WO2007114468A1 - Spray dryer, spray dry method, and polymer powder - Google Patents

Spray dryer, spray dry method, and polymer powder Download PDF

Info

Publication number
WO2007114468A1
WO2007114468A1 PCT/JP2007/057562 JP2007057562W WO2007114468A1 WO 2007114468 A1 WO2007114468 A1 WO 2007114468A1 JP 2007057562 W JP2007057562 W JP 2007057562W WO 2007114468 A1 WO2007114468 A1 WO 2007114468A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
dryer
straight body
powder
drying gas
Prior art date
Application number
PCT/JP2007/057562
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Omote
Sadaharu Kawabe
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to CN2007800111271A priority Critical patent/CN101410684B/en
Priority to JP2007521169A priority patent/JPWO2007114468A1/en
Publication of WO2007114468A1 publication Critical patent/WO2007114468A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/10Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it
    • F26B3/12Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it in the form of a spray, i.e. sprayed or dispersed emulsions or suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers

Definitions

  • Spray dryer Spray dryer, spray drying method and polymer powder
  • the present invention relates to a spray dryer used for drying a solid solution or dispersion, a spray drying method using the spray dryer, and a polymer powder obtained by the spray drying method.
  • a method of obtaining dry particles from a solid solution or dispersion liquid using a spray dryer is widely used in the food industry, the pharmaceutical industry, the chemical industry, and the like.
  • Spray dryers have been widely used as a device for obtaining dry particles of various materials such as organic materials and inorganic materials.
  • the conventional spray dryer shown in FIG. 4 sprays a solid solution or dispersion and supplies a drying gas to dry the solid solution or dispersion. It is composed mainly of vessel 100.
  • a spray device 110 for spraying the polymer latex in the dryer 100 and a gas supply port 120 for supplying a drying gas into the dryer 100.
  • a powder discharge port 130 is formed in the lower part of the plate.
  • a gas discharge pipe 140 is disposed through the side wall of the dryer 100, and the gas discharge pipe 140 is connected to a collection means 200 for collecting powder in the drying gas.
  • the collecting means 200 comprises a cyclone 210 and a bag filter 220! /.
  • FIG. 5 shows a nozzle atomizer as a spraying device 310 for spraying a solid solution or dispersion. It is an example of the spray dryer using one.
  • a substantially conical cone portion 301 is provided on the upper portion of the dryer 300, and a spray device 310 is disposed in the cone portion 301 (see Patent Document 1 below).
  • reference numeral 320 denotes a gas supply port for supplying a drying gas
  • 330 denotes a powder outlet.
  • the quality of the dried particles may be significantly reduced depending on the temperature.
  • exposure of dry particles to higher temperatures than necessary causes volatilization and alteration of necessary components.
  • the dry particles are fused together to become coarse particles, which degrades the quality.
  • dispersibility is required as a function of the dry particles, the dispersibility is significantly reduced.
  • the oxidation reaction is accelerated and coloration occurs. Sarakuko may reach fire.
  • Non-Patent Document 1 when a large amount of powder adheres to the inner wall of the dryer 100 in FIG. 4, the adhered powder may fall as a lump. When the powder falls as a lump, the powder outlet 130 is blocked and continuous operation is not possible. Moreover, it is not preferable because the yield of the powder is lowered.
  • Patent Document 1 As shown in FIG. 5, a substantially conical cone portion 301 is provided at the top of the dryer 300, and a spray port is provided at the boundary portion between the cone portion and the straight body portion. And a method for preventing the generation of coarse particles due to the upward flow of drying gas generated in the process. As described in Patent Document 1, the opening angle of the cone part and the cone inlet diameter (D)
  • Non-Patent Document 1 KEITH MASTERS, “Spray Drying Handbook” (Publishing country: USA), 5th edition, Publisher: Longman Scientific & Technical, Publication date: 1991, p. 353-362 Patent Document 1: Japanese Patent Laid-Open No. 9-71608
  • An object of the present invention is to prevent the powder from adhering to the inner wall of the dryer and the spraying device, and to prevent the powder from being altered by heat.
  • the present invention further has a high dispersibility obtained by a spray dryer that does not generate an upward flow of a drying gas in the vicinity of the spray device, a spray drying method using the spray dryer, and the spray drying method. It is an object to provide polymer powder.
  • the present inventors have determined that the spray port of the spray device, a rectifier that rectifies the flow of the drying gas at a specific position, and a gas that supplies the drying gas
  • a spray dryer equipped with a supply port it prevents the ascending flow of the drying gas in the vicinity of the spraying device, prevents the powder from adhering to the inner wall of the dryer and the spraying device, and heats the powder. It was found that it is possible to prevent the alteration of.
  • the spray dryer according to the present invention supplies the drying gas into the dryer and sprays the solid solution or dispersion to dry the solid solution or dispersion.
  • the first straight moon with a cylindrical shape with an open top and bottom
  • a first conical portion having an approximately conical shape with a diameter decreasing upward provided continuously at the upper end of the first straight body portion, and a cylindrical shape continuously provided at the upper end of the first cone portion
  • the main feature is that the rectifier is disposed in the second straight body portion, the rectifier is disposed in the second straight body portion and above the spray port, and the gas supply port is disposed in the upper portion of the rectifier.
  • the inclination angle ⁇ of the inner peripheral surface of the first cone portion satisfies the following formula 1
  • the ratio between the inner diameter D of the first straight body portion and the inner diameter Dt of the second straight body portion (DtZD) preferably satisfies the following formula 2.
  • Equation 2 0.6 ⁇ Dt / D ⁇ 0.8. 8
  • the spray drying method of the present invention uses the spray dryer described above, uses a two-fluid nozzle type spray device as a spray device, and uses the two-fluid nozzle type cross-sectional average wind speed Ut of the drying gas in the second straight body portion.
  • the ratio (UnZUt) of the spraying gas blowing section average wind speed Un to the spraying device satisfies Equation 3 below, and Un satisfies Equation 4.
  • Equation 3 10 ⁇ Un / Ut ⁇ 800
  • the polymer powder of the present invention is obtained by the spray drying method described above.
  • the spray dryer of the present invention it is possible to prevent the powder from adhering to the inner wall of the dryer and the spray device without generating an upward flow of the drying gas in the vicinity of the spray device.
  • the spray-drying method of the present invention it is possible to prevent the powder from being altered by heat and obtain a solid solution or a dispersion liquid powder.
  • the polymer powder of the present invention has the quality and dispersibility required to be free from alteration due to heat.
  • FIG. 1 is a schematic cross-sectional view showing the overall structure of a spray dryer according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing the overall structure of a spray dryer according to another embodiment of the present invention. is there.
  • ⁇ 3 A schematic cross-sectional view showing the overall structure of a spray dryer according to another embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing another example of the overall structure of a conventional spray dryer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a spray dryer (hereinafter sometimes simply referred to as “a spray dryer”) for drying the solid solution or dispersion of the present invention.
  • a spray dryer for drying the solid solution or dispersion of the present invention.
  • the spray dryer of the present embodiment is configured mainly with a dryer 10.
  • the dryer 10 is hollow and supplies a drying gas to the interior of the dryer 10 as well as a solid solution or dispersion.
  • the solid solution or dispersion can be dried in the drier 10 by spraying.
  • the dryer 10 has a cylindrical first straight body 12 having an open upper end and a lower end.
  • the dryer 10 is continuously provided at the upper end of the first straight body 12 and contracted upward.
  • 1st cone portion 11 having a substantially conical shape
  • a cylindrical second straight body portion 14 continuously provided at the upper end of the first cone portion 11
  • a spray device 13 for spraying a solid solution or dispersion
  • drying A rectifier 18 for rectifying the flow of the working gas
  • a gas supply port 14a for supplying the drying gas.
  • the lower end of the first straight body portion 12 is provided with a substantially conical second cone portion 17 having a reduced diameter downward.
  • a spray port of a spray device 13 for spraying a solid solution or dispersion liquid downward and a rectifier 18 are disposed.
  • the rectifier 18 is arranged at the upper part of the spraying port.
  • the gas supply port 14a is disposed on the rectifier 18.
  • the gas supply port 14 a communicates with the drying gas supply pipe 20.
  • the air velocity of the drying gas is uniform in the second straight body portion 14 provided with the spray port of the spray device 13.
  • a rectifier 18 is installed at the upper part of the spraying port to make the air velocity of the drying gas uniform.
  • the drying gas flowing from the gas supply port 14a into the dryer has a uniform wind speed in the second straight body portion 14.
  • the shape and size of the gas supply port 14a can be freely selected. Furthermore, the shape and size of the drying gas supply pipe 20 can be freely selected. The shape of the gas supply port 14a and the drying gas supply pipe 20 is large. If there is no restriction, the shape and size of the gas supply port and the drying gas supply pipe can be freely selected according to the amount and temperature of the drying gas, which is extremely useful industrially.
  • the shape and method of the rectifier 18 are not limited as long as the effect of uniforming the wind speed can be achieved. Specific examples include a rectifier tube or a punching plate having a lattice shape or a huck cam shape.
  • the rectifier 18 preferably has its pressure loss calculated in advance. If the pressure loss is too large, the desired gas flow rate may not be obtained. If the pressure loss is too small, the rectifying effect tends to be insufficient. Therefore, it is preferable to select the rectifier method and shape so that these problems do not occur.
  • the inclination angle ⁇ of the inner peripheral surface of the first cone portion 11 is an angle formed by the inner peripheral surface of the first cone portion 11 and a surface perpendicular to the central axis P of the first straight body portion 12.
  • the inclination angle ⁇ is preferably 70 degrees or greater and 85 degrees or less.
  • the inner peripheral surface of the first cone part 11 will not rapidly expand downward, so that it flows from the second straight body part 14 into the first cone part. Gas spreads evenly. Thereby, the upward flow of the drying gas does not occur. If the angle is 85 degrees or less, the inner diameter of the second straight body portion does not increase, and the rectifier in the second straight body portion does not increase in size.
  • the ratio (DtZD) of the inner diameter D of the first straight body portion 12 to the inner diameter Dt of the second straight body portion 14 is preferably 0.6 or more and 0.8 or less.
  • DtZD is 0.6 or more
  • the drying gas flowing into the first cone part spreads uniformly in the process of flowing toward the first straight body part.
  • the upward flow of the drying gas is not generated.
  • the first cone portion is not too long. If it is 0.8 or less, the inner diameter of the second straight body will not be large, and the rectifier in the second straight body will not be enlarged.
  • a known spraying device used for spray drying such as a rotating disk type, a two-fluid nozzle type, a pressure nozzle type, or the like can be used.
  • the two-fluid nozzle type is preferred, because the nozzle type spray device such as the two-fluid nozzle type and the pressurized nozzle type is preferred because the efficiency of the solid solution or dispersion fine particles is high. ,.
  • the two-fluid nozzle type spray device is used in the dryer where the blowing speed of the spray gas is large. It strongly affects the flow of drying gas and tends to generate upward flow. For this reason, it is necessary to set the average wind speed of the drying gas and the average wind speed of the atomizing gas within a specific range.
  • the cross-sectional average wind speed Ut of the drying gas in the second straight body portion 14 provided with the spray port, and the two-fluid nose is preferably 10 or more and 800 or less.
  • UnZUt is 10 or more, a finely divided powder with a high blowing speed of the atomizing gas can be obtained. Or, the wind speed of the drying gas is not too high, which is economical. If it is 800 or less, no upward flow force is generated by spraying the gas for spraying.
  • UnZUt is more preferably 50 or more. Moreover, 400 or less is more preferable.
  • the average cross-sectional wind speed Un of the spray gas of the two-fluid nozzle type spray device is preferably 10 [m / sec] or more and 400 [mZ sec] or less.
  • Un is 10 [mZ seconds] or more, a finely divided powder with a high blowing speed of the atomizing gas can be obtained. If the Un force is less than 00 [mZ seconds], a large amount of energy is not required for blowing the atomizing gas, and no upward flow is generated.
  • Un is more preferably 80 [mZ seconds] or more. Further, 300 [mZ seconds] or less is more preferable.
  • the average cross-sectional wind velocity Ut of the drying gas in the second straight body portion 14 is preferably 0.1 [mZ seconds] or more and 4.0 [mZ seconds] or less, 0.5 [mZ seconds] or more, 2. 0 [mZ seconds] or less is more preferable.
  • Un and Ut in the present invention those obtained by dividing the volume flow rate of the gas at the use temperature by the cross-sectional area are used.
  • the cross-sectional area of the spray gas blowing part is used.
  • anemometer such as a hot-wire anemometer or a Pitot tube type anemometer.
  • the spray port of the spray device 13 is preferably provided in the space of the second straight body portion 14 so that a solid solution or dispersion can be sprayed uniformly.
  • Two or more spray ports may be provided, and a plurality of spray ports can be used to dissolve different types of solids. You may comprise so that a liquid or a dispersion liquid may be sprayed. When there are two or more spraying ports, in order to spray a solid solution or dispersion uniformly, they are arranged concentrically around the central axis P of the second straight body part 14 at equal intervals. It is preferable to do.
  • the ratio (HZD) of the inner diameter (D) of the first straight body portion 12 to the height (H) of the first straight body portion varies depending on the spraying device, but is preferably 0.6 or more and 5 or less. . If the spraying device is a rotating disk type, it is preferably 0.6 or more and 1 or less. In the case of a nozzle type spray device, 3 or more and 4 or less are preferable.
  • the second cone portion 17 provided at the lower end of the same-month portion 12 has a substantially conical shape with a diameter decreasing downward. The lower part of the second cone part 17 serves as a powder discharge port 15 for discharging dry particles (powder) obtained by drying the solid solution or dispersion.
  • the angle formed by the inner peripheral surface of the second cone portion 17 and the surface perpendicular to the central axis P of the first straight body portion 12 (the inclination angle of the inner peripheral surface of the cone portion) ⁇ is not particularly limited, but is too large As a result, the powder outlet 15 becomes too large, and a large-scale facility for collecting powder is required. Further, it is not preferable to reduce the powder discharge port diameter because the cone portion becomes long. If ⁇ is too small, it is not preferable because the dried particles do not slide down the cone force. Therefore, 50 degrees or more and 70 degrees or less are preferable, and 60 degrees or more and 65 degrees or less are more preferable.
  • a collecting means 50 is provided outside the dryer 10.
  • the collecting means 50 and the second cone portion 17 communicate with each other via a drying gas discharge pipe 16 that extends sideways through the wall surface of the second cone portion 17.
  • a drying gas discharge pipe 16 that extends sideways through the wall surface of the second cone portion 17.
  • the drying gas discharge pipe 16 penetrates the wall surface of the first straight body portion 12 and the wall surface including the boundary between the first straight body portion 12 and the second cone portion 17. Also, as shown in Fig. 2, when the drying gas discharge pipe 16 is in direct communication with the lower part of the second cone part 17, or as shown in Fig. 3, the lower part of the second cone part 17 A short pipe having the powder discharge port 15 may be communicated, and the drying gas discharge pipe may be communicated with the short pipe.
  • the collection means 50 is a device that separates and collects dry particles from the drying gas discharged from the drying gas discharge pipe 16.
  • Examples of the collecting means 50 include a cyclone and a baggage. Examples include a filter and a scrubber. These can be used alone or in combination of two or more.
  • the drying gas discharge pipe 16 is connected to a cyclone 30.
  • the fine powder having a small particle diameter that is not discharged from the powder discharge port 15 flows into the cyclone 30 together with the drying gas.
  • relatively large particles are collected from the powder collecting port 31 provided at the lower part of the cyclone 30.
  • the remaining powder having a relatively small particle size is discharged from a discharge port 32 provided in the head of the cyclone 30 together with the drying gas.
  • the discharge port 32 of the cyclone 30 is connected to the bag filter 40 via the pipe 70.
  • the powder having a small particle diameter collected from the powder collection port 31 of the cyclone 30 flows into the bag filter 40 together with the drying gas.
  • the bag filter 40 all the remaining powder is collected, and only the drying gas is discharged from the discharge pipe 80 of the bag filter 40.
  • the collecting means 50 includes a cyclone 30 and a bag filter 40, and the force is also schematically configured.
  • the present invention is not limited to this.
  • the drying gas discharged from the discharge pipe 80 does not contain powder, part or all of this exhaust gas can be reheated and reused as the drying gas supplied to the dryer 10. it can. In the case where at least part of the drying gas is circulated and reused, it is preferable to perform a cooling operation or the like as necessary to discharge the components vaporized by the drying also in the circulation path force.
  • the solid solution or dispersion to be spray-dried is not particularly limited. Any spraying device can be used as long as it can form fine particles, volatilize a solvent or dispersion medium in a drier, and can obtain dry particles.
  • solutions or dispersions of foods, pharmaceuticals, synthetic chemicals such as detergents and fertilizers, synthetic resin, inorganic materials such as pigments and ceramics can be used.
  • solvent and the dispersion medium For example, water or a solvent can be used.
  • the present invention prevents the generation of an upward flow of drying gas and prevents the dry particles accompanying the upward flow from adhering to the inner wall of the dryer and the spraying device. As a result, the dry particles can be prevented from being deteriorated by heat, which is suitable for foods, pharmaceuticals, and synthetic resins.
  • the solid solution or dispersion used in the present invention is preferably a polymer latex. It is more preferable to obtain a polymer powder by the spray drying method of the present invention.
  • Examples of the polymer latex in the present invention include monomers such as aromatic vinyl monomers, vinyl cyanide monomers, unsaturated acid monomers, and (meth) acrylic acid ester monomers. And polymer latex obtained by homopolymerization or copolymerization; polymer latex obtained by seed polymerization or graft polymerization using the above-mentioned monomers.
  • rubber polymers such as gen-based copolymers, acrylic rubber polymers, and silicone rubber polymers can be used in addition to aromatic bulle monomers, cyanated butyl monomers, and (meth) acrylic acid esters.
  • examples also include polymer latex obtained by graft polymerization of monomers and the like.
  • polymerization initiator examples include persulfates, organic peroxides, azo compounds, redox initiators composed of a combination of the persulfate and a reducing agent, and the combination power of the organic oxide and the reducing agent.
  • group initiator etc. which become are mentioned.
  • emulsifier examples include an anionic emulsifier, a nonionic emulsifier, and a cationic emulsifier.
  • cross-linking agents such as dibutenebenzene, 1,3-butylene dimethacrylate, allyl methacrylate, glycidyl methacrylate, chain transfer of mercaptans, terpenes, etc.
  • An agent can also be used.
  • the drying gas supplied into the dryer 10 is not particularly limited, and examples thereof include air, nitrogen, and carbon dioxide. Further, a gas containing water vapor may be used. However, when using gas containing water vapor, it is necessary to set the water vapor pressure of the drying gas to be lower than the saturated water vapor pressure in the dryer 10 so that condensation does not occur in the dryer 10. There is.
  • the temperature of the drying gas is appropriately set according to the properties of the solid solution or dispersion to be dried.
  • the inlet temperature of the dryer 10 specifically, the temperature of the drying gas supplied from the drying gas supply pipe 20 through the gas supply port 14a is 100 ° C or higher, 400 ° C or lower is preferred 120 ° C or higher, 300 ° C or lower The lower is more preferable.
  • the outlet temperature of the dryer 10, specifically the temperature of the drying gas passing through the drying gas discharge pipe 16, is preferably 60 ° C or higher and 80 ° C or lower, more preferably 65 ° C or higher and 75 ° C or lower. preferable.
  • the dryer 10 is not limited to the one in the present embodiment, and the design can be changed as appropriate within the scope of the present invention.
  • the position where the spray port of the spray device 13 is provided is not particularly limited as long as it is within the space of the second straight body portion.
  • the force provided in the vicinity of the boundary between the first cone portion 11 and the second straight body portion 14 is not limited to this.
  • the upward flow of the drying gas in the vicinity of the spray port of the spray device 13 can be prevented, so that the powder on the inner wall of the dryer 10 and the spray device 13 can be prevented. Adhesion can be prevented. As a result, stable continuous operation for a long time is possible, and the recovery rate of dry particles is high.
  • the dry particles entrained in the upward flow disappear, and the residence time of the powder in the dryer 10 is constant regardless of the particle size of the dry particles.
  • the particle size distribution of the dry particles according to the distribution of the droplet size sprayed from the spray device 13 is obtained. This is suitable for controlling the particle size distribution of the dry particles.
  • the residence time in the dryer 10 is constant, dry particles having stable physical properties can be obtained, and the dry particles are not exposed to the drying gas more than necessary. As a result, the dry particles do not receive an excessive heat history, and the performance of the dry particles can be fully exhibited.
  • part is part by mass
  • % is mass%
  • the solid content of the polymer latex was measured by the following procedure.
  • the solid content of the polymer latex is calculated by the following calculation.
  • the mass average particle diameter of the polymer latex was measured by the following procedure.
  • the obtained latex was diluted with deionized water and measured using a laser diffraction / scattering particle size distribution analyzer (LA-910: manufactured by Horiba, Ltd.).
  • the following raw material mixture was charged into a separable flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring blade, and after replacing with nitrogen, heating was started while stirring.
  • the obtained polymer latex (A) had a solid content of 26.9% and a mass average particle size of 90 nm.
  • Production of polymer latex (B) The following raw material mixture was charged into a separable flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring blade, and after replacing with nitrogen, heating was started while stirring.
  • the above raw material mixture was prepared by mixing for 1 minute at 3000 rpm using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.))
  • the polymer latex obtained had a solid content of 50.4% and a mass average particle size of 540 nm.
  • the resulting polymer latex was diluted with deionized water to adjust the solid content to 26.9% so that the spray drying conditions were the same as for the polymer latex (A).
  • the obtained polymer latex (A) was spray dried using a spray dryer having the structure shown in FIG.
  • the spray dryer used had an inner diameter (D) of the first straight body 12 of 0.4 m and a height (H) of the first straight body 12 of 1.25 m.
  • the inclination angle ( ⁇ ) of the first cone portion 11 and the inner diameter (Dt) of the second straight body portion 14 are as shown in Table 1.
  • a punching plate having a hole diameter of 3. Omm, a pitch of 5. Omm, a hole shape of a circle and a thickness of 2. Omm and a 60 ° staggered punching plate was used.
  • a two-fluid nozzle (BIMJ 20075: V, manufactured by Keuchi Co., Ltd.) was used.
  • the drying gas an air heated by a hot air generator (TSK 41: manufactured by Takezuna Seisakusho) was used.
  • TSK 41 the temperature of the gas exiting from the outlet of the drying gas supply pipe 20
  • the outlet temperature of the drying gas was 70 ° C.
  • Table 1 shows the air volume of the drying gas introduced into the dryer 10 from the drying gas supply port 14a.
  • the drying gas was supplied from the drying gas supply pipe 20 into the dryer 10, and the dryer 10 was filled with the drying gas.
  • the polymer latex (A) was supplied to the spray device 13 at a flow rate of 120 mlZ using a roller pump (RP NB: manufactured by Furue Science Co., Ltd.). Further, the atomizing air was adjusted to a pressure of 0.4 MPa and supplied to the spraying device 13. At this time, the average wind speed Un of the spray gas blowing cross section is as shown in Table 1.
  • the position of the spraying port is 100 mm above the boundary surface between the second straight body part 14 and the first cone part 11.Thus, the polymer latex (A) mixed with air is sprayed downward toward the bottom of the dryer. Thus, a polymer powder was obtained.
  • the spray dryer was operated continuously for 3 hours.
  • the polymer latex (A) was spray-dried in the same manner as in Example 1 except that the air volume of the drying gas was changed to 5.2 m 3 Z. The results are shown in Table 1.
  • the polymer latex (A) was spray-dried in the same manner as in Example 1 except that the inner diameter Dt of the second straight body portion 14 was changed to 0.174 m. The results are shown in Table 1.
  • the polymer latex (A) was spray-dried in the same manner as in Example 1 except that the inclination angle ⁇ of the inner peripheral surface of the first cone portion was changed to 60 degrees. The results are shown in Table 1.
  • the polymer latex (A) was spray-dried in the same manner as in Example 1 except that the rectifier 18 (punching plate) was removed. The results are shown in Table 1.
  • the polymer latex (A) was spray-dried in the same manner as in Example 1 except that the position of the spray port of the spray device 13 was set at the center of the first cone portion. The results are shown in Table 1.
  • the polymer latex (B) was spray-dried.
  • the ratio of particles with mass average particle diameter of less than 1 m in the obtained polymer powder (before ultrasonic irradiation) is 3.2% Met.
  • the polymer latex (B) was spray-dried in the same manner as in Example 5 except that the air volume of the drying gas was changed to 5.2 m 3 Z.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m in the obtained polymer powder (before ultrasonic irradiation) was 3.8%.
  • the polymer latex (B) was spray-dried in the same manner as in Example 5 except that the inner diameter Dt of the second straight body portion 14 was changed to 0.174 m.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m in the obtained polymer powder (before ultrasonic irradiation) was 3.8%.
  • the polymer latex (B) was spray-dried in the same manner as in Example 5 except that the inclination angle ⁇ of the inner peripheral surface of the first cone portion was changed to 60 degrees.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m in the obtained polymer powder (before ultrasonic irradiation) was 2.9%.
  • the polymer latex (B) was spray-dried in the same manner as in Example 5 except that the rectifier 18 (punching plate) was removed.
  • the ratio of particles with a mass average particle diameter of less than 1 ⁇ m in the obtained polymer powder (before ultrasonic irradiation) was 2.4%.
  • the polymer latex (B) was spray-dried in the same manner as in Example 5 except that the position of the spray port of the spray device 13 was set at the center of the first cone portion.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m was 4.3%. The results are shown in Table 2.
  • the presence or absence of upward flow in the cross-section of the spray device 13 where the spray port is located was evaluated based on the following criteria.
  • the inside of the dryer 10 was visually observed, and the adhesion of the powder to the inner wall of the dryer and the spray device was evaluated based on the following criteria.
  • the obtained polymer powder was dispersed in deionized water, and after ultrasonic irradiation (40W x 5 minutes) using a laser diffraction / scattering particle size distribution analyzer (LA-910: manufactured by HORIBA, Ltd.) mass The ratio [%] of particles having an average particle diameter of less than 1 ⁇ m was measured.
  • the amount of the polymer powder dispersed in deionized water was appropriately adjusted so as to be within the optimum measurement range of the laser diffraction / scattering particle size distribution measuring apparatus.
  • the pulverizability of the polymer powder was evaluated based on the following criteria.
  • Example 3 and Example 7 in which Dt and D were set to 0.435 a strong upward flow was frequently generated instantaneously on the cross section of the spray device 13 where the spray port was provided.
  • the polymer powder accompanying the upward flow reached the vicinity of the spraying device, but the thickness of the adhered powder did not increase with the lapse of operating time.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m after ultrasonic irradiation (40 W ⁇ 5 minutes) was 30.5%.
  • Example 4 and Example 8 in which the inclination angle ⁇ of the inner peripheral surface of the first cone portion is 60 degrees, a slight upward flow is often instantaneously observed in the section of the spray device 13 where the spray port is located. Occurred. The polymer powder entrained by this upward flow reached the vicinity of the spraying device, but the thickness of the adhered powder did not increase as the operating time passed.
  • the ratio of particles having a mass average particle diameter of less than 1 ⁇ m after ultrasonic irradiation (40 W ⁇ 5 minutes) was 32.5%.
  • the polymer powder obtained in Comparative Example 3 had a mass average particle size of less than 1 ⁇ m after ultrasonic irradiation (40 W ⁇ 5 minutes), the ratio of particles being 20.8%, and the pulverizability was high. It had dropped significantly.
  • the polymer powder obtained in Comparative Example 4 had a mass average particle diameter of less than 1 ⁇ m after ultrasonic irradiation (40 W ⁇ 5 minutes), the ratio of particles being 23.4%, and the pulverization property was low. It had dropped significantly.
  • the spray dryer of the present invention it is possible to prevent the powder from adhering to the inner wall of the dryer and the spraying device without generating an upward flow of the drying gas in the vicinity of the spraying device.
  • the spray-drying method of the present invention it is possible to prevent the powder from being altered by heat and obtain a solid solution or a dispersion liquid powder.
  • the polymer powder of the present invention has the required quality and dispersibility that are not affected by heat.

Abstract

A dryer having a circular tubular first straight barrel section opened at its both upper and lower ends, a substantially circular conical first cone section contiguously provided at the upper end of the first straight barrel section and upwardly reduced in diameter, a circular tubular second straight barrel section contiguously provided at the upper end of the first cone section, a spray device for spraying a solution or dispersed solution of solids, a flow straightener for straightening the flow of a drying gas, and a gas supply opening for supplying the drying gas. The spray opening of the spray device is placed inside the second straight barrel section. The straightener is placed inside the second straight barrel section, over the spray opening. The gas supply opening is placed above the straightner.

Description

明 細 書  Specification
噴霧乾燥器、噴霧乾燥方法及び重合体粉体  Spray dryer, spray drying method and polymer powder
技術分野  Technical field
[0001] 本発明は、固体の溶液または分散液の乾燥に用いる噴霧乾燥器、該噴霧乾燥器 を用いる噴霧乾燥方法、及び該噴霧乾燥方法により得られる重合体粉体に関する。 本願は、 2006年 4月 4日に出願された特願 2006— 102934号に基づき優先権を 主張し、その内容をここに援用する。  The present invention relates to a spray dryer used for drying a solid solution or dispersion, a spray drying method using the spray dryer, and a polymer powder obtained by the spray drying method. This application claims priority based on Japanese Patent Application No. 2006-102934 filed on Apr. 4, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 噴霧乾燥器を用いて、固体の溶液または分散液カゝら乾燥粒子を得る方法は、食品 産業、医薬品産業、化学産業等で多用されている。噴霧乾燥器は、有機材料や無機 材料等、種々の材料の乾燥粒子を得るための装置として、従来から広く用いられて いる。  A method of obtaining dry particles from a solid solution or dispersion liquid using a spray dryer is widely used in the food industry, the pharmaceutical industry, the chemical industry, and the like. Spray dryers have been widely used as a device for obtaining dry particles of various materials such as organic materials and inorganic materials.
[0003] 図 4に示す従来の噴霧乾燥器は、固体の溶液または分散液を噴霧すると共に、乾 燥用ガスを供給することにより、固体の溶液または分散液を乾燥することが可能な乾 燥器 100を主体として構成されて 、る。  [0003] The conventional spray dryer shown in FIG. 4 sprays a solid solution or dispersion and supplies a drying gas to dry the solid solution or dispersion. It is composed mainly of vessel 100.
この乾燥器 100の上部には、乾燥器 100内に重合体ラテックスを噴霧する噴霧装 置 110と、乾燥器 100内に乾燥用ガスを供給するガス供給口 120が設けられており、 乾燥器 100の下部には粉体排出口 130が形成されている。また、乾燥器 100の側壁 を貫通してガス排出管 140が配設されており、該ガス排出管 140は、乾燥用ガス中 の粉体を捕集する捕集手段 200に接続されている。この例において捕集手段 200は サイクロン 210とバグフィルタ 220を備えて!/、る。  At the top of the dryer 100, there are provided a spray device 110 for spraying the polymer latex in the dryer 100 and a gas supply port 120 for supplying a drying gas into the dryer 100. A powder discharge port 130 is formed in the lower part of the plate. Further, a gas discharge pipe 140 is disposed through the side wall of the dryer 100, and the gas discharge pipe 140 is connected to a collection means 200 for collecting powder in the drying gas. In this example, the collecting means 200 comprises a cyclone 210 and a bag filter 220! /.
このような構成の噴霧乾燥器では、固体の溶液または分散液を乾燥して得られた 乾燥粒子 (粉体)の大部分は、乾燥器 100の下部に形成された粉体排出口 130から 回収される。粉体排出口 130から回収されな力つた少量の粉体は、乾燥用ガスと共 にガス排出管 140から排出され、捕集手段 200により捕集される(下記、非特許文献 1参照。)。  In the spray dryer having such a configuration, most of the dry particles (powder) obtained by drying the solid solution or dispersion are recovered from the powder outlet 130 formed at the bottom of the dryer 100. Is done. A small amount of powder that has not been recovered from the powder outlet 130 is discharged from the gas discharge pipe 140 together with the drying gas and collected by the collecting means 200 (see Non-Patent Document 1 below). .
[0004] 図 5は、固体の溶液または分散液を噴霧する噴霧装置 310としてノズルアトマイザ 一を用いた噴霧乾燥器の例である。乾燥器 300の上部には、略円錐状のコーン部 3 01が設けられ、このコーン部 301内に噴霧装置 310が配置されている(下記、特許 文献 1参照。)。 FIG. 5 shows a nozzle atomizer as a spraying device 310 for spraying a solid solution or dispersion. It is an example of the spray dryer using one. A substantially conical cone portion 301 is provided on the upper portion of the dryer 300, and a spray device 310 is disposed in the cone portion 301 (see Patent Document 1 below).
図 5において、符号 320は乾燥用ガスを供給するガス供給口を示し、 330は粉体排 出口を示す。  In FIG. 5, reference numeral 320 denotes a gas supply port for supplying a drying gas, and 330 denotes a powder outlet.
[0005] し力しながら、乾燥器によっては、乾燥器内において乾燥用ガスの流れの乱れによ り、乾燥用ガスの上昇流が発生し、これに同伴された乾燥粒子が壁面に付着する例 や、噴霧装置に付着する例が見られる。  [0005] However, depending on the dryer, an upward flow of the drying gas is generated due to the disturbance of the flow of the drying gas in the dryer, and the accompanying dry particles adhere to the wall surface. There are examples and examples of adhering to spray equipment.
また、乾燥粒子が乾燥用ガスの上昇流に同伴され、高温の乾燥用ガスと接触する ような状態が発生すると、その温度により、乾燥粒子の品質が著しく低下する場合が ある。食品や医薬品では、乾燥粒子が必要以上に高温に曝されることによって、必要 な成分の揮発や変質が生じる。あるいは、乾燥粒子同士が融着して粗大粒子となり、 その品質を低下させる。乾燥粒子の機能として分散性が必要な場合は、その分散性 を著しく低下させる。乾燥粒子の成分によっては酸化反応が促進されて着色が生じ る。さら〖こは、発火に達する場合もある。  In addition, when the dry particles are entrained in the rising flow of the drying gas and come into contact with the high-temperature drying gas, the quality of the dried particles may be significantly reduced depending on the temperature. In foods and pharmaceuticals, exposure of dry particles to higher temperatures than necessary causes volatilization and alteration of necessary components. Alternatively, the dry particles are fused together to become coarse particles, which degrades the quality. When dispersibility is required as a function of the dry particles, the dispersibility is significantly reduced. Depending on the components of the dry particles, the oxidation reaction is accelerated and coloration occurs. Sarakuko may reach fire.
[0006] 非特許文献 1に記載されている方法では、図 4の乾燥器 100の内壁に多量の粉体 が付着した場合には、付着した粉体が塊となって落下するおそれがある。粉体が塊と なって落下することにより、粉体排出口 130が閉塞され、連続運転ができなくなる。ま た、粉体の収率が低下するため好ましくない。  [0006] In the method described in Non-Patent Document 1, when a large amount of powder adheres to the inner wall of the dryer 100 in FIG. 4, the adhered powder may fall as a lump. When the powder falls as a lump, the powder outlet 130 is blocked and continuous operation is not possible. Moreover, it is not preferable because the yield of the powder is lowered.
噴霧装置 110に粉体が付着した場合には、固体溶液または分散液の噴霧微粒ィ匕 が不能となり、運転が出来なくなるため好ましくない。  When the powder adheres to the spray device 110, it is not preferable because the spray fine particles of the solid solution or the dispersion become impossible and the operation becomes impossible.
[0007] 特許文献 1では、図 5に示すように、乾燥器 300の上部に略円錐状のコーン部 301 を設け、コーン部と直胴部の境界部に噴霧口を設けて、乾燥器内で発生する乾燥用 ガスの上昇流及びこれによる粗大粒子の生成を防止する方法が記載されている。 特許文献 1に記載のように、コーン部の開き角度、及び、コーン部入口径 (D )と乾  In Patent Document 1, as shown in FIG. 5, a substantially conical cone portion 301 is provided at the top of the dryer 300, and a spray port is provided at the boundary portion between the cone portion and the straight body portion. And a method for preventing the generation of coarse particles due to the upward flow of drying gas generated in the process. As described in Patent Document 1, the opening angle of the cone part and the cone inlet diameter (D)
IN  IN
燥器直胴部の径 (D)との比 (D ZD)を特定の範囲とすることで、上昇流の発生を低  By making the ratio (D ZD) to the diameter (D) of the straight body of the dryer a specific range, the generation of upward flow is reduced.
IN  IN
減させることはできる。  It can be reduced.
しかし、一般的にコーン部の上端力も流入した乾燥用ガスは、乾燥器の直胴部に 広がる過程で上昇流が発生しやすい。特許文献 1に記載された方法でも、乾燥用ガ スの吹き出し速度やノズルアトマイザ一の微粒ィ匕用ガスの量によっては、上昇流が発 生してしまう。このため、乾燥器 300の内壁及び噴霧装置 310への粉体の付着を防 止することや、得られる粉体の品質の低下を防ぐことは困難であった。 However, in general, the drying gas that has flowed in the upper end force of the cone part will enter the straight body of the dryer. An upward flow is likely to occur during the spreading process. Even in the method described in Patent Document 1, an upward flow is generated depending on the blowing speed of the drying gas and the amount of the fine gas in the nozzle atomizer. For this reason, it is difficult to prevent the powder from adhering to the inner wall of the dryer 300 and the spraying device 310 and to prevent the quality of the obtained powder from deteriorating.
[0008] また、コーン部力も流入する乾燥用ガスを、上昇流を発生させずにコーン部や乾燥 器の直胴部に供給するには、極めて高度に乾燥用ガスの流れを制御することが必要 であり、高度な技術が必要となる。また、それを実現するための機構を必要とすること は、工業的に不利である。 [0008] In addition, in order to supply the drying gas into which the cone part force also flows into the cone part and the straight body part of the dryer without generating an upward flow, the flow of the drying gas can be controlled extremely highly. Necessary and advanced technology is required. Moreover, it is industrially disadvantageous to require a mechanism for realizing it.
非特許文献 1:ケイス ·マスターズ (KEITH MASTERS)著, 「スプレ^ ~ ·ドライイング 'ハンドブック(Spray Drying Handbook)」, (発行国:アメリカ合衆国),第 5版, 発行所:: Longman Scientific & Technical,発行日: 1991年, p. 353— 362 特許文献 1:特開平 9 - 71608号公報  Non-Patent Document 1: KEITH MASTERS, “Spray Drying Handbook” (Publishing country: USA), 5th edition, Publisher: Longman Scientific & Technical, Publication date: 1991, p. 353-362 Patent Document 1: Japanese Patent Laid-Open No. 9-71608
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、乾燥器内壁及び噴霧装置への粉体の付着を防止し、熱による粉体の 変質を防ぐことを課題とする。本発明は、さらに、噴霧装置近傍での乾燥用ガスの上 昇流を発生させない噴霧乾燥器、該噴霧乾燥器を用いる噴霧乾燥方法、及び該噴 霧乾燥方法により得られる、高分散性を有する重合体粉体を提供することを課題とす る。 [0009] An object of the present invention is to prevent the powder from adhering to the inner wall of the dryer and the spraying device, and to prevent the powder from being altered by heat. The present invention further has a high dispersibility obtained by a spray dryer that does not generate an upward flow of a drying gas in the vicinity of the spray device, a spray drying method using the spray dryer, and the spray drying method. It is an object to provide polymer powder.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、前記課題を解決するべく鋭意検討した結果、特定の位置に噴霧装 置の噴霧口と、乾燥用ガスの流れを整流する整流器と、乾燥用ガスを供給するガス 供給口とを備えた噴霧乾燥器を用いることで、噴霧装置近傍での乾燥用ガスの上昇 流を発生させず、乾燥器内壁及び噴霧装置への粉体の付着を防止し、熱による粉 体の変質を防ぐことが可能であることを見出した。 [0010] As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the spray port of the spray device, a rectifier that rectifies the flow of the drying gas at a specific position, and a gas that supplies the drying gas By using a spray dryer equipped with a supply port, it prevents the ascending flow of the drying gas in the vicinity of the spraying device, prevents the powder from adhering to the inner wall of the dryer and the spraying device, and heats the powder. It was found that it is possible to prevent the alteration of.
即ち、本発明の噴霧乾燥器は、乾燥器内に乾燥用ガスを供給すると共に、固体の 溶液または分散液を噴霧することにより、固体の溶液または分散液を乾燥させる噴霧 乾燥器において、前記乾燥器が、上端及び下端が開口している円筒状の第 1直月同 部、該第 1直胴部の上端に連続して設けられた、上方に縮径する略円錐状の第 1コ ーン部、該第 1コーン部の上端に連続して設けられた円筒状の第 2直胴部、固体の 溶液または分散液を噴霧する噴霧装置、乾燥用ガスの流れを整流する整流器、及 び乾燥用ガスを供給するガス供給口を備え、前記噴霧装置の噴霧口が前記第 2直 胴部内に配置され、前記整流器が前記第 2直胴部内、かつ、前記噴霧口の上部に 配置され、前記ガス供給口が前記整流器の上部に配置されたことを主旨とする。 That is, the spray dryer according to the present invention supplies the drying gas into the dryer and sprays the solid solution or dispersion to dry the solid solution or dispersion. The first straight moon with a cylindrical shape with an open top and bottom A first conical portion having an approximately conical shape with a diameter decreasing upward provided continuously at the upper end of the first straight body portion, and a cylindrical shape continuously provided at the upper end of the first cone portion A spraying device for spraying a solid solution or dispersion, a rectifier for rectifying the flow of the drying gas, and a gas supply port for supplying the drying gas. The main feature is that the rectifier is disposed in the second straight body portion, the rectifier is disposed in the second straight body portion and above the spray port, and the gas supply port is disposed in the upper portion of the rectifier.
[0011] 本発明の噴霧乾燥器は、第 1コーン部の内周面の傾き角度 Θが下記式 1を満たし 、第 1直胴部の内径 Dと第 2直胴部の内径 Dtとの比 (DtZD)が下記式 2を満たすこ とが好ましい。 [0011] In the spray dryer of the present invention, the inclination angle Θ of the inner peripheral surface of the first cone portion satisfies the following formula 1, and the ratio between the inner diameter D of the first straight body portion and the inner diameter Dt of the second straight body portion (DtZD) preferably satisfies the following formula 2.
式 1 : 70≤ Θ≤85 [度]  Formula 1: 70≤ Θ≤85 [degree]
式 2 : 0. 6≤Dt/D≤0. 8  Equation 2: 0.6≤Dt / D≤0.8. 8
本発明の噴霧乾燥方法は、前記の噴霧乾燥器を用い、噴霧装置として二流体ノズ ル式噴霧装置を用い、第 2直胴部内の乾燥用ガスの断面平均風速 Utと、二流体ノズ ル式噴霧装置の噴霧用ガスの吹き出し断面平均風速 Unとの比 (UnZUt)が下記 式 3を満たし、 Unが式 4を満たす。  The spray drying method of the present invention uses the spray dryer described above, uses a two-fluid nozzle type spray device as a spray device, and uses the two-fluid nozzle type cross-sectional average wind speed Ut of the drying gas in the second straight body portion. The ratio (UnZUt) of the spraying gas blowing section average wind speed Un to the spraying device satisfies Equation 3 below, and Un satisfies Equation 4.
式 3 : 10≤Un/Ut≤800  Equation 3: 10≤Un / Ut≤800
式 4 : 10≤Un≤400 [mZ秒]  Formula 4: 10≤Un≤400 [mZ seconds]
本発明の重合体粉体は、前記の噴霧乾燥方法により得られる。  The polymer powder of the present invention is obtained by the spray drying method described above.
発明の効果  The invention's effect
[0012] 本発明の噴霧乾燥器によれば、噴霧装置近傍での乾燥用ガスの上昇流を発生さ せず、乾燥器内壁及び噴霧装置への粉体の付着を防止することができる。  [0012] According to the spray dryer of the present invention, it is possible to prevent the powder from adhering to the inner wall of the dryer and the spray device without generating an upward flow of the drying gas in the vicinity of the spray device.
本発明の噴霧乾燥方法によれば、粉体の熱による変質を防ぎ、固体の溶液または 分散液力 粉体を得ることができる。  According to the spray-drying method of the present invention, it is possible to prevent the powder from being altered by heat and obtain a solid solution or a dispersion liquid powder.
本発明の重合体粉体は、熱による変質がなぐ必要とされる品質や分散性を有する 図面の簡単な説明  The polymer powder of the present invention has the quality and dispersibility required to be free from alteration due to heat.
[0013] [図 1]本発明に係る実施形態の噴霧乾燥器の全体構造を示す、概略断面図である。  FIG. 1 is a schematic cross-sectional view showing the overall structure of a spray dryer according to an embodiment of the present invention.
[図 2]本発明に係る別の実施形態の噴霧乾燥機の全体構造を示す、概略断面図で ある。 FIG. 2 is a schematic sectional view showing the overall structure of a spray dryer according to another embodiment of the present invention. is there.
圆 3]本発明に係る別の実施形態の噴霧乾燥機の全体構造を示す、概略断面図で ある。  圆 3] A schematic cross-sectional view showing the overall structure of a spray dryer according to another embodiment of the present invention.
圆 4]従来の噴霧乾燥器の全体構造の一例を示す、概略構成図である。  [4] It is a schematic configuration diagram showing an example of the entire structure of a conventional spray dryer.
圆 5]従来の噴霧乾燥器の全体構造の他の例を示す、概略構成図である。  [5] FIG. 5 is a schematic configuration diagram showing another example of the overall structure of a conventional spray dryer.
符号の説明  Explanation of symbols
[0014] 10 乾燥器  [0014] 10 dryer
11 第 1コーン部  11 1st cone part
12 第 1直胴部  12 1st straight body
13 噴霧装置  13 Spraying device
14 第 2直胴部  14 Second straight section
15 粉体排出口  15 Powder outlet
16 乾燥用ガス排出管  16 Drying gas discharge pipe
17 第 2コーン部  17 2nd cone part
18 整流器  18 Rectifier
30 サイクロン  30 Cyclone
31 粉体回収口  31 Powder recovery port
32 排出口  32 outlet
40 バグフィルタ  40 Bug filters
50 捕集手段  50 Collection means
70 配管  70 Piping
80 排出管  80 discharge pipe
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明に係る実施形態について詳述する。  Hereinafter, embodiments according to the present invention will be described in detail.
図 1は、本発明の固体溶液または分散液を乾燥させる噴霧乾燥器 (以下、単に「噴 霧乾燥器」と称することがある。 )の一実施形態を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an embodiment of a spray dryer (hereinafter sometimes simply referred to as “a spray dryer”) for drying the solid solution or dispersion of the present invention.
本実施形態の噴霧乾燥器は、乾燥器 10を主体として構成されている。乾燥器 10 は中空であり、その内部に乾燥用ガスを供給すると共に、固体の溶液または分散液 を噴霧することにより、該乾燥器 10内で固体の溶液または分散液を乾燥させることが できる。 The spray dryer of the present embodiment is configured mainly with a dryer 10. The dryer 10 is hollow and supplies a drying gas to the interior of the dryer 10 as well as a solid solution or dispersion. The solid solution or dispersion can be dried in the drier 10 by spraying.
[0016] 本実施形態において、乾燥器 10は、上端及び下端が開口している円筒状の第 1直 胴部 12、第 1直胴部 12の上端に連続して設けられた、上方に縮径する略円錐状の 第 1コーン部 11、第 1コーン部 11の上端に連続して設けられた円筒状の第 2直胴部 14、固体の溶液または分散液を噴霧する噴霧装置 13、乾燥用ガスの流れを整流す る整流器 18、及び乾燥用ガスを供給するガス供給口 14aを備える。  [0016] In the present embodiment, the dryer 10 has a cylindrical first straight body 12 having an open upper end and a lower end. The dryer 10 is continuously provided at the upper end of the first straight body 12 and contracted upward. 1st cone portion 11 having a substantially conical shape, a cylindrical second straight body portion 14 continuously provided at the upper end of the first cone portion 11, a spray device 13 for spraying a solid solution or dispersion, drying A rectifier 18 for rectifying the flow of the working gas, and a gas supply port 14a for supplying the drying gas.
また、第 1直胴部 12の下端には、下方に縮径する略円錐状の第 2コーン部 17が連 続して設けられている。  Further, the lower end of the first straight body portion 12 is provided with a substantially conical second cone portion 17 having a reduced diameter downward.
第 2直胴部 14内には、固体の溶液または分散液を下に向力つて噴霧する噴霧装 置 13の噴霧口、及び、整流器 18が配置される。整流器 18は、噴霧口の上部に配置 される。  In the second straight body portion 14, a spray port of a spray device 13 for spraying a solid solution or dispersion liquid downward and a rectifier 18 are disposed. The rectifier 18 is arranged at the upper part of the spraying port.
ガス供給口 14aは、整流器 18の上部に配置される。ガス供給口 14aは、乾燥用ガ ス供給管 20と連通している。  The gas supply port 14a is disposed on the rectifier 18. The gas supply port 14 a communicates with the drying gas supply pipe 20.
[0017] 噴霧装置 13の噴霧口が設けられている第 2直胴部 14内で、乾燥用ガスの風速が 均一であることは特に重要である。乾燥用ガスの風速を均一とするため、噴霧口の上 部に、整流器 18を設ける。これにより、ガス供給口 14aから乾燥器内へ流れる乾燥用 ガスは、第 2直胴部 14内での風速が均一となる。 [0017] It is particularly important that the air velocity of the drying gas is uniform in the second straight body portion 14 provided with the spray port of the spray device 13. A rectifier 18 is installed at the upper part of the spraying port to make the air velocity of the drying gas uniform. As a result, the drying gas flowing from the gas supply port 14a into the dryer has a uniform wind speed in the second straight body portion 14.
第 2直胴部 14内での乾燥用ガスの風速が均一な状態で、固体の溶液または分散 液を噴霧することにより、噴霧口の下部で乾燥用ガスの逆流(上昇流)が発生しても、 その上昇流が噴霧口よりも上部に達することを防ぐことができる。上昇流が噴霧口より も上部に達しなければ、上昇流に同伴した乾燥粒子 (粉体)が、高温の乾燥用ガスと 接触する可能性のある噴霧口よりも上部の乾燥器内壁及び噴霧装置への付着が防 止されるため、得られる粉体は熱による変質がなぐ必要とされる品質や分散性を有 する。  By spraying the solid solution or dispersion with the air velocity of the drying gas in the second straight body 14 uniform, a backflow (upflow) of the drying gas is generated at the lower part of the spray port. However, it is possible to prevent the upward flow from reaching the upper part of the spray port. If the upward flow does not reach the upper part of the spray port, the dry particles (powder) entrained in the upward flow may be in contact with the high-temperature drying gas. Therefore, the obtained powder has the required quality and dispersibility to prevent thermal alteration.
[0018] 第 2直胴部 14内に、整流器 18を設けることにより、ガス供給口 14aの形状や大きさ は、自由に選定することができる。さらには、乾燥用ガス供給管 20の形状や大きさも 自由に選定することができる。ガス供給口 14aや、乾燥用ガス供給管 20の形状ゃ大 きさに制限がなければ、乾燥用ガスの量や温度によって、ガス供給口や乾燥用ガス 供給管の形状や大きさを自由に選定することができるので、工業的には極めて有益 である。 [0018] By providing the rectifier 18 in the second straight body portion 14, the shape and size of the gas supply port 14a can be freely selected. Furthermore, the shape and size of the drying gas supply pipe 20 can be freely selected. The shape of the gas supply port 14a and the drying gas supply pipe 20 is large. If there is no restriction, the shape and size of the gas supply port and the drying gas supply pipe can be freely selected according to the amount and temperature of the drying gas, which is extremely useful industrially.
整流器 18としては、風速を均一にする効果を達成できればその形状や方式に制限 はない。具体例としては、格子形状ゃハ-カム形状を有する整流管やパンチングプ レート等が挙げられる。整流器 18は、その圧力損失を予め計算しておくことが好まし い。圧力損失が大きすぎると、所望のガス風量が得られない可能性がある。また、圧 力損失が小さすぎるものは、整流効果が不十分となりやすい。従って、これらの不都 合が生じな 、ように、整流器の方式や形状等を選択することが好ま 、。  The shape and method of the rectifier 18 are not limited as long as the effect of uniforming the wind speed can be achieved. Specific examples include a rectifier tube or a punching plate having a lattice shape or a huck cam shape. The rectifier 18 preferably has its pressure loss calculated in advance. If the pressure loss is too large, the desired gas flow rate may not be obtained. If the pressure loss is too small, the rectifying effect tends to be insufficient. Therefore, it is preferable to select the rectifier method and shape so that these problems do not occur.
[0019] 第 1コーン部 11の内周面の傾き角度 Θは、第 1コーン部 11の内周面と、第 1直胴部 12の中心軸 Pに垂直な面とのなす角度である。該傾き角度 Θは、 70度以上、 85度 以下が好ましい。 The inclination angle Θ of the inner peripheral surface of the first cone portion 11 is an angle formed by the inner peripheral surface of the first cone portion 11 and a surface perpendicular to the central axis P of the first straight body portion 12. The inclination angle Θ is preferably 70 degrees or greater and 85 degrees or less.
該傾き角度 Θが 70度以上であれば、第 1コーン部 11の内周面が下方に向かって 急激に拡径することがないため、第 2直胴部 14から第 1コーン部に流入するガスが均 一に広がる。これにより、乾燥用ガスの上昇流が発生しなくなる。 85度以下であれば 、第 2直胴部の内径が大きくならず、第 2直胴部での整流器が大型化しない。  If the inclination angle Θ is 70 degrees or more, the inner peripheral surface of the first cone part 11 will not rapidly expand downward, so that it flows from the second straight body part 14 into the first cone part. Gas spreads evenly. Thereby, the upward flow of the drying gas does not occur. If the angle is 85 degrees or less, the inner diameter of the second straight body portion does not increase, and the rectifier in the second straight body portion does not increase in size.
[0020] 第 1直胴部 12の内径 Dと第 2直胴部 14の内径 Dtとの比(DtZD)は、 0. 6以上、 0 . 8以下が好ましい。 [0020] The ratio (DtZD) of the inner diameter D of the first straight body portion 12 to the inner diameter Dt of the second straight body portion 14 is preferably 0.6 or more and 0.8 or less.
DtZDが 0. 6以上であれば、第 1コーン部に流入する乾燥用ガスが第 1直胴部に 向けて流れる過程で均一に広がる。これにより、乾燥用ガスの上昇流が発生しなくな る。また、前述した第 1コーン部の好ましい角度を満たす場合に、第 1コーン部が長す ぎることがない。 0. 8以下であれば、第 2直胴部の内径が大きくならず、第 2直胴部で の整流器が大型化しない。  If DtZD is 0.6 or more, the drying gas flowing into the first cone part spreads uniformly in the process of flowing toward the first straight body part. As a result, the upward flow of the drying gas is not generated. In addition, when the preferable angle of the first cone portion described above is satisfied, the first cone portion is not too long. If it is 0.8 or less, the inner diameter of the second straight body will not be large, and the rectifier in the second straight body will not be enlarged.
[0021] 噴霧装置 13としては、回転ディスク式、二流体ノズル式、加圧ノズル式等、噴霧乾 燥に用いられる公知の噴霧装置を用いることができる。これらの中では、固体の溶液 または分散液の微粒ィ匕の効率が高いことから、二流体ノズル式、加圧ノズル式等のノ ズル式噴霧装置が好ましぐ二流体ノズル式がより好まし 、。 As the spraying device 13, a known spraying device used for spray drying, such as a rotating disk type, a two-fluid nozzle type, a pressure nozzle type, or the like can be used. Among these, the two-fluid nozzle type is preferred, because the nozzle type spray device such as the two-fluid nozzle type and the pressurized nozzle type is preferred because the efficiency of the solid solution or dispersion fine particles is high. ,.
但し、二流体ノズル式噴霧装置は、噴霧用ガスの吹き出し速度が大きぐ乾燥器内 の乾燥用ガスの流れに強く影響を与え、上昇流を発生させやすい。このため、乾燥 用ガスの平均風速と、噴霧用ガスの平均風速を特定の範囲とすることが必要である。 However, the two-fluid nozzle type spray device is used in the dryer where the blowing speed of the spray gas is large. It strongly affects the flow of drying gas and tends to generate upward flow. For this reason, it is necessary to set the average wind speed of the drying gas and the average wind speed of the atomizing gas within a specific range.
[0022] 本発明にお ヽて、噴霧装置として二流体ノズル式噴霧装置を用いる場合、噴霧口 が備えられた第 2直胴部 14内における乾燥用ガスの断面平均風速 Utと、二流体ノズ ル式噴霧装置の噴霧用ガスの吹き出し断面平均風速 Unとの比(UnZUt)は、 10以 上、 800以下が好ましい。  In the present invention, when a two-fluid nozzle type spray device is used as the spray device, the cross-sectional average wind speed Ut of the drying gas in the second straight body portion 14 provided with the spray port, and the two-fluid nose The ratio (UnZUt) of the spray gas blowing cross-section average wind speed Un of the spray spray device is preferably 10 or more and 800 or less.
UnZUtが 10以上であれば、噴霧用ガスの吹き出し速度が大きぐ微粒化された 粉体が得られる。または、乾燥用ガスの風速が大きすぎず、経済的である。 800以下 であれば、噴霧用ガスの吹き出しによる上昇流力 発生しなくなる。  If UnZUt is 10 or more, a finely divided powder with a high blowing speed of the atomizing gas can be obtained. Or, the wind speed of the drying gas is not too high, which is economical. If it is 800 or less, no upward flow force is generated by spraying the gas for spraying.
UnZUtは 50以上がより好ましい。また、 400以下がより好ましい。  UnZUt is more preferably 50 or more. Moreover, 400 or less is more preferable.
[0023] 二流体ノズル式噴霧装置の噴霧用ガスの吹き出し断面平均風速 Unは、 10 [m/ 秒]以上、 400 [mZ秒]以下が好ましい。 [0023] The average cross-sectional wind speed Un of the spray gas of the two-fluid nozzle type spray device is preferably 10 [m / sec] or more and 400 [mZ sec] or less.
Unが 10[mZ秒]以上であれば、噴霧用ガスの吹き出し速度が大きぐ微粒化され た粉体が得られる。 Un力 00[mZ秒]以下であれば、噴霧用ガスの送風に多大な エネルギーを必要とせず、上昇流が発生しなくなる。  If Un is 10 [mZ seconds] or more, a finely divided powder with a high blowing speed of the atomizing gas can be obtained. If the Un force is less than 00 [mZ seconds], a large amount of energy is not required for blowing the atomizing gas, and no upward flow is generated.
Unは 80 [mZ秒]以上がより好ましい。また、 300 [mZ秒]以下がより好ましい。 第 2直胴部 14内における乾燥用ガスの断面平均風速 Utは、 0. l [mZ秒]以上、 4 . 0[mZ秒]以下が好ましぐ 0. 5 [mZ秒]以上、 2. 0[mZ秒]以下がより好ましい。  Un is more preferably 80 [mZ seconds] or more. Further, 300 [mZ seconds] or less is more preferable. The average cross-sectional wind velocity Ut of the drying gas in the second straight body portion 14 is preferably 0.1 [mZ seconds] or more and 4.0 [mZ seconds] or less, 0.5 [mZ seconds] or more, 2. 0 [mZ seconds] or less is more preferable.
[0024] 本発明における Un及び Utは、使用温度におけるガスの体積流量を断面積で割つ たものを用いる。 Unでは噴霧用ガスの吹き出し部の断面積を用い、 Utでは第 2直月同 部 14の断面積を用いる。 [0024] As Un and Ut in the present invention, those obtained by dividing the volume flow rate of the gas at the use temperature by the cross-sectional area are used. In Un, the cross-sectional area of the spray gas blowing part is used.
また、熱線風速計やピトー管式風速計等、公知の各種風速計を用いて測定するこ とちでさる。  It can also be measured using various known anemometers such as a hot-wire anemometer or a Pitot tube type anemometer.
[0025] 本発明において、噴霧装置 13の噴霧口は、第 2直胴部 14の空間に、固体の溶液 または分散液を均一に噴霧できるように設けることが好ましい。噴霧口が 1つの場合 は、噴霧口の中心部が第 2直胴部 14の中心軸 (第 1直胴部 12の中心軸) P上に位置 するように設けることが好ま U、。  In the present invention, the spray port of the spray device 13 is preferably provided in the space of the second straight body portion 14 so that a solid solution or dispersion can be sprayed uniformly. In the case of a single spray port, it is preferable to provide the spray port so that the center of the spray port is located on the central axis of the second straight body part 14 (the central axis of the first straight body part 12) U.
噴霧口は 2つ以上設けてもよぐさらに複数の噴霧口から、異なる種類の固体の溶 液または分散液が噴霧されるように構成してもよい。噴霧口が 2つ以上の場合は、固 体の溶液または分散液を均一に噴霧するために、第 2直胴部 14の中心軸 Pを中心と した同心円状に、均等な間隔をおいて配置することが好ましい。 Two or more spray ports may be provided, and a plurality of spray ports can be used to dissolve different types of solids. You may comprise so that a liquid or a dispersion liquid may be sprayed. When there are two or more spraying ports, in order to spray a solid solution or dispersion uniformly, they are arranged concentrically around the central axis P of the second straight body part 14 at equal intervals. It is preferable to do.
[0026] 第 1直胴部 12の内径 (D)と第 1直胴部の高さ (H)の比 (HZD)は噴霧装置によつ て異なるが、 0. 6以上、 5以下が好ましい。噴霧装置が回転ディスク式であれば、 0. 6以上、 1以下が好ましい。ノズル式噴霧装置であれば、 3以上、 4以下が好ましい。 直月同部 12の下端に設けられている第 2コーン部 17は、下方に縮径する略円錐状と なっている。第 2コーン部 17の下部は、固体の溶液または分散液を乾燥して得られ た乾燥粒子 (粉体)を排出する粉体排出口 15となって ヽる。  [0026] The ratio (HZD) of the inner diameter (D) of the first straight body portion 12 to the height (H) of the first straight body portion varies depending on the spraying device, but is preferably 0.6 or more and 5 or less. . If the spraying device is a rotating disk type, it is preferably 0.6 or more and 1 or less. In the case of a nozzle type spray device, 3 or more and 4 or less are preferable. The second cone portion 17 provided at the lower end of the same-month portion 12 has a substantially conical shape with a diameter decreasing downward. The lower part of the second cone part 17 serves as a powder discharge port 15 for discharging dry particles (powder) obtained by drying the solid solution or dispersion.
第 2コーン部 17の内周面と、第 1直胴部 12の中心軸 Pに垂直な面とのなす角度 (コ ーン部内周面の傾き角度) βは、特に限定されないが、大きすぎると、粉体排出口 1 5が大きくなりすぎ、粉体回収をするための大規模な設備が必要になる。また、粉体 排出口径を小さくしょうとすると、コーン部が長くなるため好ましくない。 βが小さすぎ ると、乾燥粒子がコーン部力も滑り落ちてこなくなるため好ましくない。従って、 50度 以上、 70度以下が好ましぐ 60度以上、 65度以下がより好ましい。  The angle formed by the inner peripheral surface of the second cone portion 17 and the surface perpendicular to the central axis P of the first straight body portion 12 (the inclination angle of the inner peripheral surface of the cone portion) β is not particularly limited, but is too large As a result, the powder outlet 15 becomes too large, and a large-scale facility for collecting powder is required. Further, it is not preferable to reduce the powder discharge port diameter because the cone portion becomes long. If β is too small, it is not preferable because the dried particles do not slide down the cone force. Therefore, 50 degrees or more and 70 degrees or less are preferable, and 60 degrees or more and 65 degrees or less are more preferable.
[0027] 図 1では、乾燥器 10の外部に捕集手段 50が設けられている。捕集手段 50と第 2コ ーン部 17は、第 2コーン部 17の壁面を貫通して側方に延びる乾燥用ガス排出管 16 を介して連通している。これにより、粉体排出口 15で回収されな力つた粒子径の小さ い粉体が、乾燥用ガスに同伴されて、乾燥用ガス排出管 16から捕集手段 50へ送ら れる。  In FIG. 1, a collecting means 50 is provided outside the dryer 10. The collecting means 50 and the second cone portion 17 communicate with each other via a drying gas discharge pipe 16 that extends sideways through the wall surface of the second cone portion 17. As a result, the powder having a small particle diameter that has not been collected at the powder discharge port 15 is entrained in the drying gas and sent from the drying gas discharge pipe 16 to the collecting means 50.
本発明は、これに限定されるものではなぐ乾燥用ガス排出管 16は、第 1直胴部 12 の壁面や、第 1直胴部 12と第 2コーン部 17の境界を含む壁面を貫通していても良い また、図 2のように、第 2コーン部 17の下部に乾燥用ガス排出管 16が直接に連通し ている場合や、図 3のように、第 2コーン部 17の下部に粉体排出口 15を有する短管 を連通させ、該短管に乾燥用ガス排出管を連通させても良い。  The present invention is not limited to this, and the drying gas discharge pipe 16 penetrates the wall surface of the first straight body portion 12 and the wall surface including the boundary between the first straight body portion 12 and the second cone portion 17. Also, as shown in Fig. 2, when the drying gas discharge pipe 16 is in direct communication with the lower part of the second cone part 17, or as shown in Fig. 3, the lower part of the second cone part 17 A short pipe having the powder discharge port 15 may be communicated, and the drying gas discharge pipe may be communicated with the short pipe.
[0028] 捕集手段 50は、乾燥用ガス排出管 16から排出された乾燥用ガス中から、乾燥粒 子を分離して回収する装置である。捕集手段 50としては、例えば、サイクロン、バグフ ィルタ、スクラバー等が挙げられる。これらは、 1種を単独で用いてもよぐ 2種以上を 併用してちょい。 [0028] The collection means 50 is a device that separates and collects dry particles from the drying gas discharged from the drying gas discharge pipe 16. Examples of the collecting means 50 include a cyclone and a baggage. Examples include a filter and a scrubber. These can be used alone or in combination of two or more.
例えば、図 1では、乾燥用ガス排出管 16はサイクロン 30に接続されている。粉体排 出口 15から排出されな力つた粒子径の小さい粉体は、乾燥用ガスと共にサイクロン 3 0に流入する。サイクロン 30に流入された粉体のうち、比較的大きい粒子は、サイクロ ン 30の下部に設けられた粉体回収口 31力ら回収される。比較的粒子径が小さい残 りの粉体は、乾燥用ガスと共にサイクロン 30の頭部に設けられた排出口 32から排出 される。  For example, in FIG. 1, the drying gas discharge pipe 16 is connected to a cyclone 30. The fine powder having a small particle diameter that is not discharged from the powder discharge port 15 flows into the cyclone 30 together with the drying gas. Of the powder flowing into the cyclone 30, relatively large particles are collected from the powder collecting port 31 provided at the lower part of the cyclone 30. The remaining powder having a relatively small particle size is discharged from a discharge port 32 provided in the head of the cyclone 30 together with the drying gas.
サイクロン 30の排出口 32は、配管 70を介してバグフィルタ 40に接続されている。サ イクロン 30の粉体回収口 31から回収されな力つた粒子径の小さい粉体は、乾燥用ガ スと共にバグフィルタ 40に流入する。バグフィルタ 40では、残りのすべての粉体が捕 集され、乾燥用ガスのみがバグフィルタ 40の排出管 80から排出される。  The discharge port 32 of the cyclone 30 is connected to the bag filter 40 via the pipe 70. The powder having a small particle diameter collected from the powder collection port 31 of the cyclone 30 flows into the bag filter 40 together with the drying gas. In the bag filter 40, all the remaining powder is collected, and only the drying gas is discharged from the discharge pipe 80 of the bag filter 40.
[0029] 図 1では、捕集手段 50はサイクロン 30とバグフィルタ 40と力も概略構成されている 力 本発明はこれに限定されるものではない。 In FIG. 1, the collecting means 50 includes a cyclone 30 and a bag filter 40, and the force is also schematically configured. The present invention is not limited to this.
排出管 80から排出された乾燥用ガスには粉体が含有されていないので、この排出 ガスの一部もしくは全部を再度加熱して、乾燥器 10に供給する乾燥用ガスとして再 利用することができる。なお、乾燥用ガスの少なくとも一部を循環させて再利用する場 合には、必要に応じて冷却操作等を行ない、乾燥によって気化した成分を循環経路 力も排出させることが好まし 、。  Since the drying gas discharged from the discharge pipe 80 does not contain powder, part or all of this exhaust gas can be reheated and reused as the drying gas supplied to the dryer 10. it can. In the case where at least part of the drying gas is circulated and reused, it is preferable to perform a cooling operation or the like as necessary to discharge the components vaporized by the drying also in the circulation path force.
[0030] 本発明にお 、て噴霧乾燥の対象である固体の溶液または分散液は、特に限定さ れるものではない。噴霧装置により微粒ィ匕が可能であり、乾燥器内で溶媒や分散媒 を揮発させることが可能であり、乾燥粒子を得ることができるものであれば、噴霧乾燥 の対象とすることができる。例えば、食品、医薬品、洗剤や肥料等の合成化学品、合 成榭脂、顔料やセラミック等の無機材料等の溶液または分散液が使用できる。溶媒 や分散媒にも制限はなぐ例えば、水や溶剤等が使用できる。 [0030] In the present invention, the solid solution or dispersion to be spray-dried is not particularly limited. Any spraying device can be used as long as it can form fine particles, volatilize a solvent or dispersion medium in a drier, and can obtain dry particles. For example, solutions or dispersions of foods, pharmaceuticals, synthetic chemicals such as detergents and fertilizers, synthetic resin, inorganic materials such as pigments and ceramics can be used. There are no restrictions on the solvent and the dispersion medium. For example, water or a solvent can be used.
本発明は、乾燥用ガスの上昇流の発生を防止し、上昇流に同伴された乾燥粒子の 乾燥器の内壁及び噴霧装置への付着を防止する。これにより、乾燥粒子の熱による 変質を防止できるため、食品、医薬品、及び合成樹脂に対して好適である。 本発明で用いる固体の溶液または分散液は、重合体ラテックスであることが好まし い。本発明の噴霧乾燥方法により重合体粉体を得ることが、より好適である。 The present invention prevents the generation of an upward flow of drying gas and prevents the dry particles accompanying the upward flow from adhering to the inner wall of the dryer and the spraying device. As a result, the dry particles can be prevented from being deteriorated by heat, which is suitable for foods, pharmaceuticals, and synthetic resins. The solid solution or dispersion used in the present invention is preferably a polymer latex. It is more preferable to obtain a polymer powder by the spray drying method of the present invention.
[0031] 本発明における重合体ラテックスとしては、例えば、芳香族ビニル単量体、シアン化 ビニル単量体、不飽和酸単量体、(メタ)アクリル酸エステル単量体等の単量体を、単 独重合または共重合して得られる重合体ラテックス;前記の単量体を用いてシード重 合またはグラフト重合して得られる重合体ラテックス等が挙げられる。  [0031] Examples of the polymer latex in the present invention include monomers such as aromatic vinyl monomers, vinyl cyanide monomers, unsaturated acid monomers, and (meth) acrylic acid ester monomers. And polymer latex obtained by homopolymerization or copolymerization; polymer latex obtained by seed polymerization or graft polymerization using the above-mentioned monomers.
また、ジェン系共重合体、アクリル系ゴム質重合体、シリコーン系ゴム質重合体等の ゴム質重合体に、芳香族ビュル単量体、シアン化ビュル単量体、(メタ)アクリル酸ェ ステル単量体等をグラフト重合して得られる重合体ラテックスも挙げられる。  In addition, rubber polymers such as gen-based copolymers, acrylic rubber polymers, and silicone rubber polymers can be used in addition to aromatic bulle monomers, cyanated butyl monomers, and (meth) acrylic acid esters. Examples also include polymer latex obtained by graft polymerization of monomers and the like.
[0032] これらの重合体ラテックスの重合方法としては、公知の乳化重合法等を用いること ができる。  [0032] As a method for polymerizing these polymer latexes, a known emulsion polymerization method or the like can be used.
重合開始剤としては、例えば、過硫酸塩、有機過酸化物、ァゾィ匕合物、前記過硫 酸塩と還元剤の組み合わせからなるレドックス系開始剤、前記有機化酸化物と還元 剤の組み合わせ力 なるレドックス系開始剤等が挙げられる。  Examples of the polymerization initiator include persulfates, organic peroxides, azo compounds, redox initiators composed of a combination of the persulfate and a reducing agent, and the combination power of the organic oxide and the reducing agent. The redox type | system | group initiator etc. which become are mentioned.
乳化剤としては、例えば、ァニオン系乳化剤、ノニオン系乳化剤、カチオン系乳化 剤等が挙げられる。  Examples of the emulsifier include an anionic emulsifier, a nonionic emulsifier, and a cationic emulsifier.
また、重合体ラテックスの重合には、ジビュルベンゼン、 1, 3—ブチレンジメタクリレ ート、ァリルメタタリレート、グリシジルメタタリレートなどの架橋剤や、メルカプタン類、 テレペン類等の連鎖移動剤を用いることもできる。  For polymer latex polymerization, cross-linking agents such as dibutenebenzene, 1,3-butylene dimethacrylate, allyl methacrylate, glycidyl methacrylate, chain transfer of mercaptans, terpenes, etc. An agent can also be used.
[0033] 乾燥器 10内に供給される乾燥用ガスは、特に限定されるものではないが、空気、 窒素、二酸ィ匕炭素等を例示することができる。また、水蒸気を含有するガスを用いて もよい。但し、水蒸気を含有するガスを用いる場合には、乾燥器 10内で結露が発生 しないように、乾燥用ガスの水蒸気圧を、乾燥器 10内の飽和水蒸気圧よりも低くなる ように設定する必要がある。  [0033] The drying gas supplied into the dryer 10 is not particularly limited, and examples thereof include air, nitrogen, and carbon dioxide. Further, a gas containing water vapor may be used. However, when using gas containing water vapor, it is necessary to set the water vapor pressure of the drying gas to be lower than the saturated water vapor pressure in the dryer 10 so that condensation does not occur in the dryer 10. There is.
乾燥用ガスの温度は、乾燥させる固体の溶液または分散液の性質に応じて適宜設 定される。合成樹脂の重合体ラテックスの場合であれば、一般的には、乾燥器 10の 入口温度、具体的には、乾燥用ガス供給管 20からガス供給口 14aを通じて供給され る乾燥用ガスの温度は、 100°C以上、 400°C以下が好ましぐ 120°C以上、 300°C以 下がより好ましい。 The temperature of the drying gas is appropriately set according to the properties of the solid solution or dispersion to be dried. In the case of a synthetic resin polymer latex, generally, the inlet temperature of the dryer 10, specifically, the temperature of the drying gas supplied from the drying gas supply pipe 20 through the gas supply port 14a is 100 ° C or higher, 400 ° C or lower is preferred 120 ° C or higher, 300 ° C or lower The lower is more preferable.
乾燥器 10の出口温度、具体的には乾燥用ガス排出管 16を通る乾燥用ガスの温度 は、 60°C以上、 80°C以下が好ましぐ 65°C以上、 75°C以下がより好ましい。  The outlet temperature of the dryer 10, specifically the temperature of the drying gas passing through the drying gas discharge pipe 16, is preferably 60 ° C or higher and 80 ° C or lower, more preferably 65 ° C or higher and 75 ° C or lower. preferable.
[0034] 乾燥器 10は、本実施形態のものに限らず、本発明の範囲内で適宜設計の変更が 可能である。 The dryer 10 is not limited to the one in the present embodiment, and the design can be changed as appropriate within the scope of the present invention.
噴霧装置 13の噴霧口を設ける位置は、第 2直胴部の空間内であれば特に制限は ない。本実施例においては、噴霧装置 13の噴霧口を第 1コーン部 11と第 2直胴部 1 4との境界部近傍に設けた力 これに限定されるものではない。  The position where the spray port of the spray device 13 is provided is not particularly limited as long as it is within the space of the second straight body portion. In the present embodiment, the force provided in the vicinity of the boundary between the first cone portion 11 and the second straight body portion 14 is not limited to this.
[0035] 本実施形態の噴霧乾燥方法によれば、噴霧装置 13の噴霧口近傍での乾燥用ガス の上昇流を防ぐことができるため、乾燥器 10の内壁および噴霧装置 13への粉体の 付着を防止することができる。その結果、長時間の安定した連続運転が可能であり、 乾燥粒子の回収率が高い。 [0035] According to the spray drying method of the present embodiment, the upward flow of the drying gas in the vicinity of the spray port of the spray device 13 can be prevented, so that the powder on the inner wall of the dryer 10 and the spray device 13 can be prevented. Adhesion can be prevented. As a result, stable continuous operation for a long time is possible, and the recovery rate of dry particles is high.
また、上昇流に同伴される乾燥粒子がなくなり、乾燥器 10内での粉体の滞在時間 力 乾燥粒子の粒子径に関わらず一定となる。これにより、噴霧装置 13から噴霧され る液滴径の分布に応じた、乾燥粒子の粒径分布が得られる。これは、乾燥粒子の粒 径分布を制御する際に好適である。  Also, the dry particles entrained in the upward flow disappear, and the residence time of the powder in the dryer 10 is constant regardless of the particle size of the dry particles. Thereby, the particle size distribution of the dry particles according to the distribution of the droplet size sprayed from the spray device 13 is obtained. This is suitable for controlling the particle size distribution of the dry particles.
さらに、乾燥器 10内での滞在時間が一定であれば、安定した物性を有する乾燥粒 子が得られると共に、乾燥粒子が乾燥用ガスに必要以上にさらされることがなくなる。 これにより、乾燥粒子が必要以上の熱履歴を受けることがなくなり、乾燥粒子の持つ 性能を充分に発揮させることができる。  Furthermore, if the residence time in the dryer 10 is constant, dry particles having stable physical properties can be obtained, and the dry particles are not exposed to the drying gas more than necessary. As a result, the dry particles do not receive an excessive heat history, and the performance of the dry particles can be fully exhibited.
実施例  Example
[0036] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限 定されるものではない。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
以下において、特に断りがない限り、「部」は質量部であり、「%」は質量%である。  Hereinafter, unless otherwise specified, “part” is part by mass, and “%” is mass%.
[0037] <重合体ラテックスの固形分 >  <Solid content of polymer latex>
以下の手順により、重合体ラテックスの固形分を測定した。  The solid content of the polymer latex was measured by the following procedure.
1 :電子天秤を用いて、アルミ皿の質量を測定する (質量 1)  1: Using an electronic balance, measure the mass of the aluminum pan (mass 1)
2:重合体ラテックス約 10gをアルミ皿に取り、全体の質量を測定する (質量 2) 3 :熱風乾燥機を用い、上記の試料を 120°Cで 2時間乾燥させる。 2: About 10g of polymer latex is placed in an aluminum pan and the total mass is measured (mass 2) 3: Dry the above sample at 120 ° C for 2 hours using a hot air dryer.
4 :乾燥後の試料をデシケーターに取り、冷却する。  4: Take the dried sample in a desiccator and cool.
5 :冷却後の試料の質量を測定する (質量 3)  5: Measure the mass of the sample after cooling (Mass 3)
6 :以下の計算により、重合体ラテックスの固形分を算出する。  6: The solid content of the polymer latex is calculated by the following calculation.
重合体ラテックスの固形分 = (質量 2—質量 1)Z (質量 3—質量 1) X 100[%] Solid content of polymer latex = (mass 2—mass 1) Z (mass 3—mass 1) X 100 [%]
[0038] <重合体ラテックスの質量平均粒子径 > <0038> <Mass average particle diameter of polymer latex>
以下の手順により、重合体ラテックスの質量平均粒子径を測定した。  The mass average particle diameter of the polymer latex was measured by the following procedure.
得られたラテックスを脱イオン水で希釈し、レーザー回折散乱式粒度分布測定装置 (LA- 910 :堀場製作所 (株)製)を用いて測定した。  The obtained latex was diluted with deionized water and measured using a laser diffraction / scattering particle size distribution analyzer (LA-910: manufactured by Horiba, Ltd.).
[0039] <製造例 1 >  [0039] <Production Example 1>
重合体ラテックス (A)の製造:  Production of polymer latex (A):
温度計、冷却管、窒素導入管、攪拌翼を備えたセパラブルフラスコに、下記の原料 混合物を仕込み、窒素置換を行なった後、攪拌しながら昇温を開始した。  The following raw material mixture was charged into a separable flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring blade, and after replacing with nitrogen, heating was started while stirring.
原料混合物:  Raw material mixture:
ァルケ-ルコハク酸ジカリウム 1部  1 part of dialkyl potassium succinate
メチノレメタクリレー卜 80咅  Methinoreme Relay 卜 80 咅
ブチノレアクリレー卜 20咅  Butinoreak relay 卜 20 咅
n—ォクチルメルカプタン 0. 03部  n—Octyl mercaptan 0.03
脱イオン水 260部  260 parts deionized water
[0040] フラスコ内の温度が 45°Cに到達した時点で、下記の開始剤混合物をフラスコ内に 投入し、重合を開始した。 69°Cで 2時間保持し、重合を終了させた。  [0040] When the temperature in the flask reached 45 ° C, the following initiator mixture was charged into the flask to initiate polymerization. The polymerization was terminated by maintaining at 69 ° C for 2 hours.
開始剤混合物:  Initiator mixture:
過硫酸カリウム 2. 0部  Potassium persulfate 2.0 parts
脱イオン水 10部  10 parts deionized water
[0041] 得られた重合体ラテックス (A)の固形分は 26. 9%、質量平均粒子径は 90nmであ つた o  [0041] The obtained polymer latex (A) had a solid content of 26.9% and a mass average particle size of 90 nm.
[0042] <製造例 2>  [0042] <Production example 2>
重合体ラテックス (B)の製造: 温度計、冷却管、窒素導入管、攪拌翼を備えたセパラブルフラスコに、下記の原料 混合物を仕込み、窒素置換を行なった後、攪拌しながら昇温を開始した。 Production of polymer latex (B): The following raw material mixture was charged into a separable flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring blade, and after replacing with nitrogen, heating was started while stirring.
原料混合物:  Raw material mixture:
ラウリル硫酸ナトリウム 0. 0017部  Sodium lauryl sulfate 0. 0017 parts
(エマール 2Fニードル:花王 (株)製)  (Emar 2F Needle: manufactured by Kao Corporation)
メチルメタクジレー卜 11. 9部  Methyl meta whale bowl 9.
ブチルメタタリレート 5. 1部  Butyl metatalate 5. 1 part
脱イオン水 52. 9部  Deionized water 52.9 parts
[0043] フラスコ内の温度が 80°Cに到達した時点で、下記の開始剤混合物をフラスコ内に 投入し、重合を開始した。  [0043] When the temperature in the flask reached 80 ° C, the following initiator mixture was charged into the flask to initiate polymerization.
開始剤混合物:  Initiator mixture:
過硫酸カリウム 0. 006部  Potassium persulfate 0.006 parts
脱イオン水 4部  4 parts of deionized water
[0044] 重合開始力も 45分後に、下記の乳化分散液を、フラスコ内に 100分かけて滴下し た。乳化分散液の滴下中は、フラスコの内温を 80°C以上、 81°C以下の範囲に温度 調整した。乳化分散液の滴下終了後、 80°Cで 90分間保持し、重合を終了させた。 乳化分散液:  [0044] 45 minutes later, the following emulsion dispersion was dropped into the flask over 100 minutes. During the dropwise addition of the emulsified dispersion, the temperature inside the flask was adjusted to a range of 80 ° C or higher and 81 ° C or lower. After completion of the dropwise addition of the emulsified dispersion, the temperature was maintained at 80 ° C. for 90 minutes to complete the polymerization. Emulsified dispersion:
ラウリル硫酸ナトリウム 0. 23部  Sodium lauryl sulfate 0.23 parts
(エマール 2Fニードル:花王 (株)製)  (Emar 2F Needle: manufactured by Kao Corporation)
メチルメタクジレー卜 58. 1部  Methyl meta whale bowl 58. 1 part
ブチルメタタリレート 24. 9部  Butyl metatalylate 24. 9 parts
脱イオン水 40. 9部  Deionized water 40. 9 parts
(上記の原料混合物を、 TKホモミキサー (特殊機化工業 (株)製)を用いて、 3000r pmで 1分間混合して調整した)  (The above raw material mixture was prepared by mixing for 1 minute at 3000 rpm using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.))
[0045] 得られた重合体ラテックスの固形分は 50. 4%、質量平均粒子径は 540nmであつ た。 [0045] The polymer latex obtained had a solid content of 50.4% and a mass average particle size of 540 nm.
噴霧乾燥条件が重合体ラテックス (A)と同じになるように、得られた重合体ラテック スを脱イオン水で希釈して固形分を 26. 9%に調整した。これを重合体ラテックス (B) とする。 The resulting polymer latex was diluted with deionized water to adjust the solid content to 26.9% so that the spray drying conditions were the same as for the polymer latex (A). This is a polymer latex (B) And
[0046] <実施例 1 > <Example 1>
得られた重合体ラテックス (A)を用い、図 1に示す構成の噴霧乾燥器を用いて噴霧 乾燥した。  The obtained polymer latex (A) was spray dried using a spray dryer having the structure shown in FIG.
用いた噴霧乾燥器は、第 1直胴部 12の内径 (D)が 0. 4m、第 1直胴部の高さ (H) が 1. 25mである。  The spray dryer used had an inner diameter (D) of the first straight body 12 of 0.4 m and a height (H) of the first straight body 12 of 1.25 m.
第 1コーン部 11の傾き角度( Θ )、第 2直胴部 14の内径 (Dt)は、表 1に示す通りで ある。  The inclination angle (Θ) of the first cone portion 11 and the inner diameter (Dt) of the second straight body portion 14 are as shown in Table 1.
整流器 18として、孔径 3. Omm、ピッチ 5. Omm,孔形状は丸、厚み 2. Ommの 60 度千鳥抜きのパンチングプレートを用いた。噴霧装置 13として、二流体ノズル (BIMJ 20075: V、けうち (株)製)を用いた。  As the rectifier 18, a punching plate having a hole diameter of 3. Omm, a pitch of 5. Omm, a hole shape of a circle and a thickness of 2. Omm and a 60 ° staggered punching plate was used. As the spraying device 13, a two-fluid nozzle (BIMJ 20075: V, manufactured by Keuchi Co., Ltd.) was used.
[0047] 乾燥用ガスには、大気を熱風発生装置 (TSK 41:竹綱製作所製)により加熱した ものを用いた。乾燥用ガスの入口温度(乾燥用ガス供給管 20の出口から出るガスの 温度)は 150°Cである。噴霧乾燥中の、乾燥用ガスの出口温度(乾燥用ガス排出管 1 6を通る乾燥用ガスの温度)は 70°Cであった。 [0047] As the drying gas, an air heated by a hot air generator (TSK 41: manufactured by Takezuna Seisakusho) was used. The inlet temperature of the drying gas (the temperature of the gas exiting from the outlet of the drying gas supply pipe 20) is 150 ° C. During spray drying, the outlet temperature of the drying gas (temperature of the drying gas passing through the drying gas discharge pipe 16) was 70 ° C.
乾燥用ガス供給口 14aから乾燥器 10内に導入される乾燥用ガスの風量は、表 1に 示す通りである。  Table 1 shows the air volume of the drying gas introduced into the dryer 10 from the drying gas supply port 14a.
[0048] 先ず、乾燥用ガス供給管 20から、乾燥器 10内に乾燥用ガスを供給し、乾燥器 10 内に乾燥用ガスが充満した状態とした。重合体ラテックス (A)をローラーポンプ (RP NB:古江サイエンス (株)製)を用いて、 120mlZ分の流量で噴霧装置 13に供給 した。また、微粒化用の空気を、圧力 0. 4MPaに調整して噴霧装置 13に供給した。 このときの、噴霧用ガスの吹き出し断面平均風速 Unは、表 1に示す通りである。 噴霧口の位置は、第 2直胴部 14と第 1コーン部 11の境界面より 100mm上方である こうして、空気と混合された重合体ラテックス (A)を、乾燥器下方に向カゝつて噴霧し て重合体粉体を得た。噴霧乾燥器の運転は、 3時間連続して行なった。  [0048] First, the drying gas was supplied from the drying gas supply pipe 20 into the dryer 10, and the dryer 10 was filled with the drying gas. The polymer latex (A) was supplied to the spray device 13 at a flow rate of 120 mlZ using a roller pump (RP NB: manufactured by Furue Science Co., Ltd.). Further, the atomizing air was adjusted to a pressure of 0.4 MPa and supplied to the spraying device 13. At this time, the average wind speed Un of the spray gas blowing cross section is as shown in Table 1. The position of the spraying port is 100 mm above the boundary surface between the second straight body part 14 and the first cone part 11.Thus, the polymer latex (A) mixed with air is sprayed downward toward the bottom of the dryer. Thus, a polymer powder was obtained. The spray dryer was operated continuously for 3 hours.
[0049] なお、重合体ラテックス (A)を噴霧する前の準備段階として、水の噴霧工程を設け た。この、水の噴霧工程中に、第 2直胴部 14内における乾燥用ガスの断面平均風速 utを、熱線風速計を用いて測定した。結果を表 1に示す。 [0049] As a preparatory step before spraying the polymer latex (A), a water spraying step was provided. During this water spraying process, the cross-sectional average wind speed of the drying gas in the second straight body 14 ut was measured using a hot wire anemometer. The results are shown in Table 1.
[0050] 乾燥器 10内における上昇流の発生の有無、乾燥器 10の内壁及び噴霧装置への 粉体の付着の有無を、後述の方法で評価した。結果を表 1に示す。 [0050] The presence / absence of the upward flow in the dryer 10 and the presence / absence of powder adhering to the inner wall of the dryer 10 and the spraying device were evaluated by the methods described below. The results are shown in Table 1.
[0051] <実施例 2> <Example 2>
乾燥用ガスの風量を 5. 2m3Z分に変更した以外は、実施例 1と同様にして重合体 ラテックス (A)の噴霧乾燥を行なった。結果を表 1に示す。 The polymer latex (A) was spray-dried in the same manner as in Example 1 except that the air volume of the drying gas was changed to 5.2 m 3 Z. The results are shown in Table 1.
[0052] <実施例 3 > <Example 3>
第 2直胴部 14の内径 Dtを 0. 174mに変更した以外は、実施例 1と同様にして重合 体ラテックス (A)の噴霧乾燥を行なった。結果を表 1に示す。  The polymer latex (A) was spray-dried in the same manner as in Example 1 except that the inner diameter Dt of the second straight body portion 14 was changed to 0.174 m. The results are shown in Table 1.
[0053] <実施例 4> <Example 4>
第 1コーン部の内周面の傾き角度 Θを 60度に変更した以外は、実施例 1と同様に して重合体ラテックス (A)の噴霧乾燥を行なった。結果を表 1に示す。  The polymer latex (A) was spray-dried in the same manner as in Example 1 except that the inclination angle Θ of the inner peripheral surface of the first cone portion was changed to 60 degrees. The results are shown in Table 1.
[0054] <比較例 1 > <Comparative Example 1>
整流器 18 (パンチングプレート)を取外したこと以外は、実施例 1と同様にして重合 体ラテックス (A)の噴霧乾燥を行なった。結果を表 1に示す。  The polymer latex (A) was spray-dried in the same manner as in Example 1 except that the rectifier 18 (punching plate) was removed. The results are shown in Table 1.
[0055] <比較例 2> [0055] <Comparative Example 2>
噴霧装置 13の噴霧口の位置を第 1コーン部の中央とした以外は、実施例 1と同様 にして重合体ラテックス (A)の噴霧乾燥を行なった。結果を表 1に示す。  The polymer latex (A) was spray-dried in the same manner as in Example 1 except that the position of the spray port of the spray device 13 was set at the center of the first cone portion. The results are shown in Table 1.
[0056] [表 1] [0056] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
[0057] <実施例 5 >  <Example 5>
実施例 1と同様の方法で、重合体ラテックス (B)の噴霧乾燥を行なった。得られた 重合体粉体 (超音波照射前)の、質量平均粒子径 1 m未満の粒子の比率は 3. 2% であった。 In the same manner as in Example 1, the polymer latex (B) was spray-dried. The ratio of particles with mass average particle diameter of less than 1 m in the obtained polymer powder (before ultrasonic irradiation) is 3.2% Met.
乾燥器 10内における上昇流の発生の有無、乾燥器 10の内壁及び噴霧装置への 粉体の付着の有無、得られた重合体粉体の解砕性を、後述の方法で評価した。結果 を表 2に示す。  The presence or absence of the upward flow in the dryer 10, the presence or absence of powder adhering to the inner wall of the dryer 10 and the spraying device, and the crushability of the resulting polymer powder were evaluated by the methods described below. The results are shown in Table 2.
[0058] <実施例 6 > <Example 6>
乾燥用ガスの風量を 5. 2m3Z分に変更した以外は、実施例 5と同様にして重合体 ラテックス (B)の噴霧乾燥を行なった。得られた重合体粉体 (超音波照射前)の、質 量平均粒子径 1 μ m未満の粒子の比率は 3. 8%であった。 The polymer latex (B) was spray-dried in the same manner as in Example 5 except that the air volume of the drying gas was changed to 5.2 m 3 Z. The ratio of particles having a mass average particle diameter of less than 1 μm in the obtained polymer powder (before ultrasonic irradiation) was 3.8%.
結果を表 2に示す。  The results are shown in Table 2.
[0059] <実施例 7 > <Example 7>
第 2直胴部 14の内径 Dtを 0. 174mに変更した以外は、実施例 5と同様にして重合 体ラテックス (B)の噴霧乾燥を行なった。得られた重合体粉体 (超音波照射前)の、 質量平均粒子径 1 μ m未満の粒子の比率は 3. 8%であった。 The polymer latex (B) was spray-dried in the same manner as in Example 5 except that the inner diameter Dt of the second straight body portion 14 was changed to 0.174 m. The ratio of particles having a mass average particle diameter of less than 1 μm in the obtained polymer powder (before ultrasonic irradiation) was 3.8%.
結果を表 2に示す。  The results are shown in Table 2.
[0060] <実施例 8 > [0060] <Example 8>
第 1コーン部の内周面の傾き角度 Θを 60度に変更した以外は、実施例 5と同様に して重合体ラテックス (B)の噴霧乾燥を行なった。得られた重合体粉体 (超音波照射 前)の、質量平均粒子径 1 μ m未満の粒子の比率は 2. 9%であった。  The polymer latex (B) was spray-dried in the same manner as in Example 5 except that the inclination angle Θ of the inner peripheral surface of the first cone portion was changed to 60 degrees. The ratio of particles having a mass average particle diameter of less than 1 μm in the obtained polymer powder (before ultrasonic irradiation) was 2.9%.
結果を表 2に示す。  The results are shown in Table 2.
[0061] <比較例 3 > [0061] <Comparative Example 3>
整流器 18 (パンチングプレート)を取外したこと以外は、実施例 5と同様にして重合 体ラテックス (B)の噴霧乾燥を行なった。得られた重合体粉体 (超音波照射前)の、 質量平均粒子径 1 μ m未満の粒子の比率は 2. 4%であった。 The polymer latex (B) was spray-dried in the same manner as in Example 5 except that the rectifier 18 (punching plate) was removed. The ratio of particles with a mass average particle diameter of less than 1 μm in the obtained polymer powder (before ultrasonic irradiation) was 2.4%.
結果を表 2に示す。  The results are shown in Table 2.
[0062] <比較例 4 > [0062] <Comparative Example 4>
噴霧装置 13の噴霧口の位置を第 1コーン部の中央とした以外は、実施例 5と同様 にして重合体ラテックス (B)の噴霧乾燥を行なった。得られた重合体粉体 (超音波照 射前)の、質量平均粒子径 1 μ m未満の粒子の比率は 4. 3%であった。 結果を表 2に示す。 The polymer latex (B) was spray-dried in the same manner as in Example 5 except that the position of the spray port of the spray device 13 was set at the center of the first cone portion. In the obtained polymer powder (before ultrasonic irradiation), the ratio of particles having a mass average particle diameter of less than 1 μm was 4.3%. The results are shown in Table 2.
[0063] [表 2]  [0063] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
[0064] 各実施例及び比較例における評価項目は、以下の通りである。  [0064] Evaluation items in the examples and comparative examples are as follows.
<乾燥器内における上昇流の発生の有無 >  <Presence or absence of upward flow in the dryer>
乾燥用ガスの導入中に、乾燥器 10内にスモークテスターを用いて連続的に煙を流 し込み、乾燥器 10内における乾燥用ガスの流動状態を目視により観察した。  During the introduction of the drying gas, smoke was continuously poured into the dryer 10 using a smoke tester, and the flow state of the drying gas in the dryer 10 was visually observed.
噴霧装置 13の噴霧口のある断面(第 1直胴部 12の中心軸 Pに垂直な面)での、上 昇流の発生の有無を、下記の判定基準に基づいて評価した。  The presence or absence of upward flow in the cross-section of the spray device 13 where the spray port is located (the surface perpendicular to the central axis P of the first straight body 12) was evaluated based on the following criteria.
判定基準:  Judgment criteria:
A:上昇流がまったく発生しない。  A: No upward flow is generated.
B :瞬間的にわずかな上昇流がたびたび発生するが、下降流が主体である。  B: Slight upflows occur momentarily, but downflows are the main component.
C:定常的に上昇流が発生して 、る。  C: Upward flow is constantly generated.
[0065] <乾燥器の内壁及び噴霧装置への粉体の付着の有無 > [0065] <Presence or absence of powder adhering to the inner wall of the dryer and the spraying device>
噴霧乾燥終了後に、乾燥器 10内を目視により観察し、乾燥機の内壁及び噴霧装 置への粉体の付着を、下記の判定基準に基づ 、て評価した。  After the spray drying, the inside of the dryer 10 was visually observed, and the adhesion of the powder to the inner wall of the dryer and the spray device was evaluated based on the following criteria.
判定基準:  Judgment criteria:
A:粉体が全く付着して 1、な 、。  A: The powder is completely attached.
B :粉体が付着しているが、付着した粉体の厚みは、運転時間の経過に伴って増加 していない。  B: Powder is adhered, but the thickness of the adhered powder does not increase with the passage of operating time.
C:粉体が付着しており、付着した粉体が落下するくらレ、厚く付着してレ、る。  C: The powder is adhered, and the adhered powder falls and thickly adheres.
[0066] <重合体粉体の解碎性 > [0066] <Unwindability of polymer powder>
得られた重合体粉体を脱イオン水に分散させ、レーザー回折散乱式粒度分布測定 装置 (LA— 910:堀場製作所 (株)製)を用い、超音波照射 (40W X 5分)後の、質量 平均粒子径 1 μ m未満の粒子の比率 [%]を測定した。 The obtained polymer powder was dispersed in deionized water, and after ultrasonic irradiation (40W x 5 minutes) using a laser diffraction / scattering particle size distribution analyzer (LA-910: manufactured by HORIBA, Ltd.) mass The ratio [%] of particles having an average particle diameter of less than 1 μm was measured.
脱イオン水に分散させる重合体粉体の量は、レーザー回折散乱式粒度分布測定 装置の最適計測範囲となるように適宜調整した。重合体粉体の解砕性を、下記の判 定基準に基づ 、て評価した。  The amount of the polymer powder dispersed in deionized water was appropriately adjusted so as to be within the optimum measurement range of the laser diffraction / scattering particle size distribution measuring apparatus. The pulverizability of the polymer powder was evaluated based on the following criteria.
A : 35%を超える (分散性が良好な状態)  A: Over 35% (Good dispersibility)
B : 25%以上、 35%以下 (分散性が満足できる状態)  B: 25% or more, 35% or less (dispersion is satisfactory)
C: 25%未満 (分散性が低下し、品質に問題がある状態)  C: Less than 25% (Dispersibility is low and quality is a problem)
[0067] 表 1、 2の結果より、実施例 1、 2及び実施例 5、 6では、乾燥器 10内における上昇流 の発生が見られな力つた。また、乾燥器 10の内壁及び噴霧装置への粉体の付着も 見られなかった。 [0067] From the results of Tables 1 and 2, in Examples 1 and 2 and Examples 5 and 6, the generation of the upward flow in the dryer 10 was not observed. Also, no powder adhered to the inner wall of the dryer 10 and the spraying device.
実施例 5、 6で得られた重合体粉体は、超音波照射 (40W X 5分)後の、質量平均 粒子径 1 μ m未満の粒子の比率が 47. 0%、 46. 3%であり、解砕性が良好であった  In the polymer powders obtained in Examples 5 and 6, the ratio of particles having a mass average particle diameter of less than 1 μm after ultrasonic irradiation (40 W × 5 minutes) was 47.0% and 46.3%. There was good crushability
[0068] Dt,Dを 0. 435とした実施例 3、実施例 7では、噴霧装置 13の噴霧口のある断面 で、瞬間的にわず力な上昇流がたびたび発生した。この上昇流に同伴した重合体粉 体が、噴霧装置近傍に到達したが、付着した粉体の厚みは、運転時間の経過に伴つ て増加することはな力つた。 [0068] In Example 3 and Example 7 in which Dt and D were set to 0.435, a strong upward flow was frequently generated instantaneously on the cross section of the spray device 13 where the spray port was provided. The polymer powder accompanying the upward flow reached the vicinity of the spraying device, but the thickness of the adhered powder did not increase with the lapse of operating time.
実施例 7で得られた重合体粉体は、超音波照射 (40W X 5分)後の、質量平均粒 子径 1 μ m未満の粒子の比率が 30. 5%であった。  In the polymer powder obtained in Example 7, the ratio of particles having a mass average particle diameter of less than 1 μm after ultrasonic irradiation (40 W × 5 minutes) was 30.5%.
[0069] 第 1コーン部の内周面の傾き角度 Θを 60度とした実施例 4、実施例 8では、噴霧装 置 13の噴霧口のある断面で、瞬間的にわずかな上昇流がたびたび発生した。この 上昇流に同伴した重合体粉体が、噴霧装置近傍に到達したが、付着した粉体の厚 みは、運転時間の経過に伴って増加することはな力つた。  [0069] In Example 4 and Example 8 in which the inclination angle Θ of the inner peripheral surface of the first cone portion is 60 degrees, a slight upward flow is often instantaneously observed in the section of the spray device 13 where the spray port is located. Occurred. The polymer powder entrained by this upward flow reached the vicinity of the spraying device, but the thickness of the adhered powder did not increase as the operating time passed.
実施例 8で得られた重合体粉体は、超音波照射 (40W X 5分)後の、質量平均粒 子径 1 μ m未満の粒子の比率が 32. 5%であった。  In the polymer powder obtained in Example 8, the ratio of particles having a mass average particle diameter of less than 1 μm after ultrasonic irradiation (40 W × 5 minutes) was 32.5%.
[0070] これに対して、整流器 18 (パンチングプレート)を取外した比較例 1、比較例 3では、 噴霧装置 13の噴霧口のある断面で、定常的に激しい上昇流が発生した。この上昇 流に同伴した重合体粉体が、噴霧装置近傍に到達し、粉体の付着が見られた。粉体 の付着は、運転時間の経過に伴って増加した。 In contrast, in Comparative Example 1 and Comparative Example 3 in which the rectifier 18 (punching plate) was removed, a violent upward flow was constantly generated on the cross section of the spray device 13 where the spray port was provided. The polymer powder entrained by this upward flow reached the vicinity of the spraying device, and adhesion of the powder was observed. powder The adhesion of increased with the passage of operating time.
比較例 3で得られた重合体粉体は、超音波照射 (40W X 5分)後の、質量平均粒 子径 1 μ m未満の粒子の比率が 20. 8%であり、解砕性が大幅に低下していた。  The polymer powder obtained in Comparative Example 3 had a mass average particle size of less than 1 μm after ultrasonic irradiation (40 W × 5 minutes), the ratio of particles being 20.8%, and the pulverizability was high. It had dropped significantly.
[0071] 噴霧装置 13の噴霧口の位置を第 1コーン部の中央とした比較例 2、比較例 4では、 噴霧装置 13の噴霧口のある断面で、定常的に激しい上昇流が発生した。この上昇 流に同伴した重合体粉体が、噴霧装置近傍に到達し、粉体の付着が見られた。粉体 の付着は、運転時間の経過に伴って増加した。 [0071] In Comparative Example 2 and Comparative Example 4 in which the position of the spray port of the spray device 13 was the center of the first cone portion, a steady and intense upward flow occurred on the cross section of the spray device 13 where the spray port was located. The polymer powder entrained by this upward flow reached the vicinity of the spraying device, and adhesion of the powder was observed. The adhesion of the powder increased with the passage of operating time.
比較例 4で得られた重合体粉体は、超音波照射 (40W X 5分)後の、質量平均粒 子径 1 μ m未満の粒子の比率が 23. 4%であり、解砕性が大幅に低下していた。 産業上の利用可能性  The polymer powder obtained in Comparative Example 4 had a mass average particle diameter of less than 1 μm after ultrasonic irradiation (40 W × 5 minutes), the ratio of particles being 23.4%, and the pulverization property was low. It had dropped significantly. Industrial applicability
[0072] 本発明の噴霧乾燥器によれば、噴霧装置近傍での乾燥用ガスの上昇流を発生さ せず、乾燥器内壁及び噴霧装置への粉体の付着を防止することができる。 [0072] According to the spray dryer of the present invention, it is possible to prevent the powder from adhering to the inner wall of the dryer and the spraying device without generating an upward flow of the drying gas in the vicinity of the spraying device.
本発明の噴霧乾燥方法によれば、粉体の熱による変質を防ぎ、固体の溶液または 分散液力 粉体を得ることができる。  According to the spray-drying method of the present invention, it is possible to prevent the powder from being altered by heat and obtain a solid solution or a dispersion liquid powder.
本発明の重合体粉体は、熱による変質がなぐ必要とされる品質や分散性を有する  The polymer powder of the present invention has the required quality and dispersibility that are not affected by heat.

Claims

請求の範囲 The scope of the claims
[1] 乾燥器内に乾燥用ガスを供給すると共に、固体の溶液または分散液を噴霧するこ とにより、固体の溶液または分散液を乾燥させる噴霧乾燥器にぉ 、て、  [1] Supplying a drying gas into the dryer and spraying the solid solution or dispersion to the spray dryer for drying the solid solution or dispersion,
前記乾燥器が、上端及び下端が開口している円筒状の第 1直胴部、該第 1直胴部 の上端に連続して設けられた、上方に縮径する略円錐状の第 1コーン部、該第 1コー ン部の上端に連続して設けられた円筒状の第 2直胴部、固体の溶液または分散液を 噴霧する噴霧装置、乾燥用ガスの流れを整流する整流器、及び乾燥用ガスを供給 するガス供給口を備え、  The dryer has a cylindrical first straight body portion having an open upper end and a lower end, and a substantially conical first cone having a diameter reduced upward provided continuously to the upper end of the first straight body portion. Part, a cylindrical second straight body part provided continuously at the upper end of the first cone part, a spraying device for spraying a solid solution or dispersion, a rectifier for rectifying the flow of the drying gas, and drying Equipped with a gas supply port for supplying working gas,
前記噴霧装置の噴霧口が前記第 2直胴部内に配置され、前記整流器が前記第 2 直胴部内、かつ、前記噴霧口の上部に配置され、前記ガス供給口が前記整流器の 上部に配置された噴霧乾燥器。  The spray port of the spray device is disposed in the second straight body part, the rectifier is disposed in the second straight body part and above the spray port, and the gas supply port is disposed in the upper part of the rectifier. Spray dryer.
[2] 第 1コーン部の内周面の傾き角度 Θが下記式 1を満たし、 [2] The inclination angle Θ of the inner peripheral surface of the first cone part satisfies the following formula 1,
第 1直胴部の内径 Dと第 2直胴部の内径 Dtとの比 (DtZD)が下記式 2を満たす、 請求項 1記載の噴霧乾燥器。  The spray dryer according to claim 1, wherein a ratio (DtZD) of an inner diameter D of the first straight body portion and an inner diameter Dt of the second straight body portion satisfies the following formula 2.
式 1 : 70≤ Θ≤85 [度]  Formula 1: 70≤ Θ≤85 [degree]
式 2 : 0. 6≤Dt/D≤0. 8  Equation 2: 0.6≤Dt / D≤0.8. 8
[3] 噴霧装置として二流体ノズル式噴霧装置を用い、 [3] A two-fluid nozzle type spray device is used as the spray device,
第 2直胴部内の乾燥用ガスの断面平均風速 Utと、二流体ノズル式噴霧装置の噴 霧用ガスの吹き出し断面平均風速 Unとの比(UnZUt)が下記式 3を満たし、  The ratio (UnZUt) of the cross-sectional average wind speed Ut of the drying gas in the second straight body part to the spray cross-section average wind speed Un of the spray gas of the two-fluid nozzle type spray device satisfies the following formula 3.
Unが下記式 4を満たす、請求項 1又は 2記載の噴霧乾燥器を用いる、噴霧乾燥方 法。  A spray drying method using the spray dryer according to claim 1 or 2, wherein Un satisfies the following formula 4.
式 3 : 10≤Un/Ut≤800  Equation 3: 10≤Un / Ut≤800
式 4 : 10≤Un≤400 [mZ秒]  Formula 4: 10≤Un≤400 [mZ seconds]
[4] 請求項 3記載の噴霧乾燥方法により得られる重合体粉体。 [4] A polymer powder obtained by the spray drying method according to claim 3.
PCT/JP2007/057562 2006-04-04 2007-04-04 Spray dryer, spray dry method, and polymer powder WO2007114468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800111271A CN101410684B (en) 2006-04-04 2007-04-04 Spray dryer, spray dry method, and polymer powder
JP2007521169A JPWO2007114468A1 (en) 2006-04-04 2007-04-04 Spray dryer, spray drying method and polymer powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006102934 2006-04-04
JP2006-102934 2006-04-04

Publications (1)

Publication Number Publication Date
WO2007114468A1 true WO2007114468A1 (en) 2007-10-11

Family

ID=38563729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057562 WO2007114468A1 (en) 2006-04-04 2007-04-04 Spray dryer, spray dry method, and polymer powder

Country Status (4)

Country Link
JP (1) JPWO2007114468A1 (en)
KR (1) KR20080108146A (en)
CN (1) CN101410684B (en)
WO (1) WO2007114468A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025394A (en) * 2017-07-27 2019-02-21 太平洋セメント株式会社 Manufacturing method of fine particles
JP2019519621A (en) * 2016-04-12 2019-07-11 ダウ グローバル テクノロジーズ エルエルシー Method of manufacturing encapsulated quantum dots

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086351B2 (en) 2013-05-06 2018-10-02 Llang-Yuh Chen Multi-stage process for producing a material of a battery cell
CN105028635B (en) * 2015-09-07 2018-07-17 云南农业大学 A kind of spray drying system of milk powder processing
CN105710983B (en) * 2016-03-17 2018-03-09 青岛科技大学 A kind of rubber wet method compounding process for premixing atomization and remixing
KR101890348B1 (en) * 2017-05-25 2018-08-22 한국세라믹기술원 Manufacturing method of metal-nano complex powder using spray dryer
CN107381691A (en) * 2017-09-12 2017-11-24 哈尔滨锅炉厂环保工程技术有限公司 A kind of vapourizing furnace for wet flue gas desulfurization waste water evaporation
US11121354B2 (en) * 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
CN112460950A (en) * 2020-11-24 2021-03-09 黑龙江昂纳斯生物科技有限公司 Spray drying device is used in powdered oil production
CN113776315A (en) * 2021-09-15 2021-12-10 河南神马催化科技股份有限公司 Spray drying device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441951A (en) * 1976-05-12 1979-04-03 Niro Atomizer As Preparation of polyvinyl chloride or vinyl chloride copolymer useful for plastisol manufacture* and drying tower therefor
JPS608301Y2 (en) * 1981-10-05 1985-03-23 ライオン株式会社 hot air dryer
JPH07332847A (en) * 1994-06-03 1995-12-22 Mitsubishi Chem Corp Spray-drying method
JPH0971608A (en) * 1995-09-06 1997-03-18 Mitsubishi Chem Corp Spray dryer and spray drying method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196701A (en) * 1983-04-20 1984-11-08 Ishikawajima Harima Heavy Ind Co Ltd Comminution method in spray dryer
JPH0411901A (en) * 1990-04-27 1992-01-16 Yamato Scient Co Ltd Organic solvent spray drier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441951A (en) * 1976-05-12 1979-04-03 Niro Atomizer As Preparation of polyvinyl chloride or vinyl chloride copolymer useful for plastisol manufacture* and drying tower therefor
JPS608301Y2 (en) * 1981-10-05 1985-03-23 ライオン株式会社 hot air dryer
JPH07332847A (en) * 1994-06-03 1995-12-22 Mitsubishi Chem Corp Spray-drying method
JPH0971608A (en) * 1995-09-06 1997-03-18 Mitsubishi Chem Corp Spray dryer and spray drying method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519621A (en) * 2016-04-12 2019-07-11 ダウ グローバル テクノロジーズ エルエルシー Method of manufacturing encapsulated quantum dots
JP2019025394A (en) * 2017-07-27 2019-02-21 太平洋セメント株式会社 Manufacturing method of fine particles
JP7046518B2 (en) 2017-07-27 2022-04-04 太平洋セメント株式会社 Manufacturing method of fine particles

Also Published As

Publication number Publication date
JPWO2007114468A1 (en) 2009-08-20
KR20080108146A (en) 2008-12-11
CN101410684A (en) 2009-04-15
CN101410684B (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2007114468A1 (en) Spray dryer, spray dry method, and polymer powder
KR101825252B1 (en) External mixing pressurized two-fluid nozzle and a spray drying method
BRPI1100018B1 (en) METHOD FOR ALPHA-OLEFINE POLY-GENERALIZATION
JP5893858B2 (en) Airflow type powder processing apparatus and method
CN105579478A (en) Method for preparing resin powder and integral coagulating device therefor
JPH0119404B2 (en)
Chahal et al. Effect of process conditions on spray dried calcium carbonate powders for thermal spraying
CN104053705A (en) Heat-treatment of water-absorbing polymeric particles in fluidized bed at fast heat-up rate
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
EP3706894B1 (en) Material processing system and method
CN110352092B (en) Apparatus and method for producing pulverulent polymers
CN107427803B (en) Device for producing powdered poly (meth) acrylates
CN206549192U (en) A kind of EP rubbers glue solution nozzle
JP7342035B2 (en) How to pneumatically transport superabsorbent particles
JP4094434B2 (en) Method for producing polymer particles
JP4758665B2 (en) Spray drying apparatus and powder manufacturing method using the same
US20180028999A1 (en) Device for producing poly(meth)acrylate in powder form
JP3440623B2 (en) Spray drying method using two-fluid nozzle
JPH0971608A (en) Spray dryer and spray drying method using the same
JP2004137393A (en) Apparatus for spray-drying polymer latex
JPH07332847A (en) Spray-drying method
JP2004352882A (en) Polymer particle and its manufacturing method
Demont et al. 6 Encapsulation via Spinning Disk Technology
JP2002346301A (en) Spray drying apparatus for polymer latex
JP2002249512A (en) Production process for fine powder, and fine powder

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007521169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011127.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087026574

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07740998

Country of ref document: EP

Kind code of ref document: A1