WO2007102363A1 - 無線送信装置および無線送信方法 - Google Patents

無線送信装置および無線送信方法 Download PDF

Info

Publication number
WO2007102363A1
WO2007102363A1 PCT/JP2007/053754 JP2007053754W WO2007102363A1 WO 2007102363 A1 WO2007102363 A1 WO 2007102363A1 JP 2007053754 W JP2007053754 W JP 2007053754W WO 2007102363 A1 WO2007102363 A1 WO 2007102363A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
repetition
transmission
repetition rate
quality
Prior art date
Application number
PCT/JP2007/053754
Other languages
English (en)
French (fr)
Inventor
Yasuaki Yuda
Masayuki Hoshino
Tomohiro Imai
Ryohei Kimura
Daichi Imamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07715044A priority Critical patent/EP1981200A1/en
Priority to US12/281,140 priority patent/US20090305690A1/en
Priority to JP2008503793A priority patent/JPWO2007102363A1/ja
Publication of WO2007102363A1 publication Critical patent/WO2007102363A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the present invention relates to a radio transmission apparatus and radio transmission method used in a MIMO communication system and the like.
  • MIMO Multi-Input / Multi-Output
  • a MIMO system is a system that uses multiple antennas for both transmission and reception and simultaneously transmits and receives multiple independent streams in the same band, and can increase the throughput of the communication system without expanding the frequency band. It can be a merit force s.
  • SDM Spanning Division Multiplexing
  • Patent Document 1 As a technique using the SIC reception method in the SDM system, there is a technique disclosed in Patent Document 1. This is a technology that performs adaptive modulation for each stream using the SIC method, and feeds back CSI (Channel State Information) based on SINR in the processing of each stream and performs adaptive modulation based on that CSI. is there. Patent Document 1 describes that the throughput can be improved by adapting the coding rate and the modulation scheme of error correction coding according to the state of the propagation path of each stream. .
  • Patent Document 1 Japanese Translation of Special Publication 2004-533169
  • the SIC scheme has a problem that when an error occurs in the first stream to be processed, the error is propagated to other streams, and the throughput of the communication system is reduced. That is, in the processing in the SIC method, first, one stream (for example, stream 1) is extracted from the received signal by filtering, and then, the extracted stream 1 is canceled from the received signal. By repeating this process, all streams are separated. However, for example, if an error occurs in stream 1 after filtering, accurate cancellation becomes impossible, so it is impossible to accurately separate other stream 2, stream 3, etc. from the received signal after cancellation. .
  • FIG. 1 is a diagram for specifically explaining the error propagation.
  • Figures 1 (A) to 1 (H) show the streams obtained in each step.
  • FIG. 2 is a diagram showing which stream the notation method such as hatching in FIG. 1 represents. This notation is used consistently throughout this specification. Here, a case where the number of transmission streams is three will be described as an example.
  • FIGS. 1 (A), 1 (B), and 1 (C) show transmission stream A, transmission stream B, and transmission stream C, respectively.
  • Each stream has a different reception quality at the radio receiving apparatus.
  • the wireless transmission device obtains the quality of each stream in the wireless reception device through a feedback line or the like, and selects a coding rate and a modulation scheme that achieves a required error rate according to this quality.
  • the transmission streams A to C are transmitted, and the wireless reception device Then, these streams are mixed and received.
  • This received signal is shown in Fig. 1 (D).
  • Fig. 1 (D) is shown as the received signal, but there are actually received signals for the number of receiving antennas.
  • streams are ranked in the order of good reception quality, and are extracted from the higher-order stream in the ranking order, that is, from the stream with the good reception quality. That is, as a specific reception process, first, the highest stream A is extracted from the signal in FIG. At this time, if an error occurs in the judgment of filtered stream A, the result is as shown in Fig. 1 (E).
  • FIG. 1 (F) shows a reception signal obtained by canceling the reception signal of FIG. 1 (D) using the stream A of FIG. 1 (E). In Fig. 1 (F), it can be seen that errors due to error propagation from stream A have occurred.
  • the next-order stream B is extracted from FIG. 1 (F) by filtering.
  • the stream B is as shown in Fig. 1 (G).
  • stream B is canceled from the received signal in FIG. 1 (F) using stream B in FIG. 1 (G), and stream C remains.
  • the stream shown in Fig. 1 (H) is obtained.
  • the error is propagated in the later stream. The error propagation generated in this way reduces the throughput of the communication system.
  • this solution has the following problems. For example, when it is desired to keep the throughput constant, it is necessary to increase the transmission power in order to enhance error resilience. Conversely, if it is desired to keep the transmission power constant, it is necessary to lower the coding rate and the modulation multi-level number in order to enhance error resilience. Increasing the transmission power increases the burden on the wireless transmission device, and in this case, the transmission power is constant because it increases interference with other communication devices communicating in the P-contact area. I hope it is. Then, the constant transmission power is a precondition, and in order to enhance the error resilience of each stream, it is necessary to reduce the code ratio and the number of modulation multi-levels. As a result, the throughput of the communication system decreases.
  • An object of the present invention is to provide a radio transmission apparatus and a radio transmission method capable of improving error tolerance of a transmission stream and preventing a reduction in throughput of a communication system.
  • the wireless transmission device of the present invention has an ordering unit that ranks a plurality of transmission streams based on reception quality in the wireless reception device, and error tolerance of the transmission streams ranked in high quality. And setting means for setting stronger than the error tolerance of the transmission stream ranked in low quality.
  • FIG. 3 is a block diagram showing the main configuration of a wireless transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing the main configuration inside the repetition control unit according to the first embodiment.
  • FIG.6 Diagram showing the configuration of each transmission stream 7] Flow chart showing the wireless transmission method according to Embodiment 1
  • FIG. 10 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 2 of the present invention. 11] Block diagram showing the main configuration inside the transmission signal control section according to Embodiment 2.
  • FIG. 12 A diagram showing the configuration of each transmission stream.
  • FIG. 13 is a flowchart showing a wireless transmission method according to the second embodiment.
  • FIG. 14 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 2
  • FIG. 16 A block diagram showing a main configuration of a radio transmission apparatus according to Embodiment 3 of the present invention. 17] A block diagram showing a main configuration inside a transmission signal control unit according to Embodiment 3. [18] Implementation Showing an example of repetition according to Form 3
  • FIG. 19 shows an example of arranging systematic bits according to the third embodiment.
  • FIG. 20 is a flowchart showing a wireless transmission method according to the third embodiment.
  • FIG. 21 A block diagram showing the main configuration inside the symbol synthesis control section according to Embodiment 3.
  • [22] Block diagram showing the main configuration of the transmission signal control section according to Embodiment 4 of the present invention. The figure which shows the example of the arrangement pattern which concerns on Embodiment 4
  • FIG. 25 is a diagram showing an example of an arrangement pattern according to the fourth embodiment
  • FIG. 26 is a flowchart showing a wireless transmission method according to the fourth embodiment.
  • FIG. 28 is a block diagram showing the main configuration of a wireless transmission apparatus according to Embodiment 5 of the present invention.
  • FIG. 29 is a block diagram showing the main configuration inside the transmission signal control section according to the fifth embodiment.
  • FIG. 29 is a diagram showing the configuration of the stream according to the fifth embodiment.
  • FIG. 32 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 5
  • FIG. 3 is a block diagram showing the main configuration of radio transmitting apparatus 100 according to Embodiment 1 of the present invention.
  • Radio transmission apparatus 100 includes stream generation unit 106, encoding units 101-1 to 101_N, modulation units 102-1 to 102-N, repetition units 103-1 to 103-N, and transmission RF unit 104. — :! ⁇ 1 04_N, antenna 105—! 105-N, and repetition control unit 110, comprising N transmission systems for processing N streams, and each unit performs the following operations.
  • the stream generation unit 106 generates N pieces of stream data (hereinafter, simply referred to as a stream) from the input transmission data, and each of the code units 101_! ⁇ Outputs to 101-N.
  • Encoding sections 101-1 to 101-N apply error correction codes such as a turbo code to the stream output from stream generation section 106, and modulate the stream after encoding. — 1 to: 102— Output to N.
  • Modulating sections 102-1 to 102-N perform modulation processing on the streams output from encoding sections 101-1 to 101-N using a predetermined modulation scheme such as QPSK or 16QAM, The modulated stream is output to repetition section 103—:! To 103—N.
  • a predetermined modulation scheme such as QPSK or 16QAM
  • the repetition control unit 110 determines the repetition rate of each stream based on the feedback information obtained from the feedback line from the wireless reception device according to the method described later, and repeats the repetition units 103-1 to 103-. Output to N.
  • Repetition part 103—! ⁇ 103—N is based on the repetition rate of each stream determined by the repetition control unit 110, and repeats the stream output from the modulation unit 102-1 ⁇ : 102—N, and transmits the transmission RF unit.
  • Transmission RF section 104-1 ⁇ : 104-N is a predetermined radio (RF) transmission such as D / A conversion and up-conversion for the stream output from repetition section 103-1 ⁇ : 103-N. Processing is performed, and the resulting radio signal is transmitted via antennas 105-1 to 105-N.
  • FIG. 4 is a block diagram showing a main configuration inside the repetition control unit 110.
  • the repetition control unit 110 includes a ranking order determination unit 111 and a repetition rate determination unit 112.
  • Ranking ranking determining section 111 determines the ranking ranking of each stream based on the CQI included in the feedback information.
  • the repetition rate determination unit 112 determines and outputs the repetition rate of each stream according to the ranking order determined by the ranking order determination unit 111.
  • a higher repetition rate is set for the higher rank stream.
  • repetition rate determination section 112 enhances error tolerance of a transmission stream by setting a higher rate of repetition for a higher ranking stream.
  • the repetition rate of each stream is determined according to the ranking order. Therefore, the occurrence of errors due to error propagation can be reduced. In addition, it is possible to prevent a decrease in throughput caused by strengthening error resilience in the lower stream.
  • the number of data symbol repetitions is increased.
  • Repeatability is a technique for transmitting (transmitting) a transmission symbol and a symbol copied from that symbol at different positions.
  • a radio receiver can combine diversity symbols transmitted separately to obtain diversity gain, or improve in-phase synthesis to improve SNR. In other words, by increasing the number of repetitions, symbols are less prone to errors and error resilience can be enhanced.
  • the radio reception device does not need to perform processing such as calculation of bit likelihood, decoding processing, and the like, which are performed only by symbol synthesis. There is almost no processing delay. Therefore, the error tolerance of the transmission signal can be enhanced with almost no processing delay in the radio receiving apparatus.
  • the SDM reception method using iterative processing tends to amplify the processing delay. Therefore, the method for increasing the number of repetitions as described above is compatible with the SDM method.
  • the radio transmission apparatus transmits the stream A, which is the highest stream, using a rate 4/3 rate (Fig. 5A), and the next stream B has a rate 8/7 repetition rate. ( Figure 5 (B)).
  • Stream C is sent without repetition (Fig. 5 (C)).
  • the wireless transmission device performs adaptive modulation for each stream, and a coding rate and a modulation scheme corresponding to the reception quality of the wireless reception device for each stream are selected.
  • FIG. 5 (E) The reception signal in the wireless reception device is shown in FIG.
  • the top stream A is extracted from this signal by filtering. If an error is detected in the judgment of filtered stream A, the result is as shown in Fig. 5 (E).
  • the result of symbol synthesis for the repetition symbol in Fig. 5 (E) is Fig. 5 (F).
  • Fig. 5 (F) the error that occurred in Fig. 5 (E) is corrected.
  • Fig. 5 (G) shows a case where the received signal strength stream A in Fig. 5 (D) is canceled using the stream in Fig. 5 (F). There is no error in stream A used for cancellation, so no error propagation is seen in Fig. 5 (G).
  • the next-ranked stream B is extracted by filtering from FIG.
  • FIG. 5 (G) If an error is detected when the filtered stream B is judged, the result is as shown in Fig. 5 (H).
  • Figure 5 (1) shows the result of symbol synthesis for the revision symbol in Fig. 5 (H). In Fig. 5 (1), the error that occurred in Fig. 5 (H) is corrected. Next, using stream shown in Fig. 5 (1), stream B is canceled by stream B from Fig. 5 (G), and stream C is left. 5 ⁇ ).
  • repetition rate determination section 112 determines the repetition rate of each stream using the ranking order of the streams.
  • the ranking ranking of the stream is determined by the ranking ranking determination unit 111 based on the reception quality of each stream in the wireless reception device.
  • the stream with the highest reception quality becomes the highest stream, and the stream with the lowest reception quality becomes the lowest stream.
  • Wireless receiver receives each stream The ranking can be determined in the wireless transmission device by feeding the quality back to the wireless transmission device.
  • the correspondence between the ranking order and the repetition rate is set in the first data table to determine the repetition rate based on the ranking order.
  • the repetition rate is set high so that the error tolerance of a stream with a high ranking is strong, and the repetition rate is low because a stream with a low ranking is not required to have strong error tolerance. Set it. This ensures that the reception quality of each stream is reflected in the determination of the repetition rate of each stream.
  • a repetition rate larger than 1 is set for the highest stream.
  • the repetition rate it is desirable to set the repetition rate so that the reception quality such as SNR and SINR improves by about 1 dB to 2 dB by combining the repetition with a radio receiver. Note that the repetition rate can be improved by several dB.
  • 1 is set as the repetition rate for the lower stream.
  • a reputation rate of 1 is the same as not doing any repetition.
  • the lower stream refers to a plurality of streams including the lowest stream. This is because errors that occur in the lower stream have a small effect on the whole, so there is no need to make a difference in the repetition rate. Note that the lower stream may be limited to the lowest stream.
  • the repetition rate of those streams is set to the highest-stream repetition rate. Set it so that it falls between the repetition rate and the repetition rate 1 of the lower stream. In such a case, it is desirable that the repetition rate of each stream is set to be approximately equal between the repetition rate of the highest stream and the repetition rate 1 of the lower stream. This is because the reception quality improvement by symbol synthesis can be made at almost equal intervals.
  • Table 1 shows It is an example showing a correspondence relationship between ranking ranking and repetition rate in the case of making an effort.
  • Stream number indicates the identification number of each stream
  • Reception quality indicates the reception quality of each stream.
  • the reception quality includes SNR and SINR.
  • “Ranking ranking” indicates the ranking of each stream when ranking is performed in the order of good reception quality. Assume that the relationship shown in Table 2 below is set in advance between the ranking and the repetition rate. This relationship determines the levitational rate in Table 1. For example, stream number 1 in Table 1 will be described. In the situation where the reception quality of each stream is shown in Table 1, since the reception quality of stream number 1 is 10 dB, it is determined that the ranking rank is first in comparison with the quality of other streams. Here, using the relationship in Table 2, the repetition rate is determined to be 4/3.
  • the highest ranking repetition rate is set, and the third and fourth ranking repetition rates are set to 1.
  • the 2nd ranking reputation rate is set to be about the middle between the 1st ranking repetition rate and the 3rd ranking repetition rate.
  • the repetition rates for the 3rd and 4th rankings are set the same. This is because the repetition rate is low because errors occurring in the lower stream have little effect on the whole. This is because there is no need to make a difference between the two. It is also possible to set a higher repetition rate for ranking 3rd and 4th in ranking.
  • Fig. 6 shows the configuration of each transmission stream when the repetition rate is determined using the ranking order as described above. As shown in this figure, for the stream before the repetition process, the repetition rate is determined using the ranking information and the repetition is performed, so that the higher rate repetition is realized for the upper stream.
  • the transmission data is generated, as each of the reception quality is obtained for stream (ST1010, ST1020) o available source, there is a feedback information from the radio receiving apparatus.
  • an MCS parameter that achieves a required error rate for each stream that is, a modulation scheme and a coding rate is determined (ST1030). Also, ranking is performed in the order of good reception quality according to the reception quality of each stream obtained in ST1020, and the ranking order of each stream is determined (ST1 040).
  • ST1050 The processing of ST1050 to ST1070 is performed for each stream. That is, according to the ranking order, the antenna number order, etc., one stream is first selected (ST1050), and the repetition rate of each stream is determined according to the ranking order of each stream obtained in ST1040 (ST1060). In ST1070, it is determined whether all streams have been selected.
  • the process proceeds to ST1080, and the transmission data generated in ST1010 is divided into a plurality of streams (ST1080). Then, each stream is transmitted using the MCS parameter determined in ST1030 and the repetition rate determined in ST1060 (ST1090).
  • the correspondence relationship between the ranking order and the repetition rate is determined in advance, and the data table in which this correspondence relationship is recorded is shared by both the transmission and reception sides. If the ranking is known, the repetition rate of each stream can be obtained. This ranking order is determined based on feedback information from the wireless receiver, and does not need to be transmitted as control information when transmitting a stream. However, if feedback information is received in error, there may be a difference between the determination result in the wireless transmission device and the determination result in the wireless reception device. As a countermeasure, the ranking order is controlled during stream transmission. A configuration may be adopted in which information is transmitted.
  • FIG. 8 is a block diagram showing the main configuration of radio receiving apparatus 150.
  • Reception RF section 152— :! to 152-N performs predetermined radio reception processing such as down-conversion and A / D conversion on the signal received via antenna 151— :! to 151-N. Apply.
  • Channel estimation section 158 performs channel estimation of the received signal using the pilot included in the signal output from reception RF sections 152-1 to 152-N, and outputs the obtained channel estimation value.
  • Quality measurement section 159 measures the reception quality using the channel estimation value output from channel estimation section 158, and outputs the measurement result to symbol synthesis control section 160 and CQI generation section 161.
  • CQI generating section 161 generates a CQI based on the measurement result of quality measuring section 159, and outputs this as feedback information.
  • the symbol synthesis control unit 160 determines the repetition rate of each stream based on the measurement result of the quality measurement unit 159 and outputs the determined repetition rate to the symbol synthesis unit 155.
  • the memory 153 stores signals output from the reception RF units 152-1 to 152 -N, and outputs the signals to the filtering unit 154 and the cancellation unit 157.
  • Filtering section 154 extracts each stream from the received signal by filtering and outputs the stream to symbol synthesis section 155.
  • fetching the top-level stream Extract the top stream from the stored signal. Further, when other streams are extracted, those streams are extracted from the signal output from the cancel unit 157.
  • the channel estimation value output from the channel estimation unit 158 is used to calculate the weight and perform filtering.
  • Canceling section 157 cancels the stream extracted by filtering from the received signal, outputs it to filtering section 154, and stores it for canceling the next stream.
  • the signal output from the symbol synthesis unit 155 is canceled from the signal stored in the memory 153.
  • the signal output from the symbol synthesis 155 is canceled from the stored canceled signal.
  • the channel estimation value output from channel estimation section 158 is used to reproduce the channel fluctuation of the stream to be canceled and cancel.
  • Symbol synthesis section 155 performs symbol synthesis on the repetition symbol in the received data output from filtering section 154 according to the repetition rate of each stream output from symbol synthesis control section 160. Do. This symbol synthesis is symbol synthesis based on the same repetition rate as that of the wireless transmission device 100.
  • Decoding section 156 performs error correction decoding on the symbol-synthesized signal, and decodes received data.
  • FIG. 9 is a block diagram showing a main configuration inside symbol synthesis control section 160.
  • the symbol synthesis control unit 160 includes a ranking order determination unit 171, a repetition rate determination unit 172, and a memory 173.
  • Ranking ranking determining section 171 determines the ranking ranking of each stream based on the input quality measurement information.
  • the repetition rate determination unit 172 determines the repetition rate of each stream in accordance with the ranking order determined by the ranking order determination unit 171. In this case, the ranking order determination method and the repetition rate determination method are the same for both transmission and reception.
  • the determined repetition rate is delayed by CQI feedback, and is stored in the memory 173 until it is transmitted from the wireless transmission device 150. In this manner, the wireless reception device 150 receives the signal transmitted from the wireless transmission device 100.
  • Data can be decrypted.
  • a higher-order stream generates a transmission signal with an error resistance stronger than an error resistance according to the required quality. This can reduce the occurrence of error propagation to the lower stream and prevent a decrease in the throughput of the communication system.
  • the error resistance of the upper stream is enhanced by increasing the repetition rate. As a result, processing delay in the wireless reception device can be suppressed.
  • the repetition rate of each stream is determined according to the ranking of the stream. As a result, the reception quality of each stream can be reliably reflected in the determination of the repetition rate of each stream.
  • the configuration in which the ranking is determined in the wireless transmission device by feeding back the reception quality of the wireless reception device to the wireless transmission device is the ranking determined by the wireless reception device.
  • a configuration that feeds back the results to the wireless transmitter is also acceptable.
  • the coding rate may be changed according to the repetition rate determined for each stream. As a result, it is possible to prevent a decrease in throughput of each stream. For example, when the repetition rate of a stream is determined to be 4/3, the repetition rate is reduced without reducing the throughput by multiplying the code rate of that stream by 3/4, which is the inverse of the repetition rate. It can be performed.
  • FIG. 10 is a block diagram showing the main configuration of radio transmitting apparatus 200 according to Embodiment 2 of the present invention.
  • the wireless transmission device 200 has the same basic configuration as the wireless transmission device 100 (see FIG. 3) shown in the first embodiment, and the same components are denoted by the same reference numerals, and the description thereof is omitted. Is omitted.
  • Embodiment 1 The difference from Embodiment 1 is that instead of repetition control unit 110, a transmission signal control unit 201, control signal generation unit 202, and multiplexing unit 203—! ⁇ 203-N is newly provided, and the repetition rate of each stream is determined based not only on the ranking order of each stream but also on the MCS parameter (hereinafter simply referred to as MCS).
  • MCS MCS parameter
  • Transmission signal control section 201 determines the repetition rate of each stream.
  • the control signal generation unit 202 generates a control signal to be transmitted to the radio reception apparatus from the transmission signal control information output from the transmission signal control unit 201.
  • Multiplexing section 203— :! to 203-N multiplexes the data output from repetition section 103-1 to 103-N and the control signal output from control signal generating section 202.
  • FIG. 11 is a block diagram showing the main configuration inside transmission signal control section 201.
  • the transmission signal control unit 201 includes a ranking order determination unit 212, an MCS determination unit 211, a revision rate determination unit 213, and a synthesis unit 214.
  • the MCS determination unit 211 determines the MCS based on the CQI of each stream of the input feedback information.
  • the ranking order determination unit 212 determines the ranking order based on the CQI of each stream that is also input.
  • the repetition rate determination unit 213 determines the repetition rate of each stream based on the MCS determined by the MCS determination unit 211 and the ranking order determined by the ranking order determination unit 212.
  • the combining unit 214 combines the MCS information of each stream determined by the MCS determining unit 211 and the repetition rate information of each stream determined by the repetition rate determining unit 213, and outputs it as one signal. To do.
  • the difference from the first embodiment is the repetition rate determination method as described above. Specifically, in the first embodiment, the repetition rate is determined using only the ranking of each stream. The power that has been determined In this embodiment, the ranking of each stream is determined, and the repetition rate is determined using the MCS.
  • the ranking order is determined in the same manner as in the first embodiment. Further, the MCS of each stream is determined based on the CQI of each stream fed back from the radio reception apparatus.
  • the repetition rate of each stream can be determined by setting the corresponding relationship among the ranking order, MCS, and repetition rate. This In relation, in each MCS, the repetition rate is set high so that the error tolerance becomes strong for the stream with high ranking order, and the strong error resilience is not necessary for the stream with low ranking order. Set the Cillon rate low. Then, the stage for setting the repetition rate is changed by MCS.
  • each MCS a plurality of repetition rate stages are set, and the setting method is the same as in the first embodiment. That is, in each MCS, the method for setting the repetition rate for the highest stream, the method for setting the repetition rate for the lowest stream, and the method for setting the repetition rate for the stream in the meantime are described in the first embodiment. It is the same as shown in.
  • a plurality of repetition rates corresponding to each MCS are set, and the number of repetition rate stages changes.
  • a more optimal repetition rate can be selected according to the reception characteristics of the selected MCS.
  • MCS that is judged to have good reception characteristics does not need much error resilience by repetition, so the number of repetition rate stages is set to a small number, and MCS that is judged to have poor reception characteristics depends on repetition.
  • Set a large number of repetition rate stages so that error resilience can be determined based on ranking.
  • the repetition rate suitable for both the reception characteristics and the ranking order of the MCS of each stream can be determined in addition to determining the repetition rate of each stream.
  • the reception characteristic of the modulation method is important.
  • a high coding rate is set when the reception quality is good.
  • the reception quality is good, errors are unlikely to occur in the upper stream, so it is not necessary to reinforce the error resilience so much, so the number of repetition rate steps is set to be small.
  • reception quality is poor in the same modulation system, it is necessary to increase error resilience by repetition, and since the rate stage is determined by the ranking order, the number of repetition rate stages is large. Set.
  • FIG. 12 shows the configuration of each transmission stream when the repetition rate is determined using the ranking order as described above. As shown in this figure, by performing repetition using the repetition rate based on the ranking ranking and MCS for the stream before the repetition processing, the repetition of the rate suitable for the situation of each stream is performed. Realizing power S
  • MCS Since the MCS of the transmission signal is information necessary for the demodulation and decoding processing in the radio reception apparatus, it is necessary to feed back as control information from the radio transmission apparatus to the radio reception apparatus S.
  • MCS can be shared between transmission and reception by having the same MCS table for both transmission and reception and transmitting control information indicating the corresponding MCS.
  • the repetition rate can be shared between transmission and reception in the same manner as MCS information.
  • Table 5 below is an example of an MCS table that includes repetition rates.
  • the MCS level is used as information indicating both the MCS and the repetition rate. That is, since each MCS level is assigned with an MCS and a repetition rate, the MCS and the repetition rate can be shared between transmission and reception by transmitting this MCS level as control information. .
  • the ranking may be determined by the wireless reception apparatus, and the repetition rate may be determined using the determined ranking order and the MCS information.
  • the repetition rate determination criteria for the wireless transmission device and the wireless reception device The criteria for determining the repetition rate must be the same.
  • FIG. 13 is a flowchart showing a procedure of the radio transmission method according to the present embodiment.
  • FIG. 14 is a block diagram showing the main configuration of radio receiving apparatus 250.
  • a difference from Embodiment 1 is that a control signal extraction unit 251 is added, and only the output from the control signal extraction unit 251 is input to the symbol synthesis control unit 252.
  • FIG. 15 is a block diagram showing the main configuration inside symbol synthesis control section 252.
  • the symbol synthesis control unit 252 includes a repetition rate extraction unit 261 and a memory 262.
  • the repetition rate extraction unit 261 extracts the repetition rate of each stream from the input control signal.
  • the memory 262 stores the repetition rate until the transmission timing of the wireless transmission device.
  • the repetition rate of each stream is determined using the MCS and ranking order of that stream. As a result, in determining the repetition rate of each stream, it is possible to determine a repetition rate suitable for the MCS reception characteristics and ranking order of the corresponding stream.
  • FIG. 16 is a block diagram showing the main configuration of radio transmitting apparatus 300 according to Embodiment 3 of the present invention.
  • the wireless transmission device 300 has the same basic configuration as the wireless transmission device 200 (see FIG. 10) shown in the second embodiment, and the same components are denoted by the same reference numerals, Is omitted.
  • the basic operation is the same as that of the second embodiment, components having differences in detail are denoted by the same reference numerals with alphabets a. To distinguish and add explanations as appropriate.
  • Symbol placement section 301 To 301-N arrange modulation symbols according to the symbol arrangement pattern of each stream determined by the transmission signal control section 201a. That is, a highly important signal is arranged for a repetition symbol or a symbol in which a repetition symbol is arranged in an upper stream. As a result, the reception characteristics can be improved.
  • FIG. 17 is a block diagram showing a main configuration inside transmission signal control section 201a.
  • the symbol arrangement pattern determination unit 311 uses the repetition rate information of each stream determined by the repetition rate determination unit 213 to determine the symbol arrangement pattern in each stream.
  • an arrangement pattern for example, an arrangement pattern in which a symbol having a high systematic bit or a high modulation multi-level number is preferentially arranged in a repetition symbol or a symbol where a repetition symbol is arranged in an upper stream. There is a turn.
  • the arrangement pattern determined by the symbol arrangement pattern determination unit 311 is transmitted to the radio reception apparatus as control information together with the MCS information and repetition rate information.
  • repetition is used as means for enhancing error resilience.
  • This repetition symbol has a characteristic that it is less likely to cause an error because the SNR is improved by combining the symbols in the radio receiving apparatus as compared with a symbol that is not repeated. Therefore, in the present embodiment, symbols with high importance are arranged in such repetition symbols. Examples of highly important data include systematic bits of turbo codes and signals with a high modulation multi-level number.
  • the number of repetition symbols is greater than the number of symbols that have modulated systematic bits, first the symbols that have modulated systematic bits are placed on the repetition symbol, and then the rest Symbols with modulated parity bits are placed on the repetition symbol and the symbol that has not been repeated.
  • the number of repetition symbols is less than or equal to the number of symbols modulated with systematic bits, first, symbols with modulation of systematic bits for the number of repetition symbols are placed in the repetition symbols. Next, the remaining systematic bit modulated symbol and the parity bit modulated symbol are repeated and placed in the “re”, “re”, and “symbol” symbols.
  • Fig. 19 is a diagram illustrating an example in which systematic bits are arranged in symbols of an upper stream in which repetition symbols are arranged. It is assumed that the repetition rate of each stream is determined as in the first or second embodiment.
  • the repetition symbols are arranged in the upper stream.
  • the systematic bits from the modulated symbols, and then the repetition symbols are arranged in the upper stream, the remaining symbols and the arranged symbols, and the parity bits The symbol which modulated the is arranged.
  • the repetition symbol is arranged in the upper stream and the number of symbols is less than the number of symbols modulated by systematic bits, the repetition symbol is arranged in the upper stream first.
  • repetition symbols are arranged in the upper stream, and symbols obtained by modulating the systematic bits as many as the number of symbols are arranged, and then the symbols and parity bits obtained by modulating the remaining systematic bits are arranged.
  • the modulated symbol is placed in a symbol where no repetition symbol is placed in the upper stream.
  • the symbol arrangement pattern of each stream is determined using the repetition rate of each stream.
  • an arrangement pattern of each stream for example, as described above, a repetition symbol or a symbol in which a repetition symbol is arranged in a higher stream, a symbol in which systematic bits are preferentially modulated, There is an arrangement pattern that arranges symbols with a high modulation multi-level number.
  • radio reception apparatus corresponding to radio transmission apparatus 300 will be described.
  • its basic configuration is the same as that of radio receiving apparatus 250 shown in the second embodiment, illustration and description thereof will be omitted, and only symbol synthesis control section 252a having a configuration different from that of the second embodiment will be described.
  • FIG. 21 is a block diagram showing the main configuration inside symbol synthesis control section 252a.
  • Symbol arrangement pattern extraction section 351 extracts the symbol arrangement pattern of each stream from the control signal, and memory 262 stores the symbol arrangement pattern until it is transmitted by the wireless transmission device.
  • highly important data is arranged in the data in which the data to be replicated in the upper stream is arranged. As a result, the data is less likely to cause errors due to error propagation than other data, and high-priority data is confirmed. It can actually be transmitted.
  • FIG. 22 is a block diagram showing the main configuration of transmission signal control section 401 according to Embodiment 4 of the present invention.
  • the configuration of the radio transmission apparatus according to the present embodiment is the same as that of radio transmission apparatus 200 shown in the second embodiment, and therefore only transmission signal control section 401 having a different configuration is shown.
  • Transmission signal control section 401 has the same basic configuration as transmission signal control section 201 (see FIG. 11) shown in Embodiment 2, and the same components are assigned the same reference numerals. The explanation is omitted.
  • Embodiment 2 The difference from Embodiment 2 is that a repetition pattern determination unit 402 is added, and by changing the repetition arrangement pattern for each stream, a different effect is obtained for each stream, and reception characteristics are improved. It is.
  • the repetition pattern determination unit 402 calculates the repetition rate of each stream determined by the repetition rate determination unit 213 and the ranking order of each stream determined by the ranking order determination unit 212. To determine the repetition pattern for each stream.
  • the repetition pattern for example, there is an arrangement pattern in which repetition symbols are arranged so that the correlation is low in the upper stream, and repetition symbols are arranged so that the correlation is high in the lower stream.
  • Embodiments 1 and 2 repetition is used as means for enhancing error resilience.
  • different effects can be obtained for each stream by changing the repetition pattern according to the ranking of each stream.
  • the reception characteristics can be improved by obtaining time diversity or frequency diversity by repetition.
  • the spatial diversity gain is obtained and the reception state is improved, so that the reception SNR is more improved by combining the repetition symbols in phase than the diversity gain by the repetition. There is.
  • FIG. 24 shows an arrangement pattern when the repetition rate of the upper stream and the repetition rate of the lower stream are the same.
  • Fig. 25 shows an arrangement pattern in the case where the repetition rate of the upper stream and the repetition rate of the lower stream are different.
  • the repetition symbol of the lower stream is arranged in a part of the repetition symbol of the upper stream.
  • the repetition pattern of each stream is determined in ST4030.
  • the repetition pattern of each stream is determined using both the ranking of each stream and the repetition rate.
  • the repetition symbols are arranged so that the correlation is low in the upper stream, and the repetition symbols are set so that the correlation is high in the lower stream. There is an arrangement pattern to be arranged.
  • FIG. 27 is a block diagram showing the main components inside the symbol composition control unit 252b.
  • Embodiment 2 The difference from Embodiment 2 is that a repetition pattern extraction unit 451 is added.
  • the repetition pattern extraction unit 451 extracts the repetition pattern of each stream from the input control signal.
  • the memory 262b stores the repetition rate extracted by the repetition pattern extraction unit 451 together with the repetition rate extracted by the repetition rate extraction unit 261 until the transmission timing of the wireless transmission device.
  • repetition is performed with an arrangement pattern having a low correlation in the upper stream, and repetition is performed with an arrangement pattern having a high correlation in the lower stream.
  • diversity gain can be obtained in the upper stream.
  • spatial diversity is obtained and the reception state is improved, so SNR can be improved by in-phase combining. Therefore, overall characteristics can be improved and the throughput of the communication system can be improved.
  • the same repetition arrangement pattern is used in the upper stream and the lower stream.
  • the error correction effect of the upper stream can be reliably transmitted to the lower stream, and errors due to error propagation are less likely to occur in the lower stream.
  • Embodiment 3 and Embodiment 4 may be combined.
  • the transmission signal control unit of the wireless transmission device includes both a symbol arrangement pattern determination unit and a repetition pattern determination unit, thereby determining a symbol arrangement pattern in which modulation symbols in each stream are arranged. A repetition to place a symbol The pattern can be determined. As a result, in each stream, the effect of Embodiment 4 by the repetition pattern can be obtained, and the effect of Embodiment 3 by the symbol arrangement pattern can be obtained.
  • FIG. 28 is a block diagram showing the main configuration of radio transmitting apparatus 500 according to Embodiment 5 of the present invention.
  • the wireless transmission device 500 also has the same basic configuration as the wireless transmission device 200 (see FIG. 10) shown in the second embodiment, and the same components are denoted by the same reference numerals. The description is omitted.
  • the basic operation is the same as that of the second embodiment, components that are different in detail are identified by the same reference numerals with the letter “c” appended thereto, and a description will be added as appropriate.
  • the higher stream is changed to an MCS with higher error resistance, and transmission is performed, so that an error due to error propagation is generated and throughput is reduced due to increased error resistance in the lower stream.
  • the change of the MCS of each stream is determined based on the ranking.
  • Radio transmission apparatus 500 is partially different in operation of transmission signal control section 201c.
  • FIG. 29 is a block diagram showing the main configuration inside transmission signal control section 201c.
  • Transmission signal control section 201c further includes a modulation multi-level number change symbol number determination section 501.
  • This modulation multilevel number change symbol number determination section 501 determines the total number (symbol number) of symbols whose modulation multilevel number is changed in each stream, using the ranking of each stream.
  • a method for determining the number of symbols for example, there is a method of determining by using the relationship between the ranking order and the total number of symbols for changing the modulation multi-level number.
  • the modulation section 102— :! to 102—N of each stream selects a symbol corresponding to the number of symbols determined by the modulation multilevel number change symbol number determination section 501, and modulates this symbol. Modulate by lowering the multi-level number.
  • the total number of symbols with the modulation multi-level number changed, the symbol arrangement pattern, and the like are transmitted as control information to the radio reception apparatus.
  • a method of changing to MCS having strong error resilience is used.
  • Specific methods of changing to MCS with high error resilience include a method of lowering the coding rate and a method of lowering the modulation multi-level number.
  • feedback CQI and encoding When using an MCS table that indicates the relationship between the rate and the modulation scheme, there is a method for obtaining an MCS corresponding to the required error rate based on the CQI and selecting an MCS that is more resistant to several stages of errors than this MCS. .
  • the MCS table power and the MCS corresponding to the required error rate are selected based on the CQI fed back for each stream.
  • the upper stream can be made less error-prone.
  • an error due to an error generated in the upper stream is not generated, so that it is not necessary to enhance error tolerance.
  • the following method can be used as a method for selecting an MCS that has higher error resilience as the upper stream.
  • an MCS is selected from the MCS table based on the fed back CQI.
  • the ranking ranking of the stream is determined from those CQIs. Depending on the ranking, for example, by changing the MCS using the relationship shown in Table 6 below, it is possible to increase the error resilience of higher streams.
  • an MCS having higher two-stage error tolerance than the MCS selected based on the feedback CQI is selected.
  • For the second-ranked stream select an MCS with strong one-step error tolerance. Since an error occurs in the upper stream, the MCS selected based on the feedback CQI is used for the 3rd and 4th ranking streams.
  • the following method is also available when using a method of reducing the modulation multi-level number.
  • the modulation level is lowered for the entire stream, the throughput of the stream is drastically reduced. Therefore, by reducing the number of modulation levels for only a part of the symbols in the stream, it is possible to prevent an extreme drop in throughput and enhance error resilience. Then, by increasing the ratio of symbols for lowering the modulation multi-level number for higher streams, higher streams can be made less prone to errors. As a result, in the lower stream, an error due to an error in the upper stream is generated, so that it is not necessary to increase error resilience.
  • FIG. 30 shows a stream configuration when the modulation multi-level number is lowered only for some symbols of the stream.
  • the number of streams is 3, and the ranking of streams is in the order of stream A, stream 1 and stream C in order of quality.
  • Transmit stream A is a 4Q symbol with a modulation scheme based on CQI of 16QAM.
  • the modulation level is reduced and the modulation method for this symbol is QPSK.
  • transmission stream B is transmitted as QPSK with a modulation multi-level number reduced by one symbol out of 8 symbols with a modulation scheme based on CQI of 16QAM.
  • stream B is a lower stream of stream A, the proportion of symbols that lower the modulation multi-value number is reduced (1/4 for stream A, 1/8 for stream B).
  • transmission stream C transmission is performed with the modulation scheme based on CQI as it is.
  • each stream this can be performed according to the ranking order as a method of determining the ratio of symbols for reducing the number of modulation levels. For example, there are the following methods: The First, in each stream, the MCS is determined with reference to the MCS table based on the fed back CQI, and the ranking of the stream is also determined. Depending on this ranking order, the number of symbols to lower the modulation level is determined using the relationship in Table 7 below.
  • the modulation multi-level number of one symbol is reduced among four symbols.
  • the modulation multi-level number of 1 symbol is reduced among 8 symbols.
  • the 3rd and 4th ranking streams are transmitted using the modulation method based on CQI.
  • the step of determining the number of symbols for lowering the modulation multi-level number (ST5060) is executed.
  • the number of symbols for lowering the modulation level is determined using the ranking of each stream. For example, using the relationship shown in Table 7 above, determine the number of symbols to lower the modulation level.
  • FIG. 32 is a block diagram showing the main configuration of radio receiving apparatus 550.
  • FIG. 33 is a block diagram showing the main components inside demodulation control section 551.
  • the demodulation control unit 551 includes a modulation multilevel number change information extraction unit 561 and a memory 562.
  • Modulation multilevel number change information extraction section 561 extracts information such as the number of symbols and the symbol arrangement pattern whose modulation multilevel number has been changed in each stream from the input control information.
  • the memory 562 stores the information and outputs the information to the demodulation unit 552 at the transmission timing of the wireless transmission device.
  • Demodulation section 552 demodulates the symbols of each stream based on the modulation multilevel number change information output from demodulation control section 551.
  • the modulation multi-level number is partially reduced in the stream, and the modulation multi-level number is reduced as the higher stream. Increase the data ratio. This suppresses the processing delay of the radio receiving apparatus and causes an error due to error propagation in the lower stream. Therefore, it is possible to prevent a decrease in throughput of the communication system.
  • the symbol having a low modulation multilevel number is highly important. Same as in Embodiment 3 by placing data or placing data with a high degree of importance on the symbol that has a lower modulation multi-level number placed in the upper stream. An effect can be obtained. Further, as in the fourth embodiment, the same effect as in the fourth embodiment can be obtained by changing the pattern in which the symbols having the reduced modulation multi-level number are arranged between streams.
  • radio communication system radio reception apparatus, radio transmission apparatus, and CQI notification method according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
  • the received quality is the power SIR, CIR, CNR, CINR, RSSI, received power, received power, interference power, error rate, transmission rate, throughput, which is an example of SINR or SNR, The amount of interference or MCS that can achieve a predetermined error rate may be used.
  • the reception quality is quantized and expressed in CQI has been described as an example, but it can be expressed in CSI (Channel State Information) or the like.
  • the radio transmission apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby a communication terminal apparatus and a base having the same effects as described above.
  • a station apparatus and a mobile communication system can be provided.
  • the present invention can be implemented with software.
  • the CQI notification method according to the present invention is described in a programming language, the program is stored in a memory, and is executed by the information processing means, so that the wireless reception device, the wireless transmission device according to the present invention are Similar functions can be realized.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These can be individually chipped, or can be partly or fully chipped into one chip.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI unoretra LSI
  • unoretra LSI etc.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. You can use a field programmable gate array (FPGA) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI.
  • FPGA field programmable gate array
  • the radio reception apparatus, radio transmission apparatus, and CQI notification method according to the present invention can be applied to applications such as adaptive modulation for each stream in an SDM system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 送信ストリームの誤り耐性を向上させ、通信システムのスループット低下を防止することができる無線送信装置を開示する。この装置において、レピティション制御部(110)は、無線受信装置からのフィードバック情報に基づいて、各ストリームのランキング順位を決定し、上位ストリームほど高いレピティションレートを設定し、これをレピティション部(103-1~103-N)へ指示する。レピティション部(103-1~103-N)は、レピティション制御部(110)で決定されるレピティションレートに基づいて、変調部(102-1~102-N)から出力されるストリームに対しレピティションを施し、送信RF部(104-1~104-N)へ出力する。

Description

明 細 書
無線送信装置および無線送信方法
技術分野
[0001] 本発明は、 MIMO方式の通信システム等に用いられる無線送信装置および無線 送信方法に関する。
背景技術
[0002] 近年、携帯電話機等に代表される移動体通信システムにおいては、サービス態様 が多様化し、音声データだけではなぐ静止画像、動画像等の大容量データを伝送 すること力 S要求される。そして、次世代の移動体通信システムにおける高速大容量の データ伝送方式として MIMO (Multi-Input / Multi-Output)システムの研究が盛ん に行われている。 MIMOシステムは、送受信双方に複数のアンテナを用レ、、複数の 独立なストリームを同一帯域において同時に送受信するシステムであって、周波数帯 域を拡張することなしに通信システムのスループットを増大させることができるメリット 力 sある。
[0003] また、 MIMOシステムにおいて伝送レートを向上させる技術の 1つとして、 SDM (S pace Division Multiplexing:空間分割多重)がある。 SDMとは、複数のアンテナにより 送信される複数のストリームを空間的に多重して送信し、受信装置で信号を分離する 技術である。この SDMによれば、 SIS〇(Single Input Single Output)システムと比較 して送信アンテナ数倍のスループット増加を実現することができる。
[0004] この SDMでは、異なるストリームが混ざり合って受信されるので、これらのストリーム を分離することが必要である。 SDMシステムにおける受信方式として、さまざまなもの が検討されているが、 BLAST (Bell Laboratories layered Space-Time)に代表される SIC (Successive Interference Cancellation)方式が、有力な候補として注目されてレヽ る。それは、 SIC方式が他の受信方式に比べて、演算処理量が比較的少なぐまた 受信特性が比較的良いので、実現性が高いからである。他の受信方式としては、 ZF (Zero Forcing)や MMSE (Minimum Mean Square Error)によるフィルタリング方式、 MLD (Maximum Likelihood Decoding)方式等力 Sある。 [0005] SDMシステムにおいて SIC受信方式を使用した技術として、特許文献 1に開示の 技術がある。これは、 SIC方式を使ってストリーム毎の適応変調をする技術であり、各 ストリームの処理において SINRに基づいて CSI (Channel State Information)をフィ ードバックし、その CSIに基づいて適応変調を行う技術である。特許文献 1には、各ス トリームの伝搬路の状態に応じて誤り訂正符号化の符号ィヒ率と変調方式とを適応さ せることにより、スループットの向上が得られると記載されてレ、る。
特許文献 1 :特表 2004— 533169号公報
発明の開示
発明が解決しょうとする課題
[0006] し力、しながら、 SIC方式は、最初に処理するストリームにおいて誤りが発生すると、 他のストリームにも誤りが伝播し、通信システムのスループットが低下するという問題 力 sある。すなわち、 SIC方式における処理は、まず、受信信号からフィルタリングによ り 1つのストリーム(例えばストリーム 1)を取り出し、次に、この取り出したストリーム 1を 受信信号からキャンセルする処理を行う。そして、この処理を繰り返すことにより、全て のストリームを分離する。しかし、例えば、フィルタリング後のストリーム 1に誤りが発生 すると、正確なキャンセルが不可能となるため、キャンセル後の受信信号からは、正 確な他のストリーム 2、ストリーム 3等を分離することができない。
[0007] 図 1は、上記誤り伝播を具体的に説明するための図である。図 1(A)〜(H)は、各ス テツプにおいてそれぞれ得られるストリームを表している。また、図 2は、図 1における ハッチング等の表記方法が、どのストリームを表しているかを示す図である。この表記 方法は、本明細書において一貫して使用される。なお、ここでは、送信ストリーム数が 3つである場合を例にとって説明する。
[0008] 図 1(A)、図 1(B)、図 1(C)は、送信ストリーム A、送信ストリーム B、送信ストリーム Cを それぞれ示す。各ストリームは、無線受信装置における受信品質が異なり、ここでは、 ストリーム Aの品質が最も良ぐ次にストリーム Bの品質がよぐストリーム Cの品質が最 も悪いとする。無線送信装置は、フィードバック回線等によって無線受信装置におけ る各ストリームの品質を入手し、この品質に応じて所要誤り率を達成する符号ィヒ率お よび変調方式を選択する。そして、送信ストリーム A〜Cが送信され、無線受信装置 ではこれらのストリームが混ざり合って受信される。この受信信号は、図 1 (D)に示さ れている。なお、ここでは説明を簡単にするために、受信信号として図 1 (D)だけを示 しているが、実際には、受信アンテナ本数分の受信信号がある。
[0009] SIC受信方式では、受信品質の良い順にストリームをランキングして、ランキング順 位の上位のストリームから、すなわち、受信品質の良い方のストリームから取り出す。 すなわち、具体的な受信処理としては、まず、図 1 (D)の信号からフィルタリングにより 最上位のストリーム Aを取り出す。このとき、フィルタリングしたストリーム Aの判定にお いて誤りが発生すると図 1 (E)のようになる。次に、この図 1 (E)のストリーム Aを使って 、図 1 (D)の受信信号からキャンセルを行った受信信号が図 1 (F)である。図 1 (F)で は、ストリーム Aからの誤り伝播に起因する誤りが発生していることがわかる。次に、図 1 (F)からフィルタリングにより次の順位のストリーム Bを取り出す。そして、フィルタリン グしたストリーム Bの判定において誤りが発生した場合、そのストリーム Bは図 1 (G)の ようになる。次に、この図 1 (G)のストリーム Bを使って、図 1 (F)の受信信号からストリ ーム Bをキャンセルして、残ったものがストリーム Cである。このストリーム Cの判定にお いて誤りが発生すれば図 1 (H)に示すストリームのようになる。このように、先に判定し たストリームにおいて誤りが発生すると、後のストリームにおいて誤りが伝播する。この ように発生した誤り伝播により通信システムのスループットは低下する。
[0010] 例えば、無線送信装置にぉレ、て誤り訂正符号化が施されてレ、る場合には、判定時 に発生したある程度の誤りは、復号化によって訂正することができる。しかし、誤り伝 播に起因して発生する誤りは、そのストリームの受信品質とは関係なく上位ストリーム の受信品質が原因で発生するものなので、誤り訂正符号ィ匕によっては、誤り伝播に 起因する誤りを訂正することができない。
[0011] 誤り伝播を解決するための容易に考えられる手段として、各ストリームにおいて誤り を発生しにくくする方法がある。従来、ストリーム毎の適応変調を行う場合、フィードバ ックされた CSIに応じて、所要誤り率を達成できるような誤り耐性の信号を用いて送信 信号が生成される。これに対し、この所要誤り率に対応する誤り耐性よりも強い誤り耐 性の信号を使って送信を行うことで、各ストリームにおいて誤りを発生しに《すること ができる。誤り耐性を強くするというのは、例えば、送信電力を増加させたり、符号化 率を下げたり、変調多値数を下げること等である。
[0012] しかし、この解決手段では、次のような課題がある。例えば、スループットを一定に 保ちたい場合は、誤り耐性を強化するためには送信電力を増加させる必要がある。 また、逆に送信電力を一定に保ちたい場合には、誤り耐性を強化するために符号化 率や変調多値数を下げることが必要となる。送信電力を増加させることは、無線送信 装置に対する負担が大きくなり、また、かかる場合、 P 接するエリアで通信している他 の通信装置に対して干渉を増大させてしまうことから、送信電力は一定であることが 望ましレ、。すると、送信電力一定が前提条件となり、各ストリームの誤り耐性を強化す るためには符号ィヒ率や変調多値数を低下させることが必要となり、結局、通信システ ムのスループットが低下する。
[0013] 本発明の目的は、送信ストリームの誤り耐性を向上させ、通信システムのスループッ ト低下を防止することができる無線送信装置および無線送信方法を提供することであ る。
課題を解決するための手段
[0014] 本発明の無線送信装置は、複数の送信ストリームに対し、無線受信装置における 受信品質に基づいて順位付けを行う順位付け手段と、高品質に順位付けされた送 信ストリームの誤り耐性を、低品質に順位付けされた送信ストリームの誤り耐性よりも 強く設定する設定手段と、を具備する構成を採る。
発明の効果
[0015] 本発明によれば、送信ストリームの誤り耐性を向上させ、通信システムのスループッ ト低下を防止することができる。
図面の簡単な説明
[0016] [図 1]誤り伝播を具体的に説明するための図
[図 2]ハッチング等の表記方法がどのストリームを表しているかを示す図
[図 3]本発明の実施の形態 1に係る無線送信装置の主要な構成を示すブロック図
[図 4]実施の形態 1に係るレピテイシヨン制御部内部の主要な構成を示すブロック図
[図 5]レピテイシヨン数を増加させることの効果を具体的に説明する図
[図 6]各送信ストリームの構成を示す図 園 7]実施の形態 1に係る無線送信方法を示すフロー図
園 8]実施の形態 1に係る無線受信装置の主要な構成を示すブロック図
園 9]実施の形態 1に係るシンボル合成制御部内部の主要な構成を示すブロック図
[図 10]本発明の実施の形態 2に係る無線送信装置の主要な構成を示すブロック図 園 11]実施の形態 2に係る送信信号制御部内部の主要な構成を示すブロック図
[図 12]各送信ストリームの構成を示す図
[図 13]実施の形態 2に係る無線送信方法を示すフロー図
[図 14]実施の形態 2に係る無線受信装置の主要な構成を示すブロック図
園 15]実施の形態 2に係るシンボル合成制御部内部の主要な構成を示すブロック図
[図 16]本発明の実施の形態 3に係る無線送信装置の主要な構成を示すブロック図 園 17]実施の形態 3に係る送信信号制御部内部の主要な構成を示すブロック図 園 18]実施の形態 3に係るレピテイシヨンの例を示す図
[図 19]実施の形態 3に係るシステマチックビットを配置する例を示す図
[図 20]実施の形態 3に係る無線送信方法を示すフロー図
園 21]実施の形態 3に係るシンボル合成制御部内部の主要な構成を示すブロック図 園 22]本発明の実施の形態 4に係る送信信号制御部の主要な構成を示すブロック図 [図 23]実施の形態 4に係る配置パターンの例を示す図
園 24]実施の形態 4に係る配置パターンの例を示す図
[図 25]実施の形態 4に係る配置パターンの例を示す図
[図 26]実施の形態 4に係る無線送信方法を示すフロー図
園 27]実施の形態 4に係るシンボル合成制御部内部の主要な構成を示すブロック図
[図 28]本発明の実施の形態 5に係る無線送信装置の主要な構成を示すブロック図
[図 29]実施の形態 5に係る送信信号制御部内部の主要な構成を示すブロック図 園 30]実施の形態 5に係るストリームの構成を示す図
園 31]実施の形態 5に係る無線送信方法を説明するフロー図
[図 32]実施の形態 5に係る無線受信装置の主要な構成を示すブロック図
園 33]実施の形態 5に係る復調制御部内部の主要な構成を示すブロック図 発明を実施するための最良の形態 [0017] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお 、ここでは、同様の機能を有する複数の構成に対し同一の符号を付すこととし、さらに 各符号に続けて異なる枝番を付して互いを区別することとする。
[0018] (実施の形態 1)
図 3は、本発明の実施の形態 1に係る無線送信装置 100の主要な構成を示すプロ ック図である。
[0019] 無線送信装置 100は、ストリーム生成部 106、符号化部 101— 1〜: 101 _N、変調 部 102— 1〜: 102— N、レピテイシヨン部 103— 1〜103— N、送信 RF部 104—:!〜 1 04_N、アンテナ 105—:!〜 105— N、およびレピテイシヨン制御部 110を備え、 N本 のストリームを処理する N本の送信系統からなり、各部は以下の動作を行う。
[0020] ストリーム生成部 106は、入力される送信データから N本のストリームデータ(以下、 単にストリームと呼ぶことがある)を生成し、それぞれ符号ィ匕部 101 _:!〜 101—Nへ 出力する。
[0021] 符号化部 101— 1〜: 101— Nは、ストリーム生成部 106から出力されるストリームに 対してターボ符号等の誤り訂正符号ィ匕を施し、符号ィ匕後のストリームを変調部 102— 1〜: 102— Nへ出力する。
[0022] 変調部 102— 1〜: 102— Nは、符号化部 101— 1〜: 101—Nから出力されるストリー ムに対し、 QPSK、 16QAM等の所定の変調方式で変調処理を施し、変調後のストリ ームをレピテイシヨン部 103— :!〜 103— Nへ出力する。
[0023] レピテイシヨン制御部 110は、無線受信装置からのフィードバック回線により入手し たフィードバック情報に基づいて、後述の方法に従い、各ストリームのレピテイシヨンレ ートを決定し、レピテイシヨン部 103— 1〜: 103— Nへ出力する。
[0024] レピテイシヨン部 103—:!〜 103— Nは、レピテイシヨン制御部 110で決定される各ス トリームのレピテイシヨンレートに基づいて、変調部 102— 1〜: 102— Nから出力される ストリームに対しレピテイシヨンを施し、送信 RF部 104— 1〜: 104— Nへ出力する。
[0025] 送信 RF部 104—1〜: 104— Nは、レピテイシヨン部 103— 1〜: 103— Nから出力さ れるストリームに対し、 D/A変換、アップコンバート等の所定の無線 (RF)送信処理 を施し、得られる無線信号をアンテナ 105— 1〜: 105— Nを介して送信する。 [0026] 図 4は、上記レピテイシヨン制御部 110内部の主要な構成を示すブロック図である。
[0027] レピテイシヨン制御部 110は、ランキング順位決定部 111およびレピテイシヨンレート 決定部 112を備える。
[0028] ランキング順位決定部 111は、フィードバック情報に含まれる CQIに基づいて各スト リームのランキング順位を決定する。
[0029] レピテイシヨンレート決定部 112は、ランキング順位決定部 111で決定されたランキ ング順位に従って、各ストリームのレピテイシヨンレートを決定し出力する。ここで、ラン キング上位のストリームほど高いレートのレピテイシヨンが設定される。
[0030] このように、無線送信装置 100では、レピテイシヨンレート決定部 112が、ランキング 上位のストリームほど高いレートのレピテイシヨンを設定することにより、送信ストリーム の誤り耐性を強化する。また、各ストリームのレピテイシヨンレートは、ランキング順位 に従って決定される。よって、誤り伝播に起因する誤りの発生を低減することができる 。また、下位ストリームにおいて誤り耐性を強化することに起因するスループットの低 下を防ぐこともできる。
[0031] ここで、上位ストリームにおける誤りが下位ストリームに与える誤り伝播の影響をさら に考察する。
[0032] SIC受信における誤り伝播では、誤りが発生するストリームのランキング順位が高い ほど、ストリーム全体の受信特性に大きな影響を及ぼす。すなわち、上位ストリームに おける誤りは、そのストリームよりも下位の全てのストリームに対して誤りを発生させる 要因となる。一方、下位ストリームにおける誤りは、そのストリームよりも下位のストリー ム数が少ないため、上位ストリームと比べてストリーム全体に及ぼす影響は小さい。そ こで、上位ストリームほど誤りにくくすることが、ストリーム全体の受信特性を改善する 効果が大きいといえる。本発明は、この点に着目している。
[0033] そこで本発明では、上位ストリームを誤りにくくするために、上位ストリームほど、所 要品質に応じた誤り耐性よりもさらに強い誤り耐性の送信信号を生成する。さらに、下 位ストリームでは、所要品質に応じた誤り耐性に設定する力、、これよりもわずかに強い 誤り耐性に設定する。この点、例えば特許文献 1に開示の適応変調では、無線受信 装置におけるストリーム毎の実際の受信品質に応じて、所要誤り率を満たす誤り耐性 の送信信号を生成する。
[0034] 特に本実施の形態では、誤り耐性を強化する手段として、データシンボルのレピテ イシヨン数(レビテイシヨンレート)を増加させることを行う。レピテイシヨンは、送信シン ボノレと、そのシンボルをコピーしたシンボルとを別々の位置に配置(マッピング)して 送信する技術である。無線受信装置では、別々に送信された同一内容のシンボルを 合成することで、ダイバーシチ利得を得たり、同相合成して SNRを改善したりすること ができる。すなわち、レピテイシヨン数を増加させることにより、シンボルは誤りにくくな り、誤り耐性を強化することができる。
[0035] 一方、誤り耐性を強化する手段として符号ィ匕率を下げることも考えられるが、この手 段で誤り耐性を強化して効果を得るためには、無線受信装置においてキャンセル処 理の前に復号処理を行うことが必要であり、無線受信装置における処理遅延が大きく なってしまう。この処理遅延は、復号処理に必要となるビット尤度の算出、復号処理、 復号後の信号を再符号化する際に発生する。そして、処理遅延が大きくなれば、単 一ストリーム送信時と同じタイミングで受信処理を行うためには、無線受信装置にお いて、演算処理速度のさらなる高速化が必要になり、実現しに《なる。
[0036] このように、誤り耐性を強化する手段としてレピテイシヨン数を増加させる方法を用い ると、無線受信装置では、シンボル合成だけでよぐビット尤度の算出、復号処理等 の処理が不要となり、処理遅延がほとんど発生しない。よって、無線受信装置におけ る処理遅延をほとんど発生させずに、送信信号の誤り耐性を強化することができる。
[0037] また、 SIC方式を含め、反復処理を用いる SDM受信方式では、処理遅延が増幅し 易いという傾向があるので、上記のようなレピテイシヨン数を増加させる方法は SDM 方式と相性が良い。
[0038] 図 5を用いて、上記のレピテイシヨン数を増加させることの効果を具体的に説明する 。ここで、ストリーム Aおよびストリーム Bにおいて、太線を付して示しているデータは、 レピテイシヨンシンボルである。また、送信ストリームは 3つとし、それぞれ無線受信装 置における品質により、 A、 B、 Cの順にランキングされているとする。
[0039] 無線送信装置では、最上位ストリームであるストリーム Aに対してレート 4/3のレビ テイシヨンを用いて送信し(図 5 (A) )、次のストリーム Bではレート 8/7のレピティショ ンを用いて送信している(図 5 (B) )。ストリーム Cは、レピテイシヨンを用いずに送信さ れている(図 5 (C) )。また、無線送信装置は、ストリーム毎の適応変調を行っており、 ストリーム毎の無線受信装置の受信品質に応じた符号ィヒ率および変調方式が選択さ れている。
[0040] 無線受信装置における受信信号は図 5 (D)である。この信号からフィルタリングによ り最上位のストリーム Aを取り出す。フィルタリングしたストリーム Aの判定において、誤 りが検出されると図 5 (E)のようになる。図 5 (E)におけるレピテイシヨンシンボルに対し て、シンボル合成した結果は図 5 (F)である。図 5 (F)では、図 5 (E)で発生した誤りが 訂正されている。次に、図 5 (F)のストリームを使って、図 5 (D)の受信信号力 ストリ ーム Aをキャンセルしたものが図 5 (G)である。キャンセルに使用したストリーム Aに誤 りが発生していないので、図 5 (G)では誤り伝播が見られなレ、。次に、図 5 (G)からフ ィルタリングにより次の順位のストリーム Bを取り出す。フィルタリングしたストリーム Bの 判定にぉレ、て誤りが検出されると図 5 (H)のようになる。図 5 (H)におけるレビティショ ンシンボルに対して、シンボル合成した結果は図 5 (1)のようになる。図 5 (1)では、図 5 (H)で発生した誤りが訂正されている。次に、図 5 (1)のストリームを使って、図 5 (G) 力 らストリーム Bをキャンセルして残ったものがストリーム Cであり、このストリーム Cの判 定において誤りが検出されると図 5 α)に示す受信信号となる。
[0041] このように、上位ストリームほど高いレートのレピテイシヨンを用いて誤り耐性を強化 することにより、誤り伝播に起因する誤りを発生しに《し、かつ下位ストリームではレ ピテイシヨン数が相対的に低いので、これによるスループットの低下も小さい。よって、 ストリーム全体のスループットが大きく低下することはない。
[0042] 次いで、各ストリームにおけるレピテイシヨンレートの具体的な決定方法について説 明する。本実施の形態では、レピテイシヨンレート決定部 112がストリームのランキング 順位を用いて各ストリームのレピテイシヨンレートを決定する。
[0043] ストリームのランキング順位は、各ストリームの無線受信装置における受信品質に基 づいて、ランキング順位決定部 111において決定される。受信品質が良い順にラン キングを行う場合、最も受信品質が高いストリームが最上位ストリームとなり、最も受信 品質が低いストリームが最下位ストリームとなる。無線受信装置が各ストリームの受信 品質を無線送信装置にフィードバックすることで、無線送信装置においてランキング 順位を決定することができる。
[0044] 本実施の形態では、このランキング順位とレピテイシヨンレートとの対応関係をあら 力、じめデータテーブルに設定しておくことで、ランキング順位に基づくレピテイシヨンレ ートを決定する。この関係では、ランキング順位が高いストリームの誤り耐性が強くな るように、レピテイシヨンレートを高く設定しておき、ランキング順位が低いストリームは 強い誤り耐性が必要ないので、レピテイシヨンレートを低く設定しておく。これにより、 各ストリームのレピテイシヨンレートの決定において、各ストリームの受信品質を確実に 反映することができる。
[0045] 例えば、最上位ストリームには、 1よりも大きなレピテイシヨンレートを設定しておく。
そのレピテイシヨンレートの目安としては、レピテイシヨンを無線受信装置でシンボル合 成を行うことで、 SNRや SINR等の受信品質が ldB〜2dB程度改善するレピティショ ンレートとするのが望ましい。なお、数 dB改善できるレピテイシヨンレートとしても良い
[0046] 一方、下位ストリームには、レピテイシヨンレートとして 1を設定しておく。レビティショ ンレートが 1であるということはレピテイシヨンを全く行っていないことと同じである。ここ で、下位ストリームとは、最下位ストリームを含めた複数のストリームを指す。これは、 下位ストリームで発生する誤りは全体に及ぼす影響が小さいため、レピテイシヨンレー トに差をつける必要がないからである。なお、下位ストリームを最下位ストリームに限 定してもよい。
[0047] 最上位ストリームと、レピテイシヨンレート 1の下位ストリームとの間にさらに他のストリ ームが存在する場合には、それらのストリームのレピテイシヨンレートが、最上位ストリ ームのレピテイシヨンレートと下位ストリームのレピテイシヨンレート 1との間に入るように 設定する。かかる場合、各ストリームのレピテイシヨンレートが、最上位ストリームのレビ テイシヨンレートと下位ストリームのレピテイシヨンレート 1との間で、ほぼ等間隔となるよ うに設定することが望ましい。これは、シンボル合成による受信品質の改善を、ほぼ等 間隔にできるからである。
[0048] ストリーム 4本を伝送する場合を例にとって、より具体的に説明する。以下の表 1は、 力かる場合のランキング順位とレピテイシヨンレートとの対応関係を示した例である。
[表 1]
Figure imgf000013_0001
表 1において、「ストリーム番号」は各ストリームの識別番号を示しており、「受信品質 」は各ストリームの受信品質を示している。受信品質としては、 SNRや SINR等がある 。 「ランキング順位」は、受信品質の良い順にランキングされた場合の各ストリームの 順位を示している。そして、ランキング順位とレピテイシヨンレートとの間に以下の表 2 のような関係をあらかじめ設定しておくとする。この関係により、表 1におけるレビティ シヨンレートが決定される。例えば、表 1におけるストリーム番号 1について説明する。 各ストリームの受信品質が表 1に示されている状況では、ストリーム番号 1の受信品質 は 10dBであるから、他のストリームの品質と比較して、ランキング順位が 1位であると 決定される。ここで、表 2の関係を使うと、レピテイシヨンレートが 4/3と決定される。
[表 2]
Figure imgf000013_0002
表 2の関係では、ランキング 1位のレピテイシヨンレートが最も高く設定されており、ラ ンキング 3位と 4位のレピテイシヨンレートが 1に設定されている。ランキング 2位のレビ テイシヨンレートは、ランキング 1位のレピテイシヨンレートとランキング 3位のレピテイシ ヨンレートとの中間ぐらいのレピテイシヨンレートとなるように設定されている。また、ここ では、ランキング 3位と 4位のレピテイシヨンレートが同じに設定されている。これは、下 位ストリームで発生する誤りは全体に及ぼす影響が小さいため、レピテイシヨンレート に差をつける必要がないからである。なお、ランキング 3位と 4位とで、ランキング 3位 の方をより高いレピテイシヨンレートに設定してもよい。
[0051] そして、このようにランキング順位を使ってレピテイシヨンレートを決定した際の、各 送信ストリームの構成を図 6に示す。この図に示すように、レピテイシヨン処理を施す 前のストリームに対して、ランキング情報を使ってレピテイシヨンレートを決定してレピ テイシヨンを行うことで、上位ストリームほど高いレートのレピテイシヨンを実現している
[0052] 次いで、本実施の形態に係る無線送信方法について、図 7に示すフロー図を用い て説明する。
[0053] まず、送信データが生成されると共に、各ストリームについての受信品質が入手さ れる(ST1010、 ST1020) o入手元としては、無線受信装置からのフィードバック情 報がある。
[0054] 次に、 ST1020で入手された各ストリームの受信品質に応じて、ストリーム毎に所要 誤り率を達成する MCSパラメータ、すなわち変調方式および符号化率が決定される (ST1030)。また、 ST1020で入手された各ストリームの受信品質に応じて、受信品 質が良い順にランキングが行われ、各ストリームのランキング順位が判定される(ST1 040)。
[0055] ST1050〜ST1070の処理は、各ストリームごとに行われる。すなわち、ランキング 順、アンテナ番号順等に従って、まず 1つのストリームが選択され(ST1050)、 ST10 40で求まった各ストリームのランキング順位に従って、各ストリームのレピテイシヨンレ ートが決定される(ST1060)。 ST1070では全ストリームが選択されたかが判定され る。
[0056] 全ストリームが選択された場合には ST1080に移り、 ST1010で生成された送信デ ータを複数のストリームに分割する(ST1080)。そして、 ST1030で決定された MCS パラメータと、 ST1060で決定されたレピテイシヨンレートとを用いて、各ストリームが 送信される(ST1090)。
[0057] 次いで、無線送信装置と無線受信装置との間における制御情報伝送方法につい て説明する。 [0058] 本実施の形態では、ランキング順位とレピテイシヨンレートとの対応関係があらかじ め定められており、この対応関係が記録されたデータテーブルを送受信双方におい て共有することで、送受信双方においてランキング順位が分かれば各ストリームのレ ピテイシヨンレートを求めることができる。このランキング順位は、無線受信装置からの フィードバック情報に基づいて決定されるもので、ストリーム送信時に制御情報として 伝送する必要のないものである。但し、フィードバック情報が誤って受信されることで 、無線送信装置における判定結果と無線受信装置における判定結果とに差異が生 ずる可能性もあるので、この対策としては、ストリーム送信時にランキング順位を制御 情報として伝送するような構成としても良い。
[0059] 次いで、上記の無線送信装置 100に対応する本実施の形態に係る無線受信装置
150について説明する。図 8は、無線受信装置 150の主要な構成を示すブロック図 である。
[0060] 受信 RF部 152— :!〜 152— Nは、アンテナ 151—:!〜 151—Nを介して受信された 信号に対し、ダウンコンバート、 A/D変換等の所定の無線受信処理を施す。
[0061] チャネル推定部 158は、受信 RF部 152— 1〜: 152— Nから出力される信号に含ま れるパイロットを用いて、受信信号のチャネル推定を行い、得られるチャネル推定値 を出力する。
[0062] 品質測定部 159は、チャネル推定部 158から出力されるチャネル推定値を用いて、 受信品質を測定し、測定結果をシンボル合成制御部 160および CQI生成部 161へ 出力する。
[0063] CQI生成部 161は、品質測定部 159での測定結果に基づいて CQIを生成し、これ をフィードバック情報として出力する。
[0064] シンボル合成制御部 160は、品質測定部 159での測定結果に基づいて、各ストリ ームのレピテイシヨンレートを決定し、シンボル合成部 155へ出力する。
[0065] メモリ 153は、受信 RF部 152— 1〜: 152— Nから出力される信号を記憶しておき、 フィルタリング部 154およびキャンセル部 157へ出力する。
[0066] フィルタリング部 154は、受信信号からフィルタリングにより各ストリームを取り出し、 シンボル合成部 155へ出力する。最上位ストリームを取り出す際には、メモリ 153に 記憶されている信号から最上位ストリームを取り出す。また、それ以外のストリームを 取り出す際には、キャンセル部 157から出力される信号から、それらのストリームを取 り出す。フィルタリング方法としては ZFや MMSEがあり、チャネル推定部 158から出 力されるチャネル推定値を使ってウェイトを計算し、フィルタリングを行う。
[0067] キャンセル部 157は、フィルタリングにより取り出したストリームを受信信号からキャン セルを行い、フィルタリング部 154へ出力すると同時に、次のストリームのキャンセル のために記憶しておく。最上位ストリームをキャンセルする際には、メモリ 153に記憶 されている信号から、シンボル合成部 155から出力された信号をキャンセルする。そ れ以外のストリームをキャンセルする際には、記憶しておいたキャンセル後の信号か ら、シンボル合成 155から出力された信号をキャンセルする。ここでは、チャネル推定 部 158から出力されるチャネル推定値を使って、キャンセルするストリームの伝搬路 変動を再現してキャンセルを行う。
[0068] シンボル合成部 155は、シンボル合成制御部 160から出力される各ストリームのレ ピテイシヨンレートに従って、フィルタリング部 154から出力される受信データのうち、 レピテイシヨンシンボルに対してシンボル合成を行う。このシンボル合成は、無線送信 装置 100と同じレピテイシヨンレートに基づくシンボル合成となる。
[0069] 復号部 156は、シンボル合成された信号に対して誤り訂正復号ィ匕を施し、受信デ 一タを復号する。
[0070] 図 9は、上記シンボル合成制御部 160内部の主要な構成を示すブロック図である。
[0071] シンボル合成制御部 160は、ランキング順位決定部 171、レピテイシヨンレート決定 部 172、およびメモリ 173を備える。
[0072] ランキング順位決定部 171は、入力される品質測定情報に基づいて、各ストリーム のランキング順位を決定する。レピテイシヨンレート決定部 172では、ランキング順位 決定部 171で決定されたランキング順位に従って、各ストリームのレピテイシヨンレート を決定する。この際、ランキング順位の決定方法、レピテイシヨンレートの決定方法は 、送受信双方において同じである。そして、決定されたレピテイシヨンレートは、 CQI のフィードバックによる遅延が発生するので、無線送信装置 150から送信されるまで メモリ 173におレ、て保存される。 [0073] このように、無線受信装置 150は、無線送信装置 100から送信された信号を受信し
、データを復号することができる。
[0074] 以上説明したように、本実施の形態によれば、上位ストリームほど、所要品質に応じ た誤り耐性よりも強い誤り耐性で送信信号を生成する。これにより、下位ストリームへ の誤り伝播の発生を低減し、通信システムのスループット低下を防止することができる
。また、下位ストリームほど誤り耐性強化によるスループットの低下が少ないので、全 ストリームのスループットを維持することができる。
[0075] また、以上の構成において、レピテイシヨンレートを増加させることにより、上位ストリ ームの誤り耐性を強化する。これにより、無線受信装置における処理遅延を抑えるこ とができる。
[0076] また、本実施の形態では、各ストリームのレピテイシヨンレートを、そのストリームのラ ンキング順位に従って決定する。これにより、各ストリームのレピテイシヨンレートの決 定において、各ストリームの受信品質を確実に反映することができる。
[0077] なお、本実施の形態では、無線受信装置の受信品質を無線送信装置にフィードバ ックすることにより、無線送信装置においてランキング順位を決定する構成を示した 力 無線受信装置で決定したランキング結果を無線送信装置にフィードバックするよ うな構成としても良レ、。なお、各ストリームにおいて決定されたレピテイシヨンレートに 応じて、符号化率を変えるような構成としてもよい。これにより、各ストリームのスルー プット低下を防止することができる。例えば、あるストリームのレピテイシヨンレートが 4 /3と決定された場合において、そのストリームの符号ィ匕率をレピテイシヨンレートの 逆数である 3/4倍することで、スループットを下げずにレピテイシヨンを行うことができ る。
[0078] (実施の形態 2)
図 10は、本発明の実施の形態 2に係る無線送信装置 200の主要な構成を示すブ ロック図である。この無線送信装置 200は、実施の形態 1に示した無線送信装置 100 (図 3参照)と同様の基本的構成を有しており、同一の構成要素には同一の符号を付 し、その説明を省略する。
[0079] 実施の形態 1と異なる点は、レピテイシヨン制御部 110の代わりに、送信信号制御部 201、制御信号生成部 202、および多重部 203—:!〜 203— Nが新たに設けられ、 各ストリームのランキング順位だけでなぐさらに MCSパラメータ(以下、単に MCSと 呼ぶ)にも基づいて、各ストリームのレピテイシヨンレートを決定することである。
[0080] 送信信号制御部 201は、各ストリームのレピテイシヨンレートを決定する。制御信号 生成部 202は、送信信号制御部 201から出力された送信信号の制御情報から、無 線受信装置に伝送する制御信号を生成する。多重部 203— :!〜 203— Nは、レピテ イシヨン部 103— 1〜: 103— Nから出力されたデータと、制御信号生成部 202から出 力された制御信号とを多重する。
[0081] 図 11は、送信信号制御部 201内部の主要な構成を示すブロック図である。
[0082] 送信信号制御部 201は、ランキング順位決定部 212、 MCS決定部 211、レビティ シヨンレート決定部 213、および合成部 214を備える。
[0083] MCS決定部 211は、入力されるフィードバック情報の各ストリームの CQIに基づい て MCSを決定する。ランキング順位決定部 212は、同じく入力される各ストリームの C QIに基づいてランキング順位を決定する。レピテイシヨンレート決定部 213は、 MCS 決定部 211で決定された MCSと、ランキング順位決定部 212で決定されたランキン グ順位とに基づいて、各ストリームのレピテイシヨンレートを決定する。合成部 214は、 MCS決定部 211で決定された各ストリームの MCS情報と、レピテイシヨンレート決定 部 213で決定された各ストリームのレピテイシヨンレート情報とを合成して、 1つの信号 として出力する。
[0084] 実施の形態 1と異なる点は、既に述べたように、レピテイシヨンレート決定方法であり 、具体的には、実施の形態 1では、各ストリームのランキング順位のみを使ってレピテ イシヨンレートを決定していた力 本実施の形態では、各ストリームのランキング順位 にカロえ、さらに MCSを使ってレピテイシヨンレートを決定することである。
[0085] 各ストリームのレピテイシヨンレート決定方法について説明する。
[0086] ランキング順位は、実施の形態 1と同様に決定される。また、各ストリームの MCSは 、無線受信装置からフィードバックされた各ストリームの CQIに基づいて決定される。
[0087] そして、ランキング順位と、 MCSと、レピテイシヨンレートとの対応関係をあらカ^め 設定しておくことで、各ストリームのレピテイシヨンレートを決定することができる。この 関係では、各 MCSにおいて、ランキング順位が高いストリームには誤り耐性が強くな るようにレピテイシヨンレートを高く設定しておき、ランキング順位が低いストリームには 強い誤り耐性が必要ないので、レピテイシヨンレートを低く設定しておく。そして、 MC Sにより、レピテイシヨンレートを設定する段階を変える。
[0088] 各 MCSにおいて、複数のレピテイシヨンレートの段階が設定されており、その設定 方法は実施の形態 1と同じである。つまり、各 MCSにおいて、最上位ストリームのレピ テイシヨンレートの設定方法と、最下位ストリームのレピテイシヨンレートの設定方法と、 その間のストリームのレピテイシヨンレートの設定方法とは、実施の形態 1で示したもの と同じである。
[0089] 本実施の形態では、各 MCSに対応するレピテイシヨンレートが複数設定され、かつ 、レピテイシヨンレートの段階数が変化する。これにより、選択された MCSの受信特性 により、より最適なレピテイシヨンレートを選択することができる。すなわち、受信特性 が良いと判断される MCSでは、レピテイシヨンによる誤り耐性強化はそれほど必要な いので、レピテイシヨンレートの段階数を少なく設定し、受信特性が悪いと判断される MCSでは、レピテイシヨンによる誤り耐性をランキング順位に基づいて決定できるよう にレピテイシヨンレートの段階数を多く設定する。これにより、各ストリームのレピテイシ ヨンレート決定にぉレ、て、そのストリームの MCSでの受信特性およびランキング順位 の双方に適したレピテイシヨンレートを決定することができる。
[0090] 例えば、ストリーム順位と MCSとレピテイシヨンレートとの対応関係力 S、以下の表 3で 示される場合について説明する。
[表 3]
CS ランキング順位 レピテイシヨンレー卜
16QAM, R=5/6 2~4 1
16QAM, R=5/6 1 8/7
16QAM、 R=2/3 2~4 1
16QAM% R=2 3 1 8/7
16QAM、 R=1/2 3~4 1
16QAM、 R=1/2 2 8/7
16QAM、 R=1/2 1 4/3
[0091] 表 3では、 MCSが「16QAM、 R= 5/6」の場合には、ランキング順位により、レピ テイシヨンレートが 2段階に設定されている。これに対して、 MCSが「16QAM、 R= l /2\の場合には、ランキング順位によりレピテイシヨンレートが 3段階に設定されてい る。
[0092] SIC受信方式においてキャンセル処理の前に復号処理を行わない場合には、変調 方式の受信特性が重要である。同一の変調方式では、受信品質が良い場合に、高 い符号化率が設定される。 MCSが「16QAM、 R= 5/6」である場合と、 MCSが「1 6QAM、 R= 1/2」である場合とでは、変調方式は同じである力 S、前者の方が受信 品質の良い場合に選択されるべきものである。このような同じ変調方式において、受 信品質が良い場合は、上位ストリームにおいても誤りが発生しにくいので、誤り耐性を それほど強化する必要がないので、レピテイシヨンレートの段階数を少なく設定する。 これに対して、同じ変調方式において受信品質が悪い場合は、レピテイシヨンによる 誤り耐性の強化が必要であり、またレートの段階はランキング順位により決定するた めに、レピテイシヨンレートの段階数を多く設定する。
[0093] ここで、ストリーム 4本を伝送する場合を例にとって、以下の表 4を使って説明する。
[表 4] ス卜リーム番号 受信品質 MCS ランキング順位 レヒ °テイシヨンレー卜
1 10dB 16QAM、R=5/6 1 8/7
2 8dB 16QAM、R=1/2 2 8/7
3 5dB QPSK、 R=1/3 3 1
4 OdB BPSK、 R=1/2 4 1
[0094] 表 4において、ストリーム番号、受信品質、ランキング順位は、実施の形態 1におけ る表 1と同じものを用いている。この各ストリームにおける MCSとランキング順位とを使 レ、、表 3の関係から、各ストリームのレピテイシヨンレートを決定することができる。
[0095] そして、このようにランキング順位を使ってレピテイシヨンレートを決定した際の、各 送信ストリームの構成を図 12に示す。この図に示すように、レピテイシヨン処理を施す 前のストリームに対して、ランキング順位と MCSとに基づいたレピテイシヨンレートを用 いてレピテイシヨンを行うことで、各ストリームの状況に適したレートのレピテイシヨンを 実現すること力 Sできる。
[0096] 次いで、無線送信装置と無線受信装置間における制御情報伝送方法について説 明する。
[0097] 送信信号の MCSは、無線受信装置における復調ゃ復号の処理に必要な情報で あるので、制御情報として無線送信装置から無線受信装置にフィードバックする必要 力 Sある。一般的には、送受信双方で同じ MCSテーブルを有し、該当する MCSを示 す制御情報を伝送することで、送受信間で MCSを共有することができる。
[0098] そこで本実施の形態では、この MCSテーブルの中に、レピテイシヨンレートをさらに 含めることで、 MCS情報と同様にレピテイシヨンレートを送受信間で共有することがで きる。例えば、以下の表 5は、レピテイシヨンレートを含めた MCSテーブルの一例であ る。
[表 5] MCSレベル 変調方式 符号化率 レピテイシヨン
15 1
16QA R=5/6
14 8/7
13 1
16QAM R=2/3
12 8/7
11 4/3
10 16QAM R=1/2 1
9 8/7
8 1
QPSK R=5/6
7 8/7
[0099] 表 5において、 MCSレベルを、 MCSとレピテイシヨンレートの双方を示す情報として 用いる。すなわち、各 MCSレベルには、 MCSとレピテイシヨンレートとが割当てられ ているので、この MCSレベルを制御情報として伝送することで、送受信間で MCSと レピテイシヨンレートとを共有することができる。
[0100] また、 MCSテーブルとは別に、レピテイシヨンレート独自のデータテーブルを用いて 、制御情報として、このテーブル情報を伝送することで、送受信間でレピテイシヨンレ ートを共有することも可能である。し力し、本実施の形態では、各 MCSレベルの中で 設定されているレピテイシヨンレートが等間隔ではないので、表 5に示すようなテープ ルを用いることで、設定されていない不要なレピテイシヨンレートの情報を割当てなく ても良いという効果がある。
[0101] また、このように制御情報を使って送受信間でレピテイシヨンレートを共有する場合 、無線受信装置において、 MCSとランキング順位とからレピテイシヨンレートを決定す る必要がないので、シンボル合成の制御が簡易であるという効果もある。
[0102] なお、実施の形態 1と同様に、無線受信装置でランキング順位を決定して、決定し たランキング順位と MCS情報とを用いて、レピテイシヨンレートを決定しても良レ、。こ の場合、無線送信装置におけるレピテイシヨンレート決定基準と、無線受信装置にお けるレピテイシヨンレート決定基準とが同じである必要がある。
[0103] 図 13は、本実施の形態に係る無線送信方法の手順を示すフロー図である。
[0104] ST2060では、 ST1030で決定した各ストリームの MCSと、 ST1040で半 IJ定した各 ストリームのランキング順位とを使レ、、 MCSとランキング順位とレピテイシヨンレートと の対応関係から、各ストリームのレピテイシヨンレートを決定する。他のステップは、実 施の形態 1で示したフロー図(図 7参照)と同一なので、同一の符号を付し、その説明 を省略する。
[0105] 次いで、上記の無線送信装置 200に対応する本実施の形態に係る無線受信装置 250について説明する。図 14は、無線受信装置 250の主要な構成を示すブロック図 である。
[0106] 実施の形態 1と異なる点は、制御信号抽出部 251が追加され、この制御信号抽出 部 251からの出力のみがシンボル合成制御部 252に入力されることである。
[0107] 図 15は、上記シンボル合成制御部 252内部の主要な構成を示すブロック図である
[0108] シンボル合成制御部 252は、レピテイシヨンレート抽出部 261およびメモリ 262を備 える。レピテイシヨンレート抽出部 261は、入力される制御信号の中から各ストリームの レピテイシヨンレートを抽出する。メモリ 262は、そのレピテイシヨンレートを無線送信装 置の送信タイミングまで記憶しておく。
[0109] 以上説明してように、本実施の形態によれば、各ストリームのレピテイシヨンレートを 、そのストリームの MCSとランキング順位とを用いて決定する。これにより、各ストリー ムのレピテイシヨンレート決定において、該当するストリームの MCSの受信特性とラン キング順位とに適したレピテイシヨンレートを決定することができる。
[0110] (実施の形態 3)
図 16は、本発明の実施の形態 3に係る無線送信装置 300の主要な構成を示すブ ロック図である。この無線送信装置 300は、実施の形態 2に示した無線送信装置 200 (図 10参照)と同様の基本的構成を有しており、同一の構成要素には同一の符号を 付し、その説明を省略する。また、基本的動作が実施の形態 2と同様であるが、詳細 な点で違いがある構成要素には、同一の番号にアルファベット aを付した符号を付し て区別し、適宜説明を加える。
[0111] 実施の形態 2と大きく異なる点は、シンボル配置部 301—:!〜 301— Nが追加され たことである。
[0112] シンボル配置部 301—:!〜 301—Nは、送信信号制御部 201aで決定された各スト リームのシンボル配置パターンを従って、変調シンボルを配置する。すなわち、レビ テイシヨンシンボルもしくは上位ストリームにおいてレピテイシヨンシンボルが配置され ているシンボルに対して、重要度の高い信号を配置する。これにより、受信特性ゃス ループットを改善することができる。
[0113] 図 17は、上記の送信信号制御部 201a内部の主要な構成を示すブロック図である
[0114] シンボル配置パターン決定部 311は、レピテイシヨンレート決定部 213で決定された 各ストリームのレピテイシヨンレートの情報を使って、各ストリームにおけるシンボルの 配置パターンを決定する。ここで、配置パターンとしては、例えば、レピテイシヨンシン ボルもしくは上位ストリームにおいてレピテイシヨンシンボルが配置されているシンポ ノレに、優先的にシステマチックビットや変調多値数が高いシンボルを配置する配置パ ターンがある。そして、シンボル配置パターン決定部 311で決定された配置パターン は、 MCS情報やレピテイシヨンレート情報と共に制御情報として、無線受信装置に伝 送される。
[0115] 実施の形態 1、 2において、誤り耐性を強化する手段として、レピテイシヨンを用いた 。このレピテイシヨンシンボルは、無線受信装置においてシンボル合成することにより 、レピテイシヨンしていないシンボルに比べて SNRが改善するので誤りが発生しにく い特性がある。そこで本実施の形態では、このようなレピテイシヨンシンボルに重要度 の高いシンボルを配置することとしたものである。重要度の高いデータとしては、例え ば、ターボ符号のシステマチックビットや、変調多値数が高い信号等がある。
[0116] レピテイシヨンシンボルにターボ符号のシステマチックビットを配置する場合を例にと つて説明する。各ストリームのレピテイシヨンレートは、実施の形態 1もしくは実施の形 態 2のように決定されているとする。
[0117] 送信データをターボ符号化すると、システマチックビットとパリティビットとが出力され る。それぞれを別々に変調すると、システマチックビットを変調したシンボルと、パリテ ィビットを変調したシンボルとなる。そして、レピテイシヨンシンボルに優先的にシステ マチックビットを変調したシンボルを配置してレピテイシヨンを行う。このようにレビティ シヨンを行った例が図 18である。この図に示すように、本実施の形態では、各ストリー ムにおレ、て、レピテイシヨンシンボルにシステマチックビットを変調したシンボルを配置 している。
[0118] 仮にレピテイシヨンシンボルの数力 システマチックビットを変調したシンボルの数よ り多い場合には、まず、システマチックビットを変調したシンボルからレピテイシヨンシ ンボル上に配置していき、次に、残りのレピテイシヨンシンボルおよびレピテイシヨンを していないシンボルに、パリティビットを変調したシンボルを配置する。逆に、レビティ シヨンシンボルの数が、システマチックビットを変調したシンボルの数以下の場合には 、まず、レピテイシヨンシンボル数分のシステマチックビットを変調したシンボルをレビ テイシヨンシンボルに配置して、次に、残ったシステマチックビットを変調したシンボル とパリティビットを変調したシンボルとを、レピテイシヨンをしてレ、なレ、シンボルに配置 する。
[0119] このように、レピテイシヨンシンボルにシステマチックビットを変調したシンボルを優先 的に配置してレピテイシヨンすることで、シンボル合成によりシステマチックビットの SN Rが改善してビット尤度が高くなる。よって、復号特性を改善することができる。
[0120] また、レピテイシヨンシンボルに変調多値数が高い信号を配置した場合、各ストリー ムで変調多値数が一定の場合に比べて、スループットを改善する効果がある。また、 レピテイシヨンすることによるスループットの低下を改善する効果もある。
[0121] また、上位ストリームにおいてレピテイシヨンシンボルが配置されているシンボルでは 、レピテイシヨンシンボルが配置されていないシンボルに比べて、上位ストリームから の誤り伝播に起因する誤りが発生しにくい。そこで、このような上位ストリームにおいて レピテイシヨンシンボルが配置されているシンボルに、重要度の高いシンボルを配置 することで、誤り率を低減することができる。ここで、重要度の高いデータとしては、例 えば、先述のターボ符号のシステマチックビットや、変調多値数が高い信号等がある [0122] 図 19は、レピテイシヨンシンボルが配置されている上位ストリームのシンボルに、シ ステマチックビットを配置する例を示した図である。各ストリームのレピテイシヨンレート は、実施の形態 1もしくは実施の形態 2のように決定されているとする。
[0123] 送信データをターボ符号化すると、システマチックビットとパリティビットとが出力され る。それぞれを別々に変調すると、システマチックビットを変調したシンボルと、ノ^テ ィビットを変調したシンボルとなる。そこで、この図に示すように、上位ストリームでは、 システマチックビットを変調したシンボルとパリティビットを変調したシンボルとをそれ ぞれ配置する。配置方法としては、上記の通り、レピテイシヨンシンボルにシステマチ ックビットを優先的に配置する方法等がある。そして、下位ストリームでは、上位ストリ ームにおいてレピテイシヨンシンボルが配置されているシンボルに優先的にシステマ チックビットを変調したシンボルを配置する。
[0124] 仮に上位ストリームにおいてレピテイシヨンシンボルが配置されているシンボルの数 力 システマチックビットを変調したシンボルの数よりも多い場合には、まず、上位スト リームにおいてレピテイシヨンシンボルが配置されているシンボルに、システマチック ビットを変調したシンボルから配置していき、次に、上位ストリームにおいてレピテイシ ヨンシンボルが配置されてレ、る残りのシンボルおよび配置されてレ、なレ、シンボルに、 パリティビットを変調したシンボルを配置する。逆に、上位ストリームにおいてレビティ シヨンシンボルが配置されてレ、るシンボルの数力 システマチックビットを変調したシ ンボルの数以下の場合には、まず、上位ストリームにおいてレピテイシヨンシンボルが 配置されているシンボルに、上位ストリームにおいてレピテイシヨンシンボルが配置さ れてレ、るシンボル数分のシステマチックビットを変調したシンボルを配置して、次に、 残ったシステマチックビットを変調したシンボルとパリティビットを変調したシンボルとを 、上位ストリームにおいてレピテイシヨンシンボルが配置されていないシンボルに配置 する。
[0125] このように、上位ストリームにおいてレピテイシヨンシンボルが配置されているシンポ ルにシステマチックビットを変調したシンボルを優先的に配置してレピテイシヨンするこ とで、上位ストリームからの誤り伝播に起因する誤りが発生しに《なる。よって、シス テマチックビットのビット尤度が高くなり、復号特性が改善する効果がある。また、上位 ストリームにおいてレピテイシヨンシンボルが配置されているシンボルに、変調多値数 の高レ、信号を配置した場合では、各ストリームで変調多値数が一定の場合に比べて 、スループットが改善する効果がある。
[0126] 次いで、本実施の形態に係る無線送信方法について、図 20に示すフロー図を用 いて説明する。なお、実施の形態 1のフローと同じステップについては説明を省略す る。
[0127] 異なる点は、 ST3010において各ストリームのレピテイシヨンレートが決定され、 ST3 020において全ストリームの処理が完了したかを判断した後、シンボル配置パターン を決定するステップ(ST3030)が追加されてレ、る点である。
[0128] ST3030では、各ストリームのレピテイシヨンレートを使って、各ストリームのシンボル 配置パターンを決定する。各ストリームの配置パターンとしては、例えば、先に示した ように、レピテイシヨンシンボルもしくは上位ストリームにおいてレピテイシヨンシンボル が配置されてレ、るシンボルに、優先的にシステマチックビットを変調したシンボルや変 調多値数が高いシンボルを配置する配置パターンがある。
[0129] 次いで、上記の無線送信装置 300に対応する本実施の形態に係る無線受信装置 について説明する。しかし、その基本的構成は実施の形態 2において示した無線受 信装置 250と同様なので、図示および説明を省略し、実施の形態 2と異なる構成であ るシンボル合成制御部 252aについてのみ説明する。
[0130] 図 21は、シンボル合成制御部 252a内部の主要な構成を示すブロック図である。
[0131] シンボル配置パターン抽出部 351は、制御信号から各ストリームのシンボル配置パ ターンを抽出し、メモリ 262は、無線送信装置で送信されるまでそのシンボル配置パ ターンを記憶しておく。
[0132] 以上説明したように、本実施の形態によれば、レピテイシヨンするデータには、重要 度の高いデータを配置する。これにより、レピテイシヨンされたデータは他のデータに 比べて誤りにくくなり、これら重要度の高いデータを確実に伝送することができる。
[0133] また、本実施の形態によれば、上位ストリームのレピテイシヨンするデータが配置さ れているデータに重要度の高いデータを配置する。これにより、当該データは他のデ ータに比べて誤り伝播に起因する誤りが発生しにくくなり、重要度の高いデータを確 実に伝送することができる。
[0134] (実施の形態 4)
図 22は、本発明の実施の形態 4に係る送信信号制御部 401の主要な構成を示す ブロック図である。なお、本実施の形態に係る無線送信装置の構成は、実施の形態 2 で示した無線送信装置 200と同様なので、異なる構成である送信信号制御部 401の みを示したものである。
[0135] 送信信号制御部 401は、実施の形態 2に示した送信信号制御部 201 (図 11参照) と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説 明を省略する。
[0136] 実施の形態 2と異なる点は、レピテイシヨンパターン決定部 402が追加され、ストリー ム毎にレピテイシヨン配置パターンを変えることで、ストリーム毎に異なる効果を得、受 信特性を改善することである。
[0137] レピテイシヨンパターン決定部 402は、レピテイシヨンレート決定部 213で決定された 各ストリームのレピテイシヨンレートと、ランキング順位決定部 212で決定された各ストリ ームのランキング順位とを使って、各ストリームのレピテイシヨンパターンを決定する。 ここで、レピテイシヨンパターンとしては、例えば、上位ストリームでは相関が低くなるよ うにレピテイシヨンシンボルを配置し、下位ストリームでは相関が高くなるようにレビティ シヨンシンボルを配置する配置パターンがある。
[0138] 実施の形態 1、 2では、誤り耐性を強化する手段としてレピテイシヨンを用いた。しか し、各ストリームのランキング順位によりレピテイシヨンパターンを変えることで、ストリー ム毎に異なる効果を得ることができる。 SIC受信方式では、上位ストリームでは空間ダ ィバーシチ利得が得られないので、レピテイシヨンによって、時間ダイバーシチもしく は周波数ダイバーシチを得ることで、受信特性を改善することができる。これに対し、 下位ストリームでは、空間ダイバーシチ利得が得られ受信状態が良くなるので、レビ テイシヨンによるダイバーシチ利得を得るよりも、レピテイシヨンシンボルを同相合成す る方が、より受信 SNRを改善する効果がある。
[0139] ストリームの順位に応じてレピテイシヨンパターンを変更する例を示す。上位ストリー ムでは、レピテイシヨンによるダイバーシチ利得が得られやすいように、相関が低くな る配置パターンでレピテイシヨンを行う。これに対し、下位ストリームでは、相互間の変 動を小さくして同相合成がしゃすいように、相関が高くなる配置パターンでレピテイシ ヨンを行う。この配置パターンの例を図 23に示す。この図に示すように、上位ストリー ムでは、相関が低くなるように、複数のレピテイシヨンシンボルを互いに離れた位置に 配置する。一方、下位ストリームでは、相関が高くなるように、複数のレピテイシヨンシ ンボルを互いに近い位置に配置する。これにより、上位ストリームでは、ダイバーシチ 利得を得ることができる。また、下位ストリームでは、空間ダイバーシチ利得が得られ 受信状態が良くなるので、同相合成することで SNRを改善することができる。よって、 全体的に特性が改善してスループットが向上する。
[0140] なお、相関が低くなるような配置としては、時間相関が低くなるように(時間領域で) 互いに離れた位置のシンボルに配置する方法や、周波数相関が低くなるように(周波 数領域で)互いに離れた周波数に配置する方法等がある。
[0141] また、その他のレピテイシヨン配置パターンとして、上位ストリームおよび下位ストリー ムのレピテイシヨンシンボルを重ねて配置するパターンがある。この配置パターンでは 、各ストリームで発生する誤りは独立であるから、上位ストリームにおける誤り訂正効 果を下位ストリームに確実に伝えることができ、下位ストリームの誤りが発生しに《な る。
[0142] 例えば、上位ストリームのレピテイシヨンレートと下位ストリームのレピテイシヨンレート とが同じ場合の配置パターンを図 24に示す。
[0143] また、上位ストリームのレピテイシヨンレートと下位ストリームのレピテイシヨンレートと が異なる場合の配置パターンを図 25に示す。この図の例では、上位ストリームにおけ るレピテイシヨンシンボルの一部に、下位ストリームのレピテイシヨンシンボルを配置す る。
[0144] 次いで、本実施の形態に係る無線送信方法について、図 26に示すフロー図を用 いて説明する。なお、実施の形態 3で示した無線送信方法と基本的手順は同様であ るので、同一のステップについては同一の符号を付し、その説明を省略する。
[0145] 異なる点は、 ST1050〜ST3020によって各ストリームのレピテイシヨンレートが決 定された後に、 ST4030においてレピテイシヨンパターンを決定することである。 ST4 030では、各ストリームのランキング順位とレピテイシヨンレートの双方を使って、各スト リームのレピテイシヨンパターンを決定する。各ストリームのレピテイシヨンパターンとし ては、例えば、先に示したように、上位ストリームでは相関が低くなるようにレビティショ ンシンボルを配置し、下位ストリームでは相関が高くなるようにレピテイシヨンシンボル を配置する配置パターンがある。
[0146] 次いで、上記無線送信装置 400に対応する本実施の形態に係る無線受信装置の うち、シンボル合成制御部 252bについて説明する。なお、基本的動作は実施の形 態 2に示したシンボル合成制御部 252と同様である。図 27は、このシンボル合成制 御部 252b内部の主要な構成を示すブロック図である。
[0147] 実施の形態 2と異なる点は、レピテイシヨンパターン抽出部 451が追加されているこ とである。レピテイシヨンパターン抽出部 451は、入力される制御信号から各ストリーム のレピテイシヨンパターンを抽出する。メモリ 262bは、レピテイシヨンレート抽出部 261 が抽出したレピテイシヨンレートと共に、レピテイシヨンパターン抽出部 451が抽出した レピテイシヨンパターンを、無線送信装置の送信タイミングまで記憶しておく。
[0148] このように、本実施の形態によれば、上位ストリームでは相関の低い配置パターン でレピテイシヨンを行レ、、下位ストリームでは相関の高い配置パターンでレピテイシヨン を行う。これにより、上位ストリームでは、ダイバーシチ利得を得ることができる。また、 下位ストリームでは、空間ダイバーシチが得られ受信状態が良くなるので、同相合成 することで SNRを改善することができる。よって、全体的に特性が改善して通信シス テムのスループットを向上させることができる。
[0149] また、本実施の形態によれば、上位ストリームおよび下位ストリームにおいて、同一 のレピテイシヨン配置パターンを用いる。これにより、上位ストリームの誤り訂正効果を 、下位ストリームに確実に伝えることができるので、下位ストリームにおいて誤り伝播に 起因する誤りが発生しにくくなる。
[0150] なお、実施の形態 3と本実施の形態 4とを組み合わせることもできる。無線送信装置 の送信信号制御部において、シンボル配置パターン決定部およびレピテイシヨンパタ ーン決定部の双方を備えることで、各ストリームにおける変調シンボルを配置するシ ンボル配置パターンを決定し、また、レピテイシヨンシンボルを配置するレピテイシヨン パターンを決定することができる。これにより、各ストリームにおいて、レピテイシヨンパ ターンによる実施の形態 4の効果を得ることができ、かつ、シンボル配置パターンによ る実施の形態 3の効果を得ることができる。
[0151] (実施の形態 5)
図 28は、本発明の実施の形態 5に係る無線送信装置 500の主要な構成を示すブ ロック図である。なお、この無線送信装置 500も、実施の形態 2に示した無線送信装 置 200 (図 10参照)と同様の基本的構成を有しており、同一の構成要素には同一の 符号を付し、その説明を省略する。また、基本的動作が実施の形態 2と同一であるが 、詳細な点で違いがある構成要素には、同一の番号にアルファベット cを付した符号 を付して区別し、適宜説明を加える。
[0152] 本実施の形態では、上位ストリームほど誤り耐性の強い MCSに変更して送信する ことで、誤り伝播に起因する誤りを発生しに《し、下位ストリームにおける誤り耐性強 化によるスループットの低下を改善する。そして、各ストリームの MCSの変更は、ラン キング順位に基づレ、て決定する。
[0153] 無線送信装置 500は、送信信号制御部 201cの動作が一部異なる。図 29は、送信 信号制御部 201c内部の主要な構成を示すブロック図である。
[0154] 送信信号制御部 201 cは、変調多値数変更シンボル数決定部 501をさらに備えて いる。この変調多値数変更シンボル数決定部 501は、各ストリームのランキング順位 を使って、各ストリームにおいて変調多値数を変更するシンボルの総数 (シンボル数) を決定する。シンボル数の決定方法は、例えば、ランキング順位と変調多値数を変更 するシンボル総数との関係を使うことで決定する方法がある。そして、各ストリームの 変調部 102—:!〜 102— Nは、変調多値数変更シンボル数決定部 501におレ、て決 定されたシンボル数に相当するシンボルを選択し、このシンボルの変調多値数を下 げて変調を行う。また、変調多値数を変更したシンボルの総数やシンボル配置パタ ーン等は、制御情報として無線受信装置に送信する。
[0155] このように、誤り耐性を強化する手段として、誤り耐性の強い MCSに変更する方法 を用いる。誤り耐性の強い MCSに変更する具体的な方法としては、符号化率を下げ る方法や、変調多値数を下げる方法がある。また、フィードバックされる CQIと符号化 率と変調方式との組み合わせの関係を示す MCSテーブルを用いる場合には、 CQI に基づいて所要誤り率に対応する MCSを求め、この MCSよりも数段階誤り耐性が 強い MCSを選択する方法がある。ストリーム毎に適応変調を行う場合、ストリーム毎 にフィードバックされた CQIに基づいて、 MCSテーブル力、ら所要誤り率に対応する MCSが選択される。そこで、上位ストリームでは、選択された MCSよりも数段階誤り 耐性の強い MCSを選択することで、上位ストリームほど誤りにくくすることができる。こ れにより、下位ストリームでは、上位ストリームで発生した誤りに起因する誤りが発生し に《なるので、誤り耐性を強化する必要がなくなる。
[0156] 上位ストリームほど誤り耐性が強い MCSを選択する方法として、例えば次のような 方法がある。まず、各ストリームにおいて、フィードバックされた CQIに基づいて、 MC Sテーブルから MCSを選択する。また、それらの CQIからストリームのランキング順位 を決定しておく。そのランキング順位に応じて、例えば以下の表 6に示すような関係を 用いて MCSを変更することで、上位ストリームほど誤り耐性を強くすることができる。
[表 6]
Figure imgf000032_0001
[0157] 例えば、ランキング順位が 1位のストリームでは、フィードバック CQIに基づいて選択 された MCSより、 2段階誤り耐性が強い MCSを選択する。また、ランキング 2位のスト リームでは、 1段階誤り耐性が強い MCSを選択する。そして、上位ストリームにおいて 誤りが発生しに《なっているので、ランキング 3位と 4位のストリームでは、フィードバ ック CQIに基づいて選択される MCSのままを使用する。
[0158] このように、上位ストリームほど CQIに基づいて選択された MCSより誤り耐性の強い MCSを選択することで、誤り伝播に起因する誤りを発生に《することができる。そし て、下位ストリームでは誤り耐性を強化する必要がないので、 CQIに基づいて選択さ れた MCSで送信することで、ストリーム全体のスループットを大きく低下させることが ない。
[0159] また、誤り耐性を強化する手段として、変調多値数を下げる方法を用レ、る場合、次 のような方法もある。すなわち、ストリーム全体で変調多値数を下げた場合、そのストリ ームのスループットが極端に下がってしまう。そこで、ストリームの一部のシンボルだけ 変調多値数を下げることで、極端なスループットの低下を防止し、誤り耐性を強化す ること力 Sできる。そして、上位ストリームほど変調多値数を下げるシンボルの比率を高 くすることで、上位ストリームほど誤りにくくすることができる。これにより、下位ストリー ムでは、上位ストリームの誤りに起因する誤りが発生しに《なるので、誤り耐性を強 化する必要がなくなる。
[0160] 例えば、ストリームの一部のシンボルだけ変調多値数を下げる場合のストリームの構 成を図 30に示す。この図では、ストリーム数を 3とし、ストリームのランキング順位は、 品質が良好な方から、ストリーム A、ストリームおストリーム Cの順であるとする。
[0161] 送信ストリーム Aは、 CQIに基づく変調方式は 16QAMである力 4シンボルの中で
1シンボルだけは変調多値数を下げ、このシンボルの変調方式を QPSKにして送信 する。また、送信ストリーム Bは、送信ストリーム Aと同様に、 CQIに基づく変調方式は 16QAMである力 8シンボルの中で 1シンボルだけ変調多値数を下げて QPSKにし て送信する。ここで、ストリーム Bはストリーム Aの下位ストリームであるので、変調多値 数を下げるシンボルの割合を少なくしている(ストリーム Aでは 1/4、ストリーム Bでは 1/8)。そして、送信ストリーム Cでは、 CQIに基づく変調方式そのままで送信する。
[0162] このように、ストリームの一部のシンボルだけ変調多値数を下げる場合に、上位ストリ ームほど変調多値数を下げるシンボルの比率を高くすることで、誤り伝播に起因する 誤りを発生しに《することができる。そして、下位ストリームでは誤り耐性を強化する 必要がなぐシンボルの変調多値数を下げる必要がないので、ストリーム全体のスル 一プットを大きく低下させることがなレ、。
[0163] また、各ストリームにおいて、変調多値数を下げるシンボルの比率を決定する方法 として、ランキング順位に応じてこれを行うことができる。例えば、次のような方法があ る。まず、各ストリームにおいて、フィードバックされた CQIに基づいて、 MCSテープ ルを参照して MCSを決定すると共に、ストリームのランキング順位も決定する。このラ ンキング順位に応じて、以下の表 7の関係を使って変調多値数を下げるシンボル数 を決定する。
[表 7]
Figure imgf000034_0001
[0164] 例えば、ランキング順位が 1位のストリームでは、 4シンボルの中で 1シンボルの変調 多値数を下げる。また、ランキング 2位のストリームでは、 8シンボルの中で 1シンボル の変調多値数を下げる。そして、ランキング 3位と 4位のストリームでは、 CQIに基づく 変調方式をそのまま用いて送信する。
[0165] 次いで、本実施の形態に係る無線送信方法について、図 31に示すフロー図を用 いて説明する。なお、実施の形態 1で示した無線送信方法と基本的手順は同様であ るので、同一のステップについては同一の符号を付し、その説明を省略する。
[0166] 異なる点は、レピテイシヨンレートを決定するステップ(ST1060)の代わりに、変調 多値数を下げるシンボル数を決定するステップ(ST5060)を実行する点である。 ST 5060では、各ストリームのランキング順位を使って変調多値数を下げるシンボル数を 決定する。例えば、上記表 7で示した関係を使って、変調多値数を下げるシンボル数 を決定する。
[0167] 次いで、上記の無線送信装置 500に対応する本実施の形態に係る無線受信装置
550について説明する。図 32は、無線受信装置 550の主要な構成を示すブロック図 である。
[0168] 基本的構成は、実施の形態 2に示した無線受信装置 250と同様である。異なる点 は、復調制御部 551および復調部 552を備えることである。図 33は、復調制御部 55 1内部の主要な構成を示すブロック図である。
[0169] 復調制御部 551は、変調多値数変更情報抽出部 561およびメモリ 562を備えてい る。変調多値数変更情報抽出部 561は、各ストリームにおいて変調多値数が変更さ れたシンボル数やシンボル配置パターン等の情報を、入力される制御情報から抽出 する。メモリ 562は、その情報を記憶しておき、無線送信装置の送信タイミングで復調 部 552へ出力する。
[0170] 復調部 552は、復調制御部 551から出力される変調多値数変更情報に基づいて、 各ストリームのシンボルの復調を行う。
[0171] このように、本実施の形態によれば、誤り耐性を強化する手段として、ストリーム内で 部分的に変調多値数を低下させるようにし、上位ストリームほど変調多値数を低下さ せるデータの比率を高くする。これにより、無線受信装置の処理遅延を抑え、下位ス トリームにおいて誤り伝播に起因する誤りを発生しに《する。よって、通信システムの スループット低下を防止することができる。
[0172] なお、本実施の形態のようなストリームの一部のシンボルの変調多値数を低下させ る方法において、実施の形態 3と同様に、変調多値数を下げるシンボルに重要度の 高いデータを配置したり、または、上位ストリームにおいて変調多値数を下げたシン ボルが配置されてレ、るシンボルに重要度の高レ、データを配置することで、実施の形 態 3と同様の効果を得ることができる。また、実施の形態 4と同様に、変調多値数を下 げたシンボルを配置するパターンをストリーム間で変えることで、実施の形態 4と同様 の効果を得ることができる。
[0173] 以上、本発明の各実施の形態について説明した。
[0174] なお、本発明に係る無線通信システム、無線受信装置、無線送信装置、および CQ I通知方法は、上記各実施の形態に限定されず、種々変更して実施することが可能 である。
[0175] また、本発明において受信品質は、 SINRまたは SNRの例を示した力 SIR、 CIR 、 CNR、 CINR、 RSSI、受信強度、受信電力、干渉電力、誤り率、伝送レート、スル 一プット、干渉量、または、所定の誤り率を達成できる MCS等を用いても良い。 [0176] また、本発明においては受信品質を、量子化して CQIで表す場合を例にとって説 明したが、 CSI (Channel State Information)等で表しても良レヽ。
[0177] また、本発明に係る無線送信装置は、移動体通信システムにおける通信端末装置 および基地局装置に搭載することが可能であり、これにより上記と同様の作用効果を 有する通信端末装置、基地局装置、および移動体通信システムを提供することがで きる。
[0178] また、ここでは、本発明をハードウェアで構成する場合を例にとって説明したが、本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る CQI通知方 法をプログラミング言語によって記述し、このプログラムをメモリに記憶しておいて情 報処理手段によって実行させることにより、本発明に係る無線受信装置、無線送信装 置と同様の機能を実現することができる。
[0179] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップィ匕されても良いし、一部または 全てを含むように 1チップ化されても良レ、。
[0180] また、ここでは LSIとした力 集積度の違いによって、 IC、システム LSI、スーパー L SI、ゥノレトラ LSI等と呼称されることもある。
[0181] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現しても良い。 LSI製造後に、プログラム化することが可能な FPGA (Field Pro grammable Gate Array)や、 LSI内部の回路セルの接続もしくは設定を再構成可能な リコンフィギユラブル.プロセッサを利用しても良い。
[0182] さらに、半導体技術の進歩または派生する別技術により、 LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用レ、て機能ブロックの集積化を行って も良い。ノ ォ技術の適用等が可能性としてあり得る。
[0183] 2006年 3月 1曰出願の特願 2006— 055516の曰本出願に含まれる明糸田書、図面 および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0184] 本発明に係る無線受信装置、無線送信装置および CQI通知方法は、 SDM方式の システムにおけるストリーム毎の適応変調等の用途に適用することができる。

Claims

請求の範囲
[1] 複数の送信ストリームに対し、無線受信装置における受信品質に基づいて順位付 けを行う順位付け手段と、
高品質に順位付けされた送信ストリームの誤り耐性を、低品質に順位付けされた送 信ストリームの誤り耐性よりも強く設定する設定手段と、
を具備する無線送信装置。
[2] 前記設定手段は、
前記高品質に順位付けされた送信ストリームを高いレピテイシヨンレートでレビティ シヨンすることによって、当該送信ストリームの誤り耐性を強く設定する、
請求項 1記載の無線送信装置。
[3] 前記設定手段は、
前記低品質に順位付けされた送信ストリームのレピテイシヨンレートを所要品質に応 じたレピテイシヨンレートに設定する、
請求項 2記載の無線送信装置。
[4] 前記設定手段は、
前記高品質に順位付けされた送信ストリームのレピテイシヨンレートを、当該送信スト リームの MCSパラメータの誤り耐性に応じて決定する、
請求項 2記載の無線送信装置。
[5] 前記設定手段は、
前記高品質に順位付けされた送信ストリームの一部分を、高いレピテイシヨンレート でレピテイシヨンし、
当該高いレピテイシヨンレートでレピテイシヨンされる部分には、重要なデータが割り 当てられる、
請求項 2記載の無線送信装置。
[6] 前記設定手段は、
前記高品質に順位付けされた送信ストリームの一部分を、高いレピテイシヨンレート でレピテイシヨンし、
当該高いレピテイシヨンレートでレピテイシヨンされる部分と同位置のストリーム部分 であって、前記低品質に順位付けされた送信ストリームの一部分、に重要なデータが 割り当てられる、
請求項 2記載の無線送信装置。
[7] 前記高品質に順位付けされた送信ストリームのレピテイシヨンシンボルを分散配置し 、前記低品質に順位付けされた送信ストリームのレピテイシヨンシンボルを密集配置 する配置手段、
をさらに具備する請求項 2記載の無線送信装置。
[8] 前記高品質に順位付けされた送信ストリームのレピテイシヨン配置パターンと、前記 低品質に順位付けされた送信ストリームのレピテイシヨン配置パターンとに、同一のパ ターンを用いる配置手段、
をさらに具備する請求項 2記載の無線送信装置。
[9] 前記設定手段は、
前記高品質に順位付けされた送信ストリームの一部のデータの変調多値数を低下 させることによって、当該送信ストリームの誤り耐性を強く設定する、
請求項 2記載の無線送信装置。
[10] 請求項 1記載の無線送信装置を具備する通信端末装置。
[11] 請求項 1記載の無線送信装置を具備する基地局装置。
[12] 複数の送信ストリームに対し、無線受信装置における受信品質に基づいて順位付 けを行うステップと、
高品質に順位付けされた送信ストリームの誤り耐性を、低品質に順位付けされた送 信ストリームの誤り耐性よりも強く設定するステップと、
を具備する無線送信方法。
PCT/JP2007/053754 2006-03-01 2007-02-28 無線送信装置および無線送信方法 WO2007102363A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07715044A EP1981200A1 (en) 2006-03-01 2007-02-28 Radio transmission device and radio transmission method
US12/281,140 US20090305690A1 (en) 2006-03-01 2007-02-28 Radio transmission device and radio transmission method
JP2008503793A JPWO2007102363A1 (ja) 2006-03-01 2007-02-28 無線送信装置および無線送信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-055516 2006-03-01
JP2006055516 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007102363A1 true WO2007102363A1 (ja) 2007-09-13

Family

ID=38474796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053754 WO2007102363A1 (ja) 2006-03-01 2007-02-28 無線送信装置および無線送信方法

Country Status (4)

Country Link
US (1) US20090305690A1 (ja)
EP (1) EP1981200A1 (ja)
JP (1) JPWO2007102363A1 (ja)
WO (1) WO2007102363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114837A1 (ja) * 2010-03-16 2011-09-22 日本電気株式会社 伝送装置、伝送方法及び伝送システム
JPWO2011043230A1 (ja) * 2009-10-07 2013-03-04 日本電信電話株式会社 無線通信システム、無線中継局装置、無線端末局装置、及び無線通信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260835B1 (ko) * 2006-02-28 2013-05-06 삼성전자주식회사 다중 안테나 시스템의 신호 송수신장치 및 방법
US20090132885A1 (en) * 2007-11-20 2009-05-21 Samsung Electronics Co. Ltd. System and method for retransmitting data in a communication system
JP4955614B2 (ja) * 2008-06-25 2012-06-20 京セラ株式会社 無線通信装置および無線通信方法
WO2011105407A1 (ja) * 2010-02-23 2011-09-01 日本電気株式会社 無線基地局およびその適応変調制御方法
WO2013001732A1 (ja) * 2011-06-29 2013-01-03 日本電気株式会社 無線伝送システム、無線伝送装置、無線伝送方法及びコンピュータ可読媒体
WO2013125177A1 (ja) * 2012-02-22 2013-08-29 日本電気株式会社 通信装置とトラヒック制御方法
KR102473191B1 (ko) 2016-03-10 2022-12-02 삼성전자주식회사 안테나를 포함하는 전자 장치
US10951292B2 (en) 2018-01-26 2021-03-16 California Institute Of Technology Systems and methods for random access communication
WO2019183601A1 (en) * 2018-03-22 2019-09-26 California Institute Of Technology Coded random access mechanism for communication networks
US11729813B1 (en) * 2021-06-01 2023-08-15 Amazon Technologies, Inc. Multimedia service over an extended range wireless local area network (WLAN)using a modulation and coding scheme with symbol repetition for higher priority portions of media for data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065575A (ja) * 1996-08-22 1998-03-06 Oki Electric Ind Co Ltd 反復送信信号合成回路及びシンボル合成装置
JP2000307670A (ja) * 1999-04-23 2000-11-02 Kenwood Corp Bsデジタル放送受信機。
JP2004533169A (ja) 2001-05-11 2004-10-28 クゥアルコム・インコーポレイテッド チャネル状態情報を利用する多元入力‐多元出力(mimo)通信システムにおけるデータを処理するための方法及び装置
JP2004364075A (ja) * 2003-06-06 2004-12-24 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2005519520A (ja) * 2002-03-01 2005-06-30 クゥアルコム・インコーポレイテッド 多元入力多元出力(mimo)システムに対するデータレートの不均一な配信をともなったデータ送信
JP2006055516A (ja) 2004-08-23 2006-03-02 Okumura Yu-Ki Co Ltd パチンコ機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355295B2 (ja) * 1997-11-13 2002-12-09 松下電器産業株式会社 送信電力制御方法及び送受信装置
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
CA2310188A1 (en) * 2000-05-30 2001-11-30 Mark J. Frazer Communication structure with channels configured responsive to reception quality
JP4127805B2 (ja) * 2003-04-11 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局、通信システム、送信制御方法及び移動局制御プログラム
DE10321207B3 (de) * 2003-05-12 2005-02-17 Siemens Ag Verfahren zur Steuerung der Sendeleistung einer sendenden Station eines Funkkommunikationssystems sowie sendende Station, empfangende Station und Funkkomunikationssystem
KR100646799B1 (ko) * 2004-05-06 2006-11-24 삼성전자주식회사 이동통신 시스템에서 전송채널들의 레이트 매칭 파라미터 결정 방법 및 장치
KR100950637B1 (ko) * 2004-12-06 2010-04-01 삼성전자주식회사 반복에 의한 부호어 생성 방법
AU2006205312A1 (en) * 2005-01-12 2006-07-20 Samsung Electronics Co., Ltd. Apparatus and method for transmitting information data in a wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065575A (ja) * 1996-08-22 1998-03-06 Oki Electric Ind Co Ltd 反復送信信号合成回路及びシンボル合成装置
JP2000307670A (ja) * 1999-04-23 2000-11-02 Kenwood Corp Bsデジタル放送受信機。
JP2004533169A (ja) 2001-05-11 2004-10-28 クゥアルコム・インコーポレイテッド チャネル状態情報を利用する多元入力‐多元出力(mimo)通信システムにおけるデータを処理するための方法及び装置
JP2005519520A (ja) * 2002-03-01 2005-06-30 クゥアルコム・インコーポレイテッド 多元入力多元出力(mimo)システムに対するデータレートの不均一な配信をともなったデータ送信
JP2004364075A (ja) * 2003-06-06 2004-12-24 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2006055516A (ja) 2004-08-23 2006-03-02 Okumura Yu-Ki Co Ltd パチンコ機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Coordinated Symbol Repetition to Mitigate Downlink Inter Cell Interference", 3GPP, vol. R1-050829, 2005, pages 1 - 4, XP003017650 *
WU YIN ET AL.: "Transmission Power Optimization of Convolutional Coded VBLAST System", 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, vol. 2, 2005, pages 945 - 948, XP010855548 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011043230A1 (ja) * 2009-10-07 2013-03-04 日本電信電話株式会社 無線通信システム、無線中継局装置、無線端末局装置、及び無線通信方法
US8914714B2 (en) 2009-10-07 2014-12-16 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless relay station apparatus, wireless terminal station apparatus, and wireless communication method
WO2011114837A1 (ja) * 2010-03-16 2011-09-22 日本電気株式会社 伝送装置、伝送方法及び伝送システム
JP5585647B2 (ja) * 2010-03-16 2014-09-10 日本電気株式会社 伝送装置、伝送方法及び伝送システム

Also Published As

Publication number Publication date
JPWO2007102363A1 (ja) 2009-07-23
EP1981200A1 (en) 2008-10-15
US20090305690A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2007102363A1 (ja) 無線送信装置および無線送信方法
US7844013B2 (en) Transmitting apparatus, receiving apparatus, and link adaptation method
US7167690B2 (en) Radio communication system
JP5052337B2 (ja) 送信装置、受信装置及び送信電力制御方法
JP5409388B2 (ja) 無線通信装置、無線通信基地局装置及び無線通信移動局装置
CN102664663B (zh) 无线通信装置、无线通信***以及无线通信方法
JP4676444B2 (ja) Mimo通信システムのための適応フィードバック
US7706462B2 (en) Transceiver using two or more antennas, and a transmitting-receiving method thereof
EP1821440A1 (en) Retransmitting method and transmitting method in multi-antenna transmission
US20090318157A1 (en) Reception device, transmission device, and communication method
US8452229B2 (en) Radio communication apparatus and relay transmission method
US20100135428A1 (en) Multiantenna radio transmitting apparatus and multiantenna radio transmitting method
US20150124751A1 (en) Base station apparatus and resource allocation method
US20020039884A1 (en) Radio communication system
US9313789B1 (en) Systems and methods for transmitting using pre-coding with multiple codebooks
US8144796B2 (en) Apparatus and method for selecting operation mode in MIMO communication system
CN101917245A (zh) 多个空间多路复用模式的mimo***
JP2007251924A (ja) 無線通信システム、無線受信装置、無線送信装置、およびcqi量子化方法
JPWO2006095904A1 (ja) 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
WO2009096145A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
US8081702B2 (en) Radio communication system, radio communication device, and channel correlation matrix decision method
CN110192353B (zh) 网络节点及调度网络节点与无线设备之间的传输的方法
WO2008077629A1 (en) Power-efficient multi-branch reception
KR101339587B1 (ko) 다중 안테나 시스템에서 변조 및 코딩 방식 결정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503793

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007715044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281140

Country of ref document: US