WO2007125772A1 - 発光素子、発光モジュール、照明装置、および画像投影装置 - Google Patents

発光素子、発光モジュール、照明装置、および画像投影装置 Download PDF

Info

Publication number
WO2007125772A1
WO2007125772A1 PCT/JP2007/058240 JP2007058240W WO2007125772A1 WO 2007125772 A1 WO2007125772 A1 WO 2007125772A1 JP 2007058240 W JP2007058240 W JP 2007058240W WO 2007125772 A1 WO2007125772 A1 WO 2007125772A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
led
lead electrode
chip
Prior art date
Application number
PCT/JP2007/058240
Other languages
English (en)
French (fr)
Inventor
Kenji Konno
Yasumasa Sawai
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2007125772A1 publication Critical patent/WO2007125772A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • F21V29/677Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans the fans being used for discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/648Heat extraction or cooling elements the elements comprising fluids, e.g. heat-pipes

Definitions

  • the present invention relates to a light emitting element such as an LED (Light Emitting Diode), a module using the light emitting element (light emitting module), a lighting device including the light emitting module, and an image including the lighting device.
  • a light emitting element such as an LED (Light Emitting Diode)
  • a module using the light emitting element such as an LED (Light Emitting Diode)
  • a lighting device including the light emitting module such as an LED (Light Emitting Diode)
  • an image including the lighting device such as an LED (Light Emitting Diode)
  • the present invention relates to a projection apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-112031
  • Patent Document 2 Japanese Patent No. 3159968
  • the LED module 171 of the lighting device in Patent Document 1 is equipped with a plurality of LEDs 181 including a shell-type cap 182.
  • the LED chip in the shell-type cap 182 is not emitting light, but the bullet-type cap 182 does not actually emit light. Then, it is hard to say that the LED module 171 has become larger and the brightness has been sufficiently increased by mounting multiple LEDs 181.
  • Patent Document 1 also discloses an illumination device in which an LED module 171 having a plurality of LED chips 184 arranged on a single substrate 183 as shown in FIG. 21B is mounted.
  • an electric current is passed through the LED module 171 that is powerful, the temperature of the substrate 183 rises due to the heat generated by the LED chip 184 due to the energization.
  • a plurality of LED chips 184 are arranged on a single substrate 183, if one LED chip 184 is heated when energized, the heat is conducted to other LED chips 184. End up. Then the junction The brightness of the LED module 171 does not increase as soon as the temperature rises extremely quickly.
  • the illumination device 170 of Patent Document 2 shown in FIG. 22 is equipped with an LED module 171 using a plurality of low-power LEDs 181 to increase the brightness. ing.
  • the lighting device 170 attempts to increase the brightness by arranging the integrator rod 172 according to each LED 181.
  • the number of LEDs 181 must be relatively large because of the low-power LEDs 181. Further, integrator rods 172 corresponding to the number of LEDs 181 are also required. For this reason, the lighting device 170 is extremely large, and it cannot be said that both the demands for high brightness and miniaturization are satisfied at the same time.
  • the LED chip Because if the energizing current is increased to supply several watts of power, the LED chip will heat up, causing the junction temperature to rise, and thus the brightness of the LED chip (and hence the LED module) This is because the price does not increase.
  • the junction temperature characteristic depends on the heat dissipation characteristics of the LED module (it can be said that it depends on the heat dissipation characteristics of the LED). In other words, if the heat dissipation characteristics of the LED module are good, the rate of increase in junction temperature is low.
  • an object of the present invention is to provide a light emitting element and a light emitting module with improved heat dissipation characteristics, thereby simultaneously satisfying both demands for high brightness and miniaturization, and an illumination equipped with the light emitting module. It is another object of the present invention to provide an image projection apparatus equipped with such an apparatus.
  • the present invention relates to a first lead electrode and a second lead electrode having potential polarities that are opposite to each other. And a light emitting chip.
  • the first lead electrode is a support that supports the light-emitting chip, and the support includes a support surface that supports the light-emitting chip, and an extending portion that extends based on the support surface.
  • the second lead electrode is located on the support surface of the first lead electrode via an insulator and is electrically connected to the light emitting chip.
  • the light emitting chip and the second lead electrode are disposed on the support surface of the first lead electrode, and the first lead electrode itself holds a plurality of members in the light emitting element. become . Therefore, the light emitting chip and the second lead electrode, which are a plurality of members, are stably held, and at the same time, handling as a component and electrical handling are facilitated. In addition, since an insulator is interposed between the first lead electrode and the second lead electrode, they are separated from each other. For this reason, a light-emitting element that hardly conducts heat between the first lead electrode and the second lead electrode is excellent in heat dissipation.
  • the stretched surface which is the surface of the stretched portion of the first lead electrode, includes a surface having a larger area than the support surface!
  • the light-emitting element preferably satisfies the following conditional expression (1) (details will be described later).
  • E3 Length of the first lead electrode in the direction along the optical axis direction of light from the light emitting chip
  • Lmax The longest length at the outer edge of the light emitting surface of the light emitting chip.
  • the longitudinal direction of the support surface of the first lead electrode and the longitudinal direction of the second lead electrode in the light emitting element are the same direction. 100mA or more and 5A or less are desirable.
  • the light-emitting chip has a first electrode pad and a second electrode pad for flowing an input current, a light-emitting layer that emits light by the input current, and a substrate layer that holds the light-emitting layer. It is desirable to interpose between the first electrode pad and the second electrode pad.
  • the first electrode pad force in the light-emitting chip is a wire. And it is connected to the first lead electrode. Therefore, with such a light emitting chip, the number of wires for wire bonding is reduced.
  • the substrate layer is preferably a semiconductor or a conductor. This is because the electrical conductivity between the first electrode pad and the second electrode pad in the light emitting chip is ensured.
  • first lead electrode and the first electrode pad are connected by a conductive adhesive. Further, it is desirable that the first lead electrode and the first electrode pad are connected by eutectic. This is because both conductive adhesive and eutectic have excellent electrical conductivity and thermal conductivity, so that the heat generated in the light emitting element is transferred from the first electrode pad to the conductive adhesive ( This is because heat is dissipated through the eutectic crystal to the first lead electrode.
  • a light emitting module in which a plurality of light emitting elements as described above are arranged is also the present invention, the light emitting module, an incident end on which light from the light emitting module is incident, and the incident end force progression
  • the present invention also includes an illumination device including a combined optical system having an emission end that emits light after being synthesized.
  • the present invention includes a light modulation element that modulates light of the illumination device force as described above according to image data, and a projection optical system that projects light modulated by the light modulation element onto a projection surface.
  • An image projection apparatus is also the present invention.
  • the present invention is a light emitting module in which a plurality of light emitting elements including a light emitting chip connected to the first lead electrode are arranged.
  • the first lead electrode force is a support that supports the light emitting chip, and the support includes a support surface that supports the light emitting chip and an extending portion that extends from the support surface. And the extending
  • a second lead electrode having a potential polarity opposite to the first lead electrode is disposed on the support surface of the first lead electrode that supports the light emitting chip via an insulator, and the second lead electrode, the light emitting chip, Are electrically connected.
  • an anode and a cathode through which a current flows are connected to a light emitting chip in a light emitting element. It is. Therefore, in such a light emitting element, one of the anode and the cathode is used as a first lead electrode, and the light emitting chip is supported by the first lead electrode. Therefore, the first lead electrode has one surface (support surface) for attaching the light emitting chip.
  • the light emitting chip is heated by energization. Therefore, the first lead electrode is formed with an extending portion extending with the support surface as a reference. When there is a stretched part that is strong, heat generated in the light emitting chip is conducted to the support surface and the stretched part. Therefore, the heat of the light emitting chip is effectively radiated.
  • the extending portions of the plurality of light emitting elements in the light emitting module are separated from each other.
  • a light emitting module is not a type in which a light emitting chip is provided on a substrate, for example, so it can be small.
  • the extended surface which is the surface of the extended portion of the first lead electrode, has a larger area than the support surface. It is desirable that the surface to be included be included. This is because if there is a surface with a large area, it will be easy to touch the outside air and the heat dissipation characteristics (heat dissipation efficiency) will increase.
  • a heat insulator is interposed in at least a part of the gap generated by the separation between the extending portions. This is because heat conduction between the plurality of light emitting elements (more specifically, the light emitting chip) can be surely prevented if there is a strong heat insulator.
  • AR The area surrounding the light emitting surface of all the light emitting chips in a plurality of light emitting elements, and the area defined by the shortest outer peripheral length It is.
  • conditional expression (2) when the value of ALZAR is equal to or lower than the lower limit value, the interval between the light emitting chips is relatively wide. As a result, a substantial light emitting area is small, and a sufficient amount of light emission cannot be secured, and a light emitting module with a small size and high brightness cannot be realized.
  • the ALZAR value is equal to or greater than the upper limit value, the distance between the light emitting chips is relatively narrow, so that heat is easily conducted between the light emitting chips. Then, the junction temperature rises due to heat conduction, and the light emitting module becomes brighter! /.
  • the light emitting module satisfies the following conditional expression (3).
  • Lmax The longest length at the outer edge of the light emitting surface of the light emitting chip.
  • conditional expression (1) it is desirable that the following conditional expression (1) is satisfied even in the deviation of the light emitting element and the light emitting module in which a plurality of them are arranged! 1. 0 ⁇ E3 / Lmax ⁇ 10. 0... Conditional expression (1)
  • E3 Length of the first lead electrode in the direction along the optical axis direction of light from the light emitting chip
  • Lmax The longest length at the outer edge of the light emitting surface of the light emitting chip.
  • the size of the first lead electrode exceeding the upper limit is an unnecessarily large size that does not contribute to the improvement of heat dissipation characteristics. In other words, even if the first lead electrode is made larger than necessary, improvement in heat dissipation characteristics cannot be expected!
  • the second lead electrode is disposed on the support surface of the first lead electrode that supports the light emitting chip via an insulator, and the second lead electrode and the light emitting chip are electrically connected. Has been.
  • the longitudinal direction of the support surface of the first lead electrode and the longitudinal direction of the second lead electrode are the same. The direction is desirable.
  • the connecting portion required for connecting the light emitting element to the power source that is, the connecting portion connected to the first lead electrode and the connecting portion connected to the second lead electrode are oriented in the same direction. . Therefore, the increase in size of the light emitting module due to the difference in the arrangement direction of the connecting portions is suppressed.
  • the flowing current value (driving current) is said to be 100 mA or more and 5 A or less.
  • the light emitting chip is particularly apt to be heated. For this reason, if a light-emitting element that is powerful is mounted on a light-emitting module that has improved heat dissipation characteristics, the effect of heat dissipation (that is, the effect of improving the heat dissipation characteristics and improving the brightness) will be noticeable. .
  • an apparatus equipped with the light emitting module as described above includes an incident end on which light from the light emitting module is incident, and an emitting end that emits light after combining the light traveling at the incident end force. And an illumination device including the combining optical system.
  • conditional expression (4) when the value of ALZAP is equal to or lower than the lower limit value, for example, the light emitting chips are roughly arranged. Then, although the light emitting module becomes large, the heat dissipation characteristics of the light emitting chip are improved. On the other hand, when the ALZAP value is greater than or equal to the upper limit value, for example, the light emitting chips are closely arranged. Then, although the heat dissipation characteristics of the light emitting chip are deteriorated, the light emitting module is reduced in size. Therefore, when AL and AP are set so as to fall within the range of conditional expression (4), the increase in the size of the light emitting module is suppressed, and the deterioration of the heat release characteristics of the light emission is also suppressed.
  • the illumination device when the illumination device is mounted on an image projection device that irradiates image light onto a projection surface, the illumination device has an entrance end and an exit end that are similar to the shape of the projection surface (generally a rectangle).
  • An optical system is desirable, and the entrance end of the composite optical system is preferably of a size that can receive all the light of the light emitting module. Therefore, when the synthetic optical system is hollow, and the wires required for electrical connection are provided on the light emitting chip, the hollow area at the incident end of the synthetic optical system is all in the plurality of light emitting elements. It is desirable to have a size that surrounds the light emitting surface of the light emitting chip and all the wires! /.
  • the composite optical system is hollow and a wire necessary for electrical connection is provided in the light emitting chip, all the light emitting elements in the plurality of light emitting elements are provided.
  • the short direction can be defined in the outer peripheral region defined by the shortest outer peripheral length, the air region at the entrance end of the synthesis optical system is The shape has a short side in the same direction as the short side direction.
  • the entrance end of the combining optical system has a relatively small area as a size capable of receiving all the light from the light emitting module while being rectangular. Therefore, an increase in the size of the lighting device is suppressed.
  • the image projection apparatus As the image projection apparatus, a light modulation element that modulates light from the illumination apparatus according to image data, a projection optical system that projects light modulated by the light modulation element onto a projection surface, The thing containing is mentioned.
  • the reflection type polarization having a transmission axis that transmits only light in a specific direction incident on the transmission type light modulation element
  • a plate is provided. That is, a reflective polarizing plate that transmits light in a specific direction and guides it to a transmission type light modulation element, while reflecting light in another direction (a direction different from the specific direction) and guides it to the output end of the composite optical system, for example, Desirably, U is provided between the synthesis optical system and the transmissive light modulation element.
  • phase plate is provided between the reflective polarizing plate and the output end of the synthetic optical system. If there is a powerful phase plate, the light in the other direction reflected by the reflective polarizing plate passes through the phase plate and returns to the combining optical system. Then, the returned light is guided to the light emitting module by the synthesis optical system. And if it is reflected by the guided light power emitting module, it proceeds again from the exit end of the combining optical system to the phase plate.
  • the light emitting module includes at least three light emitting elements of red light emission, green light emission, and blue light emission, and the light emitting elements of these colors emit light in a time division manner. desirable. If it is in this way, for example, a light emitting element will emit light in order and independently. Then, each light emitting element has a time during which no light is emitted (heat generation), and within that time, each light emitting element can perform effective heat dissipation independently.
  • a fan is provided to keep the wind along the in-plane direction of at least a part of the extending surfaces of the extending portions of the plurality of light emitting elements. And desirable.
  • the in-plane direction of the maximum stretched surface is parallel to the light emitting element yarn. And now it ’s time to join! /, And hope! / ⁇
  • the first lead electrode to which the light emitting chip is fixed also serves as a heat radiator, the light emitting chip can be quickly cooled (an increase in junction can be prevented).
  • optical power (brightness) proportional to the amount of current can be obtained until the junction temperature is kept constant, but if the junction temperature increases, the additional input current becomes heat.
  • the current that can keep the junction temperature constant can be made relatively large.
  • a brightness proportional to the input current can be obtained, and a light-emitting module with high brightness can be realized.
  • the light-emitting module that is powerful is not a type in which a light-emitting chip is provided on a substrate, for example, and is therefore small.
  • FIG. 1 is a perspective view of an LED module.
  • FIG. 2A is a plan view showing a light emitting surface of the LED module.
  • FIG. 2B is a side view illustrating the width direction of the LED module.
  • FIG. 2C is a side view illustrating the depth of the LED module.
  • FIG. 3 is an explanatory diagram showing the relationship between AL and AR.
  • FIG. 4A is a plan view showing a state where the wind is along the maximum stretched surface of the LED module.
  • FIG. 4B is a perspective view showing a state where the wind is along the maximum stretched surface of the LED module.
  • FIG. 5A is a plan view showing a state where the wind is along all the extended surfaces of the LED module.
  • FIG. 5B is a perspective view showing a state where the wind is along all the extended surfaces of the LED module.
  • FIG. 6A is an explanatory diagram for explaining the invariant of ETENDUE.
  • FIG. 6B is an explanatory diagram for explaining the invariant of LAGRANGE.
  • FIG. 7 is an explanatory diagram showing the relationship between AL and AP.
  • FIG. 8A is a sectional view showing the length (G) of the shortest distance between the LED chip and the integrator rod in the direction along the optical axis direction of the light from the LED chip. Show G of! /
  • FIG. 8B is a cross-sectional view showing the length (G) of the shortest distance between the LED chip and the integrator rod in the direction along the optical axis direction of the light from the LED chip, and is a solid integrator rod. Show G of! /
  • [9] is a cross-sectional view of an image projection apparatus including a reflective polarizing plate.
  • FIG. 10 is a cross-sectional view of an image projection apparatus including a reflective polarizing plate different from FIG.
  • FIG. 11A is a plan view showing an LED module different from that in FIG. 1 (an LED module having six LEDs).
  • FIG. 11B is a plan view showing an LED module different from FIG. 1 (an LED module having eight LEDs).
  • FIG. 12A is an explanatory diagram for explaining time-division driving (time-division driving in which colors do not overlap at all) in the LED module.
  • FIG. 12B is an explanatory diagram illustrating time-division driving (time-division driving in which colors partially overlap) in the LED module.
  • FIG. 13A is a cross-sectional view of an LED module coated with an LED chip.
  • Figure 13B is a cross-sectional view of an LED module coated with LED chips and wires. It is.
  • FIG. 14A is a plan view of the screen.
  • FIG. 14B is an explanatory diagram showing how to set the incident end size of an integrator rod similar to a screen.
  • FIG. 14C is an explanatory diagram showing how to set the incident end size of an integrator rod similar to a screen.
  • FIG. 15 is a plan view of the image projection apparatus.
  • FIG. 16 is a cross-sectional view of the image projection apparatus.
  • FIG. 17A is an explanatory view showing a hollow integrator rod.
  • FIG. 17B is an explanatory view showing a solid integrator rod.
  • FIG. 18A is a side view of the LED and an enlarged view of the LED chip mounted on the LED.
  • FIG. 18B is an enlarged view of an LED chip different from FIG. 18A.
  • FIG. 19A is a side view of the LED.
  • FIG. 19B is a side view of an LED different from FIG. 19A.
  • FIG. 20A is a side view showing the eutectic contained in the LED.
  • FIG. 20B is a side view showing a eutectic different from FIG. 20A.
  • FIG. 21A is a perspective view of a conventional LED module.
  • FIG. 21B is a plan view of an LED module showing another example of FIG. 21A.
  • FIG. 22 is an explanatory view showing a conventional lighting device different from FIG.
  • FIG. 15 is an external plan view showing an image projection apparatus PAS such as a projector
  • FIG. FIG. 5 is a cross-sectional view (transverse cross-sectional view) along the plane of 5.
  • the image projection apparatus PAS is composed of an LED module (light emitting module) LMJ, an integrator rod (synthesis optical system) ILD, a light modulation element BMD, and a projection lens (projection optical system) LEN. including.
  • the LED module LMJ includes a plurality of LEDs 9 that emit light (see FIG. 1).
  • the emission color of each LED 9 is not limited.
  • all the LEDs 9 may have the same emission color or different colors depending on each LED 9.
  • the integrator rod ILD emits light with uniform intensity from the LED module LMJ.
  • An example of a powerful integrator rod ILD is a prismatic shape with different areas at both ends (incident end 41 and outgoing end 42) as shown in FIGS. 17A and 17B (such as The shape integrator rod IL D is also called a taper rod).
  • the integrator rod may be any of the ILDs (either an integrator rod whose contents are made of a glass material, or an integrator rod in which a resin is injected into a hollow shape).
  • the light force incident on one end (light incident end face) 41 that emits light with a uniform illumination distribution S Light is incident on the inner side surface as it travels inside the S integrator rod ILD. It is only necessary that mixing is performed by being repeatedly reflected and the light is emitted from the other end (light emitting end face) 42.
  • the light modulation element BMD modulates the light emitted from the integrator rod ILD based on image data or the like. Examples thereof include a liquid crystal element (a transmissive liquid crystal element or a reflective liquid crystal element) and a DMD (Digital Micromirror Device; manufactured by Texas Instruments, USA) 1S light modulation element BMD. Note that the light directed toward the light modulation element BMD is the illumination light from the integrator rod ILD.
  • a device including the lator rod ILD may be referred to as a lighting device LAS.
  • Projection Lens (Projection Optical System) LEN is a lens for projecting light (image light) modulated by the light modulation element BMD onto a screen or the like.
  • the LED chip (light emitting chip) 1 described later generates heat. Therefore, a fan FAN (see FIGS. 4 to 4B and 5 to 5B) that cools the LED chip 1 that is heated may be provided.
  • the LED module LMJ includes four LEDs 9 (9a to 9d).
  • Each LED 9 has an LED chip 1 connected to an anode (positive electrode) 2 and a force sword (cathode) 3 which have opposite potential polarities.
  • LED chip 1 and force sword 3 are different in diameter.
  • It is connected via a gold wire 4 of about 03mm (ie, wire bonded) ⁇ .
  • the anode 2 has a shape including one surface (support surface) 21 that supports the LED chip 1 (such as the back surface of the light emitting surface 11 in the LED chip 1) and a plurality of surfaces 22 that sandwich the one surface. It has become. That is, the shape of the anode 2 can be said to be a polyhedron including the support surface 21 and the surface of the stretched portion (stretched surface 22) extending with reference to the support surface 21. For example, the shape of the anode 2 can be cited as the anode 2 It can also be said to be a stretched part).
  • the stretched surface 22 includes a surface having a larger area than the support surface 21. This is because, if the stretched surface 22 has a relatively large area, the outside air efficiently touches the stretched surface 22 and effectively releases heat.
  • the anode 2 can quickly cool the LED chip 1 (that is, the junction temperature). If the temperature rise can be prevented), the high temperature of the LED chip 1 can be prevented and high brightness can be achieved.
  • the anode 2 is not limited to the stretched surface 22 having a larger area than the support surface 21, but also allows the stretched surface 22 having a smaller area than the support surface 21 or the support surface 21 itself to be exposed to the outside air to release heat. (Ie, anode 2 itself is a radiator! /).
  • conditional expression A conditional expression (1) ⁇ .
  • L1 The width of the light emitting surface 11 of the LED chip 1 [unit: mm]
  • L2 Depth length of LED chip 1 on light emitting surface 11 [unit; mm]
  • L3 Thickness length of LED chip 1 [unit; mm]
  • E3 Length of anode 2 in the direction along the optical axis of the light from LED chip 1
  • Lmax The longest length at the outer edge of the light emitting surface 11 of the LED chip 1
  • E3ZLmax exceeds the upper limit
  • E3 is relatively long and Lmax is relatively It will be short. Then, it can be said that the anode 2 is larger than the LED chip 1. Therefore, the LED9 cannot be downsized. However, since the anode 2 is relatively large, the heat generated in the LED chip 1 is sufficiently dissipated.
  • the LED module LMJ is restrained from increasing in size, and the high temperature of the LED chip 1 is also restrained.
  • conditional expression A it is desirable to satisfy the following conditional expression A 'range.
  • the force sword 3 may also have a plate-like shape, like the anode 2.
  • the cathode 3 is supported (attached) to the support surface 21 of the anode 2 via an insulator ISR (see FIG. 19A described later). Therefore, it is desirable that one surface of the force sword 3 supported by the support surface 21 has a surface size included in the surface of the support surface 21! /. This is because the force sword 3 is less likely to peel off from the support surface 21 (difficult to remove).
  • the LED chip 1 is also supported by the support surface 21 of the anode 2. Then, it is desirable that one surface of the LED chip 1 supported by the support surface 21 that prevents the separation between the two is a size that is included in the surface of the support surface 21.
  • the wire 4 and the power sword 3 that connect the LED chip 1 and the power sword 3 are also used as a radiator as well as the anode 2.
  • the LED module LMJ is completed by assembling a plurality of the LEDs 9 as described above.
  • the number and arrangement of the LEDs 9 are not particularly limited.
  • four LEDs 9 (9a to 9d) may be arranged in a matrix (more specifically, two LEDs 9 (9a 9a in one direction in the same plane).
  • '9b) and two LEDs 9 (9a-9c) are arranged vertically in one direction to form a matrix).
  • the light emitting surfaces 11 of all the LED chips 1 are preferably directed in the same direction. Further, these LEDs 9 are separated from each other. In detail, the stretched surfaces 2 2 are separated from each other!
  • conditional expression B conditional expression (2) ⁇ .
  • AL Light emitting area of all LED chips 1 in multiple LEDs 9 [unit: mm 2 ]
  • AR The outer periphery surrounding the light emitting surface 11 of all LED chips 1 in multiple LEDs 9 and defined by the shortest outer peripheral length Area [unit: mm 2 ].
  • AL is the area of the light emitting surfaces 11 of the four LED chips 1, that is, the area of “L1 ⁇ L2 ⁇ 4” (the total area of the light emitting surfaces 11 in the four LED chips 1).
  • AR is the distance between LED chips 1, that is, in the case of FIGS. 1 and 2A to 2C, the shortest distance (D) between the stretched surfaces 22 of anodes 2 in a plurality of LEDs 9 is considered. Is required. That is, AR is an area calculated by “(L1 + D + L1) X (L2 + D + L2)”. This is because the distance between the stretched surfaces 22 is not shortened and the outer periphery surrounding the light emitting surfaces 11 of all LED chips 1 is not the shortest outer periphery (Note that AR is an area indicated by a one-dot chain line). is there).
  • conditional expression B it is desirable that the range of conditional expression B 'below be satisfied.
  • DZLmax when the value of DZLmax is equal to or greater than the upper limit value, D is relatively long and Lmax is relatively short. Then, the LED 9 having the LED chip 1 having a relatively small area is separated at a relatively wide interval. As a result, the LED module LMJ becomes relatively large as well as it is difficult to achieve high brightness as the LED module LMJ. However, because the distance between the two nodes is relatively wide, heat is conducted. In addition, the anodes 2 can be reliably insulated from each other.
  • the heat insulator 5 is interposed between the LEDs 9 (specifically, between the anodes 2). If the heat insulator 5 is thus provided, heat conduction between the LEDs 9 can be reliably prevented. However, even if the insulator 5 is not present, heat conduction is sufficiently prevented if the LEDs 9 are separated from each other. This is because air acts as an insulator.
  • a heat insulator is formed on at least a part of the gap caused by the separation between the stretched surfaces 22 of the anode 2.
  • the heat insulator 5 is desirably 1/20 or less of the thermal conductivity (approximately 403 WZm′K) of the anode 2 or the cathode 3. Therefore, a silicon sheet (approximately 2.5 WZm'K) or an epoxy resin (approximately 0.19 W / m-K) is desired and is a material.
  • the image projector PAS is provided with a fan FAN (the fan FAN may be a blower fan or a suction fan), it is desirable that the anode 2 be effectively blown with air. .
  • the wind should follow the extended surface 22 of the anode 2 in the plurality of LEDs 9! /.
  • the extended surface 22 having the largest area at the anode 2 of each LED 9 is maximized.
  • the stretched surface is 22 mm and the in-plane directions of all the maximum stretched surfaces 22 mm are parallel.
  • FIGS. 4 and 4 when the fan FAN is blowing in a direction perpendicular to the thickness direction and the width direction of the anode 2, the wind caused by the fan FAN effectively increases the maximum stretched surface 22 M The heat dissipation characteristics are improved.
  • Fig. 6 ⁇ ⁇ corresponds to the explanation of ETENDUE invariant.
  • AREA1 is the luminous flux area on the incident end side of the composite optical system OS (light emission area of the LED module LMJ, etc.), and the solid angle of the luminous flux is ⁇ 1, while the luminous flux area on the outgoing end side of the synthetic optical system OS is If AREA2 and the solid angle of the luminous flux are ⁇ 2, then the following law holds.
  • AREA1 X ⁇ 1 AREA2 X 2
  • FIG. 6B corresponds to the explanation of the invariant of LAGRANGE. If the image height Yl on the entrance end side of the composite optical system OS and its ray angle are NA1, while the image height Y2 on the exit end side of the composite optical system OS and its ray angle are ⁇ 2, the following law is obtained. To establish.
  • P1 Length in one direction within the plane of the incident end 41 [Unit; mm] (For convenience, length in the vertical direction Also called)
  • P2 Length in the direction perpendicular to one direction in the plane of the incident end 41 [Unit: mm] (For convenience, also referred to as the length in the horizontal direction)
  • the light emitting area of all LED chips 1 in the plurality of LEDs 9 is defined, and the LED chip 1 that emits light in all directions is shielded on the anode 2 side, but is directed to the opposite side. It is assumed that light is emitted at a specified solid angle (semispherical solid angle). Then, the area (AP) of the incident end 41 of the integrator rod ILD that receives the specified solid angle on the incident end side of the integrator rod ILD is also limited to some extent. Therefore, when trying to guide light with a desired solid angle on the exit end side of the integrator rod ILD (when trying to make the light directivity desired), the area (AQ) of the exit end 42 of the integrator rod ILD is It becomes important. Therefore, the conditional expression D is defined by the ratio of the area of the input end 41 and the area of the output end 42 in the integrator rod ILD.
  • conditional expression D it is desirable that the range of conditional expression D 'below be satisfied.
  • conditional expression E ⁇ conditional expression (4) ⁇ is satisfied.
  • AP Area [unit; mm 2 ] of the incident end 41 of the integrator rod ILD.
  • FIG. 7 is a diagram illustrating AL and AP in the conditional expression E.
  • FIG. 7 is a diagram illustrating AL and AP in the conditional expression E.
  • AL is the area (“L1 XL 2 X 4”) of the light emitting surfaces 11 of the four LED chips 1 as described above.
  • AP is a region indicated by a two-dot chain line.
  • conditional expression E is defined by the ratio of the light emitting area of all the LED chips 1 in the plurality of LEDs 9 and the area of the incident end 41 in the integrator rod ILD.
  • the ALZAP value exceeds the upper limit, the area occupied by all LED chips 1 relative to the area of the incident end 41 in the integrator rod ILD is large. Then, for example, when the LED chips 1 are closely arranged, the heat dissipation characteristics of the LED chip 1 are deteriorated. However, if the light emitting area of all LED chips 1 is relatively small, light is emitted from a light integrator rod ILD with a relatively small solid angle. In other words, it is emitted from the highly directional light power S integrator rod ILD and reaches the light modulation element BMD without fail.
  • G Length of the shortest distance between LED chip 1 and integrator rod ILD in the direction along the optical axis of the light from LED chip 1 [unit: mm]
  • Lmax The longest length at the outer edge of the light emitting surface 11 of the LED chip 1 [unit: mm j
  • G in the conditional expression F will be described with reference to Figs. 8 and 8B.
  • G is a length measured by measuring the distance between the outer edge of the incident end 41 and the LED chip 1 in the direction along the optical axis direction of the light from the LED chip 1. It will be.
  • G is the length measured in the direction along the optical axis of the light from the LED chip 1 with the distance between the surface of the incident end 41 and the LED chip 1 become.
  • conditional expression F when the value of GZLmax is equal to or lower than the lower limit value, for example, G is relatively short. Then, a collision between the LED module LMJ and the integrator rod ILD occurs due to a manufacturing error in the manufacturing process of the lighting device LAS (ie, mass production of the lighting device LAS becomes difficult). However, since G is relatively short, all the light from the LED module LMJ is likely to enter the input end 41 of the integrator rod ILD.
  • GZLmax is equal to or greater than the upper limit value, for example, G is relatively long. As a result, part of the light from the LED module LMJ does not easily enter the incident end 41 of the integrator rod ILD. In addition, it is difficult to realize a small lighting device LAS. However, since G is relatively long V, it is relatively resistant to manufacturing errors, and the lighting device LAS is realized.
  • Embodiment 1 at least a light modulation element BMD that modulates light from an illumination device according to image data, and light that is modulated by the light modulation element BMD is a projection surface (screen or the like).
  • the image projection apparatus PAS including the projection lens LEN that projects onto the lens has been described.
  • image projection apparatus PAS may include other members (in the first embodiment, image projection apparatus PAS including fan FAN has also been described).
  • the light modulation element BMD is a liquid crystal element that uses light (especially a transmissive liquid crystal element) BMD, a member that adjusts the light incident on the liquid crystal element BMD (the polarization conversion unit, reflective polarization described later) Plate, wave plate, etc.). Therefore, the following will explain the members.
  • the liquid crystal element BMD is provided with polarizing plates on the incident side and the emission side of the liquid crystal layer in order to use polarized light.
  • an absorption-type polarizing plate is provided on the incident side of the liquid crystal layer, the absorption-type polarizing plate absorbs polarized light in a specific direction and increases in temperature.
  • a polarization conversion unit including, for example, a polarization beam splitter (PBS) and a 1Z2 wavelength plate (phase plate) for preventing the absorption polarizing plate from being heated is provided on the incident side of the liquid crystal element.
  • PBS polarization beam splitter
  • phase plate phase plate
  • a transmissive liquid crystal element BMD has an absorption polarizing plate (incident side absorption polarizing plate) 51 and a liquid crystal layer (light modulation) from the light incident side to the light exit side.
  • Layer) 52, and absorption-type polarizing plate (outgoing-side absorption-type polarizing plate) 53, a 1Z4 wavelength plate 61 and a reflective polarizing plate (conversion) are provided between the output end 42 of the integrator rod ILD and the liquid crystal element BMD.
  • For reflective type (Optical plate) 62 and force Integrator rod ILD is arranged from the emission end 42 of the ILD to the liquid crystal element BMD.
  • the azimuth angle of the 1Z4 wavelength plate 61 is inclined 45 degrees with respect to the transmission axis of the reflective reflective polarizing plate 62 for conversion.
  • the outgoing light (random polarization) from the integrator rod ILD passes through the 1Z4 wavelength plate 61 and then enters the conversion reflective polarizing plate 62. Therefore, first, the output light of the integrator rod I LD power becomes linearly polarized light having a specific polarization direction by the 1Z4 wavelength plate 61. Further, the conversion reflective polarizing plate 62 transmits the linearly polarized light, and reflects linearly polarized light having a vibration plane (polarizing plane) perpendicular to the polarization plane of the linearly polarized light.
  • the linearly polarized light that has passed through the conversion reflective polarizing plate 62 (shown by a solid line) reaches the liquid crystal element BMD as it is, but the linearly polarized light that is reflected by the conversion reflective polarizing plate 62 (shown by a two-dot chain line).
  • Passes through the 1Z4 wavelength plate 61 becomes circularly polarized light, and returns to the integrator rod ILD.
  • the circularly polarized light is mixed in the integrator rod ILD and reaches the LED module LMJ.
  • the circularly polarized light is reflected by the anode 2 etc. located on the bottom surface of the LED chip 1 and again mixed back to the integrator rod ILD, reaches the 1Z4 wavelength plate 61, passes further, and passes through the reflective polarized light for conversion.
  • Reach plate 62 the linearly polarized light that has passed through the conversion reflective polarizing plate 62 (shown by a solid line) reaches the liquid crystal element BMD as it is, but the linear
  • the light reaching the conversion reflective polarizing plate 62 is first reflected by the conversion reflective polarizing plate 62 and then passed (transmitted) through the 1Z4 wavelength plate 61 twice. Therefore, the polarization direction of the light reflected by the conversion reflective polarizing plate 62 first is rotated by 90 degrees. That is, the light in the polarization direction that can be transmitted through the conversion reflective polarizing plate 62 is returned. As a result, the light emitted from the integrator rod ILD reaches the liquid crystal element BMD without loss and is modulated.
  • a transmission type liquid crystal element BMD in which a reflection type polarizing plate (incidence side reflection type polarizing plate) 54 is provided on the incident side of the liquid crystal layer 52, which is not an absorption type polarizing plate.
  • a transmission type polarizing plate (outgoing side absorption type polarizing plate) 55 provided on the output side ⁇ . Even in such a case, the light emitted from the integrator rod ILD can reach the liquid crystal element BMD without loss and be optically modulated.
  • a 1Z4 wavelength plate 61 may be disposed between the output end 42 of the integrator rod ILD and the liquid crystal element BMD.
  • the azimuth angle of the 1Z4 wave plate 61 is incident side reflection type It is inclined 45 degrees with respect to the transmission axis of the polarizing plate 54.
  • the outgoing light (random polarization) from the integrator rod ILD passes through the 1Z4 wavelength plate 61 and then enters the incident-side reflective polarizing plate 54 of the liquid crystal element BMD. Therefore, first, the emitted light from the integrator rod ILD becomes linearly polarized light having a specific polarization direction by the 1Z4 wavelength plate 61. Further, the incident-side reflective polarizing plate 54 transmits this linearly polarized light, while reflecting linearly polarized light having a vibration plane perpendicular to the plane of polarization of the powerful linearly polarized light.
  • the linearly polarized light that has passed through the incident-side reflective polarizing plate 54 passes through the liquid crystal element BMD as it is, but is reflected by the incident-side reflective polarizing plate 54 (two-dot chain line notation). Passes through the 1Z4 wavelength plate 61, becomes circularly polarized light, and returns to the integrator rod ILD. Then, the circularly polarized light is mixed in the integrator rod ILD, reaches the LED module LMJ, is reflected by the anode 2 etc. located on the bottom surface of the LED chip 1, and returns to the integrator rod ILD again, as in FIG. . Therefore, the circularly polarized light reaches the 1Z4 wavelength plate 61 after being mixed, passes further, and reaches the incident-side reflective polarizing plate 54.
  • the light that reaches the incident-side reflective polarizing plate 54 is first reflected by the incident-side reflective polarizing plate 54 and then passed (transmitted) through the 1Z4 wavelength plate 61 twice.
  • reciprocating is the same as passing through a 1Z2 wavelength plate having an optical axis of 45 degrees with respect to the polarization direction of light.
  • the polarization direction of the light first reflected by the incident-side reflective polarizing plate 54 is rotated by 90 degrees. That is, the light in the polarization direction that can be transmitted through the incident-side reflective polarizing plate 54 has returned.
  • the emitted light of the integrator load ILD force reaches the liquid crystal element BMD without any loss, and is optically modulated.
  • the LED module LMJ can reflect light
  • the reflected light is again directed to the liquid crystal element BMD.
  • a 1Z4 wavelength plate 61 phase plate that transmits light in a direction perpendicular to the specific direction reflected by the reflective polarizing plate and guides it to the integrator rod ILD.
  • an optical member such as a polarizing beam splitter required for the reflective liquid crystal element is between the powerful liquid crystal element BMD and the projection lens LEN. It becomes unnecessary. For this reason, the distance (lens back) until the liquid crystal element BMD force reaches the projection lens LEN is narrowed, and a compact image projection device PAS is realized.
  • transmissive liquid crystal element BMD As an example of the transmissive liquid crystal element BMD, a transmissive liquid crystal element of a sapphire substrate is desirable. Electrodes made on sapphire can be made thinner in wiring dimensions than liquid crystal elements in which electrodes are placed on glass, which generally has higher electrical conductivity than that on glass. Therefore, the aperture ratio of the transmissive liquid crystal element can be increased, and a relatively bright liquid crystal element BMD is realized.
  • Examples of reflective polarizing plates include RDF-C (trade name) manufactured by Sumitomo Three M,
  • MicroWire (trade name) manufactured by MOXTEK.
  • the number of LEDs 9 in the LED module LMJ is not limited to four.
  • the number may be six or eight.
  • the longitudinal direction of the support surface 21 of the anode 2 and the cathode It is desirable that the longitudinal direction of the door 3 (longitudinal direction in the in-plane direction parallel to the support surface 21) is the same direction. This is because each LED 9 is connected to a power supply unit (not shown).
  • a power supply unit not shown.
  • each of the eight LEDs 9 is divided into four, and the in-plane direction of the maximum extending surface 22M of the LED 9 is parallel.
  • the LED9 combination is one in FIGS. 1 and 11A).
  • the combination (set) may be a set composed of all LEDs 9 in the LED module LMJ as shown in Fig. 1 and Fig. 11A, or as shown in Fig. 11B. It may be a pair that divides into two. Also, for example, 3 out of 8 LEDs 9 form a set, and the remaining 5 LEDs 9 do not form a set at all (ie, the remaining 5 maximum stretched surfaces have different in-plane directions. LED module LMJ may be used. In short, if there is an LED 9 in which the in-plane directions of the maximum stretched surfaces 22M of the anode 2 are matched (that is, if a pair is formed), it can be said that the heat dissipation characteristics of the LED module LMJ are improved considerably.
  • the LED module LMJ includes at least three LEDs 9 of red light emission, green light emission, and blue light emission.
  • the LED 9 of each color is caused to emit light in a time-sharing manner! /. .
  • red, green, and blue are lit in time-division order, or different colors are partially overlapped as shown in Fig. 12B.
  • the LED 9 is present in the case where no light is emitted during one frame.
  • the LED chip 1 of the LED 9 which does not emit light does not generate heat even in one frame.
  • the LED chip 1 does not heat up.
  • the LEDs 9 are arranged so as to be separated from each other, the heat of the emitting LED chip 1 is not conducted to the non-emitting LED chip 1. Therefore, the increase in junction temperature is prevented.
  • the LED module LMJ in which the LEDs 9 are separated from each other does not conduct heat between the LED chips 1 of the LED 9, unlike the LED module in which multiple LED chips are arranged on the same substrate.
  • the LED module LMJ that emits light in a time-sharing manner is different from an LED module that constantly emits light from a plurality of LED chips (for example, an LED module mounted on an image projector using a color filter type liquid crystal element). The LED chip 1 can be prevented from conducting heat with certainty.
  • the LED module LMJ having at least the three colors LED9 of red light emission, green light emission, and blue light emission as described above can generate various colors including white. For this reason, the image projection apparatus PAS equipped with the powerful LED module LMJ does not require an optical member for color composition such as a dichroic prism or a dichroic mirror.
  • the LED chip 1 in the LED module LMJ is easily oxidized.
  • the wire 4 that connects the LED chip 1 and the force sword 3 is a material that is easily damaged such as gold.
  • a transparent resin (such as epoxy resin) 72 that covers at least the LED chip 1 is coated as shown in FIG. 13A. That's right.
  • a transparent resin 72 covering both the LED chip 1 and the wire 4 is coated as shown in FIG. 13B.
  • the LED chip 1 or the like may be coated for each LED 9, or the LED chips 1 of a plurality of LEDs 9 may be coated together.
  • the transparent transparent resin 72 for coating which has a strong effect, has a film thickness of about 0.1 mm so as not to disturb the light emission of the LED chip 1.
  • the transparent resin has the effect of improving the refractive index around the LED chip 1 and improving the light extraction efficiency.
  • the LED chip 1 is bonded to the anode 2.
  • the present invention is not limited to this.
  • the force sword may support the LED chip, and may be mounted on the support surface of the force sword that supports the anode LED chip, and may be connected to the LED chip via a wire.
  • the current direction in LED 9 may be reversed.
  • the drive current of LED9 is 100mA or more.
  • the LED 9 driven in such a current range is said to be a power LED that can ensure brightness of several tens of lumens (lm) to 100 lumens or more. Therefore, heat tends to be generated in the LED chip 1.
  • the LED module LMJ described above can sufficiently dissipate heat even if it is a hot LED chip 1.
  • the drive current of LED9 should be 5A or less. That is, it is 100 mA or more and 5 A or less. However, the current range of 0.5 mA to 3 A is desirable.
  • the shapes of the incident end 41 and the emission end 42 of the integrator rod ILD include rectangular shapes, but are not particularly limited.
  • the image plane (screen plane) SCN of a general image projection device PAS is rectangular as shown in Fig. 14A!
  • the output end 42 of the integrator rod ILD that projects image light on the screen surface SCN is also a similar rectangle.
  • the entrance end 41 of the integrator rod ILD is a rectangle similar to the exit end 42.
  • the ratio (AQZAP) of the area (AP) of the entrance end 41 of the integrator rod ILD to the area (AQ) of the exit end 42 is As explained, it is related to the directivity of the light emitted from the integrator rod ILD.
  • the incident end 41 of the integrator rod ILD must have an area that can receive all the light from the LED chip 1.
  • the opening size of the incident end 41 of the integrator rod ILD is a size covering the LED chip 1 and the wire 4.
  • 14B and FIG. 14C indicate the size (opening size) of the incident end 41 of the integrator rod ILD that is similar to the screen surface SCN.
  • FIG. 14B the shorter direction of the opening size is made parallel to the extending direction of the wire 4.
  • FIG. 14C the short side direction of the opening size is perpendicular to the extending direction of the wire 4. Then, when trying to secure the opening size of the incident end 41 of the integrator rod ILD similar to the same screen surface SCN, the area of FIG. 14C is smaller than that of FIG. 14B.
  • the LED chip 1 when the LED chip 1 is provided with the wires 4 required for electrical connection, it is the outer periphery that surrounds the light emitting surfaces 11 of all the LED chips 1 and all the wires 4 in the plurality of LEDs 9, and is the shortest.
  • An outer peripheral region ⁇ namely, a two-dot chain line region in FIG. 14C ⁇ is defined.
  • the shape of the incident end 41 of the integrator rod ILD is a shape having a short side in the same direction as the short direction of the outer peripheral region. It would be hoped.
  • the powerful image projector PAS is reduced in size by reducing the area of the incident end 41 without enlarging the area of the output end 42 of the integrator rod ILD, and the directivity is also appropriate. Can be set.
  • Table 1 below shows that each LED chip 1 in the LED module LMJ also emits light, the size of one LED chip 1 (LI 'L2.L3), and the light emitting area (AL) of all LED chips 1 in the LED module LMJ ,
  • the area of the area (AR) is shown.
  • the allowable current value of LED chip 1 is 1.5A, and the voltage when applied is about 3V.
  • Table 2 shows the size and area of the incident end 41 of the integrator rod ILD (P1 ⁇ 2 • AP) and the size and area of the output end 42 (Ql, Q2'AQ) and the total length (R) are shown. [0180] [Table 2]
  • Table 3 below shows the integrator rod ILD force as well as the distance to the light modulation element BMD (G), the size and area of the modulation surface of the light modulation element BMD (Ml ⁇ ⁇ 2 ⁇ ⁇ ), and the Fno.
  • the projection lens LEN the projection lens
  • the LED chip 1 includes a light emitting layer 31, a substrate layer 32, a reflective layer 3, and a first electrode pad 34 and a second electrode pad 3 for flowing an input current through the light emitting layer 31.
  • the electrode connected to the anode 2 is connected to the first electrode pad 34, the force sword 3
  • the electrode to be connected is referred to as a second electrode pad 35).
  • the light emitting layer 31 is composed of a semiconductor that emits light by an input current.
  • the light emitting layer 31 is composed of InGaN when emitting blue light or green light, and InGa A1P when emitting red light or yellow light. ing.
  • the substrate layer 32 is made of a material having a holding function to hold the light emitting layer 31 and a heat dissipation function to release heat caused by current, for example, an insulator such as Al 2 O (sapphire), SiC, Si, Ge, SiN, G
  • the reflective layer 33 reflects light emitted in all directions within the plane of the light emitting layer 31 in a desired direction, and is a conductive metal such as Au (gold) or A1 (aluminum). It consists of a thin film.
  • the light emitting layer 31, the substrate layer 32, and the reflective layer 33 are interposed between the first electrode pad 34 and the second electrode pad 35. It is desirable to be located. However, various arrangements of the light emitting layer 31, the substrate layer 32, and the reflective layer 33 located between the first electrode pad 34 and the second electrode pad 35 are assumed.
  • the substrate layer 32, the reflective layer 33, and the light emitting layer 31 are stacked in this order from the first electrode pad 34 toward the second electrode pad 35. It is. Further, as shown in FIG. 18B, the reflective layer 33, the light emitting layer 31, and the substrate layer 32 may be stacked in this order from the first electrode pad 34 toward the second electrode pad 35.
  • the reflective layer 33 is interposed between the light emitting layer 31 and the anode 2 supporting the LED chip 1. This is because the light emitted from the light emitting layer 31 is emitted in a hemispherical shape by the reflective layer 33 and does not reach the anode 2 (however, the LED chip that does not include the reflective layer) Even if it is 1, if light is emitted from the light emitting layer 31, it may satisfy the function as the LED 9).
  • the reflective layer 33 of the LED chip 1 including the first electrode pad 34 on one side of the light-emitting layer 31 (31 ⁇ ⁇ 31 ⁇ ) and the second electrode pad 35 on the other side, and the anode 2 And may be bonded with an adhesive BR (for example, an adhesive containing thermally conductive grease).
  • an adhesive BR for example, an adhesive containing thermally conductive grease.
  • a current flows to the light emitting layer 31.
  • the wire 4 connecting the first electrode pad 34 and the anode 2 and the wire 4 connecting the second electrode pad 35 and the force sword 3 are required.
  • the first electrode pad 34 and the second electrode pad 35 should be arranged so as to sandwich the light emitting layer 31, the substrate layer 32, and the reflective layer 33. .
  • the first electrode pad 34 and the anode 2 can be connected without going through a force wire, so that the number of wires 4 can be surely reduced.
  • the first electrode pad 34 and the anode 2 connected without a wire are firmly connected, the continuity is stable and the physical connection is also stable.
  • the material of the substrate layer 32 is preferably a semiconductor such as SiC, Si, Ge, SiN, GaN, or GaAs, or a conductor such as metal.
  • such a highly conductive material is desirable because of its excellent heat dissipation.
  • the thermal conductivity of SiC, a semiconductor is 490 WZm'K
  • the insulating material, AlO is 490 WZm'K
  • the direction of the SiC substrate layer 32 is the same as that of the Al O substrate layer 32.
  • the first electrode pad 34 provided on one side of the divided light emitting layer 31 (31 ⁇ ⁇ 31 ⁇ ) is connected to the anode 2 and the other side.
  • the second electrode pad 35 provided on the sword 3 is attached to the force sword 3.
  • a conductive adhesive may be used to connect the first electrode pad 34 ⁇ second electrode pad 35 provided on the LED 9 to the anode 2 ⁇ force sword 3 '. Eutectic may also be used.
  • conductive adhesive BR for example, silver paste BR can be mentioned.
  • silver paste (thermal conductive silver paste) BR has excellent conductivity! / Not only ru, but also excellent thermal conductivity! /
  • the thermal conductivity of the silicon-based thermal conductive grease is 2 to 4 WZm * K, whereas the thermal conductivity of the silver paste BR is 20 to 30 WZm'K. Therefore, when LED chip 1 is connected to anode 2 using silver paste BR, heat generated in LED chip 1 is transmitted to anode 2 via silver paste BR, and efficient heat dissipation is realized.
  • the conductive adhesive BR is not limited to the silver paste BR, but may be, for example, a gold paste, a copper paste, an aluminum paste, or a silicon paste. This is because, like the silver paste BR, these pastes contain a metal having not only excellent conductivity but also excellent thermal conductivity (see below).
  • Silver (Ag) 420W / m-K
  • Eutectic is a mixture of two kinds of materials crystallized (solidified) simultaneously from a molten metal at a constant rate. In eutectic, bonding force is generated between crystal grains in both materials, rather than simply mixing the two types of materials. Therefore, it can be said that adhesion (connection) using eutectic is extremely strong.
  • Eutectic is a phenomenon that occurs between specific metals.
  • Au and Sn tin
  • Au and Si Au and Ge (germanium)
  • Pb lead
  • Sn Ag And Cu
  • Ag and Sn can be listed as combinations that produce a eutectic.
  • Such a eutectic can be obtained by bringing two kinds of metals into contact and applying heat or pressure.
  • the heat applied is lower than the melting point of a single metal (see the melting point of Au in Table 10 below). Therefore, only the contact part of the two types of metals becomes eutectic, and the other parts are not affected by heat.
  • FIG. 20A shows the LED 9 in which the first electrode pad 34 made of AuSn and the anode 2 made of Cu are bonded via the silver paste BR.
  • an eutectic of Sn and Ag occurs at the interface between the first electrode pad 34 and the silver paste BR
  • an eutectic of Cu and Ag occurs at the interface between the anode 2 and the silver paste BR. Yes. Therefore, due to the eutectic, the LED chip 1 having the first electrode pad 34 and the anode 2 are firmly connected to the LED 9.
  • FIG. 20B shows an LED 9 in which the first electrode pad 34 made of AuSn and the anode 2 made of Cu are bonded without using a silver paste.
  • an eutectic of Sn and Cu is generated at the interface between the first electrode pad 34 and the anode 2. Therefore, even if no silver paste is used, the LED 9 having the first electrode pad 34 and the anode 2 are firmly connected to each other due to the eutectic composed of Sn—Cu.
  • the eutectic contained in LED9 as described above contains materials with excellent thermal conductivity (gold, silver, copper, etc.), so it has superior thermal conductivity compared to thermal conductive grease, etc. Have a rate. Therefore, in such an LED 9, heat generated in the LED chip 1 is transmitted to the anode 2 through the eutectic, and efficient heat dissipation is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 アノード(2)につながるLEDチップ(1)を含むLED(9)を複数個配置している発光モジュール(LMJ)では、アノード(2)がLEDチップ(1)を支持する支持体になっており、その支持体にはLEDチップ(1)を支える支持面(21)とその支持面(21)を基準に延びる延伸部とが含まれ、複数のLED(9)における延伸部同士が乖離している。

Description

明 細 書
発光素子、発光モジュール、照明装置、および画像投影装置
技術分野
[0001] 本発明は、 LED (Light Emitting Diode)等の発光素子、発光素子を用いたモジュ ール (発光モジュール)、発光モジュールを搭載する照明装置、さらには、かかる照 明装置を搭載する画像投影装置に関するものである。
背景技術
[0002] 近年、 LEDモジュールを用いた照明装置は、種々開発されている。そして、このよう な照明装置においては、高輝度化と小型化とが要望されている。そこで、特許文献 1 •2の照明装置は、複数個の LEDを搭載した発光モジュールを用いることで、高輝度 化を達成しょうとしている。
特許文献 1 :特開 2000— 112031号公報
特許文献 2 :特許第 3159968号公報
発明の開示
発明が解決しょうとする課題
[0003] ただし、図 21Aに示すように、特許文献 1における照明装置の LEDモジュール 171 は、砲弾型キャップ 182を備える LED181を複数個搭載している。このような LEDモ ジュール 171では、砲弾型キャップ 182が実際に発光するのではなぐ砲弾型キヤッ プ 182内の LEDチップが発光しているにすぎない。すると、 LED181を複数個搭載 することで、 LEDモジュール 171が大型化している上に、十分に高輝度化を達成し ているとはいいがたい。
[0004] なお、特許文献 1では、図 21Bに示すような 1枚の基板 183上に複数個の LEDチッ プ 184を配置した LEDモジュール 171を搭載した照明装置も開示されて!ヽる。しかし 、力かるような LEDモジュール 171に電流を流した場合、通電に起因する LEDチッ プ 184の発熱によって、基板 183の温度が上昇する。特に、 1枚状の基板 183に複 数の LEDチップ 184が配置されているため、 1個の LEDチップ 184が通電で熱を帯 びたとすると、その熱が他の LEDチップ 184に伝導してしまう。すると、ジャンクション 温度が極めて上昇しやすぐそれに起因して、 LEDモジュール 171の輝度が高くな らない。
[0005] また、温度の問題を考慮して、図 22に示す特許文献 2の照明装置 170は、低パヮ 一の LED181を複数個用いた LEDモジュール 171を搭載することで、高輝度化を 図っている。特に、この照明装置 170は、各 LED181に応じてインテグレータロッド 1 72を配置することで、高輝度化を図ろうとしている。
[0006] し力し、低パワーの LED181のために、その個数は比較的多くならざるをえず、さら に、その個数に応じたインテグレータロッド 172も必要となる。そのため、かかる照明 装置 170は、極めて大型化してしまい、高輝度化と小型化という両要望を同時に満た しているとはいえない。
[0007] ところで、比較的大きな数ワット(W)の電力によって、数 10ルーメン(lm)〜: L 00ル ーメン以上の明るさを確保できるパワー LEDと称されるものもある。すると、このような パワー LEDを用いた LEDモジュールを用いれば、高輝度を確保する照明装置が実 現できる場合もあり得る。しかし、単純に大きな電力を投入するだけでは、 LEDモジ ユールは高輝度を確保できな!/、。
[0008] なぜなら、数ワットの電力を投入するために通電電流を増加させると、 LEDチップ が熱を帯び、ジャンクション温度の上昇を引き起こし、それに起因して LEDチップ(ひ いては LEDモジュール)の輝度が高くならないためである。ただし、ジャンクション温 度特性は LEDモジュールの放熱特性に依存する(LEDの放熱特性に依存するとも いえる)。すなわち、 LEDモジュールの放熱特性が良好であれば、ジャンクション温 度の上昇率は低くなる。
[0009] そこで、本発明は、上記の状況を鑑みてなされたものである。つまり、本発明の目的 は、放熱特性を向上させた発光素子および発光モジュールを提供することで、高輝 度化と小型化という両要望を同時に満たす発光モジュール、およびその発光モジュ ールを搭載する照明装置、さらには、かかる照明装置を搭載する画像投影装置を提 供することにある。
課題を解決するための手段
[0010] 本発明は、互いに相反する電位極性を有する第 1リード電極および第 2リード電極 と、発光チップとを含む発光素子である。そして、かかる発光素子では、第 1リード電 極が、発光チップを支持する支持体になっており、その支持体には、発光チップを支 える支持面とその支持面を基準に延びる延伸部とが含まれ、第 2リード電極が、絶縁 体を介して第 1リード電極の支持面に位置するとともに、電気的に発光チップに接続 されている。
[0011] このようになっていると、第 1リード電極の支持面上に、発光チップと第 2リード電極 とが配置され、第 1リード電極自体が、発光素子内の複数部材を保持することになる 。したがって、複数部材である発光チップと第 2リード電極とが安定的に保持されると 同時に、部品としての取り扱いや電気的な取り扱いも容易になる。その上、第 1リード 電極と第 2リード電極との間には絶縁体が介在しているので、両者は互いに乖離して いる。そのため、第 1リード電極と第 2リード電極との間での熱伝導は生じにくぐかか る発光素子は放熱性に優れて 、ると 、える。
[0012] なお、放熱性の観点から、第 1リード電極における延伸部の表面である延伸表面に は、支持面よりも広面積を有する面が含まれて!/、ると望ま 、。
[0013] また、発光素子は、下記条件式(1)を満たしていると望ましい (詳細については後 述)。
1. 0<E3/Lmax< 10. 0 … 条件式(1)
ただし、
E3:発光チップからの光の光軸方向に沿う方向での第 1リード電極の長さ Lmax:発光チップにおける発光面の外縁端において最長の長さ である。
[0014] また、後に詳説するが、発光素子における第 1リード電極の支持面の長手方向と第 2リード電極の長手方向とが、同一方向であると望ましぐまた、発光素子の駆動電流 力 100mA以上 5A以下であると望ましい。
[0015] また、発光チップが、投入電流を流すための第 1電極パッドと第 2電極パッドとを有 するとともに、投入電流によって光を放出する発光層、およびその発光層を保持する 基板層を、第 1電極パッドと第 2電極パッドとの間に介在させていると望ましい。
[0016] このようになっていると、例えば、発光チップにおける第 1電極パッド力 ワイヤーな しで第 1リード電極につながれる。そのため、このような発光チップであれば、ワイヤー ボンディング用のワイヤーの本数が削減される。
[0017] また、基板層が、半導体または導体であると望ましい。このようになっていれば、発 光チップにおける第 1電極パッドと第 2電極パッドとの間での導通性が確保されるため である。
[0018] また、第 1リード電極と第 1電極パッドとが、導電性接着剤によってつながっていると 望ましい。また、第 1リード電極と第 1電極パッドとが、共晶によってつながっていると 望ましい。なぜなら、導電性接着剤、共晶のいずれであっても、優れた導通性および 熱伝導性を有しているので、発光素子に帯びた熱が、第 1電極パッドから導電性接 着剤 (または共晶)を通じ、第 1リード電極へと放熱されるからである。
[0019] また、以上のような発光素子を複数個配置している発光モジュールも本発明であり 、その発光モジュール、および、その発光モジュールからの光が入射する入射端と、 その入射端力 進行してくる光を合成した後に出射させる出射端とを有する合成光 学系、を含む照明装置も本発明である。
[0020] また、以上のような照明装置力 の光を画像データに応じて変調する光変調素子と 、光変調素子にて変調される光を被投影面に投影する投影光学系と、を含む画像投 影装置も本発明である。
[0021] なお、力かる画像投影装置では、複数の発光素子における延伸部の表示面である 延伸表面のうち、少なくとも一部の延伸表面の面内方向に沿うように、風を沿わせる ファンを設けて 、ると望まし 、。
[0022] また、本発明は、第 1リード電極につながる発光チップを含む発光素子を複数個配 置している発光モジュールである。特に、第 1リード電極力 発光チップを支持する支 持体になっており、その支持体には、発光チップを支える支持面とその支持面を基 準に延びる延伸部とが含まれている。そして、複数の発光素子における延伸部同士 が乖離している。さらに、発光チップを支える第 1リード電極の支持面に、絶縁体を介 して、第 1リード電極に相反する電位極性を有する第 2リード電極が配置され、その第 2リード電極と発光チップとが電気的に接続されている。
[0023] 通常、発光素子における発光チップには、電流の流れる陽極および陰極がつなが つている。そこで、かかる発光素子は、陽極および陰極の一方を第 1リード電極とし、 その第 1リード電極に発光チップを支えさせている。したがって、第 1リード電極は、発 光チップを取り付けるための一面 (支持面)を有する。
[0024] ただし、発光チップは通電によって熱を帯びる。そこで、第 1リード電極には、支持 面を基準に延びる延伸部が形成されている。力かるような延伸部があると、発光チッ プに生じる熱が支持面および延伸部に伝導するようになる。そのため、発光チップの 熱が効果的に放熱される。
[0025] その上、発光モジュールにおける複数の発光素子の延伸部同士が乖離している。
したがって、ある 1個の発光素子の発光チップに熱が生じ、その熱を延伸部を介して 放熱させたとしても、その熱が他の発光素子に伝導しない。すると、発光素子におけ る発光チップの温度上昇が防止される。その結果、ジャンクション温度に起因する発 光チップ(ひいては発光モジュール)の輝度の低下は起き得ない。また、かかる発光 モジュールは、例えば基板上に発光チップを設けたようなタイプではな 、ので小型で もめる。
[0026] なお、発光素子、およびそれらを複数個配置して 、る発光モジュールの 、ずれに おいても、第 1リード電極における延伸部の表面である延伸表面に、支持面よりも広 面積を有する面が含まれていると望ましい。力かるような広面積の面があると、外気に 触れやすいことになり、放熱特性 (放熱効率)が上昇するためである。
[0027] また、複数の発光素子において、延伸部同士の乖離により生じる隙間の少なくとも 一部に、断熱体が介在していると望ましい。力かるような断熱体があれば、複数の発 光素子 (詳説すると発光チップ)の間での熱の伝導を確実に防止できるためである。
[0028] ところで、力かるような発光チップ同士の熱伝導の防止に望ましい配置が存在する 。その配置を規定したものが下記の条件式 (2)になる。
[0029] 0. 7<AL/AR< 0. 98 … 条件式(2)
ただし、
AL :複数の発光素子における全ての発光チップの発光面積
AR:複数の発光素子における全ての発光チップの発光面を囲む外周であり、 最短の外周長によって規定される領域の面積 である。
[0030] この条件式(2)にあって、 ALZARの値が下限値以下になる場合、発光チップ同 士の間隔が比較的広いことになる。すると、実質的な発光面積が小さぐ十分な発光 量を確保できず、小型で高輝度な発光モジュールが実現できない。一方、 ALZAR の値が上限値以上になる場合、発光チップ同士の間隔が比較的狭いことになるので 、発光チップ同士の間で熱が伝導しやすい。すると、熱伝導に起因してジャンクショ ン温度が上昇し、発光モジュールが高輝度にならな!/、。
[0031] したがって、条件式(2)の範囲内に収まるように、 ALと ARとが設定されると、発光 モジュールとしての輝度低下等が防止されつつ、発光チップ同士における熱伝導が 緩和される。
[0032] また、発光モジュールは、下記条件式(3)を満たして 、ると望ま 、。
0. 01<D/Lmax<0. 5 … 条件式(3)
ただし、
D :複数の発光素子における第 1リード電極同士の間隔の長さ Lmax:発光チップにおける発光面の外縁端において最長の長さ である。
[0033] この条件式(3)にあって、 DZLmaxの値が下限値以下になる場合、例えば、比較 的広面積を有する発光チップを含む発光素子が比較的密集していることになる。す ると、発光素子同士の間で熱が伝導しやすくなるものの、発光モジュールとしての高 輝度化が実現しやすい。一方、 DZLmaxの値が上限値以上になる場合、例えば、比 較的狭面積を有する発光チップを含む発光素子が比較的広い間隔で乖離している ことになる。すると、発光モジュールとしての高輝度化が実現しにくいものの、発光素 子同士の間で熱が伝導しにくくなる。
[0034] したがって、条件式(3)の範囲内に収まるように、 Dと Lmaxとが設定されると、条件 式 (2)の範囲内と同様の効果、すなわち、発光モジュールとしての輝度低下が防止さ れつつ、発光チップ同士における熱伝導が緩和される。
[0035] また、発光素子、およびそれらを複数個配置して!/、る発光モジュールの 、ずれにお いても、下記条件式(1)を満たすと望ましい。 1. 0<E3/Lmax< 10. 0 … 条件式(1)
ただし、
E3:発光チップからの光の光軸方向に沿う方向での第 1リード電極の長さ Lmax:発光チップにおける発光面の外縁端において最長の長さ である。
[0036] この条件式(1)にあって、 E3ZLmaxの値が下限値以下になる場合、例えば、発光 チップに対して第 1リード電極 (延伸部)が小さいといえる。すると、発光チップに生じ る熱を十分に放熱させることができない。しかし、第 1リード電極 (ひいては発光素子) が比較的小型になる。一方、 E3ZLmaXの値が上限値以上になる場合、例えば、発 光チップに対して第 1リード電極大きいといえる。すると、第 1リード電極の大型化に起 因し、比較的大型な発光素子になりやすい。また、上限値を超えた第 1リード電極の 大きさは、放熱特性の向上に寄与しない必要以上の大きさでもある。つまり、必要以 上に第 1リード電極を大型にしても、放熱特性の向上が期待できな!/ヽ。
[0037] したがって、条件式(1)の範囲内に収まるように、 E3と Lmaxとが設定されると、発光 素子の大型化が防止されつつ、発光チップの高温ィ匕が緩和される。
[0038] ところで、発光素子における 2個のリード電極(陽極および陰極)で一方を第 1リード 電極とすると、他方は第 2リード電極になる。そして、上述したように、かかる第 2リード 電極は、発光チップを支える第 1リード電極の支持面に、絶縁体を介して配置され、 さらに、第 2リード電極と発光チップとが電気的に接続されている。
[0039] 力かるような発光素子、およびそれらを複数個配置している発光モジュールのいず れにおいても、第 1リード電極の支持面の長手方向と第 2リード電極の長手方向とが、 同一方向であると望ましい。
[0040] このようになっていれば、発光素子を電源につなげる場合に要する接続部、すなわ ち、第 1リード電極につながる接続部と第 2リード電極につながる接続部とが同方向に 向く。そのため、接続部の配置方向が異なることに起因する発光モジュールの大型 化が抑制される。
[0041] ところで、高輝度を確保できる発光素子 (例えばパワー LED)の場合、流れる電流 値 (駆動電流)は 100mA以上 5A以下であるといわれる。そして、かかるような発光素 子では、特に発光チップが熱を帯びやすい。そのため、放熱特性の向上を図ってい る発光モジュールに、力かるような発光素子が搭載されていると、放熱による効果 (す なわち、放熱特性を高め輝度向上を図るという効果)が顕著に現れる。
[0042] なお、以上のような発光モジュールを搭載した装置としては、発光モジュールからの 光が入射する入射端と、その入射端力 進行してくる光を合成した後に出射させる出 射端とを有する合成光学系を含む照明装置が挙げられる。
[0043] ただし、かかるような照明装置では、下記条件式 (4)を満たすと望ま 、。
0. 3<AL/AP<0. 95 … 条件式(4)
ただし、
AL:複数の発光素子における全ての発光チップの発光面積
AP:合成光学系の入射端の面積
である。
[0044] この条件式 (4)にあって、 ALZAPの値が下限値以下になる場合、例えば発光チ ップ同士が粗く配置される。すると、発光モジュールが大型になるものの、発光チップ の放熱特性が向上する。一方、 ALZAPの値が上限値以上になる場合、例えば発 光チップ同士が密に配置される。すると、発光チップの放熱特性が低下してしまうも のの、発光モジュールが小型になる。したがって、条件式 (4)の範囲内に収まるよう に、 ALと APとが設定されると、発光モジュールの大型化が抑制されつつ、発光の放 熱特性の低下も抑制される。
[0045] ところで、照明装置を被投影面に画像光を照射する画像投影装置に搭載した場合 、被投影面の形状 (一般的には矩形)と相似な形状の入射端および出射端を有する 合成光学系が望ましぐまた、合成光学系の入射端は、発光モジュール力もの全ての 光を受光できるサイズであると望ましい。そのために、合成光学系が中空状になって いる場合で、発光チップに電気的な接続に要するワイヤーが設けられていると、合成 光学系の入射端の中空領域は、複数の発光素子における全ての発光チップの発光 面および全てのワイヤーを囲む程度のサイズを有して 、ると望まし!/、。
[0046] そこで、合成光学系が中空状になっているとともに、発光チップに電気的な接続に 要するワイヤーが設けられて 、る場合にあって、複数の発光素子における全ての発 光チップの発光面および全てのワイヤーを囲む外周であり、最短の外周長で規定さ れる外周領域において、短手方向が規定できると、合成光学系の入射端における中 空領域は、外周領域の短手方向と同方向に短手を有する形状になっている。
[0047] このようになっていれば、合成光学系の入射端は、矩形になりつつも発光モジユー ルからの全ての光を受光できるサイズとして、比較的狭面積になる。そのため、照明 装置の大型化が抑制される。
[0048] なお、画像投影装置としては、照明装置からの光を画像データに応じて変調する 光変調素子と、光変調素子にて変調される光を被投影面に投影する投影光学系と、 を含むものが挙げられる。
[0049] そして、力かるような画像投影装置で、光変調素子が透過型光変調素子の場合、 その透過型光変調素子に入射する特定方向の光のみを透過させる透過軸を有する 反射型偏光板が設けられていると望ましい。すなわち、特定方向の光を透過させ透 過型光変調素子に導く一方、他の方向(特定方向と異なる方向)の光を反射させて 合成光学系の出射端に導く反射型偏光板が、例えば合成光学系と透過型光変調素 子との間に設けられて 、ると望ま U、。
[0050] 通常、透過型光変調素子の場合、ある方向に偏光して 、る光のみを利用する。そ のため、他の光は無駄になってしまう。しかし、反射型偏光板が存在することで、無駄 となっていた光が合成光学系に戻るため、再利用の可能性が生じる。
[0051] そのためには、例えば、反射型偏光板と合成光学系の出射端との間に、位相板が 設けられていると望ましい。力かるような位相板があれば、反射型偏光板によって反 射された他の方向の光は、位相板を通過後に合成光学系に戻る。すると、戻った光 は、合成光学系により発光モジュールにまで導かれる。そして、導かれた光力 発光 モジュールによって反射されれば、再び合成光学系の出射端から位相板へと進行す る。
[0052] かかる場合、反射型偏光板によって反射された他の方向の光は、位相板を 2回通 過することになる。そこで、 2回通過することをもって、反射型偏光板を透過できる特 定方向の光が生じるようにしておけばよい。このようになっていれば、合成光学系から 進行してくる光はロスすることなぐ透過型光変調素子に到達するためである。 [0053] また、画像投影装置では、発光モジュールが、少なくとも赤色発光、緑色発光、お よび青色発光の 3色の発光素子を含み、それらの各色の発光素子を時分割で発光さ せていると望ましい。このようになっていれば、例えば、発光素子が順番にかつ単独 発光する。すると、各々の発光素子には、発光 (発熱)していない時間が存在し、その 時間内に、各発光素子は、独立して効果的な放熱を行える。
[0054] また、画像投影装置では、複数の発光素子における延伸部の延伸表面のうち、少 なくとも一部の延伸表面の面内方向に沿うように、風を沿わせるファンが設けられて いると望ましい。特に、発光モジュールにおいて、各発光素子における第 1リード電極 (延伸部)で最大面積を有する延伸表面を最大延伸表面とした場合、最大延伸表面 の面内方向を平行にして 、る発光素子の糸且合せが生じるようになって!/、ると望まし!/ヽ
[0055] このようになっていれば、例えば、最大延伸表面の面内方向に沿うようにファンが風 を作り出すと、発光モジュールにおける複数の発光素子を効果的に冷却できるため である。
発明の効果
[0056] 本発明によれば、発光チップの固定される第 1リード電極が放熱体も兼ねるので、 発光チップを速やかに冷やすことができる(ジャンクションの上昇を防止できる)。一 般に、ジャンクション温度を一定に保てるまでは電流量に比例した光パワー (明るさ) が得られるが、ジャンクション温度が高くなると、追加投入電流は熱となってしまう。
[0057] したがって、本発明のように、放熱を効果的に行えば、ジャンクション温度を一定に 保てる電流を比較的大きくすることができる。その結果、投入電流に比例した明るさ が得られ、高輝度な発光モジュールが実現する。また、力かる発光モジュールは、例 えば、基板上に発光チップを設けたようなタイプではな 、ので小型でもある。
図面の簡単な説明
[0058] [図 1]は、 LEDモジュールの斜視図である。
[図 2A]は、 LEDモジュールの発光面を示す平面図である。
[図 2B]は、 LEDモジュールの幅方向を図示する側面図である。
[図 2C]は、 LEDモジュールの奥行きを図示する側面図である。 [図 3]は、 ALと ARとの関係を示す説明図である。
[図 4A]は、 LEDモジュールの延伸表面における最大延伸表面に風が沿う状態を示 す平面図である。
[図 4B]は、 LEDモジュールの延伸表面における最大延伸表面に風が沿う状態を示 す斜視図である。
[図 5A]は、 LEDモジュールの全ての延伸表面に風が沿う状態を示す平面図である。
[図 5B]は、 LEDモジュールの全ての延伸表面に風が沿う状態を示す斜視図である。
[図 6A]は、 ETENDUEの不変則を説明する説明図である。
[図 6B]は、 LAGRANGEの不変則を説明する説明図である。
[図 7]は、 ALと APとの関係を示す説明図である。
[図 8A]は、 LEDチップからの光の光軸方向に沿う方向において、 LEDチップとイン テグレータロッドとの最短間隔の長さ(G)は示す断面図であり、中空状のインテグレ ータロッドでの Gを示して!/、る。
[図 8B]は、 LEDチップからの光の光軸方向に沿う方向において、 LEDチップとイン テグレータロッドとの最短間隔の長さ(G)は示す断面図であり、中実状のインテグレ ータロッドでの Gを示して!/、る。
圆 9]は、反射型の偏光板を含む画像投影装置の断面図である。
[図 10]は、図 9とは異なる反射型の偏光板を含む画像投影装置の断面図である。
[図 11A]は、図 1とは異なる LEDモジュール(6個の LEDを有する LEDモジュール)を 示す平面図である。
[図 11B]は、図 1とは異なる LEDモジュール(8個の LEDを有する LEDモジュール)を 示す平面図である。
[図 12A]は、 LEDモジュールにおける時分割駆動(全く色の重ならない時分割駆動) を説明する説明図である。
[図 12B]は、 LEDモジュールにおける時分割駆動(一部に色の重なる時分割駆動)を 説明する説明図である。
[図 13A]は、 LEDチップをコーティングした LEDモジュールの断面図である。
[図 13B]は、 LEDチップおよびワイヤーをコーティングした LEDモジュールの断面図 である。
[図 14A]は、スクリーンの平面図である。
[図 14B]は、スクリーンに相似なインテグレータロッドの入射端サイズの設定の仕方を 示す説明図である。
[図 14C]は、スクリーンに相似なインテグレータロッドの入射端サイズの設定の仕方を 示す説明図である。
[図 15]は、画像投影装置の平面図である。
[図 16]は、画像投影装置の断面図である。
[図 17A]は、中空状のインテグレータロッドを示す説明図である。
[図 17B]は、中実状のインテグレータロッドを示す説明図である。
[図 18A]は、 LEDの側面図とその LEDに搭載されている LEDチップの拡大図である
[図 18B]は、図 18Aとは異なる LEDチップの拡大図である。
[図 19A]は、 LEDの側面図である。
[図 19B]は、図 19Aとは異なる LEDの側面図である。
[図 20A]は、 LEDに含まれる共晶を示す側面図である。
[図 20B]は、図 20Aとは異なる共晶を示す側面図である。
[図 21A]は、従来の LEDモジュールの斜視図である。
[図 21B]は、図 21Aの別例を示す LEDモジュールの平面図である。
[図 22]は、図 21とは異なる従来の照明装置を示す説明図である。
符号の説明
1 LEDチップ(発光チップ)
2 アノード (第 1リード電極または第 2リード電極)
3 力ソード (第 1リード電極または第 2リード電極)
4 ワイヤー
5 断熱体
9 LED (発光素子)
11 発光面 21 支持面
22 延伸表面
22M 最大延伸表面
41 入射端
42 出射端
51 入射側吸収型偏光板
52 液晶層
53 出射側吸収型偏光板
54 入射側反射型偏光板 (反射型偏光板)
55 出射側吸収型偏光板
61 1Z4波長板 (位相板)
62 変換用反射型偏光板 (反射型偏光板)
71 接続部
72 透明榭脂
LMJ LEDモジュール(発光モジュール)
ILD インテグレータロッド (合成光学系)
LAS 照明装置
BMD 光変調素子
LEN 投影レンズ (投影光学系)
SCN スクリーン面 (被投影面)
PAS 画像投影装置
発明を実施するための最良の形態
[0060] [実施の形態 1]
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである 。なお、図面によっては便宜上、部材番号等を省略する場合があるが、かかる場合、 他の図面を参照するものとする。また、便宜上、ハッチングを入れない断面図もある。
[0061] [1.画像投影装置について]
図 15はプロジェクタ等の画像投影装置 PASを示す外観平面図であり、図 16は図 1 5の平面の面内に沿った断面図(横断面図)である。これらの図 15および図 16に示 すように、画像投影装置 PASは、 LEDモジュール (発光モジュール) LMJ、インテグ レータロッド (合成光学系) ILD、光変調素子 BMD、および投影レンズ (投影光学系) LENを含む。
[0062] LEDモジュール LMJは、光を発する LED9を複数個備えるものである(図 1参照)。
ただし、各 LED9の発光色は、限定されるものではない。例えば、全ての LED9の発 光色が同色であっても、各 LED9に応じて異なった色であってもよい。ただし、少なく とも赤色(RED)発光、緑色(GREEN)発光、および青色 (BLUE)発光の 3色の LED9 を含んでいれば、フルカラー発光可能になるので望ましいといえる。なお、 LEDモジ ユール LMJの詳細については後述する。
[0063] インテグレータロッド ILDは、その LEDモジュール LMJから進行してくる光の光強度 を均一化させて出射させるものである。力かるようなインテグレータロッド ILDの一例と しては、図 17Aおよび図 17Bに示すように、角柱形状で両端 (入射端 41および出射 端 42)の面積が異なったものが挙げられる(このような形状のインテグレータロッド IL Dはテーパロッドとも称される)。
[0064] ただし、図 17Aに示すような 4面のミラーを組み合わせた中空状のインテグレータロ ッド ILDであっても(着色部分が中空部分)、図 17Bに示すような中身を有する(中実 状の)インテグレータロッド ILDのいずれであってもよい(ガラス材で中身を構成したィ ンテグレータロッドもよ 、し、中空状に榭脂を注入したインテグレータロッドでもよ 、)。
[0065] 要は、照明分布を均一にした光を出射すベぐ一方の端 (光入射端面) 41に入射 する光力 Sインテグレータロッド ILD内部に進行していく場合に、光が内部側面で繰り 返し反射されることでミキシングし、他方の端 (光射出端面) 42から射出するようにな つていればよい。
[0066] 光変調素子 BMDは、インテグレータロッド ILDから出射してくる光を画像データ等 に基づき変調するものである。例えば、液晶素子 (透過型液晶素子または反射型液 晶素子)や DMD (Digital Micromirror Device ;米国テキサスインスツルメンッ社製) 1S 光変調素子 BMDとして挙げられる。なお、光変調素子 BMDに向力つてくる光は 、インテグレータロッド ILDからの照明光であるので、 LEDモジュール LMJとインテグ レータロッド ILDとを含む装置を照明装置 LASと称してもよい。
[0067] 投影レンズ (投影光学系) LENは、光変調素子 BMDによって変調された光 (画像 光)をスクリーン等に投影するためのレンズである。
[0068] なお、 LEDモジュール LMJでは、発光する場合に(すなわち電流が流れる場合に)
、後述する LEDチップ (発光チップ) 1が発熱する。したがって、熱を帯びる LEDチッ プ 1を冷やすベぐファン FAN (図 4Α·図 4Bおよび図 5Α·図 5B参照)が設けられて いてもよい。
[0069] [1 - 1. LEDモジュールの詳細につ!/、て]
ここで、図 1 (斜視図)および図 2A〜図 2C (三面図)を用いて、 LEDモジュール LM Jを詳説する。図 1および図 2A〜図 2Cに示すように、 LEDモジュール LMJは、 4個の LED9 (9a〜9d)を含む。そして、各 LED9は、相反する電位極性であるアノード(陽 極) 2および力ソード(陰極) 3につながる LEDチップ 1を有している {なお、 LEDチッ プ 1と力ソード 3とは、直径 0. 03mm程度の金のワイヤー 4を介してつながっている( すなわちワイヤーボンディングされている) }。
[0070] ただし、アノード 2は、 LEDチップ 1 (LEDチップ 1における発光面 11の裏面等)を 支えるような一面 (支持面) 21と、その一面を挟持するような複数の面 22を含む形状 になっている。つまり、アノード 2の形状は、支持面 21と、支持面 21を基準に延びる 延伸部の表面 (延伸表面 22)とを含む多面体といえ、例えば板状が挙げられる(した がって、アノード 2自体が延伸部ともいえる)。
[0071] 力かるような延伸部 (延伸表面 22に囲まれる部分)があると、発光のために LED9 に電流が流れた場合、熱が LEDチップ 1に生じたとしても、その熱が支持面 21およ び延伸部に伝導するようになる。そのため、 LEDチップ 1の熱が効果的に放熱される
[0072] また、特に、図 1および図 2A〜図 2Cに示されるように、延伸表面 22のうちに、支持 面 21よりも広面積を有する面が含まれていると望ましい。なぜなら、比較的広面積の 延伸表面 22があれば、その延伸表面 22には外気が効率よく触れ、効果的に熱が逃 げるためである。
[0073] そして、アノード 2が LEDチップ 1を速やかに冷やせれば(すなわちジャンクション温 度の上昇を防止できれば)、 LEDチップ 1の高温ィヒを防止でき高輝度化が実現する 。ただし、アノード 2は、支持面 21よりも広面積を有する延伸表面 22に限らず、支持 面 21よりも狭面積の延伸表面 22や支持面 21自体を、外気に触れさせることでも、熱 を逃がせる(すなわちアノード 2自体が放熱体と!/、える)。
[0074] 力かるように LEDチップ 1の熱をアノード 2を介して放熱させる場合に、望ましい条 件が存在する。その条件が下記の条件式 A{条件式(1) }になる。なお、この条件式 Aの理解を容易にすべく、図 2A〜図 2Cに示される LEDチップ 1およびアノード 2の サイズを規定する符号の意味にっ 、ても記しておく。
[0075] 'LEDチップの場合
L1 :LEDチップ 1の発光面 11における幅の長さ [単位; mm]
L2: LEDチップ 1の発光面 11における奥行きの長さ [単位; mm] L3: LEDチップ 1における厚みの長さ [単位; mm]
'アノードの場合
E1 :アノード 2における幅の長さ [単位; mm]
E2:アノード 2における奥行きの長さ [単位; mm]
E3:アノード 2における厚みの長さ [単位; mm]
[0076] 1. 0<E3/Lmax< 10. 0 … 条件式 A
ただし、
E3: LEDチップ 1からの光の光軸方向に沿う方向でのアノード 2の長さ
(すなわちアノード 2における厚みの長さ)
Lmax: LEDチップ 1における発光面 11の外縁端にぉ 、て最長の長さ
(すなわち L1および L2における長い方の長さ)
である。
[0077] この条件式 Aにあって、 E3ZLmaxの値が下限値以下になる場合、 E3が比較的短 く Lmaxが比較的長いことになる。すると、 LEDチップ 1に対してアノード 2が小さいとも いえる。そのため、 LEDチップ 1に生じる熱を十分に放熱させることができない。ただ し、アノード 2が比較的小型なために LED9の小型化は実現する。
[0078] 一方、 E3ZLmaxの値が上限値以上になる場合、 E3が比較的長く Lmaxが比較的 短いことになる。すると、 LEDチップ 1に対してアノード 2が大きいともいえる。そのた め、 LED9の小型化が実現できない。ただし、アノード 2が比較的大型なために LED チップ 1に生じる熱が十分に放熱される。
[0079] したがって、条件式 Aの範囲内に収まるように、 E3と Lmaxとが設定されると、 LED9
(ひいては LEDモジュール LMJ)の大型化が抑制されつつ、 LEDチップ 1の高温ィ匕 も抑制される。
[0080] なお、条件式 Aの規定する条件範囲のなかでも、下記条件式 A'の範囲を満たすほ うが望ましいといえる。
2<E3/Lmax< 6 … 条件式 A'
[0081] ところで、力ソード 3も、アノード 2同様に、板状等になっていてもよい。ただし、カソ ード 3は、絶縁体 ISR (後述の図 19A参照)を介してアノード 2の支持面 21に支えら れる(取り付けられる)。そのため、支持面 21に支えられる力ソード 3の一面は、支持 面 21の面内に包含されるような面サイズになって!/、ると望まし!/、。このようになって!/ヽ れば、力ソード 3が、支持面 21から剥がれにくく(取れにくく)なるためである。
[0082] また、 LEDチップ 1もアノード 2の支持面 21に支えられている。すると、両者間の剥 離を防止すベぐ支持面 21に支えられる LEDチップ 1の一面も、支持面 21の面内に 包含されるような面サイズになっていると望ましい。なお、 LEDチップ 1と力ソード 3と をつなぐワイヤー 4および力ソード 3も、アノード 2同様に、放熱体にもなつている。
[0083] そして、以上のような LED9が複数個集合することで、 LEDモジュール LMJが完成 する。ただし、 LED9の個数や配置には特に限定はない。例えば、図 2Aの平面図に 示されるような、 4個の LED9 (9a〜9d)をマトリックス状に配置したものでもよ ヽ(詳説 すると、同一面内方向における一方向に 2個の LED9 (9a' 9b)かつその一方向に対 し垂直方向に 2個の LED9 (9a- 9c)を配置することでマトリックス状を形成して 、る)。
[0084] ただし、 LEDモジュール LMJとして光の出射方向を同一方向に設定しょうとする場 合、全ての LEDチップ 1の発光面 11が同一方向に向いているとよい。そして、さらに は、これらの LED9同士が互いに乖離するようになっている。詳説すると、延伸表面 2 2同士が乖離するようになって!/、る。
[0085] このように、延伸表面 22同士が乖離して 、ると、 LEDチップ 1に生じる熱が伝導し にくい。すなわち、図 1の 4個中の 1個の LEDチップ 1が熱を帯びたとしても、他の LE Dチップ 1に伝導しない。そのため、 LEDチップ 1におけるジャンクション温度の上昇 が抑制される。
[0086] また、力かるような LEDチップ 1同士の熱伝導の防止に望ましい LEDチップ 1の配 置が存在する。その配置を規定したものが下記の条件式 B{条件式 (2) }になる。
[0087] 0. 7<AL/AR< 0. 98 … 条件式 B
ただし、
AL :複数の LED9における全ての LEDチップ 1の発光面積 [単位; mm2] AR:複数の LED9における全ての LEDチップ 1の発光面 11を囲む外周で あり、最短の外周長によって規定される領域の面積 [単位; mm2] である。
[0088] この条件式 Bにおける ALおよび ARを図示して説明すると、図 3に示すようになる。
すなわち、 ALは、 4個の LEDチップ 1の発光面 11の面積、すなわち「L1 X L2 X 4個 」の面積である(4個の LEDチップ 1における発光面 11の合計面積である)。
[0089] 一方、 ARは、 LEDチップ 1同士の間隔、すなわち図 1および図 2A〜図 2Cの場合 であると、複数の LED9におけるアノード 2の延伸表面 22同士の最短間隔(D)を考 慮して求められる。すなわち、 ARは、「(L1 + D + L1) X (L2 + D + L2)」で計算され る面積である。なぜなら、延伸表面 22同士の間隔を最短にせず、全ての LEDチップ 1の発光面 11を囲む外周を求めると、最短外周とはならないためである(なお、 ARは 一点鎖線にて示される領域である)。
[0090] そして、この条件式 Bにあって、 ALZARの値が下限値以下になる場合、 ARが比 較的広面積で ALが比較的狭面積になる。すると、 LEDチップ 1同士の間隔が比較 的広いことになる。そのため、例えば、 LEDモジュール LMJとしての高輝度化が実現 しにくい場合や、 LEDモジュール LMJが比較的大型になる場合が生じ得る。ただし、 LEDチップ 1同士の間隔が比較的広!、ことで、 LEDチップ 1同士の間で熱が伝導し に《なる。
[0091] 一方、 ALZARの値が上限値以上になる場合、 ARが比較的狭面積で ALが比較 的広面積になる。すると、 LEDチップ 1同士の間隔が比較的狭いことになる。そのた め、 LEDチップ 1同士の間で、熱が伝導しやすくなる。
[0092] したがって、条件式 Bの範囲内に収まるように、 ALと ARとが設定されると、 LEDモ ジュール LMJとしての輝度低下および大型化等が抑制されつつ、 LEDチップ 1同士 における熱伝導も抑制される。
[0093] なお、条件式 Bの規定する条件範囲のなかでも、下記条件式 B'の範囲を満たすほ うが望ましいといえる。
0. 8<AL/AR< 0. 95 … 条件式 B'
[0094] また、複数の LED9におけるアノード 2同士の間隔 {詳説すると延伸表面 22同士の 最短間隔(D) }と、 LEDチップ 1における発光面 11の外縁端において最長の長さ(L max)とで規定される以下の条件式 C{条件式 (3) }が満たされていても望ましい。
0. 01 < D/Lmax< 0. 5 … 条件式 C
[0095] この条件式 Cにあって、 DZLmaxの値が下限値以下になる場合、 Dが比較的短く L maxが比較的長いことになる。すると、比較的広面積を有する LEDチップ 1を有する L ED9が比較的密集していることになる。すると、アノード 2同士の間(ひいては LED9 同士の間)で、熱が伝導しやすくなる。その上、アノード 2同士の間でリークも生じかね ない。ただし、 LEDモジュール LMJとしての高輝度化が実現しやすいだけでなぐ L EDモジュール LMJが比較的小型になる。
[0096] 一方、 DZLmaxの値が上限値以上になる場合、 Dが比較的長く Lmaxが比較的短 いことになる。すると、比較的狭面積を有する LEDチップ 1を有する LED9が比較的 広い間隔で乖離していることになる。すると、 LEDモジュール LMJとしての高輝度化 が実現しにくいだけではなぐ LEDモジュール LMJが比較的大型になる。ただし、ァ ノード 2同士の間隔が比較的広いために、熱が伝導しに《なる。その上、アノード 2 同士の間を電気的に確実に絶縁できる。
[0097] したがって、条件式 Cの範囲内に収まるように、 Dと Lmaxとが設定されると、条件式 Bの範囲内と同様の効果、すなわち、 LEDモジュール LMJとしての輝度低下および 大型化等が抑制されつつ、 LED9同士(ひいては LEDチップ 1同士)における熱伝 導が抑制される。その上、 LEDモジュール LMJにおいて、リークの発生が抑制される [0098] なお、条件式 Cの規定する条件範囲のなかでも、下記条件式 C'の範囲を満たすほ うが望ましいといえる。
0. 03< D/Lmax< 0. 15 … 条件式 C,
[0099] ところで、図 1および図 2A〜図 2Cに示される LEDモジュール LMJでは、 LED9同 士の間に (詳説すると、アノード 2同士の間に)、断熱体 5が介在している。このように 断熱体 5があれば、確実に LED9同士での熱伝導が防止できる。ただし、断熱体 5が 存在しなくとも、 LED9同士が乖離していれば、十分に熱伝導が防止される。なぜな ら、空気が断熱体の役割を果たすためである。
[0100] し力し、少しでも LED9同士での熱伝導を効果的に防止したいのであれば、複数の LED9において、アノード 2の延伸表面 22同士の乖離により生じる隙間の少なくとも 一部に、断熱体が介在していると望ましい。なお、断熱体 5は、アノード 2またはカソ ード 3の有する熱伝導率(およそ 403WZm'K)に対し 1/20以下のものが望ましい 。したがって、シリコンシート(およそ 2. 5WZm'K)やエポキシ榭脂(およそ 0. 19W /m-K)が望まし 、材料と 、える。
[0101] また、画像投影装置 PASにファン FAN (なお、ファン FANは送風ファンでも吸引フ アンであってもよい)が設けられている場合、アノード 2に効果的に風が吹き付けられ ると望ましい。例えば、複数の LED9におけるアノード 2の延伸表面 22に対して、風 が沿うようになって!/、ればよ!/、。
[0102] 特に、図 4Α·図 4B (平面図,斜視図)および図 5Α·図 5B (平面図,斜視図)に示す ように、各 LED9のアノード 2で最大面積を有する延伸表面 22を最大延伸表面 22Μ とし、全ての最大延伸表面 22Μの面内方向が平行になっている場合である。例えば 、図 4Α·図 4Βに示すように、ファン FANがアノード 2の厚み方向および幅方向に対 し垂直方向に送風していると、ファン FANに起因する風が、効果的に最大延伸表面 22Mに沿うようになり、放熱特性が上昇する。
[0103] また、図 5Α·図 5Bに示すように、ファン FANがアノード 2の厚み方向と同方向かつ 幅方向に対し垂直方向に送風していると、ファン FANに起因する風が、最大延伸表 面 22Mおよび他の延伸表面 22 (ほとんどの延伸表面 22)に沿うことになるので、放 熱特性が確実に上昇する。なお、図 4Α·図 4Bおよび図 5Α·図 5Bでは、ファン FAN に起因する風として送風を矢印で示している力 これに限定されるものではない。す なわち、ファン FANに起因する風が吸引による風であってもよい。
[0104] [1 - 2.照明装置の詳細について]
続いて、以上のような LEDモジュール LMJと、その LEDモジュール LMJからの光 が入射する入射端 41およびその入射端 41から進行してくる光を合成した後に出射さ せる出射端 42を有するインテグレータロッド ILDと、を含む照明装置 LASについて 説明する。
[0105] ところで、インテグレータロッドのような合成光学系を用いるような場合、 ETENDUE の不変則や LAGRANGEの不変則が知られている。そして、これらの法則は、図 6Α· 図 6Βにて説明できる。
[0106] 例えば、図 6Αは、 ETENDUEの不変則の説明に対応している。そして、合成光学系 OSの入射端側の光束面積 (LEDモジュール LMJの発光面積等)を AREA1、その光 束の立体角を φ 1とする一方、合成光学系 OSの出射端側の光束面積を AREA2、そ の光束の立体角を φ 2とすれば、下記法則が成立する。
AREA1 X φ 1 = AREA2 X 2 · ·· ETENDUEの不変貝 IJ
[0107] 一方、図 6Bは、 LAGRANGEの不変則の説明に対応して 、る。そして、合成光学系 OSの入射端側の像高 Yl、その光線角を NA1とする一方、合成光学系 OSの出射 端側の像高 Y2、その光線角を ΝΑ2とするとすれば、下記法則が成立する。
Υ1 Χ ΝΑ1 =Υ2 Χ ΝΑ2· ·· LAGRANGEの不変則
[0108] 以上のような法則を鑑みると、光変調素子 BMDに対して所望の立体角( φ 2) {ある いは所望の光線角(NA2) }の光を導こうとする場合、種々のパラメータが適宜設定さ れるとよいことになる。詳説すると、下記条件式 Dを満たすと望ましい。なお、この条件 式 Dの理解を容易にすべく、インテグレータロッド ILDのサイズを規定する符号の意 味についても記しておく(図 17Α·図 17B参照)。
[0109] ·インテグレータロッド ILDの長さ
R :インテグレータロッド ILDの全長 [単位; mm]
'インテグレータロッド ILDの入射端 41の場合
P1 :入射端 41の面内での一方向の長さ [単位; mm] (便宜上、縦方向の長さ とも称す)
P2 :入射端 41の面内での一方向に対して垂直方向の長さ [単位; mm] (便宜 上、横方向の長さとも称す)
'インテグレータロッド ILDの出射端 42の場合
Q1 :出射端 42の面内で、入射端 41での一方向と同方向の長さ [単位; mm]
(便宜上、縦方向の長さとも称す)
Q2 :出射端 42の面内で、入射端 41の一方向に対して垂直方向の長さ [単位; mm] (便宜上、横方向の長さとも称す)
[0110] 2<AQ/AP< 30 …条件式 D
ただし、
AQ:インテグレータロッド ILDの出射端 42の面積 [単位; mm2]
AP :インテグレータロッド ILDの入射端 41の面積 [単位; mm2]
である。
[0111] 例えば、複数の LED9における全ての LEDチップ 1の発光面積が規定され、さらに 、あらゆる方向に発光する LEDチップ 1が、アノード 2側には遮光されるものの、その 反対側に向けてある規定の立体角(半球状の立体角)で発光しているとする。すると 、インテグレータロッド ILDの入射端側における規定の立体角を受光すベぐインテグ レータロッド ILDの入射端 41の面積 (AP)もある程度限定される。そのため、インテグ レータロッド ILDの出射端側で、所望の立体角の光を導こうとする場合 (光の指向性 を所望にしょうとする場合)、インテグレータロッド ILDの出射端 42の面積 (AQ)が重 要になってくる。そこで、条件式 Dは、インテグレータロッド ILDにおける入射端 41の 面積および出射端 42の面積の比率で規定されて 、る。
[0112] この条件式 Dにあって、 AQZAPの値が下限値以下になる場合、例えば AQが比 較的狭面積になる。すると、立体角の比較的大きな光 (指向性の低い光)がインテグ レータロッド ILDから出射することになる。そのため、このような照明装置 LASを画像 投影装置 PASに用いた場合、立体角の比較的大きな光が投影レンズ LENの絞り( 不図示)に遮光されてしまう(ケラレてしまう)。ただし、入射端 41の面積および出射端 42の面積が似力よって 、るので、インテグレータロッド ILDの製造が簡単になる。 [0113] 一方、 AQZAPの値が上限値以上になる場合、例えば AQが比較的広面積になる 。すると、立体角が比較的小さな光 (指向性の高い光)がインテグレータロッド ILDか ら出射することになる。しかし、小型でありながら、入射端 41の面積と出射端 42の面 積との差を大きくしたインテグレータロッド ILDの製造はきわめて難しい。なぜなら、入 射端 41と出射端 42とにつながるインテグレータロッド ILDの柱の傾斜角(テーパ角) が急傾斜するためである。
[0114] 特に、比較的小型でありながら入射端 41と出射端 42との面積比が大きいと、傾斜 角が大きくなりやすい上に、インテグレータロッド ILD内部で光が反射される回数が 減ってしまう。そのために、ミキシングが不十分になり、出射端 42において、均一な光 強度分布が得られなくなる。
[0115] したがって、条件式 Dの範囲内に収まるように、 AQと APとが設定されると、インテグ レータロッド ILDからの出射光の利用効率の低下が抑制されつつ、インテグレータロ ッド ILDの製造の困難化も抑制される。
[0116] なお、条件式 Dの規定する条件範囲のなかでも、下記条件式 D'の範囲を満たすほ うが望ましいといえる。
8<AQ/AP< 20 …条件式 D,
[0117] また、照明装置 LASでは、下記条件式 E{条件式 (4) }を満たしていると望ましい。
0. 3<AL/AP< 0. 95 … 条件式 E
ただし、
AL :複数の LED9における全ての LEDチップ 1の発光面積 [単位; mm2 ]
AP :インテグレータロッド ILDの入射端 41の面積 [単位; mm2] である。
[0118] この条件式 Eにおける ALおよび APを図示して説明すると、図 7に示すようになる。
すなわち、 ALは、上記したように、 4個の LEDチップ 1の発光面 11の面積(「L1 X L 2 X 4個」)である。一方、 APは、図 7のように矩形面の入射端 41の場合、矩形の縦 方向の長さである P1と矩形の横方向の長さである P2から求められる面積になる(「P 1 X P2」;なお、 APは二点鎖線にて示される領域である)。 [0119] そして、例えば、インテグレータロッド ILDの入射端 41および出射端 42が規定され ていると、インテグレータロッド ILDの入射端 41に光を導くために、 LEDチップ 1から の光の立体角がある程度限定される。すると、インテグレータロッド ILDの出射端側で 、所望の立体角(発散角)の光を導こうとする場合、複数の LED9における全ての LE Dチップ 1の発光面積が重要になってくる。そこで、条件式 Eは、複数の LED9におけ る全ての LEDチップ 1の発光面積およびインテグレータロッド ILDにおける入射端 41 の面積の比率で規定されて 、る。
[0120] この条件式 Eにあって、 ALZAPの値が下限値以下になる場合、インテグレータロ ッド ILDにおける入射端 41の面積に対する全ての LEDチップ 1の占有面積が狭 、こ とになる。すると、全ての LEDチップ 1の発光面積が比較的広ければ、比較的大きな 立体角の光力 Sインテグレータロッド ILDから出射することになる。すなわち、指向性の 低い光力インテグレータロッド ILDから出射し、投影レンズ LENの絞り(不図示)に遮 光される。ただし、例えば LEDチップ 1同士が粗く配置されている場合、 LEDチップ 1の放熱特性は向上する。
[0121] 一方、 ALZAPの値が上限値以上になる場合、インテグレータロッド ILDにおける 入射端 41の面積に対する全ての LEDチップ 1の占有面積が広いことになる。すると 、例えば LEDチップ 1同士が密に配置されている場合、 LEDチップ 1の放熱特性が 低下してしまう。ただし、全ての LEDチップ 1の発光面積が比較的狭ければ、比較的 小さな立体角の光力インテグレータロッド ILDから出射することになる。すなわち、指 向性の高い光力 Sインテグレータロッド ILDから出射し、確実に光変調素子 BMDに到 達する。
[0122] したがって、条件式 Eの範囲内に収まるように、 ALと APとが設定されると、インテグ レータロッド ILDからの出射光の利用効率の低下が抑制されつつ、 LEDチップ 1の 放熱特性の低下も抑制される。
[0123] なお、条件式 Eの規定する条件範囲のなかでも、下記条件式 E'の範囲を満たすほ うが望ましいといえる。
0. 5<AL/AP< 0. 7 …条件式 E'
[0124] ところで、 LEDモジュール LMJからの全ての光が、インテグレータロッド ILDの入射 端 41に入射しなければ、 LEDモジュール LMJの光が有効利用されて!、な!/、と!/、え る。かかる事態を防止すベぐ照明装置 LASは、下記条件式 Fを満たしていると望ま しい。
[0125] 0. 05< G/Lmax< 0. 5 … 条件式 F
ただし、
G : LEDチップ 1からの光の光軸方向に沿う方向において、 LEDチップ 1とインテグレータロッド ILDとの最短間隔の長さ [単位; mm]
Lmax: LEDチップ 1における発光面 11の外縁端にぉ 、て最長の長さ [単位 ; mm j
である。
[0126] この条件式 Fにおける Gを図示して説明すると、図 8Α·図 8Bに示すようになる。す なわち、図 8Αに示すような中空のインテグレータロッド ILDの場合、 Gは入射端 41の 外縁と LEDチップ 1との間隔を LEDチップ 1からの光の光軸方向に沿う方向で測定 した長さになる。一方、図 8Bに示すような中実のインテグレータロッド ILDの場合、 G は入射端 41の面と LEDチップ 1との間隔を LEDチップ 1からの光の光軸方向に沿う 方向で測定した長さになる。
[0127] そして、この条件式 Fにあって、 GZLmaxの値が下限値以下になる場合、例えば G が比較的短い。すると、照明装置 LASの製造工程での製造誤差で、 LEDモジユー ル LMJとインテグレータロッド ILDとの衝突が生じてしまう(すなわち、照明装置 LAS の量産が難しくなる)。ただし、 Gが比較的短いことから、 LEDモジュール LMJからの 全ての光が、インテグレータロッド ILDの入射端 41に入射しやす ヽ。
[0128] 一方、 GZLmaxの値が上限値以上になる場合、例えば Gが比較的長い。すると、 L EDモジュール LMJからの光の一部が、インテグレータロッド ILDの入射端 41に入射 しにくい。その上、小型の照明装置 LASの実現が難しくなる。ただし、 Gが比較的長 V、 、ことから、製造誤差に比較的強!、照明装置 LASが実現する。
[0129] したがって、条件式 Fの範囲内に収まるように、 Gと Lmaxと力設定されると、照明装 置 LASの量産性が確保されつつ、大型化も抑制され、さらには、 LEDモジュール L MJの光の利用効率の低下が抑制される。 [0130] なお、条件式 Fの規定する条件範囲のなかでも、下記条件式 F'の範囲を満たすほ うが望ましいといえる。
0. 08< G/Lmax< 0. 4 … 条件式 F,
[0131] [実施の形態 2]
実施の形態 2について説明する。なお、実施の形態 1で用いた部材と同様の機能を 有する部材については、同一の符号を付記し、その説明を省略する。
[0132] 実施の形態 1では、少なくとも、照明装置からの光を画像データに応じて変調する 光変調素子 BMDと、その光変調素子 BMDにて変調される光を被投影面 (スクリー ン等)に投影する投影レンズ LENと、を含む画像投影装置 PASについて説明してき た。
[0133] したがって、画像投影装置 PASには、他の部材が含まれている場合もある(なお、 実施の形態 1では、ファン FANが含まれる画像投影装置 PASにつ ヽても説明した) 。例えば、光変調素子 BMDが、光を利用する液晶素子 (特に透過型の液晶素子) B MDの場合にその液晶素子 BMDに入射する光を調整する部材 (後述の偏光変換ュ ニット、反射型偏光板、および波長板等)が挙げられる。そこで、以降にかかる部材に 関する説明を行う。
[0134] 通常、液晶素子 BMDは、偏光を利用するために、液晶層の入射側および出射側 の各々に偏光板を設けている。そして、液晶層の入射側に吸収型偏光板が設けられ ている場合、その吸収型偏光板が特定方向の偏光を吸収して高温化する。そのため 、かかる吸収型偏光板の高温化を防止すベぐ例えば偏光ビームスプリツター(PBS) と 1Z2波長板 (位相板)とを含む偏光変換ユニットが、液晶素子の入射側に設けられ ている。このような偏光変換ユニットがあれば、 LEDモジュール LMJからの無偏光(ラ ンダム偏光)の光のうち、液晶素子 BMDでの透過に不要な偏光が吸収型偏光板に 到達しないためである。
[0135] また、図 9のように、透過型の液晶素子 BMDが、光の入射側から出射側に向かつ て、吸収型偏光板 (入射側吸収型偏光板) 51、液晶層(光変調層) 52、および吸収 型偏光板(出射側吸収型偏光板) 53を含む場合、インテグレータロッド ILDの出射端 42と液晶素子 BMDとの間に、 1Z4波長板 61と、反射型偏光板 (変換用反射型偏 光板) 62と力 インテグレータロッド ILDの出射端 42から液晶素子 BMDに向力つて 配置されている。特に、 1Z4波長板 61の方位角は変換用反射型偏光板 62の透過 軸に対して 45度傾くようになって 、る。
[0136] すると、インテグレータロッド ILDから出射光 (ランダム偏光)は、 1Z4波長板 61を 通過後、変換用反射型偏光板 62に入射する。そのため、まず、インテグレータロッド I LD力もの出射光が 1Z4波長板 61によって特定の偏光方向を有する直線偏光にな る。さらに、変換用反射型偏光板 62は、この直線偏光を透過させる一方、かかる直線 偏光の偏光面に対して垂直な振動面 (偏光面)を有する直線偏光を反射させる。
[0137] そして、変換用反射型偏光板 62を通過した直線偏光(実線表記)は、そのまま液晶 素子 BMDに到達するが、変換用反射型偏光板 62で反射した直線偏光 (二点鎖線 表記)は、 1Z4波長板 61を通過することで円偏光になり、インテグレータロッド ILDに 戻る。すると、円偏光は、インテグレータロッド ILD内でミキシングされ、 LEDモジユー ル LMJに到達する。かかる場合、円偏光は、 LEDチップ 1の底面に位置するアノード 2等により反射し、再度、インテグレータロッド ILDに戻りミキシングされて、 1Z4波長 板 61に到達し、さらに通過して変換用反射型偏光板 62に到達する。
[0138] ただし、変換用反射型偏光板 62に到達する光は、最初に変換用反射型偏光板 62 により反射された後に、 1Z4波長板 61を 2回通過 (透過)している。そのため、最初 に変換用反射型偏光板 62で反射された光の偏光方向が 90度回転することになる。 つまり、変換用反射型偏光板 62で透過可能な偏光方向の光が戻ってきたことになる 。その結果、インテグレータロッド ILDからの出射光がロスすることなぐ液晶素子 BM Dに到達し、光変調されることになる。
[0139] また、図 10に示すように、液晶層 52の入射側に吸収型偏光板ではなぐ反射型の 偏光板 (入射側反射型偏光板) 54を設けて ヽる透過型の液晶素子 BMDもある {な お、出射側には透過型偏光板(出射側吸収型偏光板) 55が設けられている }。かかる 場合であっても、インテグレータロッド ILDからの出射光がロスすることなぐ液晶素子 BMDに到達し、光変調されるようにできる。
[0140] 例えば、インテグレータロッド ILDの出射端 42と液晶素子 BMDとの間に、 1Z4波 長板 61が配置されているとよい。ただし、 1Z4波長板 61の方位角は入射側反射型 偏光板 54の透過軸に対して 45度傾くようになって 、る。
[0141] すると、インテグレータロッド ILDから出射光 (ランダム偏光)は、 1Z4波長板 61を 通過後、液晶素子 BMDの入射側反射型偏光板 54に入射する。そのため、まず、ィ ンテグレータロッド ILDからの出射光が 1Z4波長板 61によって特定の偏光方向を有 する直線偏光になる。さらに、入射側反射型偏光板 54は、この直線偏光を透過させ る一方、力かる直線偏光の偏光面に対して垂直な振動面を有する直線偏光を反射さ せる。
[0142] そして、入射側反射型偏光板 54を通過した直線偏光(実線表記)は、そのまま液晶 素子 BMDに通過するが、入射側反射型偏光板 54で反射した直線偏光(二点鎖線 表記)は、 1Z4波長板 61を通過することで円偏光になり、インテグレータロッド ILDに 戻る。すると、円偏光は、図 9同様に、インテグレータロッド ILD内でミキシングされ、 L EDモジュール LMJに到達し、 LEDチップ 1の底面に位置するアノード 2等により反 射し、再度、インテグレータロッド ILDに戻る。そのため、円偏光は、ミキシングされて た後に、 1Z4波長板 61に到達し、さらに通過して入射側反射型偏光板 54に到達す る。
[0143] ただし、入射側反射型偏光板 54に到達する光は、最初に入射側反射型偏光板 54 により反射された後に、 1Z4波長板 61を 2回通過 (透過)している。つまり、往復によ り、光の偏光方向に対して 45度である光学軸を有する 1Z2波長板を透過したことと 同じになる。そのため、最初に入射側反射型偏光板 54で反射された光の偏光方向 が 90度回転することになる。つまり、入射側反射型偏光板 54で透過可能な偏光方向 の光が戻ってきたことになる。その結果、図 10の場合も図 9同様に、インテグレータロ ッド ILD力 の出射光がロスすることなぐ液晶素子 BMDに到達し、光変調されること になる。
[0144] つまり、特定方向の光のみを透過させる透過軸を有することで、透過型の液晶素子 BMDに特定方向の光を導く一方、他の方向(例えば、特定方向に対し垂直な方向) の光を反射させる反射型の偏光板が設けられて 、ると望ま 、と 、える。なぜなら、 例えば、透過型の液晶素子 BMDと LEDモジュール LMJとの間のどこかに反射型の 偏光板が配置されていれば、液晶表示に不要な偏光は反射によってインテグレータ ロッド ILDに戻り、さらには LEDモジュール LMJ側に進行されるためである。
[0145] その上、 LEDモジュール LMJが光を反射させることができれば、その反射する光は 再び液晶素子 BMDに向力うことになる。そのために、反射型の偏光板によって反射 された特定方向に対し垂直な方向の光を透過させ、インテグレータロッド ILDへと導く 1Z4波長板 61 (位相板)が設けられているとよい。
[0146] なぜなら、反射型の偏光板によって反射した光が再度、その偏光板に戻ってくる間 に(往復の間に)、光の偏光方向を 90度回転させるように、 LEDモジュール LMJから 反射型の偏光板までの間に 1Z4波長板 61が配置されていれば、戻ってきた光は液 晶表示に必要な偏光成分として再利用される。したがって、照明光にロスが生じず、 光利用効率が向上することになる。
[0147] なお、以上のような透過型の液晶素子 BMDの場合、力かる液晶素子 BMDと投影 レンズ LENの間に、反射型の液晶素子に必要とされる偏光ビームスプリッタ等の光 学部材は不要になる。そのため、液晶素子 BMD力も投影レンズ LENに至るまでの 間隔 (レンズバック)が狭くなり、小型の画像投影装置 PASが実現する。
[0148] なお、透過型の液晶素子 BMDの例としては、サファイア基板の透過型液晶素子が 望ましい。サファイア上に作製された電極は、一般にガラス上のものよりも電気伝導性 が高ぐガラスの上に電極を配置する液晶素子よりも配線の寸法を細くできる。そのた め、透過型液晶素子の開口率を上げることができ、比較的明るい液晶素子 BMDが 実現する。
[0149] また、反射型の偏光板の例としては、住友スリー M社製の RDF— C (商品名)や、
MOXTEK社製の MicroWire (商品名)が挙げられる。
[0150] [その他の実施の形態]
ところで、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない 範囲で、種々の変更が可能である。
[0151] [1. LEDモジュールの変更例について]
例えば、 LEDモジュール LMJにおける LED9の個数は、 4個に限定されない。例え ば、図 11Α·図 11Bに示すように、 6個であっても 8個であってもかまわない。
[0152] ただし、図 1および図 11Aに示すように、アノード 2の支持面 21の長手方向とカソー ド 3の長手方向(支持面 21と平行な面内方向における長手方向)とが、同一方向であ ると望ましい。なぜなら、各 LED9は、不図示の電力供給部につながるようになつてい る力 アノード 2の支持面 21の長手方向と力ソード 3の長手方向とが同一方向になつ ていると、アノード 2および力ソード 3と、電力供給部とをつなぐ接続部 71の向きが揃う ようになり、接続しやすいためである。
[0153] また、図 1および図 11Aでは、各 LED9におけるアノード 2の最大延伸表面 22Mの 面内方向が、全てにわたって平行になっている。一方、図 11Bでは、 8個の LED9中 、 4個毎に分かれて、 LED9の最大延伸表面 22Mの面内方向が平行になっている。 つまり、最大延伸表面 22Mの面内方向を平行にしている LED9の組合せが 2組ある ことになる {なお、図 1および図 11Aでは、 LED9の組合せは 1組といえる)。
[0154] し力し、複数の LED9において、 LED9の最大延伸表面 22Mの面内方向を平行に している組合せが生じれば、その組内での LED9は、ファン FAN等の風が沿いやす いことになる。そのため、 LEDチップ 1 (ひいては LEDモジュール LMJ)の放熱特性 が向上する。
[0155] なお、組合せ(組)とは、図 1および図 11Aのように、 LEDモジュール LMJにおける 全ての LED9から構成される組であってもよいし、図 11Bのように、 8個中の 2分する 組であってもよい。また、例えば、 8個中の LED9のうちの 3個の LEDで組が構成され 、残りの 5個の LED9では全く組が構成されない(すなわち残り 5個の最大延伸表面 は各々異なった面内方向になっている) LEDモジュール LMJでもよい。要は、ァノー ド 2の最大延伸表面 22M同士の面内方向を一致させた LED9があれば(すなわち組 が生じるようになっていれば)、 LEDモジュール LMJにおける放熱特性は少なからず 向上するといえる。
[0156] 詳説すると、図 11Bのような LEDモジュール LMJの場合、紙面方向に対して平行 方向に、ファン FANが送風または吸引すれば、風の進行方向に対して沿う最大延伸 表面 22Mと対向する最大延伸表面 22Mとが存在することになる。しかし、風に沿う最 大延伸表面 22Mが少なからず存在するので、全く存在しない場合に比べて、 LED モジュール LMJにおける放熱特性は向上する。
[0157] なお、図 11Bのような LEDモジュール LMJの場合、紙面方向に対して垂直方向に 、ファン FANが送風または吸引すれば、全ての最大延伸表面 22Mに風が沿うことに なるので、最も望ましいことはいうまでもない。
[0158] また、 LEDモジュール LMJは、少なくとも赤色発光、緑色発光、および青色発光の 3色の LED9を含み、それらの各色の LED9を時分割で発光させて!/、ると望まし!/、。 例えば、図 12Aのように、 1フレーム(1Z30秒)中において、赤色、緑色、青色を順 に時分割点灯させたり、図 12Bのように、異なる発色同士で一部重なり合うような時分 割点灯をさせたりする場合、 1フレーム中にぉ 、て一部発光しな 、LED9が存在する ことになる。
[0159] そのため、発光しない LED9の LEDチップ 1は、 1フレーム中においても発熱しない ことになる。例えば、図 12Bでの 1フレーム中、最初に青色を発光する LED9が発光 駆動しているとき、他の緑色、黄色、赤色を発する LED9は発光駆動せず、 LEDチッ プ 1に熱が帯びない。その上、各 LED9同士は乖離する配置になっているので、発 光している LEDチップ 1の熱が非発光の LEDチップ 1に伝導しない。そのため、ジャ ンクシヨン温度の上昇が防止される。
[0160] つまり、 LED9が乖離して配置されている LEDモジュール LMJは、同一基板上に 複数の LEDチップを配置した LEDモジュールと異なり、 LED9の LEDチップ 1同士 で熱伝導が生じない。その上、時分割発光する LEDモジュール LMJであれば、複数 の LEDチップを常時発光させて 、る LEDモジュール (例えば、カラーフィルタ型液晶 素子を用いた画像投影装置に搭載される LEDモジュール)と異なり、確実に LEDチ ップ 1同士の熱伝導を防げる。
[0161] なお、以上のような、少なくとも赤色発光、緑色発光、および青色発光の 3色の LE D9を有する LEDモジュール LMJは、白色を含むさまざまな色を生成できる。そのた め、力かるような LEDモジュール LMJを備える画像投影装置 PASは、ダイクロイツク プリズムやダイクロイツクミラー等の色合成用の光学部材が不要になる。
[0162] ところで、 LEDモジュール LMJにおける LEDチップ 1は酸化しやすい。その上、 LE Dチップ 1と力ソード 3とをつなぐワイヤー 4は金等の破損しやす 、材料である。すると 、 LEDチップ 1の酸化防止の観点から、図 13Aに示すように、少なくとも LEDチップ 1 を覆うような透明榭脂 (エポキシ榭脂ゃシリコン等) 72がコーティングされていると望ま しい。また、ワイヤー 4の破損防止の観点から、図 13Bに示すように、 LEDチップ 1お よびワイヤー 4をともに覆うような透明榭脂 72がコーティングされているとさらに望まし い。
[0163] なお、コーティングの場合、 LED9毎に LEDチップ 1等コーティングしてもよいし、複 数の LED9の LEDチップ 1をまとめてコーティングしてもよい。
[0164] また、力かるようなコーティング用の透明榭脂 72は、 LEDチップ 1の発光を妨げぬ ように、膜厚 0. 1mm程度になっている。その上、透明樹脂には、 LEDチップ 1周囲 の屈折率を向上させ、光の取り出し効率を向上させると 、う効果もある。
[0165] ところで、以上の説明では、アノード 2に LEDチップ 1が接合等されるようになってい た。しカゝし、これに限定されるものではない。つまり、力ソードが LEDチップを支え、ァ ノード力LEDチップを支える力ソードの支持面上に取り付けられ、ワイヤーを介して L EDチップにつながつていてもよい。要は、 LED9における電流の向きが逆になつて いてもよい。
[0166] なお、 LED9の駆動電流は 100mA以上である。このような電流範囲で駆動する LE D9は、数 10ルーメン(lm)〜 100ルーメン以上の明るさを確保できるパワー LEDとい われる。そのため、 LEDチップ 1に熱が生じやすい。しかし、説明してきた LEDモジュ ール LMJは、熱の帯びた LEDチップ 1であっても十分に放熱させることができる。
[0167] ただし、過剰に高電流が流れる場合、電流回路の発熱や大型化が問題になるので 、 LED9の駆動電流は 5A以下がよい。すなわち、 100mA以上 5A以下である。しか し、望ましくは、 0. 5mA以上 3A以下の電流範囲がよい。
[0168] [2.インテグレータロッド ILDの変更例について]
インテグレータロッド ILDの入射端 41および出射端 42の形状としては、矩形のもの が挙げられるが、特に限定されるものではない。しかし、一般的な画像投影装置 PAS の画像面 (スクリーン面) SCNは、図 14Aのように矩形になって!/、る。
[0169] すると、スクリーン面 SCNに画像光を投影するインテグレータロッド ILDの出射端 4 2も相似な矩形が望ましいことになる。さらには、インテグレータロッド ILDの入射端 41 も出射端 42と相似な矩形が望ましい。ただし、インテグレータロッド ILDの入射端 41 の面積 (AP)と出射端 42の面積 (AQ)との比率 (AQZAP)は、条件式 Dにお 、て 説明したように、インテグレータロッド ILDから出射してくる光の指向性に関連してくる
[0170] また、画像投影装置 PASの小型の観点からいうと、インテグレータロッド ILDの出射 端 42の面積を拡大させることなぐ入射端 41を縮小させることが望ましい。ただし、ィ ンテグレータロッド ILDの入射端 41は、 LEDチップ 1からの光を全て受光できる面積 を有しなくてはならない。
[0171] すると、図 14Bまたは図 14Cのように、入射端 41の面積を設定することが考えられ る。なお、図 14Bおよび図 14Cは、中空状のインテグレータロッド ILDを想定している 。そのため、図 15および図 16に示すように、インテグレータロッド ILDの入射端 41の 開口サイズは、 LEDチップ 1およびワイヤー 4を覆うサイズになっている。そして、図 1 4Bおよび図 14Cでの二点鎖線はスクリーン面 SCNと相似なインテグレータロッド IL Dの入射端 41のサイズ (開口サイズ)を示して 、る。
[0172] そして、図 14Bでは、開口サイズの短手方向がワイヤー 4の延び方向と平行になる ようにしている。一方、図 14Cでは、開口サイズの短手方向がワイヤー 4の延び方向 に対して垂直になるようにしている。すると、同じスクリーン面 SCNに相似なインテグ レータロッド ILDの入射端 41の開口サイズを確保しょうとする場合、図 14Cのほうが、 図 14Bに比べて狭面積となる。
[0173] つまり、 LEDチップ 1に電気的な接続に要するワイヤー 4が設けられている場合、複 数の LED9における全ての LEDチップ 1の発光面 11および全てのワイヤー 4を囲む 外周であり、最短の外周長から成る外周領域 {すなわち、図 14Cの二点鎖線領域 }を 規定する。そして、その外周領域 (被覆領域)において、短手方向が規定できる場合 、インテグレータロッド ILDの入射端 41の形状は、その外周領域の短手方向と同方 向に短手を有する形状になって 、ると望ま 、ことになる。
[0174] このようになっていれば、同じ被覆領域を覆うようなインテグレータロッド ILDの入射 端 41であつても、比較的狭面積のインテグレータロッド ILDの入射端 41になるためで ある。つまり、外周領域の短手方向と垂直方向に短手を有する形状 {すなわち、図 14 Bの二点鎖線領域 }の開口サイズの面積に比べて、外周領域の短手方向と平行方向 に短手を有する形状 {すなわち、図 14Cの二点鎖線領域 }の開口サイズの面積のほ うが狭くなるためである。
[0175] その結果、力かる画像投影装置 PASは、インテグレータロッド ILDの出射端 42の面 積を拡大させることなぐその入射端 41の面積を縮小させることで小型となり、さらに は指向性までも適切に設定できる。
[0176] [3.実施例について]
以降に、説明してきた LEDモジュール LMJ、照明装置 LAS、および画像投影装置 PASの数値実施例 1〜4 (EX1〜EX4)を示す。
[0177] [3— 1. LEDモジュールについて]
下記の表 1は、 LEDモジュール LMJにおける各 LEDチップ 1も発光色、 1個の LE Dチップ 1のサイズ(LI 'L2.L3)、 LEDモジュール LMJにおける全ての LEDチップ 1の発光面積 (AL)、アノード 2のサイズ (Ε1 ·Ε2·Ε3)、アノード 2同士の間隔(D)、 および LEDモジュール LMJにおける全ての LEDチップ 1の発光面 11を囲む外周で あり、最短の外周長によって規定される領域の面積 (AR)を示している。なお、 LED チップ 1の許容電流値は 1. 5Aで、力かる場合の電圧は 3V程度になっている。
[0178] [表 1]
Figure imgf000036_0001
[3- 2.インテグレータロッドについて]
下記の表 2は、インテグレータロッド ILDにおける入射端 41のサイズと面積 (P1 ·Ρ2 •AP)および出射端 42のサイズと面積 (Ql,Q2'AQ)、および全長 (R)を示している [0180] [表 2]
Figure imgf000037_0001
[0181] [3- 3.光変調素子および投影レンズについて]
下記の表 3は、インテグレータロッド ILD力も光変調素子 BMDまでの間隔(G)、光 変調素子 BMDの変調面のサイズと面積(Ml ·Μ2·ΑΜ)、投影レンズ LENの Fno. を示している。
[0182] [表 3]
Figure imgf000037_0002
[4.条件式の結果について]
以降に、説明してきた実施例 1〜4を条件式 A〜Fに対応させた結果を示す。なお、 条件式 A〜Fの結果は、表 4〜9に対応するようになっている。 [0184] [表 4]
Figure imgf000038_0001
[0186] [表 6]
Figure imgf000038_0002
[0187] [表 7] Conditional
formulae D AQ AP
(mm ) (mm2)
AQ/AP
EX1 4.959 24.00 4.84
EX2 6.073 56.32 9.27
EX3 9.01 1 56.32 6.25
EX4 9.01 1 56.32 6.25 表 8]
Figure imgf000039_0001
[5. LEDチップおよび LEDの変更例について]
LEDチップ 1は、図 18Aの拡大部分に示すように、発光層 31、基板層 32、反射層 3、および、投入電流を発光層 31に流すための第 1電極パッド 34·第 2電極パッド 3 、を含んでいる(なお、アノード 2に接続される電極を第 1電極パッド 34、力ソード 3に 接続される電極を第 2電極パッド 35と称する)。
[0191] 発光層 31は、投入電流によって光を発する半導体で構成されており、例えば、青 色光や緑色光を発する場合には InGaN、赤色光や黄色光を発する場合には InGa A1Pで構成されている。
[0192] 基板層 32は、発光層 31保持する保持機能と電流に起因する熱を逃がす放熱機能 とを有する材質、例えば、 Al O (サファイア)といった絶縁体、 SiC、 Si、 Ge、 SiN、 G
2 3
aN、 GaAsといった半導体、または金属で構成されている。
[0193] 反射層 33は、発光層 31の面内で全方位に発する光を、所望方向に向けて反射さ せるものであり、 Au (金)または A1 (アルミニウム)等の導通性を有する金属薄膜で構 成されている。
[0194] そして、以上のような層を有する LEDチップ 1では、発光層 31、基板層 32、および 反射層 33が、第 1電極パッド 34と第 2電極パッド 35との間に介在するように位置して いると望ましい。ただし、第 1電極パッド 34と第 2電極パッド 35との間に位置する発光 層 31、基板層 32、および反射層 33の配置は種々想定される。
[0195] 例えば、図 18Aの拡大部分に示すように、第 1電極パッド 34から第 2電極パッド 35 に向かって、基板層 32、反射層 33、発光層 31がこの順で積み重なる配置が挙げら れる。また、図 18Bに示すように、第 1電極パッド 34から第 2電極パッド 35に向かって 、反射層 33、発光層 31、基板層 32がこの順で積み重なる配置等であってもよい。
[0196] 要は、発光層 31と、 LEDチップ 1を支えるアノード 2との間に反射層 33が介在して いればよい。このようになっていると、発光層 31から発せられる光は、反射層 33によ つて半球状に放射し、アノード 2には到達しなくなるためである(ただし、反射層が含 まれない LEDチップ 1であっても、発光層 31から光が発すれば、 LED9としての機能 を満たす場合もある)。
[0197] また、 LEDチップ 1とアノード 2との接続も種々想定される。例えば、図 19Aのように 、二分された発光層 31 (31Α· 31Β)の一方に第 1電極パッド 34、他方に第 2電極パ ッド 35を備える LEDチップ 1の反射層 33と、アノード 2とが接着剤 BR (例えば熱伝導 性グリスを含む接着剤)によって接着されていてもよい。ただし、このような LEDチップ 1の場合 (特に基板層 32絶縁体であるサファイア層の場合)、電流が発光層 31に流 れるためには、第 1電極パッド 34とアノード 2とを接続するワイヤー 4と、第 2電極パッ ド 35と力ソード 3とを接続するワイヤー 4とが必要になる。
[0198] 力かるようにワイヤー 4の本数が増えると、それに伴ってワイヤー 4の切断の危険性 が増加してしまう。また、ワイヤー 4の本数が増えると、本数にみあったスペースの確 保の必要となり、 LED9のサイズが大型化してしまう。すると、図 18Α·図 18Bのように 、第 1電極パッド 34と第 2電極パッド 35とが発光層 31、基板層 32、および反射層 33 を挟持するような配置であればょ 、と 、える。
[0199] このようになっていると、例えば第 1電極パッド 34とアノード 2と力 ワイヤーを介する ことなく接続できるので、ワイヤー 4の本数を確実に削減できるためである。その上、 ワイヤーを介せずに接続された第 1電極パッド 34とアノード 2とは強固な接続になつ ているので、導通性は安定し、かつ物理的な接続も安定する。
[0200] ただし、このような第 1電極パッド 34と第 2電極パッド 35とが発光層 31、基板層 32、 および反射層 33を挟持するような配置の場合、第 1電極パッド 34から第 2電極パッド に至る間の導通性を確保するために、全ての層が導通性を有するものであるとよい。 したがって、基板層 32の材料としては、 SiC、 Si、 Ge、 SiN、 GaN、 GaAsといった半 導体、または金属等の導体が望ましい。
[0201] さらに、このように導通性の高い材料は、放熱性も優れているので望ましいといえる 。例えば、半導体である SiCの熱伝導率は 490WZm'Kであり、絶縁体の Al Oの
2 3 熱伝導率は 42WZm.Kであるので、 SiCの基板層 32の方力 Al Oの基板層 32に
2 3
比べて 10倍以上、放熱性に優れているといえる。
[0202] また、ワイヤーを全く用いない LED9としては、図 19Bに示すように、二分された発 光層 31 (31Α· 31Β)の一方に設けられた第 1電極パッド 34がアノード 2に、他方に設 けられた第 2電極パッド 35が力ソード 3に取り付けられているものもある。そして、かか るような LED9に設けられている第 1電極パッド 34·第 2電極パッド 35と、アノード 2·力 ソード 3との接続には、導電性の接着剤が用いられてもよいし、共晶が用いられてもよ い。
[0203] ここで、図 19Bや図 18Aに示される LEDチップ 1とアノード 2との接続に使用可能な 導電性の接着剤 BRと共晶とについて詳説する。導電性の接着剤 BRとしては、例え ば、銀ペースト BRが挙げられる。このような銀ペースト(熱伝導銀ペースト) BRは、導 電性に優れて!/、るだけではなく、熱伝導性も優れて!/、る。
[0204] 例えば、シリコン系の熱伝導グリスの熱伝導率が 2〜4WZm*Kであるのに対して、 銀ペースト BRの熱伝導率は 20〜30WZm'Kである。そのために、銀ペースト BRを 用いて、 LEDチップ 1をアノード 2に接続させると、 LEDチップ 1に帯びた熱が銀ぺー スト BRを介してアノード 2に伝わり、効率のよい放熱が実現する。
[0205] なお、導電性の接着剤 BRは銀ペースト BRに限定されるものではなぐ例えば、金 ペースト、銅ペースト、アルミニウムペースト、またはシリコンペースト等であってもよい 。これらのペーストは、銀ペースト BR同様に、導電性に優れているだけではなぐ熱 伝導性に優れた金属を含んで ヽるためである(下記参照)。
銀 (Ag) ;420W/m-K
金(Au) ; 320W/m-K
銅(Cu) ; 390W/m-K
アルミニウム(Al) ; 236W/m-K
シリコン(Si) ; 168W/m-K
[0206] 続いて共晶について説明する。共晶とは、ある溶湯から 2種類の材料が一定割合で 同時に晶出(凝固)した混合物のことである。そして、共晶では、 2種類の材料が単純 に混合しているのではなぐ両方の材料における結晶粒子間において、結合力が生 じている。そのため、共晶を用いた接着(つながり)は極めて強固といえる。
[0207] また、共晶は、特定の金属同士の間で生じる現象であり、例えば、 Auと Sn (錫)、 A uと Si、 Auと Ge (ゲルマニウム)、 Pb (鉛)と Sn、 Agと Cu、または Agと Sn、が共晶を 生じさせる組み合わせとして列挙できる。このような共晶は、 2種類の金属を接触させ 、熱または圧力を加えることで得られる。ただし、加えられる熱は単独の金属の融点よ りも低い(下記の表 10における Auの融点を参照)。そのため、 2種類の金属の接触 部分だけが共晶になり、それ以外の部分には熱による影響は生じない。
[0208] [表 10] Composition Composition Melting Point(°C)
System ( Wt% ) Solid Phase Point Liquid Phase Point
< Au / 20Sn 280 (Eutectic)
Au - Sn
Au / 90Sn 217 (Eutectic)
Au / 3.15Si 363 (Eutectic)
Au / 2Si 363 760
Au / 12Ge 356 (Eutectic)
Au一 Ge
Au / 7.4Ge 356 680
Au Au 1063
Pb / 63Sn 183 (Eutectic)
Pb -Sn
Pb / 5Sn 272 314
[0209] 共晶を用いた LEDチップ 1とアノード 2との接続は、図 20Aおよび図 20Bに示され る。図 20Aでは、銀ペースト BRを介して、 AuSn製の第 1電極パッド 34と Cu製のァノ ード 2とを接着している LED9が示されている。このような場合、第 1電極パッド 34と銀 ペースト BRとの界面で Snと Agとの共晶が生じるととともに、アノード 2と銀ペースト BR との界面で Cuと Agとの共晶が生じている。そのため、かかる共晶に起因して、第 1電 極パッド 34を有する LEDチップ 1とアノード 2とが強固につながった LED9となる。
[0210] なお、図 20Aのような銀ペースト BRを使用する LED9の場合、 Agと Snとの組成比 や Agと Cuとの組成比、さら〖こは、加える熱または圧力応じて、共晶が生じないことも あり得る。しかし、共晶が生じな力つたとしても、銀ペースト BRが使用されているので 、それによつて LEDチップ 1と第 1リード電極 2とのつながりは確保される。
[0211] 一方、図 20Bでは、銀ペーストを介さずに、 AuSn製の第 1電極パッド 34と Cu製の アノード 2とを接着している LED9が示されている。このような場合、第 1電極パッド 34 とアノード 2との界面で Snと Cuとの共晶が生じている。そのため、銀ペーストが用いら れなくても、 Sn— Cuから成る共晶に起因して、第 1電極パッド 34を有する LEDチッ プ 1とアノード 2とが強固につながった LED9となる。
[0212] その上、以上のような LED9に含まれる共晶は、熱伝導率の優れた材料 (金、銀、 銅等)を含んでいるため、熱伝導グリス等に比べて優れた熱伝導率を有する。したが つて、かかる LED9では、 LEDチップ 1に帯びた熱が共晶を介してアノード 2に伝わり 、効率のよい放熱が実現する。

Claims

請求の範囲
[1] 互いに相反する電位極性を有する第 1リード電極および第 2リード電極と、発光チッ プとを含む発光素子にあって、
上記第 1リード電極が、上記発光チップを支持する支持体になっており、 その支持体には、発光チップを支える支持面とその支持面を基準に延びる延伸部と が含まれ、
上記第 2リード電極が、絶縁体を介して第 1リード電極の上記支持面に位置するとと もに、電気的に発光チップに接続されている発光素子。
[2] 上記延伸部の表面である延伸表面には、上記支持面よりも広面積を有する面が含 まれて 、る請求項 1に記載の発光素子。
[3] 下記条件式(1)を満たす請求項 1または 2に記載の発光素子;
1. 0<E3/Lmax< 10. 0 … 条件式(1)
ただし、
E3:上記発光チップ力 の光の光軸方向に沿う方向での第 1リード電極の長 さ
Lmax:上記発光チップにおける発光面の外縁端において最長の長さ である。
[4] 上記第 1リード電極の支持面の長手方向と上記第 2リード電極の長手方向とが、同 一方向である請求項 1または 2に記載の発光素子。
[5] 上記発光素子の駆動電流が、 100mA以上 5A以下である請求項 1または 2に記載 の発光素子。
[6] 上記発光チップは、
投入電流を流すための第 1電極パッドと第 2電極パッドとを有するとともに、 投入電流によって光を放出する発光層、およびその発光層を保持する基板層を、上 記の第 1電極パッドと第 2電極パッドとの間に介在させている請求項 1または 2に記載 の発光素子。
[7] 上記基板層が、半導体または導体である請求項 6に記載の発光素子。
[8] 上記第 1リード電極と上記第 1電極パッドとが、導電性接着剤によってつながってい る請求項 6に記載の発光素子。
[9] 上記第 1リード電極と上記第 1電極パッドとが、共晶によってつながつている請求項 6に記載の発光素子。
[10] 請求項 1または 2に記載の発光素子を複数個配置している発光モジュール。
[11] 請求項 10に記載の発光モジュール、および、
その発光モジュール力 の光が入射する入射端と、その入射端力 進行してくる光 を合成した後に出射させる出射端とを有する合成光学系、
を含む照明装置。
[12] 請求項 11に記載の照明装置からの光を画像データに応じて変調する光変調素子 と、
上記光変調素子にて変調される光を被投影面に投影する投影光学系と、 を含む画像投影装置。
[13] 複数の上記発光素子における延伸部の表示面である延伸表面のうち、少なくとも 一部の延伸表面の面内方向に沿うように、風を沿わせるファンを設けた請求項 12に 記載の画像投影装置。
[14] 第 1リード電極につながる発光チップを含む発光素子を複数個配置している発光モ ジユーノレにあって、
上記第 1リード電極が、発光チップを支持する支持体になっており、
その支持体には、発光チップを支える支持面とその支持面を基準に延びる延伸部 とが含まれ、
複数の発光素子における上記延伸部同士が乖離しており、
さらに、上記発光チップを支える第 1リード電極の支持面に、絶縁体を介して、第 1リ ード電極に相反する電位極性を有する第 2リード電極が配置され、
その第 2リード電極と発光チップとが電気的に接続されている発光モジュール。
[15] 上記延伸部の表面である延伸表面には、上記支持面よりも広面積を有する面が含 まれて 、る請求項 14に記載の発光モジュール。
[16] 複数の上記発光素子において、上記延伸部同士の乖離により生じる隙間の少なく とも一部に、断熱体が介在している請求項 14または 15に記載の発光モジュール。
[17] 下記条件式(2)および(3)を満たす請求項 14または 15に記載の発光モジュール; 0. 7<AL/AR< 0. 98 … 条件式(2)
ただし、
AL :複数の上記発光素子における全ての発光チップの発光面積 AR:複数の上記発光素子における全ての発光チップの発光面を囲む外周で あり、最短の外周長によって規定される領域の面積
であり、
0. 01 < D/Lmax< 0. 5 … 条件式(3)
ただし、
D :複数の上記発光素子における第 1リード電極同士の間隔の長さ
Lmax:上記発光チップにおける発光面の外縁端において最長の長さ である。
[18] 下記条件式(1)を満たす請求項 14または 15に記載の発光モジュール;
1. 0<E3/Lmax< 10. 0 … 条件式(1)
ただし、
E3:上記発光チップ力 の光の光軸方向に沿う方向での第 1リード電極の長 さ
Lmax:上記発光チップにおける発光面の外縁端において最長の長さ である。
[19] 上記延伸部の表面である延伸表面において最大面積を有する面を最大延伸表面 とした場合、
上記最大延伸表面の面内方向を平行にしている発光素子の組合せが生じるように なっている請求項 14または 15に記載の発光モジュール。
[20] 上記第 1リード電極の支持面の長手方向と上記第 2リード電極の長手方向とが、同 一方向である請求項 14または 15に記載の発光モジュール。
[21] 上記発光素子の駆動電流が、 100mA以上 5A以下である請求項 14または 15に記 載の発光モジュール。
[22] 請求項 14または 15に記載の発光モジュール、および、 その発光モジュールからの光が入射する入射端と、その入射端力 進行してくる 光を合成した後に出射させる出射端とを有する合成光学系、
を含む照明装置。
[23] 下記条件式 (4)を満たす請求項 22の照明装置;
0. 3<AL/AP< 0. 95 … 条件式(4)
ただし、
AL :複数の上記発光素子における全ての発光チップの発光面積 AP:上記合成光学系の入射端の面積
である。
[24] 上記合成光学系が中空状になっているとともに、上記発光チップに電気的な接続 に要するワイヤーが設けられて 、る場合、
複数の上記発光素子における全ての発光チップの発光面および全ての上記ワイヤ 一を囲む外周であり、最短の外周長で規定される外周領域において、短手方向が規 定されると、
上記合成光学系の入射端における中空領域は、外周領域の短手方向と同方向に 短手を有する形状になっている請求項 22に記載の照明装置。
[25] 請求項 22に記載の照明装置からの光を画像データに応じて変調する光変調素子 と、
上記光変調素子にて変調される光を被投影面に投影する投影光学系と、 を含む画像投影装置。
[26] 上記光変調素子が透過型光変調素子であり、
上記透過型光変調素子に入射する特定方向の光のみを透過させる透過軸を有す ることで、その特定方向の光を透過させ上記透過型光変調素子に導く一方、他の方 向の光を反射させ上記合成光学系の出射端に導く反射型偏光板が、合成光学系と 透過型光変調素子との間に設けられている請求項 25に記載の画像投影装置。
[27] 上記反射型偏光板と上記合成光学系の出射端との間に、位相板が設けられている 請求項 26に記載の画像投影装置。
[28] 上記発光モジュールが、少なくとも赤色発光、緑色発光、および青色発光の 3色の 発光素子を含み、それらの各色の発光素子を時分割で発光させている請求項 25に 記載の画像投影装置。
複数の上記発光素子における延伸部の表示面である延伸表面のうち、少なくとも 一部の延伸表面の面内方向に沿うように、風を沿わせるファンを設けた請求項 25に 記載の画像投影装置。
PCT/JP2007/058240 2006-04-26 2007-04-16 発光素子、発光モジュール、照明装置、および画像投影装置 WO2007125772A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-121584 2006-04-26
JP2006121584 2006-04-26
JP2006-313579 2006-11-20
JP2006313579A JP5358878B2 (ja) 2006-04-26 2006-11-20 発光素子、発光モジュール、照明装置、および画像投影装置

Publications (1)

Publication Number Publication Date
WO2007125772A1 true WO2007125772A1 (ja) 2007-11-08

Family

ID=38647692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058240 WO2007125772A1 (ja) 2006-04-26 2007-04-16 発光素子、発光モジュール、照明装置、および画像投影装置

Country Status (3)

Country Link
US (1) US8159123B2 (ja)
JP (1) JP5358878B2 (ja)
WO (1) WO2007125772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504300A (ja) * 2008-09-29 2012-02-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数の発光ダイオード放射体を備える前照灯

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463713B1 (en) 2009-09-02 2015-04-22 NEC Display Solutions, Ltd. Illuminating device and projection display device using same
US9016865B2 (en) 2009-10-15 2015-04-28 Nec Display Solutions, Ltd. Illumination device and projection type display device using the same
TW201122343A (en) * 2009-12-30 2011-07-01 Neobulb Technologies Inc Illumination device
US20130155697A1 (en) * 2010-06-11 2013-06-20 Wise Innovations Technologies Sarl System for led cooling
JP2012015082A (ja) * 2010-07-05 2012-01-19 Neobulb Technologies Inc 発光ダイオード照明プラットホーム
JP6365130B2 (ja) 2014-08-29 2018-08-01 日亜化学工業株式会社 光源装置及び該光源装置を備えたプロジェクタ
CN213750641U (zh) * 2020-12-02 2021-07-20 深圳光峰科技股份有限公司 Led光源结构和投影机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279685A (ja) * 1986-05-29 1987-12-04 Iwasaki Electric Co Ltd 発光素子配列体
JPH02191378A (ja) * 1988-10-25 1990-07-27 Omron Tateisi Electron Co 光電素子、光電素子の製造方法及び光電素子駆動装置
JPH0538927U (ja) * 1991-10-24 1993-05-25 日本ビクター株式会社 発光装置
JP2000058910A (ja) * 1990-08-20 2000-02-25 Toshiba Corp 半導体発光ダイオ―ド
JP2004335992A (ja) * 2003-04-18 2004-11-25 Victor Co Of Japan Ltd 光源装置及びこの光源装置を適用した投射型表示装置
JP2005129598A (ja) * 2003-10-21 2005-05-19 Rohm Co Ltd 発光制御装置および発光制御方法
JP2005159265A (ja) * 2003-10-31 2005-06-16 Sharp Corp 光学素子の封止構造体および光結合器ならびに光学素子の封止方法
JP2006064859A (ja) * 2004-08-25 2006-03-09 Sony Corp 発光装置、液晶投影装置
JP2006084753A (ja) * 2004-09-16 2006-03-30 Ricoh Co Ltd カラー表示装置、プロジェクタ及び接眼型表示装置
JP2006100836A (ja) * 2004-09-29 2006-04-13 Osram Opto Semiconductors Gmbh 発光ダイオード装置および自動車用のヘッドライト

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143366A (ja) 1987-11-30 1989-06-05 Iwasaki Electric Co Ltd Led面発光光源
JP3237136B2 (ja) * 1991-08-08 2001-12-10 株式会社デンソー 車両用空調装置
JP3585097B2 (ja) 1998-06-04 2004-11-04 セイコーエプソン株式会社 光源装置,光学装置および液晶表示装置
TW380213B (en) 1999-01-21 2000-01-21 Ind Tech Res Inst Illumination apparatus and image projection apparatus includes the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279685A (ja) * 1986-05-29 1987-12-04 Iwasaki Electric Co Ltd 発光素子配列体
JPH02191378A (ja) * 1988-10-25 1990-07-27 Omron Tateisi Electron Co 光電素子、光電素子の製造方法及び光電素子駆動装置
JP2000058910A (ja) * 1990-08-20 2000-02-25 Toshiba Corp 半導体発光ダイオ―ド
JPH0538927U (ja) * 1991-10-24 1993-05-25 日本ビクター株式会社 発光装置
JP2004335992A (ja) * 2003-04-18 2004-11-25 Victor Co Of Japan Ltd 光源装置及びこの光源装置を適用した投射型表示装置
JP2005129598A (ja) * 2003-10-21 2005-05-19 Rohm Co Ltd 発光制御装置および発光制御方法
JP2005159265A (ja) * 2003-10-31 2005-06-16 Sharp Corp 光学素子の封止構造体および光結合器ならびに光学素子の封止方法
JP2006064859A (ja) * 2004-08-25 2006-03-09 Sony Corp 発光装置、液晶投影装置
JP2006084753A (ja) * 2004-09-16 2006-03-30 Ricoh Co Ltd カラー表示装置、プロジェクタ及び接眼型表示装置
JP2006100836A (ja) * 2004-09-29 2006-04-13 Osram Opto Semiconductors Gmbh 発光ダイオード装置および自動車用のヘッドライト

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504300A (ja) * 2008-09-29 2012-02-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 複数の発光ダイオード放射体を備える前照灯
US8598776B2 (en) 2008-09-29 2013-12-03 Osram Opto Semiconductors Gmbh Headlight comprising a plurality of luminescence diode emitters

Also Published As

Publication number Publication date
JP2007318066A (ja) 2007-12-06
JP5358878B2 (ja) 2013-12-04
US20070252504A1 (en) 2007-11-01
US8159123B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
US10168019B2 (en) Illumination unit, projection display unit, and direct-view display unit
JP5358878B2 (ja) 発光素子、発光モジュール、照明装置、および画像投影装置
US7390129B2 (en) Light source, method for manufacturing light source, and projector
US11029591B2 (en) Light source device and optical engine
US20060139580A1 (en) Illumination system using multiple light sources with integrating tunnel and projection systems using same
US9285096B2 (en) Illumination unit, projection display unit, and direct-view display unit
CN108121139B (zh) 波长转换元件、光源装置以及投影仪
JP6737265B2 (ja) 光変換装置および光源装置、ならびにプロジェクタ
JP6596659B2 (ja) 光源装置、および投写型映像表示装置
JP2006319149A (ja) 光源装置およびその製造方法並びに光源装置を用いた表示装置
US20190265583A1 (en) Light source device, illumination apparatus, and projector apparatus
JP2017139444A (ja) 光源装置、光源装置の製造方法およびプロジェクター
US10863152B2 (en) Projector
JP2005216917A (ja) 光源装置及びプロジェクタ
JP3987485B2 (ja) 光源装置及びプロジェクタ
JP2018147703A (ja) 光源装置
JP2018036457A (ja) 波長変換素子、光源装置、およびプロジェクター
JP2019002952A (ja) 波長変換素子、光源装置、および投射型装置
JP6866627B2 (ja) 照明装置及びプロジェクター
JP6759714B2 (ja) 光源装置およびプロジェクター
JP7294152B2 (ja) 光源装置およびプロジェクター
WO2022111334A1 (zh) 激光器和投影设备
JP2005077505A (ja) 光源装置、投射型表示装置
JP2023136541A (ja) 光源装置およびプロジェクター
JP2021111592A (ja) 光源装置および画像投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741676

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741676

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)