafer W. It has.
  • the carry-in / out unit 2 is provided with a carrier port (in / out port) 10 on which carrier C, which is a storage container capable of storing a plurality of, for example, 25 wafers W, and carrier port 10 and processing.
  • carrier C which is a storage container capable of storing a plurality of, for example, 25 wafers W
  • carrier port 10 and processing are provided between the unit 3 and the unit 3 .
  • the carrier port 10, the substrate transport unit 12, and the processing unit 3 are arranged in this order in the X-axis direction (substantially horizontal direction).
  • the carrier port 10 and the substrate transfer section 12 are partitioned by a boundary wall section 15 erected along the X-Z plane.
  • the wafer W has, for example, a substantially circular shape and a thin flat plate shape having a predetermined thickness, and a semiconductor device is formed on the surface (one surface).
  • the carrier C has an opening 20 on one side surface, and the wafer W is taken out from the carrier C through the opening 20 and stored in the carrier C. ing. Further, a lid body 21 for opening and closing the opening 20 is provided.
  • the inner wall of the carrier C is provided with a plurality of, for example, 25 slots 22 for holding the peripheral edge of the wafer W. For example, one wafer W is accommodated in each slot 22 in a state where the surface is the upper surface. As a result, up to 25 wafers W can be accommodated in the carrier C in a state of being substantially parallel to each other and arranged in parallel with a predetermined interval in parallel.
  • the carrier port 10 has a predetermined number, for example, up to three carriers C arranged in a row in the Y-axis direction (substantially horizontal direction substantially perpendicular to the X-axis direction). Can be placed side by side An appropriate carrier mounting table 25 is provided.
  • the boundary wall 15 is provided with gates 26 at positions corresponding to the places where the carriers C are placed.
  • a shutter 27 that closes the gate 26 also on the side of the substrate transport unit 12 is provided for each gate 26.
  • each shutter 27 has a built-in lid opening / closing mechanism that switches between the locked state and the unlocked state of the lid 21 of the carrier C. By holding and moving together with the shutter 27, the opening 20 can be opened and closed simultaneously with the opening and closing of the gate 26.
  • the operations of the shutter 27 and the lid opening / closing mechanism are controlled by a control signal transmitted from the control computer 200 described later.
  • a wafer transfer device (CRA) 30 as a first substrate transfer device for transferring the wafer W is disposed in the substrate transfer unit 12.
  • an FFU (fan filter unit) 31 for down-flowing a clean air flow such as an inert gas such as air or nitrogen gas is disposed in the substrate transfer unit 12 at the ceiling of the plate processing apparatus 12.
  • an exhaust path for exhausting the inside of the substrate transfer unit 12 is provided at the bottom of the substrate transfer unit 12.
  • the wafer transfer device 30 includes a rod 32 provided with the axial direction directed in the Z-axis direction, a moving means 33 that supports the lower end of the rod 32 and moves the rod 32 along the Y-axis direction, and the rod 32.
  • the base 34 supported by the upper end of the wafer, the transfer arm 35 capable of holding a single wafer W in a substantially horizontal posture, and the auxiliary provided along the edge of the wafer W held by the transfer arm 35 It has an apparatus main body 40 constituted by members 36A and 36B, and further includes a mapping mechanism 41 for detecting whether or not the wafer W in the carrier C is normally stored.
  • the rod 32 is configured to be movable up and down along the Z-axis direction by the rotational drive of the servo mechanism 42 connected to the lower end of the rod 32.
  • the output signal of the servo mechanism 42 (that is, information indicating the amount of movement of the rod 32 in the Z-axis direction) is transmitted to the storage state determination unit 55 of the mapping mechanism 41 described later.
  • the base 34 is attached to the upper end portion of the rod 32 via the motor 43. That is, the base 34 moves along the Y axis along with the movement of the rod 32 driven by the moving means 33 and the servo mechanism 42. It can be moved along the direction and the Z-axis direction, and can be configured to rotate (in the ⁇ direction) in the X 1 Y plane (horizontal plane) by driving the motor 43.
  • the transfer arm 35 is supported on a base 34, and has a substantially flat arm body 35a provided substantially horizontally.
  • a top end member 35 b is provided on the top surface of the front end portion (front edge portion) of the transfer arm 35.
  • the rear surface of the tip member 35b (the surface facing the base end side of the arm main body 35a) has, for example, an arcuate shape along the peripheral edge of the wafer W, and further along this rear surface.
  • a step portion 35c formed lower than the tip member 35b is provided.
  • a base end member 35d is provided on the upper surface side of the base end portion (rear edge portion) of the arm main body 35a, and the front surface of the base end member 35d (a surface facing the front end side of the arm main body 35a).
  • a step portion 35e formed lower than the base end member 35d is provided along the side.
  • the transfer arm 35 can move in the Y-axis direction and the Z-axis direction and can rotate in the ⁇ direction in accordance with the movement of the base 34 described above. Further, it is configured to slide (straightly move) in a substantially horizontal direction along the longitudinal direction of the arm body 35a relative to the base 34. That is, the transfer arm 35 is connected to the gate 26, with respect to all the carriers C mounted on the carrier mounting table 25 described above, and with respect to the slot 22 of an arbitrary height provided in each carrier C. It can be accessed through the opening 20, and can also be accessed through the loading / unloading port 131 in the chamber 121 of the wafer delivery units 111, 112 provided in the processing unit 3 described later. Thereby, the wafer transfer device 30 can transfer the wafer W from the abort 10 to the processing unit 3 and from the processing unit 3 to the carrier port 10.
  • the auxiliary members 36A and 36B are fixed to the base 34, and in a state where the transfer arm 35 is located directly above the base 34 (retracted position), the auxiliary members 36A and 36B are provided on both sides of the base end member 35d. Each is provided to be placed.
  • the mapping mechanism 41 includes a first sensor arm including a light projecting unit 51 that projects laser light. 52, a second sensor arm 54 having a light receiving part 53 for receiving the laser light projected from the light projecting part 51, and the amount of movement of the light receiving part 53 in the Z-axis direction and the detection signal of the light receiving part 53 Based on this, a storage state determination unit 55 is provided for determining whether or not the wafer W in the carrier C is stored normally.
  • the sensor arms 52 and 54 are respectively arranged on both sides of the base 34, and can move in the Y-axis direction and the Z-axis direction as the base 34 moves as described above, and can rotate in the ⁇ direction. It has become.
  • the sensor arms 52 and 54 are configured to slide in a substantially horizontal direction relative to the base 34 along the longitudinal direction of the sensor arms 52 and 54.
  • the light projecting unit 51 is provided at the tip of the sensor arm 52, and includes a light emitting element (for example, an LED such as a laser diode).
  • the light receiving unit 53 is provided at the tip of the sensor arm 54 and includes a light receiving element (for example, a phototransistor, a photodiode, or the like). The detection signal of the light receiving element is transmitted to the storage state determination unit 55.
  • the laser light projected from the light projecting unit 51 is in the Y-axis direction as shown in FIG.
  • the light travels straight along the straight optical path LO, and is received by the light receiving unit 53.
  • a current corresponding to the intensity of the received light is generated, and a detection signal with a predetermined threshold is detected. It is like that.
  • the laser light emitted from the light projecting unit 51 is reflected by the object, the optical path LO is blocked, and the light is received.
  • the light projecting unit 51 and the light receiving unit 53 constitute a mapping optical sensor 60 that detects the presence or absence of an object such as a wafer W using laser light.
  • the storage state determination unit 55 can detect the movement amount of the rod 32 in the Z-axis direction, that is, the movement amount of the light receiving unit 53 in the Z-axis direction, based on the output signal of the servo mechanism 42 described above. In addition, it is possible to detect whether or not an object such as the wafer W exists between the light projecting unit 51 and the light receiving unit 53 based on the detection signal to which the light receiving element force is transmitted. Furthermore, based on the amount of movement of the light receiving portion 53 and the detection signal of the light receiving element, it has a function of detecting mapping data to be described later and determining whether or not the wafer W in the carrier C is normally stored. ing.
  • the storage state determination unit 55 is provided in, for example, a control computer 200 provided in a control / utility unit group 75 to be described later.
  • the control computer 200 is based on the determination result of the storage state determination unit 55. Therefore, it is possible to determine whether or not to take out the wafer W from the carrier C.
  • the operation of the wafer conveyance device 30 having the above-described configuration is controlled based on a control signal transmitted from a control computer 200 described later. That is, the moving means 33, the servo mechanism 42, the motor 43, the transfer arm 35, etc. are driven by the control command of the control computer 200, respectively, so that the operation of the apparatus main body 40, that is, the transfer of the wafer W is related. The action is performed.
  • the operation of the mapping mechanism 41 is realized by controlling the sensor arms 52 and 54, the light projecting unit 51, the light receiving unit 53, and the like according to the control commands of the control computer 200, respectively.
  • a main wafer transfer device (PRA) 71 as a second substrate transfer device is disposed at a substantially central portion of the processing unit 3 in a plan view.
  • a delivery unit group 72, a cleaning unit group 73, a heating / cooling unit group 74, and a control / utility unit group 75 are provided so as to surround the main wafer transfer device 71.
  • an FFU 76 for downflowing a clean airflow in the processing unit 3 is disposed on the ceiling of the processing unit 3 (see FIG. 2).
  • the main wafer transfer device 71 includes a substantially cylindrical case 80 provided with the axial direction oriented in the Z-axis direction, and a base 81 that can be moved up and down in the Z-axis direction along the case 80.
  • An opening 80a is formed in the side wall of the case 80.
  • the case 80 can be rotated in the ⁇ direction around the central axis of the case 80 directed in the Z-axis direction by driving a motor 85 installed below the case 80.
  • a base lifting mechanism 86 for lifting the base 81 is provided on the side of the case 80.
  • the base lifting mechanism 86 includes a guide groove 91 provided on the inner surface of the case 80, a motor 92 provided on the bottom of the case 80, and a drive pulley 93 provided on the bottom side of the case 80 in the side wall of the case 80.
  • the driven pulley 94 provided on the ceiling side of the case 80 in the side wall of the case 80, and the drive provided so as to be wound around the upper and lower sides by being wound around the driven pulley 93 and the driven pulley 94. It is equipped with a belt 95.
  • the base 81 is provided in the case 80 with the front end (front end) facing the opening 80a, and is connected to the drive belt 95. That is, when the driving pulley 93 is rotated by driving the motor 92, the driving belt 95 rotates in the vertical direction between the driving pulley 93 and the driven pulley 94, and with this peripheral movement of the driving belt 95, The base 81 is configured to move up and down in the Z-axis direction along the opening 80a.
  • the transfer arm 82A is provided above the base 81, and the two arm bodies 101, 102 and the base end side of each arm body 101, 102 are connected to each other. It has the support body 103 to support.
  • the arm bodies 101 and 102 are curved in a substantially arc shape so as to follow the peripheral edge of the wafer W in a plan view, for example, and are symmetric with each other. When viewed from the side, the arm bodies 101 and 102 are formed in a flat plate shape and are arranged substantially horizontally at the same height. Further, on the upper surface of the transfer arm 82A, a plurality of protrusions 105 for contacting the lower surface of the wafer W are provided.
  • the powerful transfer arm 82A is movable in the Z-axis direction and rotatable in the ⁇ direction in accordance with the movement of the base 81 described above. Further, it is configured to be able to slide in a substantially horizontal direction relative to the base 81, that is, to be able to move forward and backward through the opening 80a. Accordingly, the transfer arm 82A can access the transfer unit group 72, the cleaning unit group 73, the heating / cooling unit group 74, etc. provided around the main wafer transfer device 71. . As a result, the main wafer transfer device 71 can carry the wafer W into and out of each device and transfer the wafer W between the devices.
  • the transfer arm 82B is provided above the transfer arm 82A.
  • the transfer arm 82B has substantially the same configuration as the transfer arm 82A, and a detailed description thereof will be omitted because it is redundant. It should be noted that the transfer arms 82A and 82B can be configured to slide individually with respect to the base 81.
  • the operation of the main wafer transfer device 71 is controlled by a control signal transmitted from a control computer 200 described later. That is, the motor 85, the motor 92, the transfer arms 82A, 82B, and the like are driven based on control signals of the control computer 200 described later, whereby the operation of the main wafer transfer device 71 is performed.
  • the transfer unit group 72 includes two wafer transfer units (TRS) 111 and 112. Wafer delivery units 111 and 112 are provided in a vertically stacked state between carry-in / out unit 2 and main wafer transfer device 71. That is, it is provided between the carrier C placed on the carrier port 10 and the cleaning unit group 73 in the transfer path of the wafer W.
  • TRS wafer transfer units
  • the lower wafer transfer unit 111 includes a container 121 for storing the wafer W and a deformation detection system 123 for detecting the deformation of the wafer W.
  • a deformation detection system 123 for detecting the deformation of the wafer W.
  • the container 121 a plurality of, for example, three support members 122A, 122B, and 122C for supporting the wafer W at a reference position in a substantially horizontal reference posture are provided.
  • a loading / unloading port 131 for loading the wafer W into the container 121 a shutter 132 for opening and closing the loading / unloading port 131, a loading / unloading port 133 for unloading the wafer W also in the container 121, A shutter 134 for opening and closing the loading / unloading port 133 is provided.
  • the loading / unloading port 131 and the shutter 132 are provided on the side wall on the loading / unloading portion 2 side, and the loading / unloading port 133 and the shutter 134 are provided on the side wall on the main wafer transfer device 71 side.
  • the support rods 122A, 122B, 122Ci are provided so as to protrude upward from the bottom rod 121a force in the container 121.
  • the lower surface of the wafer W By placing the lower surface of the wafer W on the upper end of each of these supporting members 122A, 122B, 122C, that is, the lower surface central portion W of the wafer W is surrounded.
  • the wafer W By bringing the upper ends of the support members 122A, 122B, and 122C into contact with the three positions, the wafer W can be supported in a stable state in a substantially horizontal reference posture at a reference position higher than the bottom 121a. It becomes.
  • a non-deformed wafer supported normally by the supporting members 122A, 122B, and 122C that is, supported in the reference position at the reference position) (no deformation, in a horizontal position, parallel to each other and flat)
  • a flat plate wafer having an upper surface and a lower surface "
  • the deformation detection system 123 includes, for example, a light projecting unit 141 that projects laser light as light for detecting the deformation of the wafer W, and a light receiving unit 142 that receives light projected from the light projecting unit 141. It has.
  • the detection system 123 includes a deformation determination unit 143 that determines the presence or absence of deformation exceeding the reference deformation amount of the wafer W as the substrate to be inspected based on the detection signal (detection information) of the light receiving unit 142. .
  • the light projecting unit 141 includes a first light projector 151 and a second light projector 152 disposed below the first light projector 151.
  • Each of the projectors 151 and 152 has a built-in light emitting element (for example, an LED such as a laser diode), and the laser light emitted by the light emitting element is emitted to the outside of the projectors 151 and 152, respectively. It has become.
  • Each of the projectors 151 and 152 is provided so as to be positioned on the outer side in the horizontal direction from the peripheral edge of the wafer W in the reference state.
  • the laser light projected by the projector 151 passes through a substantially horizontal first linear optical path L1 passing directly above the upper surface of the wafer W in the reference state (goes along the optical path L1).
  • the optical path L1 is substantially parallel to the upper surface of the wafer W in the reference state, that is, does not intersect the upper surface of the wafer W in the reference state. Further, the optical path L1 passes directly above the center W of the wafer W in the reference state, that is, in the plan view,
  • the wafer W which is a substantially circular substrate
  • Center means the center of the circle
  • the projector 152 is provided at a position lower than the projector 151, and projects laser light between the wafer W in the reference state and the bottom 121 a of the container 121.
  • the laser light projected by the projector 152 passes through a substantially horizontal second linear optical path L2 that passes immediately below the lower surface of the wafer W in the reference state (proceeds along the optical path L2).
  • the optical path L2 is substantially parallel to the lower surface of the wafer W in the reference state, that is, does not intersect the lower surface of the wafer W in the reference state.
  • the optical path L2 is provided so as not to be blocked by the support members 122A, 122B, and 122C. In the illustrated example, it passes between the support member 122A and the support member 122B, and is directly below the central portion W of the wafer W in the reference state, that is, in plan view.
  • the optical paths Ll and L2 are arranged to intersect each other at a predetermined angle in plan view. That is, they are in a relationship of being twisted with each other. Further, the distance (height difference) between the optical path L1 and the optical path L2 is formed to be larger than a predetermined thickness t that the wafer W in the reference state has, for example, as shown in FIG.
  • the thickness may be about twice the thickness t (2t).
  • the light receiving unit 142 includes two light receivers, that is, a first light receiver 155 and a second light receiver 156.
  • Each of the light receivers 155 and 156 includes a light receiving element (for example, a phototransistor or a photodiode) that receives laser light incident from the outside.
  • Each of the light receivers 155 and 156 is provided so as to be positioned outside the space where the peripheral edge of the wafer W in the reference state is to be located.
  • the light receiver 155 is arranged at a position for receiving the laser light projected from the light projector 151 and passed through the optical path L1. In this case, the light receiver 155 is disposed at a position facing the projector 151 in the diameter direction of the wafer W in the reference state.
  • the light receiver 156 is arranged at a position to receive the laser light emitted from the light projector 152 and passed through the optical path L2. In this case, the light receiver 156 is disposed at a position facing the projector 152 in the diameter direction of the wafer W in the reference state.
  • the detection signals of the light receiving elements provided in the respective light receivers 155 and 156 are transmitted to the deformation determining means 143.
  • the light projector 151 and the light receiver 155 constitute a first optical sensor 161 that uses laser light to detect whether the first optical path L1 is blocked or not. Further, the light projector 152 and the light receiver 156 constitute a second optical sensor 162 that detects the presence / absence of blocking of the second optical path L2 using laser light.
  • the laser light projected from the projector 151 (152) is transmitted through the optical path LI (L2 ) And go straight to receiver 155 (156).
  • a detection signal having an intensity equal to or greater than a predetermined threshold value is output from the light receiving element.
  • the optical path of the laser beam projected from the projector 151 (152) L1 (light path L2) is not part of the object And completely blocked.
  • the receiver 155 receives weaker laser light than when there is no object, or is not received at all, and a detection signal with an intensity less than a predetermined threshold value is output at the light receiving element. (This state is called “blocking of the optical path”).
  • the deformation determination means 143 is based on the detection signals of the light receiving elements of the light receivers 155 and 156, and the inspection wafer W supported by the supporting members 122A, 122B, and 122C at the reference position at the reference position is It can be determined whether or not the force is deforming beyond the reference deformation degree. Specifically, when neither of the optical paths L1 and L2 is blocked (when a detection signal with an intensity higher than a predetermined threshold value is output in either of the light receivers 155 and 156), It is determined that there is no deformation exceeding W in the W (normal).
  • the “reference deformation degree” as a determination criterion in the deformation determination means 143 can be arbitrarily set by adjusting the distance between the upper surface Z lower surface of the wafer W in the reference state and the optical path L1Z optical path L2. .
  • the deformation determination unit 143 can be configured as a part of the control computer 200 (described later).
  • the processing system 1 includes a processing determination unit 165 that can be configured as a part of the computer 200.
  • the processing determination unit 165 determines whether or not the processing unit 3 has the ability to process the inspected wafer W based on the determination result of the deformation determination unit 143 for the inspected wafer in the deformation detection system 123. To do.
  • the processing discriminating means 165 discriminates that the inspected weno and W are to be processed when it is determined to be normal, and determines that the inferior wafer and W are to be processed. It is determined that W is not processed.
  • the operation of the deformation detection system 123 having the above-described configuration that is, the opening / closing operation of the shutters 132 and 134, the timing of projecting the laser light from each of the projectors 151 and 152, and the like are transmitted from the control computer 200. Controlled based on the control signal.
  • the upper-stage wafer transfer unit 112 is a force-deformation detector provided with a container 121 and support members 122A, 122B, and 122C in substantially the same manner as the lower-level wafer transfer unit 111 described above. This is different from the wafer transfer unit 111 in that an output system 123 is provided.
  • substrate cleaning units 180A and 180B as substrate processing apparatuses are arranged side by side in the X-axis direction on the lower stage, and two in the upper stage.
  • Substrate cleaning unit 180C, 180D force as a substrate processing apparatus of this type is arranged side by side in the X-axis direction.
  • a spin chuck 182 that holds and rotates the wafer W substantially horizontally, and an upper surface of the wafer W held by the spin chuck 182
  • a supply nozzle 183 for supplying a processing liquid (cleaning liquid) such as a chemical liquid or a rinsing liquid is provided inside the container 181 of the substrate cleaning unit 180A.
  • the spin chuck 182 is, for example, a mechanical chuck, and has a plurality of, for example, three abutting members 184 that abut on the peripheral edge of the wafer W. These abutting members 184 are brought into contact with the three peripheral portions of the wafer W from the outside so as to hold the wafer W.
  • a motor 185 that rotates the spin chuck 182 is connected to the lower end of the spin chuck 182.
  • the driving of the motor 185 is controlled by a control signal of the control computer 200 described later.
  • the substrate cleaning units 180B, 180C, and 180D have substantially the same configuration as the substrate cleaning unit 180A, detailed description thereof is omitted.
  • the heating / cooling unit group 74 is disposed on the opposite side of the delivery unit group 72 with the main wafer transfer mechanism 71 interposed therebetween.
  • This heating / cooling unit group 74 is provided in a state where the cooling port unit 191 and the calo heat unit 192A, 192B, 192C and the like are stacked on this river page.
  • cleaning chemicals to be fed to the electrical unit 195, the control unit 196, and the substrate cleaning units 180A to 180D, which are the power sources of the processing system 1, are supplied.
  • a chemical storage unit 197 for storing is disposed.
  • the control unit 196 includes various devices in the processing system 1, such as the wafer transfer device 30, the main wafer transfer device 71, the wafer transfer units 111 and 112, and the substrate cleaning units 180A to 180D.
  • a control computer 200 is provided as a control unit for automatically controlling the operation of the apparatus.
  • the control computer 200 is connected via each functional element force signal line of the processing system 1.
  • the functional elements are all the elements that operate to realize a predetermined process, such as the moving means 33 of the wafer transfer device 30, the servo mechanism 42, the motor 85 of the main wafer transfer device 71, the motor 92, etc.
  • Means the element of The control computer 200 is typically a general-purpose computer that can realize an arbitrary function depending on the software to be executed.
  • the control computer 200 is inserted into the input / output unit 200b, the calculation unit 200a having a CPU (central processing unit), the input / output unit 200b connected to the calculation unit 200a. And a storage medium determination unit 55 (FIG. 5) of the above-described mapping mechanism 41 and a deformation determination unit 143 (FIG. 10) of the deformation detection system 123. And a processing discrimination means 165 (FIG. 10).
  • Control software that executes various operations by being executed by the control computer 200 is recorded in the recording medium 200c.
  • the control software that can be used is, for example, software that causes the deformation detection system 123 of the wafer transfer unit 111 to perform a predetermined deformation detection method that will be described later, or software that causes the substrate cleaning units 180A to 180D to perform a predetermined cleaning process that will be described later. Etc.
  • the control computer 200 controls each functional element of the processing system 1 so that various conditions (for example, the rotational speeds of the motors 85 and 92) are realized.
  • the recording medium 200c is fixedly provided in the control computer 200, or is detachably attached to a reading device (not shown) provided in the control computer 200 and can be read by the reading device. May be.
  • the recording medium 200c is a hard disk drive in which control software is installed.
  • the recording medium 200c is a removable disk such as a CD-ROM or DVD-ROM in which control software is written. Such a removable disk is read by an optical reading device (not shown) provided in the control computer 200.
  • the recording medium 200c may be in any format of RAM (Random Access Memory) or ROM (Read Only Memory). Yes.
  • the recording medium 200c may be a cassette type ROM. In short, any medium known in the technical field of computers can be used as the recording medium 200c.
  • the carrier C force containing a plurality of wafers W that have not yet been processed in the processing system 1 is transported to the carrier mounting table 25 by an external force of the processing system 1 by a carrier transport device (not shown). Placed. After carrier C is placed, shirt 27 and lid 21 are removed, and gate 26 and opening 20 are opened.
  • Wafers W are normally stored in the carrier C, one wafer W is stored in each slot 22 with a predetermined interval. Are in a state of being arranged substantially parallel to each other.
  • the carrier C is normally mounted on the carrier mounting table 25, the wafers W are vertically aligned in a substantially horizontal posture, and are arranged so as to overlap each other in the plan view.
  • a mapping inspection for confirming the alignment state of the wafers W in the carrier C is performed.
  • the sensor arms 52 and 54 of the wafer transfer device 30 are advanced, and the light projecting unit 51 and the light receiving unit 53 are caused to enter the carrier C through the gate 26 and the opening 20, It is disposed at a predetermined position in the carrier C, that is, for example, at a height between the wafer W located at the lowest stage and the bottom surface of the carrier C, and between the light projecting unit 51 and the light receiving unit 53 in plan view.
  • a part of the peripheral edge of the wafer W in the carrier C (a part not held in the slot 22 facing the opening 20) is moved to a position where it is arranged.
  • the light projecting unit 51 and the light receiving unit 53 are arranged at predetermined positions, the light projecting unit 51 and the light receiving unit 53 are integrated with the base 34 while projecting the laser beam from the light projecting unit 51. Raise the wafer W.
  • the light projecting unit 51 and the light receiving unit 53 are formed on both sides of each wafer W, that is, on the inner side of the carrier C while passing through a gap between the inner side of the carrier C and the peripheral portion on the opening 20 side of each wafer W. Along the alignment direction of the wafer W.
  • the light projecting unit 51 and the light receiving unit 53 move the same height as the gap formed between the wafers W.
  • the laser light projected from the light projecting unit 51 travels along the optical path L0 without being interrupted, and receives light.
  • the light is received by the unit 53.
  • a current corresponding to the intensity of the received laser beam is generated, and the storage state determination unit 55 detects a detection signal having a predetermined threshold value.
  • the light projecting unit 51 projects the light.
  • the emitted laser light is reflected by the peripheral edge of the wafer W on the opening 20 side, and the optical path L0 is blocked.
  • a detection signal less than a predetermined threshold value is detected.
  • the light projecting unit 51 and the light receiving unit 53 are raised until they move to predetermined positions in the carrier C, that is, for example, to the height between the wafer W located at the uppermost stage and the ceiling surface of the carrier C.
  • the as a result it is possible to check whether or not each wafer W in the carrier C is held at a predetermined height. That is, based on the amount of movement of the light receiving portion 53 and the position where the optical path LO is blocked, the height at which each wafer W is held, the thickness of each wafer W, and the gap between each wafer W The width and the like can be measured, and mapping data including such information can be detected.
  • reference mapping data that is confirmed to be reliable and should be obtained in a state where the wafer W is normally stored in the carrier C is stored.
  • the reference mapping data By comparing the reference mapping data with the detected mapping data, it is determined whether or not the detected mapping data is normal, that is, whether or not the wafer W in the carrier C is correctly stored. be able to.
  • the wafer W in the carrier C is taken out by the wafer transfer device 30 and transferred to the lower wafer transfer unit 111 as will be described later.
  • V or a misaligned wafer W is held in an inclined state in the carrier C, and no wafer W is held in any of the slots 22, while the carrier C is in an inclined state.
  • an abnormality such as being placed
  • there is a gap between the reference mapping data and the detected mapping data Therefore, there is a possibility that the wafer W is not stored properly. It can detect that there is.
  • even if there is a defect such as a peripheral edge located on the opening 20 side of any wafer W being distorted or cracked, there is a gap between the reference mapping data and the detected mapping data. May occur. That is, for example, the detected thickness of the wafer W may be detected as a value with a large normal thickness beam. Therefore, it is possible to detect that the shape of the wafer W is normal.
  • the wafer W may not be taken out by the wafer transfer device 30.
  • an alarm may be generated in the control computer 200 or the like to notify the administrator. If any of the wafers W is determined to be not normal, the wafer W is not transferred to the wafer delivery unit 111 and is not processed in the processing system 1, and is paid out from the processing system 1. Also good.
  • wafer W is unloaded from carrier C by wafer transfer device 30.
  • the transfer arm 35 of the wafer transfer device 30 is caused to enter the carrier C through the gate 41 and the opening 20 and enter below the wafer W.
  • the transfer arm 35 is slightly raised, and one wafer W positioned above the transfer arm 35 is placed on the upper surface of the transfer arm 35.
  • the transfer arm 35 is retracted, the wafer W force held by the transfer arm 35 is extracted from the slots 22 on both sides.
  • the base 34 is moved to the front side of the lower wafer transfer unit 111, the transfer port 131 of the wafer transfer unit 111 is opened, and the transfer arm 35 is moved. It is made to enter the container 121 through the loading / unloading port 131.
  • the wafer W on the transfer arm 35 is placed on and supported by the upper ends of the support members 122A, 122B, and 122C.
  • the transfer arm 35 is retracted below the wafer W and retracted from the container 121. Thereafter, the loading / unloading port 131 is closed by the shutter 132. In this way C) W is loaded into the wafer transfer unit 111.
  • a deformation inspection is performed by the deformation detection system 123 to detect whether or not the wafer W is deformed.
  • laser beams are projected from the projectors 151 and 152, respectively.
  • the laser light projected from the projector 151 is above the wafer W.
  • the light travels along the optical path L1 and is received by the light receiver 155.
  • the laser light projected from the light projector 152 travels along the optical path L2 below the wafer W and is received by the light receiver 156.
  • each of the light receivers 155 and 156 receives laser light having a predetermined intensity, and detects a detection signal having a predetermined threshold value. Therefore, the deformation determination unit 143 determines that the wafer W is normal. In this case, the processing discriminating means 165 discriminates that the wafer W is to be processed, and, as will be described later, the main wafer transfer device 71 carries out the wafer W from the wafer delivery unit 111, and the substrate cleaning unit 180A. It is carried into any of ⁇ 180D.
  • the wafer W may be warped due to the influence of thermal stress or the like. That is, the wafer W force in the horizontal posture From the center W side to the peripheral part
  • Yeha W is greatly deformed near the center W, but the deformation near the periphery is small.
  • the wafer W is a normal wafer W that is difficult to detect, and may be loaded into the wafer delivery unit 111.
  • the peripheral force of the wafer W increases to a position higher than the upper surface of the wafer W in the reference state.
  • the optical path L1 may be blocked by the vicinity of the periphery of Ueno and W.
  • the laser beam power projected from the projector 151 is reflected by the vicinity of the peripheral edge of the wafer W, and the receiver 155 detects a detection signal having an intensity lower than a predetermined threshold value. Is output.
  • the lower surface of the wafer W near the center W is positioned lower than the lower surface of the reference wafer W.
  • the optical path L2 may be blocked by the lower surface of the wafer W.
  • the laser light power projected from the projector 152 is reflected by the lower surface of the wafer W, and the light receiver 156 outputs a detection signal having an intensity lower than a predetermined threshold value.
  • the processing discriminating means 165 discriminates that the processing of the wafer W is not performed, and the wafer W is not transferred to the substrate cleaning units 180A to 180D, but is transferred by the wafer transfer device 30 via the loading / unloading port 131. The Then, the substrate cleaning units 180A to 180D are not processed! /, For example, returned to the carrier C or the like, or are discharged to the outside of the processing system 1.
  • the control computer 200 may generate an alarm to notify the administrator.
  • deformation inspection of the wafer and W is performed by the deformation detection system 123, and only the wafer W determined to be normal in the deformation determination means 143 is loaded by the transfer arm 82A of the main wafer transfer device 71. It is unloaded from the container 121 through the outlet 133 and is loaded into the substrate cleaning units 180A to 180D. In each of the substrate cleaning units 180A to 180D, the wafer W is transferred from the transfer arm 82A to the spin chuck 182 and held in a state where the contact members 184 are in contact with the peripheral edge of the wafer W.
  • treatment liquids such as a chemical liquid and a rinse liquid are sequentially supplied to the upper surface of the wafer W, and a predetermined cleaning process is performed.
  • contaminants such as particles attached to the wafer W or a natural oxide film are removed.
  • the deformation detection system 123 in the wafer delivery unit 111 it is confirmed in advance by the deformation detection system 123 in the wafer delivery unit 111 that the wafer W has not been deformed beyond the reference deformation degree. That is, even if there are deformations that are not detected by the deformation detection system 123, they are sufficiently small. Yes, it can be said that this is a safe range where there is no risk of damage even if the substrate cleaning units 180A to 180D are processed. Therefore, even if the contact member 184 is brought into contact with the peripheral edge of the wafer W, it is possible to prevent excessive stress from being generated on the wafer W and damage to the wafer W.
  • the space below the wafer W becomes negative pressure, and a downward force is generated to move the wafer W downward. It is possible to prevent the wafer W from being excessively stressed and the wafer W from being damaged.
  • wafer W held by spin chuck 182 is received by transfer arm 82B of main wafer transfer apparatus 71, and substrate cleaning units 180A to 180D are also carried out.
  • the wafer is transferred to the wafer transfer unit 112.
  • the wafer W carried into the wafer delivery unit 112 is held by the wafer transfer device 30, carried out from the wafer delivery unit 112, and returned to the carrier C again.
  • the shape of the wafer W is determined by the mapping mechanism 41 and the deformation detection system 123 of the wafer delivery unit 111. By inspecting whether the wafer is normal, the deformation of the wafer W can be found, and the deformed wafer W can be prevented from being processed in the substrate cleaning units 180A to 180D. Accordingly, it is possible to prevent the deformed wafer W from being damaged due to the holding force of the spin chuck 182 and the downward force due to the rotation of the spin chuck 182 in the containers 181 of the substrate cleaning units 180A to 180D.
  • the deformation detection system 123 by providing the optical paths Ll and L2 above and below the wafer W, the wafer W is deformed upward in the support members 122A, 122B, and 122C. In both cases, the deformation of the wafer W that can be applied can be reliably detected even when the wafer W is deformed by the downward force. Furthermore, the optical paths Ll and L2 pass through the center W of Ueno, W.
  • the presence or absence of deformation of the wafer W may be inspected only in the force deformation detection system 123 in which the presence or absence of deformation of the wafer W is inspected even in the mapping mechanism 41. Good.
  • the deformation detection system 123 is provided with two or more force light sensors including two light sensors 161 and 162, that is, two light projectors 151 and 152 and two light receivers 155 and 156. May be.
  • the optical sensors 161 and 162 are not limited to the transmission type as described above, but may be reflection type optical sensors.
  • a light projector, a reflector, and a light receiver are arranged around the wafer W supported by the support members 122A, 122B, and 122C, and the light projected from the projector is reflected by the reflector.
  • the reflected light may be received by a light receiver.
  • the two optical paths Ll and L2 are formed, but the number of optical paths may be three or more.
  • two or more optical paths may be provided above or below the reference wafer W.
  • the arrangement of the optical path can be arbitrarily set.
  • the deformation detection system 123 is provided in the lower wafer transfer unit 111, but may be provided in another location.
  • the deformation detection system 123 may be provided in the upper wafer transfer unit 112, and the deformation inspection of the wafer W may be performed on the wafer W carried into the upper wafer transfer unit 112. Further, it may be provided at a location different from the wafer delivery units 111 and 112.
  • a dedicated inspection unit for inspecting whether there is an abnormality such as deformation of the wafer W may be installed in the processing system 1, and the deformation detection system 123 may be provided in the powerful inspection unit.
  • the processing in the processing unit 3 is not yet performed.
  • the timing of performing the deformation inspection of the force Ueno and W by the deformation detection system 123 is not limited to the strong one.
  • the deformation detection of the wafer W by the deformation detection system 123 may be performed while the wafer W is being transferred from the main wafer transfer device 71 to the wafer transfer device 30.
  • the deformation detection system 123 provided in the upper wafer transfer unit 112 is used. Therefore, deformation inspection may be performed.
  • the substrate cleaning units 180A to 180D are not limited to those that are configured to supply the processing liquid from the supply nozzle 1183 to clean the wafer W.
  • a scrubber cleaning tool
  • the wafer detection unit 123 is inspected in advance to determine whether or not the wafer W is normal, and only the wafer W determined to be normal is processed in the substrate cleaning units 180A to 180D. Even if the scrubber is brought into contact with the wafer W, excessive stress can be prevented from being generated on the wafer W. Therefore, damage to the wafer W can be prevented.
  • the spin chuck 182 is a mechanical chuck, it may be configured to suck and hold the lower surface of the wafer W. Also in this case, since the wafer W determined to be normal by the inspection of the deformation detection system 123 does not have a deformation on the lower surface of the wafer W or is sufficiently small, the spin chuck can reliably hold the wafer W by suction. .
  • the processing system 1 is not limited to a force-powered configuration having a plurality of substrate cleaning units 180A to 180D. That is, the substrate processing apparatus is the substrate cleaning unit 180A to 180D that supplies the processing liquid to the wafer W to perform the cleaning process, but other processes other than the cleaning, such as an etching process and a resist removal process, are performed. It may be a device for performing.
  • the substrate is not limited to a silicon wafer, and may be another semiconductor wafer.
  • it may be a glass substrate for LCD, a CD substrate, a printed substrate, a ceramic substrate, or the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The subject matter is related to a deformation detecting system for inspecting and detecting deformations of a basal plate with front and rear flat surfaces that are in parallel with each other in a non-deformed state. The system is provided with supporting members (122A-122C) to support a basal plate (W) in a substantially horizontal standard position and first and second optical sensors. The first sensors (161) define a first optical path (L1) passing immediately over the front surface of the basal plate in the case that the basal plate is in a non-deformed state and is supported by the supporting members. The second sensors (162) define a second optical path (L2) passing immediately under the rear surface of the basal plate in the case that the basal plate is in a non-deformed state and is supported by the supporting members. The first and second sensors detect cutoffs of the first and second optical paths due to the subject basal plate supported by the supporting members, respectively. The system is provided with a deformation judging means (143) for judging deformations of the basal plate whether or not such deformations are larger in magnitude than the standard degree of deformations in accordance with detecting information of the optical sensors (161, 162).

Description

基板の変形検出システムおよび変形検出方法  Substrate deformation detection system and deformation detection method
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等の基板における反り等に伴う中央部付近の変形を検出 するための変形検出システムおよび変形検出方法に関する。また、本発明は、当該 変形検出システムを備えた基板処理システム、および、当該変形検出方法を実行す る制御プログラムが記憶されたコンピュータ読取可能な記憶媒体に関する。  TECHNICAL FIELD [0001] The present invention relates to a deformation detection system and a deformation detection method for detecting deformation in the vicinity of a central portion due to warpage or the like in a substrate such as a semiconductor wafer. The present invention also relates to a substrate processing system provided with the deformation detection system and a computer-readable storage medium storing a control program for executing the deformation detection method.
背景技術  Background art
[0002] 例えば半導体デバイスの製造プロセスにおいては、基板としての半導体ウェハ(以 下、「ウェハ」という。)を一枚ずつ洗浄する枚葉式の基板処理装置が用いられている 。力かる基板処理装置には、一枚のウェハを略水平に保持して回転させるスピンチヤ ックが備えられており、このスピンチャックによってウェハを回転させながら、ウェハの 上面に処理液を供給することにより、ウェハの上面全体に処理液を供給して洗浄を行 うようになっている。  For example, in a semiconductor device manufacturing process, a single-wafer type substrate processing apparatus for cleaning semiconductor wafers (hereinafter referred to as “wafers”) as a substrate one by one is used. A powerful substrate processing apparatus is equipped with a spin chuck that holds and rotates a single wafer substantially horizontally, and supplies the processing liquid to the upper surface of the wafer while rotating the wafer by this spin chuck. Thus, cleaning is performed by supplying the processing liquid to the entire upper surface of the wafer.
[0003] このような基板処理装置においては、ウェハがスピンチャックに正常に保持されてい ないと、スピンチャックを回転させたときにウェハが脱落して破損する危険がある。そ のような事故を防止するため、従来、ウェハがスピンチャックに正常に保持されている か否かを検出する検出手段が提案されている (特開平 8— 316290号公報参照)。  In such a substrate processing apparatus, if the wafer is not normally held by the spin chuck, there is a risk that the wafer may fall off and be damaged when the spin chuck is rotated. In order to prevent such an accident, a detecting means for detecting whether or not the wafer is normally held by the spin chuck has been proposed (see Japanese Patent Application Laid-Open No. 8-316290).
[0004] また、かかる基板処理装置や、ウェハを搬送する基板搬送装置等、各種の装置が 組み込まれた処理システムが知られている。ウェハはキャリア内に整列された状態で 収納され、キャリアごと処理システムに搬入される。そして、キャリア内から基板搬送装 置によって取り出され、基板処理装置に搬入される構成になっている。このような処 理システムにお 、て、ウェハをキャリアから取り出す前にキャリア内に収納されて 、る ウェハの整列状態を光センサを用いて確認する検査 (マッピング)を行う構成が知ら れている(特開 2003— 168715号公報参照)。  [0004] In addition, a processing system in which various apparatuses such as such a substrate processing apparatus and a substrate transfer apparatus for transferring a wafer are incorporated is known. The wafers are stored in an aligned state in the carrier, and are loaded into the processing system together with the carrier. Then, the substrate is taken out from the carrier by the substrate carrying device and is carried into the substrate processing device. In such a processing system, a configuration is known in which an inspection (mapping) is performed in which a wafer is stored in a carrier before the wafer is taken out of the carrier, and the alignment state of the wafer is confirmed using an optical sensor. (Refer to Unexamined-Japanese-Patent No. 2003-168715).
[0005] ところで、ウェハは正常な状態 (非変形状態)では、水平姿勢において互いに平行 で平らな上面および下面を有する薄い平板状をなしている。しかし、熱応力の影響等 によりウェハに歪みが生じていることもある。例えば、ウェハの中央部を最下部として 下に凸状に、僅かに反り返った状態になっていることがある。そのように変形したゥェ ハを基板処理装置にぉ ヽて処理すると、洗浄用ブラシの接触や処理液の噴射等に よってウェハに外力が与えられたとき、ウェハの一部に過剰な応力が発生し、ウェハ が破損してしまうことがあった。 By the way, in a normal state (non-deformed state), the wafer has a thin flat plate shape having a flat upper surface and a lower surface that are parallel to each other in a horizontal posture. However, the effects of thermal stress etc. As a result, the wafer may be distorted. For example, the wafer may be slightly warped in a convex shape with the center of the wafer at the bottom. When such a deformed wafer is processed in a substrate processing apparatus, when an external force is applied to the wafer by contact with a cleaning brush or spraying of processing liquid, excessive stress is applied to a part of the wafer. Occurred and the wafer was damaged.
[0006] また、ウェハを機械的に保持するメカ-カルチャック、即ち、ウェハの周縁部に複数 の当接部材を当接させて保持する構成のスピンチャックが知られている。このようなチ ャックを用いる場合も、上記のようにウェハが変形していると、当接部材から与えられ る押圧力によって、ウェハが割れてしまうおそれがあった。また、スピンチャックによつ てウェハを回転させると、ウェハの下方の空間が陰圧となるため、ウェハに下向きの力 が作用する。このとき、上記のようにウェハが変形していると、この下向きの力によりゥ ェハが破損するおそれがあった。  [0006] Further, a mechanical chuck that mechanically holds a wafer, that is, a spin chuck configured to hold a plurality of abutting members in contact with the peripheral edge of the wafer is known. Even when such a chuck is used, if the wafer is deformed as described above, the wafer may be broken by the pressing force applied from the contact member. Further, when the wafer is rotated by the spin chuck, the space below the wafer becomes negative pressure, and a downward force acts on the wafer. At this time, if the wafer is deformed as described above, the wafer may be damaged by the downward force.
[0007] また、上記のようなウェハの破損が生じると、基板処理装置内でウェハの破片が散 乱してしまい、この破片を除去する作業や、破片の衝突によって損傷を受けた部分 の修理等に手間がかかり、基板処理装置の復旧までに長時間を要する。このため、 ウェハの処理が長時間中止され、生産性が低下する問題があった。  [0007] In addition, when the wafer is damaged as described above, the wafer fragments are scattered in the substrate processing apparatus, and the work for removing the fragments and the repair of the portion damaged by the collision of the fragments are performed. It takes time to recover the substrate processing apparatus. For this reason, there has been a problem that the processing of the wafer is stopped for a long time, and the productivity is lowered.
[0008] なお、上述したマッピング検査においては、ウェハの厚み等も検出することが可能 であり、この検査によってウェハの変形が検出されることもある。し力しながら、光セン サから出射される光は、ウェハの周縁部の一部(キャリアの開口部に近い部分)にし か照射されないので、周縁部の大きな変形や欠損等の不良であれば検出できるが、 ウェハの中央部付近の変形まで検出することは不可能であった。そのため、上記のよ うに反り返つたような変形等を検出することはできな力つた。  [0008] In the above-described mapping inspection, it is possible to detect the thickness of the wafer and the like, and the deformation of the wafer may be detected by this inspection. However, since the light emitted from the optical sensor is irradiated only to a part of the peripheral part of the wafer (the part close to the opening of the carrier), if the peripheral part is defective such as large deformation or defect Although it could be detected, it was impossible to detect deformation near the center of the wafer. For this reason, it was impossible to detect deformations such as warping as described above.
発明の開示  Disclosure of the invention
[0009] 本発明は、上記の点に鑑みてなされたものであり、半導体ウェハ等の基板における 反り等に伴う中央部付近の変形を検出する技術を提供することにある。  [0009] The present invention has been made in view of the above points, and it is an object of the present invention to provide a technique for detecting deformation in the vicinity of a central portion due to warpage or the like in a substrate such as a semiconductor wafer.
[0010] 上記課題を解決するため、本発明によれば、非変形状態において互いに平行で平 らな上面および下面を有する基板を検査してその変形を検出するシステムであって、 基板を略水平な基準姿勢に支持する支持部材と、 非変形基板が前記支持部材で支持された場合に前記非変形基板の上面の直上を 通る第一の光路を形成すると共に、前記支持部材で支持された被検査基板による前 記第一の光路の遮断を検出する第一の光センサと、 [0010] In order to solve the above-described problems, according to the present invention, a system for inspecting a substrate having a flat upper surface and a lower surface that are parallel to each other in an undeformed state and detecting the deformation is provided. A support member that supports a standard posture, When the non-deformable substrate is supported by the support member, a first optical path that passes immediately above the upper surface of the non-deformable substrate is formed, and the first optical path by the substrate to be inspected supported by the support member is formed. A first optical sensor for detecting a blockage;
前記非変形基板が前記支持部材で支持された場合に前記非変形基板の下面の 直下を通る第二の光路を形成すると共に、前記支持部材で支持された被検査基板 による前記第二の光路の遮断を検出する第二の光センサと、  When the non-deformable substrate is supported by the support member, a second optical path that passes directly under the lower surface of the non-deformable substrate is formed, and the second optical path by the inspected substrate supported by the support member A second optical sensor for detecting a blockage;
前記第一および第二の光センサの検出情報に基づいて、前記被検査基板の基準 変形度を超える変形の有無を判定する変形判定手段と、  Based on the detection information of the first and second photosensors, deformation determination means for determining the presence or absence of deformation exceeding a reference deformation degree of the substrate to be inspected;
を備えたことを特徴とする基板の変形検出システムが提供される。  A deformation detection system for a substrate is provided.
[0011] 例えば、前記第一の光センサは、第一の投光器と、この第一の投光器力 投光さ れた光を受光する第一の受光器とを有し、前記第二の光センサは、第二の投光器と 、この第二の投光器から投光された光を受光する第二の受光器とを有する。  [0011] For example, the first optical sensor includes a first projector, and a first receiver that receives the light projected by the first projector force, and the second optical sensor. Has a second projector and a second light receiver for receiving the light projected from the second projector.
[0012] また、本発明によれば、  [0012] Further, according to the present invention,
基板を収納するキャリアが置かれるキャリアポートと、  A carrier port in which a carrier for storing a substrate is placed;
基板に処理を施す処理装置と、  A processing apparatus for processing the substrate;
前記キャリアポートと前記処理装置との間に設けられた受け渡しユニットと、 前記受け渡しユニットを介して前記キャリアポートと前記処理装置との間で基板を搬 送する搬送装置と、  A transfer unit provided between the carrier port and the processing apparatus; a transfer apparatus for transferring a substrate between the carrier port and the processing apparatus via the transfer unit;
を備え、  With
前記受け渡しユニットに、上記基板の変形検出システムが設けられている、ことを特 徴とする基板処理システムが提供される。  There is provided a substrate processing system characterized in that the transfer unit is provided with the substrate deformation detection system.
[0013] この基板処理システムは、前記検出システムにおける検査済み基板についての前 記変形判定手段の判定結果に基づ!、て、前記検査済み基板を前記処理装置で処 理する力否かを判別する処理判別手段を更に備えることが好ましい。 [0013] This substrate processing system determines whether or not the processing apparatus is capable of processing the inspected substrate based on the determination result of the deformation determination means for the inspected substrate in the detection system! It is preferable to further include a processing discriminating means for performing the above.
これにより、基板処理装置において、変形した基板を処理しないようにすることで、 基板の破損を防止できる。  Thus, the substrate processing apparatus can prevent the substrate from being damaged by not processing the deformed substrate.
[0014] さらに本発明によれば、非変形状態において互いに平行で平らな上面および下面 を有する基板を検査してその変形を検出する方法であって、 非変形基板が基準位置で略水平な基準姿勢に支持された場合に前記非変形基 板の上面の直上および下面の直下をそれぞれ通る第一および第二の光路を形成し 被検査基板を前記基準姿勢に支持し、 Furthermore, according to the present invention, there is provided a method for inspecting a substrate having a flat upper surface and a lower surface that are parallel to each other in an undeformed state, and detecting the deformation, When the non-deformable substrate is supported at a reference position in a substantially horizontal reference posture, first and second optical paths are formed that pass directly above the upper surface and immediately below the lower surface of the non-deformable substrate, respectively. Support the posture,
前記基準位置で前記基準姿勢に支持された被検査基板による前記第一および第 二の光路の遮断の有無を検出し、  Detecting whether or not the first and second optical paths are blocked by the substrate to be inspected supported at the reference position at the reference position;
前記第一および第二の光路の遮断の有無に基づいて、前記被検査基板の基準変 形度を超える変形の有無を判定する、  Determining the presence or absence of deformation exceeding a reference deformation degree of the substrate to be inspected based on the presence or absence of blocking of the first and second optical paths;
ことを特徴とする基板の変形検出方法が提供される。  A method for detecting deformation of a substrate is provided.
[0015] 前記第一の光路と前記第二の光路の少なくとも一方は、前記支持部材で支持され た前記非変形基板の前記上面および下面と平行であることが好ましい。  [0015] At least one of the first optical path and the second optical path is preferably parallel to the upper surface and the lower surface of the non-deformable substrate supported by the support member.
また、前記第一の光路と前記第二の光路の少なくとも一方は、平面視において、前 記支持部材で支持された前記非変形基板の中央部を通ることが好ま 、。  Further, it is preferable that at least one of the first optical path and the second optical path pass through a central portion of the non-deformable substrate supported by the support member in a plan view.
[0016] また、本発明によれば、上記変形検出方法を実行する制御プログラムが記憶された コンピュータ読取可能な記憶媒体が提供される。  [0016] According to the present invention, there is provided a computer-readable storage medium storing a control program for executing the deformation detection method.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]は、本実施形態に力かる処理システムの概略平面図; [0017] FIG. 1 is a schematic plan view of a processing system according to the present embodiment;
[図 2]は、処理システムの概略側面図;  [Figure 2] is a schematic side view of the processing system;
[図 3]は、処理部の構成を説明する概略断面図;  [FIG. 3] is a schematic cross-sectional view illustrating the configuration of a processing unit;
[図 4]は、キャリアの斜視図;  [Fig. 4] is a perspective view of the carrier;
[図 5]は、ウェハ搬送装置の平面図;  [Figure 5] is a plan view of the wafer transfer device;
[図 6]は、ゥ ハ搬送装置の側面図と動作を説明する側面図;  [Fig. 6] is a side view of the wafer transport device and a side view explaining its operation;
[図 7]は、マッピング検査の様子を説明する説明図;  [Figure 7] is an explanatory diagram explaining the state of the mapping inspection;
[図 8]は、主ウェハ搬送装置の斜視図;  [Figure 8] is a perspective view of the main wafer transfer device;
[図 9]は、ウェハ受け渡しユニットの構成を説明する平面図;  [FIG. 9] is a plan view illustrating the configuration of the wafer delivery unit;
[図 10]は、変形検出システムの構成を説明する側面図;  [FIG. 10] is a side view illustrating the configuration of the deformation detection system;
[図 11]は、受光器の配置を説明する側面図;  [Fig. 11] is a side view illustrating the arrangement of the photoreceiver;
[図 12]は、基板洗浄ユニットの構成を説明する側面図; [図 13]は、変形検出システムにおいてウェハの変形が検出される状態を説明する側 面図である。 [FIG. 12] is a side view illustrating the configuration of the substrate cleaning unit; FIG. 13 is a side view for explaining a state in which wafer deformation is detected in the deformation detection system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の好ましい実施の形態を、基板としてのウェハ(シリコンウエノ、)に対し て洗浄処理を行う処理システムに基づ!/ヽて説明する。 [0018] Hereinafter, a preferred embodiment of the present invention is based on a processing system that performs a cleaning process on a wafer (silicon wafer) as a substrate! / Explain.
図 1は、本実施の形態に力かる処理システム 1の平面図であり、図 2はその側面図 である。図 3は、後述する処理部 3の X— Z面(略鉛直面)に沿った縦断面図である。 図 1及び図 2に示すように、処理システム 1は、外部力 処理システム 1に対してキヤリ ァ Cを搬入出するための搬入出部 2と、ウェハ Wに洗浄処理を施す処理部 3とを備え ている。  FIG. 1 is a plan view of a processing system 1 according to the present embodiment, and FIG. 2 is a side view thereof. FIG. 3 is a longitudinal sectional view taken along the X-Z plane (substantially vertical plane) of the processing unit 3 to be described later. As shown in FIGS. 1 and 2, the processing system 1 includes a loading / unloading unit 2 for loading / unloading carrier C to / from the external force processing system 1 and a processing unit 3 for performing a cleaning process on the wafer W. It has.
[0019] 搬入出部 2は、複数枚、例えば 25枚のウェハ Wを収納可能な収納容器であるキヤリ ァ Cを載置するキャリアポート(イン ·アウトポート) 10、及び、キャリアポート 10と処理 部 3との間に設けられた基板搬送部 12を備えている。キャリアポート 10、基板搬送部 12、処理部 3は、 X軸方向(略水平方向)においてこの順に並ぶように設けられてい る。キャリアポート 10と基板搬送部 12とは、 X—Z面に沿って立設された境界壁部 15 によって仕切られている。  The carry-in / out unit 2 is provided with a carrier port (in / out port) 10 on which carrier C, which is a storage container capable of storing a plurality of, for example, 25 wafers W, and carrier port 10 and processing. A substrate transfer unit 12 provided between the unit 3 and the unit 3 is provided. The carrier port 10, the substrate transport unit 12, and the processing unit 3 are arranged in this order in the X-axis direction (substantially horizontal direction). The carrier port 10 and the substrate transfer section 12 are partitioned by a boundary wall section 15 erected along the X-Z plane.
[0020] ウェハ Wは例えば略円形をなし、所定の厚みを有する薄い平板状をなしており、表 面 (片面)に半導体デバイスが形成されるようになって!/、る。  [0020] The wafer W has, for example, a substantially circular shape and a thin flat plate shape having a predetermined thickness, and a semiconductor device is formed on the surface (one surface).
[0021] 図 4に示すように、キャリア Cは、一側面が開口 20となっており、ウェハ Wはこの開口 20を通してキャリア C内から取り出され、また、キャリア C内に収納されるようになって いる。また、開口 20を開閉する蓋体 21が設けられている。キャリア Cの内壁には、ゥェ ハ Wの周縁部を保持するためのスロット 22が、複数個、例えば 25個設けられている。 ウェハ Wは例えば表面が上面となっている状態で、各スロット 22に一枚ずつ収容され る。これにより、キャリア C内には、 25枚までの複数枚のウェハ Wを、互いに略平行な 姿勢で、所定の間隔を空けて並列に、上下に並べた状態で収納できるようになって いる。  As shown in FIG. 4, the carrier C has an opening 20 on one side surface, and the wafer W is taken out from the carrier C through the opening 20 and stored in the carrier C. ing. Further, a lid body 21 for opening and closing the opening 20 is provided. The inner wall of the carrier C is provided with a plurality of, for example, 25 slots 22 for holding the peripheral edge of the wafer W. For example, one wafer W is accommodated in each slot 22 in a state where the surface is the upper surface. As a result, up to 25 wafers W can be accommodated in the carrier C in a state of being substantially parallel to each other and arranged in parallel with a predetermined interval in parallel.
[0022] 図 1及び図 2に示すように、キャリアポート 10には、所定数、例えば 3個までのキヤリ ァ Cを Y軸方向(X軸方向に対して略垂直な略水平方向)に一列に並べて載置可能 なキャリア載置台 25が設けられている。また、境界壁部 15には、各キャリア Cの載置 場所に対応する位置に、それぞれゲート 26が設けられている。さらに、ゲート 26を基 板搬送部 12側力も閉塞するシャッター 27が、各ゲート 26に対してそれぞれ設けられ ている。なお、図示はしないが、各シャッター 27には、キャリア Cの蓋体 21のロック状 態とアンロック状態とを切り換える蓋体開閉機構が内蔵されており、この蓋体開閉機 構によって蓋体 21を保持してシャッター 27と共に移動させることで、ゲート 26の開閉 と同時に開口 20も開閉できるように構成されている。シャッター 27、蓋体開閉機構の 動作は、後述する制御コンピュータ 200から送信される制御信号によって制御される [0022] As shown in FIGS. 1 and 2, the carrier port 10 has a predetermined number, for example, up to three carriers C arranged in a row in the Y-axis direction (substantially horizontal direction substantially perpendicular to the X-axis direction). Can be placed side by side An appropriate carrier mounting table 25 is provided. The boundary wall 15 is provided with gates 26 at positions corresponding to the places where the carriers C are placed. Furthermore, a shutter 27 that closes the gate 26 also on the side of the substrate transport unit 12 is provided for each gate 26. Although not shown, each shutter 27 has a built-in lid opening / closing mechanism that switches between the locked state and the unlocked state of the lid 21 of the carrier C. By holding and moving together with the shutter 27, the opening 20 can be opened and closed simultaneously with the opening and closing of the gate 26. The operations of the shutter 27 and the lid opening / closing mechanism are controlled by a control signal transmitted from the control computer 200 described later.
[0023] 図 1及び図 2に示すように、基板搬送部 12内には、ウェハ Wを搬送する第一の基板 搬送装置としてのウェハ搬送装置 (CRA) 30が配設されている。また、某板処理装置 12の天井部には、基板搬送部 12内に例えば空気、窒素ガス等の不活性ガス等の清 浄な気流をダウンフローする FFU (ファンフィルターユニット) 31が配設されている。ま た、図示はしないが、基板搬送部 12の底部には、基板搬送部 12内を排気する排気 路が設けられている。 As shown in FIGS. 1 and 2, a wafer transfer device (CRA) 30 as a first substrate transfer device for transferring the wafer W is disposed in the substrate transfer unit 12. In addition, an FFU (fan filter unit) 31 for down-flowing a clean air flow such as an inert gas such as air or nitrogen gas is disposed in the substrate transfer unit 12 at the ceiling of the plate processing apparatus 12. ing. Although not shown, an exhaust path for exhausting the inside of the substrate transfer unit 12 is provided at the bottom of the substrate transfer unit 12.
[0024] ウェハ搬送装置 30は、軸方向を Z軸方向に向けて設けられたロッド 32、ロッド 32の 下端部を支持してロッド 32を Y軸方向に沿って移動させる移動手段 33、ロッド 32の 上端部によって支持された基台 34、一枚のウェハ Wを略水平な姿勢で保持可能な 搬送アーム 35、及び、搬送アーム 35に保持されたウェハ Wの縁部に沿って備えられ る補助部材 36A、 36Bによって構成された装置本体 40を有しており、さら〖こ、キヤリ ァ C内のウェハ Wが正常に収納されているカゝ否かを検出するマッピング機構 41を備 えている。  The wafer transfer device 30 includes a rod 32 provided with the axial direction directed in the Z-axis direction, a moving means 33 that supports the lower end of the rod 32 and moves the rod 32 along the Y-axis direction, and the rod 32. The base 34 supported by the upper end of the wafer, the transfer arm 35 capable of holding a single wafer W in a substantially horizontal posture, and the auxiliary provided along the edge of the wafer W held by the transfer arm 35 It has an apparatus main body 40 constituted by members 36A and 36B, and further includes a mapping mechanism 41 for detecting whether or not the wafer W in the carrier C is normally stored.
[0025] ロッド 32は、ロッド 32の下端部に接続されたサーボ機構 42の回転駆動により、 Z軸 方向に沿って上下移動可能に構成されている。なお、サーボ機構 42の出力信号 (即 ち、 Z軸方向におけるロッド 32の移動量を示す情報)は、後述するマッピング機構 41 の収納状態判定部 55に送信されるようになって 、る。  [0025] The rod 32 is configured to be movable up and down along the Z-axis direction by the rotational drive of the servo mechanism 42 connected to the lower end of the rod 32. The output signal of the servo mechanism 42 (that is, information indicating the amount of movement of the rod 32 in the Z-axis direction) is transmitted to the storage state determination unit 55 of the mapping mechanism 41 described later.
[0026] 基台 34は、モータ 43を介してロッド 32の上端部に取り付けられている。即ち、基台 34は、移動手段 33及びサーボ機構 42の駆動によるロッド 32の移動に伴って、 Y軸 方向及び Z軸方向に沿って移動することができ、また、モータ 43の駆動によって、 X 一 Y平面 (水平面)内で( Θ方向に)回転することができるように構成されて ヽる。 The base 34 is attached to the upper end portion of the rod 32 via the motor 43. That is, the base 34 moves along the Y axis along with the movement of the rod 32 driven by the moving means 33 and the servo mechanism 42. It can be moved along the direction and the Z-axis direction, and can be configured to rotate (in the Θ direction) in the X 1 Y plane (horizontal plane) by driving the motor 43.
[0027] 図 5及び図 6に示すように、搬送アーム 35は、基台 34上に支持されており、略水平 に備えられた略平板状のアーム本体 35aを有している。搬送アーム 35の先端部(前 縁部)の上面には、先端部材 35bが設けられている。先端部材 35bの後面 (アーム本 体 35aの基端部側に向いた面)は、例えばウェハ Wの周縁部に沿うように円弧状に湾 曲した形状になっており、さらに、この後面に沿って、先端部材 35bよりも低く形成さ れた段部 35cが設けられている。一方、アーム本体 35aの基端部(後縁部)の上面側 には、基端部材 35dが設けられており、この基端部材 35dの前面(アーム本体 35aの 先端部側に向いた面)側に沿って、基端部材 35dより低く形成された段部 35eが設け られている。力かる構成により、ウェハ Wは、下面周縁部においてウェハ Wの中央部 を中心として対向する前後 2箇所の部分が各段部 35c上、段部 35e上にそれぞれ載 せられ、かつ、周縁部が先端部材 35bの後面と基端部材 35dの前面との間に挟まれ た状態で、アーム本体 35aの上方に保持されるようになって!/、る。  As shown in FIGS. 5 and 6, the transfer arm 35 is supported on a base 34, and has a substantially flat arm body 35a provided substantially horizontally. A top end member 35 b is provided on the top surface of the front end portion (front edge portion) of the transfer arm 35. The rear surface of the tip member 35b (the surface facing the base end side of the arm main body 35a) has, for example, an arcuate shape along the peripheral edge of the wafer W, and further along this rear surface. Thus, a step portion 35c formed lower than the tip member 35b is provided. On the other hand, a base end member 35d is provided on the upper surface side of the base end portion (rear edge portion) of the arm main body 35a, and the front surface of the base end member 35d (a surface facing the front end side of the arm main body 35a). A step portion 35e formed lower than the base end member 35d is provided along the side. By virtue of the structure, the wafer W has two front and rear portions opposed to each other at the lower surface periphery centered on the central portion of the wafer W, and is placed on each step portion 35c and step portion 35e. It is held above the arm body 35a while being sandwiched between the rear surface of the distal end member 35b and the front surface of the proximal end member 35d.
[0028] この搬送アーム 35は、前述した基台 34の移動に伴って、 Y軸方向及び Z軸方向に 移動可能、 Θ方向に回転可能になっている。さらに、基台 34に対して相対的に、ァ ーム本体 35aの長手方向に沿って略水平方向にスライド (直進移動)できるように構 成されている。即ち、搬送アーム 35は、前述したキャリア載置台 25に載置された総て のキャリア Cに対して、また、各キャリア Cに設けられた任意の高さのスロット 22に対し て、ゲート 26、開口 20を介してアクセスすることができ、また、後述する処理部 3に設 けられたウェハ受け渡しユニット 11 1、 112のチャンバ一 121内に、搬入出口 131を 介してアクセスすることができる。これにより、ウェハ搬送装置 30は、ウェハ Wをキヤ、) アボート 10から処理部 3へ、また、処理部 3からキャリアポート 10へと搬送することが できるようになつている。  The transfer arm 35 can move in the Y-axis direction and the Z-axis direction and can rotate in the Θ direction in accordance with the movement of the base 34 described above. Further, it is configured to slide (straightly move) in a substantially horizontal direction along the longitudinal direction of the arm body 35a relative to the base 34. That is, the transfer arm 35 is connected to the gate 26, with respect to all the carriers C mounted on the carrier mounting table 25 described above, and with respect to the slot 22 of an arbitrary height provided in each carrier C. It can be accessed through the opening 20, and can also be accessed through the loading / unloading port 131 in the chamber 121 of the wafer delivery units 111, 112 provided in the processing unit 3 described later. Thereby, the wafer transfer device 30 can transfer the wafer W from the abort 10 to the processing unit 3 and from the processing unit 3 to the carrier port 10.
[0029] 補助部材 36A、 36Bは、基台 34に対して固定されており、また、搬送アーム 35が 基台 34の真上 (後退位置)に位置する状態において、基端部材 35dの両側に配置さ れるようにそれぞれ備えられて 、る。  [0029] The auxiliary members 36A and 36B are fixed to the base 34, and in a state where the transfer arm 35 is located directly above the base 34 (retracted position), the auxiliary members 36A and 36B are provided on both sides of the base end member 35d. Each is provided to be placed.
[0030] マッピング機構 41は、レーザ光を投光する投光部 51を備えた第一のセンサアーム 52、投光部 51から投光されたレーザ光を受光する受光部 53を備えた第二のセンサ アーム 54、及び、 Z軸方向における受光部 53の移動量と受光部 53の検出信号とに 基づ 、てキャリア C内のウェハ Wが正常に収納されて 、る力否かを判定する収納状 態判定部 55を備えている。 [0030] The mapping mechanism 41 includes a first sensor arm including a light projecting unit 51 that projects laser light. 52, a second sensor arm 54 having a light receiving part 53 for receiving the laser light projected from the light projecting part 51, and the amount of movement of the light receiving part 53 in the Z-axis direction and the detection signal of the light receiving part 53 Based on this, a storage state determination unit 55 is provided for determining whether or not the wafer W in the carrier C is stored normally.
[0031] センサアーム 52、 54は、基台 34の両側方にそれぞれ配置されており、前述した基 台 34の移動に伴って、 Y軸方向及び Z軸方向に移動可能、 Θ方向に回転可能にな つている。また、各センサアーム 52、 54は、各センサアーム 52、 54の長手方向に沿 つて、基台 34に対して相対的に、略水平方向にスライドできるように構成されている。  [0031] The sensor arms 52 and 54 are respectively arranged on both sides of the base 34, and can move in the Y-axis direction and the Z-axis direction as the base 34 moves as described above, and can rotate in the Θ direction. It has become. The sensor arms 52 and 54 are configured to slide in a substantially horizontal direction relative to the base 34 along the longitudinal direction of the sensor arms 52 and 54.
[0032] 投光部 51は、センサアーム 52の先端部に設けられており、発光素子 (例えばレー ザダイオード等の LED)を備えている。受光部 53は、センサアーム 54の先端部に設 けられており、受光素子 (例えばフォトトランジスタ、フォトダイオード等)を備えている 。受光素子の検出信号は、収納状態判定部 55に送信されるようになっている。  [0032] The light projecting unit 51 is provided at the tip of the sensor arm 52, and includes a light emitting element (for example, an LED such as a laser diode). The light receiving unit 53 is provided at the tip of the sensor arm 54 and includes a light receiving element (for example, a phototransistor, a photodiode, or the like). The detection signal of the light receiving element is transmitted to the storage state determination unit 55.
[0033] 投光部 51と受光部 53との間にウェハ W等の物体が無い状態においては、投光部 5 1から投光されたレーザ光は、図 7に示すように Y軸方向に向力う真っ直ぐな光路 LO に沿って直進し、受光部 53に受光され、受光素子において、受光された光の強度に 応じた電流が発生し、所定のしきい値の検出信号が検出されるようになっている。一 方、投光部 51と受光部 53との間にウェハ W等の物体が有る状態においては、投光 部 51から投光されたレーザ光が物体によって反射され、光路 LOが遮られ、受光素子 においては、物体が無いときよりも弱い強度のレーザ光が受光され、所定のしきい値 未満の検出信号が検出されるようになっている。このように、投光部 51と受光部 53と によって、レーザ光を利用してウェハ W等の物体の有無を検知するマッピング用の光 センサ 60が構成されて!、る。  [0033] When there is no object such as a wafer W between the light projecting unit 51 and the light receiving unit 53, the laser light projected from the light projecting unit 51 is in the Y-axis direction as shown in FIG. The light travels straight along the straight optical path LO, and is received by the light receiving unit 53. In the light receiving element, a current corresponding to the intensity of the received light is generated, and a detection signal with a predetermined threshold is detected. It is like that. On the other hand, when there is an object such as a wafer W between the light projecting unit 51 and the light receiving unit 53, the laser light emitted from the light projecting unit 51 is reflected by the object, the optical path LO is blocked, and the light is received. In the element, a laser beam having a weaker intensity than that in the absence of an object is received, and a detection signal less than a predetermined threshold value is detected. In this way, the light projecting unit 51 and the light receiving unit 53 constitute a mapping optical sensor 60 that detects the presence or absence of an object such as a wafer W using laser light.
[0034] 収納状態判定部 55は、前述したサーボ機構 42の出力信号に基づいて、 Z軸方向 におけるロッド 32の移動量、即ち、 Z軸方向における受光部 53の移動量を検知する ことができ、また、受光素子力も送信される検出信号に基づいて、投光部 51と受光部 53との間にウェハ W等の物体が有るか無いかを検知することができる。さらに、受光 部 53の移動量と受光素子の検出信号に基づいて、後述するマッピングデータを検 出し、キャリア C内のウェハ Wが正常に収納されて 、る力否かを判定する機能を有し ている。 The storage state determination unit 55 can detect the movement amount of the rod 32 in the Z-axis direction, that is, the movement amount of the light receiving unit 53 in the Z-axis direction, based on the output signal of the servo mechanism 42 described above. In addition, it is possible to detect whether or not an object such as the wafer W exists between the light projecting unit 51 and the light receiving unit 53 based on the detection signal to which the light receiving element force is transmitted. Furthermore, based on the amount of movement of the light receiving portion 53 and the detection signal of the light receiving element, it has a function of detecting mapping data to be described later and determining whether or not the wafer W in the carrier C is normally stored. ing.
[0035] なお、収納状態判定部 55は、例えば後述する制御 ·ユーティリティユニット群 75に 備えられた制御コンピュータ 200内に設けられており、制御コンピュータ 200は、収納 状態判定部 55の判定結果に基づ 、て、キャリア Cからウェハ Wを取り出すか否か等 の判断を行うことができる。  The storage state determination unit 55 is provided in, for example, a control computer 200 provided in a control / utility unit group 75 to be described later. The control computer 200 is based on the determination result of the storage state determination unit 55. Therefore, it is possible to determine whether or not to take out the wafer W from the carrier C.
[0036] 上述のような構成を有するウェハ搬送装置 30の動作は、後述する制御コンピュータ 200から送信される制御信号に基づいて制御される。即ち、移動手段 33、サーボ機 構 42、モータ 43、搬送アーム 35等が、制御コンピュータ 200の制御命令によってそ れぞれ駆動されることにより、装置本体 40の動作、即ち、ウェハ Wの搬送に関する動 作が行われる。また、センサアーム 52、 54、投光部 51、受光部 53等が、制御コンビ ユータ 200の制御命令によってそれぞれ制御されることにより、マッピング機構 41の 動作が実現されるようになって 、る。  The operation of the wafer conveyance device 30 having the above-described configuration is controlled based on a control signal transmitted from a control computer 200 described later. That is, the moving means 33, the servo mechanism 42, the motor 43, the transfer arm 35, etc. are driven by the control command of the control computer 200, respectively, so that the operation of the apparatus main body 40, that is, the transfer of the wafer W is related. The action is performed. In addition, the operation of the mapping mechanism 41 is realized by controlling the sensor arms 52 and 54, the light projecting unit 51, the light receiving unit 53, and the like according to the control commands of the control computer 200, respectively.
[0037] 次に、処理部 3の構成について説明する。  Next, the configuration of the processing unit 3 will be described.
図 1に示すように、処理部 3には、第二の基板搬送装置としての主ゥヱハ搬送装置 (P RA) 71が、平面視において処理部 3のほぼ中央部に配置されており、さらに、受け 渡しユニット群 72、洗浄ユニット群 73、加熱 ·冷却ユニット群 74、及び、制御 ·ューテ イリティユニット群 75が、主ウェハ搬送装置 71の周りを囲むようにして設けられている 。また、処理部 3の天井部には、処理部 3内に清浄な気流をダウンフローする FFU7 6が配設されている(図 2参照)。  As shown in FIG. 1, in the processing unit 3, a main wafer transfer device (PRA) 71 as a second substrate transfer device is disposed at a substantially central portion of the processing unit 3 in a plan view. A delivery unit group 72, a cleaning unit group 73, a heating / cooling unit group 74, and a control / utility unit group 75 are provided so as to surround the main wafer transfer device 71. In addition, an FFU 76 for downflowing a clean airflow in the processing unit 3 is disposed on the ceiling of the processing unit 3 (see FIG. 2).
[0038] 先ず、主ウェハ搬送装置 71について説明する。  First, the main wafer transfer device 71 will be described.
図 8に示すように、主ウェハ搬送装置 71は、軸方向を Z軸方向に向けて備えられた略 筒状のケース 80、ケース 80に沿って Z軸方向に昇降可能な基台 81、一枚のウェハ Wをそれぞれ略水平な姿勢で保持可能な複数本、例えば 2本の搬送アーム 82A、 8 2Bを備えている。  As shown in FIG. 8, the main wafer transfer device 71 includes a substantially cylindrical case 80 provided with the axial direction oriented in the Z-axis direction, and a base 81 that can be moved up and down in the Z-axis direction along the case 80. A plurality of, for example, two transfer arms 82A and 82B, each capable of holding a single wafer W in a substantially horizontal posture, are provided.
[0039] ケース 80の側壁には、開口部 80aが形成されている。また、ケース 80は、ケース 80 の下方に設置されているモータ 85の駆動により、 Z軸方向に向けられたケース 80の 中心軸を中心として Θ方向に回転できるようになつている。  [0039] An opening 80a is formed in the side wall of the case 80. The case 80 can be rotated in the Θ direction around the central axis of the case 80 directed in the Z-axis direction by driving a motor 85 installed below the case 80.
[0040] 図 3に示すように、ケース 80の側部には、基台 81を昇降させる基台昇降機構 86が 備えられている。基台昇降機構 86は、ケース 80の内面に設けられたガイド溝 91、ケ ース 80の底部に設けられたモータ 92、ケース 80の側壁内においてケース 80の底部 側に設けられた駆動プーリ 93、ケース 80の側壁内においてケース 80の天井部側に 設けられた従動プーリ 94、及び、駆動プーリ 93と従動プーリ 94とに卷回され上下方 向に沿って架け渡されるように設けられた駆動ベルト 95とを備えて 、る。基台 81は、 先端部 (前端部)を開口部 80a側に向けた状態で、ケース 80内に備えられ、また、駆 動ベルト 95に接続されている。即ち、モータ 92の駆動により駆動プーリ 93を回転さ せると、駆動ベルト 95が駆動プーリ 93と従動プーリ 94との間で上下方向に周動し、こ の駆動ベルト 95の周動に伴って、基台 81が開口部 80aに沿って Z軸方向に上下移 動するように構成されている。 As shown in FIG. 3, a base lifting mechanism 86 for lifting the base 81 is provided on the side of the case 80. Is provided. The base lifting mechanism 86 includes a guide groove 91 provided on the inner surface of the case 80, a motor 92 provided on the bottom of the case 80, and a drive pulley 93 provided on the bottom side of the case 80 in the side wall of the case 80. The driven pulley 94 provided on the ceiling side of the case 80 in the side wall of the case 80, and the drive provided so as to be wound around the upper and lower sides by being wound around the driven pulley 93 and the driven pulley 94. It is equipped with a belt 95. The base 81 is provided in the case 80 with the front end (front end) facing the opening 80a, and is connected to the drive belt 95. That is, when the driving pulley 93 is rotated by driving the motor 92, the driving belt 95 rotates in the vertical direction between the driving pulley 93 and the driven pulley 94, and with this peripheral movement of the driving belt 95, The base 81 is configured to move up and down in the Z-axis direction along the opening 80a.
[0041] 図 8に示すように、搬送アーム 82Aは、基台 81の上方に設けられており、 2本のァ ーム本体 101、 102と、各アーム本体 101、 102の基端部側を支持する支持体 103と 有している。各アーム本体 101、 102は、例えば平面視においてウェハ Wの周縁部 に沿うように略円弧状に湾曲しており、また、互いに対称な形状になっている。側面 視においては、各アーム本体 101、 102は平板状に形成されており、かつ、互いに同 じ高さにおいて略水平に配置されている。また、搬送アーム 82Aの上面には、ウェハ Wの下面に当接させるための突起 105が、複数箇所に設けられている。  [0041] As shown in FIG. 8, the transfer arm 82A is provided above the base 81, and the two arm bodies 101, 102 and the base end side of each arm body 101, 102 are connected to each other. It has the support body 103 to support. The arm bodies 101 and 102 are curved in a substantially arc shape so as to follow the peripheral edge of the wafer W in a plan view, for example, and are symmetric with each other. When viewed from the side, the arm bodies 101 and 102 are formed in a flat plate shape and are arranged substantially horizontally at the same height. Further, on the upper surface of the transfer arm 82A, a plurality of protrusions 105 for contacting the lower surface of the wafer W are provided.
[0042] 力かる搬送アーム 82Aは、前述した基台 81の移動に伴って、 Z軸方向に移動可能 、 Θ方向に回転可能になっている。さらに、基台 81に対して相対的に略水平方向に スライドできるように、即ち、開口部 80aを通じて前進及び後退できるように構成され ている。従って、搬送アーム 82Aは、主ウェハ搬送装置 71の周囲に設けられている 受け渡しユニット群 72、洗浄ユニット群 73、加熱 ·冷却ユニット群 74等に対してァクセ スすることができるようになつている。これにより、主ウェハ搬送装置 71は、ウェハ Wを 各装置に対して搬入出させ、また、各装置間で搬送できるようになっている。  The powerful transfer arm 82A is movable in the Z-axis direction and rotatable in the Θ direction in accordance with the movement of the base 81 described above. Further, it is configured to be able to slide in a substantially horizontal direction relative to the base 81, that is, to be able to move forward and backward through the opening 80a. Accordingly, the transfer arm 82A can access the transfer unit group 72, the cleaning unit group 73, the heating / cooling unit group 74, etc. provided around the main wafer transfer device 71. . As a result, the main wafer transfer device 71 can carry the wafer W into and out of each device and transfer the wafer W between the devices.
[0043] 搬送アーム 82Bは、搬送アーム 82Aの上方に設けられている。この搬送アーム 82 Bは搬送アーム 82Aとほぼ同様の構成を有しており、詳細な説明は重複するため省 略することとする。なお、搬送アーム 82A、 82Bは、基台 81に対してはそれぞれ個別 にスライドできるように構成されて ヽる。 [0044] カゝかる主ウェハ搬送装置 71の動作は、後述する制御コンピュータ 200から送信され る制御信号によって制御される。即ち、モータ 85、モータ 92、搬送アーム 82A、 82B 等が後述する制御コンピュータ 200の制御信号に基づいてそれぞれ駆動されること により、主ウェハ搬送装置 71の動作が行われる。 [0043] The transfer arm 82B is provided above the transfer arm 82A. The transfer arm 82B has substantially the same configuration as the transfer arm 82A, and a detailed description thereof will be omitted because it is redundant. It should be noted that the transfer arms 82A and 82B can be configured to slide individually with respect to the base 81. [0044] The operation of the main wafer transfer device 71 is controlled by a control signal transmitted from a control computer 200 described later. That is, the motor 85, the motor 92, the transfer arms 82A, 82B, and the like are driven based on control signals of the control computer 200 described later, whereby the operation of the main wafer transfer device 71 is performed.
[0045] 次に、受け渡しユニット群 72について説明する。  Next, the delivery unit group 72 will be described.
図 3に示すように、受け渡しユニット群 72には、 2台のウェハ受け渡しユニット (TRS ) 111、 112が備えられている。ウェハ受け渡しユニット 111、 112は、搬入出部 2と主 ウェハ搬送装置 71との間において、上下に積み重ねられた状態で設けられている。 即ち、ウェハ Wの搬送経路において、キャリアポート 10に載置されたキャリア Cと洗浄 ユニット群 73との間に設けられている。  As shown in FIG. 3, the transfer unit group 72 includes two wafer transfer units (TRS) 111 and 112. Wafer delivery units 111 and 112 are provided in a vertically stacked state between carry-in / out unit 2 and main wafer transfer device 71. That is, it is provided between the carrier C placed on the carrier port 10 and the cleaning unit group 73 in the transfer path of the wafer W.
[0046] 図 9及び図 10に示すように、下段のウェハ受け渡しユニット 111は、ウェハ Wを収納 する容器 121と、ウェハ Wの変形を検出するための変形検出システム 123とを備えて いる。容器 121内には、ウェハ Wを基準位置で略水平な基準姿勢に支持するための 複数、例えば 3つの支持部材 122A、 122B、 122Cが設けられている。  As shown in FIGS. 9 and 10, the lower wafer transfer unit 111 includes a container 121 for storing the wafer W and a deformation detection system 123 for detecting the deformation of the wafer W. In the container 121, a plurality of, for example, three support members 122A, 122B, and 122C for supporting the wafer W at a reference position in a substantially horizontal reference posture are provided.
[0047] 容器 121には、容器 121内にウェハ Wを搬入させるための搬入出口 131、搬入出 口 131を開閉するためのシャッター 132、容器 121内力もウェハ Wを搬出させるため の搬入出口 133、搬入出口 133を開閉するためのシャッター 134が設けられている。 搬入出口 131とシャッター 132は、搬入出部 2側の側壁に設けられており、搬入出口 133とシャッター 134は、主ウェハ搬送装置 71側の側壁に設けられている。  [0047] In the container 121, a loading / unloading port 131 for loading the wafer W into the container 121, a shutter 132 for opening and closing the loading / unloading port 131, a loading / unloading port 133 for unloading the wafer W also in the container 121, A shutter 134 for opening and closing the loading / unloading port 133 is provided. The loading / unloading port 131 and the shutter 132 are provided on the side wall on the loading / unloading portion 2 side, and the loading / unloading port 133 and the shutter 134 are provided on the side wall on the main wafer transfer device 71 side.
[0048] 図 10に示すように、支持咅材 122A、 122B、 122Ciま、容器 121内の底咅 121a力 ら上方に突出するように設けられている。これら各支持部材 122A、 122B、 122Cの 上端部にゥヱハ Wの下面を載せることにより、即ち、ウェハ Wの下面中央部 Wを囲む  As shown in FIG. 10, the support rods 122A, 122B, 122Ci are provided so as to protrude upward from the bottom rod 121a force in the container 121. By placing the lower surface of the wafer W on the upper end of each of these supporting members 122A, 122B, 122C, that is, the lower surface central portion W of the wafer W is surrounded.
C  C
3箇所の位置に各支持部材 122A、 122B、 122Cの上端部をそれぞれ当接させるこ とにより、ウェハ Wを底部 121aより高い基準位置において略水平な基準姿勢に、安 定した状態で支持できるようになって 、る。  By bringing the upper ends of the support members 122A, 122B, and 122C into contact with the three positions, the wafer W can be supported in a stable state in a substantially horizontal reference posture at a reference position higher than the bottom 121a. It becomes.
ここで、支持部材 122A、 122B、 122Cによって正常に支持された(即ち、基準位 置で基準姿勢に支持された)非変形ウェハ (変形が無 、、水平姿勢にぉ 、て互いに 平行で平らな上面および下面を有する平板状のウェハ)を、以下「基準状態のウェハ 」という。 Here, a non-deformed wafer supported normally by the supporting members 122A, 122B, and 122C (that is, supported in the reference position at the reference position) (no deformation, in a horizontal position, parallel to each other and flat) A flat plate wafer having an upper surface and a lower surface) "
[0049] 変形検出システム 123は、ウェハ Wの変形を検出するための光として例えばレーザ 光を投光する投光部 141と、投光部 141から投光された光を受光する受光部 142と を備えている。また、検出システム 123は、受光部 142の検出信号 (検出情報)に基 づ 、て、被検査基板としてのウェハ Wの基準変形量を超える変形の有無を判定する 変形判定手段 143を備えている。  The deformation detection system 123 includes, for example, a light projecting unit 141 that projects laser light as light for detecting the deformation of the wafer W, and a light receiving unit 142 that receives light projected from the light projecting unit 141. It has. In addition, the detection system 123 includes a deformation determination unit 143 that determines the presence or absence of deformation exceeding the reference deformation amount of the wafer W as the substrate to be inspected based on the detection signal (detection information) of the light receiving unit 142. .
[0050] 投光部 141は、第一の投光器 151と、第一の投光器 151より下方に配置されている 第二の投光器 152とを備えている。各投光器 151、 152には、発光素子 (例えばレー ザダイオード等の LED)がそれぞれ内蔵されており、この発光素子によって発光され たレーザ光が、投光器 151、 152の外部にそれぞれ出射される構成になっている。 各投光器 151、 152は、基準状態のウェハ Wの周縁部よりも水平方向外側に位置す るように設けられている。  The light projecting unit 141 includes a first light projector 151 and a second light projector 152 disposed below the first light projector 151. Each of the projectors 151 and 152 has a built-in light emitting element (for example, an LED such as a laser diode), and the laser light emitted by the light emitting element is emitted to the outside of the projectors 151 and 152, respectively. It has become. Each of the projectors 151 and 152 is provided so as to be positioned on the outer side in the horizontal direction from the peripheral edge of the wafer W in the reference state.
[0051] 投光器 151によって投光されたレーザ光は、基準状態のウェハ Wの上面の直上を 通る略水平な第一の直線光路 L1を通過する(光路 L1に沿って進む)ようになって ヽ る。換言すれば、光路 L1は、基準状態のウェハ Wの上面と略平行に、即ち、基準状 態のウェハ Wの上面と交差しないようになっている。さらに、光路 L1は、基準状態の ウェハ Wの中央部 Wの真上を通過するように、即ち、平面視において基準状態のゥ  [0051] The laser light projected by the projector 151 passes through a substantially horizontal first linear optical path L1 passing directly above the upper surface of the wafer W in the reference state (goes along the optical path L1). The In other words, the optical path L1 is substantially parallel to the upper surface of the wafer W in the reference state, that is, does not intersect the upper surface of the wafer W in the reference state. Further, the optical path L1 passes directly above the center W of the wafer W in the reference state, that is, in the plan view,
C  C
ェハ Wの中央部 Wを通るようになつている(実質的に円形の基板であるウェハ Wにあ  It passes through the central part W of the wafer W (the wafer W, which is a substantially circular substrate)
C  C
つては「中央部」は、円の中心を意味する)。  “Center” means the center of the circle).
[0052] 投光器 152は、投光器 151より低い位置に設けられており、基準状態のウェハ Wと 容器 121の底部 121aとの間にレーザ光を投光するようなっている。投光器 152によ つて投光されたレーザ光は、基準状態のウェハ Wの下面の直下を通る略水平な第二 の直線光路 L2を通過する(光路 L2に沿って進む)ようになつている。換言すれば、 光路 L2は、基準状態のウェハ Wの下面と略平行に、即ち、基準状態のウェハ Wの下 面と交差しないようになっている。さらに、光路 L2は、支持部材 122A、 122B、 122 Cに遮断されないように設けられている。図示の例では、支持部材 122Aと支持部材 122Bとの間を通過して、基準状態のウェハ Wの中央部 Wの真下、即ち、平面視に  The projector 152 is provided at a position lower than the projector 151, and projects laser light between the wafer W in the reference state and the bottom 121 a of the container 121. The laser light projected by the projector 152 passes through a substantially horizontal second linear optical path L2 that passes immediately below the lower surface of the wafer W in the reference state (proceeds along the optical path L2). In other words, the optical path L2 is substantially parallel to the lower surface of the wafer W in the reference state, that is, does not intersect the lower surface of the wafer W in the reference state. Furthermore, the optical path L2 is provided so as not to be blocked by the support members 122A, 122B, and 122C. In the illustrated example, it passes between the support member 122A and the support member 122B, and is directly below the central portion W of the wafer W in the reference state, that is, in plan view.
C  C
おいて基準状態のウェハ Wの中央部 Wを通過し、さらに、支持部材 122Bと支持部 材 122Cの間を通過して、受光器 156に向力 ようになっている。 Passes through the central portion W of the wafer W in the reference state, and further supports the support member 122B and the support portion. It passes through the material 122C and is directed to the light receiver 156.
[0053] なお、図示の例では、光路 Ll、 L2は、平面視において互いに所定の角度で交差 するように配置されている。即ち、互いにねじれの位置にある関係になっている。また 、光路 L1と光路 L2との間の距離 (高さの差)は、例えば基準状態のウェハ Wが有す る所定の厚さ tよりも大きく形成されており、例えば図 11に示すように、厚さ tの約 2倍( 2t)程度であっても良い。  [0053] In the illustrated example, the optical paths Ll and L2 are arranged to intersect each other at a predetermined angle in plan view. That is, they are in a relationship of being twisted with each other. Further, the distance (height difference) between the optical path L1 and the optical path L2 is formed to be larger than a predetermined thickness t that the wafer W in the reference state has, for example, as shown in FIG. The thickness may be about twice the thickness t (2t).
[0054] 受光部 142は、 2つの受光器、即ち、第一の受光器 155と、第二の受光器 156とを 備えている。受光器 155、 156には、外部から入射したレーザ光を受光する受光素 子 (例えばフォトトランジスタ、フォトダイオード等)がそれぞれ内蔵されている。各受光 器 155、 156は、基準状態のウェハ Wの周縁部が位置するべき空間よりも外側に位 置するように設けられている。  The light receiving unit 142 includes two light receivers, that is, a first light receiver 155 and a second light receiver 156. Each of the light receivers 155 and 156 includes a light receiving element (for example, a phototransistor or a photodiode) that receives laser light incident from the outside. Each of the light receivers 155 and 156 is provided so as to be positioned outside the space where the peripheral edge of the wafer W in the reference state is to be located.
[0055] 受光器 155は、投光器 151から投光され光路 L1を通過したレーザ光を受光する位 置に配置されている。この場合、受光器 155は、投光器 151に対して、基準状態のゥ ェハ Wの直径方向に対向する位置に配置されている。受光器 156は、投光器 152か ら投光され光路 L2を通過したレーザ光を受光する位置に配置されて 、る。この場合 、受光器 156は、投光器 152に対して、基準状態のウェハ Wの直径方向に対向する 位置に配置されている。各受光器 155, 156に設けられている受光素子の検出信号 は、変形判定手段 143に送信されるようになっている。  The light receiver 155 is arranged at a position for receiving the laser light projected from the light projector 151 and passed through the optical path L1. In this case, the light receiver 155 is disposed at a position facing the projector 151 in the diameter direction of the wafer W in the reference state. The light receiver 156 is arranged at a position to receive the laser light emitted from the light projector 152 and passed through the optical path L2. In this case, the light receiver 156 is disposed at a position facing the projector 152 in the diameter direction of the wafer W in the reference state. The detection signals of the light receiving elements provided in the respective light receivers 155 and 156 are transmitted to the deformation determining means 143.
[0056] 投光器 151と受光器 155によって、レーザ光を利用して第一の光路 L1の遮断の有 無を検出する第一の光センサ 161が構成されている。また、投光器 152と受光器 15 6によって、レーザ光を利用して第二の光路 L2の遮断の有無を検出する第二の光セ ンサ 162が構成されて!、る。  [0056] The light projector 151 and the light receiver 155 constitute a first optical sensor 161 that uses laser light to detect whether the first optical path L1 is blocked or not. Further, the light projector 152 and the light receiver 156 constitute a second optical sensor 162 that detects the presence / absence of blocking of the second optical path L2 using laser light.
[0057] 投光器 151と受光器 155との間(投光器 152と受光器 156との間)に物体が無い状 態においては、投光器 151 (152)から投光されたレーザ光は、光路 LI (L2)に沿つ て直進し、受光器 155 (156)に受光される。この場合、受光素子において、所定のし きい値以上の強度の検出信号が出力される。一方、投光器 151と受光器 155との間 (投光器 152と受光器 156との間)にウェハ W等の物体が有る状態においては、投光 器 151 (152)から投光されたレーザ光の光路 L1 (光路 L2)が物体によって一部ない し完全に遮られる。この場合、受光器 155 (156)には、物体が無いときよりも弱い強 度のレーザ光が受光され、ないしは全く受光されず、受光素子において所定のしき い値未満の強度の検出信号が出力される(この状態を「光路の遮断」という)。 [0057] In a state where there is no object between the projector 151 and the receiver 155 (between the projector 152 and the receiver 156), the laser light projected from the projector 151 (152) is transmitted through the optical path LI (L2 ) And go straight to receiver 155 (156). In this case, a detection signal having an intensity equal to or greater than a predetermined threshold value is output from the light receiving element. On the other hand, when there is an object such as a wafer W between the projector 151 and the receiver 155 (between the projector 152 and the receiver 156), the optical path of the laser beam projected from the projector 151 (152) L1 (light path L2) is not part of the object And completely blocked. In this case, the receiver 155 (156) receives weaker laser light than when there is no object, or is not received at all, and a detection signal with an intensity less than a predetermined threshold value is output at the light receiving element. (This state is called “blocking of the optical path”).
[0058] 変形判定手段 143は、各受光器 155、 156の受光素子の検出信号に基づいて、支 持部材 122A、 122B、 122Cによって基準位置で基準姿勢に支持された被検査ゥェ ハ Wが基準変形度を超えて変形している力否かを判定できる。具体的には、光路 L1 、 L2のいずれも遮断されなかった場合(受光器 155、 156のいずれにおいても所定 のしきい値以上の強度の検出信号が出力された場合)は、被検査ウエノ、 Wに基準変 形度を超える変形は無い(正常である)と判定される。これに対し、光路 Ll、 L2のい ずれかが遮断された場合 (受光器 155、 156の 、ずれかにお 、て所定のしき 、値より 弱い検出信号が出力された場合)は、被検査ウェハ Wに基準変形度を超える変形が 有る(正常でな ヽ)と判定される。 [0058] The deformation determination means 143 is based on the detection signals of the light receiving elements of the light receivers 155 and 156, and the inspection wafer W supported by the supporting members 122A, 122B, and 122C at the reference position at the reference position is It can be determined whether or not the force is deforming beyond the reference deformation degree. Specifically, when neither of the optical paths L1 and L2 is blocked (when a detection signal with an intensity higher than a predetermined threshold value is output in either of the light receivers 155 and 156), It is determined that there is no deformation exceeding W in the W (normal). On the other hand, if either of the optical paths Ll or L2 is interrupted (if the detector 155 or 156 outputs a detection signal that is weaker than the specified threshold value), It is determined that the wafer W has deformation exceeding the standard deformation degree (normal ヽ).
なお、変形判定手段 143での判定基準となる「基準変形度」は、基準状態のウェハ Wの上面 Z下面と光路 L1Z光路 L2との間の距離を調整することにより任意に設定 することができる。  It should be noted that the “reference deformation degree” as a determination criterion in the deformation determination means 143 can be arbitrarily set by adjusting the distance between the upper surface Z lower surface of the wafer W in the reference state and the optical path L1Z optical path L2. .
[0059] なお、変形判定手段 143は、制御コンピュータ 200 (後述)の一部として構成するこ とができる。また、処理システム 1は、当該コンピュータ 200の一部として構成すること のできる処理判別手段 165を備えている。この処理判別手段 165は、変形検出シス テム 123における検査済みウェハにつ 、ての変形判定手段 143の判定結果に基づ いて、当該検査済みウェハ Wを処理部 3において処理する力否かを判別する。処理 判別手段 165は、検査済みウエノ、 Wが正常であると判定された場合は、当該ウエノ、 Wを処理すると判別し、当該ウェハ Wが正常ではないと判定された場合は、当該ゥェ ハ Wを処理しな 、と判別する。  Note that the deformation determination unit 143 can be configured as a part of the control computer 200 (described later). In addition, the processing system 1 includes a processing determination unit 165 that can be configured as a part of the computer 200. The processing determination unit 165 determines whether or not the processing unit 3 has the ability to process the inspected wafer W based on the determination result of the deformation determination unit 143 for the inspected wafer in the deformation detection system 123. To do. The processing discriminating means 165 discriminates that the inspected weno and W are to be processed when it is determined to be normal, and determines that the inferior wafer and W are to be processed. It is determined that W is not processed.
[0060] 上述のような構成を有する変形検出システム 123の動作、即ち、シャッター 132、 1 34の開閉動作、各投光器 151、 152からレーザ光を投光するタイミング等は、制御コ ンピュータ 200から送信される制御信号に基づいて制御される。  [0060] The operation of the deformation detection system 123 having the above-described configuration, that is, the opening / closing operation of the shutters 132 and 134, the timing of projecting the laser light from each of the projectors 151 and 152, and the like are transmitted from the control computer 200. Controlled based on the control signal.
[0061] 上段のウェハ受け渡しユニット 112は、上述した下段のウェハ受け渡しユニット 111 とほぼ同様に、容器 121、支持部材 122A、 122B、 122Cを備えている力 変形検 出システム 123が設けられて!/ヽな!、点が、ウェハ受け渡しユニット 111とは異なって ヽ る。 [0061] The upper-stage wafer transfer unit 112 is a force-deformation detector provided with a container 121 and support members 122A, 122B, and 122C in substantially the same manner as the lower-level wafer transfer unit 111 described above. This is different from the wafer transfer unit 111 in that an output system 123 is provided.
[0062] 次に、洗浄ユニット群 73について説明する。  Next, the cleaning unit group 73 will be described.
図 1及び図 2に示すように、洗浄ユニット群 73には、 2台の基板処理装置としての基 板洗浄ユニット 180A、 180Bが下段に X軸方向に並べて配設され、その上段にも 2 台の基板処理装置としての基板洗浄ユニット 180C、 180D力 X軸方向に並べて配 設された構成になっている。  As shown in FIGS. 1 and 2, in the cleaning unit group 73, two substrate cleaning units 180A and 180B as substrate processing apparatuses are arranged side by side in the X-axis direction on the lower stage, and two in the upper stage. Substrate cleaning unit 180C, 180D force as a substrate processing apparatus of this type is arranged side by side in the X-axis direction.
[0063] 図 12に示すように、基板洗浄ユニット 180Aの容器 181の内部には、ウェハ Wを略 水平に保持して回転させるスピンチャック 182と、スピンチャック 182によって保持さ れたウェハ Wの上面に対して例えば薬液、リンス液等の処理液 (洗浄液)を供給する 供給ノズル 183が備えられている。スピンチャック 182は、例えばメカ-カルチャック であり、ウェハ Wの周縁部に当接させる複数、例えば 3つの当接部材 184を有してい る。これらの当接部材 184をウェハ Wの周縁部の 3箇所にそれぞれ外側から当接さ せることにより、ウェハ Wを保持するようになっている。スピンチャック 182の下端部に は、スピンチャック 182を回転させるモータ 185が接続されている。  [0063] As shown in FIG. 12, inside the container 181 of the substrate cleaning unit 180A, a spin chuck 182 that holds and rotates the wafer W substantially horizontally, and an upper surface of the wafer W held by the spin chuck 182 For example, a supply nozzle 183 for supplying a processing liquid (cleaning liquid) such as a chemical liquid or a rinsing liquid is provided. The spin chuck 182 is, for example, a mechanical chuck, and has a plurality of, for example, three abutting members 184 that abut on the peripheral edge of the wafer W. These abutting members 184 are brought into contact with the three peripheral portions of the wafer W from the outside so as to hold the wafer W. A motor 185 that rotates the spin chuck 182 is connected to the lower end of the spin chuck 182.
モータ 185の駆動は、後述する制御コンピュータ 200の制御信号によって制御される  The driving of the motor 185 is controlled by a control signal of the control computer 200 described later.
[0064] 基板洗浄ユニット 180B、 180C、 180Dは、基板洗浄ユニット 180Aとほぼ同様の 構成を有するので、詳細な説明は省略する。 [0064] Since the substrate cleaning units 180B, 180C, and 180D have substantially the same configuration as the substrate cleaning unit 180A, detailed description thereof is omitted.
[0065] 図 3に示すように、加熱 ·冷却ユニット群 74は、主ウェハ搬送機構 71を挟んで受け 渡しユニット群 72の反対側に配置されている。この加熱'冷却ユニット群 74には、冷 去口ユニット 191、カロ熱ユニット 192A、 192B、 192C力 下力らこの川頁に積み重ねられ た状態で備えられている。 As shown in FIG. 3, the heating / cooling unit group 74 is disposed on the opposite side of the delivery unit group 72 with the main wafer transfer mechanism 71 interposed therebetween. This heating / cooling unit group 74 is provided in a state where the cooling port unit 191 and the calo heat unit 192A, 192B, 192C and the like are stacked on this river page.
[0066] 図 1に示すように、制御.ユーティリティユニット群 75には、処理システム 1の電源で ある電装ユニット 195、制御ユニット 196、基板洗浄ユニット 180A〜180Dに送液す る洗浄用の薬液を貯蔵する薬液貯蔵ユニット 197とが配設されている。 [0066] As shown in FIG. 1, in the control utility unit group 75, cleaning chemicals to be fed to the electrical unit 195, the control unit 196, and the substrate cleaning units 180A to 180D, which are the power sources of the processing system 1, are supplied. A chemical storage unit 197 for storing is disposed.
[0067] 制御ユニット 196には、ウェハ搬送装置 30、主ウェハ搬送装置 71、ウェハ受け渡し ユニット 111、 112、基板洗浄ユニット 180A〜180D等、処理システム 1内の各種装 置の動作の自動制御を行う制御部としての制御コンピュータ 200が設けられて 、る。 この制御コンピュータ 200には、処理システム 1の各機能要素力 信号ライン等を介し て接続されている。ここで、機能要素とは、例えば前述したウェハ搬送装置 30の移動 手段 33、サーボ機構 42、主ウェハ搬送装置 71のモータ 85、モータ 92等の、所定の 工程を実現するために動作する総ての要素を意味して 、る。制御コンピュータ 200は 、典型的には、実行するソフトウェアに依存して任意の機能を実現することができる汎 用コンピュータである。 [0067] The control unit 196 includes various devices in the processing system 1, such as the wafer transfer device 30, the main wafer transfer device 71, the wafer transfer units 111 and 112, and the substrate cleaning units 180A to 180D. A control computer 200 is provided as a control unit for automatically controlling the operation of the apparatus. The control computer 200 is connected via each functional element force signal line of the processing system 1. Here, the functional elements are all the elements that operate to realize a predetermined process, such as the moving means 33 of the wafer transfer device 30, the servo mechanism 42, the motor 85 of the main wafer transfer device 71, the motor 92, etc. Means the element of The control computer 200 is typically a general-purpose computer that can realize an arbitrary function depending on the software to be executed.
[0068] 図 1に示すように、制御コンピュータ 200は、 CPU (中央演算装置)を備えた演算部 200aと、演算部 200aに接続された入出力部 200bと、入出力部 200bに挿着され制 御ソフトウェアを格納した記録媒体 200cと、を備えており、さらに、例えば前述したマ ッビング機構 41の収納状態判定部 55 (図 5)、変形検出システム 123の変形判定手 段 143 (図 10)、処理判別手段 165 (図 10)等を備えている。  As shown in FIG. 1, the control computer 200 is inserted into the input / output unit 200b, the calculation unit 200a having a CPU (central processing unit), the input / output unit 200b connected to the calculation unit 200a. And a storage medium determination unit 55 (FIG. 5) of the above-described mapping mechanism 41 and a deformation determination unit 143 (FIG. 10) of the deformation detection system 123. And a processing discrimination means 165 (FIG. 10).
[0069] 記録媒体 200cには、制御コンピュータ 200によって実行されることにより各種の動 作を行わせる制御ソフトウェアが記録されている。力かる制御ソフトウェアとは、例えば 、ウェハ受け渡しユニット 111の変形検出システム 123に後述する所定の変形検出 方法を行わせるソフトウェア、あるいは、基板洗浄ユニット 180A〜180Dに後述する 所定の洗浄処理を行わせるソフトウェア等である。制御コンピュータ 200は、該制御ソ フトウエアを実行することにより、処理システム 1の各機能要素を、様々な条件 (例えば 、モータ 85、 92の回転数等)が実現されるように制御する。  [0069] Control software that executes various operations by being executed by the control computer 200 is recorded in the recording medium 200c. The control software that can be used is, for example, software that causes the deformation detection system 123 of the wafer transfer unit 111 to perform a predetermined deformation detection method that will be described later, or software that causes the substrate cleaning units 180A to 180D to perform a predetermined cleaning process that will be described later. Etc. By executing the control software, the control computer 200 controls each functional element of the processing system 1 so that various conditions (for example, the rotational speeds of the motors 85 and 92) are realized.
[0070] 記録媒体 200cは、制御コンピュータ 200に固定的に設けられるもの、あるいは、制 御コンピュータ 200に設けられた図示しない読み取り装置に着脱自在に装着されて 該読み取り装置により読み取り可能なものであっても良い。最も典型的な実施形態に おいては、記録媒体 200cは、制御ソフトウェアがインストールされたハードディスクド ライブである。他の実施形態においては、記録媒体 200cは、制御ソフトウェアが書き 込まれた CD—ROM又は DVD— ROMのような、リムーバブルディスクである。この ようなリムーバブルディスクは、制御コンピュータ 200に設けられた図示しない光学的 読取装置により読み取られる。また、記録媒体 200cは、 RAM (Random Access Memory)又は ROM (Read Only Memory)のいずれの形式のものであっても良 い。さらに、記録媒体 200cは、カセット式の ROMのようなものであっても良い。要す るに、コンピュータの技術分野において知られている任意のものを記録媒体 200cと して用いることが可能である。 [0070] The recording medium 200c is fixedly provided in the control computer 200, or is detachably attached to a reading device (not shown) provided in the control computer 200 and can be read by the reading device. May be. In the most typical embodiment, the recording medium 200c is a hard disk drive in which control software is installed. In another embodiment, the recording medium 200c is a removable disk such as a CD-ROM or DVD-ROM in which control software is written. Such a removable disk is read by an optical reading device (not shown) provided in the control computer 200. Further, the recording medium 200c may be in any format of RAM (Random Access Memory) or ROM (Read Only Memory). Yes. Further, the recording medium 200c may be a cassette type ROM. In short, any medium known in the technical field of computers can be used as the recording medium 200c.
[0071] 次に、以上のように構成された処理システム 1を用いたウェハ Wの処理工程につい て説明する。先ず、未だ処理システム 1における処理が施されていない複数枚のゥヱ ハ Wが収納されたキャリア C力 図示しな 、キャリア搬送装置によって処理システム 1 の外部力 搬送され、キャリア載置台 25に載置される。キャリア Cを載置したら、シャツ ター 27及び蓋体 21を外して、ゲート 26と開口 20を開口させる。  Next, the processing steps for wafer W using processing system 1 configured as described above will be described. First, the carrier C force containing a plurality of wafers W that have not yet been processed in the processing system 1 is transported to the carrier mounting table 25 by an external force of the processing system 1 by a carrier transport device (not shown). Placed. After carrier C is placed, shirt 27 and lid 21 are removed, and gate 26 and opening 20 are opened.
[0072] このキャリア C内に正常な(変形して!/、な 、)ウェハ Wが正常に収納されて 、る場合 、ウェハ Wは各スロット 22に 1枚ずつ収容されて、所定間隔を空けて互いに略平行に 並べられた状態になっている。キャリア Cがキャリア載置台 25に正常に載置されると、 ウェハ Wは略水平な姿勢で上下に整列され、平面視において互いにほぼ同じ位置 に重なるように配列された状態になる。  [0072] When normal (deformed! /,) Wafers W are normally stored in the carrier C, one wafer W is stored in each slot 22 with a predetermined interval. Are in a state of being arranged substantially parallel to each other. When the carrier C is normally mounted on the carrier mounting table 25, the wafers W are vertically aligned in a substantially horizontal posture, and are arranged so as to overlap each other in the plan view.
[0073] 次に、キャリア C内のウェハ Wの整列状態を確認するマッピング検査を行う。かかる マッピング検査においては、先ず、ウェハ搬送装置 30のセンサアーム 52、 54が前進 させられ、投光部 51、受光部 53が、ゲート 26、開口 20を介してキャリア C内に進入さ せられ、キャリア C内の所定位置、即ち、例えば最も下段に位置するウェハ Wとキヤリ ァ Cの底面との間の高さに配置され、かつ、平面視において、投光部 51と受光部 53 との間に、キャリア C内のウェハ Wの周縁部の一部(開口 20側に向けられているスロッ ト 22に保持されていない部分)が配置されるような位置に移動させられる。  Next, a mapping inspection for confirming the alignment state of the wafers W in the carrier C is performed. In such a mapping inspection, first, the sensor arms 52 and 54 of the wafer transfer device 30 are advanced, and the light projecting unit 51 and the light receiving unit 53 are caused to enter the carrier C through the gate 26 and the opening 20, It is disposed at a predetermined position in the carrier C, that is, for example, at a height between the wafer W located at the lowest stage and the bottom surface of the carrier C, and between the light projecting unit 51 and the light receiving unit 53 in plan view. Then, a part of the peripheral edge of the wafer W in the carrier C (a part not held in the slot 22 facing the opening 20) is moved to a position where it is arranged.
[0074] こうして、投光部 51、受光部 53が所定位置に配置されたら、投光部 51からレーザ 光を投光させながら、投光部 51、受光部 53を基台 34と一体的に、ウェハ Wに対して 上昇させる。投光部 51、受光部 53は、各ウェハ Wの両側、即ち、キャリア Cの内側面 と各ウェハ Wの開口 20側の周縁部との間の隙間を通過しながら、キャリア Cの内側面 に沿って、また、ウェハ Wの整列方向に沿って上昇させられる。  Thus, when the light projecting unit 51 and the light receiving unit 53 are arranged at predetermined positions, the light projecting unit 51 and the light receiving unit 53 are integrated with the base 34 while projecting the laser beam from the light projecting unit 51. Raise the wafer W. The light projecting unit 51 and the light receiving unit 53 are formed on both sides of each wafer W, that is, on the inner side of the carrier C while passing through a gap between the inner side of the carrier C and the peripheral portion on the opening 20 side of each wafer W. Along the alignment direction of the wafer W.
[0075] 投光部 51と受光部 53との間にウェハ Wが存在しないとき、即ち、投光部 51、受光 部 53がウェハ W同士の間に形成されている隙間と同じ高さを移動する間は、投光部 51から投光されたレーザ光は、途中で遮られることなく光路 L0に沿って進み、受光 部 53によって受光される。受光素子においては、受光されたレーザ光の強度に応じ た電流が発生し、収納状態判定部 55において、所定のしきい値の検出信号が検出 される。一方、投光部 51と受光部 53との間にウェハ Wが存在するとき、即ち、投光部 51、受光部 53がウェハ Wと同じ高さを移動する間は、投光部 51から投光されたレー ザ光はウェハ Wの開口 20側の周縁部によって反射され、光路 L0が遮られる。収納 状態判定部 55においては、所定のしきい値未満の検出信号が検出される。 [0075] When the wafer W does not exist between the light projecting unit 51 and the light receiving unit 53, that is, the light projecting unit 51 and the light receiving unit 53 move the same height as the gap formed between the wafers W. During this period, the laser light projected from the light projecting unit 51 travels along the optical path L0 without being interrupted, and receives light. The light is received by the unit 53. In the light receiving element, a current corresponding to the intensity of the received laser beam is generated, and the storage state determination unit 55 detects a detection signal having a predetermined threshold value. On the other hand, when the wafer W exists between the light projecting unit 51 and the light receiving unit 53, that is, while the light projecting unit 51 and the light receiving unit 53 move at the same height as the wafer W, the light projecting unit 51 projects the light. The emitted laser light is reflected by the peripheral edge of the wafer W on the opening 20 side, and the optical path L0 is blocked. In the storage state determination unit 55, a detection signal less than a predetermined threshold value is detected.
[0076] こうして、投光部 51、受光部 53がキャリア C内の所定位置、即ち、例えば最も上段 に位置するウェハ Wとキャリア Cの天井面との間の高さに移動するまで上昇させられ る。これにより、キャリア C内の各ウェハ Wが所定の高さに保持されている力否かを検 查できる。即ち、受光部 53の移動量と光路 LOが遮断された位置とに基づいて、各ゥ ェハ Wが保持されている高さ、各ウェハ Wの厚さ、各ウェハ W同士の間の隙間の幅等 を測定することができ、これらの情報が含まれたマッピングデータを検出することがで きる。投光部 51、受光部 53がキャリア C内の所定位置に到達したら、センサアーム 5 2、 54を後退させ、投光部 51、受光部 53をキャリア C内から退出させる。  In this manner, the light projecting unit 51 and the light receiving unit 53 are raised until they move to predetermined positions in the carrier C, that is, for example, to the height between the wafer W located at the uppermost stage and the ceiling surface of the carrier C. The As a result, it is possible to check whether or not each wafer W in the carrier C is held at a predetermined height. That is, based on the amount of movement of the light receiving portion 53 and the position where the optical path LO is blocked, the height at which each wafer W is held, the thickness of each wafer W, and the gap between each wafer W The width and the like can be measured, and mapping data including such information can be detected. When the light projecting unit 51 and the light receiving unit 53 reach predetermined positions in the carrier C, the sensor arms 52 and 54 are moved backward, and the light projecting unit 51 and the light receiving unit 53 are moved out of the carrier C.
[0077] 収納状態判定部 55には、例えばキャリア C内にウェハ Wが正常に収納されている 状態で得られるべき、信頼性が確認されて 、る基準マッピングデータが記憶されて ヽ る。この基準マッピングデータと検出されたマッピングデータとを比較することにより、 検出されたマッピングデータが正常である力否力、即ち、キャリア C内のウェハ Wが正 常に収納されているか否かを判定することができる。  In the storage state determination unit 55, for example, reference mapping data that is confirmed to be reliable and should be obtained in a state where the wafer W is normally stored in the carrier C is stored. By comparing the reference mapping data with the detected mapping data, it is determined whether or not the detected mapping data is normal, that is, whether or not the wafer W in the carrier C is correctly stored. be able to.
[0078] キャリア C内にゥヱハ Wが正常に収納されており、かつ、各ウェハ Wの周縁部の形 状が正常である場合は、検出されたマッピングデータは正常であると判定される。そ して、制御コンピュータ 200の制御命令により、後述するようにウェハ搬送装置 30に よってキャリア C内のウェハ Wが取り出され、下段のウェハ受け渡しユニット 111に搬 送される。  If the wafer W is normally stored in the carrier C and the shape of the peripheral edge of each wafer W is normal, it is determined that the detected mapping data is normal. Then, according to the control command of the control computer 200, the wafer W in the carrier C is taken out by the wafer transfer device 30 and transferred to the lower wafer transfer unit 111 as will be described later.
[0079] 一方、例えば、 V、ずれかのウェハ Wがキャリア C内で傾斜した状態で保持されて ヽ る、いずれかのスロット 22にウェハ Wが保持されていない、キャリア Cが傾いた状態で 載置されているといった異常がある場合、基準マッピングデータと検出されたマツピン グデータとの間にずれが生じる。従って、ウェハ Wが正常に収納されていない可能性 があることを検知できる。また、いずれかのウェハ Wの開口 20側に位置する周縁部が 歪んでいたり、割れていたりしているといった不良がある場合も、基準マッピングデー タと検出されたマッピングデータとの間にずれが生じることがある。即ち、例えば検出 されたウェハ Wの厚さが、正常な厚さはりも大きい値として検出されることがある。従 つて、ウェハ Wの形状が正常でな 、可能性があることを検知できる。 [0079] On the other hand, for example, V or a misaligned wafer W is held in an inclined state in the carrier C, and no wafer W is held in any of the slots 22, while the carrier C is in an inclined state. When there is an abnormality such as being placed, there is a gap between the reference mapping data and the detected mapping data. Therefore, there is a possibility that the wafer W is not stored properly. It can detect that there is. In addition, even if there is a defect such as a peripheral edge located on the opening 20 side of any wafer W being distorted or cracked, there is a gap between the reference mapping data and the detected mapping data. May occur. That is, for example, the detected thickness of the wafer W may be detected as a value with a large normal thickness beam. Therefore, it is possible to detect that the shape of the wafer W is normal.
このように、検出されたマッピングデータより、正常でないと判定された場合は、ゥェ ハ搬送装置 30によるウェハ Wの取り出しを行わないようにしても良い。あるいは、例え ば制御コンピュータ 200等にぉ 、て警報を発生させ、管理者に知らせるようにしても 良い。また、いずれかのウェハ Wが正常でないと判定された場合は、そのウェハ Wを ウェハ受け渡しユニット 111に搬送させず、処理システム 1における処理を行わずに、 処理システム 1から払 、出すようにしても良 、。  As described above, when it is determined that the detected mapping data is not normal, the wafer W may not be taken out by the wafer transfer device 30. Alternatively, for example, an alarm may be generated in the control computer 200 or the like to notify the administrator. If any of the wafers W is determined to be not normal, the wafer W is not transferred to the wafer delivery unit 111 and is not processed in the processing system 1, and is paid out from the processing system 1. Also good.
[0080] 以上のマッピング検査が行われた後、ウェハ搬送装置 30によってキャリア Cからゥェ ハ Wが搬出される。先ず、ウェハ搬送装置 30の搬送アーム 35が、ゲート 41、開口 20 を介してキャリア C内に先端部力 進入させられ、ウェハ Wの下方に進入させられる。 その後、搬送アーム 35が僅かに上昇させられ、搬送アーム 35の上方に位置する一 枚のウェハ Wが搬送アーム 35の上面に載せられる。その後、搬送アーム 35が後退さ せられると、搬送アーム 35に保持されたウェハ W力 両側のスロット 22から抜き出さ れる。このようにウエノ、 Wが取り出される際、前述したマッピング検査によって、ウェハ Wがキャリア C内にお!、て正常な位置に保持されて 、ることが予め確認されて 、るの で、搬送アーム 35がウェハ Wに干渉することを防止でき、ウェハ Wを安全に取り出す ことができる。 After the above mapping inspection is performed, wafer W is unloaded from carrier C by wafer transfer device 30. First, the transfer arm 35 of the wafer transfer device 30 is caused to enter the carrier C through the gate 41 and the opening 20 and enter below the wafer W. Thereafter, the transfer arm 35 is slightly raised, and one wafer W positioned above the transfer arm 35 is placed on the upper surface of the transfer arm 35. Thereafter, when the transfer arm 35 is retracted, the wafer W force held by the transfer arm 35 is extracted from the slots 22 on both sides. Thus, when the wafer W is taken out, it is confirmed in advance by the above-described mapping inspection that the wafer W is held in the normal position in the carrier C. It is possible to prevent 35 from interfering with the wafer W, and the wafer W can be taken out safely.
[0081] こうして搬送アーム 35によってウェハ Wが取り出された後、基台 34が下段のウェハ 受け渡しユニット 111の正面側に移動させられ、ウェハ受け渡しユニット 111の搬入 出口 131が開かれ、搬送アーム 35が搬入出口 131を介して容器 121内に進入させ られる。そして、搬送アーム 35上のウェハ Wが、支持部材 122A、 122B、 122Cの上 端に載せられて支持される。ウエノヽ Wを支持部材 122A、 122B、 122Cに受け渡した 後、搬送アーム 35は、ウェハ Wの下方において後退させられ、容器 121から退出さ せられる。その後、シャッター 132によって搬入出口 131が閉じられる。こうして、ゥェ ハ wがウェハ受け渡しユニット 111内に搬入される。 After the wafer W is taken out by the transfer arm 35 in this way, the base 34 is moved to the front side of the lower wafer transfer unit 111, the transfer port 131 of the wafer transfer unit 111 is opened, and the transfer arm 35 is moved. It is made to enter the container 121 through the loading / unloading port 131. The wafer W on the transfer arm 35 is placed on and supported by the upper ends of the support members 122A, 122B, and 122C. After the Weno iron W is transferred to the support members 122A, 122B, and 122C, the transfer arm 35 is retracted below the wafer W and retracted from the container 121. Thereafter, the loading / unloading port 131 is closed by the shutter 132. In this way C) W is loaded into the wafer transfer unit 111.
[0082] 次に、変形検出システム 123によって、ウェハ Wの変形があるか否かを検出する変 形検査を行う。先ず、投光器 151、 152からそれぞれレーザ光を投光させる。すると、 支持部材 122A、 122B、 122C上にウェハ Wが正常に支持されており、かつ、ウェハ Wの形状が正常である場合は、投光器 151から投光されたレーザ光は、ウェハ Wより 上方において光路 L1に沿って進み、受光器 155によって受光される。また、投光器 152から投光されたレーザ光は、ウェハ Wより下方において光路 L2に沿って進み、 受光器 156によって受光される。こうして、各受光器 155、 156において、それぞれ 所定の強度のレーザ光が受光され、それぞれ所定のしきい値の検出信号が検出さ れる。従って、変形判定手段 143においては、当該ウェハ Wは正常であると判定され る。この場合は、処理判別手段 165において、ウェハ Wの処理を行うと判別され、後 述するように、主ウェハ搬送装置 71によってウェハ Wがウェハ受け渡しユニット 111か ら搬出され、基板洗浄ユ ット 180A〜180Dのいずれかに搬入される。  Next, a deformation inspection is performed by the deformation detection system 123 to detect whether or not the wafer W is deformed. First, laser beams are projected from the projectors 151 and 152, respectively. Then, when the wafer W is normally supported on the supporting members 122A, 122B, and 122C, and the shape of the wafer W is normal, the laser light projected from the projector 151 is above the wafer W. The light travels along the optical path L1 and is received by the light receiver 155. Further, the laser light projected from the light projector 152 travels along the optical path L2 below the wafer W and is received by the light receiver 156. In this manner, each of the light receivers 155 and 156 receives laser light having a predetermined intensity, and detects a detection signal having a predetermined threshold value. Therefore, the deformation determination unit 143 determines that the wafer W is normal. In this case, the processing discriminating means 165 discriminates that the wafer W is to be processed, and, as will be described later, the main wafer transfer device 71 carries out the wafer W from the wafer delivery unit 111, and the substrate cleaning unit 180A. It is carried into any of ~ 180D.
[0083] 一方、支持部材 122A、 122B、 122C上にウェハ Wが正常に支持されていない場 合、あるいは、ゥヱハ Wが変形している場合等では、投光器 151、 152のいずれかに ぉ ヽて投光されたレーザ光力 ウェハ Wによって遮断されることがある。  [0083] On the other hand, when the wafer W is not normally supported on the support members 122A, 122B, and 122C, or when the wafer W is deformed, etc., contact one of the projectors 151 and 152. Projected laser power may be blocked by wafer W.
[0084] 例えば図 13に示すように、ウェハ Wが熱応力の影響等により反り返った状態になつ ていることがある。即ち、水平姿勢にあるウェハ W力 その中央部 W側から周縁部に  For example, as shown in FIG. 13, the wafer W may be warped due to the influence of thermal stress or the like. That is, the wafer W force in the horizontal posture From the center W side to the peripheral part
C  C
向力うに従って上昇するような反りが生じていることがある。この場合、ウエノ、 wは、そ の中央部 w付近を最下部として、下に凸状に歪んだ状態になっている。このようなゥ  There may be warping that rises as you go. In this case, Ueno, w is in a state of being distorted convexly downward, with its central portion w being the lowermost portion. Like this
C  C
ェハ Wは、中央部 W付近では大きく変形しているが、周縁部付近の変形が小さいた  Yeha W is greatly deformed near the center W, but the deformation near the periphery is small.
C  C
め、前述したマッピング検査では、変形していることが検出され難ぐ正常なウェハ W と判定されて、ウェハ受け渡しユニット 111内に搬入されることがある。  Therefore, in the above-described mapping inspection, it may be determined that the wafer W is a normal wafer W that is difficult to detect, and may be loaded into the wafer delivery unit 111.
[0085] このような下に凸状に反ったウェハ Wが支持部材 122A、 122B、 122Cに支持され ると、ウェハ Wの周縁部付近力 基準状態のウェハ Wの上面よりも高い位置に上昇し た状態になることがあり、さらに、ウエノ、 Wの周縁部付近によって光路 L1が遮られるこ とがある。その場合、投光器 151から投光されたレーザ光力 ウェハ Wの周縁部付近 によって反射され、受光器 155においては、所定のしきい値より低い強度の検出信 号が出力される。 When such a downwardly warped wafer W is supported by the supporting members 122A, 122B, 122C, the peripheral force of the wafer W increases to a position higher than the upper surface of the wafer W in the reference state. In addition, the optical path L1 may be blocked by the vicinity of the periphery of Ueno and W. In this case, the laser beam power projected from the projector 151 is reflected by the vicinity of the peripheral edge of the wafer W, and the receiver 155 detects a detection signal having an intensity lower than a predetermined threshold value. Is output.
[0086] また、下に凸状に反ったウエノ、 Wが支持部材 122A、 122B、 122Cに支持されると [0086] Further, when Ueno, W, which warps downward, is supported by the supporting members 122A, 122B, 122C.
、ウェハ Wの中央部 W付近の下面が、基準状態のウェハ Wの下面よりも低い位置に c The lower surface of the wafer W near the center W is positioned lower than the lower surface of the reference wafer W. c
下降した状態になることがあり、さらに、ウェハ Wの下面によって光路 L2が遮られるこ とがある。その場合、投光器 152から投光されたレーザ光力 ウェハ Wの下面によつ て反射され、受光器 156においては、所定のしきい値より低い強度の検出信号が出 力される。  The optical path L2 may be blocked by the lower surface of the wafer W. In this case, the laser light power projected from the projector 152 is reflected by the lower surface of the wafer W, and the light receiver 156 outputs a detection signal having an intensity lower than a predetermined threshold value.
[0087] 以上のように、受光器 155、 156のいずれ力において、所定のしきい値より低い強 度の検出信号が出力された場合、変形判定手段 143においては、当該ウェハ Wは 正常ではないと判定される。この場合は、処理判別手段 165において、ウェハ Wの処 理を行わないと判別され、ウェハ Wは基板洗浄ユニット 180A〜180Dには搬送され ず、ウェハ搬送装置 30によって搬入出口 131を介して搬出される。そして、基板洗浄 ユニット 180A〜 180Dにおける処理が行われな!/、まま、例えばキャリア C等に戻され 、あるいは、処理システム 1の外部に払い出される。なお、変形判定手段 143におい てウェハ Wが正常ではないと判定された場合は、制御コンピュータ 200において警報 を発生させ、管理者に知らせるようにしても良い。  As described above, when a detection signal having an intensity lower than a predetermined threshold is output at any force of the light receivers 155 and 156, the wafer W is not normal in the deformation determination unit 143. It is determined. In this case, the processing discriminating means 165 discriminates that the processing of the wafer W is not performed, and the wafer W is not transferred to the substrate cleaning units 180A to 180D, but is transferred by the wafer transfer device 30 via the loading / unloading port 131. The Then, the substrate cleaning units 180A to 180D are not processed! /, For example, returned to the carrier C or the like, or are discharged to the outside of the processing system 1. When the deformation determination unit 143 determines that the wafer W is not normal, the control computer 200 may generate an alarm to notify the administrator.
[0088] こうして、変形検出システム 123によるウエノ、 Wの変形検査が行われ、変形判定手 段 143において正常であると判定されたウェハ Wのみ力 主ウェハ搬送装置 71の搬 送アーム 82Aによって、搬入出口 133を介して容器 121から搬出され、基板洗浄ュ ニット 180A〜 180Dの!、ずれかに搬入される。各基板洗浄ユニット 180A〜 180D においては、ウェハ Wは搬送アーム 82Aからスピンチャック 182に受け渡され、ウェハ Wの周縁部に各当接部材 184がそれぞれ当接させられた状態で保持される。そして 、スピンチャック 182によって回転させられながら、ウェハ Wの上面に薬液、リンス液 等の処理液が順次供給され、所定の洗浄処理が施される。これにより、ウェハ Wに付 着したパーティクル、あるいは自然酸化膜等の汚染物が除去される。  [0088] In this way, deformation inspection of the wafer and W is performed by the deformation detection system 123, and only the wafer W determined to be normal in the deformation determination means 143 is loaded by the transfer arm 82A of the main wafer transfer device 71. It is unloaded from the container 121 through the outlet 133 and is loaded into the substrate cleaning units 180A to 180D. In each of the substrate cleaning units 180A to 180D, the wafer W is transferred from the transfer arm 82A to the spin chuck 182 and held in a state where the contact members 184 are in contact with the peripheral edge of the wafer W. Then, while being rotated by the spin chuck 182, treatment liquids such as a chemical liquid and a rinse liquid are sequentially supplied to the upper surface of the wafer W, and a predetermined cleaning process is performed. As a result, contaminants such as particles attached to the wafer W or a natural oxide film are removed.
[0089] ここで、ウェハ Wは予めウェハ受け渡しユニット 111内の変形検出システム 123によ つて、基準変形度を超える変形をしていないことが確認されている。即ち、仮に変形 検出システム 123において検出されない変形があつたとしても、十分に小さいもので あり、基板洗浄ユニット 180A〜180Dにおいて処理を行っても破損が生じるおそれ がない程度の、安全な範囲であるといえる。従って、ウェハ Wの周縁部に当接部材 1 84を当接させても、ウェハ Wに過剰な応力が発生すること、ウェハ Wが破損すること を防止できる。また、スピンチャック 182によってウェハを回転させると、ウェハ Wの下 方の空間が陰圧となり、ウェハ Wを下方に移動させようとする下向きの力が発生する 力 そのような力が発生しても、ウェハ Wに過剰な応力が発生すること、ウェハ Wが破 損することを防止できる。 Here, it is confirmed in advance by the deformation detection system 123 in the wafer delivery unit 111 that the wafer W has not been deformed beyond the reference deformation degree. That is, even if there are deformations that are not detected by the deformation detection system 123, they are sufficiently small. Yes, it can be said that this is a safe range where there is no risk of damage even if the substrate cleaning units 180A to 180D are processed. Therefore, even if the contact member 184 is brought into contact with the peripheral edge of the wafer W, it is possible to prevent excessive stress from being generated on the wafer W and damage to the wafer W. Further, when the wafer is rotated by the spin chuck 182, the space below the wafer W becomes negative pressure, and a downward force is generated to move the wafer W downward. It is possible to prevent the wafer W from being excessively stressed and the wafer W from being damaged.
[0090] ウェハ Wの洗浄処理が終了すると、主ウェハ搬送装置 71の搬送アーム 82Bによつ て、スピンチャック 182に保持されていたウェハ Wが受け取られ、基板洗浄ユニット 18 0A〜180D力も搬出され、ウェハ受け渡しユニット 112に搬入される。ウェハ受け渡し ユニット 112に搬入されたウェハ Wは、ウェハ搬送装置 30によって保持され、ウェハ 受け渡しユニット 112から搬出され、再びキャリア C内に戻される。  [0090] When the cleaning process for wafer W is completed, wafer W held by spin chuck 182 is received by transfer arm 82B of main wafer transfer apparatus 71, and substrate cleaning units 180A to 180D are also carried out. The wafer is transferred to the wafer transfer unit 112. The wafer W carried into the wafer delivery unit 112 is held by the wafer transfer device 30, carried out from the wafer delivery unit 112, and returned to the carrier C again.
[0091] 力かる処理システム 1によれば、ウェハ Wが基板洗浄ユニット 180A〜180Dに搬入 される前に、マッピング機構 41、及び、ウェハ受け渡しユニット 111の変形検出システ ム 123によって、ウェハ Wの形状が正常であるか否かを検査することにより、ウェハ W の変形を発見することができ、変形したウェハ Wを基板洗浄ユニット 180A〜180Dに おいて処理しないようにすることができる。これにより、基板洗浄ユニット 180A〜180 Dの容器 181内において、変形しているウェハ Wがスピンチャック 182の保持力、スピ ンチャック 182の回転による下向きの力等を受けて破損することを防止できる。従って 、ウェハ Wの破損によってウェハ Wの破片が容器 181内に散乱すること、容器 181内 の機器が損傷することを防止できる。即ち、ウェハ Wの破損のために基板洗浄ュ-ッ ト 180A〜180D内の処理が中断されることを防止できる。  According to the powerful processing system 1, before the wafer W is transferred into the substrate cleaning units 180A to 180D, the shape of the wafer W is determined by the mapping mechanism 41 and the deformation detection system 123 of the wafer delivery unit 111. By inspecting whether the wafer is normal, the deformation of the wafer W can be found, and the deformed wafer W can be prevented from being processed in the substrate cleaning units 180A to 180D. Accordingly, it is possible to prevent the deformed wafer W from being damaged due to the holding force of the spin chuck 182 and the downward force due to the rotation of the spin chuck 182 in the containers 181 of the substrate cleaning units 180A to 180D. Therefore, it is possible to prevent the fragments of the wafer W from being scattered in the container 181 due to the breakage of the wafer W and the equipment in the container 181 from being damaged. That is, it is possible to prevent the processing in the substrate cleaning units 180A to 180D from being interrupted due to the breakage of the wafer W.
[0092] 特に、変形検出システム 123においては、ウェハ Wの上下に光路 Ll、 L2をそれぞ れ設けたことにより、支持部材 122A、 122B、 122Cにおいてウェハ Wが上方に向か つて変形している場合も、下方に向力つて変形している場合も、力かるウェハ Wの変 形を確実に検出できる。さらに、光路 Ll、 L2がウエノ、 Wの中央部 Wを通過するよう  [0092] In particular, in the deformation detection system 123, by providing the optical paths Ll and L2 above and below the wafer W, the wafer W is deformed upward in the support members 122A, 122B, and 122C. In both cases, the deformation of the wafer W that can be applied can be reliably detected even when the wafer W is deformed by the downward force. Furthermore, the optical paths Ll and L2 pass through the center W of Ueno, W.
C  C
にしたことにより、中央部 w付近の変形も確実に検出することができる。従って、ゥェ  As a result, deformation near the central portion w can also be reliably detected. Therefore,
C  C
ハ Wの変形を精度良く判定することができ、ひいては、基板洗浄ユニット 180A〜18 ODにおけるウェハ Wの破損を確実に防止できる。 C Deformation of W can be determined with high accuracy, and as a result, the substrate cleaning unit 180A-18 Damage to the wafer W at OD can be reliably prevented.
[0093] 以上、本発明の好適な実施の形態の一例を示した力 本発明はここで説明した形 態に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の 範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それ らについても当然に本発明の技術的範囲に属するものと了解される。  As described above, the power showing an example of the preferred embodiment of the present invention The present invention is not limited to the embodiment described here. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the scope of claims. It is understood that it belongs to the range.
[0094] 例えば以上の実施形態では、マッピング機構 41にお ヽてもウェハ Wの変形の有無 を検査することとした力 変形検出システム 123においてのみウェハ Wの変形の有無 を検査するようにしても良 、。  For example, in the above-described embodiment, the presence or absence of deformation of the wafer W may be inspected only in the force deformation detection system 123 in which the presence or absence of deformation of the wafer W is inspected even in the mapping mechanism 41. Good.
[0095] 以上の実施形態では、変形検出システム 123は、 2つの光センサ 161、 162、即ち 、 2つの投光器 151、 152と 2つの受光器 155、 156をとした力 光センサは 3つ以上 設けても良い。また、光センサ 161、 162は、説明したような透過型に限らず反射型 の光センサであっても良い。  In the above embodiment, the deformation detection system 123 is provided with two or more force light sensors including two light sensors 161 and 162, that is, two light projectors 151 and 152 and two light receivers 155 and 156. May be. The optical sensors 161 and 162 are not limited to the transmission type as described above, but may be reflection type optical sensors.
即ち、例えば、光センサの投光器、反射板、受光器を、支持部材 122A、 122B、 12 2Cによって支持されたウェハ Wの周囲に配置し、投光器から投光された光を反射板 によって反射させ、反射した光を受光器によって受光する構成としても良い。  That is, for example, a light projector, a reflector, and a light receiver are arranged around the wafer W supported by the support members 122A, 122B, and 122C, and the light projected from the projector is reflected by the reflector. The reflected light may be received by a light receiver.
[0096] 以上の実施形態では、変形検出システム 123においては、 2本の光路 Ll、 L2が形 成される構成としたが、光路の数は 3本以上であっても良い。例えば、基準状態のゥ ェハ Wの上方又は下方に、 2本以上の光路が設けられるようにしても良い。また、総て の光路が平面視においてウェハ Wの中央部 Wを通るように配置する必要はなぐ各 In the above embodiment, in the deformation detection system 123, the two optical paths Ll and L2 are formed, but the number of optical paths may be three or more. For example, two or more optical paths may be provided above or below the reference wafer W. Also, it is not necessary to arrange all the optical paths so that they pass through the central portion W of the wafer W in plan view.
C  C
光路の配置は任意に設定することができる。  The arrangement of the optical path can be arbitrarily set.
[0097] 以上の実施形態では、変形検出システム 123は下段のウェハ受け渡しユニット 111 に設けられているとしたが、他の場所に設けても良い。例えば、上段のウェハ受け渡 しユニット 112に変形検出システム 123を設け、上段のウェハ受け渡しユニット 112内 に搬入されたウェハ Wに対して、ウェハ Wの変形検査を行うようにしても良い。また、 ウェハ受け渡しユニット 111、 112とは別の箇所に設けても良い。例えば、ウェハ Wの 変形等の異常の有無を検査するための専用の検査ユニットを処理システム 1に設置 し、力かる検査ユニットに変形検出システム 123を設けても良い。  In the above embodiment, the deformation detection system 123 is provided in the lower wafer transfer unit 111, but may be provided in another location. For example, the deformation detection system 123 may be provided in the upper wafer transfer unit 112, and the deformation inspection of the wafer W may be performed on the wafer W carried into the upper wafer transfer unit 112. Further, it may be provided at a location different from the wafer delivery units 111 and 112. For example, a dedicated inspection unit for inspecting whether there is an abnormality such as deformation of the wafer W may be installed in the processing system 1, and the deformation detection system 123 may be provided in the powerful inspection unit.
[0098] また、以上の実施形態では、処理部 3における処理が未だ施されて ヽな 、未処理 のウェハ Wを、ウェハ搬送装置 30から主ウェハ搬送装置 71に受け渡される途中で、 変形検出システム 123による検査対象とした力 ウエノ、 Wの変形検査を行うタイミング は、力かるものに限定されない。例えば、ウェハ Wが主ウェハ搬送装置 71からウェハ 搬送装置 30に受け渡される途中で、変形検出システム 123によるウェハ Wの変形検 查を行うようにしても良い。また、基板洗浄ユニット 180A〜180D、あるいは、冷却ュ ニット 191、加熱ユニット 192A〜192Cにおける処理が施された後のウェハ Wに対し て、例えば上段のウェハ受け渡しユニット 112に設けた変形検出システム 123によつ て、変形検査を行うようにしても良い。 [0098] Further, in the above embodiment, the processing in the processing unit 3 is not yet performed. During the transfer of the wafer W from the wafer transfer device 30 to the main wafer transfer device 71, the timing of performing the deformation inspection of the force Ueno and W by the deformation detection system 123 is not limited to the strong one. For example, the deformation detection of the wafer W by the deformation detection system 123 may be performed while the wafer W is being transferred from the main wafer transfer device 71 to the wafer transfer device 30. For the wafer W after being processed in the substrate cleaning units 180A to 180D, or the cooling unit 191 and the heating units 192A to 192C, for example, the deformation detection system 123 provided in the upper wafer transfer unit 112 is used. Therefore, deformation inspection may be performed.
[0099] 以上の実施形態では、基板洗浄ユニット 180A〜180Dは、供給ノズル 1183から 処理液を供給してウェハ Wを洗浄処理する構成とした力 力かるものには限定されず 、例えば、ブラシやスポンジ等のスクラバ(洗浄具)等をウェハ Wに接触又は近接させ 、スクラブ洗浄を行う構成などであっても良い。この場合も、変形検出システム 123に よってウェハ Wが正常であるか否かを予め検査し、正常と判定されたウェハ Wのみを 基板洗浄ユニット 180A〜180Dにおいて処理する構成としたことにより、ウェハ Wに 対してスクラバを接触させても、ウェハ Wに過剰な応力が発生することを防止できる。 従って、ウェハ Wの破損を防止できる。また、スピンチャック 182はメカチャックである としたが、ウェハ Wの下面を吸着して保持する構成であっても良い。この場合も、変形 検出システム 123の検査によって正常と判定されたウェハ Wは、ウェハ Wの下面の変 形が無い、あるいは十分に小さいので、スピンチャックはウェハ Wを確実に吸着保持 することができる。 [0099] In the above embodiment, the substrate cleaning units 180A to 180D are not limited to those that are configured to supply the processing liquid from the supply nozzle 1183 to clean the wafer W. A scrubber (cleaning tool) such as a sponge may be in contact with or close to the wafer W to perform scrub cleaning. Even in this case, the wafer detection unit 123 is inspected in advance to determine whether or not the wafer W is normal, and only the wafer W determined to be normal is processed in the substrate cleaning units 180A to 180D. Even if the scrubber is brought into contact with the wafer W, excessive stress can be prevented from being generated on the wafer W. Therefore, damage to the wafer W can be prevented. Further, although the spin chuck 182 is a mechanical chuck, it may be configured to suck and hold the lower surface of the wafer W. Also in this case, since the wafer W determined to be normal by the inspection of the deformation detection system 123 does not have a deformation on the lower surface of the wafer W or is sufficiently small, the spin chuck can reliably hold the wafer W by suction. .
[0100] 処理システム 1は複数の基板洗浄ユニット 180A〜180Dを備えた構成とした力 か 力る形態には限定されない。即ち、基板処理装置はウェハ Wに対して処理液を供給 して洗浄処理を行う基板洗浄ユニット 180A〜 180Dであるとしたが、洗浄以外の他 の処理、例えば、エッチング処理、レジスト除去処理等を行う装置であっても良い。  [0100] The processing system 1 is not limited to a force-powered configuration having a plurality of substrate cleaning units 180A to 180D. That is, the substrate processing apparatus is the substrate cleaning unit 180A to 180D that supplies the processing liquid to the wafer W to perform the cleaning process, but other processes other than the cleaning, such as an etching process and a resist removal process, are performed. It may be a device for performing.
[0101] また、基板はシリコンウェハには限定されず、他の半導体ウェハであっても良ぐさら には、例えば LCD用のガラス基板、 CD基板、プリント基板、セラミック基板などであ つても良い。  [0101] Also, the substrate is not limited to a silicon wafer, and may be another semiconductor wafer. For example, it may be a glass substrate for LCD, a CD substrate, a printed substrate, a ceramic substrate, or the like. .

Claims

請求の範囲 The scope of the claims
[1] 非変形状態において互いに平行で平らな上面および下面を有する基板を検査して その変形を検出するシステムであって、  [1] A system for inspecting a substrate having a flat upper surface and a lower surface parallel to each other in an undeformed state and detecting the deformation,
基板を略水平な基準姿勢に支持する支持部材と、  A support member for supporting the substrate in a substantially horizontal reference posture;
非変形基板が前記支持部材で支持された場合に前記非変形基板の上面の直上を 通る第一の光路を形成すると共に、前記支持部材で支持された被検査基板による前 記第一の光路の遮断を検出する第一の光センサと、  When the non-deformable substrate is supported by the support member, a first optical path that passes immediately above the upper surface of the non-deformable substrate is formed, and the first optical path by the substrate to be inspected supported by the support member is formed. A first optical sensor for detecting a blockage;
前記非変形基板が前記支持部材で支持された場合に前記非変形基板の下面の 直下を通る第二の光路を形成すると共に、前記支持部材で支持された被検査基板 による前記第二の光路の遮断を検出する第二の光センサと、  When the non-deformable substrate is supported by the support member, a second optical path that passes directly under the lower surface of the non-deformable substrate is formed, and the second optical path by the inspected substrate supported by the support member A second optical sensor for detecting a blockage;
前記第一および第二の光センサの検出情報に基づいて、前記被検査基板の基準 変形度を超える変形の有無を判定する変形判定手段と、  Based on the detection information of the first and second photosensors, deformation determination means for determining the presence or absence of deformation exceeding a reference deformation degree of the substrate to be inspected;
を備えたことを特徴とする基板の変形検出システム。  A substrate deformation detection system comprising:
[2] 前記第一の光センサは、第一の投光器と、この第一の投光器から投光された光を 受光する第一の受光器とを有し、 [2] The first optical sensor includes a first projector and a first receiver that receives light projected from the first projector.
前記第二の光センサは、第二の投光器と、この第二の投光器から投光された光を 受光する第二の受光器とを有する、ことを特徴とする請求項 1に記載の検出システム  2. The detection system according to claim 1, wherein the second optical sensor includes a second projector and a second receiver that receives light projected from the second projector. 3.
[3] 前記第一の光路と前記第二の光路の少なくとも一方は、前記支持部材で支持され た前記非変形基板の前記上面および下面と平行である、ことを特徴とする請求項 1 に記載の検出システム。 [3] The at least one of the first optical path and the second optical path is parallel to the upper surface and the lower surface of the non-deformable substrate supported by the support member. Detection system.
[4] 前記第一の光路と前記第二の光路の少なくとも一方は、平面視において、前記支 持部材で支持された前記非変形基板の中央部を通る、ことを特徴とする請求項 1に 記載の検出システム。 4. At least one of the first optical path and the second optical path passes through a central portion of the non-deformable substrate supported by the support member in plan view. The described detection system.
[5] 基板を収納するキャリアが置かれるキャリアポートと、 [5] A carrier port in which a carrier for storing a substrate is placed,
基板に処理を施す処理装置と、  A processing apparatus for processing the substrate;
前記キャリアポートと前記処理装置との間に設けられた受け渡しユニットと、 前記受け渡しユニットを介して前記キャリアポートと前記処理装置との間で基板を搬 送する搬送装置と、 A transfer unit provided between the carrier port and the processing apparatus; and a substrate is transferred between the carrier port and the processing apparatus via the transfer unit. A transport device for sending;
を備え、  With
前記受け渡しユニットに、請求項 1に記載の基板の変形検出システムが設けられて いる、ことを特徴とする基板処理システム。  2. A substrate processing system, wherein the transfer unit is provided with the substrate deformation detection system according to claim 1.
[6] 前記検出システムにおける検査済み基板にっ 、ての前記変形判定手段の判定結 果に基づ 1、て、前記検査済み基板を前記処理装置で処理するか否かを判別する処 理判別手段を更に備えた、ことを特徴とする請求項 5に記載の処理システム。 [6] Based on the determination result of the deformation determination unit, the processing determination for determining whether or not to process the inspected substrate in the processing apparatus is performed on the inspected substrate in the detection system. 6. The processing system according to claim 5, further comprising means.
[7] 非変形状態において互いに平行で平らな上面および下面を有する基板を検査して その変形を検出する方法であって、 [7] A method for inspecting a substrate having a flat upper surface and a lower surface parallel to each other in an undeformed state, and detecting the deformation,
非変形基板が基準位置で略水平な基準姿勢に支持された場合に前記非変形基 板の上面の直上および下面の直下をそれぞれ通る第一および第二の光路を形成し 被検査基板を前記基準姿勢に支持し、  When the non-deformable substrate is supported at a reference position in a substantially horizontal reference posture, first and second optical paths are formed that pass directly above the upper surface and immediately below the lower surface of the non-deformable substrate, respectively. Support the posture,
前記基準位置で前記基準姿勢に支持された被検査基板による前記第一および第 二の光路の遮断の有無を検出し、  Detecting whether or not the first and second optical paths are blocked by the substrate to be inspected supported at the reference position at the reference position;
前記第一および第二の光路の遮断の有無に基づいて、前記被検査基板の基準変 形度を超える変形の有無を判定する、  Determining the presence or absence of deformation exceeding a reference deformation degree of the substrate to be inspected based on the presence or absence of blocking of the first and second optical paths;
ことを特徴とする基板の変形検出方法。  A method for detecting deformation of a substrate.
[8] 前記第一の光路と前記第二の光路の少なくとも一方は、前記基準位置で前記基準 姿勢に支持された前記非変形基板の前記上面および下面と平行である、ことを特徴 とする請求項 7に記載の方法。 [8] At least one of the first optical path and the second optical path is parallel to the upper surface and the lower surface of the non-deformable substrate supported in the reference posture at the reference position. Item 8. The method according to item 7.
[9] 前記第一の光路と前記第二の光路の少なくとも一方は、平面視において、前記基 準位置で前記基準姿勢に支持された前記非変形基板の中央部を通る、ことを特徴と する請求項 7に記載の方法。 [9] At least one of the first optical path and the second optical path passes through a central portion of the non-deformable substrate supported at the reference position at the reference position in plan view. The method of claim 7.
[10] 請求項 7に記載の変形検出方法を実行する制御プログラムが記憶されたコンビユー タ読取可能な記憶媒体。 [10] A computer-readable storage medium in which a control program for executing the deformation detection method according to claim 7 is stored.
PCT/JP2007/060453 2006-05-22 2007-05-22 Basal plate deformation detecting system and deformation detecting method WO2007136066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-141377 2006-05-22
JP2006141377A JP2009200063A (en) 2006-05-22 2006-05-22 Basal plate deformation detecting mechanism, processing system, basal plate deformation detection method and recording medium

Publications (1)

Publication Number Publication Date
WO2007136066A1 true WO2007136066A1 (en) 2007-11-29

Family

ID=38723379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060453 WO2007136066A1 (en) 2006-05-22 2007-05-22 Basal plate deformation detecting system and deformation detecting method

Country Status (3)

Country Link
JP (1) JP2009200063A (en)
TW (1) TW200807598A (en)
WO (1) WO2007136066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931117A (en) * 2012-11-21 2013-02-13 苏州矽科信息科技有限公司 Method for measuring deformation in wafer transmission by using principle of light reflection
CN103278103A (en) * 2013-05-18 2013-09-04 大连理工大学 Method and device for measuring thin substrate deformation
CN108573902A (en) * 2017-03-14 2018-09-25 东京毅力科创株式会社 The method of operation of vertical heat treating apparatus and vertical heat treating apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114230A2 (en) * 2008-03-07 2009-09-17 Carl Zeiss Smt, Inc. Reducing particle implantation
JP5917165B2 (en) * 2012-01-25 2016-05-11 株式会社Screenホールディングス Substrate processing apparatus and liquid supply apparatus used therefor
WO2013111569A1 (en) * 2012-01-25 2013-08-01 大日本スクリーン製造株式会社 Substrate treatment apparatus, liquid supply device used therein, and substrate treatment method
JP5838520B2 (en) * 2012-02-28 2016-01-06 株式会社ダイフク Goods transport equipment
JP6090035B2 (en) * 2013-07-25 2017-03-08 東京エレクトロン株式会社 Liquid processing equipment
JP6394220B2 (en) * 2014-09-17 2018-09-26 東京エレクトロン株式会社 Alignment apparatus and substrate processing apparatus
JP6408349B2 (en) * 2014-11-10 2018-10-17 株式会社アルバック Substrate transfer method
JP6440757B2 (en) * 2017-03-16 2018-12-19 キヤノン株式会社 Substrate transport system, lithographic apparatus, and article manufacturing method
CN108766915A (en) * 2018-08-06 2018-11-06 江阴佳泰电子科技有限公司 One kind being used for the anti-fragmentation alarm system of wafer
CN108987296B (en) * 2018-08-14 2024-04-02 长江存储科技有限责任公司 Wafer elastic strain measuring device, measuring method and wafer bonding method
JP2023045820A (en) * 2021-09-22 2023-04-03 株式会社Screenホールディングス Substrate processing device and substrate processing method
CN116798891A (en) * 2022-03-15 2023-09-22 长鑫存储技术有限公司 Wafer bending degree determining device and temperature control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119673A (en) * 2002-09-26 2004-04-15 Nitto Denko Corp Method and device for measuring warpage of semiconductor wafer
JP2005158809A (en) * 2003-11-20 2005-06-16 Tokyo Seimitsu Co Ltd Prober device, wafer-detecting method, wafer position measuring method and cassette position correcting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119673A (en) * 2002-09-26 2004-04-15 Nitto Denko Corp Method and device for measuring warpage of semiconductor wafer
JP2005158809A (en) * 2003-11-20 2005-06-16 Tokyo Seimitsu Co Ltd Prober device, wafer-detecting method, wafer position measuring method and cassette position correcting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931117A (en) * 2012-11-21 2013-02-13 苏州矽科信息科技有限公司 Method for measuring deformation in wafer transmission by using principle of light reflection
CN103278103A (en) * 2013-05-18 2013-09-04 大连理工大学 Method and device for measuring thin substrate deformation
CN108573902A (en) * 2017-03-14 2018-09-25 东京毅力科创株式会社 The method of operation of vertical heat treating apparatus and vertical heat treating apparatus

Also Published As

Publication number Publication date
TW200807598A (en) 2008-02-01
TWI362081B (en) 2012-04-11
JP2009200063A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2007136066A1 (en) Basal plate deformation detecting system and deformation detecting method
CN109415837B (en) Substrate holder and plating apparatus
TWI545672B (en) Substrate transport device, substrate transport method, and storage medium
US8979469B2 (en) Heat treatment apparatus and method of transferring substrates to the same
US9696262B2 (en) Substrate processing apparatus, method of operating substrate processing apparatus, and storage medium
US8565911B2 (en) Thermal processing apparatus, thermal processing method, and storage medium
TW200905783A (en) Substrate transfer apparatus, substrate transfer method, and storage medium
JP7349240B2 (en) Board warehouse and board inspection method
TWI425590B (en) Substrate treating apparatus, and a substrate transporting method therefor
US8654325B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium having program for executing the substrate processing method stored therein
JP5189759B2 (en) Inspection method and inspection apparatus
TWI638400B (en) Substrate processing device, substrate processing method, and memory medium
CN107680928B (en) Teaching jig, substrate processing apparatus, and teaching method
JP3964662B2 (en) How to remove the board
JP2008112853A (en) Substrate processing system, substrate transfer apparatus, substrate transfer method, and recording medium
JP2688554B2 (en) Wafer abnormality detection device and wafer inspection method
KR20240034990A (en) Substrate cleaning apparatus
KR20060116931A (en) Apparatus for transferring a wafer
KR20240027238A (en) Substrate cleaning apparatus
KR20050060644A (en) Apparatus for detecting chipping
JPH03280447A (en) Detection of substrate
KR20070073226A (en) Semiconductor wafer mapping apparatus
KR20080014247A (en) Method and system for transporting substrate
KR20070030568A (en) A wafer transfer apparatus
KR20070019387A (en) Apparatus and method of detecting wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP