WO2007108549A1 - Plasma processing apparatus and plasma processing method - Google Patents

Plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
WO2007108549A1
WO2007108549A1 PCT/JP2007/056130 JP2007056130W WO2007108549A1 WO 2007108549 A1 WO2007108549 A1 WO 2007108549A1 JP 2007056130 W JP2007056130 W JP 2007056130W WO 2007108549 A1 WO2007108549 A1 WO 2007108549A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
plasma processing
chamber
processing method
Prior art date
Application number
PCT/JP2007/056130
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Kobayashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007108549A1 publication Critical patent/WO2007108549A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method used in the field of semiconductor processing technology, and in particular, an atmosphere such as a halogen gas, an inert gas, oxygen or hydrogen, or a gas containing fluorine and a fluorine compound (hereinafter referred to as “a gas”).
  • a gas a gas containing fluorine and a fluorine compound
  • Plasma etching on semiconductor devices, etc. in an environment composed of an atmosphere of hydrocarbon gas (hereinafter referred to as “CH-containing gas”) or an environment in which these atmospheres are alternately formed.
  • CH-containing gas an atmosphere of hydrocarbon gas
  • Devices used in the semiconductor and liquid crystal fields are often processed using the plasma energy of highly corrosive halogen-based corrosive gases.
  • a chlorine-based fluorine-based corrosive gas atmosphere or these gases can be used to form a fine wiring pattern.
  • Plasma is generated in a mixed gas atmosphere with an inert gas, and the semiconductor elements are etched using the strong reactivity of ions and electrons excited at that time to form wiring patterns.
  • the wall surface of the reaction vessel used for such processing and the components (susceptors, electrostatic chucks, electrodes, etc.) placed inside it are susceptible to the erosion effect of plasma energy, so they are resistant to plasma. It is necessary to use materials with excellent erosion properties.
  • materials such as metals (including alloys), quartz, and alumina that have good corrosion resistance have been used in such processing apparatuses.
  • the material is coated on the surface of the reaction vessel inner material with a metal having good corrosion resistance by the PVD method or the CVD method, or in the periodic table. III or forming a film of oxides such a group element, or Y 2 0 3 technology that covers the single crystal is disclosed.
  • Y 2 0 3 which is an oxide of an element belonging to Group IIIa of the Periodic Table III, is coated on the surface of a member by a thermal spraying method. Plasma erosion resistance ⁇ Technology to improve life is disclosed.
  • the Y 2 O 3 sprayed coating is useful for improving the plasma erosion resistance
  • the recent processing of semiconductor components has a higher plasma etching effect, and the processing atmosphere is corrosive. Under the harsh conditions of repeated use of a strong fluorine-based gas and hydrocarbon-based gas, further improvement is required.
  • the F-containing gas atmosphere when an F-containing gas and a CH-containing gas are used alternately and repeatedly, the F-containing gas atmosphere generates fluoride with a high vapor pressure due to the strong corrosion reaction unique to halogen gas.
  • the CH-containing gas atmosphere decomposition of the fluorine compound generated in the F-containing gas is promoted, or a part of the film component is changed to carbide to enhance the reaction to fluoride.
  • the plasma environment in which these gases are used becomes a more severe corrosive environment because the above-described reaction is promoted.
  • the present invention is abbreviated as “parts”, “parts” and “parts” (hereinafter simply referred to as “members”) that are exposed to the plasma atmosphere in a chamber used for plasma etching in a corrosive gas atmosphere. ) Propose a technology that improves durability.
  • This paper also describes the plasma erosion resistance of coatings formed on the surfaces of materials, etc. in corrosive gas atmospheres, especially in the atmosphere where F-containing gas and CH-containing gas are used alternately.
  • the present invention also proposes a plasma processing method capable of preventing the generation of corrosion product particles even under high plasma power.
  • a plasma processing apparatus that processes the surface of an object to be processed accommodated in a chamber with an etching gas plasma, a portion exposed to the plasma generation atmosphere in the chamber,
  • the surface force of the installation member or component is at least covered with a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer. It is a plasma processing device.
  • the plasma processing apparatus of the present invention can employ the following configuration.
  • an undercoat layer made of metal / alloy, ceramics or cermet is provided.
  • the etching treatment is treatment with fluorine-containing gas plasma, treatment with mixed gas plasma of fluorine-containing gas and hydrocarbon-containing gas, or treatment by alternately introducing fluorine-containing gas and hydrocarbon-containing gas repeatedly. Use either method.
  • the fluorine-containing gas, CF 4, Ji 4? ⁇ 31 gas 8 such, CHF-based gas, HF-based gas, SF-based gas and one selected from among the mixed gas of the these gases 0 2
  • the above gas is used.
  • the hydrocarbon-containing gas includes C x Hy gas such as CH 4 and C 2 H 2 , H-containing gas such as NH 3 and CH 4 and 0 2 , CH 3 F and 0 2 , and CH 2 F 2 using one or more gases selected from among C x H y gas and mixed gas of 0 2 ⁇ 2.
  • the metal oxide is a metal oxide containing Group IIIa elements such as Sc, Y and lanthanoids.
  • the secondary recrystallized layer is formed by secondarily transforming a metal oxide that has undergone primary transformation contained in the porous layer by high energy irradiation treatment.
  • the secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals is transformed into a tetragonal structure by secondary transformation by high energy irradiation treatment.
  • the high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
  • Table of parts, members or parts exposed to plasma atmosphere in the chamber The surface and the plasma have a potential difference of 120 V or more and 550 V or less.
  • the potential difference is controlled by a high-frequency power applied to a mounting table for an object to be processed provided in the chamber.
  • the present invention relates to a plasma processing method for processing a surface of an object to be processed accommodated in a chamber with an etching gas plasma, a part exposed to the plasma atmosphere in the chamber prior to the processing, A composite layer including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer is coated on the surface of the member or component disposed in the chamber. Then, a plasma processing method is proposed in which a first gas containing a fluorine-containing gas is introduced into the chamber, and the gas is excited to generate a first plasma for processing. .
  • the present invention provides a plasma processing method for processing a surface of an object to be processed accommodated in a chamber with a plasma of an etching process gas.
  • the surface Prior to this process, the surface is first exposed to a plasma atmosphere in the chamber.
  • a composite material including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer on the surface of the member or part disposed in the chamber.
  • a first gas containing a fluorine-containing gas is introduced into the chamber and then excited to generate a first plasma, and then a second gas containing a hydrocarbon gas is contained in the chamber.
  • a plasma processing method characterized in that after gas is introduced, it is excited to generate a second plasma for processing.
  • the fluorine-containing gas is selected from among CF 4, C 4 C x F y gas such as F 8, CHF-based gas, HF-based gas, SF-based gas and these gases and a gas mixture of 0 2 Use one or more gases.
  • the hydrocarbon-containing gas includes C x Hy gas such as CH 4 and C 2 H 2 , H-containing gas such as NH 3 and CH 4 and 0 2 , CH 3 F and 0 2 , and CH 2 F 2 0 using one or more gases selected C x H y gas 2 such as from among the mixed gas of 0 2.
  • the metal oxide is a metal oxide containing Group IIIa elements such as Sc, Y and lanthanoids.
  • the secondary recrystallized layer is composed of a high-energy metal oxide that is primarily transformed in the porous layer. It was formed by secondary transformation by Nolegie irradiation treatment.
  • the secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals undergoes a secondary transformation by high energy irradiation treatment to form a tetragonal structure.
  • the high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
  • the surface of the part, member or part exposed to the plasma atmosphere in the chamber and the plasma has a potential difference of 120 V or more and 550 V or less.
  • the potential difference is controlled by high-frequency power applied to a mounting table for an object to be processed provided in the chamber.
  • a plasma atmosphere particularly, a halogen or the like in which an F-containing gas atmosphere or an F-containing gas atmosphere and a CH-containing gas atmosphere are alternately and repeatedly formed.
  • plasma etching is performed in a corrosive gas atmosphere, durability against plasma erosion of chamber internal members and the like can be improved over a long period of time.
  • the present invention particles of corrosion products generated due to a plasma etching process or a potential difference between a member in a chamber and a plasma and the plasma are remarkably reduced, so that high-quality semiconductor parts can be efficiently used. It is possible to produce well. Furthermore, according to the present invention, since a characteristic film is formed on the surface of a member or the like, the plasma output can be increased to about 550 V, and the etching speed and the etching effect are improved. As a result, the plasma processing apparatus can be made smaller and lighter.
  • FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the potential applied to the internal members of the processing chamber and the amount of dust (partite) generated due to Y 2 0 3 .
  • the potential applied to the processing chamber within the member or the like is a diagram showing the relationship between Upsilon 2 0 3 due to dust (Pate Ikunore) emissions.
  • FIG. 4 is a cross-sectional view (a) having a film formed by a method according to the prior art, a member (b) having a secondary recrystallized layer formed on the outermost layer by the method of the present invention, It is a fragmentary sectional view of the member (C) which has a groove.
  • FIG. 5 is an X-ray diffraction pattern of a secondary recrystallized layer formed by Y 2 0 3 sprayed coating (porous layer) and electron beam irradiation treatment.
  • Figure 6 is an X-ray diffraction pattern of the electron beam irradiation treatment prior to the state of Upsilon 2 0 3 sprayed coating (porous layer).
  • Figure 7 is an X-ray diffraction diagram of the state after the electron beam irradiation treatment of Upsilon 2 0 3 sprayed coating (porous layer). ⁇ Best mode for carrying out the invention
  • FIG. 1 is a partial cross-sectional view of a chamber of a plasma processing apparatus to which the present invention is applied.
  • the plasma processing apparatus of the present invention is not limited to the configuration shown in FIG.
  • reference numeral 1 denotes an etching chamber.
  • This chamber 1 is, for example, a cylindrical chamber made of anoremi-um having an anodic oxide coating (alumite treatment) on the surface, and has a structure that can keep the etching treatment chamber airtight.
  • the chamber 1 includes a lower electrode 2 and an electrostatic chuck 3 disposed on the upper surface of the lower electrode 2 for holding an object to be processed such as a semiconductor wafer W by Coulomb force.
  • An upper electrode 4 and the like arranged at a predetermined interval are disposed above the electrostatic chuck 3.
  • the electrostatic chuck 3 has a configuration in which, for example, an electrostatic chuck electrode is provided between insulating films made of polyimide resin or the like.
  • the upper and lower electrodes 2 and 4 are the same as the chamber 1 respectively. It is preferable to be formed by the material.
  • the lower electrode 2 and the electrostatic chuck 3 constitute a mounting table 5 on which the wafer W is mounted.
  • a lower high-frequency power source (RF power source) 7 is connected to the mounting table 5 via a lower matching unit 6.
  • the lower high-frequency power source 7 can supply high frequency power of a predetermined frequency. Yes.
  • an upper high frequency power source (RF power source) 9 is connected to the upper electrode 4 via an upper matching unit 8.
  • the upper electrode 4 is provided with a large number of gas discharge holes 10 on its lower surface, while the gas supply is on the top.
  • Supply unit 1 1 is provided.
  • an exhaust device is connected to the chamber 11 through a pipe.
  • the inside of the chamber 1 is adjusted by an air device so that the internal pressure becomes, for example, about 1.3 3 Pa to 1 3 3 Pa.
  • an etching gas made of a predetermined plasma processing gas for example, an F-containing gas, is introduced into the chamber 11 from the gas introduction section 11.
  • the lower high frequency power supply 7 supplies a relatively low frequency, a predetermined high frequency power, for example, a high frequency power having a frequency of several MHz or less, and the upper high frequency power supply 9 supplies a relatively high frequency.
  • a predetermined high-frequency power having a high frequency for example, a high-frequency power having a frequency of tens of MHz to hundreds of MHZ
  • plasma can be generated between the upper electrode 4 and the lower electrode 2.
  • the surface of the object to be processed such as the semiconductor wafer W can be etched by this plasma.
  • the high-frequency power supplied from the upper high-frequency power source 9 to the upper electrode 4 is used to generate plasma, while the high-frequency power supplied from the lower high-frequency power source 7 to the mounting table 5 is It is used to generate a DC bias and control the energy of ions that collide with the semiconductor wafer W.
  • the processing chamber 1 in addition to the mounting table 5 including the upper electrode 4, the lower electrode 2 or the electrostatic chuck 3, the shield ring 1 2, the focus ring 1 3, and the deposition chamber 1 Members such as NORED 14, UPPER INSULATOR 15, LOWER INSULATOR 1 6, and baffle plate 17 are disposed.
  • the SINORED ring 1 2 and the focus ring 13 are made of, for example, silicon carbide Is formed in a ring shape and is arranged so as to surround the outer periphery of each of the upper electrode 4 and the lower electrode 2, and the plasma generated between the upper electrode 4 and the lower electrode 2 is generated by the semiconductor wafer W It is configured to converge.
  • the depot shield 14 is provided to protect the inner wall of the chamber 1, and the upper insulator 15 and the lower insulator 16 are used to maintain the atmosphere in the chamber 1.
  • the baffle plate 17 below the lower insulator 16 is provided to contain the generated plasma so that it does not flow out from the exhaust port 18 located below the plasma processing apparatus.
  • the members placed in the chamber 1 are processed by plasma etching. At this time, the substrate is exposed to the above-mentioned F-containing gas atmosphere or a plasma-excited atmosphere in a strong corrosive environment where F-containing gas and CH-containing gas are alternately introduced.
  • the F-containing gas atmosphere mainly contains fluorine or a fluorine compound, or may further contain oxygen (0 2 ).
  • Fluorine is particularly reactive among halogen elements (strongly corrosive) and has the feature that it reacts with metals and oxides and carbides to produce corrosion products with high vapor pressure. Therefore, if the members in the chamber 11 are exposed to plasma in a highly corrosive atmosphere such as the F-containing gas atmosphere, even if they are oxides and carbides as well as metals. A protective film for suppressing the progress of the corrosion reaction is not generated on the surface, and the corrosion reaction proceeds infinitely.
  • the inventor has found that, even in such an environment, elements belonging to group a in the periodic table III, that is, elements of Sc and Y, atomic numbers 5 7 to 71, and their oxides. As for, it was found that it shows good corrosion resistance.
  • the CH itself is not strongly corrosive. However, since it constitutes a reduction reaction atmosphere that is completely opposite to the oxidation reaction that proceeds in the F-containing gas atmosphere, it is relatively stable in the F-containing gas. Corrosion resistant metals (alloys) and metal compounds are also included
  • both F and CH are ionized to generate highly reactive atomic F, C, and H, which is corrosive and reducible. Acceleration accelerates the plasma erosion action and makes it easier for corrosion products to form from the surface of members.
  • the corrosion products generated in this way are vaporized in this environment, or become fine particles that significantly contaminate the inside of the plasma processing vessel such as the chamber.
  • the F-containing gas atmosphere, the mixed gas atmosphere of the F-containing gas and the CH-containing gas, or the F-containing gas atmosphere and the CH-containing gas atmosphere It is effective as a countermeasure against corrosion and erosion in a harsh and corrosive environment that is repeated alternately, and is also effective in preventing the generation of corrosion products and in particular suppressing the generation of particles. Therefore, in the present invention, the surface of the member or the like that is disposed in the chamber and is subjected to plasma at the same time when the skin treatment body is subjected to plasma treatment is made of a metal oxide containing an element belonging to group IIIa.
  • this composite film formed by forming a secondary recrystallized layer obtained by secondary transformation of the metal oxyhydride on the porous layer.
  • this composite film may be formed on all the members in the chamber or the like, and it may be formed by selecting only a part having a particularly high plasma density and a large damage.
  • F-containing gas examples include F 2 , CF 4 , C 4 F S , C 4 F 6, C 5 F 8, and other gases represented by the general formula C x F y , CHF 3 , CH 2 F 2 And one or more gases selected from a mixed gas of fluorine gas and O 2 , such as CH F gas such as CH 3 F, HF gas, SF gas such as SF 6 and CFO gas such as CF 20 Is preferably used.
  • H 2 , CH 4 , C 2 H 2 , CH 3 F, CH 2 F 2 , CHF 3 and the like C x Hy gas, NH 3 and other H-containing gas, walk-containing CH gas is good preferable to use at least one gas selected from a gas mixture of H-containing gas and 0 2.
  • the inventor has good corrosion resistance and environmental pollution resistance even in the atmosphere of the composite film forming material formed on the surface of the member or the like disposed in the chamber, particularly in an atmosphere containing F gas or CH gas.
  • the materials shown were examined.
  • the metal oxide for forming the porous layer As a result, as the metal oxide for forming the porous layer, the metal oxide power of an element belonging to the Ilia group of the periodic table is superior in halogen corrosion resistance in a corrosive environment as compared with other oxides. It has been shown that it exhibits plasma erosion resistance (contamination resistance due to particles of corrosion products).
  • Group a element metal oxides are Sc, Y and lanthanides with atomic numbers 57-71 (La, Ce, Pr, Nb, Pm, Sra, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), especially for lanthanoids, the rare earth oxides of La, Ce, Eu, Dy, and Yb are suitable.
  • these metal oxides can be used singly or as a mixture of two or more, a double oxide, or a eutectic.
  • a thermal spraying method is used as a preferred example. That is, III First, the metal oxide of group a element is first pulverized to form a thermal spray material powder consisting of particles having an average particle size of 5 to 80 ⁇ m, and this thermal spray material powder is sprayed onto the surface of a member or the like by a predetermined method. Thus, a porous layer composed of a thermal sprayed coating having a thickness of 50 to 2000 ⁇ (porosity of about 5 to 20%) is formed.
  • the thickness of the porous layer is less than 50 ⁇ , the performance as a film in the corrosive environment is not sufficient. On the other hand, if the thickness of the layer exceeds 2000 m, the thermal spray particles are interconnected. In addition to weakening of the resultant force, the stress generated during film formation (probably due to volume shrinkage and accumulation due to rapid cooling of the particles) increases, and the film tends to be damaged.
  • an air plasma spraying method or a low pressure plasma spraying method is suitable, but a water plasma spraying method or an explosion spraying method can also be applied depending on use conditions. is there.
  • an undercoat made of any one of a metal, an alloy, ceramics, and cermet that is a composite material thereof may be formed in advance on the surface of a member or the like.
  • this undercoat By forming this undercoat, the adhesion strength between the porous layer and the base material is increased, and the contact of the corrosive gas with the base material can be prevented.
  • the undercoat is made of metal such as Ni and its alloys, Co and its alloys, A1 and its alloys, Ti and its alloys, Mo and its alloys, W and its alloys, Cr and its alloys, etc.
  • the film thickness is preferably about 50 to 200 / m.
  • the role of the undercoat is to improve the corrosion resistance by blocking the surface of the member or the like from the corrosive environment and to improve the adhesion between the substrate and the porous layer. Therefore, if the film thickness of this undercoat is less than 50 ⁇ m, not only the corrosion resistance is sufficient, but also uniform film formation is difficult.On the other hand, even if it is thicker than 200 m, the corrosion resistance effect is saturated. To do.
  • the ceramic used for this undercoat oxide borides, nitrides, silicides and the like are suitable, and a film using a cermet made of these ceramics and the above metal-alloy may be used.
  • a thermal spraying method such as an air plasma spraying method or a low pressure plasma spraying method, a water plasma spraying method or an explosion spraying method, or a vapor deposition method
  • the material such as the inner member of the processing chamber of the plasma processing apparatus according to the present invention include metals such as aluminum and its alloys, titanium and its alloys, stainless steel, other special steels, and nickel-based alloys
  • metals such as aluminum and its alloys, titanium and its alloys, stainless steel, other special steels, and nickel-based alloys
  • ceramics composed of quartz, vitrified materials, carbides, borides, silicides, nitrides and mixtures thereof, and cermets composed of these ceramics and the above metals, etc.
  • Inorganic materials and plastics can be used.
  • the most characteristic configuration is the presence of the secondary recrystallized layer provided on the surface of a part, member or the like that is directly exposed to the plasma processing atmosphere.
  • the secondary recrystallized layer is formed on the porous layer, that is, a porous sprayed coating, and for example, the outermost layer portion of the porous layer made of a group IIIa metal oxide is subjected to secondary transformation. It is a layer formed.
  • the crystal structure is a cubic crystal belonging to a tetragonal crystal.
  • yttria the powder of the yttrium oxide
  • the molten particles collide with the surface of the substrate and accumulate while being rapidly cooled while flying toward the substrate at high speed.
  • the crystal structure undergoes a primary transformation to a mixed crystal type crystal structure including monoclinic (monoc 1 inic) in addition to cubic (cubic). This is a metal oxide porous layer.
  • the secondary crystal layer refers to the metal oxide that has undergone a primary transformation by being ultra-rapidly cooled during thermal spraying to form a mixed crystal state including orthorhombic crystals and tetragonal crystals.
  • the porous material layer is a layer that has been secondarily transformed into a tetragonal crystal type by a second thermal spraying process.
  • Fig. 4 schematically shows the change in the structure of the mouth of the vicinity of the surface of the Y 2 0 3 sprayed coating (porous film), the coating after the electron beam irradiation treatment, and the composite coating with an undercoat layer. It is.
  • the spray particles constituting the coating exist independently, and the surface roughness is large.
  • a new layer having a different microstructure is formed on the sprayed coating by the electron beam irradiation treatment shown in FIG. 4 (b). This layer is a dense layer with a small number of voids formed by the spraying of the spray particles.
  • Figure 4 (c) An example having a dark coat is shown.
  • FIG. 5 is an XRD measurement chart of a porous layer that is a Y 2 0 3 sprayed coating and a secondary recrystallized layer formed by electron beam irradiation treatment under the following conditions.
  • the Upsilon 2 0 3 sprayed coating shows the XRD pattern before and after electron beam irradiation treatment. That is, FIG. 6 is an X-ray diffraction chart with the vertical axis expanded before processing, and FIG. 7 is an X-ray diffraction chart with the vertical axis expanded after processing.
  • FIG. 6 is an X-ray diffraction chart with the vertical axis expanded before processing
  • FIG. 7 is an X-ray diffraction chart with the vertical axis expanded after processing.
  • the peak of monoclinic crystal is observed in the range of 30 ° to 35 °, and cubic and monoclinic crystals are mixed in the ⁇ 20 3 sprayed coating before processing.
  • the secondary recrystallized layer obtained by electron beam irradiation treatment of this ⁇ 2 0 3 sprayed coating has a sharp peak showing 2 3 3 particles.
  • the monoclinic peak is attenuated, and the plane indices (202) and (310) cannot be confirmed, indicating that it is only cubic.
  • This XRD test was measured using a RINT 1 500 X-ray diffractometer manufactured by Rigaku Corporation.
  • the X-ray diffraction conditions are as follows.
  • reference numeral 41 is a base material
  • 42 is a porous layer (sprayed particle deposition layer)
  • 43 is a pore (void)
  • 44 is a particle interface
  • 45 is a through-hole
  • 46 is an electron beam irradiation treatment.
  • the resulting secondary recrystallized layer, and 47 is an undercoat.
  • the porous layer of the group IIIa metal oxide mainly composed of the primary transformed orthorhombic crystal structure is subjected to high-energy irradiation treatment to thereby obtain the porous layer.
  • Heat treatment of at least the melting point of the volume sprayed particles, and this layer is transformed again (secondary transformation), and its crystal structure is returned to the tetragonal weave to stabilize crystallographically. It was.
  • the thermal strain and mechanical strain accumulated in the thermal spray particle deposition layer are released, and the properties are physically and chemically stabilized. It was decided to realize the densification and smoothing of this layer accompanying the powerful melting. As a result, the secondary recrystallized layer made of the metal oxide of the group ⁇ a element becomes a dense and smooth layer as compared with the thermally sprayed layer.
  • this secondary recrystallized layer becomes a densified layer having a porosity of less than 5%, preferably less than 2%, and the surface has an average roughness (Ra) of 0.8 to 3.0 m, with a maximum roughness.
  • the thickness (R y) is 6 to 16 ⁇ , and the 10-point average roughness (Rz) is about 3 to 14 ⁇ m, so that the layer is significantly different from the porous layer.
  • the control of this maximum roughness (Ry) is determined from the viewpoint of environmental pollution resistance. The reason for this is that when the surface of the container member is scraped off by the plasma ions and electrons excited in the etching atmosphere and particles are generated, the effect is most apparent in the value of the maximum surface roughness (Ry).
  • the laser irradiation process such as C0 2 laser and YAG laser is preferably used, but the invention is not limited to these methods.
  • Electron beam irradiation treatment As a condition for this treatment, an inert gas such as Ar gas is introduced into the irradiation chamber where the air is exhausted, and the treatment is performed under the following irradiation conditions, for example. Recommended.
  • an inert gas such as Ar gas is introduced into the irradiation chamber where the air is exhausted, and the treatment is performed under the following irradiation conditions, for example. Recommended.
  • Beam irradiation output 0.1 to 8kW
  • the metal oxide containing an Ilia group element that has been subjected to electron beam irradiation rises in temperature from the surface and eventually reaches the melting point or higher and becomes a molten state.
  • This melting phenomenon gradually reaches the inside of the film by increasing the electron beam irradiation output, increasing the number of times of irradiation, and increasing the irradiation time. It can be controlled by changing the irradiation conditions. Practically, if the ilr depth is 1 / ⁇ to 50 ⁇ , a secondary recrystallized layer suitable for the above object of the present invention can be obtained.
  • the layer subjected to the electron beam irradiation treatment or the laser beam irradiation treatment is transformed into a crystal form which is transformed into a physicochemically stable crystal by transforming to a high temperature and precipitating secondary recrystallization upon cooling. Modification proceeds in units of crystal level.
  • the ⁇ 2 ⁇ 3 coating formed by the atmospheric plasma spraying method is mainly orthorhombic in the sprayed state as described above, but almost changes to cubic after electron beam irradiation.
  • the characteristics of the secondary recrystallized layer composed of metal oxides of the Ilia group elements of the periodic table subjected to high energy irradiation are summarized below.
  • the secondary recrystallized layer produced by the high energy irradiation treatment is obtained by further secondary transformation of a porous layer made of a metal oxide or the like which is the lower primary transformation layer, or the lower oxide particles are Due to the heating force above the melting point, at least part of the pores disappear and become dense.
  • the secondary recrystallized layer produced by the high energy irradiation treatment is a layer obtained by further secondary transformation of a porous layer made of a metal oxide, particularly, it is formed by thermal spraying.
  • a sprayed coating the unmelted particles at the time of spraying are completely melted and the surface is in a mirror state, so that projections that are easily plasma-etched disappear.
  • the porous layer is a secondary recrystallized layer produced by high-energy irradiation treatment, so that the through-holes are blocked, and the internal (base) Corrosive gas that intrudes into the material is eliminated, corrosion resistance is improved, and since it is densified, it also has a strong resistance to plasma etching, and has excellent corrosion resistance and plasma erosion resistance over a long period of time. Demonstrate.
  • the thickness of the secondary crystal layer produced by high-energy irradiation treatment it is preferable that the thickness of about 1 ⁇ 50 ⁇ ⁇ from the surface. The reason is that if the thickness is less than 50 m, there is no effect of film formation, while if it is thicker than 50 m, the burden of high-energy irradiation treatment is increased and the effect of film formation is saturated.
  • the lower porous layer exists as a layer having excellent heat resistance, but this layer has a characteristic of acting as a buffer with the upper layer. That is, it has the effect of reducing the thermal shock applied to the entire film through the action of mitigating the thermal shock applied to the upper dense secondary crystal layer.
  • the combined action of these two layers is synergistic. Effect occurs and the durability of the coating is improved.
  • the potential difference between the member in the chamber and the plasma increases, and the sprayed coating such as ⁇ 2 ⁇ 3 coated on the member is corroded. Particle corrosion of the generated corrosion products, and dropping and adhering to the surface of the object to be processed will cause device failure.
  • the plasma processing apparatus of the present invention when the erosion resistance of the film formed on the surface of the member is improved, the plasma output is increased until the potential difference between the member and the plasma is about 550V. In this case, the generation of particles can be suppressed.
  • the potential difference between the member or the like and the plasma is controlled by the power applied to the mounting table 5 from the high-frequency power source 7 in FIG. 1, and is preferably 550 V or less, more preferably 120 V or more and 550 V or less.
  • ⁇ 2 0 3 (or more purity 95 mass%)
  • Examples of III a metals oxides that sprayed with film-forming (Comparative and example B), ⁇ 2 0 3 'After sprayed with film forming, its surface is secondary transformation by irradiating an electron beam to form the shape as a (Inventive Alpha) with secondary crystal layer.
  • the respective chambers in one, plasma treatment is introduced repeatedly to F-containing gas and containing CH gases alternately, after weakening the Upsilon 2 0 3 sprayed coating is to be bra Zuma processed semiconductor Control the amount of high frequency power applied to the wafer mounting table
  • the potential difference between the chamber wall potential and plasma was measured from 200V to 300V. The result is shown in Fig.2.
  • Example 1 to investigate the limit value of the potential difference between the plasma processing vessel inner wall member (aluminum lower insulator, baffle, and depot shield) and the plasma (the range in which the generation of dust caused by coating (ittrium) can be suppressed) similar to the surface of the processing container inner wall material, Y 2 0 3 that sprayed with film forming (Comparative example beta), After film formation by spraying the Upsilon 2 ⁇ 3, further the surface An electron beam irradiation treatment (secondary transformation) to form a secondary crystal layer (Invention Example IV) was prepared.
  • the technology of the present invention is used as a surface treatment technology for members for plasma processing apparatuses that are required to be more precise and highly advanced in recent years, as well as members and parts used in general semiconductor processing apparatuses.
  • the present invention relates to a deposition shield for a semiconductor processing apparatus that performs plasma processing in a harsh atmosphere in which an F-containing gas and a CH-containing gas are used individually or in an environment where these gases are used alternately and repeatedly, Baffle It is suitable as a surface treatment technology for parts, parts, etc. such as plates, focus rings, upper 'lower insulator rings, shield rings, bellows covers, electrodes and solid derivatives.
  • the present invention can be applied as a surface treatment technique for a member for a liquid crystal device manufacturing apparatus.

Abstract

Provided is a plasma processing apparatus wherein durability of a part, a member and a component, which are exposed to plasma atmosphere in a chamber used for performing plasma etching in a corrosion resistant gas atmosphere is improved, resistance to plasma erosion of a film formed on the surface of the member and the like in the corrosion resistant gas atmosphere is improved, and furthermore, generation of particles of corrosion resistant products even under high plasma output is prevented. A plasma processing method using such plasma processing apparatus is also provided. In the plasma processing apparatus for processing the surface of a subject which is stored in the chamber to be processed is processed by etching process gas plasma. The part exposed to the plasma generating atmosphere in the chamber or the member arranged inside the chamber or the surface of the component is coated with at least a porous layer composed of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer.

Description

ブラズマ処理装置およびプラズマ処理方法 技術分野  Plasma processing apparatus and plasma processing method
本発明は、 半導体加工技術の分野において用いられるようなプラズマ処理装置 およびプラズマ処理方法に関し、 とくにハロゲンガス、 不活性ガス、 酸素あるい は水素等の雰囲気や、 フッ素およびフッ素化合物を含むガス (以下 「含 Fガス」 明  The present invention relates to a plasma processing apparatus and a plasma processing method used in the field of semiconductor processing technology, and in particular, an atmosphere such as a halogen gas, an inert gas, oxygen or hydrogen, or a gas containing fluorine and a fluorine compound (hereinafter referred to as “a gas”). "F gas containing" Akira
という) と炭化水素系ガス (以下、 「含 C Hガス」 という) の雰囲気等によって構 成される環境、 あるいはこれらの雰囲気が交互に繰返し形成されるような環境下 で、 半導体素子等にプラズマエッチング加書工などを行うためのプラズマ処理装置 およびプラズマ処理方法について提案する。 背景技術 Plasma etching on semiconductor devices, etc. in an environment composed of an atmosphere of hydrocarbon gas (hereinafter referred to as “CH-containing gas”) or an environment in which these atmospheres are alternately formed. We propose a plasma processing system and a plasma processing method for reworking. Background art
半導体や液晶の分野において用いられるデバイスは、 腐食性の高いハロゲン系 腐食ガスのプラズマエネルギーを利用して加工することが多い。 たとえば、 半導 体加工装置の一つであるプラズマを用いるェツチング処理装置では、 微細な配線 パターンなどを形成するに際し、 塩素系ゃフッ素系の腐食性の強いガス雰囲気あ るいは、これらのガスと不活性ガスとの混合ガス雰囲気中でプラズマを発生させ、 その際に励起されたイオンや電子の強い反応性を利用して半導体素子をエツチン グ加ェし、 配線パターンなどを形成している。  Devices used in the semiconductor and liquid crystal fields are often processed using the plasma energy of highly corrosive halogen-based corrosive gases. For example, in an etching processing apparatus using plasma, which is one of semiconductor processing apparatuses, a chlorine-based fluorine-based corrosive gas atmosphere or these gases can be used to form a fine wiring pattern. Plasma is generated in a mixed gas atmosphere with an inert gas, and the semiconductor elements are etched using the strong reactivity of ions and electrons excited at that time to form wiring patterns.
このような加工に用いられる反応容器の壁面やその内部に配設された部材ゃ部 品類 (サセプタ、 静電チャック、 電極、 その他) は、 プラズマエネルギーによる エロージョン作用を受けやすレ、ため、 耐プラズマエロージョン性に優れた材料を 用いることが必要である。 このような要求に対し、 従来、 このような加工装置に は、 耐食性のよい金属 (合金を含む) や石英、 アルミナ等の材料が用いられてき た。 例えば、 特開平 1 0— 4 0 8 3号公報には、 前記材料を、 前記反応容器内部 材の表面に、 耐食性のよい金属等を P V D法や C V D法によって被覆したり、 周 期律表の I I I a族元素の酸化物等の皮膜を形成したり、 あるいは Y 2 03単結晶 を被覆する技術が開示されている。 また、 特開 2 0 0 1— 1 6 4 3 5 4号公報や 特開 2 0 0 3— 2 6 4 1 6 9号公報には、、周期律表 I I I a族に属する元素の酸 化物である Y 203を、 溶射法によって部材表面に被覆することによって、 耐プラ ズマエロージョン^^生を向上させる技術が開示されている。 The wall surface of the reaction vessel used for such processing and the components (susceptors, electrostatic chucks, electrodes, etc.) placed inside it are susceptible to the erosion effect of plasma energy, so they are resistant to plasma. It is necessary to use materials with excellent erosion properties. In response to such demands, materials such as metals (including alloys), quartz, and alumina that have good corrosion resistance have been used in such processing apparatuses. For example, in Japanese Patent Application Laid-Open No. 10-4083, the material is coated on the surface of the reaction vessel inner material with a metal having good corrosion resistance by the PVD method or the CVD method, or in the periodic table. III or forming a film of oxides such a group element, or Y 2 0 3 technology that covers the single crystal is disclosed. Also, Japanese Patent Laid-Open No. 2 0 0 1-1 6 4 3 5 4 In Japanese Patent Laid-Open No. 2 0 3-2 6 4 1 6 9, Y 2 0 3 , which is an oxide of an element belonging to Group IIIa of the Periodic Table III, is coated on the surface of a member by a thermal spraying method. Plasma erosion resistance ^^ Technology to improve life is disclosed.
しかしながら、周期律表 Ilia族元素の金属酸ィ匕物などを被覆する技術は、比較 的良好な耐プラズマエロージョン性を示すものの、 一段と過酷な腐食性雰囲気ガ ス中で、 高い精度の加工と環境の清浄度が求められている近年の半導体加工技術 の分野では、 十分な対策とはなっていない。  However, while the technology for coating metal oxides of the Ilia group elements of the periodic table shows relatively good plasma erosion resistance, it is highly accurate processing and environment in a more severe corrosive atmosphere gas. In recent semiconductor processing technology fields where high cleanliness is required, this is not a sufficient measure.
また、 Y 2 O 3溶射皮膜を被覆した部材は、 耐プラズマエロージョン性の改善に は役立っているものの、 最近の半導体部材の加工は、 一段と高い出力のプラズマ ェツチング作用に加え、 加工雰囲気が腐食性の強いフッ素系ガスと炭化水素系ガ スとを交互に繰り返して使用されるという過酷な条件下にあり、 一層の改善が求 められている。 In addition, while the Y 2 O 3 sprayed coating is useful for improving the plasma erosion resistance, the recent processing of semiconductor components has a higher plasma etching effect, and the processing atmosphere is corrosive. Under the harsh conditions of repeated use of a strong fluorine-based gas and hydrocarbon-based gas, further improvement is required.
とくに、 含 Fガスと含 C Hガスとを交互に繰り返して使用されるような場合、 含 Fガス雰囲気は、 ハロゲンガス特有の強い腐食反応によって、 蒸気圧の高いフ ッ化物の生成が起こるが、 含 C Hガス雰囲気は、 含 Fガス中で生成したフッ素化 合物の分解が促進されたり、 皮膜成分の一部が炭化物に変化してフッ化物化への 反応を高める作用が起こる。しかも、これらのガスが用いられるプラズマ環境は、 上述した反応が助長されるので、 より厳しい腐食環境になる。 とくに、 高いブラ ズマ出力でェツチングを行う場合、 プラズマとプラズマ処理容器 (チェンバー) の内壁との電位差が大きくなり、 内壁面に被覆した Y 203溶射皮膜が腐食され、 このような環境で生成した腐食生成物のパーティクルが、 半導体製品の集積回路 表面に落下付着し、 これがデバイス損傷原因となることから、 従来の部材表面処 理技術については、 なお一層の改良が求められていた。 発明の開示 In particular, when an F-containing gas and a CH-containing gas are used alternately and repeatedly, the F-containing gas atmosphere generates fluoride with a high vapor pressure due to the strong corrosion reaction unique to halogen gas. In the CH-containing gas atmosphere, decomposition of the fluorine compound generated in the F-containing gas is promoted, or a part of the film component is changed to carbide to enhance the reaction to fluoride. Moreover, the plasma environment in which these gases are used becomes a more severe corrosive environment because the above-described reaction is promoted. In particular, when etching is performed at a high plasma output, the potential difference between the plasma and the inner wall of the plasma processing chamber (chamber) increases, and the Y 2 0 3 sprayed coating coated on the inner wall is corroded to form in such an environment. Since the corrosion product particles fall on the surface of the integrated circuit of the semiconductor product and cause damage to the device, further improvement of the conventional member surface treatment technology has been demanded. Disclosure of the invention
本発明は、 腐食性ガス雰囲気中でブラズマエツチング加工をするために使われ るチャンバ一内のプラズマ雰囲気に曝される部位、 部材ならびに部品 (以下、 単 に 「部材等」 と略記して言う。) の耐久性を向上させる技術を提案する。  The present invention is abbreviated as “parts”, “parts” and “parts” (hereinafter simply referred to as “members”) that are exposed to the plasma atmosphere in a chamber used for plasma etching in a corrosive gas atmosphere. ) Propose a technology that improves durability.
本宪明はまた、 腐食性ガス雰囲気、 とくに含 Fガスと含 C Hガスが交互に繰返 して使用される雰囲気中での、 部材等の表面に形成した皮膜の耐プラズマエロー ジョン性を向上させる技術を提案する。 This paper also describes the plasma erosion resistance of coatings formed on the surfaces of materials, etc. in corrosive gas atmospheres, especially in the atmosphere where F-containing gas and CH-containing gas are used alternately. We propose a technique to improve John characteristics.
本発明はまた、 高いプラズマ出力下においても、 腐食生成物のパーティクルの 発生を防ぐことができるプラズマ処理方法を提案する。  The present invention also proposes a plasma processing method capable of preventing the generation of corrosion product particles even under high plasma power.
即ち、 本発明は、 チャンバ一内に収容した被処理体表面を、 エッチング処理ガ スプラズマによって加工するプラズマ処理装置において、 このチャンバ一のプラ ズマ生成雰囲気に曝される部位、このチャンバ一内配設部材または部品の表面力 少なくとも、 金属酸化物からなる多孔質層とその多孔質層上に形成された該金属 酸化物の二次再結晶層とによつて被覆されていることを特徴とするブラズマ処理 装置である。  That is, according to the present invention, in a plasma processing apparatus that processes the surface of an object to be processed accommodated in a chamber with an etching gas plasma, a portion exposed to the plasma generation atmosphere in the chamber, The surface force of the installation member or component is at least covered with a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer. It is a plasma processing device.
なお、 本発明のプラズマ処理装置は、 下記の構成を採用することができる。 The plasma processing apparatus of the present invention can employ the following configuration.
1. 前記多孔質層下には、 金属 ·合金、 セラミックスまたはサーメットからなる アンダーコート層を設ける。 1. Under the porous layer, an undercoat layer made of metal / alloy, ceramics or cermet is provided.
2. 前記エッチング処理は、 フッ素含有ガスプラズマによる処理、 フッ素含有ガ スと炭化水素含有ガスとの混合ガスプラズマによる処理、 またはフッ素含有ガス と炭化水素含有ガスとを交互に繰返し導入して処理するいずれかの方式で行う。 2. The etching treatment is treatment with fluorine-containing gas plasma, treatment with mixed gas plasma of fluorine-containing gas and hydrocarbon-containing gas, or treatment by alternately introducing fluorine-containing gas and hydrocarbon-containing gas repeatedly. Use either method.
3. 前記フッ素含有ガスは、 CF4、 じ4?8等の〇31 ガス、 CHF系ガス、 H F系ガス、 S F系ガスおよびこれらのガスと 02との混合ガスのうちから選ばれる 1種以上のガスを用いる。 3. The fluorine-containing gas, CF 4, Ji 4?31 gas 8 such, CHF-based gas, HF-based gas, SF-based gas and one selected from among the mixed gas of the these gases 0 2 The above gas is used.
4. 前記炭化水素含有ガスは、 CH4、 C2H2等の CxHyガス、 NH3等の H含有 ガスおよび CH4と 02、 CH3Fと 02、 CH2F2と〇2等の CxHyガスと 02と の混合ガスのうちから選ばれる 1種以上のガスを用いる。 4. The hydrocarbon-containing gas includes C x Hy gas such as CH 4 and C 2 H 2 , H-containing gas such as NH 3 and CH 4 and 0 2 , CH 3 F and 0 2 , and CH 2 F 2 using one or more gases selected from among C x H y gas and mixed gas of 0 22.
5. 前記金属酸化物は、 S c、 Yおよびランタノイド等の III a族元素を含む金 属酸化物である。  5. The metal oxide is a metal oxide containing Group IIIa elements such as Sc, Y and lanthanoids.
6. 前記二次再結晶層は、 多孔質層に含まれる一次変態した金属酸化物を高エネ ルギー照射処理によって、 二次変態させて形成したものである。  6. The secondary recrystallized layer is formed by secondarily transforming a metal oxide that has undergone primary transformation contained in the porous layer by high energy irradiation treatment.
7. 前記二次再結晶層は、 斜方晶系の結晶を含む多孔質層が高エネルギー照射処 理によつて二次変態して正方晶系の組織になつた層である。  7. The secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals is transformed into a tetragonal structure by secondary transformation by high energy irradiation treatment.
8. 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザビーム照射 処理である。  8. The high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
9. 前記チャンバ一内の、 プラズマ雰囲気に曝される部位、 部材または部品の表 面と前記ブラズマとは、 120 V以上 550 V以下の電位差を有する。 9. Table of parts, members or parts exposed to plasma atmosphere in the chamber The surface and the plasma have a potential difference of 120 V or more and 550 V or less.
10. 前記電位差は、 前記チャンバ一内に設けられた被処理体の載置台に印加さ れた高周波電力により制御する。 10. The potential difference is controlled by a high-frequency power applied to a mounting table for an object to be processed provided in the chamber.
また、 本発明は、 チャンバ一内に収容した被処理体表面を、 エッチング処理ガ スプラズマによって加工するプラズマ処理方法において、 この処理に先立ち、 ま ず前記チャンバ一のプラズマ雰囲気に曝される部位、 このチャンバ一内配設部材 または部品の表面に、 金属酸化物からなる多孔質層と、 その多孔質層上に形成さ れた前記金属酸化物の二次再結晶層とを含む複合層を被覆形成し、 その後、 この チャンバー内にフッ素含有ガスを含む第 1のガスを導入し、 このガスを励起させ て第 1のプラズマを発生させて処理することを特徴とするプラズマ処理方法を提 案する。  Further, the present invention relates to a plasma processing method for processing a surface of an object to be processed accommodated in a chamber with an etching gas plasma, a part exposed to the plasma atmosphere in the chamber prior to the processing, A composite layer including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer is coated on the surface of the member or component disposed in the chamber. Then, a plasma processing method is proposed in which a first gas containing a fluorine-containing gas is introduced into the chamber, and the gas is excited to generate a first plasma for processing. .
また、 本発明は、 チャンバ一内に収容した被処理体表面を、 エッチング処理ガ スのプラズマによつて加工するプラズマ処理方法において、 この処理に先立ち、 まず前記チャンバ一の、 プラズマ雰囲気に曝される部位、 このチャンバ一内配設 部材または部品の表面に、 金属酸化物からなる多孔質層と、 その多孔質層上に形 成された前記金属酸化物の二次再結晶層とを含む複合層を被覆形成し、 その後、 このチヤンバー内にフッ素含有ガスを含む第 1のガスを導入したのち励起させて 第 1のプラズマを発生させ、 次いで、 このチヤンバー内に炭化水素ガスを含む第 2のガスを導入したのち励起させて第 2のブラズマを発生させて処理することを 特徴とするブラズマ処理方法を提案する。  Further, the present invention provides a plasma processing method for processing a surface of an object to be processed accommodated in a chamber with a plasma of an etching process gas. Prior to this process, the surface is first exposed to a plasma atmosphere in the chamber. A composite material including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer on the surface of the member or part disposed in the chamber. Then, a first gas containing a fluorine-containing gas is introduced into the chamber and then excited to generate a first plasma, and then a second gas containing a hydrocarbon gas is contained in the chamber. We propose a plasma processing method characterized in that after gas is introduced, it is excited to generate a second plasma for processing.
なお、本発明の上記プラズマ処理方法は、下記の構成を採用することができる。 1. 前記フッ素含有ガスは、 CF4、 C4F8等の CxFyガス、 CHF系ガス、 H F系ガス、 S F系ガスおよびこれらのガスと 02との混合ガスのうちから選ばれる 1種以上のガスを用いる。 In addition, the following structure can be employ | adopted for the said plasma processing method of this invention. 1. The fluorine-containing gas is selected from among CF 4, C 4 C x F y gas such as F 8, CHF-based gas, HF-based gas, SF-based gas and these gases and a gas mixture of 0 2 Use one or more gases.
2. 前記炭化水素含有ガスは、 CH4、 C2H2等の CxHyガス、 NH3等の H含有 ガスおよび CH4と〇2、 CH3Fと 02、 CH2F2と 02等の CxHyガスと 02と の混合ガスのうちから選ばれる 1種以上のガスを用いる。 2. The hydrocarbon-containing gas includes C x Hy gas such as CH 4 and C 2 H 2 , H-containing gas such as NH 3 and CH 4 and 0 2 , CH 3 F and 0 2 , and CH 2 F 2 0 using one or more gases selected C x H y gas 2 such as from among the mixed gas of 0 2.
3. 前記金属酸化物は、 S c、 Yおよびランタノイド等の III a族元素を含む金 属酸化物である。  3. The metal oxide is a metal oxide containing Group IIIa elements such as Sc, Y and lanthanoids.
4. 前記二次再結晶層は、 多孔質層に含まれる一次変態した金属酸化物を高エネ ノレギー照射処理によって、 二次変態させて形成したものである。 4. The secondary recrystallized layer is composed of a high-energy metal oxide that is primarily transformed in the porous layer. It was formed by secondary transformation by Nolegie irradiation treatment.
5 . 前記二次再結晶層は、 斜方晶系の結晶を含む多孔質層が高エネルギー照射処 理によって二次変態して正方晶系の組織になった層である。  5. The secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals undergoes a secondary transformation by high energy irradiation treatment to form a tetragonal structure.
6 . 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザビーム照射 処理である。  6. The high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
7 . 前記チャンバ一内の、 プラズマ雰囲気に曝される部位、 部材または部品の表 面と前記プラズマとは、 120 V以上 550 V以下の電位差を有する。  7. The surface of the part, member or part exposed to the plasma atmosphere in the chamber and the plasma has a potential difference of 120 V or more and 550 V or less.
8 . 前記電位差は、 前記チャンバ一内に設けられた被処理体の载置台に印加され た高周波電力により制御する。  8. The potential difference is controlled by high-frequency power applied to a mounting table for an object to be processed provided in the chamber.
本発明によれば、半導体部品や液晶部品をプラズマエッチング加工するときに、 プラズマ雰囲気、 とくに含 Fガス雰囲気下あるいは含 Fガス雰囲気と含 C Hガス 雰囲気とが交互に繰返し形成されるようなハロゲン等腐食ガス雰囲気の下で、 プ ラズマエッチング加ェするとき、 チャンバ一内部材等のプラズマエロージョンに 対する耐久性を長期間に亘つて向上させることができる。  According to the present invention, when plasma etching is performed on a semiconductor component or a liquid crystal component, a plasma atmosphere, particularly, a halogen or the like in which an F-containing gas atmosphere or an F-containing gas atmosphere and a CH-containing gas atmosphere are alternately and repeatedly formed. When plasma etching is performed in a corrosive gas atmosphere, durability against plasma erosion of chamber internal members and the like can be improved over a long period of time.
また、 本発明によれば、 プラズマエッチング処理あるいはチャンバ一内の部材 等とブラズマとの電位差に起因して発生する腐食生成物のパーティクル等が著し く少なくなり、 高品質の半導体部品等を効率よく生産することが可能である。 さらにまた、 本発明によれば、 部材等の表面に特徴的な皮膜を形成したので、 プラズマの出力を 550V程度まで上げることができるようになり、エッチングの速 度やエッチングの効果が向上し、 ひいてはプラズマ処理装置の小型化 '軽量化を 図ることができる。 図面の簡単な説明  Further, according to the present invention, particles of corrosion products generated due to a plasma etching process or a potential difference between a member in a chamber and a plasma and the plasma are remarkably reduced, so that high-quality semiconductor parts can be efficiently used. It is possible to produce well. Furthermore, according to the present invention, since a characteristic film is formed on the surface of a member or the like, the plasma output can be increased to about 550 V, and the etching speed and the etching effect are improved. As a result, the plasma processing apparatus can be made smaller and lighter. Brief Description of Drawings
図 1は、 本発明の一実施形態のプラズマ処理装置の概略構成を示す図である。 図 2は、 処理チェンバー内部材等にかかる電位と、 Y203起因のダスト (パーテ イタル) 発生量との関係を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the potential applied to the internal members of the processing chamber and the amount of dust (partite) generated due to Y 2 0 3 .
図 3は、 処理チェンバー内部材等にかかる電位と、 Υ203起因のダスト (パーテ イクノレ) 発生量との関係を示す図である。 3, the potential applied to the processing chamber within the member or the like, is a diagram showing the relationship between Upsilon 2 0 3 due to dust (Pate Ikunore) emissions.
図 4は、従来技術による方法により形成された皮膜を有する断面図(a )、本発明 方法により最外層に二次再結晶層を形成してなる部材( b )、およびァンダーコ一 トを有する部材 (C ) の部分断面図である。 FIG. 4 is a cross-sectional view (a) having a film formed by a method according to the prior art, a member (b) having a secondary recrystallized layer formed on the outermost layer by the method of the present invention, It is a fragmentary sectional view of the member (C) which has a groove.
図 5は、 Y203溶射皮膜 (多孔質層) と電子ビーム照射処理によって形成される 二次再結晶層の X線回折図である。 FIG. 5 is an X-ray diffraction pattern of a secondary recrystallized layer formed by Y 2 0 3 sprayed coating (porous layer) and electron beam irradiation treatment.
図 6は、 Υ203溶射皮膜 (多孔質層) の電子ビーム照射処理前の状態の X線回折 図である。 Figure 6 is an X-ray diffraction pattern of the electron beam irradiation treatment prior to the state of Upsilon 2 0 3 sprayed coating (porous layer).
図 7は、 Υ203溶射皮膜 (多孔質層) の電子ビーム照射処理後の状態の X線回折 図である。 · 発明を実施するための最良の形態 Figure 7 is an X-ray diffraction diagram of the state after the electron beam irradiation treatment of Upsilon 2 0 3 sprayed coating (porous layer). · Best mode for carrying out the invention
以下、 本発明の実施形態の一例について、 その詳細を、 図面を参照して説明す る。図 1は、本発明を適用するプラズマ処理装置のチャンバ一部分断面図である。 なお、 本発明のプラズマ処理装置は、 この図 1に示す構成のみに限定されるもの ではない。  Hereinafter, the details of an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view of a chamber of a plasma processing apparatus to which the present invention is applied. The plasma processing apparatus of the present invention is not limited to the configuration shown in FIG.
図 1において、 符号 1は、 エッチング処理用チャンバ一を示している。 このチ ヤンバー 1は、 例えば、 表面に陽極酸化被膜 (アルマイト処理) を有するァノレミ -ゥム製円筒状チャンバ一であり、 エッチング処理室を気密に保持できる構造を 有する。  In FIG. 1, reference numeral 1 denotes an etching chamber. This chamber 1 is, for example, a cylindrical chamber made of anoremi-um having an anodic oxide coating (alumite treatment) on the surface, and has a structure that can keep the etching treatment chamber airtight.
このチェンバー 1は、 その内部に、 下部電極 2と、 半導体ウェハ Wなどの被処 理体をクーロン力で保持するための、 該下部電極 2の上面に配置された静電チャ ック 3と、 該静電チヤック 3の上方に所定の間隔を隔てて配置された上部電極 4 等が配設されている。 上記静電チャック 3は、 例えば、 ポリイミド樹脂等からな る絶縁膜の間に、 静電チャック用電極を設けた構成を有し、 上記上部 '下部電極 2、 4は、 それぞれチャンバ一 1と同様の材料によつて形成されることが好まし レ、。  The chamber 1 includes a lower electrode 2 and an electrostatic chuck 3 disposed on the upper surface of the lower electrode 2 for holding an object to be processed such as a semiconductor wafer W by Coulomb force. An upper electrode 4 and the like arranged at a predetermined interval are disposed above the electrostatic chuck 3. The electrostatic chuck 3 has a configuration in which, for example, an electrostatic chuck electrode is provided between insulating films made of polyimide resin or the like. The upper and lower electrodes 2 and 4 are the same as the chamber 1 respectively. It is preferable to be formed by the material.
そして、 前記下部電極 2およぴ静電チヤック 3は、 ウェハ Wを載置する载置台 5を構成している。 この載置台 5には、 下部整合器 6を介して、 下部高周波電源 (R F電源) 7が接続され、 その下部高周波電源 7からは、 所定の周波数の高周 波電力が供給できるようになつている。 さらに、 上部電極 4には、 上部整合器 8 を介して、上部高周波電源(R F電源) 9が接続されている。その上部電極 4は、 その下面に多数のガス吐出孔 1 0が設けられており、 一方その頂部には、 ガス供 給部 1 1が設けられている。 The lower electrode 2 and the electrostatic chuck 3 constitute a mounting table 5 on which the wafer W is mounted. A lower high-frequency power source (RF power source) 7 is connected to the mounting table 5 via a lower matching unit 6. The lower high-frequency power source 7 can supply high frequency power of a predetermined frequency. Yes. Furthermore, an upper high frequency power source (RF power source) 9 is connected to the upper electrode 4 via an upper matching unit 8. The upper electrode 4 is provided with a large number of gas discharge holes 10 on its lower surface, while the gas supply is on the top. Supply unit 1 1 is provided.
前記チャンバ一 1には、 図 1には示されていないが、 配管を介して排気装置が 接続されている。 このチャンパ一 1内は、 ^気装置によって、 例えば 1 . 3 3 P a〜 1 3 3 P a程度の内圧となるように調整される。 そして、 前記ガス導入部 1 1からは、 このチャンバ一 1内に所定のプラズマ処理ガス、 例えば含 Fガスから なるエツチング用ガスが導入される。  Although not shown in FIG. 1, an exhaust device is connected to the chamber 11 through a pipe. The inside of the chamber 1 is adjusted by an air device so that the internal pressure becomes, for example, about 1.3 3 Pa to 1 3 3 Pa. Then, an etching gas made of a predetermined plasma processing gas, for example, an F-containing gas, is introduced into the chamber 11 from the gas introduction section 11.
そして、 この状態で、 下部高周波電源 7から比較的周波数の低レ、所定の高周波 電力、 例えば、 周波数が数 MH z以下の高周波電力を供給するとともに、 上部高 周波電源 9からは、 比較的周波数の高い所定の高周波電力、 例えば、 周波数が十 数 MH z〜百数十 MH zの高周波電力を供給することにより、 上部電極 4と下部 電極 2との間にはプラズマを発生させることができる。 半導体ウェハ W等の被処 理体表面は、 このプラズマによりエッチング加工を行うことができる。 なお、 上 部高周波電源 9から上部電極 4に供給される高周波電力は、 ブラズマを発生させ るために使われるものであり、 一方、 下部高周波電源 7から载置台 5に供給され る高周波電力は、 D Cバイアスを発生させ、 半導体ウェハ Wに衝突するイオンの エネルギーを制御するために使われる。  In this state, the lower high frequency power supply 7 supplies a relatively low frequency, a predetermined high frequency power, for example, a high frequency power having a frequency of several MHz or less, and the upper high frequency power supply 9 supplies a relatively high frequency. By supplying a predetermined high-frequency power having a high frequency, for example, a high-frequency power having a frequency of tens of MHz to hundreds of MHZ, plasma can be generated between the upper electrode 4 and the lower electrode 2. The surface of the object to be processed such as the semiconductor wafer W can be etched by this plasma. The high-frequency power supplied from the upper high-frequency power source 9 to the upper electrode 4 is used to generate plasma, while the high-frequency power supplied from the lower high-frequency power source 7 to the mounting table 5 is It is used to generate a DC bias and control the energy of ions that collide with the semiconductor wafer W.
ところで、 処理チャンバ一 2内には、 図 1に示すように上記上部電極 4、 下部 電極 2あるいは静電チャック 3からなる載置台 5の他、 シールドリング 1 2、 フ オーカスリング 1 3、 デポシ一ノレド 1 4、 ァッパ一ィンシュレータ 1 5、 ロワ一 インシユレータ 1 6およびバッフルプレート 1 7などの部材等が配設されている, シーノレドリング 1 2およびフォーカスリング 1 3は、 例えば、 炭化珪素ゃシリ コンによつて形成された略リング状のものであり、 上部電極 4および下部電極 2 のそれぞれの外周を囲むように配置され、 上部電極 4と下部電極 2との間で発生 するプラズマを半導体ゥェハ Wに収束するように構成されている。  By the way, in the processing chamber 1, as shown in FIG. 1, in addition to the mounting table 5 including the upper electrode 4, the lower electrode 2 or the electrostatic chuck 3, the shield ring 1 2, the focus ring 1 3, and the deposition chamber 1 Members such as NORED 14, UPPER INSULATOR 15, LOWER INSULATOR 1 6, and baffle plate 17 are disposed. The SINORED ring 1 2 and the focus ring 13 are made of, for example, silicon carbide Is formed in a ring shape and is arranged so as to surround the outer periphery of each of the upper electrode 4 and the lower electrode 2, and the plasma generated between the upper electrode 4 and the lower electrode 2 is generated by the semiconductor wafer W It is configured to converge.
また、 デポシールド 1 4は、 チヤンバー 1の内壁を保護するために設けられて いるものであり、 アッパーインシユレータ 1 5およびロワ一インシユレータ 1 6 は、 チャンバ一 1内の雰囲気を保持するために設けられ、 該ロワ一インシュレー タ 1 6下のバッフルプレート 1 7は、 発生したプラズマがプラズマ処理装置の下 方に位置する排気口 1 8から流出しないように封じ込めるために設けられている, これらのチヤンバー 1内に配設された部材等は、 プラズマエッチング加工する 際、 上記含 Fガス雰囲気や、 含 Fガスと含 C Hガスが交互に繰り返して導入され るような強い腐食環境下のプラズマ励起雰囲気に曝される。 The depot shield 14 is provided to protect the inner wall of the chamber 1, and the upper insulator 15 and the lower insulator 16 are used to maintain the atmosphere in the chamber 1. The baffle plate 17 below the lower insulator 16 is provided to contain the generated plasma so that it does not flow out from the exhaust port 18 located below the plasma processing apparatus. The members placed in the chamber 1 are processed by plasma etching. At this time, the substrate is exposed to the above-mentioned F-containing gas atmosphere or a plasma-excited atmosphere in a strong corrosive environment where F-containing gas and CH-containing gas are alternately introduced.
前記含 Fガス雰囲気は、 主にフッ素やフッ素化合物が含まれ、 またはさらに酸 素 (02) を含むことがある。 フッ素は、 ハロゲン元素の中でも特に反応性に富み (腐食性が強い)、金属はもとより酸ィ匕物や炭化物とも反応して蒸気圧の高い腐食 生成物をつくるという特徴がある。 そのため、 もし、 上記チャンバ一 1内の部材 等が、 上記含 Fガス雰囲気などの強腐食性雰囲気下でのプラズマに曝されると、 それがたとえ金属はもとより酸化物や炭化物であつたとしても、 表面に腐食反応 の進行を抑制するための保護膜が生成せず、腐食反応が限りなく進むことになる。 この点、発明者が知見したところによると、こうした環境の中でも、周期律表 III a族に属する元素、 即ち、 S cや Y、 原子番号 5 7〜 7 1の元素ならびにこれら の酸ィ匕物については、 良好な耐食性を示すことがわかった。 The F-containing gas atmosphere mainly contains fluorine or a fluorine compound, or may further contain oxygen (0 2 ). Fluorine is particularly reactive among halogen elements (strongly corrosive) and has the feature that it reacts with metals and oxides and carbides to produce corrosion products with high vapor pressure. Therefore, if the members in the chamber 11 are exposed to plasma in a highly corrosive atmosphere such as the F-containing gas atmosphere, even if they are oxides and carbides as well as metals. A protective film for suppressing the progress of the corrosion reaction is not generated on the surface, and the corrosion reaction proceeds infinitely. In this regard, the inventor has found that, even in such an environment, elements belonging to group a in the periodic table III, that is, elements of Sc and Y, atomic numbers 5 7 to 71, and their oxides. As for, it was found that it shows good corrosion resistance.
一方、 前記含 C Hガス雰囲気では、 その C H自体に強い腐食性はないが、 含 F ガス雰囲気で進行する酸化反応と全く逆の還元反応雰囲気を構成するため、 含 F ガス中で比較的安定な耐食性を示した金属 (合金) や金属化合物も、 その後、 含 On the other hand, in the CH-containing gas atmosphere, the CH itself is not strongly corrosive. However, since it constitutes a reduction reaction atmosphere that is completely opposite to the oxidation reaction that proceeds in the F-containing gas atmosphere, it is relatively stable in the F-containing gas. Corrosion resistant metals (alloys) and metal compounds are also included
C Hガス雰囲気に接すると、 化学結合力が弱くなる傾向がある。 従って、 含 C H ガスに接した部分が、 再び含 Fガス雰囲気に曝されると、 初期の安定な化合物膜 が化学的に破壌され、 最終的には腐食反応が進むという現象を招く。 When in contact with C 2 H gas atmosphere, chemical bond strength tends to be weak. Therefore, if the portion in contact with the C H containing gas is exposed again to the F containing gas atmosphere, the initial stable compound film is chemically destroyed, and eventually the corrosion reaction proceeds.
とくに、雰囲気ガス種の変化に加え、プラズマが発生するような環境では、 F、 C Hとも電離して反応性の強い原子状の F、 C、 Hが発生するため、 腐食性や還 元性が加速されてプラズマエロージョン作用が一段と激しくなり、 部材等の表面 から腐食生成物が生成しやすくなる。  In particular, in an environment where plasma is generated in addition to changes in the atmospheric gas species, both F and CH are ionized to generate highly reactive atomic F, C, and H, which is corrosive and reducible. Acceleration accelerates the plasma erosion action and makes it easier for corrosion products to form from the surface of members.
このようにして生成した腐食生成物は、 この環境の中で蒸気化したり、 また微 細なパーティクルとなってチャンバ一などのブラズマ処理容器内を著しく汚染す る。  The corrosion products generated in this way are vaporized in this environment, or become fine particles that significantly contaminate the inside of the plasma processing vessel such as the chamber.
この点、 本発明にかかるプラズマ処理装置を用いて処理する方法では、 前記含 Fガス雰囲気、 含 Fガスと含 C Hガスとの混合ガス雰囲気あるいは、 含 Fガス雰 囲気と含 C Hガス雰囲気とが交互に繰り返されるような厳し 、腐食環境下におけ る防食ならびエロージョン対策として有効であり、 腐食生成物の発生阻止、 とく にパーティクル発生の抑制にも有効である。 そこで、 本発明では、 チェンバー内に配設され、 ネ皮処理体をプラズマ処理する 時に同時にそのプラズマに囉される前記部材等の表面に対し、 III a族に属する元 素を含む金属酸化物からなる多孔質層と、 この多孔質層上に、 この金属酸ィヒ物を 二次変態させて得られる二次再結晶層を形成してなる複合皮膜を設けることによ り、 前記部材等の腐食反応を抑制することにした。 この複合皮膜は、 チャンバ一 内の部材等のすべてに形成してもよいし、 とくにプラズマ密度が高く、 ダメージ の大きい部分のみを選んで形成してもよいことはもちろんである。 In this regard, in the method of processing using the plasma processing apparatus according to the present invention, the F-containing gas atmosphere, the mixed gas atmosphere of the F-containing gas and the CH-containing gas, or the F-containing gas atmosphere and the CH-containing gas atmosphere It is effective as a countermeasure against corrosion and erosion in a harsh and corrosive environment that is repeated alternately, and is also effective in preventing the generation of corrosion products and in particular suppressing the generation of particles. Therefore, in the present invention, the surface of the member or the like that is disposed in the chamber and is subjected to plasma at the same time when the skin treatment body is subjected to plasma treatment is made of a metal oxide containing an element belonging to group IIIa. And a composite film formed by forming a secondary recrystallized layer obtained by secondary transformation of the metal oxyhydride on the porous layer. We decided to suppress the corrosion reaction. Of course, this composite film may be formed on all the members in the chamber or the like, and it may be formed by selecting only a part having a particularly high plasma density and a large damage.
前記含 Fガスとしては、 F2、 CF4、 C4FS、 C4F6および C5F8など、 一 般式 CxFyで表わされるガスの他、 CHF3、 CH2F2および CH3Fなどの CH F系ガス、 HF系ガス、 SF6などの SF系ガスや CF20などの CFO系で示さ れるフッ素ガスと O 2との混合ガスから選ばれる 1種以上のガスを用いることが 好ましい。 Examples of the F-containing gas include F 2 , CF 4 , C 4 F S , C 4 F 6, C 5 F 8, and other gases represented by the general formula C x F y , CHF 3 , CH 2 F 2 And one or more gases selected from a mixed gas of fluorine gas and O 2 , such as CH F gas such as CH 3 F, HF gas, SF gas such as SF 6 and CFO gas such as CF 20 Is preferably used.
また、 前記含 CHガスとしては、 H2、 CH4、 C2H2、 CH3F、 CH2F2、 CHF3など CxHyガスの他、 NH3などの H含有ガスや、前記含 CHガスあるい は H含有ガスと 02との混合ガスから選ばれる 1種以上のガスを用いることが好 ましい。 In addition, as the CH-containing gas, H 2 , CH 4 , C 2 H 2 , CH 3 F, CH 2 F 2 , CHF 3 and the like C x Hy gas, NH 3 and other H-containing gas, walk-containing CH gas is good preferable to use at least one gas selected from a gas mixture of H-containing gas and 0 2.
次に、 発明者は、 上記チャンバ一内に配設される部材等の表面に形成する前記 複合皮膜形成用材料、 とくに含 Fガスや含 CHガスの雰囲気中でも良好な耐食性 ゃ耐環境汚染性を示す材料について検討した。  Next, the inventor has good corrosion resistance and environmental pollution resistance even in the atmosphere of the composite film forming material formed on the surface of the member or the like disposed in the chamber, particularly in an atmosphere containing F gas or CH gas. The materials shown were examined.
その結果、 前記多孔質層を形成するための金属酸化物としては、 周期律表の Ilia族に属する元素の金属酸化物力 他の酸化物にくらべると腐食環境中におい て優れた耐ハロゲン腐食性、 耐プラズマエロージョン性 (腐食生成物のパーティ クルによる耐汚染性) を示すことがわかつた。  As a result, as the metal oxide for forming the porous layer, the metal oxide power of an element belonging to the Ilia group of the periodic table is superior in halogen corrosion resistance in a corrosive environment as compared with other oxides. It has been shown that it exhibits plasma erosion resistance (contamination resistance due to particles of corrosion products).
III a族元素の金属酸化物とは、 Sc、 Y及び原子番号が 57〜71のランタノィド (La, Ce, Pr, Nb, Pm, Sra, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) の酸ィ匕物で あり、 とくにランタノイドについては、 La, Ce, Eu, Dy, Ybの希土類酸化物が好 適である。 本発明では、 これらの金属酸化物を単独または 2種以上の混合物、 複 酸化物、 共晶物となったものを用いることができる。  III Group a element metal oxides are Sc, Y and lanthanides with atomic numbers 57-71 (La, Ce, Pr, Nb, Pm, Sra, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), especially for lanthanoids, the rare earth oxides of La, Ce, Eu, Dy, and Yb are suitable. In the present invention, these metal oxides can be used singly or as a mixture of two or more, a double oxide, or a eutectic.
本発明において、 前記金属酸化物からなる多孔質層を、 前記部材等の表面に所 定の厚さで被覆形成する方法としては、好適例として溶射法を用いる。 即ち、 III a族元素の金属酸ィ匕物を、まず粉砕により平均粒径が 5〜80 μ mの粉粒体からなる 溶射材料粉とし、 この溶射材料粉を部材等の表面に所定の方法で溶射して、 50〜 2000 μ ηι厚の多孔質 (気孔率 5〜2 0 %程度) な溶射皮膜からなる多孔質層を形 成する。 In the present invention, as a method for coating the porous layer made of the metal oxide on the surface of the member or the like with a predetermined thickness, a thermal spraying method is used as a preferred example. That is, III First, the metal oxide of group a element is first pulverized to form a thermal spray material powder consisting of particles having an average particle size of 5 to 80 μm, and this thermal spray material powder is sprayed onto the surface of a member or the like by a predetermined method. Thus, a porous layer composed of a thermal sprayed coating having a thickness of 50 to 2000 μηι (porosity of about 5 to 20%) is formed.
前記多孔質層の厚さは、 50 μ ηι未満では、 前記腐食環境下での皮膜としての性 能が十分でなく、 一方、 この層の厚さが 2000 mを超えると、 溶射粒子の相互結 合力が弱くなる上、 成膜時に発生する応力 (粒子の急冷による体積の収縮反応と 集積が原因と考えられる) が大きくなつて、 皮膜が破損されやすくなる。  If the thickness of the porous layer is less than 50 μηι, the performance as a film in the corrosive environment is not sufficient. On the other hand, if the thickness of the layer exceeds 2000 m, the thermal spray particles are interconnected. In addition to weakening of the resultant force, the stress generated during film formation (probably due to volume shrinkage and accumulation due to rapid cooling of the particles) increases, and the film tends to be damaged.
かかる、 多孔質層からなる溶射皮膜を形成する方法としては、 大気プラズマ溶 射法、 減圧プラズマ溶射法が好適であるが、 水プラズマ溶射法あるいは爆発溶射 法なども使用条件によっては適用が可能である。  As a method for forming such a thermal spray coating composed of a porous layer, an air plasma spraying method or a low pressure plasma spraying method is suitable, but a water plasma spraying method or an explosion spraying method can also be applied depending on use conditions. is there.
また、 前記多孔質層の形成に先立ち、 部材等の表面に予め、 金属 .合金、 セラ ミッタス、 それらの複合材料であるサーメットのいずれかからなるアンダーコー トを形成しておいてもよい。 このアンダーコートの形成により、 多孔質層と基材 との密着強度が高くなると共に、 腐食性ガスの基材への接触を阻止することがで きるようになる。  Prior to the formation of the porous layer, an undercoat made of any one of a metal, an alloy, ceramics, and cermet that is a composite material thereof may be formed in advance on the surface of a member or the like. By forming this undercoat, the adhesion strength between the porous layer and the base material is increased, and the contact of the corrosive gas with the base material can be prevented.
前記アンダーコートは、 Niおよびその合金、 Coおよびその合金、 A1およぴそ の合金、 Tiおよぴその合金、 Moおよぴその合金、 Wおよびその合金、 Crおよび その合金等の金属質の皮膜が好ましく、 その膜厚は 50〜200 / m程度とすること が好ましい。  The undercoat is made of metal such as Ni and its alloys, Co and its alloys, A1 and its alloys, Ti and its alloys, Mo and its alloys, W and its alloys, Cr and its alloys, etc. The film thickness is preferably about 50 to 200 / m.
このアンダーコートの役割は、 部材等の表面を前記腐食性環境から遮断して耐 食性を向上させるとともに、基材と多孔質層との密着性の向上を図ることにある。 従って、 このアンダーコートの膜厚は、 50 μ m未満では耐食性が十分でなレ、だけ でなく、 均一な成膜が困難であり、 一方、 200 mより厚くしても、 耐食性の効果 が飽和する。 このアンダーコートに用いるセラミックスとしては、 酸化物ゃ硼化 物、 窒化物、 珪化物などが好適であり、 また、 これらのセラミックと上記金属 - 合金からなるサーメットを用いた皮膜であってもよい。  The role of the undercoat is to improve the corrosion resistance by blocking the surface of the member or the like from the corrosive environment and to improve the adhesion between the substrate and the porous layer. Therefore, if the film thickness of this undercoat is less than 50 μm, not only the corrosion resistance is sufficient, but also uniform film formation is difficult.On the other hand, even if it is thicker than 200 m, the corrosion resistance effect is saturated. To do. As the ceramic used for this undercoat, oxide borides, nitrides, silicides and the like are suitable, and a film using a cermet made of these ceramics and the above metal-alloy may be used.
かかるアンダーコートの形成方法としては、 大気プラズマ溶射法および減圧プ ラズマ溶射法などの他、 水ブラズマ溶射法あるいは爆発溶射法などの溶射法でも よく、 また蒸着法などによって形成してもよい。 本発明に係るプラズマ処理装置の処理チヤンパー内部材等の部材等の素材とし ては、 アルミニウムおよびその合金、 チタンおよびその合金、 ステンレス鋼、 そ の他の特殊鋼、 ニッケル基合金などの金属 (以下、合金を含めて 「金属」 という) の他、 石英、 ガラス化物、 炭化物、 硼化物、 珪化物、 窒化物およびこれらの混合 物からなるセラミック、 これらのセラミックと前記金属等とからなるサーメット のような無機材料、 プラスチックなどを用いることができる。 また、 これらの材 料からなる基材の表面に、 金属めつき (電気めつき、 溶融めつき、 化学めつき) したものや、 金属蒸着膜を形成したものなども用いることができる。 As a method for forming such an undercoat, a thermal spraying method such as an air plasma spraying method or a low pressure plasma spraying method, a water plasma spraying method or an explosion spraying method, or a vapor deposition method may be used. Examples of the material such as the inner member of the processing chamber of the plasma processing apparatus according to the present invention include metals such as aluminum and its alloys, titanium and its alloys, stainless steel, other special steels, and nickel-based alloys In addition to “metals”, including alloys), ceramics composed of quartz, vitrified materials, carbides, borides, silicides, nitrides and mixtures thereof, and cermets composed of these ceramics and the above metals, etc. Inorganic materials and plastics can be used. In addition, it is also possible to use a metal surface (electrical adhesion, melting adhesion, chemical adhesion) or a metal vapor deposition film formed on the surface of a base material made of these materials.
本発明において最も特徴的な構成は、 プラズマ処理雰囲気中に直接曝される部 位、 部材等の表面に対して設けられた前記二次再結晶層の存在である。 この二次 再結晶層とは、前記多孔質層、即ち多孔質溶射皮膜上に形成されるものであって、 例えば III a族金属酸化物からなる前記多孔質層の最表層部分を二次変態させて 形成された層である。  In the present invention, the most characteristic configuration is the presence of the secondary recrystallized layer provided on the surface of a part, member or the like that is directly exposed to the plasma processing atmosphere. The secondary recrystallized layer is formed on the porous layer, that is, a porous sprayed coating, and for example, the outermost layer portion of the porous layer made of a group IIIa metal oxide is subjected to secondary transformation. It is a layer formed.
一般に、 III a族元素の金属酸化物、たとえば酸ィ匕ィットリウム (イットリア: Y 2 O 3) の場合、 結晶構造は正方晶に属する立方晶である。 その酸化ィットリウ ム (以下、 「イットリア」 という) の粉末を、 プラズマ溶射すると、溶融した粒子 が基材に向かって高速で飛行する間に超急冷されながら、 基材表面に衝突して堆 積するときに、 その結晶構造が立方晶 (C u b i c ) の他に単斜晶主体 (m o n o c 1 i n i c ) を含む混晶型の結晶構造に一次変態をする。 これが、 金属酸化 物多孔質層である。 そして、 前記二次結晶層とは、 溶射の際に超急冷されること によつて一次変態して斜方晶系の結晶と正方晶系の結晶とを含む混晶状態となつ た前記金属酸化物多孔質層が、 再びの溶射処理によって正方晶系の結晶型に二次 変態した層のことである。 In general, in the case of a metal oxide of a group IIIa element such as yttrium oxide (yttria: Y 2 O 3 ), the crystal structure is a cubic crystal belonging to a tetragonal crystal. When the powder of the yttrium oxide (hereinafter referred to as “yttria”) is plasma sprayed, the molten particles collide with the surface of the substrate and accumulate while being rapidly cooled while flying toward the substrate at high speed. Occasionally, the crystal structure undergoes a primary transformation to a mixed crystal type crystal structure including monoclinic (monoc 1 inic) in addition to cubic (cubic). This is a metal oxide porous layer. The secondary crystal layer refers to the metal oxide that has undergone a primary transformation by being ultra-rapidly cooled during thermal spraying to form a mixed crystal state including orthorhombic crystals and tetragonal crystals. The porous material layer is a layer that has been secondarily transformed into a tetragonal crystal type by a second thermal spraying process.
図 4は、 Y 203溶射皮膜 (多孔質膜)、 この皮膜を電子ビーム照射処理した後 の皮膜およびアンダーコート層を有する複合皮膜における表面近傍のミク口組織 変化を模式的に示したものである。 図 4 ( a ) に示す非照射試験片では、 皮膜を 構成している溶射粒子がそれぞれ独立して存在し、 表面の粗さが大きいことがわ 力、る。 一方、 図 4 ( b ) に示す電子ビーム照射処理によって、 前記溶射皮膜上に ミクロ組織の異なる新たな層が生成している。 この層は、 前記溶射粒子が相互に S虫合し、 空隙の少ない緻密な層になったものである。 なお、 図 4 ( c ) は、 アン ダーコートを有する例を示している。 Fig. 4 schematically shows the change in the structure of the mouth of the vicinity of the surface of the Y 2 0 3 sprayed coating (porous film), the coating after the electron beam irradiation treatment, and the composite coating with an undercoat layer. It is. In the non-irradiated specimen shown in Fig. 4 (a), the spray particles constituting the coating exist independently, and the surface roughness is large. On the other hand, a new layer having a different microstructure is formed on the sprayed coating by the electron beam irradiation treatment shown in FIG. 4 (b). This layer is a dense layer with a small number of voids formed by the spraying of the spray particles. Figure 4 (c) An example having a dark coat is shown.
電子ビーム照射によって生成した緻密層の下には、 溶射皮膜特有の気孔の多い 皮膜が存在し、 耐熱衝搫性に優れた層になる。  Under the dense layer generated by electron beam irradiation, there is a film with many pores peculiar to the thermal spray coating, and it becomes a layer with excellent heat resistance.
図 5は、 Y203溶射皮膜である多孔質層と、 下記の条件で電子ビーム照射処理 することによって生成した二次再結晶層の XRD測定チャートである。 そして、 図 6および図 7は、 Υ203溶射皮膜 (多孔質層) を電子ビーム照射処理する前と 後の XRDパターンを示している。 即ち、 図 6は、 処理前の縦軸を拡大した X線 回折チヤ一トであり、図 7は、処理後の縦軸を拡大した X線回折チヤ一トである。 図 6からわかるように、 処理前の Υ203溶射皮膜には、 単斜晶を示すピークが特 に 30〜3 5° の範囲で観察され、 立方晶と単斜晶が混在している様子がわかる, これに対し、 図 7に示すように、 この Υ203溶射皮膜を電子ビーム照射処理して 得られた二次再結晶層は、 Υ203粒子を示すピークがシャープになり、 単斜晶の ピークは減衰し、 面指数 (202)、 (310) などは確認できなくなつており、 立方晶のみであることがわかる。 なお、 この XRD試験は、 理学電機社製 R I N T 1 500 X線回折装置を用いて測定したものである。 FIG. 5 is an XRD measurement chart of a porous layer that is a Y 2 0 3 sprayed coating and a secondary recrystallized layer formed by electron beam irradiation treatment under the following conditions. Then, 6 and 7, the Upsilon 2 0 3 sprayed coating (porous layer) shows the XRD pattern before and after electron beam irradiation treatment. That is, FIG. 6 is an X-ray diffraction chart with the vertical axis expanded before processing, and FIG. 7 is an X-ray diffraction chart with the vertical axis expanded after processing. As can be seen from Fig. 6, the peak of monoclinic crystal is observed in the range of 30 ° to 35 °, and cubic and monoclinic crystals are mixed in the Υ 20 3 sprayed coating before processing. On the other hand, as shown in Fig. 7, the secondary recrystallized layer obtained by electron beam irradiation treatment of this Υ 2 0 3 sprayed coating has a sharp peak showing 2 3 3 particles. Thus, the monoclinic peak is attenuated, and the plane indices (202) and (310) cannot be confirmed, indicating that it is only cubic. This XRD test was measured using a RINT 1 500 X-ray diffractometer manufactured by Rigaku Corporation.
X線回折条件は次のとおりである。  The X-ray diffraction conditions are as follows.
出力: 40 k V Output: 40 kV
走查速度: 20/m i n Strike speed: 20 / m i n
図 4において、符号 41は基材、 42は多孔質層 (溶射粒子堆積層)、 43は気 孔(空隙)、 44は粒子界面、 45は貫通気孔、 46は電子ビーム照射処理によつ て生成した二次再結晶層、 そして 47はアンダーコートである。 なお、 レーザー ビーム照射処理によっても、 光学顕微鏡を用いて観察した結果、 電子ビーム照射 面と同様なミク口組織変化が認められる。  In FIG. 4, reference numeral 41 is a base material, 42 is a porous layer (sprayed particle deposition layer), 43 is a pore (void), 44 is a particle interface, 45 is a through-hole, and 46 is an electron beam irradiation treatment. The resulting secondary recrystallized layer, and 47 is an undercoat. In addition, as a result of observation using an optical microscope, the same changes in the tissue structure of the mouth of the electron beam were observed by laser beam irradiation.
このように本発明では、 主として一次変態した斜方晶系主体の結晶構造からな る III a族金属酸化物の前記多孔質層を、 高エネルギー照射処理することによつ て、 該多孔質層の体積溶射粒子を少なくとも融点以上に加熱処理し、 この層を再 び変態 (二次変態) させて、 その結晶構造を正方晶系の,袓織に戻して結晶学的に 安定化させることにしたのである。  As described above, in the present invention, the porous layer of the group IIIa metal oxide mainly composed of the primary transformed orthorhombic crystal structure is subjected to high-energy irradiation treatment to thereby obtain the porous layer. Heat treatment of at least the melting point of the volume sprayed particles, and this layer is transformed again (secondary transformation), and its crystal structure is returned to the tetragonal weave to stabilize crystallographically. It was.
それと同時に、 本発明では、 溶射による一次変態時に、 溶射粒子堆積層に蓄積 された熱歪みや機械的歪みを解放して、 その性状を物理的、 化学的に安定させ、 力つ溶融に伴うこの層の緻密化と平滑化をも実現することにしたのである。 その 結果、 この ΙΠ a族元素の金属酸化物からなる該二次再結晶層は、 溶射したまま の層と比べて緻密で平滑な層になる。 At the same time, in the present invention, during the primary transformation by thermal spraying, the thermal strain and mechanical strain accumulated in the thermal spray particle deposition layer are released, and the properties are physically and chemically stabilized. It was decided to realize the densification and smoothing of this layer accompanying the powerful melting. As a result, the secondary recrystallized layer made of the metal oxide of the group ΙΠa element becomes a dense and smooth layer as compared with the thermally sprayed layer.
従って、 この二次再結晶層は、 気孔率が 5%未満、 好ましくは 2%未満の緻密 化層となると共に、表面は平均粗さ (Ra) で 0. 8〜3. 0 m、最大粗さ (R y) で 6〜16 μιη、 10点平均粗さ (Rz) で 3〜 14 μ m程度になり、 前記 多孔質層と比べて著しく異なった層になる。 なお、 この最大粗さ (Ry) の制御 は、 耐環境汚染性の観点から決定される。 その理由は、 エッチング加工雰囲気中 で励起されたプラズマイオンや電子によって、 容器内部材の表面が削り取られ、 パーティクルを発生する場合に、 その影響は表面の最大粗さ (Ry) の値によく 現われ、 この値が大きいと、 パーティクルの発生機会が増大するからである。 次に、 前記二次再結晶層を形成するために行う高エネルギー照射方法について 説明する。本発明において採用する方法は、電子ビーム照射処理、 C02レーザおよ び YAGレーザなどのレーザ照射処理が好適に用いられるが、 これらの方法だけに 限定されるものではない。 Therefore, this secondary recrystallized layer becomes a densified layer having a porosity of less than 5%, preferably less than 2%, and the surface has an average roughness (Ra) of 0.8 to 3.0 m, with a maximum roughness. The thickness (R y) is 6 to 16 μιη, and the 10-point average roughness (Rz) is about 3 to 14 μm, so that the layer is significantly different from the porous layer. The control of this maximum roughness (Ry) is determined from the viewpoint of environmental pollution resistance. The reason for this is that when the surface of the container member is scraped off by the plasma ions and electrons excited in the etching atmosphere and particles are generated, the effect is most apparent in the value of the maximum surface roughness (Ry). This is because if this value is large, the chance of particle generation increases. Next, a high energy irradiation method performed for forming the secondary recrystallized layer will be described. How employed in the present invention, an electron beam irradiation treatment, the laser irradiation process, such as C0 2 laser and YAG laser is preferably used, but the invention is not limited to these methods.
(1) 電子ビーム照射処理:この処理の条件としては、 空気を排気した照射室内 に、 A rガスなどの不活性ガスを導入し、 例えば、 次に示すような照射条件で処 理することが推奨される。  (1) Electron beam irradiation treatment: As a condition for this treatment, an inert gas such as Ar gas is introduced into the irradiation chamber where the air is exhausted, and the treatment is performed under the following irradiation conditions, for example. Recommended.
照射雰囲気 : O〜0.0005Pa (Arガス) Irradiation atmosphere: O to 0.0005Pa (Ar gas)
ビーム照射出力 : 0. l〜8kW Beam irradiation output: 0.1 to 8kW
処理速度 : l〜30mm/s Processing speed: l ~ 30mm / s
もちろん、 これらの条件は、 上記の範囲に限定されるものではなく、 好適な二 次再結晶層を得るのに好適な条件を例示したものであり、 本発明の所定の効果が 得られる限り、 これらの条件のみに限定されるものではない。  Of course, these conditions are not limited to the above range, but are examples of conditions suitable for obtaining a suitable secondary recrystallized layer. As long as the predetermined effects of the present invention can be obtained, It is not limited only to these conditions.
電子ビーム照射処理された Ilia族元素を含む金属酸化物は、表面から温度が上 昇して最終的には融点以上に達して溶融状態となる。 この溶融現象は、 電子ビー ム照射出力を大きくしたり、 照射回数を増加したり、 また照射時間を長くするこ とによって次第に皮膜内部にも及んで行くので、 照射溶融層の深さは、 これらの 照射条件を変えることによって、 制御可能である。 実用的には 1/ Γη〜50μηιの溶 ilr深さがあれば本発明の上記目的に適う二次再結晶層となる。 ( 2 ) レーザービームとしては、 YAG結晶を利用した YAGレーザ、 また、 媒 質がガスの場合には、 C〇2ガスレーザ等を使用することが可能である。 このレー ザ一ビームの照射処理としては、 次に示す条件が推奨される。 The metal oxide containing an Ilia group element that has been subjected to electron beam irradiation rises in temperature from the surface and eventually reaches the melting point or higher and becomes a molten state. This melting phenomenon gradually reaches the inside of the film by increasing the electron beam irradiation output, increasing the number of times of irradiation, and increasing the irradiation time. It can be controlled by changing the irradiation conditions. Practically, if the ilr depth is 1 / Γη to 50μηι, a secondary recrystallized layer suitable for the above object of the present invention can be obtained. The (2) laser beams, YAG laser also utilizing YAG crystal, when medium quality is gas, it is possible to use the C_〇 2 gas laser or the like. The following conditions are recommended for this laser beam irradiation process.
レーザ出力 : 0. l〜10kW Laser output: 0.1 to 10kW
レ ザービーム面積 : 0. 01~2500瞧 2 Laser beam area: 0.01 ~ 2500 瞧2
処理速度 : 5〜 1000瞧 /s Processing speed: 5 ~ 1000 瞧 / s
上記の電子ビーム照射処理やレーザービーム照射処理された層は、 上述したと おり、 高温変態して冷却時に二次再結晶を析出し、 物理化学的に安定な結晶型に 変化するので、 皮膜の改質が結晶レベルの単位で進行する。 例えば、 大気プラズ マ溶射法によって形成した γ2ο3皮膜では、 上述したとおり、 溶射状態では斜方 晶主体であるのに対し、 電子ビーム照射後にはほとんど立方晶に変化する。 以下、高エネルギー照射処理した周期律表 Ilia族元素の金属酸化物からなる二 次再結晶層の特徴をまとめる。 As described above, the layer subjected to the electron beam irradiation treatment or the laser beam irradiation treatment is transformed into a crystal form which is transformed into a physicochemically stable crystal by transforming to a high temperature and precipitating secondary recrystallization upon cooling. Modification proceeds in units of crystal level. For example, the γ 2 ο 3 coating formed by the atmospheric plasma spraying method is mainly orthorhombic in the sprayed state as described above, but almost changes to cubic after electron beam irradiation. The characteristics of the secondary recrystallized layer composed of metal oxides of the Ilia group elements of the periodic table subjected to high energy irradiation are summarized below.
a . 高エネルギー照射処理されて生成する二次再結晶層は、 下層の一次変態層で ある金属酸化物等からなる多孔質層をさらに二次変態させたもの、 あるいはその 下層の酸化物粒子は融点以上に加熱されること力 ら、 気孔の少なくとも一部が消 滅して緻密化する。 a. The secondary recrystallized layer produced by the high energy irradiation treatment is obtained by further secondary transformation of a porous layer made of a metal oxide or the like which is the lower primary transformation layer, or the lower oxide particles are Due to the heating force above the melting point, at least part of the pores disappear and become dense.
b . 高エネルギー照射処理されて生成する二次再結晶層が、 とくに下層の金属酸 化物からなる多孔質層をさらに二次変態させて得た層である場合、 とくにそれが 溶射法で形成された溶射皮膜の場合、 溶射時の未溶融粒子も完全に溶融し、 かつ 表面が鏡面状態になるから、 プラズマエッチングされ易い突起物が消滅すること となる。 b. When the secondary recrystallized layer produced by the high energy irradiation treatment is a layer obtained by further secondary transformation of a porous layer made of a metal oxide, particularly, it is formed by thermal spraying. In the case of a sprayed coating, the unmelted particles at the time of spraying are completely melted and the surface is in a mirror state, so that projections that are easily plasma-etched disappear.
c 上記 a、 bの効果によって、 前記多孔質層は、 高エネルギー照射処理によつ て生成する二次再結晶層のため、 貫通気孔が塞がれ、 これらの貫通気孔を介して 内部 (基材) に侵入する腐食性ガスがなくなり、 耐食性が向上するとともに、 緻 密化しているためにプラズマエッチング作用に対しても強い抵抗力を発揮し、 長 時間にわたって優れた耐食性と耐プラズマエロージョン性を発揮する。  c Due to the effects of a and b above, the porous layer is a secondary recrystallized layer produced by high-energy irradiation treatment, so that the through-holes are blocked, and the internal (base) Corrosive gas that intrudes into the material is eliminated, corrosion resistance is improved, and since it is densified, it also has a strong resistance to plasma etching, and has excellent corrosion resistance and plasma erosion resistance over a long period of time. Demonstrate.
d . 前記二次再結晶層は、 物理ィヒ学的に安定な結晶であるため、 改質が結晶レべ ルで実現できる。 しかも、 この時、 溶射時に導入された熱歪みも同時に解放され て安定な層になる。 e . 高エネルギー照射処理によって生成された二次結晶層の厚さは、 表面から 1 〜50 μ ιη程度の厚さにすることが好ましい。 その理由は、 未満では成膜の 効果がなく、 一方、 50 mより厚い場合には、 高エネルギー照射処理の負担が大 きくなると共に、 成膜の効果が飽和するからである。 d. Since the secondary recrystallization layer is a physically stable crystal, modification can be realized at the crystal level. In addition, at this time, the thermal strain introduced at the time of thermal spraying is also released at the same time to form a stable layer. e. the thickness of the secondary crystal layer produced by high-energy irradiation treatment, it is preferable that the thickness of about 1 ~50 μ ιη from the surface. The reason is that if the thickness is less than 50 m, there is no effect of film formation, while if it is thicker than 50 m, the burden of high-energy irradiation treatment is increased and the effect of film formation is saturated.
なお、 下層の多孔質層は、 耐熱衝墜性に優れた層として存在するが、 この層は 上層との間で緩衝作用を担う特徴がある。 即ち、 上層の緻密質二次結晶層に加わ る熱衝撃を緩和する働きを通じ、 皮膜全体にかかるサーマルショックを和らげる 効果がある。 この意味において、 下層に溶射皮膜からなる該多孔質層を有し、 上 層に二次再結晶層を積層してなる複合皮膜の場合、 これらの両層の複合的な作用 によつて相乗的な効果が生じて皮膜の耐久性が向上する。  The lower porous layer exists as a layer having excellent heat resistance, but this layer has a characteristic of acting as a buffer with the upper layer. That is, it has the effect of reducing the thermal shock applied to the entire film through the action of mitigating the thermal shock applied to the upper dense secondary crystal layer. In this sense, in the case of a composite film in which the lower layer has the porous layer made of a thermal spray coating and the upper layer has a secondary recrystallized layer laminated, the combined action of these two layers is synergistic. Effect occurs and the durability of the coating is improved.
また、 上述したように、 高いプラズマ出力でエッチングを行うと、 チェンバー 内の部材等とブラズマとの電位差が大きくなり、 部材等に被覆した γ2ο3等の溶射 皮膜が腐食され、 それによつて生成した腐食生成物のパーティクルカ、 被処理体 の表面に落下、 付着することによりデバイス不良を招く。 しかしながら、 本発明 のプラズマ処理装置では、 部材等の表面に形成した皮膜の耐エロージョン性が向 上することにより、 プラズマ出力を、 部材等とプラズマとの電位差が 550V程度 になるまで増加させた場合においても、 パーティクルの発生を抑制することがで きるようになる。 なお、 前記部材等とブラズマとの電位差は、 図 1の高周波電源 7から载置台 5に印加される電力によって制御され、好ましくは 550V以下、より 好ましくは 120V以上 550V以下とする。 実施例 In addition, as described above, when etching is performed with a high plasma output, the potential difference between the member in the chamber and the plasma increases, and the sprayed coating such as γ 2 ο 3 coated on the member is corroded. Particle corrosion of the generated corrosion products, and dropping and adhering to the surface of the object to be processed will cause device failure. However, in the plasma processing apparatus of the present invention, when the erosion resistance of the film formed on the surface of the member is improved, the plasma output is increased until the potential difference between the member and the plasma is about 550V. In this case, the generation of particles can be suppressed. Note that the potential difference between the member or the like and the plasma is controlled by the power applied to the mounting table 5 from the high-frequency power source 7 in FIG. 1, and is preferably 550 V or less, more preferably 120 V or more and 550 V or less. Example
(実施例 1 ) (Example 1)
図 1に示すプラズマ処理装置のチェンバー内壁部材 (アルミ製バッフル) の表 面に、 III a族金属酸化物の例として Υ203 (純度 95mass%以上) を溶射して皮膜 形成したもの (比較例 B ) と、 Υ203'を溶射して皮膜形成したのち、 その表面に 電子ビームを照射して二次変態させ、 二次結晶層を有するもの (発明例 Α) を形 成した。 それぞれのチャンバ一内に、 含 Fガスおよび含 C Hガスを交互に繰り返 し導入してプラズマ処理を行い、 前記 Υ203溶射皮膜を脆弱化させた後、 被ブラ ズマ処理体である半導体ウェハの載置台への高周波電力の印加量を制御すること によって、 チャンバ一壁電位とプラズマとの電位差を 200V〜300Vまで変化させ、 各電位差での半導体ウェハ上へのダスト (パーティクル) の発生量を測定した。 その結果を図 2に示す。 On the front surface of the chamber inner wall member (aluminum baffle) of the plasma processing apparatus shown in FIG. 1, Υ 2 0 3 (or more purity 95 mass%) Examples of III a metals oxides that sprayed with film-forming (Comparative and example B), Υ 2 0 3 'After sprayed with film forming, its surface is secondary transformation by irradiating an electron beam to form the shape as a (Inventive Alpha) with secondary crystal layer. The respective chambers in one, plasma treatment is introduced repeatedly to F-containing gas and containing CH gases alternately, after weakening the Upsilon 2 0 3 sprayed coating is to be bra Zuma processed semiconductor Control the amount of high frequency power applied to the wafer mounting table By varying the potential difference between the chamber wall potential and plasma from 200V to 300V, the amount of dust (particles) generated on the semiconductor wafer at each potential difference was measured. The result is shown in Fig.2.
その結果、比較例 Bでは、電位差の増加に伴い半導体ウェハ起因のダストの他、 皮膜 (ィットリゥム) 起因のダストが発生したのに対し、 発明例 Aでは、 半導体 ウェハ起因のダストは観察されたものの、 皮膜成分 (イツトリゥム) 起因のパー ティクルの発生が全く見られないか、 少しし力発生しなかった。  As a result, in Comparative Example B, dust due to the semiconductor wafer and dust due to the film (yttrium) were generated along with the increase in the potential difference, whereas in Invention Example A, although dust due to the semiconductor wafer was observed, There was no particle generation due to the film component (ittrium), or little force was generated.
(実施例 2 )  (Example 2)
プラズマ処理容器内壁部材 (アルミ製のロアインシユレータ、 バッフル、 デポ シールド) とプラズマとの電位差の限界値 (皮膜 (イツトリゥム) 起因のダスト の発生が抑制できる範囲) を調査するため、 実施例 1と同様に、 処理容器内壁部 材の表面に、 Y203を溶射して皮膜形成したもの (比較例 Β ) と、 Υ23を溶射し て皮膜形成したのち、さらに、その表面を電子ビーム照射処理して二次変態させ、 二次結晶層を形成したもの (発明例 Α) を準備した。 それぞれの処理容器内に、 含 Fガスおよび含 C Hガスを交互に繰返し導入してプラズマ処理を行い、 Υ203 皮膜を脆弱化させた後、 下部電極への高周波電力の印加量を制御することによつ て部材等とブラズマの電位差を変化させ、 各電位差での半導体ウェハ上へのダス トの発生量を測定した。 その結果を図 3に示す。 Example 1 to investigate the limit value of the potential difference between the plasma processing vessel inner wall member (aluminum lower insulator, baffle, and depot shield) and the plasma (the range in which the generation of dust caused by coating (ittrium) can be suppressed) similar to the surface of the processing container inner wall material, Y 2 0 3 that sprayed with film forming (Comparative example beta), After film formation by spraying the Upsilon 23, further the surface An electron beam irradiation treatment (secondary transformation) to form a secondary crystal layer (Invention Example IV) was prepared. Each of the processing container, plasma treatment by repeatedly introducing a F-containing gas and containing CH gases alternately, after weakening the Upsilon 2 0 3 coating, to control the application amount of the high-frequency power to the lower electrode As a result, the potential difference between the member and the plasma was changed, and the amount of dust generated on the semiconductor wafer at each potential difference was measured. The results are shown in Fig. 3.
その結果、 比較例 Βでは、 電位差の増加に伴い、 それに比例してイツトリウム 起因のダストが增加したのに対し、発明例 Αでは、 550Vの時点においてもィット リウム起因のダストの発生は認めらない。 したがって、 本発明のプラズマ処理装 置によって、電位差を最大 550Vまで増加させた場合においても、イツトリゥム起 因のダストの発生は抑制することが可能となることがわかつた。 産業上の利用可能个生  As a result, in Comparative Example Β, the dust caused by yttrium increased in proportion to the increase in the potential difference, whereas in Invention Example 発 生, no dust caused by yttrium was observed even at 550V. . Therefore, it has been found that the generation of dust caused by yttrium can be suppressed even when the potential difference is increased up to 550 V by the plasma processing apparatus of the present invention. Industrial use available
本発明の技術は、一般的な半導体加工装置に使われる部材、部品等はもとより、 昨今の一段と精密 ·高度な加工が要求されているプラズマ処理装置用部材の表面 処理技術として用いられる。 とくに、 本発明は、 含 Fガスや含 C Hガスをそれぞ れ単独に使用する装置またはこれらのガスを交互に繰り返して使用すような苛酷 な雰囲気中においてプラズマ処理する半導体加工装置のデポシールド、 バッフル プレート、 フォーカスリング、 アッパー 'ロワ一インシュレータリング、 シール ドリング、 ベローズカバー、 電極、 固体誘導体などの部材、 部品等への表面処理 技術として好適である。 また、 本発明は、 液晶デバイス製造装置用部材の表面処 理技術としての適用が可能である。 The technology of the present invention is used as a surface treatment technology for members for plasma processing apparatuses that are required to be more precise and highly advanced in recent years, as well as members and parts used in general semiconductor processing apparatuses. In particular, the present invention relates to a deposition shield for a semiconductor processing apparatus that performs plasma processing in a harsh atmosphere in which an F-containing gas and a CH-containing gas are used individually or in an environment where these gases are used alternately and repeatedly, Baffle It is suitable as a surface treatment technology for parts, parts, etc. such as plates, focus rings, upper 'lower insulator rings, shield rings, bellows covers, electrodes and solid derivatives. Further, the present invention can be applied as a surface treatment technique for a member for a liquid crystal device manufacturing apparatus.

Claims

請 求 の 範 囲 The scope of the claims
1 . チャンバ一内に収容した被処理体表面を、 エッチング処理ガスプラズマによ つて加工するプラズマ処理装置において、 1. In a plasma processing apparatus that processes the surface of an object to be processed accommodated in a chamber by etching gas plasma,
このチャンバ一のプラズマ生成雰囲気に曝される部位、 このチャンバ一内配設部 材または部品の表面が、 少なくとも、 金属酸化物からなる多孔質層とその多孔質 層上に形成された該金属酸化物の二次再結晶層とによって被覆されていることを 特徴とするプラズマ処理装置。 At least a porous layer made of a metal oxide and the metal oxide formed on the porous layer at least a portion of the chamber exposed to the plasma generation atmosphere and the surface of the chamber-provided member or component. A plasma processing apparatus characterized by being covered with a secondary recrystallized layer of a product.
2 . 前記多孔質層下には、 金属 .合金、 セラミックスまたはサーメットからなる アンダーコート層を有することを特徴とする請求の範囲 1に記載のプラズマ処理 装置。  2. The plasma processing apparatus according to claim 1, further comprising an undercoat layer made of a metal alloy, ceramics, or cermet under the porous layer.
3 . 前記エッチング処理が、 フッ素含有ガスプラズマによる処理、 フッ素含有ガ スと炭化水素含有ガスとの混合ガスプラズマによる処理、 またはフッ素含有ガス と炭化水素含有ガスとを交互に繰返し導入して処理するいずれかであることを特 徴とする請求の範囲 1に記載のプラズマ処理装置。  3. The etching treatment is treatment with fluorine-containing gas plasma, treatment with mixed gas plasma of fluorine-containing gas and hydrocarbon-containing gas, or treatment by alternately introducing fluorine-containing gas and hydrocarbon-containing gas. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is any one of the above.
4 . 前記フッ素含有ガスは、 C x F yガス、 C H F系ガス、 H F系ガス、 S F系ガ スおよびこれらのガスと ¾との混合ガスのうちから選ばれる 1種以上のガスであ ることを特徴とする請求の範囲 3に記載のプラズマ処理装置。 4. The fluorine-containing gas, C x F y gas, CHF-based gas, HF-based gas one or more gases der Rukoto selected from among a mixed gas of ¾ and SF-based gas and these gases The plasma processing apparatus according to claim 3, wherein:
5 . 前記炭化水素含有ガスは、 C x Hyガス、 H含有ガスおよび C x Hyガスと 02 との混合ガスのうちから選ばれる 1種以上のガスであることを特徴とする請求の 範囲 3に記載のブラズマ処理装置。 5. The hydrocarbon-containing gas, according to which is a C x H y gas, one or more gases selected from among H containing gas and C x H y gas and mixed gas of 0 2 A plasma processing apparatus according to claim 3.
6 .前記金属酸化物は、 III a族元素を含む金属酸化物であることを特徴とする請 求の範囲 1に記載のプラズマ処理装置。  6. The plasma processing apparatus according to claim 1, wherein the metal oxide is a metal oxide containing a group IIIa element.
7 . 前記二次再結晶層は、 多孔質層に含まれる一次変態した金属酸化物を高エネ ルギー照射処理によって、 二次変態させて形成したものであることを特徴とする 請求の範囲 1に記載のプラズマ処理装置。  7. The secondary recrystallized layer is formed by secondary transformation of a metal oxide that has undergone primary transformation contained in the porous layer by high energy irradiation treatment. The plasma processing apparatus as described.
8 . 前記二次再結晶層は、 斜方晶系の結晶を含む多孔質層が高エネルギー照射処 理によつて二次変態して正方晶系の組織になつた層であることを特徴とする請求 の範囲 1に記載のプラズマ処理装置。  8. The secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals is transformed into a tetragonal structure by secondary transformation by high energy irradiation treatment. The plasma processing apparatus according to claim 1.
9 . 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザビーム照射 処理であることを特徴とする請求の範囲 7に記載のプラズマ処理装置。 9. The high energy irradiation treatment is an electron beam irradiation treatment or a laser beam irradiation. The plasma processing apparatus according to claim 7, wherein the plasma processing apparatus is a process.
1 0. 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザビーム照 射処理であることを特徴とする請求の範囲 8に記載のプラズマ処理装置。  10. The plasma processing apparatus according to claim 8, wherein the high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
1 1. 前記チャンバ一のプラズマ雰囲気に嗨される部位、 部材または部品の表面 と前記プラズマとは、 120 V以上 550V以下の電位差を有することを特徴とする請 求の範囲 1に記載のプラズマ処置装置。  1 1. The plasma treatment according to claim 1, wherein a portion of the chamber exposed to the plasma atmosphere, a surface of a member or a part, and the plasma have a potential difference of 120 V or more and 550 V or less. apparatus.
1 2. 前記電位差は、 前記チャンバ一内に設けられた被処理体の載置台に印加さ れた高周波電力により制御されるものであることを特徴とする請求の範囲 1 1に 記載のプラズマ処理装置。  1 2. The plasma processing according to claim 11, wherein the potential difference is controlled by a high-frequency power applied to a mounting table of an object to be processed provided in the chamber. apparatus.
1 3. チャンバ一内に収容した被処理体表面を、 エッチング処理ガスプラズマに よって加工するプラズマ処理方法において、 この処理に先立ち、 まず前記チャン バーのプラズマ雰囲気に曝される部位、 このチヤンバー内配設部材または部品の 表面に、 金属酸化物からなる多孔質層と、 その多孔質層上に形成された前記金属 酸化物の二次再結晶層とを含む複合層を被覆形成し、 その後、 このチヤンバー内 にフッ素含有ガスを含む第 1のガスを導入し、 このガスを励起させて第 1のブラ ズマを発生させて処理することを特徴とするプラズマ処理方法。  1 3. In a plasma processing method for processing the surface of an object to be processed housed in a chamber with an etching gas plasma, prior to this processing, first, a portion exposed to the plasma atmosphere of the chamber, A composite layer including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer is formed on the surface of the installation member or component. A plasma processing method characterized by introducing a first gas containing a fluorine-containing gas into a chamber and exciting the gas to generate a first plasma for processing.
14. 前記フッ素含有ガスは、 CxFyガス、 CHF系ガス、 HF系ガス、 SF系 ガスおよびこれらのガスと〇2とを含む混合ガスのうちから選ばれる 1種以上の ガスであることを特徴とする請求の範囲 1 3に記載のプラズマ処理方法。 14. The fluorine-containing gas is at least one gas selected from C x F y gas, CHF gas, HF gas, SF gas, and a mixed gas containing these gases and ○ 2 The plasma processing method according to claim 13, wherein:
1 5.前記金属酸化物は、 III a族元素を含む金属酸化物であることを特徴とする 請求の範囲 1 3に記載のプラズマ処理方法。  5. The plasma processing method according to claim 13, wherein the metal oxide is a metal oxide containing a group IIIa element.
1 6. 前記二次再結晶層は、 多孔質層に含まれる一次変態した金属酸化物を高工 ネルギー照射処理によって、 二次変態させて形成したものであることを特徴とす る請求の範囲 1 3に記載のプラズマ処理方法。  1 6. The secondary recrystallized layer is formed by secondary transformation of a metal oxide that has undergone primary transformation contained in a porous layer by high-energy irradiation treatment. 13. The plasma processing method according to 3.
1 7. 前記二次再結晶層は、 斜方晶系の結晶を含む多孔質層が高エネルギー照射 処理によつて二次変態して正方晶系の組織になった層であることを特徴とする請 求の範囲 1 3に記載のプラズマ処理方法。  1 7. The secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals has a tetragonal structure as a result of secondary transformation by high energy irradiation treatment. The plasma processing method according to claim 13.
1 8. 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザービーム 照射処理であることを特徴とする請求の範囲 1 6に記載のプラズマ処理方法。  18. The plasma processing method according to claim 16, wherein the high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
1 9. 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザービーム 照射処理であることを特徴とする請求の範囲 1 7に記載のプラズマ処理方法。 1 9. The high energy irradiation process is an electron beam irradiation process or a laser beam. The plasma processing method according to claim 17, wherein the plasma processing method is irradiation treatment.
2 0 . 前記チャンバ一内の、 プラズマ雰囲気に曝される部位、 部材または部品の 表面と前記ブラズマとは、 120 V以上 550 V以下の電位差を有することを特徴とす る請求の範囲 1 3に記載のプラズマ処理方法。 2 0. The region according to claim 13, wherein a portion of the chamber exposed to a plasma atmosphere, a surface of a member or a part, and the plasma have a potential difference of 120 V or more and 550 V or less. The plasma processing method as described.
2 1 . 前記電位差は、 前記チャンバ一内に設けられた被処理体の載置台に印加さ れた高周波電力により制御することを特徴とする請求の範囲 2 0に記載のプラズ マ処理方法。 21. The plasma processing method according to claim 20, wherein the potential difference is controlled by a high-frequency power applied to a mounting table of an object to be processed provided in the chamber.
2 2 . チャンバ一内に収容した被処理体表面を、 エッチング処理ガスのプラズマ によって加工するプラズマ処理方法において、 この処理に先立ち、 まず前記チヤ ンバーの、 プラズマ雰囲気に曝される部位、 このチャンバ一内配設部材または部 品の表面に、 金属酸化物からなる多孔質層と、 その多孔質層上に形成された前記 金属酸化物の二次再結晶層とを含む複合層を被覆形成し、 その後、 このチャンバ 一内にフッ素含有ガスを含む第 1のガスを導入したのち励起させて第 1のプラズ マを発生させ、 次いで、 このチャンバ一内に炭化水素ガスを含む第 2のガスを導 入したのち励起させて第 2のプラズマを発生させて処理することを特徴とするプ ラズマ処理方法。  2 2. In a plasma processing method for processing the surface of an object to be processed accommodated in a chamber with plasma of an etching processing gas, prior to this processing, the chamber is first exposed to a plasma atmosphere. A composite layer including a porous layer made of a metal oxide and a secondary recrystallized layer of the metal oxide formed on the porous layer is formed on the surface of the inner member or component. Thereafter, a first gas containing a fluorine-containing gas is introduced into the chamber and then excited to generate a first plasma. Then, a second gas containing a hydrocarbon gas is introduced into the chamber. The plasma processing method is characterized in that the second plasma is generated by being excited and then processed to generate a second plasma.
2 3 . 前記フッ素含有ガスは、 C x F yガス、 C H F系ガス、 H F系ガス、 S F系 ガスおょぴこれらのガスと 0 2とを含む混合ガスのうちから選ばれる 1種以上の ガスであることを特徴とする請求の範囲 2 2に記載のプラズマ処理方法。 2 3. The fluorine-containing gas is one or more gases selected from C x F y gas, CHF gas, HF gas, SF gas and mixed gas including these gases and 0 2. The plasma processing method according to claim 22, wherein:
2 4 . 前記炭化水素を含有するガスは、 C x H yガス、 H含有ガスおよび C x Hy ガスと O 2との混合ガスのうちから選ばれる 1種以上のガスであることを特徴と する請求の範囲 2 2に記載のプラズマ処理方法。 24. The hydrocarbon-containing gas is one or more gases selected from C x Hy gas, H-containing gas, and mixed gas of C x Hy gas and O 2. The plasma processing method according to claim 22.
2 5 .前記金属酸化物は、 III a族元素を含む金属酸化物であることを特徴とする 請求の範囲 2 2に記載のプラズマ処理方法。  25. The plasma processing method according to claim 22, wherein the metal oxide is a metal oxide containing a group IIIa element.
2 6 . 前記二次再結晶層は、 多孔質層に含まれる一次変態した金属酸化物を高工 ネルギー照射処理によって、 二次変態させて形成したものであることを特徴とす る請求の範囲 2 2に記載のプラズマ処理方法。 26. The secondary recrystallized layer is formed by secondary transformation of a metal oxide that has undergone primary transformation contained in a porous layer by high-energy irradiation treatment. 2 The plasma processing method according to 2.
2 7 . 前記二次再結晶層は、 斜方晶系の結晶を含む多孔質層が高エネルギー照射 処理によつて二次変態して正方晶系の組織になった層であることを特徴とする請 求の範囲 2 2に記載のブラズマ処理方法。 27. The secondary recrystallized layer is a layer in which a porous layer containing orthorhombic crystals is transformed into a tetragonal structure by secondary transformation by high energy irradiation treatment. 2. The plasma processing method according to claim 22.
2 8 . 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザービーム 照射処理であることを特徴とする請求の範囲 2 6に記載のプラズマ処理方法。28. The plasma processing method according to claim 26, wherein the high energy irradiation process is an electron beam irradiation process or a laser beam irradiation process.
2 9 . 前記高エネルギー照射処理が、 電子ビーム照射処理またはレーザービーム 照射処理であることを特徴とする請求の範囲 2 7に記載のプラズマ処理方法。29. The plasma processing method according to claim 27, wherein the high energy irradiation treatment is an electron beam irradiation treatment or a laser beam irradiation treatment.
3 0. 前記チャンバ一内の、 プラズマ雰囲気に曝される部位、 部材または部品の 表面と前記プラズマとは、 120 V以上 550 V以下の電位差を有することを特徴とす る請求の範囲 2 2に記載のプラズマ処理方法。 30. The range of claim 22, wherein the plasma has a potential difference of 120 V or more and 550 V or less between the surface of the part, member or part exposed to the plasma atmosphere in the chamber and the plasma. The plasma processing method as described.
3 1 . 前記電位差は、 前記チャンバ一内に設けられた被処理体の載置台に印加さ れた高周波電力により制御することを特徴とする請求の範囲 3 0に記載のプラズ マ処理方法。  31. The plasma processing method according to claim 30, wherein the potential difference is controlled by a high-frequency power applied to a mounting table of an object to be processed provided in the chamber.
PCT/JP2007/056130 2006-03-20 2007-03-16 Plasma processing apparatus and plasma processing method WO2007108549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006076195A JP4996868B2 (en) 2006-03-20 2006-03-20 Plasma processing apparatus and plasma processing method
JP2006-076195 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108549A1 true WO2007108549A1 (en) 2007-09-27

Family

ID=38522573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056130 WO2007108549A1 (en) 2006-03-20 2007-03-16 Plasma processing apparatus and plasma processing method

Country Status (5)

Country Link
JP (1) JP4996868B2 (en)
KR (1) KR100864331B1 (en)
CN (1) CN100508116C (en)
TW (1) TW200741857A (en)
WO (1) WO2007108549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150970A1 (en) * 2008-06-11 2009-12-17 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2021120346A (en) * 2012-02-22 2021-08-19 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266724A (en) * 2007-04-20 2008-11-06 Shin Etsu Chem Co Ltd Surface treatment method for thermal spray coating, and surface-treated thermal spray coating
CN101740329B (en) * 2008-11-17 2012-12-05 中芯国际集成电路制造(上海)有限公司 Plasma processing method
JP5415853B2 (en) * 2009-07-10 2014-02-12 東京エレクトロン株式会社 Surface treatment method
US20120216955A1 (en) * 2011-02-25 2012-08-30 Toshiba Materials Co., Ltd. Plasma processing apparatus
JP5879069B2 (en) * 2011-08-11 2016-03-08 東京エレクトロン株式会社 Method for manufacturing upper electrode of plasma processing apparatus
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
JP2012129549A (en) * 2012-03-06 2012-07-05 Tokyo Electron Ltd Electrostatic chuck member
JP5526364B2 (en) * 2012-04-16 2014-06-18 トーカロ株式会社 Method of modifying the surface of white yttrium oxide sprayed coating
US9257285B2 (en) * 2012-08-22 2016-02-09 Infineon Technologies Ag Ion source devices and methods
US20140357092A1 (en) * 2013-06-04 2014-12-04 Lam Research Corporation Chamber wall of a plasma processing apparatus including a flowing protective liquid layer
CN104241069B (en) * 2013-06-13 2016-11-23 中微半导体设备(上海)有限公司 There is in plasma device parts and the manufacture method thereof of yittrium oxide clad
US10319568B2 (en) * 2013-11-12 2019-06-11 Tokyo Electron Limited Plasma processing apparatus for performing plasma process for target object
JP6985267B2 (en) 2015-11-16 2021-12-22 クアーズテック,インコーポレイティド Corrosion resistant components and manufacturing methods
JP6146841B1 (en) * 2016-08-04 2017-06-14 日本新工芯技株式会社 Ring electrode
JP6388188B1 (en) * 2016-11-02 2018-09-12 日本イットリウム株式会社 Film forming material and film
CN109963825B (en) * 2016-11-16 2022-08-09 阔斯泰公司 Corrosion resistant assembly and method of manufacture
CN108122805B (en) * 2016-11-29 2020-10-16 北京北方华创微电子装备有限公司 Degassing chamber and semiconductor processing equipment
KR20180071695A (en) 2016-12-20 2018-06-28 주식회사 티씨케이 Parts for semiconductor manufacturing with deposition layer covering boundary line between layers
KR102016615B1 (en) * 2017-09-14 2019-08-30 (주)코미코 Member Having Exellent Resistance Against Plasmacorrosion for Plasma Etching device and Method for Producing the Same
US20190119815A1 (en) * 2017-10-24 2019-04-25 Applied Materials, Inc. Systems and processes for plasma filtering
CN110512178B (en) * 2018-05-22 2021-08-13 北京北方华创微电子装备有限公司 Chamber liner, process chamber and semiconductor processing equipment
US20220042161A1 (en) * 2018-12-05 2022-02-10 Kyocera Corporation Member for plasma processing device and plasma processing device provided with same
JP7097809B2 (en) * 2018-12-28 2022-07-08 東京エレクトロン株式会社 Gas introduction structure, treatment equipment and treatment method
US20230019508A1 (en) * 2019-11-27 2023-01-19 Kyocera Corporation Plasma resistant member, plasma treatment device component, and plasma treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996273A (en) * 1982-11-26 1984-06-02 Toshiba Corp Formation of heat resistant coating layer
JPH104083A (en) * 1996-06-17 1998-01-06 Kyocera Corp Anticorrosive material for semiconductor fabrication
JPH10144654A (en) * 1996-08-01 1998-05-29 Surface Technol Syst Ltd Semiconductor substrate surface treating method
JP2005256098A (en) * 2004-03-12 2005-09-22 Tocalo Co Ltd Y2o3 thermally sprayed coating coated member having excellent thermal radiation property and damage resistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761112B2 (en) * 1991-02-21 1998-06-04 松下電工株式会社 Metal substrate with insulating layer and method of manufacturing the same
JP2971369B2 (en) * 1995-08-31 1999-11-02 トーカロ株式会社 Electrostatic chuck member and method of manufacturing the same
JP3510993B2 (en) * 1999-12-10 2004-03-29 トーカロ株式会社 Plasma processing container inner member and method for manufacturing the same
TW503449B (en) * 2000-04-18 2002-09-21 Ngk Insulators Ltd Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP4254236B2 (en) * 2000-12-12 2009-04-15 コニカミノルタホールディングス株式会社 Thin film formation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996273A (en) * 1982-11-26 1984-06-02 Toshiba Corp Formation of heat resistant coating layer
JPH104083A (en) * 1996-06-17 1998-01-06 Kyocera Corp Anticorrosive material for semiconductor fabrication
JPH10144654A (en) * 1996-08-01 1998-05-29 Surface Technol Syst Ltd Semiconductor substrate surface treating method
JP2005256098A (en) * 2004-03-12 2005-09-22 Tocalo Co Ltd Y2o3 thermally sprayed coating coated member having excellent thermal radiation property and damage resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150970A1 (en) * 2008-06-11 2009-12-17 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2021120346A (en) * 2012-02-22 2021-08-19 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics

Also Published As

Publication number Publication date
JP2007251091A (en) 2007-09-27
TWI374492B (en) 2012-10-11
CN101042996A (en) 2007-09-26
TW200741857A (en) 2007-11-01
KR100864331B1 (en) 2008-10-17
KR20070095210A (en) 2007-09-28
CN100508116C (en) 2009-07-01
JP4996868B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2007108549A1 (en) Plasma processing apparatus and plasma processing method
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
US7648782B2 (en) Ceramic coating member for semiconductor processing apparatus
US7850864B2 (en) Plasma treating apparatus and plasma treating method
US7364798B2 (en) Internal member for plasma-treating vessel and method of producing the same
JP6082345B2 (en) Thermal spray coating for semiconductor applications
JP2009081223A (en) Electrostatic chuck member
JPH10251871A (en) Boron carbide parts for plasma reactor
WO2009108275A2 (en) Ceramic coating comprising yttrium which is resistant to a reducing plasma
JP2013532770A (en) Thermal spray composite coating for semiconductor applications
TW201033407A (en) Thermal spray coatings for semiconductor applications
JP4512603B2 (en) Halogen gas resistant semiconductor processing equipment components
WO2022006004A1 (en) Yttrium oxide based coating and bulk compositions
JP2012129549A (en) Electrostatic chuck member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739571

Country of ref document: EP

Kind code of ref document: A1