WO2007129692A1 - 直接液体型燃料電池用隔膜及びその製造方法 - Google Patents

直接液体型燃料電池用隔膜及びその製造方法 Download PDF

Info

Publication number
WO2007129692A1
WO2007129692A1 PCT/JP2007/059474 JP2007059474W WO2007129692A1 WO 2007129692 A1 WO2007129692 A1 WO 2007129692A1 JP 2007059474 W JP2007059474 W JP 2007059474W WO 2007129692 A1 WO2007129692 A1 WO 2007129692A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation exchange
exchange membrane
water content
diaphragm
membrane
Prior art date
Application number
PCT/JP2007/059474
Other languages
English (en)
French (fr)
Inventor
Kenji Fukuta
Hiroshi Inoue
Takenori Isomura
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to US12/227,138 priority Critical patent/US8137861B2/en
Priority to EP07742909A priority patent/EP2017913B1/en
Publication of WO2007129692A1 publication Critical patent/WO2007129692A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a diaphragm for a direct liquid fuel cell and a method for producing the same.
  • Ion exchange membranes are widely used as polymer membrane fuel cells, redox flow cells, cell membranes such as zinc-bromine cells, and dialysis membranes.
  • a polymer electrolyte fuel cell that uses an ion exchange membrane as an electrolyte is a clean and highly efficient power generation system that continuously supplies fuel and oxidant to the cell, and extracts chemical energy when they react as power.
  • this battery has become increasingly important for use in automobiles, homes, and portables from the viewpoint of low-temperature operation and miniaturization.
  • a solid polymer fuel cell generally has a solid polymer diaphragm acting as an electrolyte therein, and gas diffusion electrodes carrying a catalyst are bonded to both sides of the diaphragm.
  • This battery uses hydrogen gas or a fuel that also has an alcohol aqueous solution such as methanol in the chamber (fuel chamber) on the side where one gas diffusion electrode exists, and an oxidant in the chamber on the side where the other gas diffusion electrode exists. It functions as a fuel cell by supplying oxygen-containing gases such as oxygen and air, and connecting an external load circuit between both gas diffusion electrodes.
  • a direct liquid fuel cell that uses an aqueous alcohol solution such as methanol as a direct fuel is easy to handle because the fuel is liquid. Furthermore, since this fuel cell is inexpensive, it is expected to be a relatively small output power source especially for portable devices.
  • FIG. 3 shows the basic structure of a direct liquid fuel cell.
  • la and lb are battery barriers.
  • the battery partition walls la and lb are formed on both sides of the solid polymer electrolyte membrane 300 with the solid polymer electrolyte membrane 300 used as a diaphragm interposed therebetween.
  • 2 is a fuel flow hole formed in the inner wall of one battery partition wall la
  • 3 is an oxidant gas flow hole formed in the inner wall of the other battery partition wall lb.
  • 4 is a fuel chamber side diffusion electrode
  • 5 is an oxidant chamber side gas diffusion electrode.
  • liquid fuel such as alcohol is supplied to the fuel chamber 7.
  • protons hydrogen ions
  • electrons are generated from the liquid fuel by the action of the catalyst of the fuel chamber side diffusion electrode 4.
  • the generated protons pass through the solid polymer electrolyte membrane 300 and reach the other oxidant chamber 8, where they react with oxygen gas or oxygen in the air to generate water.
  • electrons generated by the fuel chamber side diffusion electrode 4 are sent to the oxidant chamber side gas diffusion electrode 5 through an external load circuit (not shown). At this time, electric energy is given to the external load.
  • a cation exchange membrane is usually used as the diaphragm.
  • This cation exchange membrane is required to have a low electrical resistance, a high physical strength, and a low permeability such as alcohol used as a fuel.
  • alcohol used as a fuel.
  • the permeability of alcohol through the diaphragm is large, the alcohol in the fuel chamber diffuses toward the oxidizer chamber, and the battery output decreases.
  • a cation exchange membrane used as a diaphragm for a fuel cell for example, a membrane based on a polyolefin-based or fluorine-based porous membrane is used.
  • This cation exchange membrane is filled with a polymerizable composition comprising a polymerizable monomer having a functional group capable of introducing a cation exchange group into the pores of the base material and a crosslinkable polymerizable monomer. After the polymerizable composition is superposed, the cation exchange group is introduced into a functional group capable of introducing the cation exchange group.
  • This cross-linked polymer membrane having a cation exchange group is suitable because it can be produced at a relatively low cost and is less swelled and deformed by a fuel having a low electrical resistance and a low permeability of the liquid fuel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-135328
  • Patent Document 2 Japanese Patent Laid-Open No. 11-310649
  • the present invention is a cationic exchange membrane used as a diaphragm of a direct liquid fuel cell, which is extremely excellent in liquid fuel impermeability, particularly methanol impermeability, and has a strong force.
  • An object of the present invention is to provide a cation exchange membrane capable of stably obtaining a high battery output since the electric resistance is also kept low.
  • the present inventors have conducted extensive research. As a result, the above problems can be solved by using a cation exchange membrane (laminated cation exchange membrane) consisting of a low water content type and a high water content type, each of which has cation exchange membrane layers with different moisture contents formed on the front and back surfaces. The inventors have found that this can be solved and have completed the present invention.
  • a cation exchange membrane laminated cation exchange membrane
  • the present invention provides:
  • a low water content cation exchange membrane layer having a water content of 1 to 15% by mass at a relative humidity of 50% RH (25 ° C),
  • the water content at 100% RH (25 ° C) relative humidity is 3% by mass than the water content at 100% RH (25 ° C) relative humidity of the low water content thione exchange membrane layer.
  • a diaphragm for a direct liquid fuel cell comprising a laminated cation exchange membrane having an electrical resistance in an aqueous solution of 25 ° C. and ImolZl-sulfuric acid of 0.5 to 0.3 ⁇ -cm 2 .
  • This diaphragm for a fuel cell has a direct liquid fuel so that A) the low water content cation exchange membrane layer is located on the oxidizer chamber side, and B) the high water content cation exchange membrane layer is located on the fuel chamber side. It is preferable to be used in a battery.
  • the present invention provides a crosslinkable polymerizable monomer with respect to 100 mol of a polymerizable monomer having a functional group suitable for introduction of a cation exchange group or a polymerizable monomer having a cation exchange group.
  • the polymerizable composition is brought into contact with a laminated porous membrane comprising a porous membrane and a high porosity porous membrane having an average pore diameter of 0.01 to 50 m and a porosity of 7% or more larger than that of the low porosity porous membrane.
  • the present invention provides:
  • Moisture content at 50% RH (25 ° C) relative humidity is 1 to 15% by mass, and electrical resistance in 1 molZl sulfuric acid aqueous solution at 25 ° C is 0.3 to 0.006 ⁇ ⁇ cm 2
  • a low water content cationic exchange membrane
  • the moisture content at 100% RH (25 ° C) is 3% by mass or more than the moisture content of the low moisture cation exchange membrane at 100% (25 ° C) relative humidity and 25 ° C, lmo 1/1 High water content cation exchange membrane having an electrical resistance in sulfuric acid aqueous solution of 0.2 to 0.004 ⁇ ⁇ cm 2 ,
  • A) a low water content cation exchange membrane layer and B) a high water content cationic exchange membrane layer are formed on the front and back of the membrane, respectively.
  • the permeability of liquid fuel, particularly methanol can be greatly reduced while keeping the electrical resistance of the membrane low.
  • the laminated cation exchange membrane of the present invention has a B) high water content cation exchange membrane layer to A) a low water content cation exchange membrane layer with respect to a 30 mass% methanol aqueous solution at 25 ° C.
  • the methanol permeability toward the surface is usually 500 gZm 2 ⁇ hr or less, and can be in the range of 300 to 10 gZ m 2 'hr.
  • the electrical resistance in an ImolZl-sulfuric acid aqueous solution at 25 ° C is 0.5 to 0.01 ⁇ 'cm 2 . That is, the fuel cell membrane of the present invention has both high and non-permeability of liquid fuel and high and proton conductivity, which has been difficult to achieve conventionally.
  • the direct liquid fuel cell manufactured using the diaphragm of the present invention has a low internal resistance of the cell and highly suppresses the crossover of fuel such as methanol, so that a high battery output can be obtained. .
  • FIG. 1 is a conceptual diagram showing an example of a basic structure of a direct liquid fuel cell provided with a fuel cell membrane of the present invention.
  • FIG. 2 is a conceptual diagram showing another example of a fuel cell membrane according to the present invention.
  • FIG. 3 is a conceptual diagram showing the basic structure of a conventional direct liquid fuel cell.
  • the laminated cation exchange membrane constituting the diaphragm for a direct liquid fuel cell of the present invention is
  • A) Moisture content at a relative humidity of 50% RH (25 ° C) is 1 to 15% by mass.
  • the water content at 100% RH (25 ° C) relative humidity is 3% by mass than the water content at 100% RH (25 ° C) relative humidity of the low water content thione exchange membrane layer.
  • Each has a laminated structure formed.
  • the laminated cation exchange membrane having this structure is directly used as a diaphragm for a liquid fuel cell, the permeability of the liquid fuel, particularly methanol, can be greatly reduced while the electrical resistance of the membrane is kept low. The reason is assumed to be due to the following effects.
  • the surface layer on the fuel chamber 7 side of the diaphragm 300 made of a cation exchange membrane is made of water such as an alcohol water solution. It is in contact with a large amount of liquid fuel. Therefore, this surface layer absorbs water and is in a moist state.
  • the surface layer of the diaphragm 300 on the oxidant chamber 8 side is in contact with the oxygen-containing gas such as the taken-in air. Therefore, this surface layer is in a dry state.
  • the surface layer on the side of the fuel chamber 7 has high proton conductivity with relatively high wettability (high water content!). Liquid fuel is easy to permeate.
  • the wettability is reduced by a method such as increasing the degree of crosslinking of the catalyst exchange membrane.
  • the liquid fuel shut-off effect in is certainly improved.
  • the surface on the fuel chamber 7 side The layer lacks wettability, and the proton conductivity of the surface layer decreases as described above. As a result, the necessary amount of proton conductivity for the entire membrane cannot be secured.
  • the cation exchange membrane is used as a diaphragm of a direct liquid fuel cell, it is difficult to achieve non-permeability of liquid fuel and high proton conductivity with a single membrane.
  • the cation exchange membrane has a laminated structure as shown in FIG. 1, which is not a single membrane. Further, a low water content cation exchange membrane layer 9 is disposed on the oxidant chamber 8 side, and a high water content cation exchange membrane layer 10 is disposed on the fuel chamber 7 side. With this configuration, the liquid fuel blocking effect is enhanced in the vicinity of the surface layer of the oxidant chamber 8 having low wettability. On the other hand, in the vicinity of the surface layer having high water absorption in the fuel chamber 7, proton conductivity is high. Therefore, the proton conductivity can be maintained at a sufficient value for the entire membrane. By the above mechanism, it is presumed that the diaphragm of the present invention is compatible with both normally opposite physical properties, ie, high blocking property and high proton conductivity of liquid fuel.
  • the laminated cation exchange membrane used in the present invention has a water content of 1 to 15 masses at a relative humidity of 50% RH (25 ° C) in the A) low water content cation exchange membrane layer. %, More preferably 4 to 9% by weight.
  • This relative humidity of 50% RH is defined as the average humidity state of the oxidizer chamber 8. Therefore, during the power generation of a fuel cell that takes in the atmosphere around the device and supplies it to the oxidizer chamber as it is, the humidity of the atmosphere changes to some extent, but this A) low water content cation exchange membrane layer is generally It will have such a low moisture content. As a result, the low water content type cation exchange membrane layer is maintained in a state of relatively excellent liquid fuel non-permeability.
  • the water content at a relative humidity of 100% RH of the cation exchange membrane layer having the low water content at a relative humidity of 50% RH is usually 7 to 40% by mass, more generally 7 to 30% by mass. % Range.
  • B) the high water content cation exchange membrane layer has a water content at a relative humidity of 100% RH (25 ° C) of 100% relative humidity of the low water content cation exchange membrane layer. It is important that the moisture content at% RH (25 ° C) be at least 3% by weight, more preferably at least 4% by weight.
  • This relative humidity of 100% RH defines the normal humidity state of the fuel chamber 7. Having the above moisture content at this relative humidity means that when a direct liquid fuel cell is used, the B) high water content cation exchange membrane layer has the above water content and, as a result, has excellent proton conductivity. It means to become a thing.
  • the water content of 3% by mass or more means that when the water content of the low water content cation exchange membrane layer is P mass%, it is (P + 3) mass% or more.
  • the increment of the moisture content of the high moisture content cation exchange membrane layer at a relative humidity of 100% RH (25 ° C) is usually 100% by mass or less, more typically 30% by mass or less. .
  • the high water content cation exchange membrane layer is an extremely low degree of cross-linking. This highly wettable film has insufficient mechanical strength, and this layer has poor shape retention.
  • the water content of this B) high water content cation exchange membrane layer at a relative humidity of 100% RH (25 ° C) is usually 10 to 135% by mass, more generally 20 to: LOO mass. % Range.
  • the water content of the high water content cation exchange membrane layer at a relative humidity of 50% RH (25 ° C.) is usually 7 to 50% by mass, more generally in the range of 10 to 40% by mass.
  • A) low water content cation exchange membrane layers and B) high water content cation exchange membrane layers are usually composed of a single layer. However, any layer may be composed of two or more layers that are the same or different within the range of the moisture content requirement specified above.
  • the laminated cation exchange membrane has the A) low water content cation exchange membrane layer formed on one surface and the B) high water content cation exchange membrane layer formed on the other surface. Usually, these cation exchange membrane layers may be directly laminated to form a laminated cation exchange membrane. [0037] Further, as long as the low electrical resistance required for the entire laminated cation exchange membrane described later can be maintained, as shown in Fig. 2, A) low water content cation exchange membrane layer 9 and B) high
  • the laminated cation exchange membrane 200 may be formed by interposing an intermediate layer 11 composed of a thione exchange membrane between the water-containing cation exchange membrane layer 10 and other forces that do not satisfy the moisture content requirements of these layers. .
  • the intermediate layer 11 made of the cation exchange membrane is appropriately selected in consideration of the thickness thereof, the type of each cation exchange membrane layer formed as the A) layer and the B) layer, and the like.
  • this intermediate layer is C) Moisture content (C% by mass) force at 100% RH (25 ° C) relative humidity 100% RH (25 ° C) relative humidity of the low water content cation exchange membrane layer
  • a cation exchange membrane layer having a range ⁇ P ⁇ C ⁇ (P + 3) ⁇ that is greater than the moisture content (P mass%) and less than the moisture content (P mass%) + 3% is adopted.
  • the thickness of the intermediate layer 11 is extremely thin, the water content is lower than that of the above-mentioned A) low water-containing cation exchange membrane layer, and an intermediate layer can be employed.
  • the laminated cation exchange membrane obtained by laminating the above A) low water content cation exchange membrane layer and B) high water content cation exchange membrane layer satisfies the requirements of the water content of each layer.
  • the electrical resistance of the laminated cation exchange membrane measured at 25 ° C in ImolZl-sulfuric acid solution must satisfy the requirement of 0.5 to 0.01 ⁇ 'cm 2 .
  • the resulting laminated cation exchange membrane can be If the requirements for resistance are not met, it will be difficult to use as a diaphragm for fuel cells. Therefore, it is necessary to adjust the water content of each cation exchange membrane layer within the range in which the electrical resistance of the stacked cation exchange membrane is maintained within the above range. It is particularly preferable that the electrical resistance of the laminated cationic exchange membrane measured under the above measurement conditions is 0.4 to 0.01 ⁇ ′cm 2 .
  • Examples of the cation exchange group introduced into the laminated cation exchange membrane include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
  • a sulfonic acid group which is a strongly acidic group is preferable from the viewpoint of reducing the electric resistance of the obtained laminated cation exchange membrane.
  • the cation exchange membrane layer constituting each layer may be of any kind as long as it satisfies the above-described moisture content value and the requirements of electrical resistance when used as a laminated cation exchange membrane.
  • a fluorine-based cation exchange membrane layer such as a non-crosslinked perfluorocarbon sulfonic acid membrane can also be used if it satisfies the above requirements.
  • cation exchange membrane layers Is formed of a cation exchange membrane in which a porous membrane cation exchange resin is filled in a void of a porous membrane, which is a base material preferably formed of a cross-linked hydrocarbon cation exchange membrane. I prefer to talk.
  • the hydrocarbon-based cation exchange resin is a resin mainly containing carbon and hydrogen except for the cation exchange group.
  • This resin may be present if there is a small amount of other atoms such as fluorine, chlorine, bromine, oxygen, nitrogen, silicon, sulfur, boron, and phosphorus other than the cation exchange group.
  • the abundance of other atoms is 40 mol% or less, preferably 10 mol% or less, based on the total number of atoms constituting the portion other than the cation exchange group.
  • Crosslinked hydrocarbon-based cation exchange resin is a resin having a certain ratio of a crosslinked structure in which hydrocarbon-based polymer chains constituting the resin are bonded by a covalent bond. That is, it is a resin having a certain degree of covalent crosslinking points such as carbon-carbon bonds and carbon-oxygen bonds.
  • non-crosslinked rosin having only ion-bonded crosslinkage is dissolved in the case of extreme swelling with liquid fuel such as methanol or water. Therefore, it is preferable that the hydrocarbon-based cation exchange resin is crosslinked by a covalent bond at least to such an extent that it does not swell and dissolve.
  • the water content of the cation exchange resin tends to decrease as the density of crosslinks due to covalent bonds increases, while the water content of the cation exchange resin tends to increase as the crosslink density decreases.
  • the cation exchange capacity of the laminated cation exchange membrane as a whole membrane is usually 0.1 to 4. OmmolZg, and the cation exchange of each layer constituting the laminated cation exchange membrane is The capacity is also selected so that the exchange capacity of the entire membrane is in this range.
  • Each specified inclusion The total electrical resistance of the laminated cation exchange membrane used, satisfying the water percentage value, was
  • the cation exchange capacity of the low water content cation exchange membrane layer is preferably 0.1 to 3. Ommol Zg, more preferably 0.1 to 2.6 mmolZg.
  • the cation exchange capacity of the high water content cation exchange membrane layer is preferably 0.3 to 4. OmmolZg, more preferably 0.5 to 3.5 mmol / g.
  • the force thione exchange capacity of the intermediate layer is preferably in the range between the cation exchange capacities of the two layers.
  • each layer is preferably from 3 to 40 ⁇ m in terms of the thickness of the low water content cation exchange membrane layer from the viewpoint of easily satisfying the electrical resistance requirement of the cation exchange membrane. 35 ⁇ m is more preferred.
  • the thickness of the high water content cation exchange membrane layer is preferably 5 to 150 m, more preferably 10 to 120 m.
  • the thickness of the intermediate layer is preferably 3 to 70, more preferably 3 to 70 / ⁇ ⁇ .
  • the total thickness of the laminated cation exchange membrane is 10-200 ⁇ m force girls, 10-120 ⁇ m force ⁇ J Ri girls better! / ⁇ .
  • the laminated cation exchange membrane having the above characteristic laminated structure may be produced by any known method as long as it meets the above requirements.
  • a polymerizable monomer having a functional group suitable for introduction of a cation exchange group or a polymerizable monomer having a cation exchange group with respect to 100 mol of a crosslinkable polymer A polymerizable composition is prepared containing 0.5 to 40 mol%, preferably 1 to 30 mol%, of the polymerizable monomer, and an effective amount of a polymerization initiator.
  • the polymerizable composition has an average pore diameter of 0.005 to 10 ⁇ m, preferably 0.01 to 5.
  • low porosity porous membrane having a porosity of 10 to 50%, more preferably 20 to 50%, and an average pore diameter of 0.01 to 50 111, more preferably 0.02 to 40 m.
  • the porous composition is brought into contact with the laminated porous membrane with a porous porous membrane having a porosity of 7% or more, more preferably 10 to 60% larger than that of the low-porous porous membrane, and the polymerizable composition is brought into contact with the laminated porous membrane. It fills with each void part which has.
  • the polymerizable composition filled in the voids is polymerized to obtain a film-like polymer, and then the cation exchange group is added to the resin impregnated in the film-like polymer as necessary. By introducing, a laminated cation exchange membrane can be obtained.
  • a laminated cation exchange membrane obtained by laminating the following A) a low water content cation exchange membrane layer and B) a high water content cation exchange membrane layer is obtained.
  • A) Low water content cation exchange membrane layer average pore diameter is 0.005 to LO m, more preferably 0.01 to 5 / ⁇ ⁇ , and porosity is more preferably 10 to 50%.
  • the cation exchange capacity is 0.1 to 6.
  • the moisture content at% RH (25 ° C) is 2 to 150 mass%, more preferably 8 to 90 mass%, and the moisture content at relative humidity 100% RH (25 ° C) is 14 to 250 mass%.
  • a layer filled with a crosslinked hydrocarbon-based cation exchange resin that is preferably 20 to 150% by mass,
  • the porosity of the porous membrane is determined by measuring the volume (Vcm 3 ) and mass (Ug) of the porous membrane, the density of the material of the porous membrane is X (g / cm 3 ), and the following formula: The calculated value.
  • a laminated porous film of a low-pore porous film and a high-pore porous film is used as the porous film of the base material, and a polymerizable composition having the same composition is filled in each void. Polymerized and cured. As a result, the cured resin constituting the laminated interface of both cation exchange membrane layers becomes homogeneous, and the integrity of both cation exchange layers is good.
  • A) a low water content cation exchange membrane layer and B) a high water content cation exchange membrane layer have restrictions that must be formed of the same force thione exchange resin. Therefore, it is necessary to adjust the moisture content of each layer only by the difference in the porosity of each porous membrane of the substrate. For this reason, the water content The rate is particularly low.
  • the low-pore porous membrane portion having an average pore diameter of 0.005-10 ⁇ m and a porosity of 10 to 50% is obtained as a laminated cation.
  • this average pore diameter is smaller than the above value, the amount of the cation exchange resin filled into the porous membrane is insufficient, and it becomes difficult to obtain a uniform cation exchange membrane layer.
  • the average pore diameter is larger than the above value, high liquid fuel impermeability cannot be obtained.
  • the porosity when the porosity is smaller than the above value, the proton conductivity of the cation exchange membrane layer becomes small, and it becomes difficult to control the electric resistance of the obtained laminated cation exchange membrane within the range specified by the present invention.
  • this porosity when this porosity is larger than the above value, it becomes difficult to control the moisture content of the cation exchange membrane layer within the range of small values specified by the present invention.
  • the high porosity porous membrane portion having an average pore diameter of 0.01 to 50 / zm and a porosity of 7% or more larger than that of the low porosity porous membrane is used as the laminated cation exchange membrane.
  • B) This constitutes the base material of the high water content cation exchange membrane layer.
  • this average pore diameter is smaller than the above value, the amount of the cation exchange resin filled in the porous membrane becomes insufficient, and it becomes difficult to make the water content within the range of the large value specified by the present invention.
  • the average pore diameter is larger than the above value, a uniform cation exchange membrane layer cannot be obtained.
  • any film can be used without particular limitation as long as the requirements of the average pore diameter and the porosity of each porous film layer are satisfied.
  • the air permeability (JIS P-8117) of the entire laminated porous membrane is preferably 1500 seconds or less, particularly preferably 1000 seconds or less.
  • the surface of both surfaces of the membrane The surface smoothness is preferably 10 m or less in terms of the roughness index.
  • the laminated porous film formed by laminating the porous films having different porosity from each other may be in a state where the low-porous porous film and the high-porous porous film are simply overlapped.
  • it may be a laminated porous film in which adhesion treatment is performed between both layers.
  • a laminated cation exchange membrane obtained by using a laminated porous membrane with good adhesion between both layers can maintain proton conductivity and liquid fuel impermeability stably over a long period of time. Therefore, it is preferable that the laminated porous membrane has an adhesion treatment between both layers.
  • a known method can be employed as a method for adhering a polymer film, which is not particularly limited as an adhering method. Specifically, using a method of bonding with various adhesives, heat, vibration, high frequency, etc. so as not to impair physical properties such as average pore diameter and porosity of both porous membranes in the range specified in the present invention. And a method of mechanically pressure-bonding by applying a pressure of 0.1 to 50 MPa. Adhesion treatment by thermocompression is preferable because it is easy to manufacture and has the advantages of not impairing the characteristics of the two porous membranes described above.
  • thermocompression bonding is performed using an apparatus capable of pressurization and heating.
  • thermocompression bonding is performed using a hot press machine, a roll press machine, or the like.
  • the press temperature is generally 60 ° C to 200 ° C, and the press pressure is usually 0.1 to 50 MPa. Since these pressurization and heating conditions depend on the material and physical properties of the porous film to be used, the physical properties of the porous film, such as heating and pressurization, do not deviate from the range specified in the present invention after thermocompression bonding. Conditions are appropriately determined.
  • the form of the porous membrane is not particularly limited, and for example, a porous film, a woven fabric, a nonwoven fabric, paper, an inorganic membrane and the like can be used without limitation.
  • the material for the porous membrane include thermoplastic resin, thermosetting resin, inorganic substances, and mixtures thereof. Thermoplastic resin is preferred because of its ease of production and high adhesion strength with cation exchange resins.
  • Thermoplastic resin includes ethylene, propylene, 1-butene, 1-pentene, 1-hex Polyolefin resins such as sene, 3-methyl-1-butene, 4-methyl-1 pentene, 5-methyl-1 heptene, etc.
  • polyolefin resins are particularly preferred because they are excellent in mechanical strength, chemical stability, and chemical resistance and are familiar with hydrocarbon ion exchange resins.
  • the polyolefin resin is most preferably polyethylene resin, with polyethylene or polypropylene resin being particularly preferred.
  • porous film made of polyethylene resin that is preferably a porous film made of polyolefin resin because it is easily available and has excellent strength. Is particularly preferred.
  • the polymerizable composition filled in the voids of the laminated porous membrane is a polymerizable monomer having a functional group suitable for introducing a cation exchange group or a polymerizable monomer having a cation exchange group in 100 mol. On the other hand, it contains 0.5 to 40 mol% of a crosslinkable polymerizable monomer and an effective amount of a polymerization initiator.
  • the polymerizable monomer having a functional group capable of introducing a cation exchange group known monomers can be used without particular limitation.
  • the sulfone group is an example of a preferable cation exchange group used in the present invention.
  • the polymerizable monomer is preferably a radical polymerizable monomer having an aromatic hydrocarbon group suitable for introducing a cation exchange group such as a sulfone group.
  • Polymerizable monomers capable of introducing a cation exchange group include styrene, vinyltoluene, vinylxylene, a-methylstyrene, acenaphthylene, burenaphthalene, a-halogen styrene, ⁇ , ⁇ , j8, And monotrihalogenated styrene.
  • the radical polymerizable monomer having an aromatic hydrocarbon group has a structure in which a vinyl group is directly connected to an aromatic hydrocarbon group such as styrene, and a monomer having a (meth) acryl group. It is preferable to a monomer having a structure to be bonded. Because the former is less susceptible to hydrolysis
  • Polymerizable monomers having a cation exchange group include styrene sulfonic acid, 2- (meth) acrylamido-2-methylpropane sulfonic acid, 3-sulfopropyl (meth) acrylic acid ester, butyl sulfonic acid.
  • Phosphophosphonic acid acrylic acid, methacrylic acid, maleic anhydride; further, ⁇ -halogenated vinyl sulfonic acid, a, ⁇ , j8, monohalogenated vinyl sulfonic acid, maleic acid, itaconic acid, styrene phosphoric acid
  • acidic group-containing radical polymerizable monomers such as esters such as burric acid and salts corresponding thereto.
  • crosslinkable polymerizable monomer any known crosslinker that is copolymerized with the above polymerizable monomers to form a crosslinkable polymer can be employed.
  • divinyl compounds such as divinyl benzenes, divinyl sulfone, butadiene, black mouth plane, divinyl biphenyl, trivinyl benzenes, dibulanaphthalene, diarylamine, dibulylpyridines and the like can be mentioned.
  • the amount of the crosslinkable polymerizable monomer used is 0.5 mol per 100 mol of a polymerizable monomer having a functional group suitable for introduction of a cation exchange group or a polymerizable monomer having a cation exchange group. If it is less than%, A) it becomes difficult to form a low water content cation exchange membrane layer. On the other hand, if the amount used exceeds 40 mol%, it becomes difficult to form B) a high water content cation exchange membrane layer.
  • the polymerization initiator to be blended in the polymerizable monomer composition is not particularly limited as long as it is a compound capable of polymerizing the polymerizable monomer.
  • an organic peroxide is preferable.
  • otatanyl peroxide lauroyl peroxide, t-butyl peroxide 2-ethylhexanoate, benzoyl peroxide, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-hexyloxybenzoate And tert-butyl peroxide.
  • the blending amount of the polymerization initiator may be an effective amount necessary for initiating the polymerization, but is usually 0.1 to 20 with respect to a total of 100 parts by mass of all polymerizable monomers to be used. 0.5 to 10 parts by mass is more preferable.
  • the polymerizable composition preferably contains a polymerizable monomer having a tertiary amino group capable of forming an ion complex with the cation exchange group introduced into the cation exchange membrane.
  • a polymerizable monomer having a tertiary amino group capable of forming an ion complex with the cation exchange group introduced into the cation exchange membrane.
  • the polymerizable composition includes the requirements regarding the water content specified in the present invention and the electrical resistance in the laminated cation exchange membrane in order to adjust physical properties such as mechanical strength and polymerizability.
  • other components may be added as necessary.
  • examples of such other components include polymerizable monomers such as acrylonitrile, acrolein, and methyl vinyl ketone, dibutyl phthalate, dioctyl phthalate, dimethyl isophthalate, dibutyl adipate, triethyl citrate, and acetiltributyl.
  • plasticizers such as citrate and dibutyl sebacate.
  • the method for contacting the polymerizable composition with the porous membrane is not particularly limited as long as the polymerizable composition can enter the voids of the porous membrane.
  • Examples thereof include a method of applying the polymerizable yarn composition to the surface of the porous membrane, a method of spraying, and a method of immersing the porous membrane in the polymerizable composition.
  • the dipping time is generally from 0.1 second to several tens of minutes although it depends on the type of porous membrane and the composition of the suspension.
  • the polymerization method is not particularly limited, and a known method may be appropriately employed depending on the polymerizable monomer and the polymerization initiator to be used.
  • a polymerization method by heating is generally used. This method is preferable to other methods because it is easy to operate and can be polymerized relatively uniformly.
  • the surface of the porous film filled with the polymerizable composition using a film of polyester or the like is used. It is preferable to polymerize after covering.
  • a porous membrane filled with a polymerizable composition By covering the surface with a film, excess polymerizable composition is removed from the porous membrane, and a thin and uniform fuel cell membrane is obtained.
  • the polymerization temperature in the case of polymerizing by thermal polymerization is not particularly limited, and may be appropriately selected from known conditions. In general, it is 50 to 150 ° C, preferably 60 to 120 ° C.
  • the polymerization time is preferably 10 minutes to 10 hours.
  • the membrane-like polymer obtained by the above polymerization the membrane-like polymer produced using a monomer having a cation exchange group as the polymerizable monomer is directly used as the straight liquid type of the present invention. It can be used as a fuel cell membrane (laminated cation exchange membrane).
  • the membranous polymer obtained by the above polymerization the membranous polymer produced using a polymerizable monomer having a functional group suitable for introduction of a cation exchange group as the polymerizable monomer.
  • the body is further treated by introducing a cation exchange group into a functional group suitable for introduction of the cation exchange group.
  • the diaphragm for a direct liquid fuel cell (lamination force thione exchange membrane) of the present invention is obtained.
  • the cation exchange group for a fuel cell is preferably a sulfonic acid group.
  • the polymerizable monomer having a functional group suitable for introducing the cation exchange group is preferably one having an aromatic hydrocarbon group.
  • a method of introducing a sulfonic acid group into the aromatic hydrocarbon group is a method of reacting a membrane polymer with a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, sulfur dioxide and chlorosulfonic acid. Is mentioned.
  • a laminated cation exchange membrane is produced by the above method.
  • A) a low water content cation exchange membrane layer part and B) a high water content cation exchange membrane layer part are separately produced as a) a membrane and b) a membrane separately. Thereafter, a laminated cation exchange membrane is produced by laminating these a) membrane and b) membrane.
  • the following production method is preferable because it is easy to operate and allows relatively uniform lamination.
  • This manufacturing method includes: a) Moisture content at 50% RH (25 ° C) relative humidity is 1-10% by mass and electrical resistance in 25 ° C, 1 molZl sulfuric acid aqueous solution is 0.3-0.006 ⁇ ⁇ cm 2 A low water content cationic exchange membrane,
  • the moisture content at 100% RH (25 ° C) relative humidity is 3% by mass or more than the moisture content of the low moisture cation exchange membrane at 100% relative humidity (25 ° C) and 25 ° C, lmol / 1
  • A) a portion of a low water content cation exchange membrane layer, and B) a portion of a high water content type cation exchange membrane layer are previously divided into a) a membrane and b) a membrane.
  • the cation exchange resin constituting each membrane can be freely selected. Therefore, when this method is employed, the moisture content of each layer can be adjusted by utilizing the degree of crosslinking of the cation exchange resin, which is determined only by the porosity of each porous membrane of the substrate. As a result, a force thione exchange membrane with a moisture content of less than 4% at a relative humidity of 50% RH can be easily produced in the A) low water content cation exchange membrane layer.
  • thermocompression-bond the a) film and the b) film separately manufactured it is necessary to thermocompression-bond the a) film and the b) film separately manufactured. If the thermocompression bonding is not carried out uniformly, the electric resistance of the obtained laminated cation exchange membrane increases, and there is a risk that both of them peel at the interface during use.
  • the water content of the a) low water content cation exchange membrane to be used must satisfy the requirements regarding the water content of the A) low water content cation exchange membrane layer.
  • 25. C, ImolZl The electric resistance measured in an aqueous sulfuric acid solution should be 0.3 to 0.006 ⁇ 'cm 2 , preferably 0.25-0.0112 ⁇ 'cm 2 . By setting the electric resistance within this range, the requirement of the electric resistance of the laminated cation exchange membrane when the laminated cation exchange membrane is formed can be satisfied.
  • the water content of b) the high water content cation exchange membrane must satisfy the requirements for the B) high water content cation exchange membrane layer.
  • the electric resistance measured in an ImolZl sulfuric acid aqueous solution at 25 ° C is 0.2 to 0.004 ⁇ 'cm 2 , preferably 0.15 to 0.008 ⁇ ⁇ . The same applies to the point that ⁇ 2 is required.
  • the method for producing a) a low water content cation exchange membrane having this structure and b) a high water content type cation exchange membrane may be in accordance with the method for producing a laminated cation exchange membrane described first. That is, in this method, instead of using a laminated porous membrane as a porous membrane, a single porous membrane is used, and other conditions are appropriately changed.
  • thermocompression bonding of a) a low water content cation exchange membrane and b) a high water content cation exchange membrane the two membranes are overlapped at a temperature of 80 to 300 ° C, and a pressure of 0.1 to 50 MPa is applied.
  • a method of mechanically pressing under pressure There is a method of mechanically pressing under pressure.
  • thermocompression bonding is performed using a hot press machine or a hot roll machine.
  • the surface of the cation exchange membrane formed by filling the voids in the porous membrane with a crosslinked cation exchange resin is usually covered with the crosslinked cation exchange resin.
  • the cross-linked cation exchange resin covering this surface is removed, and the thermoplastic resin porous membrane is applied to the surface. It is preferable to expose and force thermocompression bonding. By this operation, the adhesive strength at the interface can be increased.
  • Examples of the method for removing the cation exchange resin covering the surface include the method of oxidizing the surface layer of the cation exchange membrane with an oxidizing agent described in JP-A-2001-157823, and the production of the cation exchange membrane. Examples include a method in which a non-polymerizable component is blended in the polymerizable composition to be used, and a product having no surface layer is obtained in the cation exchange membrane production process.
  • the porous membranes constituting both membranes are made of thermoplastic resin, and the temperature of the thermocompression bonding is not less than the melting point of the thermoplastic resin, preferably the melting point. It is particularly preferable to perform thermocompression bonding at a high temperature of 0 to 50 ° C.
  • the laminated thermoplastic absorptive porous membranes a) and b) are firmly bonded by thermal fusion.
  • the melting point of the thermoplastic resin constituting the thermoplastic resin porous membrane is preferably 80 to 300 ° C, more preferably 100 to 250 ° C! /.
  • the laminated cation exchange membrane may be any one other than the above production method as long as A) a low water content cation exchange membrane layer and B) a high water content cation exchange membrane layer satisfy the above physical property range. It may be manufactured by a manufacturing method.
  • the A) layer may be produced in advance as a single cationic exchange membrane, and the B) layer may be cast and laminated thereon.
  • the fuel cell to which the fuel cell membrane of the present invention is attached is a direct liquid fuel cell.
  • the direct liquid fuel cell generally has the basic structure shown in FIG. 1, but can also be used for a direct liquid fuel cell having another known structure.
  • the membrane of the present invention When the membrane of the present invention is incorporated into a direct liquid fuel cell, a) the low water content cation exchange membrane layer is on the oxidizer chamber side, and b) the high water content cation exchange membrane layer is on the fuel chamber side. Incorporate as follows. By incorporating the membrane in this direction, the excellent liquid fuel permeation suppression effect of the diaphragm of the present invention is exhibited. Even when the membrane is assembled in the opposite direction, that is, A) the low water content cation exchange membrane layer is on the fuel chamber side and B) the high water content cation exchange membrane layer is on the oxidant chamber side, Compared to conventional fuel cell membranes consisting of a single cation exchange membrane, it shows better liquid fuel impermeability. However, the effect is much lower than the case of incorporation in the correct orientation described above.
  • liquid fuel of the direct liquid fuel cell incorporating the diaphragm of the present invention methanol is the most common, and the effects of the present invention are most remarkably exhibited. However, the same excellent effect is exhibited in the case of other liquid fuels such as ethanol, ethylene glycol, dimethyl ether and hydrazine. These liquid fuels are usually supplied to the fuel cell as a 1 to 99% by mass aqueous solution.
  • the cation exchange capacity, water content, membrane resistance, methanol permeability, and fuel cell output voltage of the membrane were measured to evaluate the characteristics of the fuel cell membrane. did. These measurement methods will be described below.
  • the moisture content of the membrane at ° C). After measuring W, the membrane is at 25 ° C and relative humidity 50% R
  • the substrate was immersed in deionized water at 25 ° C for 4 hours or longer, and the wet mass (Gg) and the mass (Gg) after drying under reduced pressure at 60 ° C for 5 hours were measured. Create a cation exchange membrane using the same substrate d
  • the dry mass (Dg), cation exchange capacity and moisture content at relative humidity of 100% RH (25 ° C) and 50% RH (25 ° C) were measured.
  • the force thione exchange capacity and water content of the filled cation exchange resin were determined from these force equations.
  • the volume (Vcm 3 ) and mass (Ug) of the porous membrane were measured, and the resin density of polyethylene, which is the material of the porous membrane, was calculated as 0.9 (g / cm 3 ) by the following formula.
  • An ion exchange membrane was sandwiched in a two-chamber cell equipped with a platinum black electrode, and lmolZL-sulfuric acid aqueous solution was filled on both sides of the ion exchange membrane.
  • an AC bridge circuit (frequency 1000 cycles Z seconds), measure the resistance between the electrodes at 25 ° C and measure the resistance between the electrodes and the resistance between the electrodes when an ion exchange membrane is not installed. The electric resistance of the film was determined from the difference.
  • the membrane used for the above measurement was one that reached equilibrium in ImolZL-sulfuric acid aqueous solution. 4) Methanol permeability
  • the cation exchange membrane was immersed in an ImolZL-HC1 aqueous solution for 10 hours or more to obtain a hydrogen ion type, and then dried at room temperature for 24 hours or more.
  • This cation exchange membrane is attached to the center of the fuel cell (diaphragm area lcm 2 ), an aqueous solution with a methanol concentration of 30% by mass is supplied to one chamber with a liquid chromatograph pump, and argon gas is supplied to the opposite chamber at 300 ml / supplied in min.
  • the measurement was performed in a constant temperature bath at 25 ° C.
  • a certain amount of argon gas that also flows out from the opposite side of the chamber was collected with a gas sampler and directly introduced into a gas chromatograph (GC14B, manufactured by Shimadzu Corporation), and the methanol concentration in the argon gas was measured. Using this value, the amount of methanol that permeated the diaphragm was calculated.
  • GC14B gas chromatograph
  • the catalyst was applied to 4 mg / cm 2 on carbon paper with a thickness of 100 ⁇ m and a porosity of 80% that had been made water-repellent with polytetrafluoroethylene, and the pressure was reduced at 80 ° C for 4 hours.
  • a gas diffusion electrode was obtained by drying.
  • the catalyst on the fuel chamber side is carbon black carrying 50 mass% of an alloy catalyst of platinum and ruthenium (ruthenium 50 mol%), and the catalyst on the oxidizer chamber side is carbon containing 50 mass% of platinum. It was black. Dissolve 5% perfluorocarbon sulfonic acid in carbon black supporting these catalysts, alcohol and water (DuPont, trade name Nafio) And applied to the carbon paper.
  • the above-described oxidant chamber gas diffusion electrode is provided on the surface of the low water content cation exchange membrane layer of the hydrogen ion membrane, and the fuel chamber is provided on the surface of the high water content cation exchange membrane layer.
  • the gas diffusion electrodes were stacked and hot-pressed at 100 ° C under a pressure of 5 MPa for 100 seconds, and then left at room temperature for 2 minutes.
  • This diaphragm was incorporated into a fuel cell having the structure shown in FIG.
  • the fuel cell temperature is set to 25 ° C, a 30 mass% methanol aqueous solution is supplied to the fuel chamber side, and atmospheric pressure air with a relative humidity of 80% is supplied to the oxidizer chamber side at 200 mlZmin. It was. Measure the cell terminal voltage at current density 0AZcm 2 and 0. lAZcm 2 7 pieces.
  • this porous film was taken out of the polymerizable composition, and both surfaces of the porous film were covered with 100 ⁇ m of a polyester film (peeling material).
  • Polymerization was carried out by heating at 0 ° C for 5 hours.
  • the obtained membranous polymer was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 40 ° C for 60 minutes to sulfonate the benzene ring derived from styrene. After tanning, a cation exchange membrane was obtained.
  • a force thione exchange membrane was obtained in the same manner as in Production Example 1 except that the polymerizable composition and porous film shown in Table 1 were used.
  • Table 2 shows the results of measuring the cation exchange capacity, moisture content, electrical resistance, and film thickness at each humidity of the obtained cation exchange membrane.
  • A Made of polyethylene having a weight average molecular weight of 250,000, IU? 9 ⁇ m, average pore diameter 0.03 ⁇ , porosity 35%
  • DBE Dibenzyl ether
  • PPG Polypropylene glycol (diol type, molecular weight 3000)
  • the cation exchange membrane of Production Example 1 and the cation exchange membrane of Production Example 4 that were immersed in an ImolZL-HC1 aqueous solution for 10 hours or more and made into a hydrogen ion type were dried at room temperature for 24 hours or more. Thereafter, these cation exchange membranes were laminated, and heat-pressed at 130 ° C. under a pressure of 5 MPa to obtain a membrane for a direct liquid fuel cell according to the present invention comprising a lamination force thione exchange membrane.
  • a laminating force thione exchange membrane was obtained in the same manner as in Example 1 except that the combination of cation exchange membranes shown in Table 3 was used. Table 3 shows the characteristics of the obtained laminated cation exchange membrane.
  • a laminating force thione exchange membrane was obtained in the same manner as in Example 1 except that the combination of cation exchange membranes shown in Table 3 was used. Table 3 shows the characteristics of the obtained laminated cation exchange membrane.
  • this laminated porous film was taken out of the polymerizable composition, and after covering both surfaces of the laminated porous film immersed in a polyester film (release material) having a thickness of 100 m, 0.3 MPa of nitrogen was used. Polymerization was carried out by heating at 80 ° C for 5 hours under pressure.
  • the obtained membranous polymer was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 40 ° C for 60 minutes to sulfonate benzene rings derived from styrene.
  • a stacked cation exchange membrane was obtained.
  • this laminated cation exchange membrane was boiled in boiling water for 3 hours or more and sufficiently swollen. Thereafter, the swollen laminated cation exchange membrane was peeled off at the adhesive interface between the low water content layer and the high water content layer, and the water content and film thickness at each humidity of each layer were measured. These results are shown in Tables 5 and 6.
  • a laminated cation exchange membrane of the present invention was obtained in the same manner as in Example 5 except that the polymerizable composition and porous film shown in Table 4 were used. These characteristics are shown in Tables 5 and 6.
  • a stacked cation exchange membrane was obtained in the same manner as in Example 5 except that the polymerizable composition and porous film shown in Table 4 were used. These characteristics are shown in Tables 5 and 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明により、隔膜の一面に、A)相対湿度50%RH(25°C)における含水率が1~15質量%である低含水型カチオン交換膜層を、  隔膜の他面に、B)相対湿度100%RH(25°C)における含水率が、前記低含水カチオン交換膜層の相対湿度100%RH(25°C)における含水率よりも3質量%以上大きい高含水型カチオン交換膜層を、形成してなり、25°C、1mol/l-硫酸水溶液中の電気抵抗が0.5~0.01Ω・cm2である積層カチオン交換膜からなる直接液体型燃料電池用隔膜が開示される。

Description

明 細 書
直接液体型燃料電池用隔膜及びその製造方法
技術分野
[0001] 本発明は、直接液体型燃料電池用隔膜及びその製造方法に関する。
背景技術
[0002] イオン交換膜は、固体高分子型燃料電池、レドックス 'フロー電池、亜鉛—臭素電 池等の電池用隔膜、透析用隔膜等として汎用的に使用されている。イオン交換膜を 電解質として用いる固体高分子型燃料電池は、電池に燃料と酸化剤とを連続的に供 給し、これらが反応した時の化学エネルギーを電力として取り出すクリーンで高効率 な発電システムの一つである。この電池は、近年、低温作動や小型化の観点から自 動車用途、家庭用途、携帯用途として、その重要性を増している。
[0003] 固体高分子型燃料電池は、一般的に電解質として作用する固体高分子隔膜をそ の内部に有し、前記隔膜の両面には、触媒が坦持されたガス拡散電極が接合されて いる。この電池は、一方のガス拡散電極が存在する側の室 (燃料室)に水素ガスある いはメタノール等のアルコール水溶液力もなる燃料を、他方のガス拡散電極が存在 する側の室に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス 拡散電極間に外部負荷回路を接続することにより、燃料電池として働く。燃料電池の 中でも、メタノール等のアルコール水溶液を直接燃料として用いる直接液体型燃料 電池は、燃料が液体であることから取り扱い易い。更に、この燃料電池は燃料が安価 なことから、特に携帯機器用の比較的小出力規模の電源として期待されている。
[0004] 直接液体型燃料電池のセルの基本構造を第 3図に示す。図中、 la、 lbは電池隔 壁である。電池隔壁 la、 lbは、隔膜として用いる固体高分子電解質膜 300を挟んで 、該固体高分子電解質膜 300の両側にそれぞれ形成されている。 2は、一方の電池 隔壁 laの内壁に形成された燃料流通孔、 3は他方の電池隔壁 lbの内壁に形成され た酸化剤ガス流通孔である。 4は燃料室側拡散電極、 5は酸化剤室側ガス拡散電極 である。
[0005] この直接液体型燃料電池において、燃料室 7にアルコール等の液体燃料が供給さ れると、燃料室側拡散電極 4の有する触媒の作用により液体燃料からプロトン (水素 イオン)と電子が生成する。生成したプロトンは固体高分子電解質膜 300内を通過し 、他方の酸化剤室 8に到達し、ここで酸素ガス又は空気中の酸素と反応して水が生 成される。この時、燃料室側拡散電極 4で生成される電子は、不図示の外部負荷回 路を通って酸化剤室側ガス拡散電極 5へと送られる。この際に、外部負荷に電気工 ネルギ一が与えられる。
[0006] 上記構造の直接液体型燃料電池において、上記隔膜には、通常、カチオン交換 膜が使用される。このカチオン交換膜は、電気抵抗が小さぐ物理的な強度が強ぐ 燃料として使用されるアルコール等の透過性が低いという特性が要求される。例えば 、隔膜におけるアルコールの透過性が大きい場合には、燃料室のアルコールが酸化 剤室側に拡散し、電池出力が小さくなる。
[0007] 従来、燃料電池用隔膜として使用されるカチオン交換膜としては、例えば、ポリオレ フィン系やフッ素系榭脂製多孔質膜を基材としたものがある。このカチオン交換膜は 、この基材の細孔にカチオン交換基を導入可能な官能基を有する重合性単量体お よび架橋性重合性単量体からなる重合性組成物を充填させて該重合性組成物を重 合させた後、該カチオン交換基を導入可能な官能基にカチオン交換基を導入する 方法により製造している。このカチオン交換基を有する架橋重合体力 なる隔膜は、 比較的安価に製造でき、電気抵抗が小さぐ前記液体燃料の透過性が小さぐ燃料 により膨潤して変形することが少ないため、好適なものである (例えば、特許文献 1、 2
) o
特許文献 1 :特開 2001— 135328号公報
特許文献 2:特開平 11— 310649号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、これらの架橋型の炭化水素系カチオン交換膜を直接液体型燃料電 池用隔膜として用いる場合、これらの架橋型の炭化水素系カチオン交換膜に対する アルコール等の液体燃料の透過性は満足できるほど低くない。その結果、酸化剤室 側に液体燃料が拡散し、電池性能が低下するという問題がある。この問題を改善す るために、下記の方法が検討されている。
•基材として使用する多孔質膜の空隙率を下げて、その空孔に充填されるカチオン 交換樹脂の含有量を低下させる方法。
-カチオン交換榭脂製造用の重合性組成物中の架橋性重合性単量体の含有量を高 めることにより、親水性のカチオン交換基の導入量を相対的に低下させ、その結果得 られるカチオン交換膜の疎水性を高め、且つ膜の架橋度も高めて緻密な膜とする方 法。
[0009] これらの方法は、上記問題の解決にある程度に有効である。しかし、これらの方法 による場合、一方で膜の電気抵抗が増大して電池出力が低下する問題が同時に引 き起こされている。従って、実用上満足できる前記燃料電池用隔膜は未だ得られて いない。
[0010] 以上の背景にあって本発明は、直接液体型燃料電池の隔膜として用いられるカチ オン交換膜において、液体燃料の非透過性、特にメタノール非透過性に極めて優れ 、し力も、膜の電気抵抗も低く維持されているため、高い電池出力を安定して得ること ができるカチオン交換膜を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者等は、上記の課題に鑑み、鋭意研究を行ってきた。その結果、低含水型 と高含水型とからなる、含水率が異なるカチオン交換膜層を表裏にそれぞれ形成し てなるカチオン交換膜 (積層カチオン交換膜)を隔膜として用いることにより、上記の 課題が解決できることを見出し本発明を完成するに至った。
[0012] すなわち、本発明は、
隔膜の一面に、 A)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であ る低含水型カチオン交換膜層を、
隔膜の他面に、 B)相対湿度 100%RH (25°C)における含水率が、前記低含水力 チオン交換膜層の相対湿度 100%RH (25°C)における含水率よりも 3質量%以上大 きい高含水型カチオン交換膜層を、
形成してなり、 25°C、 ImolZl—硫酸水溶液中の電気抵抗が 0. 5〜0. ΟΙ Ω -cm2 である積層カチオン交換膜からなる直接液体型燃料電池用隔膜である。 [0013] この燃料電池用隔膜は、 A)低含水型カチオン交換膜層が酸化剤室側に位置し、 B)高含水型カチオン交換膜層が燃料室側に位置するように直接液体型燃料電池に 組み込まれて使用されることが好ま 、。
[0014] また、本発明は、カチオン交換基の導入に適した官能基を有する重合性単量体ま たはカチオン交換基を有する重合性単量体 100モルに対して、架橋性重合性単量 体 0. 5〜40モル%、および有効量の重合開始剤を含む重合性組成物を、 平均細孔径が 0. 005〜: LO /z mであり空隙率が 10〜50%である低空隙多孔質膜と 、平均細孔径が 0. 01〜50 mであり空隙率が低空隙多孔質膜より 7%以上大きい 高空隙多孔質膜との積層多孔質膜に接触させて該重合性組成物を積層多孔質膜 の有する各空隙部に充填させた後、該重合性組成物を重合させて硬化榭脂を含有 する積層多孔質膜を得、次いで、必要に応じて硬化樹脂にカチオン交換基を導入す る上記燃料電池用隔膜の製造方法である。
[0015] さらに、本発明は、
a)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であり、且つ 25°C、 1 molZl 硫酸水溶液中の電気抵抗が 0. 3〜0. 006 Ω · cm2である低含水型カチォ ン交換膜と、
b)相対湿度 100%RH (25°C)における含水率が、前記低含水型カチオン交換膜 の相対湿度 100% (25°C)における含水率より 3質量%以上大きぐ且つ 25°C、 lmo 1/1 硫酸水溶液中の電気抵抗が 0. 2〜0. 004 Ω · cm2である高含水型カチオン 交換膜と、
を熱圧着させる燃料電池用隔膜の製造方法である。
発明の効果
[0016] 本発明の燃料電池用隔膜は、 A)低含水型カチオン交換膜層と B)高含水型カチォ ン交換膜層とを隔膜の表裏にそれぞれ形成しているので、これを直接液体型燃料電 池用隔膜として使用する場合、膜の電気抵抗を低く維持しつつ、液体燃料、特に、メ タノールの透過性を大きく低減させることができる。
[0017] 具体的には、本発明の積層カチオン交換膜は、 25°Cにおける 30質量%メタノール 水溶液に対する、 B)高含水型カチオン交換膜層から A)低含水型カチオン交換膜層 に向けてのメタノールの透過率が通常 500gZm2 · hr以下であり、特に 300〜 10gZ m2'hrの範囲にすることも可能である。また、 25°C、 ImolZl—硫酸水溶液中の電気 抵抗は 0. 5〜0. 01 Ω 'cm2である。すなわち、本発明の燃料電池用隔膜は、従来達 成困難であった、高 、液体燃料の非透過性と高 、プロトン伝導性の両方を併せ持つ
[0018] 本発明の隔膜を使用して製造する直接液体型燃料電池は、電池の内部抵抗が低 ぐ且つメタノール等の燃料のクロスオーバーが高度に抑制されるため、高い電池出 力が得られる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の燃料電池用隔膜を備えた、直接液体型燃料電池の基本構造 の一例を示す概念図である。
[図 2]図 2は、本発明の燃料電池用隔膜の他の例を示す概念図である。
[図 3]図 3は、従来の直接液体型燃料電池の基本構造を示す概念図である。
符号の説明
[0020] la、 lb;隔壁
2;燃料流通孔
3 ;酸化剤ガス流通孔
4;燃料室側拡散電極
5 ;酸化剤室側ガス拡散電極
100、 200、 300 ;固体高分子電解質膜
7;燃料室
8 ;酸化剤室
9;低含水型カチオン交換膜層
10;高含水型カチオン交換膜層
11 ;中間層
発明を実施するための最良の形態
[0021] 本発明の直接液体型燃料電池用隔膜を構成する積層カチオン交換膜は、
隔膜の一面に、 A)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であ る低含水型カチオン交換膜層を、
隔膜の他面に、 B)相対湿度 100%RH (25°C)における含水率が、前記低含水力 チオン交換膜層の相対湿度 100%RH (25°C)における含水率よりも 3質量%以上大 きい高含水型カチオン交換膜層を、
それぞれ形成した積層構造を有する。
[0022] この構造の積層カチオン交換膜を直接液体型燃料電池用隔膜として使用する場 合、この膜の電気抵抗は低く維持されつつ、液体燃料、特に、メタノールの透過性を 大きく低減できる。その理由は、以下のような作用が生じることによるものと推測される
[0023] すなわち、前記図 3で説明する基本構造を有する従来の直接液体型燃料電池に おいて、カチオン交換膜からなる隔膜 300の燃料室 7側の表面層は、アルコール水 溶液等の水を多量に含む液体燃料に接している。従って、この表面層は吸水して湿 潤な状態にある。一方、酸化剤室 8側の隔膜 300の表面層は、取り込まれた大気等 の酸素含有ガスと接している。従って、この表面層は乾いた状態にある。このように、 表裏の両表面層の接する環境が全く異なる電池隔膜 300において、相対的に湿潤 性の高 ヽ (含水率の高!ヽ)燃料室 7側の表面層はプロトン伝導性が高ぐ液体燃料も 透過し易い状態にある。
[0024] これと反対に、相対的に湿潤性の低!、 (含水率の低!、)酸化剤室 8側の表面層近 傍はプロトン伝導性が低下し、液体燃料も透過し難い状態にある。その結果、上記液 体燃料の非透過性に関する膜全体としての性状は、これら両表面層近傍のそれぞれ 異なる性状が合わさった性状になると考えられる。つまり、直接液体型燃料電池の隔 膜として使用されるカチオン交換膜に、該液体燃料の高い非透過性を付与するため には、上記乾いた性状にある酸化剤室 8側の表面層において、いかにその非透過性 能を高め、上記湿潤な状態にある燃料室 7側から多量に透過してくる液体燃料の流 れを遮断するかに依存する。
[0025] この酸化剤室 8側の表面層における液体燃料の非透過性を高めるため、該カチォ ン交換膜の架橋度を大きくする等の方法により、その湿潤性を低下させると、この部 分における該液体燃料の遮断効果には確かに向上する。しかし、燃料室 7側の表面 層は湿潤性が不足し、前記したとおり該表面層のプロトン伝導性が低下する。その結 果、膜全体としてのプロトン伝導性の必要量が確保できなくなる。このようにカチオン 交換膜を直接液体型燃料電池の隔膜として使用する場合、単一膜で、液体燃料の 非透過性とプロトンの高い伝導性とを達成させることは困難である。
[0026] これに対して、本発明においては、カチオン交換膜を、単一膜ではなぐ図 1に示さ れるような積層構造にする。更に、酸化剤室 8側には、低含水型カチオン交換膜層 9 を配置し、燃料室 7側には高含水型カチオン交換膜層 10を配置する。この構成によ り、前記酸化剤室 8の湿潤性が低い表面層近傍においては、液体燃料の遮断効果 が高くなる。一方、燃料室 7の吸水性が高い表面層近傍においては、プロトン伝導性 が高くなる。従って、膜全体として、該プロトン伝導性を十分な値に保持できる。以上 の機構によって、本発明の隔膜は、液体燃料の高遮断性と高プロトン伝導性との、通 常は相反する両物性を両立させて 、ると推測される。
[0027] 本発明にお 、て使用する積層カチオン交換膜にぉ 、て、 A)低含水型カチオン交 換膜層は、相対湿度 50%RH (25°C)における含水率が 1〜15質量%、より好適に は 4〜9質量%であることが重要である。この相対湿度 50%RHは、酸化剤室 8の平 均的な湿度状態として規定したものである。従って、装置周囲の大気を取り込んでそ のまま酸化剤室に供給する形式の燃料電池の発電時においては、大気にある程度 の湿度変化があるものの、この A)低含水型カチオン交換膜層は概ねこの程度の低 い含水率を有することになる。その結果、低含水型カチオン交換膜層は相対的に液 体燃料の非透過性に優れた状態が保たれることになる。
[0028] 相対湿度 50%RHにおける含水率が 15質量%を超える場合、燃料室側から透過 してくる液体燃料の遮断効果が不十分になり、積層カチオン交換膜全体としての液 体燃料の透過性は高くなる。相対湿度 50%RHにおける含水率が 1質量%未満の場 合、この A)低含水型カチオン交換膜層におけるプロトン導電性は低下し、積層カチ オン交換膜全体としての電気抵抗は高くなる。
[0029] なお、相対湿度 50%RHにおける含水率が上記低い値にあるカチオン交換膜層の 相対湿度 100%RHにおける含水率は、通常 7〜40質量%、より一般的には 7〜30 質量%の範囲にある。 [0030] 本発明で使用する積層カチオン交換膜において、 B)高含水型カチオン交換膜層 は、相対湿度 100%RH (25°C)における含水率が前記低含水カチオン交換膜層の 相対湿度 100%RH (25°C)における含水率よりも 3質量%以上、より好適には 4質量 %以上大きいことが重要である。この相対湿度 100%RHは、燃料室 7の通常の湿度 状態を規定したものである。この相対湿度で上記含水率を有すると言うことは、直接 液体型燃料電池の使用時において、 B)高含水型カチオン交換膜層が上記の含水 率を有し、その結果プロトン伝導性に優れたものになることを意味する。
[0031] なお、含水率が 3質量%以上大きいとは、低含水カチオン交換膜層の含水率を P質 量%とした場合、(P+ 3)質量%以上であることを意味する。
[0032] B)高含水型カチオン交換膜層の相対湿度 100%RHにおける含水率が、低含水 型カチオン交換膜層の相対湿度 100%RH (25°C)における含水率に増分 3%をカロ えた値を超えな!/、場合、高含水型カチオン交換膜層におけるプロトン導電性が低下 し、積層カチオン交換膜全体において電気抵抗が大きくなる。
[0033] B)高含水型カチオン交換膜層の相対湿度 100%RH (25°C)における含水率の前 記増分は、通常、 100質量%以下、より一般的には 30質量%以下である。この含水 率の増分が 100質量%を超える B)高含水型カチオン交換膜層は、架橋度が極端に 低い層である。この湿潤性の高い膜は、機械的強度が不十分で、この層は形状の保 持性等が悪くなる。
[0034] なお、この B)高含水型カチオン交換膜層の相対湿度 100%RH (25°C)における 含水率は、通常、 10〜135質量%で、より一般的には 20〜: LOO質量%の範囲であ る。 B)高含水型カチオン交換膜層の相対湿度 50%RH (25°C)における含水率は、 通常、 7〜50質量%で、より一般的には 10〜40質量%の範囲である。
[0035] これら A)低含水型カチオン交換膜層と B)高含水型カチオン交換膜層とは、それぞ れ単層で構成されるのが普通である。しかし、何れの層も、上記規定する含水率の要 件の範囲内で、同一又は異なる 2層以上力 なる複層で構成されていても良い。
[0036] 積層カチオン交換膜は、その一面に上記 A)低含水型カチオン交換膜層を、他面 に B)高含水型カチオン交換膜層をそれぞれ形成させている。通常は、これら両カチ オン交換膜層を直接積層して積層カチオン交換膜を構成すれば良い。 [0037] また、後述する積層カチオン交換膜全体に求められる電気抵抗の低さが保持でき ている限りにおいては、図 2に示すように、 A)低含水型カチオン交換膜層 9と B)高含 水型カチオン交換膜層 10との間に、これらの層の含水率の要件を満足しない他の力 チオン交換膜からなる中間層 11を介在させて積層カチオン交換膜 200を構成しても 良い。このカチオン交換膜からなる中間層 11は、その厚みや、上記 A)層および B) 層として形成する各カチオン交換膜層の種類等を勘案して適宜選択する。
[0038] 通常、この中間層は、 C)相対湿度 100%RH (25°C)における含水率 (C質量%) 力 前記低含水型カチオン交換膜層の相対湿度 100%RH (25°C)における含水率 (P質量%)よりも大きぐ且つこの含水率 (P質量%) + 3%よりも小さい範囲 {P< C< (P + 3) }であるカチオン交換膜層が採択される。
[0039] なお、中間層 11の厚みが極薄の場合、上記 A)低含水型カチオン交換膜層よりも 含水率が低!、中間層を採用することができる。
[0040] 上記 A)低含水型カチオン交換膜層と B)高含水型カチオン交換膜層とが積層され てなる積層カチオン交換膜は、上記各層の含水率の要件が満足されて 、ることにカロ えて、 25°C、 ImolZl—硫酸水溶液中において測定する積層カチオン交換膜の電 気抵抗が 0. 5〜0. 01 Ω 'cm2の要件を満たす必要がある。すなわち、プロトン伝導 性を無視して、各カチオン交換膜層の含水率、特に A)低含水型カチオン交換膜層 の含水率を前記値に調整しても、得られる積層カチオン交換膜が上記電気抵抗の要 件を満足しない場合は、燃料電池用隔膜としての使用が困難になる。したがって、積 層カチオン交換膜の電気抵抗が上記範囲に維持される範囲内で、各カチオン交換 膜層の含水率を調整する必要がある。上記測定条件において測定する積層カチォ ン交換膜の電気抵抗は、 0. 4〜0. 01 Ω 'cm2であることが特に好ましい。
[0041] 積層カチオン交換膜に導入されるカチオン交換基は、スルホン酸基、カルボン酸基 、ホスホン酸基等が挙げられる。これらカチオン交換基の中でも、得られる積層カチ オン交換膜の電気抵抗を低くできる等の観点から、強酸性基であるスルホン酸基が 好ましい。
[0042] それぞれの層を構成するカチオン交換膜層は、前述の含水率の値および積層カチ オン交換膜とした際の電気抵抗の要件が満足できるものであれば如何なる種類のも のであってもよぐ例えば、非架橋のパーフルォロカーボンスルホン酸膜等のフッ素 系のカチオン交換膜層も上記要件を満す場合は使用できる。高含水型から低含水 型のものまで、含水率の異なるカチオン交換膜層を製造し易い点、機械的強度を有 する点、更に前記した種々の利点がある点を考慮すると、カチオン交換膜層は架橋 型の炭化水素系カチオン交換膜で形成されていることが好ましぐ基材である多孔質 膜の空隙に架橋型の炭化水素系カチオン交換樹脂が充填されてなるカチオン交換 膜で形成されて ヽることがよりが好ま 、。
[0043] ここで、炭化水素系カチオン交換樹脂とは、カチオン交換基以外の部分は炭素と 水素を主成分とする榭脂である。この樹脂には、カチオン交換基以外の部分にフッ 素、塩素、臭素、酸素、窒素、珪素、硫黄、ホウ素、リン等のその他の原子が少量で あれば存在しても良 、。その他の原子の存在量はカチオン交換基以外の部分を構 成する原子の総数に対して 40モル%以下であり、 10モル%以下が好ましい。
[0044] 架橋型の炭化水素系カチオン交換榭脂は、榭脂を構成する炭化水素系高分子鎖 同士を共有結合により結合する架橋構造を一定割合有する榭脂である。即ち、炭素 炭素結合、炭素 酸素結合などの共有結合性の架橋点を一定程度有する榭脂で ある。非架橋の榭脂ゃイオン結合性の架橋のみを有する榭脂は、一般に、メタノール 等の液体燃料や水に対して膨潤しゃすぐ極端な場合には溶解してしまう。従って、 炭化水素系カチオン交換榭脂は少なくとも、膨潤ゃ溶解が生じない程度に、共有結 合により架橋されていることが好ましい。更に、各カチオン交換膜層を所定の含水率 に調製する手段として、カチオン交換榭脂中の共有結合性架橋の密度を調整するこ とは、重要な要件の一つである。この点については、後述する積層カチオン交換膜 の各種製造方法から明らかになる。
[0045] 一般に、共有結合による架橋の密度が高くなるとカチオン交換樹脂の含水率は低 減する傾向にあり、他方、この架橋密度が低くなるとカチオン交換樹脂の含水率は高 くなる傾向がある。
[0046] 本発明にお ヽて、積層カチオン交換膜の、膜全体としてのカチオン交換容量は、 通常、 0. 1〜4. OmmolZgであり、積層カチオン交換膜を構成する前記各層のカチ オン交換容量も膜全体の交換容量力 Sこの範囲なるように採択される。各規定される含 水率の値を満足させ、使用する積層カチオン交換膜の全体の電気抵抗を、前記した
25°C、 ImolZl—硫酸水溶液中での測定で 0. 5〜0. 01 Ω 'cm2に調製する。この ためには、 A)低含水型カチオン交換膜層のカチオン交換容量は 0. 1〜3. Ommol Zgが好ましぐ 0. 1〜2. 6mmolZgがより好ましい。また、 B)高含水型カチオン交 換膜層のカチオン交換容量は 0. 3〜4. OmmolZgが好ましぐ 0. 5〜3. 5mmol/ gがより好ましい。積層カチオン交換膜に、 C)中間層を設ける場合には、中間層の力 チオン交換容量は上記 2層のカチオン交換容量の間の範囲であることが好ましい。
[0047] 各層の厚みとしては、カチオン交換膜の電気抵抗の要件を満足し易い等の観点か ら、 A)低含水型カチオン交換膜層の厚みは 3〜40 μ mが好ましぐ 5〜35 μ mがよ り好ましい。 B)高含水型カチオン交換膜層の厚みは 5〜150 mが好ましぐ 10〜1 20 mがより好ましい。 C)中間層を設ける場合には中間層の厚みは 3〜: LOO /z mが 好ましぐ 3〜70 /ζ πιがより好ましい。積層カチオン交換膜全体の厚みとしては、 10 〜200 μ m力女子ましく、 10〜120 μ m力 ^ Jり女子まし!/ヽ。
[0048] 以上の特徴的な積層構造を有する積層カチオン交換膜は、上記要件に合致する ならば、公知の如何なる方法により製造したものであっても良い。
[0049] 以下、多孔質膜の空孔に架橋型の炭化水素系カチオン交換樹脂が充填されてな るカチオン交換膜層をその表裏に形成してなる積層カチオン交換膜の好適な製造 方法を例示する。
[0050] この方法にぉ 、ては、先ずカチオン交換基の導入に適した官能基を有する重合性 単量体またはカチオン交換基を有する重合性単量体 100モルに対して、架橋性重 合性単量体を 0. 5〜40モル%、好ましくは 1〜30モル%、および有効量の重合開 始剤を含む重合性組成物を調製する。
[0051] 次いで上記重合性組成物を平均細孔径が 0. 005-10 μ m、好ましくは 0. 01〜5
/z mであり、空隙率が 10〜50%、より好ましくは 20〜50%の低空隙多孔質膜と、平 均細孔径が 0. 01〜50 111、ょり好ましくは0. 02〜40 mであり空隙率が低空隙多 孔質膜より 7%以上、より好ましくは 10〜60%大きい高空隙多孔質膜との積層多孔 質膜と接触させて、該重合性組成物を積層多孔質膜の有する各空隙部に充填させ る。 [0052] その後、各空隙部に充填した重合性組成物を重合させて膜状高分子体を得、次い で、必要に応じて膜状高分子体に含浸されている樹脂にカチオン交換基を導入する ことにより、積層カチオン交換膜が得られる。
[0053] この製造方法によれば、下記 A)低含水型カチオン交換膜層と、 B)高含水型カチ オン交換膜層とが積層されてなる積層カチオン交換膜が得られる。
[0054] A)低含水型カチオン交換膜層: 平均細孔径が 0. 005〜: LO m、より好適には 0 . 01〜5 /ζ πιであり、空隙率が 10〜50%、より好適には 20〜50%である低空隙多 孔質膜の空孔に、カチオン交換容量が 0. 1〜6. Ommol/g,より好適には 0. 3〜5 . 5mmolZgであり、相対湿度 50%RH (25°C)における含水率が 2〜150質量%、 より好適には 8〜90質量%であり、相対湿度 100%RH (25°C)における含水率が 14 〜250質量%、より好適には 20〜150質量%である架橋型の炭化水素系カチオン 交換樹脂が充填された層、
B)高含水型カチオン交換膜層: 平均細孔径が 0. 01-50 μ m、より好適には 0. 02〜40 mであり空隙率が低空隙多孔質膜より 7%以上、より好適には 10〜60% 大き!、高空隙多孔質膜の空孔に、上記上記 A)層にお 、て低空隙多孔質膜の空孔 に充填されているものと同じ架橋型の炭化水素系カチオン交換樹脂が充填された層 なお、本発明において、多孔質膜の平均細孔径は、 ASTM— F316— 86に準拠 し、ハーフドライ法にて測定した値である。また、多孔質膜の空隙率は、多孔質膜の 体積 (Vcm3)と質量 (Ug)とを測定し、多孔質膜の材質の密度を X(g/cm3)として、 下記の式により算出した値をいう。
空隙率 = [ (V-U/X) /V] X 100[%]
この製造方法においては、基材の多孔質膜として、低空隙多孔質膜と高空隙多孔 質膜との積層多孔質膜を使用し、その各空隙に同じ組成の重合性組成物を充填し て重合硬化させている。その結果、両カチオン交換膜層の積層界面を構成する硬化 榭脂が均質になり、両カチオン交換層の一体性が良い。
[0055] 一方、 A)低含水型カチオン交換膜層と B)高含水型カチオン交換膜層とは、同じ力 チオン交換樹脂で形成しなければならない制約がある。従って、これら各層の含水 率を、基材の各多孔質膜の空隙率の差だけで調整する必要がある。このため、含水 率が特に低 ヽ A)低含水型カチオン交換膜層を形成させる場合には、多孔質膜の空 隙率が小さすぎてプロトン伝導性が不足する場合が考えられる。従って、この製造方 法で得られる A)低含水型カチオン交換膜層の含水率の通常の下限は、相対湿度 5 0%RHの雰囲気下にお!/、て 4質量%程度である。
[0056] この製造方法で使用する積層多孔質膜において、平均細孔径が 0. 005-10 ^ m であり、空隙率が 10〜50%である低空隙多孔質膜部分は、得られる積層カチオン 交換膜の A)低含水型カチオン交換膜層の基材を構成することになる。この平均細孔 径が、上記値より小さい場合、多孔質膜へのカチオン交換樹脂の充填量が不足し、 均一なカチオン交換膜層は得がたくなる。一方、平均細孔径が上記値より大きい場 合には、高い液体燃料の非透過性が得られない。また、空隙率が上記値より小さい 場合、カチオン交換膜層のプロトン伝導性が小さくなり、得られる積層カチオン交換 膜の電気抵抗を本発明で特定する範囲に制御し難くなる。他方、この空隙率が、上 記値より大きい場合、カチオン交換膜層の含水率を本発明が特定する小さい値の範 囲に制御することが困難になる。
[0057] また、積層多孔質膜において、平均細孔径が 0. 01〜50 /z mであり空隙率が低空 隙多孔質膜より 7%以上大きい高空隙多孔質膜部分は、積層カチオン交換膜におけ る B)高含水型カチオン交換膜層の基材を構成することになる。この平均細孔径が、 上記値より小さい場合、多孔質膜へのカチオン交換樹脂の充填量が不十分となり、 含水率を本発明の特定する大きな値の範囲にすることが困難になる。他方、平均細 孔径が上記値より大きい場合には、均一なカチオン交換膜層を得ることができなくな る。
[0058] 空隙率が上記値より小さい場合、カチオン交換膜層の含水率を本発明が特定する 大きい範囲のものに制御することが困難になる。他方、この空隙率が、上記値より大 きい場合、カチオン交換膜層の機械的強度が不十分になる。
[0059] 積層多孔質膜は、上記各多孔質膜層における平均細孔径と空隙率との要件が満 足される限り、特に限定されることなぐ任意のものが使用できる。
[0060] 積層多孔質膜全体の透気度 (JIS P— 8117)は 1500秒以下、特に 1000秒以下 であるのが好ましい。高い液体燃料の非透過性を達成するために、膜の両表面の表 面平滑性は、夫々粗さ指数で表して 10 m以下が好ましぐ 以下がより好まし い。
[0061] 上記互いに異なる空隙率を有する多孔質膜を積層してなる積層多孔質膜は、前記 低空隙多孔質膜と高空隙多孔質膜とを単に重ね合わせた状態のものでも良い。また は、両層間に接着処理を施した積層多孔質膜であっても良い。両層間を良好に接着 した積層多孔質膜を用いて得られる積層カチオン交換膜は、プロトン伝導性や液体 燃料の非透過性を長期にわたり安定に維持できる。従って、積層多孔質膜は、両層 間を接着処理してあるものが好まし 、。
[0062] 接着処理方法には特に制限がなぐ高分子フィルムの接着方法として公知の手法 を採用できる。具体的には、上記本発明で特定する範囲の両多孔質膜の平均細孔 径ゃ空隙率などの物性を損なわないように、各種接着剤で接着する方法、熱、振動 、高周波等を用いて融着する方法、さらには 0. l〜50MPaの圧力を付加して機械 的に圧着する方法などが挙げられる。熱圧着による接着処理は、製造が容易で、前 記した両多孔質膜の特性を損ないにく 、利点を有するので好ま 、。
[0063] 熱圧着は、加圧、加温できる装置を用いて実施される。一般的には、ホットプレス機 、ロールプレス機等を用いて熱圧着が行われる。プレス温度は一般的には 60°C〜2 00°C、プレス圧力は、通常 0. l〜50MPaである。用いる多孔質膜の材質や物性に 、これら加圧、加熱条件は依存するので、熱圧着後に多孔質膜の物性が本発明にお いて規定する範囲を逸脱しないように、加熱、加圧等の条件は適宜決定される。
[0064] 本製造方法にお!、ては、後述のように両多孔質膜は、充填されるカチオン交換榭 脂で一体化されるため、相対的に両多孔質膜間の接着性は高くなる。このため、両 多孔質膜同士の熱圧着は、必ずしも、多孔質膜を構成する材料の融点以上にする 必要はない。
[0065] 多孔質膜の形態は特に限定されず、例えば多孔質フィルム、織布、不織布、紙、無 機膜等が制限なく使用できる。多孔質膜の材質としては、熱可塑性榭脂、熱硬化性 榭脂、無機物又はそれらの混合物等がある。製造の容易性、カチオン交換樹脂との 密着強度の高さの点から、熱可塑性榭脂が好まし 、。
[0066] 熱可塑性榭脂としては、エチレン、プロピレン、 1—ブテン、 1—ペンテン、 1—へキ セン、 3—メチルー 1ーブテン、 4ーメチルー 1 ペンテン、 5—メチルー 1 ヘプテン 等の aーォレフインの単独重合体または共重合体等のポリオレフイン榭脂;ポリ塩ィ匕 ビュル、塩ィヒビュル 酢酸ビュル共重合体、塩ィヒビ二ルー塩ィヒビユリデン共重合体 、塩ィ匕ビュルーォレフイン共重合体等の塩ィ匕ビュル系榭脂;ポリテトラフルォロェチレ ン、ポリクロ口トリフルォロエチレン、ポリフッ化ビ-リデン、テトラフルォロエチレン一へ キサフルォロプロピレン共重合体、テトラフロォロエチレン ペルフロォロアルキルビ -ルエーテル共重合体、テトラフルォロエチレン エチレン共重合体等のフッ素系榭 脂;ナイロン 6、ナイロン 66等のポリアミド榭脂、ポリイミド榭脂等が例示される。これら のなかでも特に、機械的強度、化学的安定性、耐薬品性に優れ、炭化水素系イオン 交換樹脂との馴染みがよいことから、ポリオレフイン樹脂が好ましい。ポリオレフイン榭 脂としては、ポリエチレン又はポリプロピレン榭脂が特に好ましぐポリエチレン榭脂が 最も好ましい。
[0067] さらに前記平均細孔径を有すものの入手が容易で、かつ強度に優れる点でポリオ レフイン榭脂製の多孔質フィルムであることが好ましぐポリエチレン榭脂製の多孔質 フィルムであることが特に好まし 、。
[0068] (重合性組成物)
上記積層多孔質膜の各空隙部に充填する重合性組成物は、カチオン交換基の導 入に適した官能基を有する重合性単量体またはカチオン交換基を有する重合性単 量体 100モルに対して、架橋性重合性単量体 0. 5〜40モル%、および有効量の重 合開始剤を含む。
[0069] カチオン交換基を導入可能な官能基を有する重合性単量体としては、特に制限無 く公知のものが使用できる。スルホン基は、本発明において用いる好ましいカチオン 交換基の一例である。従って、重合性単量体としては、スルホン基等のカチオン交換 基を導入するのに適する芳香族炭化水素基を有するラジカル重合性単量体が好ま しい。
[0070] カチオン交換基を導入可能な重合性単量体としては、スチレン、ビニルトルエン、ビ 二ルキシレン、 a—メチルスチレン、ァセナフチレン、ビュルナフタリン、 a—ハロゲン ィ匕スチレン、 α , β , j8 , 一トリハロゲン化スチレン等が挙げられる。 [0071] これらの芳香族炭化水素基を有するラジカル重合性単量体は、スチレン等の芳香 族炭化水素基にビニル基が直結して 、る構造の単量体が、(メタ)アクリル基が結合 する構造の単量体よりも好ましい。前者の方が、加水分解を受け難い等の理由による
[0072] カチオン交換基を有する重合性単量体としては、スチレンスルホン酸、 2- (メタ)ァ クリルアミド— 2—メチルプロパンスルホン酸、 3—スルホプロピル (メタ)アクリル酸エス テル、ビュルスルホン酸、ビュルホスホン酸、アクリル酸、メタクリル酸、無水マレイン 酸、;さらには、 α ハロゲン化ビニルスルホン酸、 a , β , j8,一ハロゲン化ビニルス ルホン酸、マレイン酸、ィタコン酸、スチレンホスホ-ル酸、ビュルリン酸などのエステ ル類及びこれらに対応する塩類等の酸性基含有ラジカル重合性単量体が例示され る。
[0073] 架橋性重合性単量体としては、上記のような各重合性単量体と共重合して架橋型 の高分子を生成する公知の如何なる架橋剤も採用できる。例えば、ジビニルベンゼ ン類、ジビニルスルホン、ブタジエン、クロ口プレン、ジビニルビフエニル、トリビニルベ ンゼン類、ジビュルナフタレン、ジァリルァミン、ジビュルピリジン類等のジビュル化合 物が挙げられる。
[0074] カチオン交換膜層を本発明で規定する各含水率にするためには、架橋性重合性 単量体の使用量を制御することが重要である。この架橋性重合性単量体の使用量が 、カチオン交換基の導入に適した官能基を有する重合性単量体またはカチオン交換 基を有する重合性単量体 100モルに対して 0. 5モル%未満の場合には、 A)低含水 型カチオン交換膜層を形成することが困難になる。他方、この使用量が 40モル%を 超える場合、 B)高含水型カチオン交換膜層を形成することが困難になる。
[0075] 重合性単量体組成物に配合する重合開始剤としては、上記重合性単量体を重合 させることが可能な化合物であれば特に限定がない。重合開始剤としては、有機過 酸化物が好ましい。例えば、オタタノィルパーォキシド、ラウロイルパーォキシド、 t ブチルパーォキシ 2—ェチルへキサノエート、ベンゾィルパーォキシド、 t ブチル パーォキシイソブチレート、 t ブチルパーォキシラウレート、 t一へキシルバーォキシ ベンゾエート、ジー t—ブチルパーォキシド等が挙げられる。 [0076] 重合開始剤の配合量としては、重合開始に必要な有効量であれば良 、が、通常は 、使用する全重合性単量体の合計 100質量部に対して 0. 1〜20質量部が好ましぐ 0. 5〜10質量部がより好ましい。
[0077] 重合性組成物には、カチオン交換膜に導入されているカチオン交換基とイオンコン プレックスを形成可能な、 3級アミノ基を有する重合性単量体を配合することが好まし い。 3級アミノ基を有する重合性単量体を配合することにより、得られる積層カチオン 交換膜の液体燃料非透過性を更に高めることができる。これら、 3級アミノ基を有する 重合性単量体の種類や配合量については、 WO2006Z028292に記載された手 法を採用できる。
[0078] 重合性組成物には、上記各成分の他に、機械的強度や重合性等の物性を調節す るために、本発明で特定する含水率に関する要件や積層カチオン交換膜における 電気抵抗の要件が維持される範囲において、必要に応じて他の成分を配合してもよ い。このような他の成分としては、例えば、アクリロニトリル、ァクロレイン、メチルビ-ル ケトン等の重合性単量体や、ジブチルフタレート、ジォクチルフタレート、ジメチルイソ フタレート、ジブチルアジペート、トリェチルシトレート、ァセチルトリブチルシトレート、 ジブチルセバケート等の可塑剤類が挙げられる。
[0079] 重合性組成物と多孔質膜との接触方法は、重合性組成物が多孔質膜の有する空 隙部に浸入できる方法であれば特に限定されない。例えば、重合性糸且成物を多孔質 膜表面に塗布する方法、スプレーする方法、あるいは、多孔質膜を重合性組成物中 に浸漬する方法などが例示される。浸漬する方法を採用する場合、浸漬時間は多孔 質膜の種類や懸濁液の組成にもよるが、一般的には 0. 1秒〜十数分である。
[0080] 重合方法も特に限定されず、用いる重合性単量体及び重合開始剤に応じて適宜 公知の方法を採用すればよ!ヽ。重合開始剤として前記有機過酸ィ匕物を用いる場合 は、加熱による重合方法 (熱重合)が一般的である。この方法は、操作が容易で、ま た比較的均一に重合させることができるので、他の方法よりも好ましい。重合に際して は、酸素による重合阻害を防止し、また得られる膜状高分子体の表面の平滑性を得 るため、ポリエステル等のフィルムを用いて重合性組成物を充填した多孔質膜の表 面を覆った後、重合させることが好ましい。また、重合性組成物を充填した多孔質膜 の表面をフィルムで覆うことにより、過剰の重合性組成物が多孔質膜から取り除かれ 、薄く均一な燃料電池用隔膜が得られる。
[0081] 熱重合により重合させる場合の重合温度は特に制限されず、公知の条件を適宜選 択して適用すればよい。一般的には、 50〜150°Cで、 60〜120°Cが好ましい。重合 時間は 10分〜 10時間が好まし 、。
[0082] 上記重合により得られる膜状高分子体のうち、重合性単量体としてカチオン交換基 を有する単量体を用いて製造した膜状高分子体は、そのまま本発明の直性液体型 燃料電池用隔膜 (積層カチオン交換膜)として使用できる。
[0083] 一方、上記重合により得られる膜状高分子体のうち、重合性単量体としてカチオン 交換基の導入に適した官能基を有する重合性単量体を用いて製造した膜状高分子 体は、更にカチオン交換基の導入に適した官能基にカチオン交換基を導入する処 理を行う。この処理を行うことにより、本発明の直接液体型燃料電池用隔膜 (積層力 チオン交換膜)が得られる。
[0084] この処理としては、使用したカチオン交換基の導入に適した官能基を有する重合性 単量体の官能基に応じて、適宜公知の方法が選択される。前記したように燃料電池 用のカチオン交換基としては、スルホン酸基が好ましい。スルホン酸基を導入する場 合、該カチオン交換基の導入に適した官能基を有する重合性単量体としては、芳香 族炭化水素基を有するものが好ま ヽ。該芳香族炭化水素基にスルホン酸基を導入 する方法を具体的に示せば、例えば、濃硫酸、発煙硫酸、二酸化硫黄、クロロスルホ ン酸などのスルホン化剤を膜状高分子体に反応させる方法が挙げられる。以上の方 法により、積層カチオン交換膜が製造される。
[0085] 次に、積層カチオン交換膜の他の製造方法につき、説明する。
[0086] この製造方法は、 A)低含水型カチオン交換膜層の部分と、 B)高含水型カチオン 交換膜層の部分とを、予め a)膜と、 b)膜として別々に製造し、その後これら a)膜と、 b )膜とを積層することにより積層カチオン交換膜を製造する方法である。
[0087] この製造方法の中でも、操作が簡便で、比較的均一な積層が可能である次に記載 の製造方法が好ましい。
[0088] この製造方法は、 a)相対湿度 50%RH (25°C)における含水率が 1〜10質量%であり、且つ 25°C、 1 molZl 硫酸水溶液中の電気抵抗が 0. 3〜0. 006 Ω · cm2である低含水型カチォ ン交換膜と、
b)相対湿度 100%RH (25°C)における含水率が、前記低含水型カチオン交換膜の 相対湿度 100% (25°C)における含水率より 3質量%以上大きぐ且つ 25°C、 lmol /1 硫酸水溶液中の電気抵抗が 0. 2〜0. 004 Ω · cm2である高含水型カチオン交 換膜と、
を予め個別に製造し、その後これらを熱圧着させる製造方法である。
[0089] この製造方法は、 A)低含水型カチオン交換膜層の部分と、 B)高含水型カチオン 交換膜層の部分とを、予め別々のカチオン交換膜の a)膜と、 b)膜として製造できるた め、各膜を構成するカチオン交換榭脂を自由に選定できる。従ってこの方法を採用 する場合は、これら各層の含水率を、基材の各多孔質膜の空隙率だけでなぐ該カ チオン交換樹脂の架橋度を利用しても調整することができる。その結果、 A)低含水 型カチオン交換膜層にお 、て、含水率が相対湿度 50%RHで 4%を下回るような力 チオン交換膜も容易に製造できる。
[0090] 一方、この製造方法においては、別々に製造した a)膜と、 b)膜とを均一に熱圧着 する必要がある。均一に熱圧着を行わないと、得られる積層カチオン交換膜の電気 抵抗が増大し、またその使用時において両者がその界面で剥離する危険性がある。
[0091] この方法にぉ 、て使用する a)低含水型カチオン交換膜の含水率は、前記の A)低 含水型カチオン交換膜層の含水率に関する要件を満足しなければならない。更に、 25。C、 ImolZl—硫酸水溶液中で測定した電気抵抗が 0. 3〜0. 006 Ω 'cm2、好 適には 0. 25-0. 012 Ω 'cm2であることが必要である。この範囲の電気抵抗にする ことにより、積層カチオン交換膜にした際における、積層カチオン交換膜の電気抵抗 の要件を満足させられる。
[0092] 同様に、 b)高含水型カチオン交換膜の含水率は前記 B)高含水型カチオン交換膜 層の要件を満足しなければならない。さらに、 25°C、 ImolZl 硫酸水溶液中で測 定した電気抵抗が 0. 2〜0. 004 Ω 'cm2、好適には 0. 15〜0. 008 Ω ·。πι2であるこ とが必要である点も同様である。 [0093] a)、 b)の各カチオン交換膜としては、多孔質膜の空隙に架橋型のカチオン交換榭 脂が充填されてなるカチオン交換膜を用いるのが好ましい。この構造の a)低含水型 カチオン交換膜、および b)高含水型カチオン交換膜を製造する方法としては、最初 に説明した積層カチオン交換膜の製造方法に準じればよい。即ち、この方法におい て、多孔質膜として積層多孔質膜を用いる代りに単一の多孔質膜を用い、その他の 条件は適宜変更すればょ 、。
[0094] a)低含水型カチオン交換膜と、 b)高含水型カチオン交換膜との熱圧着としては、 両膜を重ね合わせ、 80〜300°Cの温度下、 0. l〜50MPaの加圧下で機械的に圧 着する方法がある。一般的には、熱プレス機、熱ロール機を用いて熱圧着される。熱 圧着を強固にするため、 a)低含水型カチオン交換膜と b)高含水型カチオン交換膜 の何れか一方、または両方の表面を、予めサンドブラストなどによって粗面化しておく ことが好ましい。
[0095] 多孔質膜の空隙に架橋型のカチオン交換樹脂が充填されてなるカチオン交換膜 の表面は、通常該架橋型のカチオン交換樹脂で覆われている。上記 a)、 b)両膜の 熱圧着に際しては、それぞれの積層界面の少なくとも一部において、この表面を覆う 架橋型のカチオン交換榭脂を除去し、熱可塑性榭脂製多孔質膜を表面に露出させ て力 熱圧着することが好ましい。この操作により、界面の接着強度を高めることがで きる。
[0096] 表面を覆うカチオン交換樹脂の除去方法としては、特開 2001— 157823号公報記 載の、カチオン交換膜の表面層を酸化剤で酸ィ匕分解する方法や、カチオン交換膜 の製造に用いる重合性組成物に非重合性成分を配合して、カチオン交換膜の製造 工程で表面層がないものを得る方法などが挙げられる。
[0097] 更に、 a)、 b)両膜を構成する多孔質膜の材質が熱可塑性榭脂のものを用い、上記 熱圧着の温度を該熱可塑性榭脂の融点以上、好適には該融点よりも 0〜50°Cの高 温にして熱圧着することが、特に好ましい。この場合には、積層された a)、 b)両膜の 熱可塑性榭脂製多孔質膜は熱融着により強固に接着する。熱圧着の容易さや耐熱 性の観点から、熱可塑性榭脂製多孔質膜を構成する熱可塑性榭脂の融点は 80〜3 00°Cが好ましぐ 100〜 250°Cがより好まし!/、。 [0098] 積層カチオン交換膜は、 A)低含水型カチオン交換膜層と、 B)高含水型カチオン 交換膜層とが前記物性範囲を満足するものである限り、以上の製造方法以外の如何 なる製造方法により製造したものであってもよい。例えば、予め A)層を単一のカチォ ン交換膜として作製し、この上に B)層をキャストして積層する方法などによって製造 しても良い。
[0099] 本発明の燃料電池用隔膜を取付ける燃料電池は、直接液体型燃料電池である。
直接液体型燃料電池としては、前記した図 1の基本構造を有するものが一般的であ るが、その他の公知の構造を有する直接液体型燃料電池にも使用することができる。
[0100] 直接液体型燃料電池に本発明の隔膜を組込む際には、 a)低含水型カチオン交換 膜層が酸化剤室側に、 b)高含水型カチオン交換膜層が燃料室側になるように組込 む。この向きで該膜を組み込むことにより、本発明隔膜の優れた液体燃料の透過抑 制効果が発揮される。これと逆の向き、すなわち、 A)低含水型カチオン交換膜層が 燃料室側に、他方、 B)高含水型カチオン交換膜層が酸化剤室側になるように隔膜を 組込む場合においても、従来の単一のカチオン交換膜からなる同型の燃料電池用 隔膜に比べれば、良好な液体燃料の非透過性を示す。しかし、上記の正しい向きで 組込む場合と比較し、その効果は大きく下回る。
[0101] 本発明の隔膜を組込んでいる直接液体型燃料電池の液体燃料としては、メタノー ルが最も一般的であり、本発明の効果が最も顕著に発揮されるものである。しかし、 その他の液体燃料であるエタノール、エチレングリコール、ジメチルエーテル、ヒドラ ジン等の場合においても同様の優れた効果が発揮される。これらの液体燃料は、通 常は、 1〜99質量%の水溶液として燃料電池に供給される。
実施例
[0102] 以下、本発明を更に詳細に説明するため実施例を挙げるが、本発明はこれらの実 施例に限定されるものではない。
[0103] なお、実施例、比較例においては、隔膜 (カチオン交換膜)のカチオン交換容量、 含水率、膜抵抗、メタノール透過率、燃料電池出力電圧を測定して燃料電池用隔膜 の特性を評価した。これらの測定方法を以下に説明する。
1)カチオン交換膜の、カチオン交換容量および含水率の測定 カチオン交換膜を lmol/L— HC1水溶液に 10時間以上浸漬し、水素イオン型とし た。その後、水素イオン型のカチオン交換膜を ImolZL— NaCl水溶液でナトリウム イオン型に置換させ、遊離した水素イオンを水酸ィ匕ナトリウム水溶液を用いて電位差 滴定装置 (COMTITE— 900、平沼産業株式会社製)で定量した (Amol)。
[0104] 次に、同じカチオン交換膜を 25°Cで、 lmol/L— HC1水溶液に 4時間以上浸漬し た後、膜を取り出しイオン交換水で十分水洗した。その後、ティッシュペーパーで表 面の水分を拭き取り湿潤時の重さ(W g)を測定し、これを相対湿度 100%RH (25
100
°C)における膜の含水質量とした。 W の測定後、膜を温度 25°C、相対湿度 50%R
100
Hに設定した恒温恒湿槽中に設置し、一晩放置した後に相対湿度 50%RH (25°C) における重さ (W g)を測定した。さらに膜を 60°Cで 5時間減圧乾燥させその質量を
50
測定した (Dg)。上記測定値に基づいて、カチオン交換膜の、カチオン交換容量およ び含水率を次式により求めた。
[0105] カチオン交換容量 =AX 1000ZD[mmolZg 乾燥質量]
相対湿度 100%RH (25°C)における含水率 = 100 X (W —D) /D[%]
100
相対湿度 50%RH (25°C)における含水率 = 100 X (W — D) /D[%]
50
2)多孔質膜の空隙に充填されたカチオン交換樹脂の、カチオン交換容量および含 水率
基材を 25°Cでイオン交換水に 4時間以上浸漬し湿潤質量 (G g)と、 60°Cで 5時間 減圧乾燥させた後の質量 (G g)を測定した。同じ基材を用いてカチオン交換膜を作 d
製し、前記により、カチオン交換膜の乾燥質量 (Dg)、カチオン交換容量と相対湿度 100%RH (25°C)および 50%RH (25°C)における含水率を測定した。これら力 次 式により充填カチオン交換樹脂の力チオン交換容量と含水率とを求めた。
[0106] カチオン交換容量 =AX 1000/ (D-G ) [mmolZg 乾燥質量]
d
相対湿度 100%RH (25°C)における含水率 = 100 X { (W G )—(D— G ) }/
100 w d
(D G ) [%]
d
相対湿度 50%RH (25。C)における含水率 = 100 X { (W — G )— (D— G ) }/ (
50 w d
D-G ) [%]
d
3)多孔質膜の平均細孔径 ASTM -F316- 86に準拠し、ハーフドライ法にて測定した。
4)多孔質膜の空隙率
多孔質膜の体積 (Vcm3)と質量 (Ug)を測定し、多孔質膜の材質であるポリェチレ ンの榭脂密度を 0. 9 (g/cm3)として、下記の式により算出した。
[0107] 空隙率 = [ (V-U/0. 9) /V] X 100[%]
5)膜の電気抵抗
白金黒電極を備えた 2室セル中にイオン交換膜を挟み、イオン交換膜の両側に lm olZL—硫酸水溶液を満たした。交流ブリッジ回路 (周波数 1000サイクル Z秒)を用 V、て 25°Cにおける電極間の抵抗を測定し、該電極間の抵抗とイオン交換膜を設置し な ヽ場合の該電極間の抵抗との差により膜の電気抵抗を求めた。上記測定に使用 する膜は、あら力じめ ImolZL -硫酸水溶液中で平衡状態に達したものを用 ヽた。 4)メタノール透過率
カチオン交換膜を ImolZL— HC1水溶液に 10時間以上浸漬し、水素イオン型とし た後、室温で 24時間以上乾燥した。このカチオン交換膜を燃料電池セル (隔膜面積 lcm2)の中央に取り付け、一方の室にメタノール濃度 30質量%の水溶液を液体クロ マトグラフ用ポンプで供給し、反対側の室にアルゴンガスを 300ml/minで供給した 。測定は 25°Cの恒温槽内で行った。反対側の室力も流出するアルゴンガスの一定量 をガスサンブラで採取してガスクロマトグラフ装置(島津製作所製 GC14B)に直接導 入し、アルゴンガス中のメタノール濃度を測定した。この値を用いて、隔膜を透過した メタノール量を算出した。
6)燃料電池出力電圧
ポリテトラフルォロエチレンで撥水化処理した厚さ 100 μ m、空孔率 80%のカーボ ンペーパー上に、触媒を 4mg/cm2となるように塗布し、 80°Cで 4時間減圧乾燥して ガス拡散電極を得た。
[0108] 燃料室側の触媒は、白金とルテニウムとの合金触媒 (ルテニウム 50mol%)を 50質 量%担持したカーボンブラックであり、酸化剤室側の触媒は白金を 50質量%担持し たカーボンブラックであった。これらの触媒を担持したカーボンブラックと、アルコール と水とにパーフルォロカーボンスルホン酸を 5%溶解 (デュポン社製、商品名ナフィォ ン)したものとを混合して前記カーボンペーパーに塗布した。
[0109] 次いで、予め水素イオン型にした燃料電池用隔膜の、低含水型カチオン交換膜層 の表面に上記の酸化剤室ガス拡散電極を、高含水型カチオン交換膜層の表面に燃 料室ガス拡散電極を重ね、 100°C、圧力 5MPaの加圧下で 100秒間熱プレスした後 、室温で 2分間放置した。この隔膜を図 1に示す構造の燃料電池セルに組み込んだ 。燃料電池セル温度を 25°Cに設定し、燃料室側に 30質量%のメタノール水溶液を、 酸化剤室側に相対湿度 80%の大気圧の空気を 200mlZmin.で供給して発電試 験を行なった。電流密度 0AZcm2、及び 0. lAZcm2におけるセルの端子電圧を測 し 7こ。
[0110] 製造例 1
スチレン 70モル0 /0と、ジビュルベンゼン 30モル0 /0との混合物に、全単量体 100質 量部に対し 5質量部となるように重合開始剤 t ブチルパーォキシェチルへキサノエ ートをカ卩えた。この重合性組成物に多孔質フィルム(重量平均分子量 25万のポリェ チレン製、膜厚 25 μ m、平均細孔径 0. 03 μ m、空隙率 37%)を 5分間浸漬した。
[0111] 次いで、この多孔質フィルムを重合性組成物中から取り出し、 100 μ mのポリエステ ルフィルム (剥離材)で多孔質膜の両表面を被覆した後、 0. 3MPaの窒素加圧下、 8
0°Cで 5時間加熱重合した。
[0112] 得られた膜状高分子体を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の 混合物中に 40°Cで 60分間浸漬してスチレンに由来するベンゼン環をスルホンィ匕し、 カチオン交換膜を得た。
[0113] このカチオン交換膜のカチオン交換容量、各湿度における含水率、電気抵抗、膜 厚を測定した。結果を表 2に示す。
[0114] 製造例 2〜5
表 1に示す重合性組成物、多孔質フィルムを用いた以外は製造例 1と同様にして力 チオン交換膜を得た。得られたカチオン交換膜のカチオン交換容量、各湿度におけ る含水率、電気抵抗、膜厚を測定した結果を表 2に示す。
[0115] [表 1] 表 1
Figure imgf000027_0001
1 ) 多孔質フィルム
A :重量平均分子量 25万のポリェチレン製、 IU? 9 μ m、 平均細孔径 0. 03 πι、 空隙率 35 %
Β :重量平均分子量 25万のポリエチレン製、 膜厚 25 m、 平均細孔径 0. 03 μ m、 空隙率 37 %
C:重量平均分子量 25万のポリェチレン製、 IU¥ 25 m, 平均細孔径 0. 1 μ m、 空隙率 49 %
2) S t :スチレン 3) M- S t : 4ーメチノレスチレン
4) 4 V P : 4ービニノレピリジン 5) DVB : ジビニルベンゼン
6) DBE : ジベンジルェ一テル 7) PPG : ポリプロピレングリコール (ジオール型、 分子量 3000 )
8) PO : t プチ/レハーォキシェチノレへキサノエー ト
9 ) 全重合性単量体 100質量部に対する相対質量
表 2
Figure imgf000028_0001
^0116 [0117] 実施例 1
ImolZL— HC1水溶液に 10時間以上浸漬し、水素イオン型とした製造例 1のカチ オン交換膜と製造例 4のカチオン交換膜とを室温で 24時間以上乾燥させた。その後 、これらのカチオン交換膜を積層し、 130°Cで 5MPaの加圧下で熱プレスして積層力 チオン交換膜からなる本発明の直接液体型燃料電池用隔膜を得た。
[0118] 得られた積層カチオン交換膜のイオン交換容量、含水率、電気抵抗、膜厚、メタノ ール透過率、燃料電池出力電圧を測定した。結果を表 3に示す。
[0119] 実施例 2〜4
表 3に示すカチオン交換膜の組合せを用いた以外は実施例 1と同様にして積層力 チオン交換膜を得た。得られた積層カチオン交換膜の特性を表 3に示す。
[0120] 比較例 1〜5
製造例 1〜5のカチオン交換膜をそのまま燃料電池用隔膜として用い、特性を評価 した。結果を表 3に示す。
[0121] 比較例 6、 7
表 3に示すカチオン交換膜の組合せを用いた以外は実施例 1と同様にして積層力 チオン交換膜を得た。得られた積層カチオン交換膜の特性を表 3に示す。
[0122] [表 3]
表 3
Figure imgf000030_0001
低:高含水型カチオン交換膜層から低含水型カチオン交換膜層方向のメタノール透過率 低→高 :低含水型カチオン交換 Sから高含水型カチオン交換麵方向のメタノール透過率
[0123] 実施例 5
表 4に示す 2種類の多孔質フィルムを、 110°C、 IMPaの加圧下で 3分間熱プレスし て積層多孔質フィルムを作製した。
[0124] この積層多孔質フィルムを、スチレン 70モル0 /0、ジビュルベンゼン 30モル0 /0、重合 開始剤 t ブチルパーォキシェチルへキサノエート (全単量体 100質量部に対し 5質 量部)力もなる重合性組成物に 5分間浸潰した。
[0125] 次いで、この積層多孔質フィルムを重合性組成物中から取り出し、厚さ 100 mの ポリエステルフィルム (剥離材)で浸漬した積層多孔質フィルムの両表面を被覆した 後、 0. 3MPaの窒素加圧下、 80°Cで 5時間加熱重合した。
[0126] 得られた膜状高分子体を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の 混合物中に 40°Cで 60分間浸漬してスチレン由来のベンゼン環をスルホン化し、積 層カチオン交換膜を得た。
[0127] この積層カチオン交換膜のカチオン交換容量、含水率、電気抵抗、膜厚、メタノー ル透過率、燃料電池出力電圧を測定した。
[0128] 更に、この積層カチオン交換膜を沸騰水中で 3時間以上煮沸して充分に膨潤させ た。その後、この膨潤した積層カチオン交換膜を低含水層と高含水層とにその接着 界面で引き剥がし、これら各層の各湿度における含水率、膜厚を測定した。これらの 結果を表 5、 6に示す。
[0129] 実施例 6、 7
表 4に示す重合性組成物、多孔質フィルムを用いた以外は実施例 5と同様にして本 発明の積層カチオン交換膜を得た。これらの特性を表 5、 6に示す。
[0130] 比較例 8、 9
表 4に示す重合性組成物、多孔質フィルムを用いた以外は実施例 5と同様にして積 層カチオン交換膜を得た。これらの特性を表 5、 6に示す。
[0131] [表 4]
表 4
Figure imgf000032_0001
1) 多孔質
A 重量平均分子量 25万のポリエチレン製、 膜厚 9 μΐη、 平均孔径 0. 03 μ m、 空隙率 35% C 重量平均分子量 25万のポリエチレン製、 膜厚 25 μπι、 平均孔径 0. 1 μ m、 空隙率 49% D 重量平均分子量 25万のポリエチレン製、 膜厚 55 μπι、 平均孔径 0. 2 μ m、 空隙率 62%
2) S t スチレン 3) M-S t : 4
4) 4 VP 4 ビニルピリジン 5 ) D V B :ジビニルベ■ ンゼン
6) PO tーブチノレパーォキシェチノレへキサノエ一ト
7) 全重合 ft単: :体 100質量部に対する相対質量
表 5
Figure imgf000033_0001
^s
表 6
Figure imgf000034_0001
'低:高含水型カチオン交換膜層から 水型カチオン交換膜層方向のメタノール透過率
低→高:低含水型カチオン交換膜層から高含水型カチオン交換膜層方向のメタノール透過率
sffi

Claims

請求の範囲
[1] 隔膜の一面に、 A)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であ る低含水型カチオン交換膜層を、
隔膜の他面に、 B)相対湿度 100%RH (25°C)における含水率が、前記低含水力 チオン交換膜層の相対湿度 100%RH (25°C)における含水率よりも 3質量%以上大 きい高含水型カチオン交換膜層を、形成してなり、 25°C、 lmol/1—硫酸水溶液中 の電気抵抗が 0. 5〜0. 01 Ω · cm2である積層カチオン交換膜からなる直接液体型 燃料電池用隔膜。
[2] 直接液体型燃料電池に組み込んだ際に、 A)低含水型カチオン交換膜層が酸化剤 室側に面し、他方、 B)高含水型カチオン交換膜層が燃料室側に面するように配して 使用されるものである請求項 1に記載の直接液体型燃料電池用隔膜。
[3] A)低含水型カチオン交換膜層力 平均細孔径が 0. 005〜10 mであり、空隙率が 10〜50%である低空隙多孔質膜の空孔に、カチオン交換容量が 0. 1〜6. Ommol Zgであり、相対湿度 50%RH (25°C)における含水率が 2〜150質量%であり、且 つ相対湿度 100%RH (25°C)における含水率が 14〜250質量%である架橋型の 炭化水素系カチオン交換樹脂が充填された層であり、
B)高含水型カチオン交換膜層が、平均細孔径が 0. 01〜50 /ζ πιであり空隙率が 前記低空隙多孔質膜より 7%以上大きい高空隙多孔質膜の空孔に、上記 Α)層にお いて低空隙多孔質膜の空孔に充填されているものと同じ架橋型の炭化水素系カチ オン交換樹脂が充填された層、
である請求項 1に記載の直接液体型燃料電池用隔膜。
[4] カチオン交換基の導入に適した官能基を有する重合性単量体またはカチオン交換 基を有する重合性単量体 100モルに対して、架橋性重合性単量体 0. 5〜40モル% 、および有効量の重合開始剤を含む重合性組成物を、
平均細孔径が 0. 005〜: LO /z mであり空隙率が 10〜50%である低空隙多孔質膜と 、平均細孔径が 0. 01〜50 mであり空隙率が低空隙多孔質膜より 7%以上大きい 高空隙多孔質膜との積層多孔質膜に、
接触させて、該重合性組成物を積層多孔質膜の有する各空隙部に充填させた後重 合硬化させ、次いで、必要に応じてカチオン交換基を導入することを特徴とする隔膜 の一面に、 A)平均細孔径が 0. 005〜10 /ζ πιであり、空隙率が 10〜50%である低 空隙多孔質膜の空孔に、カチオン交換容量が 0. 1〜6. OmmolZgであり、相対湿 度 50%RH (25°C)における含水率が 2〜150質量%であり、且つ相対湿度 100%R H (25°C)における含水率が 14〜250質量%である架橋型の炭化水素系カチオン 交換樹脂が充填された低含水型カチオン交換膜層を、
隔膜の他面に、 B)平均細孔径が 0. 01〜50 /ζ πιであり空隙率が前記低空隙多孔 質膜より 7%以上大き 、高空隙多孔質膜の空孔に、上記 Α)層にお 、て低空隙多孔 質膜の空孔に充填されているものと同じ架橋型の炭化水素系カチオン交換樹脂が 充填された高含水型カチオン交換膜層を、
形成してなり、 25°C、 ImolZl—硫酸水溶液中の電気抵抗が 0. 5〜0. ΟΙ Ω -cm2 である積層カチオン交換膜からなる直接液体型燃料電池用隔膜の製造方法。
[5] a)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であり、且つ 25°C、 1 molZl 硫酸水溶液中の電気抵抗が 0. 3〜0. 006 Ω · cm2である低含水型カチォ ン交換膜と、
b)相対湿度 100%RH (25°C)における含水率が、前記低含水型カチオン交換膜の 相対湿度 100% (25°C)における含水率より 3質量%以上大きぐ且つ 25°C、 lmol /1 硫酸水溶液中の電気抵抗が 0. 2〜0. 004 Ω · cm2である高含水型カチオン交 換膜と、
を熱圧着させることを特徴とする
隔膜の一面に、 A)相対湿度 50%RH (25°C)における含水率が 1〜15質量%であ る低含水型カチオン交換膜層を、
隔膜の他面に、 B)相対湿度 100%RH (25°C)における含水率が、前記低含水力 チオン交換膜層の相対湿度 100%RH (25°C)における含水率よりも 3質量%以上大 きい高含水型カチオン交換膜層を、形成してなり、 25°C、 lmol/1 硫酸水溶液中 の電気抵抗が 0. 5〜0. 01 Ω · cm2である積層カチオン交換膜からなる直接液体型 燃料電池用隔膜の製造方法。
[6] 請求項 1乃至 3のいずれか一項に記載の直接液体型燃料電池用隔膜が組み込ま れてなる直接液体型燃料電池。
PCT/JP2007/059474 2006-05-09 2007-05-07 直接液体型燃料電池用隔膜及びその製造方法 WO2007129692A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/227,138 US8137861B2 (en) 2006-05-09 2007-05-07 Diaphragm for direct-liquid fuel cell and process for producing the same
EP07742909A EP2017913B1 (en) 2006-05-09 2007-05-07 Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006130703 2006-05-09
JP2006-130703 2006-05-09
JP2006133972A JP5059341B2 (ja) 2006-05-09 2006-05-12 直接液体型燃料電池用隔膜
JP2006-133972 2006-05-12

Publications (1)

Publication Number Publication Date
WO2007129692A1 true WO2007129692A1 (ja) 2007-11-15

Family

ID=38667800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059474 WO2007129692A1 (ja) 2006-05-09 2007-05-07 直接液体型燃料電池用隔膜及びその製造方法

Country Status (5)

Country Link
US (1) US8137861B2 (ja)
EP (1) EP2017913B1 (ja)
JP (1) JP5059341B2 (ja)
KR (1) KR20090026259A (ja)
WO (1) WO2007129692A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250525A1 (en) 2007-08-23 2011-10-13 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same
JP5280047B2 (ja) * 2007-12-27 2013-09-04 三星エスディアイ株式会社 燃料電池用高分子電解質とその製造方法、膜電極接合体、及び燃料電池
EP2722921A1 (en) * 2009-03-04 2014-04-23 Asahi Kasei E-materials Corporation Fluoropolymer electrolyte membrane
CN112968190B (zh) * 2019-12-12 2022-06-07 中国科学院大连化学物理研究所 一种锌溴液流电池隔膜的处理方法及膜与应用
JP7444628B2 (ja) * 2020-02-19 2024-03-06 アズビル株式会社 圧力センサ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231781A (ja) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JPH06231783A (ja) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd 改良されてなる固体高分子電解質型燃料電池
JPH08171920A (ja) * 1994-12-19 1996-07-02 Asahi Glass Co Ltd 改良された固体高分子電解質型燃料電池
JPH11135136A (ja) * 1997-10-30 1999-05-21 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JPH11162485A (ja) * 1997-11-27 1999-06-18 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JPH11310649A (ja) 1998-04-28 1999-11-09 Tokuyama Corp 陽イオン交換膜およびその用途
JP2001135328A (ja) 1999-11-01 2001-05-18 Tokuyama Corp 固体高分子電解質型燃料電池用隔膜
JP2001157823A (ja) 1999-12-03 2001-06-12 Tokuyama Corp イオン交換膜及びその製造方法
JP2004006306A (ja) * 2002-04-17 2004-01-08 Nec Corp 燃料電池、燃料電池用電極およびそれらの製造方法
WO2006028292A1 (ja) 2004-09-10 2006-03-16 Tokuyama Corporation 燃料電池用隔膜、及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094895A (en) * 1989-04-28 1992-03-10 Branca Phillip A Composite, porous diaphragm
US5049216A (en) 1989-05-31 1991-09-17 Measurex Corporation Warp control apparatus and method for sheet material
DE19854728B4 (de) * 1997-11-27 2006-04-27 Aisin Seiki K.K., Kariya Polymerelektrolyt-Brennstoffzelle
US7700211B2 (en) 2002-04-17 2010-04-20 Nec Corporation Fuel cell, fuel cell electrode and method for fabricating the same
US7368200B2 (en) * 2005-12-30 2008-05-06 Tekion, Inc. Composite polymer electrolyte membranes and electrode assemblies for reducing fuel crossover in direct liquid feed fuel cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231781A (ja) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JPH06231783A (ja) * 1993-02-03 1994-08-19 Asahi Glass Co Ltd 改良されてなる固体高分子電解質型燃料電池
JPH08171920A (ja) * 1994-12-19 1996-07-02 Asahi Glass Co Ltd 改良された固体高分子電解質型燃料電池
JPH11135136A (ja) * 1997-10-30 1999-05-21 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JPH11162485A (ja) * 1997-11-27 1999-06-18 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JPH11310649A (ja) 1998-04-28 1999-11-09 Tokuyama Corp 陽イオン交換膜およびその用途
JP2001135328A (ja) 1999-11-01 2001-05-18 Tokuyama Corp 固体高分子電解質型燃料電池用隔膜
JP2001157823A (ja) 1999-12-03 2001-06-12 Tokuyama Corp イオン交換膜及びその製造方法
JP2004006306A (ja) * 2002-04-17 2004-01-08 Nec Corp 燃料電池、燃料電池用電極およびそれらの製造方法
WO2006028292A1 (ja) 2004-09-10 2006-03-16 Tokuyama Corporation 燃料電池用隔膜、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2017913A4 *

Also Published As

Publication number Publication date
KR20090026259A (ko) 2009-03-12
US8137861B2 (en) 2012-03-20
EP2017913A4 (en) 2010-03-03
US20090208808A1 (en) 2009-08-20
EP2017913A1 (en) 2009-01-21
JP2007328916A (ja) 2007-12-20
EP2017913B1 (en) 2012-08-08
JP5059341B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
KR101217947B1 (ko) 연료 전지용 격막 및 그의 제조 방법
JP4435560B2 (ja) イオン交換膜及びその製造方法
US8034493B2 (en) Ion exchange membrane and production process therefor
EP1630890B1 (en) Polymer electrolyte membrane and fuel cell employing the same
US20110244367A1 (en) Separation membrane for fuel cell, and method for production thereof
JP2007109657A (ja) 燃料電池のための多層高分子電解質膜
JP2002083612A (ja) 電解質膜及びその製造方法、並びに燃料電池及びその製造方法
JP5004525B2 (ja) 燃料電池用隔膜
JP4463351B2 (ja) 固体高分子電解質型燃料電池用隔膜
WO2007119398A1 (ja) 電解質膜及び固体高分子形燃料電池
JP4719796B2 (ja) 直接液体型燃料電池用隔膜
JPH11310649A (ja) 陽イオン交換膜およびその用途
WO2007129692A1 (ja) 直接液体型燃料電池用隔膜及びその製造方法
JP3891820B2 (ja) イオン交換樹脂膜
JP2004178995A (ja) 固体高分子型燃料電池用電解質膜及びその製造方法
WO2007099954A1 (ja) 直接液体型燃料電池用隔膜、及びその製造方法
JP5059256B2 (ja) 固体高分子型燃料電池用隔膜の製造方法及び固体高分子型燃料電池用隔膜
JP4883880B2 (ja) 直接メタノール型燃料電池用隔膜の製造方法
JP2009170350A (ja) 陽イオン交換膜およびその製造方法
WO2021192951A1 (ja) カチオン交換膜及びその製造方法
JP4379025B2 (ja) 氷点以下でも使用可能な直接メタノ−ル形燃料電池用電解質膜および直接メタノ−ル形燃料電池
WO2003075385A1 (fr) Film d&#39;electrolyte et pile a combustible polymere solide utilisant ledit film
JP2005071654A (ja) 固体高分子型燃料電池用高分子電解質膜及びその製造方法並びに該電解質膜を用いた燃料電池
JP2009218154A (ja) 膜電極接合体の製造方法
JP5090007B2 (ja) 直接液体型燃料電池用隔膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007742909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12227138

Country of ref document: US

Ref document number: 1020087027320

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE