WO2009096145A1 - 無線通信装置、無線通信システム及び無線通信方法 - Google Patents

無線通信装置、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2009096145A1
WO2009096145A1 PCT/JP2009/000149 JP2009000149W WO2009096145A1 WO 2009096145 A1 WO2009096145 A1 WO 2009096145A1 JP 2009000149 W JP2009000149 W JP 2009000149W WO 2009096145 A1 WO2009096145 A1 WO 2009096145A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
wireless communication
codewords
codeword
power
Prior art date
Application number
PCT/JP2009/000149
Other languages
English (en)
French (fr)
Inventor
Rong Hong Mo
Qian Yu
Masayuki Hoshino
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2009096145A1 publication Critical patent/WO2009096145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • H04B7/0443Power distribution using multiple eigenmodes utilizing "waterfilling" technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to a wireless communication apparatus, a wireless communication system, and a wireless communication method applicable to a MIMO (Multiple Input Multiple Output) system that performs communication using a plurality of antennas.
  • MIMO Multiple Input Multiple Output
  • hybrid ARQ Hybrid Automatic Repeat Re- Quest
  • a transmitter transmits each data packet with a cyclic redundancy check (CRC) bit for error detection.
  • CRC cyclic redundancy check
  • the receiver receives each data packet transmitted from the transmitter, and checks the contents of these data packets through the CRC. If the received data packet fails the CRC check, the receiver returns a NACK (Negative Acknowledgment) signal to the transmitter and requests retransmission.
  • NACK Negative Acknowledgment
  • the receiver decodes the retransmitted data packet together with the previous reception failure data packet to improve the decoding performance.
  • the receiver if the received data packet passes the CRC check, the receiver returns an ACK (Acknowledgement) signal to the transmitter and acknowledges the successful reception and decoding of the data packet.
  • ACK Acknowledgement
  • MIMO Multiple Input Multiple Output
  • MIMO technology uses multiple antennas for both transmission and reception, and simultaneously transmits individual data streams via multiple antennas (spatial multiplexing transmission), thereby improving frequency utilization efficiency without additional bandwidth and power consumption.
  • Promising in terms of improvement That is, by applying MIMO, the transmission capacity can be improved without expanding time / frequency resources. If the channel information is known at both the transmitter and receiver, the capacity of the MIMO system increases linearly with the minimum number of antennas implemented in the transmitter and receiver.
  • SCW single codeword
  • MCW multiple codeword
  • the input information bit sequence is CRC-encoded, channel-encoded, and mapped to data symbols to form a data packet.
  • the data packets are then segmented into multiple (spatial) data streams and transmitted in parallel via multiple transmit antennas.
  • all detected data space streams are multiplexed into a single data packet and channel decoding and CRC checking are performed through the channel decoder and CRC checking module, respectively.
  • an ACK / NACK signal is transmitted to the transmitter according to the CRC check result, and the reception quality of the transmission data packet is acknowledged.
  • the input information bit sequence is CRC encoded, channel encoded, and individually mapped to data symbols to form a plurality of data packets. Then, a multi-input information bit sequence using a plurality of data packets is transmitted in parallel via a plurality of antennas. The receiver first reconstructs a plurality of data packets using the detected data space stream, and independently performs channel decoding and CRC check for each data packet. Subsequently, a plurality of ACK / NACK signals are fed back to the transmitter according to the CRC check result for each data packet, and the reception quality of the plurality of data packets is acknowledged.
  • precoding In precoding, in order to reflect the observation status (propagation channel status) of the received signal at the receiving point, a feedback signal including beam information is transmitted from the receiver to the transmitter, and the transmitter controls the beam using the feedback signal. To do.
  • a right matrix of singular value decomposition (SVD) of the MIMO channel in the transmitter that is, a precoding matrix obtained from the right singular matrix
  • SVD singular value decomposition
  • a more efficient method predetermines a codebook consisting of precoding sets that are optimally designed to reflect the statistics of the MIMO fading channel.
  • the precoding matrix is selected from a codebook based on channel conditions and some predetermined criteria.
  • the receiver transmits an index corresponding to the selected precoding matrix to the transmitter. This requires very few bits for signaling the index of the precoding matrix to the transmitter. If the precoding matrix set (codebook) is optimally designed, capacity loss can be achieved at an acceptable level.
  • Precoding can be used for both SCW transmission and MCW transmission.
  • MCW transmission when precoding is applied at the transmitter, data packets from different codewords contribute to signals transmitted via multiple antennas with different weight values. For this reason, each codeword has different link conditions. As a result, the decoding quality varies with the codeword. In the MCW type MIMO system, some codewords are correctly decoded and pass the CRC check, while others are not decoded correctly and are likely to require retransmission.
  • the retransmission codeword has higher transmission quality requirements as opposed to initial communication where the codeword has the same requirements and transmission quality.
  • a precoding design for retransmission must address the challenges of higher transmission quality requirements in order to reduce the number of retransmissions and improve system capacity.
  • Non-Patent Document 1 As a prior art for adapting precoding to retransmission, as disclosed in Non-Patent Document 1, there is a method in which precoding vectors used for MCW codewords are replaced during retransmission. 3GPP TSG RAN WG1 # 49, R1-072384, Nortel, "HARQ performance enhancement", May 7th-11th, 2007
  • Non-Patent Document 1 simply replacing the precoding vector used for each codeword at the time of retransmission cannot guarantee whether sufficient transmission quality requirements can be obtained at each codeword at the time of retransmission.
  • the temporal change of the propagation path condition does not occur very much (when the temporal channel correlation is high)
  • the improvement of the reception quality in each codeword cannot be expected.
  • the newly transmitted codeword fails to be decoded (decoding result) May be NACK).
  • the present invention has been made in view of the above circumstances, and a radio communication apparatus, a radio communication system, and a radio communication capable of improving the transmission quality of each codeword at the time of retransmission when precoding is employed in MIMO. It aims to provide a method.
  • the present invention provides, as a first aspect, a wireless communication apparatus that performs communication using a plurality of codewords using a plurality of antennas, and that receives a signal of a plurality of codewords transmitted from a plurality of antennas of a transmission apparatus
  • a decoding unit that decodes each of the received multiple codewords, a channel estimation unit that estimates a propagation state of each of the received multiple codewords, and a future transmission based on the propagation state of each codeword
  • a precoding matrix selection unit for selecting a precoding matrix for beam forming by precoding and a decoding result of each of the decoded codewords to adjust the power of each codeword in the precoding matrix
  • a parameter determination unit for determining the parameters of each of the codewords Issue result, the feedback information including the information for specifying the precoding matrix and the parameter, to provide a radio communication apparatus and a feedback information output unit to be transmitted to the transmission device.
  • the present invention provides, as a second aspect, the wireless communication apparatus described above, wherein the parameter determination unit adjusts the power of each codeword as the parameter while keeping the power of all codewords constant. Includes those that calculate offset values.
  • the present invention provides, as a third aspect, the above wireless communication apparatus, wherein the parameter determination unit converts a code word that needs to be retransmitted when the decoding result is negative based on the decoding result of each code word. Including those that determine parameters to allocate more power to.
  • the parameter determination unit determines whether a codeword that needs to be retransmitted based on a decoding result of each codeword is negative.
  • a parameter for allocating more power to codewords having poor decoding reliability is included.
  • the present invention provides, as a fifth aspect, the above-described wireless communication device, wherein the parameter determination unit is configured to detect an antenna having a good channel condition based on a channel condition for each of a plurality of antennas of the transmission device. To determine parameters to allocate more power.
  • the present invention provides, as a sixth aspect, the wireless communication apparatus described above, wherein the parameter determination unit needs to retransmit based on the decoding result and the number of retransmissions of each codeword, with no decoding result This includes determining a parameter for assigning more power to a large codeword as the number of retransmissions increases.
  • the present invention provides, as a seventh aspect, the above wireless communication apparatus, wherein the parameter determination unit calculates a decoding quality of each codeword, and a codeword that needs to be retransmitted because the decoding result is negative
  • the parameter determination unit calculates a decoding quality of each codeword, and a codeword that needs to be retransmitted because the decoding result is negative
  • a parameter for adaptively allocating power so as to obtain the best decoding quality is included.
  • the present invention provides, as an eighth aspect, a wireless communication apparatus that performs communication using a plurality of codewords using a plurality of antennas, and an encoding unit that encodes a plurality of codewords to be transmitted to a receiving apparatus;
  • a precoding processing unit that performs precoding to form a predetermined beam by weighting signals output to a plurality of antennas for a plurality of encoded codewords, and a signal after the precoding processing via a plurality of antennas
  • a transmitter for transmitting to the receiver, and the precoding processor includes a precoding matrix for the precoding included in feedback information from the receiver and each codeword in the precoding matrix. Based on the information that specifies the parameters for adjusting the power, To provide a radio communication apparatus for performing the loading.
  • the present invention provides, as a ninth aspect, the above wireless communication apparatus, wherein the precoding processing unit uses each codeword as a parameter in the precoding matrix while maintaining the power of all codewords constant. Including pre-coding using an offset value for adjusting the power of.
  • the present invention provides, as a tenth aspect, the wireless communication apparatus described above, wherein the precoding processing unit needs to retransmit based on a decoding result of each of the plurality of codewords with no decoding result. This includes precoding that allocates more power to codewords.
  • the present invention provides, as an eleventh aspect, the wireless communication apparatus described above, wherein the precoding processing unit needs to retransmit based on a decoding result of each of the plurality of codewords with no decoding result.
  • precoding in which more power is allocated to codewords having poor decoding reliability in these codewords is included.
  • the present invention provides, as a twelfth aspect, the wireless communication apparatus described above, wherein the precoding processing unit is based on a channel condition for each of the plurality of antennas and has an excellent channel condition. This includes precoding that allocates a lot of power.
  • the precoding processing unit re-determines whether the decoding result is negative based on each decoding result and the number of retransmissions of the plurality of codewords. This includes codewords that need to be transmitted and that perform precoding with more power allocated as the number of retransmissions increases.
  • the present invention provides, as a fourteenth aspect, the wireless communication apparatus described above, wherein the precoding processing unit needs to retransmit based on the decoding quality of each of the plurality of codewords with no decoding result.
  • This includes codewords that are precoded with adaptively assigned power so that the decoding quality is best.
  • this invention provides a radio
  • a wireless communication system that performs communication using a plurality of codewords using a plurality of antennas, and receives a plurality of codeword signals transmitted from a plurality of antennas of a transmission apparatus.
  • a receiving unit a decoding unit that decodes each of the received multiple codewords, a channel estimation unit that estimates the propagation status of each of the received multiple codewords, and a future based on the propagation status of each codeword
  • a precoding matrix selection unit for selecting a precoding matrix for beam forming by precoding in transmission, and adjusting the power of each codeword in the precoding matrix based on the decoding result of each of the decoded codewords
  • a parameter determining unit for determining a parameter for performing the reception
  • An encoding unit for encoding a plurality of codewords to be transmitted to a device, and forming a predetermined beam by weighting signals output to a plurality of antennas based on the precoding matrix and the parameters for the encoded plurality of codewords
  • a wireless communication system comprising: a precoding processing unit that performs precoding to transmit; and a transmission unit that transmits a signal after the precoding processing to the reception device via a plurality of antennas.
  • a wireless communication method in a wireless communication system that performs communication using a plurality of codewords using a plurality of antennas, wherein a plurality of codewords transmitted from a plurality of antennas of a transmission apparatus are transmitted.
  • a wireless communication method is provided.
  • the power of the precoding matrix is adjusted so that more power is allocated to the retransmission codeword when retransmission occurs based on the decoding result of each of the multiple codewords. It becomes possible to do. Thereby, it is possible to improve the transmission quality of each codeword at the time of retransmission.
  • the present invention it is possible to provide a radio communication apparatus, a radio communication system, and a radio communication method that can improve the transmission quality of each codeword at the time of retransmission when precoding is employed in MIMO.
  • Block diagram illustrating a configuration of a transmitter for MCW MIMO precoding system Block diagram illustrating the configuration of a receiver for MCW MIMO precoding system
  • a diagram illustrating a more efficient way to achieve precoding in a MIMO system under limited feedback The figure which shows the relationship of parameter (DELTA) i and (delta) i determined based on the signaling condition of ACK / NACK, the channel conditions of a transmission antenna, and decoding reliability
  • DELTA parameter
  • delta delta
  • a block diagram showing a configuration of a receiver for an MCW MIMO precoding system according to the present embodiment Block diagram showing the configuration of a transmitter for the MCW MIMO precoding system according to the present embodiment
  • Precoding processing unit 122, 124 Transmitting antenna 202, 204 Receiving antenna 214, 216 Demapping and decoding unit 218, 220 CRC checking unit 602 Channel estimation unit 604 Parameter selection unit 606 Precoding matrix selection unit
  • the wireless communication system in a wireless communication system employing MIMO, precoding is performed by weighting a plurality of antennas to form a beam.
  • a configuration example in the case of performing is shown.
  • the transmission device and the reception device perform signal transmission using a plurality of CWs using a plurality of antennas, and perform retransmission control (adaptive retransmission control) using HARQ in MCW.
  • a signal is transmitted from a base station to a user terminal, and ACK / NACK indicating whether reception is possible is fed back from the user terminal to the base station.
  • the base station (wireless communication base station device) becomes a transmitting device (wireless communication device having a transmitter function), and the user terminal (wireless communication mobile station device) is a receiving device (wireless communication device having a receiver function).
  • the following embodiment is an example for description, and the present invention is not limited to this.
  • a precoding method capable of improving the transmission quality of a spatial stream at the time of retransmission when MCW is simultaneously transmitted in a MIMO system and retransmission control by HARQ is performed is presented.
  • the transmission quality of the retransmission data stream can be improved.
  • the input power of the precoding matrix is adjusted while keeping the transmission power of all the codewords and the physical antenna constant.
  • the receiver first decodes the initial transmission codeword. If there is a codeword that fails the CRC check and needs to be retransmitted, the receiver will, for each input of the precoding matrix included in the codeword for initial transmission, based on the ACK / NACK signal and / or the decoding quality We will add an offset value. This offset value will be used to allocate more power retransmission codewords for antennas with good channel conditions and less power for antennas with poor channel conditions.
  • the transmission quality of the retransmission codeword is improved as compared with the precoding method that does not use input adjustment of the precoding matrix while keeping the transmission power of the codeword and the physical antenna constant. Then, the receiver feeds back the offset value together with the precoding matrix to the transmitter.
  • This offset value can be either predetermined based on channel statistics or adaptively determined based on instantaneous channel conditions.
  • a set of offset values with respect to a precoding matrix input for retransmission is expressed as ACK / NACK.
  • the signal is determined in advance according to the case, and the index of the offset value set to be used next time is fed back to the transmitter for notification from the receiver according to the ACK / NACK signal.
  • the offset value determination method in the dynamic adjustment method adaptively determined based on the instantaneous channel condition, the offset value for the input of the precoding matrix is adapted based on the decoding quality at the receiver. To be determined and fed back to the transmitter for notification.
  • a new codeword refers to a codeword that has not been transmitted before
  • a retransmission codeword refers to a codeword that is retransmitted based on the previous transmission codeword.
  • FIG. 1 is a block diagram illustrating the configuration of a transmitter for an MCW MIMO precoding system having two transmission antennas and two reception antennas.
  • a precoding matrix is applied at the transmitter, and a beam of a data sequence corresponding to each codeword is formed by precoding.
  • Each block shown in the following drawings has a function realized by a hardware circuit in the wireless communication apparatus or a software program operating on the processor.
  • the CRC encoding units 106 and 108 perform CRC encoding on the input bit sequences CW1 (102) and CW2 (104), respectively.
  • Channel coding and symbol mapping sections 110 and 112 perform channel coding and symbol mapping for the respective input bit sequences CW1 and CW2, and generate two codewords s 1 (114) and s 2 (116).
  • the precoding processing unit 130 receives data symbols from two code words, multiplies the weights specified by the precoding matrix, and outputs an output signal x 1 (118) which is a weighted sum of the code words s 1 and s 2. ) And x 2 (120). These output signals x 1 and x 2 are transmitted via physical transmission antennas Tx1 (122) and Tx2 (124). At this time, the transmitter performs retransmission control by HARQ based on the ACK / NACK signal fed back from the receiver, and retransmits the codeword notified of NACK.
  • the output signals x 1 and x 2 are mathematically expressed by the following formula (1).
  • the signal transmitted via the antenna Tx1 and the antenna Tx2 is given by the following formula (2).
  • N S and N T are the number of codewords and the number of transmission antennas, respectively, N S ⁇ min (N T , N R ), and N R is the number of reception antennas.
  • the transmission power of the data symbol s j distributed to the antenna Txi is expressed by the following mathematical formula (3).
  • the contribution of the code word s j to the signal transmitted via the i-th antenna Txi is defined by the weight value
  • transmitter output signals x 1 and x 2 propagate through a MIMO channel given by a matrix of N R rows and N T columns to reach the receiver.
  • the input / output relationship of the precoding MIMO channel is given by the following equation (5).
  • r, H, and n represent a received signal vector, a channel matrix, and an additive white Gaussian noise (AWGN) vector, respectively.
  • AWGN additive white Gaussian noise
  • FIG. 2 is a block diagram illustrating a configuration of a receiver for an MCW MIMO precoding system having two transmission antennas and two reception antennas.
  • Reception signals r 1 (206) and r 2 (208) received by reception antennas Rx1 (202) and Rx2 (204) are input to MIMO detection section 208, respectively.
  • the MIMO detection unit 208 separates the independent data symbols and generates codewords s 1 (210) and s 2 (212).
  • the MIMO detection unit 208 uses a known detection system, such as a linear least mean square error (LMMSE) decoder (not shown), and the precoding matrix C is known at the receiver through signaling transmission (not shown).
  • LMMSE linear least mean square error
  • Demapping and decoding sections 214 and 216 receive detected codewords s 1 and s 2 and perform symbol demapping and channel decoding, respectively.
  • the CRC checkers 218 and 220 perform CRC check on the decoded codewords.
  • two output bit sequences CW1 (222) and CW2 (224) are output.
  • the matrix C is first quantized and then immediately fed back to the transmitter via the uplink. Because of the irregular characteristics of the MIMO channel, the right singular matrix changes every moment. In this case, since a huge signaling overhead is caused, it is not practical to feed back a strict right singular matrix.
  • FIG. 3 is a diagram illustrating a more efficient method of implementing precoding in a MIMO system under limited feedback.
  • FIG. 3 shows a precoding matrix output procedure.
  • the codebook 304 consisting of a finite set of precoding matrices is predetermined based on MIMO channel characteristics using some known techniques (for example, linear interpolation not shown).
  • the size of the codebook ⁇ is defined by N c (number of codes or number of antennas). The number of binary bits of log 2 N c characterizes the codebook ⁇ (i) as a whole.
  • one precoding matrix C is selected from the codebook for each transmission, and a metric (for example, capacity or SNR (Signal to Noise ratio, Signal-to-noise ratio)) is maximized (306). Then, as an example of information specifying the selected precoding matrix C, an index of the precoding matrix C is fed back to the transmitter 310 via the uplink of the wireless communication system (308).
  • a metric for example, capacity or SNR (Signal to Noise ratio, Signal-to-noise ratio)
  • the precoding matrix is represented by, for example, the unitary shown in Equation (7) below. Must be a matrix.
  • the above precoding design is mainly for initial transmission where two transmission codewords become new codewords.
  • the codeword whose decoding result is NACK is retransmitted according to a specific HARQ scheme (Chase scheme or IR (incremental redundancy) scheme, not shown).
  • the retransmitted codeword is combined with the initial transmission codeword to obtain retransmission composite gain and improve decoding performance.
  • the retransmission codeword requires higher transmission quality than the new codeword in order to improve the decoding performance after retransmission synthesis.
  • the precoding scheme for retransmission needs to be designed to meet this requirement.
  • the present embodiment proposes a precoding design method by adjusting the input power of the precoding matrix in the codebook based on the ACK / NACK signal or the decoding quality that achieves this goal.
  • the codeword s 2 Since a signal obtained by combining the above signals is observed at the receiver, the codeword s 2 actually interferes with the retransmission codeword s 1 .
  • the received signal power from the transmission antenna Tx2 of the retransmission codeword s 1 is given by the following formula (11).
  • Interference power from new codeword s 2 transmitted via the transmission antennas Tx1 to retransmission codeword s 1, that is, the reception signal power from the transmission antenna Tx1 new codeword s 2 is given by the following equation (12) It is done.
  • the interference power from the new codeword s 2 transmitted to the retransmission codeword s 1 via the transmission antenna Tx 2 that is, the received signal power from the transmission antenna Tx 2 of the new codeword s 2 is expressed by the following equation (13). Given in.
  • the fading gain of a given MIMO channel for example, i ⁇ ⁇ 1, ⁇ , N R ⁇ i ⁇ in ⁇ 1, ⁇ , N T ⁇ to h ij of
  • the precoding matrix c pq of q ⁇ ⁇ 1,..., N S ⁇ with p ⁇ ⁇ 1,..., N T ⁇ determines the power of the codeword transmitted through the transmitting antenna.
  • the channel conditions of the transmission antenna Tx1 and the transmission antenna Tx2 are given by the following equations (14) and (15), respectively.
  • A can be a real value or an imaginary value.
  • the first column of the precoding matrix is the weight coefficient of the code word s 1 through the transmission antenna, and the second column of the precoding matrix is the weight coefficient of the code word s 2 through the transmission antenna.
  • the structure of the precoding matrix in the codebook ensures unitarity of the precoding matrix.
  • the decoding quality varies with the codeword. For 2 rows by 2 columns (2 ⁇ 2) MIMO using two codewords, the following four cases occur. (1) When both transmission antennas Tx1 and Tx2 have good channel conditions sufficient for correct decoding and both codewords s 1 and s 2 are ACK (2) Both transmission antennas Tx1 and Tx2 are correct decoding the has a poor channel condition can not be performed, the code word s 1, s 2 if both the NACK (3) transmit antennas Tx1, codewords s 1 of the signal power from Tx2 codeword s 2 and additive white When the code word s 1 becomes NACK and the code word s 2 becomes ACK when the interference power from the Gaussian noise AWGN is not sufficient, (4) The signal power of the code word s 2 from the transmission antennas Tx1 and Tx2 is codewords s 1 and additive not sufficient to counteract the interference power from white Gaussian noise AWGN, codeword s 1 is ACK next code If the word s 1,
  • codebook ⁇ (i) is designed as equation (17) below.
  • ⁇ i and ⁇ i are real numbers and satisfy 0 ⁇ ⁇ i , ⁇ i ⁇
  • Equation (17) The structure of the precoding matrix in Equation (17) continues to have unitary nature of the precoding matrix given by Equation (16).
  • the purpose of introducing the parameters ⁇ i and ⁇ i is to adjust the power of each input of the precoding matrix in retransmission.
  • ⁇ i > ⁇ i means that more power of the codeword s 1 is assigned to the transmission antenna Tx1, and less power is assigned to the transmission antenna Tx2.
  • ⁇ i ⁇ i means that more power of the codeword s 2 is assigned to the transmission antenna Tx1, and less power is assigned to the transmission antenna Tx2.
  • ⁇ i ⁇ i indicates that the equal power of both codewords s 1 and s 2 is assigned to the transmitting antenna, where ⁇ i and ⁇ i provide the difference between the initial transmission and the retransmission. It is only used for.
  • the first column A + ⁇ i , A + ⁇ i of the matrix is related to the weight of the code word s 1
  • the second column A + ⁇ i , ⁇ (A + ⁇ i ) of the matrix is related to the weight of the code word s 2.
  • the first row of the matrix is related to the weight of the transmission antenna Tx1
  • the second row is related to the weight of the transmission antenna Tx2.
  • the magnitude relationship between the parameters ⁇ i and ⁇ i is determined according to the condition of the ACK / NACK signal and the channel condition of the transmitting antenna.
  • the parameters ⁇ i and ⁇ i are adjusted according to the decoding reliability, which is one of decoding quality.
  • FIG. 4 is a diagram showing the relationship between the ACK / NACK signaling of the decoding result of each codeword, the channel condition of the transmitting antenna, and the parameters ⁇ i and ⁇ i determined based on the decoding reliability.
  • the parameter is set to ⁇ i > ⁇ i ⁇ 0 when the transmission antenna Tx1 has better channel conditions than the transmission antenna Tx2. Also, when the channel condition of the transmission antenna Tx2 is better than that of the transmission antenna Tx1, ⁇ i > ⁇ i ⁇ 0 is set.
  • the parameter is set to ⁇ i > ⁇ i ⁇ 0 when the transmission antenna Tx1 has better channel conditions than the transmission antenna Tx2. Further, when the channel condition of the transmission antenna Tx2 is better than that of the transmission antenna Tx1, ⁇ i > ⁇ i ⁇ 0 is set. That is, the power distribution is adjusted so that more power is allocated to the code word that needs to be retransmitted because the decoding result is NACK. At this time, a lot of power is allocated to the antenna having a good channel condition.
  • Decoding reliability is one metric that indicates decoding quality, and each codeword is measured by comparing the average LLR (Log Likelihood Ratio) or SNR of decoded bits with each other for comparison.
  • LLR Log Likelihood Ratio
  • the parameter is set to ⁇ i > ⁇ i ⁇ 0.
  • ⁇ i > ⁇ i ⁇ 0 is set.
  • the parameter is set to ⁇ i > ⁇ i ⁇ 0 when the transmission antenna Tx1 has better channel conditions than the transmission antenna Tx2. Further, when the channel condition of the transmission antenna Tx2 is better than that of the transmission antenna Tx1, ⁇ i > ⁇ i ⁇ 0 is set. That is, the power distribution is adjusted so that more power is allocated to the codeword having the lower decoding reliability.
  • FIG. 5 is a flowchart showing a procedure for determining the parameters ⁇ i and ⁇ i shown in FIG.
  • the receiver determines whether codeword s 1 has a NACK signal (506). If the code word s 1 is NACK, it is determined whether the code word s 2 has a NACK signal (514). If the code word s 1 is ACK, that is, the code word s 1 is ACK and the code word s 2 is NACK. In this case, the channel conditions of the two transmission antennas Tx1 and Tx2 are determined (508).
  • step 508 if the transmission antenna Tx1 has better channel conditions than the transmission antenna Tx2, the parameter is set to ⁇ i > ⁇ i ⁇ 0 and more of the power of the codeword s 2 is assigned to the antenna Tx1 (510). If the channel condition of the transmission antenna Tx2 is better than that of the transmission antenna Tx1, the parameter is set to ⁇ i > ⁇ i ⁇ 0, and more power of the codeword s 2 is assigned to the antenna Tx2 (512).
  • the decoding reliability determined by the average LLR or SNR of the decoded bits is determined.
  • the processing of steps 508, 510, and 512 is performed, and the transmission antenna Tx 1 has better channel conditions than the transmission antenna Tx 2.
  • the parameter is set to ⁇ i > ⁇ i ⁇ 0, and the parameter is set to ⁇ i > ⁇ i ⁇ 0 when the transmission antenna Tx2 has better channel conditions than the transmission antenna Tx1.
  • the process proceeds to step 516.
  • the code word s 2 is not NACK in step 514, that is, if the code word s 1 is NACK and the code word s 2 is ACK, channel conditions of the two transmission antennas Tx1 and Tx2 are determined (516). If the transmit antenna Tx1 has better channel conditions than the transmit antenna Tx2 at step 516, the parameter is set to ⁇ i > ⁇ i ⁇ 0 and more of the power of the codeword s 1 is assigned to the antenna Tx1 (518). If the channel condition of the transmission antenna Tx2 is better than that of the transmission antenna Tx1, the parameter is set to ⁇ i > ⁇ i ⁇ 0, and more power of the codeword s 1 is allocated to the antenna Tx2 (520).
  • ⁇ i and ⁇ i are based on ACK / NACK signaling, decoding reliability information (average LLR and SNR of decoded bits), and channel conditions of the transmitting antenna given by equations (14) and (15). Based on this, it is determined by either a static adjustment method or a dynamic adjustment method described later.
  • FIG. 6 is a block diagram showing a configuration of a receiver for the MCW type MIMO precoding system according to the present embodiment.
  • FIG. 6 is an example in which constituent elements characteristic to the present embodiment are added to the configuration of FIG.
  • the receiver includes a channel estimation unit 602, a parameter selection unit 604, and a precoding matrix selection unit 606.
  • a transmission unit 608 including a transmission signal processing unit for transmitting feedback information, a transmission RF unit, and the like is provided. Others are the same as FIG.
  • the channel estimation unit 602 performs channel estimation based on the received signals r 1 (206) and r 2 (208) received by the receiving antennas Rx1 (202) and Rx2 (204), and a channel matrix H corresponding to the channel estimation result Is output.
  • the parameter selection unit 604 receives the channel matrix H and the ACK / NACK signal output according to the CRC check result of each codeword decoded in the CRC check units 218 and 220.
  • the parameter selection unit 604 selects and determines the parameters ⁇ i and ⁇ i as described above based on the channel matrix H and the ACK / NACK signal.
  • the precoding matrix selection unit 606 selects and determines the precoding matrix C based on the channel matrix H and the parameters ⁇ i and ⁇ i .
  • the receiver feeds back the index information specifying the determined parameters ⁇ i and ⁇ i and the precoding matrix C to the transmitter via the transmitter 608 together with the ACK / NACK signal of each codeword.
  • the receiving antennas 202 and 204 and a receiving RF unit (not shown) realize the function of the receiving unit.
  • the MIMO detection unit 208 and the demapping and decoding units 214 and 216 realize the function of the decoding unit.
  • the parameter selection unit 604 implements the function of the parameter determination unit.
  • the transmission unit 608 and the transmission antenna (usually also serving as a reception antenna) implement the function of the feedback information output unit.
  • FIG. 7 is a block diagram illustrating a configuration of a transmitter for the MCW MIMO precoding system according to the present embodiment.
  • FIG. 7 is an example in which components characteristic to the present embodiment are added to the configuration of FIG.
  • the transmitter has a characteristic function in the precoding processing unit 730.
  • a reception unit 710 including a reception RF unit for receiving feedback information, a reception signal processing unit, and the like is provided.
  • the transmitter acquires the precoding matrix C fed back from the receiver and the index information of the parameters ⁇ i and ⁇ i via the receiving unit 710.
  • Pre-encoding processor 730 uses the precoding matrix C and the parameter delta i, the index information of [delta] i, determining the precoding matrix C after power adjustment, pre for the two codewords s 1, s 2 Perform the coding process.
  • the code words s 1 and s 2 are respectively multiplied by the weights specified by the precoding matrix C and the parameters ⁇ i and ⁇ i to generate output signals x 1 and x 2 .
  • the CRC encoding units 106 and 108 and the channel encoding and symbol mapping units 110 and 112 realize the function of the encoding unit.
  • the transmission antennas 122 and 124 and a transmission RF unit (not shown) realize the function of the transmission unit.
  • the reception unit 710 and the reception antenna (usually also serving as the transmission antenna) realize the function of the feedback information reception unit.
  • a parameter set ⁇ i , ⁇ i ⁇ is defined based on the number of retransmissions of two codewords and ACK / NACK signaling.
  • the coefficient b is a positive value parameter and can be determined in advance from a simulation based on the channel statistics and the quality of service (QOS) of the data packet.
  • the parameter set ⁇ i , ⁇ i ⁇ is one of the sets given on the right side of Equation (18) based on the number of retransmissions of two codewords and ACK / NACK signaling. I will take.
  • the first parameter set given on the right side of Equation (18) indicates that more power of codeword s 1 will be allocated to transmit antenna Tx1.
  • the second parameter set also indicates that more power of codeword s 2 will be allocated to transmit antenna Tx1.
  • a codeword having a larger number of retransmissions must have higher requirements regarding transmission quality. For this reason, in the code word having the larger number of retransmissions, more power of the code word is allocated to the transmission antenna having better channel conditions. As w increases or as the difference in the number of retransmissions of two codewords increases, codewords having a larger number of retransmissions have even higher retransmission quality requirements. For this reason, in the codeword to be retransmitted, it is necessary to allocate much greater power of the codeword to the transmit antenna with better channel conditions. Accordingly, as the number of retransmissions increases, the power distribution is made to differ between codewords.
  • FIG. 8 is a diagram illustrating a method for obtaining the coefficient b in the equation (18) by simulation.
  • the coefficient b is determined based on a given MIMO channel statistic and packet error rate (PER: PacketPackError Rate) performance.
  • PER PacketPackError Rate
  • random coefficients b are generated irregularly according to a uniform distribution in the range of b ⁇
  • the decoding bits of the codeword that has passed the CRC check (becomes ACK) at the receiver are collected (814). Thereafter, the procedure between steps 804 to 814 is repeated until the MIMO channel is sufficiently simulated in this simulation. Next, the average throughput for a given coefficient b is calculated using the decoded information pits collected in step 814 (816). Thereafter, the procedure between steps 802 to 816 is repeated in this simulation to obtain an average throughput for different coefficients b. The coefficient b that provides the best average throughput is the final selection result.
  • FIG. 9 is a diagram showing a processing procedure for static parameter adjustment.
  • the receiver first detects and decodes the received signal (902). Then, based on the given MIMO channel estimation result, the channel conditions of the transmission antennas Tx1 and Tx2 are calculated from the equations (14) and (15) (904). Next, w is acquired based on the CRC check result of the current transmission and the number of retransmissions of all codewords (906). Then, a parameter set ⁇ i , ⁇ i ⁇ given by Equation (18) is selected as power adjustment parameters ⁇ i , ⁇ i to be used for the next transmission based on ACK / NACK signaling of two code words. (908). The index of the selected parameter set ⁇ i , ⁇ i ⁇ is fed back to the transmitter via the uplink.
  • FIG. 10 is a diagram illustrating a processing procedure for dynamic parameter adjustment.
  • the receiver first detects and decodes the received signal (1002).
  • the decoding failure to a mean LLR of decoded bits of the code word becomes NACK, is calculated by D r (1004).
  • Dr is obtained by the following equation (19).
  • 0) represent information probabilities to be decoded as 1 and 0, respectively.
  • the required average LLR corresponding to the required PER is calculated based on the relationship between the average LLR and PER defined in advance (1006). Based on the relationship between the SNR and the average LLR, the required SNR for the next retransmission credit is extracted (1008). Subsequently, a parameter set ⁇ i , ⁇ i ⁇ is determined by solving the following mathematical formulas (20), (21), and (22) based on the required SNR (1010). The index of the selected parameter set ⁇ i , ⁇ i ⁇ is fed back to the transmitter via the uplink.
  • a combination of parameters ⁇ i , ⁇ i (for example, four ways) is temporarily set. Then, the precoding matrix C based on the temporarily set parameters ⁇ i and ⁇ i is substituted into the equations (20), (21), and (22), and the SNR for each parameter ⁇ i and ⁇ i is calculated. Thereafter, the parameter delta i, the parameter set of the largest SNR from the combinations of ⁇ i ⁇ i, ⁇ i ⁇ selects.
  • the SNR calculated here can be used as the decoding reliability at the time of parameter determination in FIGS. 4 and 5 described above.
  • retransmission of a plurality of codewords is required according to ACK / NACK of each codeword.
  • a precoding matrix is determined so that more power is allocated to a simple codeword and more power is allocated to a high quality antenna among a plurality of antennas.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention has an effect of improving the transmission quality of each codeword at the time of retransmission when precoding is employed in MIMO, and is applied to a MIMO system that performs communication using a plurality of antennas. It is useful as an applicable wireless communication device, wireless communication system, wireless communication method, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 MIMOにおいてプリコーディングを採用する場合に、再送時の各コードワードの送信品質を改善する。  MCW型MIMOプリコーディングシステム用の受信機において、パラメータ選択部604は、チャネル推定結果によるチャネル行列Hと、各コードワードのACK/NACK信号とに基づき、各コードワードのパワー調整用のオフセット値を設定するパラメータΔi,δiを選択し、プリコーディング行列選択部606は、チャネル行列HとパラメータΔi,δiとに基づき、プリコーディングのビーム形成のためのプリコーディング行列Cを選択して決定する。受信機は、これらのパラメータΔi,δiとプリコーディング行列Cを指定するインデックス情報を、各コードワードのACK/NACK信号と併せて、送信機にフィードバックして通知する。

Description

無線通信装置、無線通信システム及び無線通信方法
 本発明は、複数のアンテナを使用して通信を行うMIMO(Multiple Input Multiple Output)システム等に適用可能な無線通信装置、無線通信システム及び無線通信方法に関する。
 通信システムでは、伝送信頼度を改善すべく再送制御方式としてハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)技術が幅広く採用されている。HARQ技術を採用する典型的な実装では、無線通信装置において、送信機が誤り検出用の巡回冗長検査(CRC:Cyclic Redundancy Check)ビットと共に、各データパケットを送信する。受信機では、送信機から送信された各データパケットを受信し、これらのデータパケットの内容をCRCを通じて検査する。受信データパケットがCRC検査に不合格であった場合、受信機は送信機へNACK(Negative Acknowledgement)信号を返信し、再送信を要求する。送信機は、再送要求を受信すると、受信機において受信と復号に失敗した先のデータパケットを再送信する。続いて、受信機は再送されたデータパケットを先の受信失敗データパケットと併せて復号して復号性能を改善する。他方で、受信データパケットがCRC検査に合格した場合、受信機はACK(Acknowledgement)信号を送信機へ返信し、データパケットの受信と復号の成功を確認応答する。
 また、近年、無線通信技術において高速大容量通信を実現する技術としてMIMO(Multiple Input Multiple Output)が注目されている。MIMO技術は、送受信双方において複数のアンテナを使用し、複数アンテナを介して個別データストリームを同時送信(空間多重送信)することで、帯域と電力の追加的な消費を伴うことなく周波数利用効率を改善する点で有望である。すなわち、MIMOを適用することによって、時間・周波数リソースを拡大することなく伝送容量を向上させることができる。送信機と受信機の双方においてチャネル情報が既知であれば、MIMOシステムの容量は送信機と受信機に実装される最小限のアンテナ数と共に線形増加する。
 空間多重を実施する際に、先行技術では、単一コードワード(single codeword、以下「SCW」と記載する)送信と、複数コードワード(multiple codeword、以下「MCW」と記載する)送信との両方が検討されていた。HARQなどの制御単位であるデータ系列はコードワード(CW:codeword)と呼ばれ、空間多重されるストリーム毎にコードワードを制御する複数コードワードを用いる送信方法はMCWと呼ばれている。
 SCW型MIMOシステムでは、送信機において、入力情報ビット系列をCRC符号化し、チャネル符号化し、データシンボルへマッピングしてデータパケットを形成する。そして、データパケットを複数(空間的)データストリームへセグメント化し、複数の送信アンテナを介して並列送信する。受信機では、全ての検出したデータ空間ストリームを単一のデータパケットに多重化し、それぞれチャネル復号器及びCRC検査モジュールを通してチャネル復号とCRCを検査を行う。続いて、CRC検査結果に応じてACK/NACK信号を送信機へ送信し、送信データパケットの受信品質を確認応答する。
 一方、MCW型MIMOシステムでは、送信機において、入力情報ビット系列をCRC符号化し、チャネル符号化し、データシンボルへ個別にマッピングして複数データパケットを形成する。そして、複数データパケットによる多入力情報ビット系列を、複数アンテナを介して並列送信する。受信機では、まず検出したデータ空間ストリームを用いて複数データパケットを再構成し、各データパケットについて独立にチャネル復号とCRC検査を施す。続いて、データパケット毎のCRC検査結果に応じて複数のACK/NACK信号を送信機へフィードバックし、複数のデータパケットの受信品質を確認応答する。
 MIMOにおいて、複数のアンテナから送信する際に、各アンテナから重み付けしたデータを送信することによりビームを形成するビーム送信方法がある。ビーム送信では、ビーム利得により端末における受信電力を増大させる効果がある。また、複数のビームを使った空間多重も可能であり、伝搬路の状況に適したビーム送信を行うことにより、アンテナによる空間多重に対して伝送容量を改善することができる。この場合、受信側の伝搬路状況に適したビームの情報を送信側に通知する必要がある。このような送信ビーム技術は、Precoding(以下「プリコーディング」と記載する)と呼ばれる。プリコーディングでは、受信点での受信信号の観測状況(伝搬路状況)を反映させるため、受信機から送信機へビーム情報を含むフィードバック信号を送信し、送信機においてフィードバック信号を用いてビームを制御する。
 MIMOシステムの伝送容量を獲得する方法として、送信機におけるMIMOチャネルの特異値分解(SVD:Singular Value Decomposition)の右行列、すなわち右特異行列から得られるプリコーディング行列を適用し、その間にSVD後の固有値に基づき各空間ストリームへパワーを割り当てることが公知である。これを実現するには、右特異行列と固有値をまず量子化し、続いて送信機へフィードバックさせる。しかしながら、受信機にとって厳密な右特異行列と固有値とをアップリンクを介して送信機へ送信することは、膨大なシグナリングのオーバーヘッドをもたらすことになるため、実用的ではない。右特異行列と固有値の即時量子化とは対照的に、より効率的な方法は、MIMOフェージングチャネルの統計値を反映するよう最適設計するプリコーディング集合からなるコードブックを予め定めるものである。プリコーディング行列は、チャネル条件と若干の所定規範とに基づきコードブックから選択する。受信機は、選択されたプリコーディング行列に対応するインデックスを送信機へ送信する。これにより、送信機へのプリコーディング行列のインデックスのシグナリングにはごく僅かなビットしか必要なくなる。プリコーディング行列集合(コードブック)が最適設計されている場合、容量損失を受容可能なレベルで実現し得る。
 プリコーディングは、SCW送信とMCW送信の双方に使用し得る。MCW送信では、プリコーディングを送信機にて適用すると、異なるコードワードからのデータパケットが異なる加重値でもって複数のアンテナを介して送信される信号に寄与する。このため、各コードワードは程度の異なるリンク条件を有することになる。その結果、復号品質はコードワードと共に変動する。MCW型MIMOシステムでは、一部のコードワードが正確に復号されてCRC検査に合格するのに対し、それ以外は正確に復号されず、再送信が必要になる可能性が高い。
 現在採用されているプリコーディング設計の大半は初期通信には最適であり、すなわちHARQを検討しないMIMO容量の最大化に集中している。再送信については、コードワードが同一の要件と送信品質を有する初期通信とは対照的に、再送コードワードはより高い送信品質要件を有する。再送信のためのプリコーディング設計は、再送信回数を減らしてシステム容量を改善すべく、より高い送信品質要件の課題に対処しなければならない。
 プリコーディングを再送信に適応させるための先行技術として、非特許文献1に開示されているように、MCWの各コードワードに用いるプリコーディングベクトルを、再送時に入れ替えて用いる方法がある。
3GPP TSG RAN WG1 #49, R1-072384, Nortel, "HARQ performance enhancement", May 7th - 11th, 2007
 上記非特許文献1の先行技術のように、単純に各コードワードに用いるプリコーディングベクトルを再送時に入れ替えるだけでは、再送時において各コードワードで十分な送信品質要件が得られるかどうかを保証できない。特に、伝搬路状況の時間的な変化があまり発生しない場合(時間的チャネル相関が高い場合)は、プリコーディングベクトルを入れ替えても各コードワードにおける受信品質の改善はあまり見込めない。また、伝搬路状況の時間的な変化がなく、一方の伝搬路においてフェージングによる受信電力の大幅な低減が発生している場合は、新規に送信するコードワードの方が復号に失敗する(復号結果の応答がNACKになる)おそれがある。
 本発明は、上記事情に鑑みてなされたもので、MIMOにおいてプリコーディングを採用する場合に、再送時の各コードワードの送信品質を改善することが可能な無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。
 本発明は、第1の態様として、複数のアンテナを用いて複数コードワードによる通信を行う無線通信装置であって、送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信部と、前記受信した複数コードワードをそれぞれ復号する復号部と、前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定部と、前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディングによるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択部と、前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定部と、前記各コードワードの復号結果と、前記プリコーディング行列及び前記パラメータを指定する情報とを含むフィードバック情報を、前記送信装置へ送信するフィードバック情報出力部と、を備える無線通信装置を提供する。
 また、本発明は、第2の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記パラメータとして、全コードワードのパワーを一定に保ったまま各コードワードのパワーを調整するオフセット値を算出するものを含む。
 また、本発明は、第3の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記各コードワードの復号結果に基づき、復号結果が否で再送信が必要なコードワードに対してより多くのパワーを割り当てるパラメータを決定するものを含む。
 また、本発明は、第4の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記各コードワードの復号結果に基づき、復号結果が否で再送信が必要なコードワードが複数ある場合に、これらのコードワードにおいて復号信頼度が劣るコードワードに対してより多くのパワーを割り当てるパラメータを決定するものを含む。
 また、本発明は、第5の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記送信装置の複数のアンテナ毎のチャネル条件に基づき、良好なチャネル条件を有するアンテナに対してより多くのパワーを割り当てるパラメータを決定するものを含む。
 また、本発明は、第6の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記各コードワードの復号結果と再送回数とに基づき、復号結果が否で再送信が必要なコードワードに対して、再送回数が増えるにつれてより多くのパワーを割り当てるパラメータを決定するものを含む。
 また、本発明は、第7の態様として、上記の無線通信装置であって、前記パラメータ決定部は、前記各コードワードの復号品質を算出し、復号結果が否で再送信が必要なコードワードに対して、復号品質が最良となるように適応的にパワーを割り当てるパラメータを決定するものを含む。
 また、本発明は、第8の態様として、複数のアンテナを用いて複数コードワードによる通信を行う無線通信装置であって、受信装置へ送信する複数コードワードを符号化する符号化部と、前記符号化した複数コードワードに関して、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディングを行うプリコーディング処理部と、前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信部とを備え、前記プリコーディング処理部は、前記受信装置からのフィードバック情報に含まれる、前記プリコーディングのためのプリコーディング行列と、このプリコーディング行列における各コードワードのパワーを調整するためのパラメータとを指定する情報に基づき、プリコーディングを実行する無線通信装置を提供する。
 また、本発明は、第9の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記プリコーディング行列におけるパラメータとして、全コードワードのパワーを一定に保ったまま各コードワードのパワーを調整するオフセット値を用いてプリコーディングを行うものを含む。
 また、本発明は、第10の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果に基づき、復号結果が否で再送信が必要なコードワードに対してより多くのパワーを割り当てたプリコーディングを行うものを含む。
 また、本発明は、第11の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果に基づき、復号結果が否で再送信が必要なコードワードが複数ある場合に、これらのコードワードにおいて復号信頼度が劣るコードワードに対してより多くのパワーを割り当てたプリコーディングを行うものを含む。
 また、本発明は、第12の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記複数のアンテナ毎のチャネル条件に基づき、良好なチャネル条件を有するアンテナに対してより多くのパワーを割り当てたプリコーディングを行うものを含む。
 また、本発明は、第13の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果と再送回数とに基づき、復号結果が否で再送信が必要なコードワードに対して、再送回数が増えるにつれてより多くのパワーを割り当てたプリコーディングを行うものを含む。
 また、本発明は、第14の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号品質に基づき、復号結果が否で再送信が必要なコードワードに対して、復号品質が最良となるように適応的にパワーを割り当てたプリコーディングを行うものを含む。
 また、本発明は、第15の態様として、上記いずれかに記載の無線通信装置を備える無線通信基地局装置を提供する。
 また、本発明は、第16の態様として、上記いずれかに記載の無線通信装置を備える無線通信移動局装置を提供する。
 また、本発明は、第17の態様として、複数のアンテナを用いて複数コードワードによる通信を行う無線通信システムであって、送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信部と、前記受信した複数コードワードをそれぞれ復号する復号部と、前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定部と、前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディングによるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択部と、前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定部と、前記受信装置へ送信する複数コードワードを符号化する符号化部と、前記符号化した複数コードワードに関して、前記プリコーディング行列及び前記パラメータに基づき、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディングを行うプリコーディング処理部と、前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信部と、を備える無線通信システムを提供する。
 また、本発明は、第18の態様として、複数のアンテナを用いて複数コードワードによる通信を行う無線通信システムにおける無線通信方法であって、送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信ステップと、前記受信した複数コードワードをそれぞれ復号する復号ステップと、前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定ステップと、前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディングによるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択ステップと、前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定ステップと、前記受信装置へ送信する複数コードワードを符号化する符号化ステップと、前記符号化した複数コードワードに関して、前記プリコーディング行列及び前記パラメータに基づき、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディングを行うプリコーディング処理ステップと、前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信ステップと、を有する無線通信方法を提供する。
 上記構成により、複数コードワードのそれぞれの復号結果に基づき、再送信があった場合に、再送コードワードに対してより多くのパワーを割り当てるようにプリコーディング行列のパワーを調整し、パワー配分を調整することが可能となる。これによって、再送時の各コードワードの送信品質を改善することが可能となる。
 本発明によれば、MIMOにおいてプリコーディングを採用する場合に、再送時の各コードワードの送信品質を改善することが可能な無線通信装置、無線通信システム及び無線通信方法を提供できる。
MCW型MIMOプリコーディングシステム用の送信機の構成を説明するブロック図 MCW型MIMOプリコーディングシステム用の受信機の構成を説明するブロック図 限定されたフィードバックの下でMIMOシステムにおけるプリコーディングを実現するより効率的な方法を示す図 ACK/NACKのシグナリングと送信アンテナのチャネル条件、及び復号信頼度に基づいて決定するパラメータΔi,δiの関係を示す図 図4に示したパラメータΔi,δiの決定手順を示すフローチャート 本実施形態に係るMCW型MIMOプリコーディングシステム用の受信機の構成を示すブロック図 本実施形態に係るMCW型MIMOプリコーディングシステム用の送信機の構成を示すブロック図 シミュレーションにより数式(18)における係数bを取得する方法を示す図 静的パラメータ調整の処理手順を示す図 動的パラメータ調整の処理手順を示す図
符号の説明
 106、108 CRC符号化部
 110、112 チャネル符号化及びシンボルマッピング部
 130、730 プリコーディング処理部
 122、124 送信アンテナ
 202、204 受信アンテナ
 214、216 デマッピング及び復号化部
 218、220 CRC検査部
 602 チャネル推定部
 604 パラメータ選択部
 606 プリコーディング行列選択部
 本実施形態では、本発明に係る無線通信装置、無線通信システム及び無線通信方法の一例として、MIMOを採用した無線通信システムにおいて、複数のアンテナに対して重み付けを行ってビームを形成するプリコーディングを行う場合の構成例を示す。またこのとき、送信装置及び受信装置が複数のアンテナを用いて複数のCWによる信号伝送を行い、MCWにおけるHARQを用いた再送制御(適応再送制御)を行うものとする。本実施形態では、セルラーシステムにおいて、基地局からユーザ端末へ信号を送信し、ユーザ端末から基地局へ受信の可否を示すACK/NACKをフィードバックする場合を想定する。この場合、基地局(無線通信基地局装置)が送信装置(送信機の機能を持つ無線通信装置)となり、ユーザ端末(無線通信移動局装置)が受信装置(受信機の機能を持つ無線通信装置)となる。なお、下記の実施形態は説明のための一例であり、本発明はこれに限定されるものではない。
 本実施形態では、MIMOシステムにおいてMCWを同時送信し、HARQによる再送制御を行う際に、再送時の空間ストリームの送信品質を改善することが可能なプリコーディング方法を提示する。一つのコードワードが受信機におけるCRC検査を通過せずにNACKとなり、再送信が必要とされるときに、プリコーディング行列の入力パワーを複数コードワードのACK/NACK信号に基づき調整することによって、再送信データストリームの送信品質を改善可能とする。
 本実施形態において、複数コードワード間のパワー配分を調整する際には、全コードワードの送信パワーと物理的アンテナを一定に保ったまま、プリコーディング行列の入力パワーを調整する。この際、受信機はまず初期送信コードワードを復号する。CRC検査に不合格で再送信が必要なコードワードが存在する場合、受信機はACK/NACK信号及び/又は復号品質に基づき、初期送信用のコードワードに含まれるプリコーディング行列の各入力に対しオフセット値を加えることにする。このオフセット値は、良好なチャネル条件を有するアンテナにはより多くのパワーの再送コードワードを、また、劣るチャネル条件を有するアンテナにはより少ないパワーを割り当てるのに用いられることになる。再送コードワードの送信品質は、コードワードの送信パワーと物理的アンテナを一定に保ったまま、プリコーディング行列の入力調整を用いないプリコーディング方法に比べて改善される。そして、受信機はプリコーディング行列と併せてオフセット値を送信機にフィードバックする。このオフセット値は、チャネル統計値に基づき予め定めるか、あるいは、瞬時チャネル条件に基づき適応的に定めるかのいずれかとすることができる。
 複数コードワード間のパワー配分を調整する際のオフセット値の決定方法の一例として、チャネル統計値に基づき予め定める静的な調整方法では、再送用のプリコーディング行列入力に対するオフセット値集合をACK/NACK信号の場合分けによって予め定めておき、ACK/NACK信号に応じて受信機から次回使用するオフセット値集合のインデックスを送信機へフィードバックして通知する。また、オフセット値の決定方法の他の例として、瞬時チャネル条件に基づき適応的に定める動的な調整方法では、プリコーディング行列の入力用のオフセット値を、受信機での復号品質に基づいて適応的に決定し、送信機へフィードバックして通知する。
 以下では、MIMOシステムにおけるデータ再送信用のプリコーディング設計のための例示実装をまず説明し、MIMOシステム内の送信機及び受信機の個別の広範な説明を例示実装の詳細な説明に続ける。
 本実施形態では、それぞれが個別に2つの送信アンテナと受信アンテナを備えるものについて送信機と受信機を広範に説明するが、それぞれ3以上の送信アンテナ及び受信アンテナを備える送信機と受信機に例示実装を適用できることは、当業者には理解される筈である。下記の説明では、新規コードワードが先に送信したことのないコードワードを指すのに対し、再送コードワードは先の送信コードワードに基づき再送信するコードワードを指す。
 図1は、2本の送信アンテナと2本の受信アンテナを有するMCW型MIMOプリコーディングシステム用の送信機の構成を説明するブロック図である。ここでは、送信機においてプリコーディング行列を適用し、プリコーディングにより各コードワードに対応するデータ系列のビームを形成する。なお、以下の図面で示す各ブロックは、無線通信装置におけるハードウェア回路、またはプロセッサ上で動作するソフトウェアプログラムによって各機能が実現される。
 CRC符号化部106,108は、入力ビット系列CW1(102)、及びCW2(104)に対してそれぞれCRC符号化を行う。チャネル符号化及びシンボルマッピング部110,112は、それぞれの入力ビット系列CW1,CW2についてチャネル符号化及びシンボルマッピングを行い、二つのコードワードs1 (114)とs2 (116)を生成する。プリコーディング処理部130は、二つのコードワードからのデータシンボルを入力し、プリコーディング行列により特定されるウエイトを乗算し、コードワードs1とs2の被加重和である出力信号x1 (118)とx2 (120)を生成する。これらの出力信号x1,x2は、物理的な送信アンテナTx1(122)とTx2(124)を介して送信される。この際、送信機は、受信機からフィードバックされるACK/NACK信号に基づいてHARQによる再送制御を行い、NACKが通知されたコードワードに関して再送信する。
 出力信号x1 ,x2 は、数学的には下記の数式(1)となる。
Figure JPOXMLDOC01-appb-M000001
 アンテナTx1とアンテナTx2を介して送信される信号は、下記の数式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、NS とNT はそれぞれコードワードの数と送信アンテナの数であり、NS≦min(NT ,NR )であって、NR は受信アンテナの数である。
 アンテナTxiに対して分散させるデータシンボルsj の送信パワーは、下記の数式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 要は、下記の数式(4)と同値のデータシンボルsj のパワーの一部をアンテナTxiへ割り当てる。
Figure JPOXMLDOC01-appb-M000004
 これにより、i番目のアンテナTxiを介して送信される信号に対するコードワードsj の寄与は加重値|cij2 により規定され、大きな|cij2はコードワードsjのパワーの大部分がアンテナTxiへ割り当てられることを示す。
 一般に、送信機の出力信号x1 とx2 はNR 行NT列の行列で与えられるMIMOチャネルを介して伝搬して受信機に達する。プリコーディングMIMOチャネルの入出力関係は、下記の数式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000005
 ここでr,H,nはそれぞれ、受信信号ベクトル、チャネル行列、相加性白色ガウス雑音(AWGN)ベクトルを表す。
 図2は、2本の送信アンテナと2本の受信アンテナを有するMCW型MIMOプリコーディングシステム用の受信機の構成を説明するブロック図である。
 受信アンテナRx1(202)とRx2(204)により受信した受信信号r1 (206)とr2 (208)は、それぞれMIMO検出部208に入力される。MIMO検出部208は、それぞれ独立したデータシンボルを分離し、コードワードs^1(210)とs^2(212)を生成する。ここで、MIMO検出部208は、公知の検出システム、例えば線形最小二乗平均誤差(LMMSE)復号器(図示せず)を用い、シグナリング送信(図示せず)を通じてプリコーディング行列Cが受信機において既知であって、チャネル行列Hもまたチャネル推定(図示せず)を通じて既知であると仮定することで、MIMO検出を実行し得る。デマッピング及び復号化部214,216は、検出されたコードワードs^1とs^2を入力し、それぞれシンボルデマッピングとチャネル復号を行う。そして、CRC検査部218,220は、復号されたコードワードについてそれぞれCRC検査を行う。これにより、2つの出力ビット系列CW1(222)、及びCW2(224)が出力される。また、CRC検査の出力結果に応じて、各コードワードごとに、検出されたコードワードがCRC検査を通過したときに発されるACK信号、あるいは、検出されたコードワードがCRC検査に不合格であるときに発されるNACK信号のいずれかが、無線通信システムのアップリンクを介して送信機へ送信されフィードバックされる。
 理論的には、MIMOチャネル行列Hの特異値分解(SVD)を仮定すると、下記の数式(6)となる。
Figure JPOXMLDOC01-appb-M000006
 MIMOシステムの容量を最大化する最適プリコーディング行列Cは、右特異行列すなわちC=Vとして得られる。最適プリコーディングを実現するには、行列Cをまず量子化し、続いてアップリンクを介して送信機へ即時フィードバックさせる。MIMOチャネルの不規則的特徴が故に、右特異行列は刻々と変化する。この際、膨大なシグナリングのオーバーヘッドをもたらすことになるため、厳密な右特異行列をフィードバックすることは実用的ではない。
 図3は、限定されたフィードバックの下でMIMOシステムにおけるプリコーディングを実現するより効率的な方法を示す図である。図3ではプリコーディング行列の出力手順を示している。プリコーディング行列の有限集合からなるコードブックΞ(304)は、いくつかの公知技術(例えば、図示しない線形補間)を用いMIMOチャネル特性に基づき予め定めてある。コードブックΞの大きさはNc(符号数またはアンテナ数)により規定される。log2cの2値ビット数がコードブックΞ(i)を全体的に特徴付ける。ここで、受信機において、所与のMIMOチャネル行列H(302)について、各送信ごとに一つのプリコーディング行列Cをコードブックから選択し、計量規準(例えば、容量やSNR(Signal to Noise ratio、信号対雑音比))を最大化する(306)。そして、選択されたプリコーディング行列Cを指定する情報の一例として、このプリコーディング行列Cのインデックスを、無線通信システムのアップリンクを介して送信機310へフィードバックする(308)。
 MIMOシステム用のプリコーディング設計においては、各コードワードと各物理的アンテナの送信パワーを一定に維持し、処理の複雑さを低減するため、プリコーディング行列を例えば下記の数式(7)に示すユニタリ行列とする必要がある。
Figure JPOXMLDOC01-appb-M000007
 上記のプリコーディング設計は主に、二つの送信コードワードが新規コードワードとなる初期送信向けのものとなる。
 HARQを用いることで、復号結果がNACKとなったコードワードは特定のHARQ方式(Chase方式やIR(incremental redundancy)方式、図示せず)に応じて再送信されることになる。再送信されたコードワードは初期送信コードワードと組み合わせることで、再送合成利得を得るとともに復号性能を改善する。MCW型MIMOシステム内で再送信を行う場合、再送コードワードは、再送合成後の復号性能を改善すべく、新規コードワードに比べより高い送信品質を必要とする。再送信用のプリコーディング方式は、この要件を満たすよう設計する必要がある。本実施形態は、ACK/NACK信号あるいは本目標を達成する復号品質に基づき、コードブック内のプリコーディング行列の入力パワーを調整することによるプリコーディング設計方式を提案するものである。
 s1 が再送コードワード、s2 がMIMOチャネル上でs1と併せて同時送信しようとする新規コードワードであるとする。受信機で受信される信号は、下記の数式(8)、(9)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 受信機において上記信号を合成した信号が観測されるために、コードワードs2 は現実に再送コードワードs1 に干渉する。
 上記数式(8)、(9)から、再送コードワードs1 の送信アンテナTx1からの受信信号パワーは、下記の数式(10)で与えられる。
Figure JPOXMLDOC01-appb-M000009
 また、再送コードワードs1 の送信アンテナTx2からの受信信号パワーは、下記の数式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000010
 送信アンテナTx1を介して再送コードワードs1 へ送信された新規コードワードs2からの干渉パワー、すなわち新規コードワードs2の送信アンテナTx1からの受信信号パワーは、下記の数式(12)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 また、送信アンテナTx2を介して再送コードワードs1 へ送信された新規コードワードs2 からの干渉パワー、すなわち新規コードワードs2の送信アンテナTx2からの受信信号パワーは、下記の数式(13)で与えられる。
Figure JPOXMLDOC01-appb-M000012
 上記数式(10)~(13)から、所与のMIMOチャネルのフェージング利得、例えばi∈{1,・・・,NR }でi∈{1,・・・,NT }のhijに対し、p∈{1,・・・,NT}でq∈{1,・・・,NS }のプリコーディング行列cpqが送信アンテナを介して送信するコードワードのパワーを決定する。
 送信アンテナTx1と送信アンテナTx2のチャネル条件は、それぞれ下記の数式(14)、(15)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 上記の説明は、再送信データストリームの送信品質を改善する方法を示唆するものである。再送コードワードs1 のより多くのパワーを数式(14)と(15)で与えられるより良好なチャネル条件を有する送信アンテナに割り当て、より少ないパワーの新規コードワードs2を数式(10)と(11)に基づくより良好なチャネル条件を有する送信アンテナへ割り当てることによって、再送コードワードs1の受信SNRは上記パワー調整を用いない場合に比べ改善されることになる。このパワー調整は、伝搬路においてフェージングにより受信電力が大幅に低減している状況や時間的チャネル相関が高い状況に対して、再送コードワードがフェージングにより受信電力の大幅な低減に遭遇して再送合成を行っても復号失敗を招く場合に、特に有用である。
 次に、上記方法を実装する本実施形態のプリコーディング設計を、続く説明において詳細に説明する。
 初期送信用に設計されたユニタリ行列のプリコーディング行列からなるコードブックΞ(0)が、下記の数式(16)で与えられるものと仮定する。
Figure JPOXMLDOC01-appb-M000014
 ここで、Aは実数値あるいは虚数値を取り得る。プリコーディング行列の第1列は送信アンテナを介するコードワードs1 のウエイト係数であり、またプリコーディング行列の第2列は送信アンテナを介するコードワードs2のウエイト係数である。コードブック内のプリコーディング行列の構造は、プリコーディング行列のユニタリ性を保証するものにしてある。
 MCW型MIMOシステムでは、復号品質はコードワードと共に変化する。2個のコードワードを用いる2行2列(2x2)のMIMOについては、下記の4つの場合が生ずる。
(1)両送信アンテナTx1,Tx2が正しい復号を行うのに十分な良好なチャネル条件を有し、コードワードs1 ,s2 共にACKとなる場合
(2)両送信アンテナTx1,Tx2が正しい復号を行えない劣悪なチャネル条件を有し、コードワードs1 ,s2 共にNACKとなる場合
(3)送信アンテナTx1,Tx2からのコードワードs1 の信号パワーがコードワードs2 及び相加性白色ガウス雑音AWGNからの干渉パワーに対抗するのに十分でなく、コードワードs1がNACKとなりコードワードs2がACKとなる場合
(4)送信アンテナTx1,Tx2からのコードワードs2 の信号パワーがコードワードs1 及び相加性白色ガウス雑音AWGNからの干渉パワーに対抗するのに十分でなく、コードワードs1がACKとなりコードワードs2がNACKとなる場合
 上記コードワードs1 とコードワードs2 についての復号品質の異なる組み合わせに基づき、プリコーディング処理部は再送コードワードの品質改善のために異なる設計を持たせる必要がある。
 少なくとも一つのコードワードがNACKとなり、再送信を必要とする場合、特定のコードワードのi番目の送信では、コードブックΞ(i)は下記の数式(17)として設計される。
Figure JPOXMLDOC01-appb-M000015
 ここで、Δとδは実数であり、0≦Δ,δ≦|A|を満たす。
 数式(17)におけるプリコーディング行列の構造は、数式(16)で与えられるプリコーディング行列のユニタリ性を持ち続けている。パラメータΔとδの導入目的は、再送信におけるプリコーディング行列の各入力のパワーを調整することにある。ここで、Δ>δは、コードワードs1のより多くのパワーを送信アンテナTx1に割り当て、より少ないパワーを送信アンテナTx2に割り当てることを意味する。一方で、Δ<δは、コードワードs2のより多くのパワーを送信アンテナTx1に割り当て、より少ないパワーを送信アンテナTx2に割り当てることを意味する。Δ=δは両コードワードs1,s2の等しいパワーを送信アンテナに割り当てることを示すものであり、この場合Δとδは初期送信と再送信の間の相違を提供するのに用いるだけである。
 数式(17)において、行列の第1列A+Δ,A+δはコードワードs1 のウエイトに関係し、行列の第2列A+δ,-(A+Δ)はコードワードs2のウエイトに関係する。また、行列の第1行が送信アンテナTx1のウエイトに、第2行が送信アンテナTx2のウエイトにそれぞれ関係する。ここで、ACK/NACK信号に応じていずれかのコードワードの列に注目し、NACKとなって再送が必要なコードワードの方に多くのウエイトを割り当て、他方のコードワードのウエイトを少なくする。また、送信アンテナのチャネル条件の良否によっていずれかのアンテナの行に注目する。すなわち、ACK/NACK信号の状況と送信アンテナのチャネル条件に応じて、パラメータΔ,δの大小関係を決定する。また、両コードワードs1,s2がNACKの場合は、復号品質の一つである復号信頼度によってパラメータΔ,δを調整する。
 図4は、各コードワードの復号結果のACK/NACKのシグナリングと送信アンテナのチャネル条件、及び復号信頼度に基づいて決定するパラメータΔ,δの関係を示す図である。
 コードワードs1 とコードワードs2 の両方がACKの場合、送信アンテナTx1,Tx2のチャネル条件に関わらず、パラメータΔ,δをΔ=δ=0に設定する。
 コードワードs1 がACKでコードワードs2 がNACKの場合、送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合はパラメータをδ>Δ≧0に設定する。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合はΔ>δ≧0に設定する。
 コードワードs1 がNACKでコードワードs2 がACKの場合、送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合はパラメータをΔ>δ≧0に設定する。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合はδ>Δ≧0に設定する。すなわち、復号結果がNACKとなって再送信が必要なコードワードの方により多くのパワーを割り当てるようにパワー配分を調整する。この際、良好なチャネル条件を有するアンテナに多くのパワーを割り当てる。
 コードワードs1 とコードワードs2 の両方がNACKの場合、両コードワードs1,s2の復号信頼度に応じて調整する。復号信頼度は、復号品質を示す一つの計量基準であり、各コードワードについて復号ビットの平均LLR(Log Likelihood Ratio、対数尤度比)やSNRなどによって測定し、比較判定する。ここで、コードワードs1 の方が信頼度が高い場合、送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合はパラメータをδ>Δ≧0に設定する。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合はΔ>δ≧0に設定する。一方、コードワードs2の方が信頼度が高い場合、送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合はパラメータをΔ>δ≧0に設定する。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合はδ>Δ≧0に設定する。すなわち、復号信頼度が劣る方のコードワードにより多くのパワーを割り当てるようにパワー配分を調整する。
 図5は、図4に示したパラメータΔ,δの決定手順を示すフローチャートである。受信機は、まず、二つのコードワードs1,s2 が共にACK信号を有するかどうか判定する(502)。コードワードs1,s2 が共にACKの場合、パラメータΔ,δをΔ=δ=0に設定する(504)。
 ステップ502でコードワードs1 ,s2 が共にACKでない場合、受信機はコードワードs1がNACK信号を有するかどうか判定する(506)。コードワードs1がNACKの場合、コードワードs2 がNACK信号を有するかどうか判定し(514)、コードワードs1がACKの場合、すなわちコードワードs1がACKでコードワードs2 がNACKの場合は、二つの送信アンテナTx1,Tx2のチャネル条件を判定する(508)。
 ステップ508で送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合、パラメータをδ>Δ≧0に設定し、コードワードs2 のパワーのより多くをアンテナTx1へ割り当てる(510)。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合、パラメータをΔ>δ≧0に設定し、コードワードs2のより多くのパワーをアンテナTx2へ割り当てる(512)。
 ステップ514でコードワードs2 がNACKの場合、すなわちコードワードs1 ,s2が共にNACKの場合は、復号ビットの平均LLRやSNRなどによって求められる復号信頼度を判定する。ここで、コードワードs1の方がコードワードs2よりも高い信頼度を有する場合、ステップ508、510、512の処理を行い、送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合はパラメータをδ>Δ≧0に設定し、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合はパラメータをΔ>δ≧0に設定する。一方、コードワードs1の方がコードワードs2 よりも低い信頼度を有する場合、ステップ516の処理に進む。
 ステップ514でコードワードs2 がNACKでない場合、すなわちコードワードs1 がNACKでコードワードs2がACKの場合は、二つの送信アンテナTx1,Tx2のチャネル条件を判定する(516)。ステップ516で送信アンテナTx1が送信アンテナTx2よりもチャネル条件が良好な場合、パラメータをΔ>δ≧0に設定し、コードワードs1のパワーのより多くをアンテナTx1へ割り当てる(518)。また、送信アンテナTx2が送信アンテナTx1よりもチャネル条件が良好な場合、パラメータをδ>Δ≧0に設定し、コードワードs1のより多くのパワーをアンテナTx2へ割り当てる(520)。
 上記のパラメータΔ,δは、ACK/NACKのシグナリングと、復号信頼度情報(復号ビットの平均LLRやSNR)と、数式(14),(15)によって与えられる送信アンテナのチャネル条件とに基づき、後で説明する静的調整方法あるいは動的調整方法のいずれかにより決定されることになる。
 図6は、本実施形態に係るMCW型MIMOプリコーディングシステム用の受信機の構成を示すブロック図である。この図6は、図2の構成において本実施形態に特徴的な構成要素を追加して示した例である。受信機は、チャネル推定部602、パラメータ選択部604、プリコーディング行列選択部606を有している。また、フィードバック情報を送信するための送信信号処理部、送信RF部等を含む送信部608を有している。その他は図2と同様である。
 チャネル推定部602は、受信アンテナRx1(202)とRx2(204)により受信した受信信号r1 (206)とr2 (208)に基づいてチャネル推定を行い、チャネル推定結果に応じたチャネル行列Hを出力する。パラメータ選択部604には、このチャネル行列Hと、CRC検査部218,220における復号された各コードワードのCRC検査結果に応じて出力されるACK/NACK信号とが入力される。パラメータ選択部604は、チャネル行列HとACK/NACK信号とに基づき、上述したようにパラメータΔ,δを選択して決定する。プリコーディング行列選択部606は、チャネル行列HとパラメータΔ,δとに基づいてプリコーディング行列Cを選択して決定する。受信機は、これら決定したパラメータΔ,δとプリコーディング行列Cを指定するインデックス情報を、各コードワードのACK/NACK信号と併せて、送信部608を介して送信機にフィードバックして通知する。なお、図6の受信機において、受信アンテナ202,204、及び図示しない受信RF部が受信部の機能を実現する。また、MIMO検出部208、デマッピング及び復号化部214,216が復号部の機能を実現する。また、パラメータ選択部604がパラメータ決定部の機能を実現する。また、送信部608及び送信アンテナ(通常は受信アンテナが兼ねる)がフィードバック情報出力部の機能を実現する。
 図7は、本実施形態に係るMCW型MIMOプリコーディングシステム用の送信機の構成を示すブロック図である。この図7は、図1の構成において本実施形態に特徴的な構成要素を追加して示した例である。送信機は、プリコーディング処理部730において特徴的な機能を有している。また、フィードバック情報を受信するための受信RF部、受信信号処理部等を含む受信部710を有している。送信機は、受信機からフィードバックされるプリコーディング行列CとパラメータΔ,δのインデックス情報を受信部710を介して取得する。プリコーディング処理部730は、プリコーディング行列CとパラメータΔ,δのインデックス情報を用いて、パワー調整後のプリコーディング行列Cを決定し、二つのコードワードs1,s2 に対してプリコーディング処理を行う。ここで、プリコーディング行列CとパラメータΔ,δにより特定されるウエイトをコードワードs1,s2にそれぞれ乗算し、出力信号x1 ,x2 を生成する。なお、図7の送信機において、CRC符号化部106,108、チャネル符号化及びシンボルマッピング部110,112が符号化部の機能を実現する。また、送信アンテナ122,124、及び図示しない送信RF部が送信部の機能を実現する。また、受信部710及び受信アンテナ(通常は送信アンテナが兼ねる)がフィードバック情報受信部の機能を実現する。
 次に、上述したプリコーディング行列CにおけるパラメータΔ,δの調整方法の具体例を説明する。ここでは、静的調整方法と動的調整方法を例示する。
(1)静的パラメータ調整
 静的調整では、パラメータ集合{Δ,δ}を二つのコードワードの再送信回数とACK/NACKのシグナリングとに基づき規定することにする。
 i番目の再送信において、一つのコードワードを想定する。パラメータΔとδは、下記の数式(18)によって決定することができる。
Figure JPOXMLDOC01-appb-M000016
 ここで、係数bは正数値のパラメータであり、チャネル統計値とデータパケットのサービス品質(QOS)とに基づくシミュレーションから予め定めることができる。また、w=1,・・・,N-1は正数値をとり、二つのコードワードの再送信回数の差分を表す。例えば、コードワードs1 がi番目の再送信であって、コードワードs2 がp番目の再送信である場合、w=|i-p|となる。なお、Nは初期送信を含む最大送信回数を表す。したがって、係数bの上限はb≦|A|/Nとなる。
 上記数式(18)に基づき、パラメータ集合{Δ,δ}は二つのコードワードの再送信回数とACK/NACKのシグナリングに基づき、数式(18)の右辺に与えられる集合のいずれか一つをとることになる。w>0である場合、数式(18)の右辺に与えられる第1のパラメータ集合はコードワードs1のより多くのパワーが送信アンテナTx1へ割り当てられることになることを示す。また、第2のパラメータ集合はコードワードs2のより多くのパワーが送信アンテナTx1へ割り当てられることになることを示す。
 ここで、数式(18)にて与えられるパラメータ集合の選択の根拠となる理由は、下記の通りである。w=0では、二つのコードワードが共に同じ再送信回数にある。二つの再送コードワードに対する送信品質要件は同じであるため、送信アンテナに対する二つのコードワードのパワーは等パワー配分が適用される。
 w>0では、より多くの再送信回数を有するコードワードにおいて送信品質に関してより高い要件を持たせねばならない。このため、再送信回数が多い方のコードワードにおいて、コードワードのより多くのパワーがより良好なチャネル条件の送信アンテナへ割り当てられる。wの増加とともに、あるいは二つのコードワードの再送信回数の差分の増加とともに、より多数の再送信回数を有するコードワードにさらにもっと高い再送信品質要件を持たせる。このため、再送信するコードワードにおいて、コードワードのよりずっと大きなパワーをより良好なチャネル条件を有する送信アンテナへ割り当てる必要がある。したがって、再送回数が多くなるにつれて、コードワード間でパワー配分に差をつけるようにする。
 図8は、シミュレーションにより数式(18)における係数bを取得する方法を示す図である。ここでは、所与のMIMOチャネル統計値とパケット誤り率(PER:Packet Error Rate)性能に基づき、係数bを決定する。
 まず、ランダムな係数bをb≦|A|/Nの範囲の一様分布に従って不規則に発生させる(802)。そして、各係数bごとに、コードワードs1 ,s2 に関するMCW用の入力情報ビットを発生させ(804)、所与の係数bに基づいて、符号化、変調、プリコーディングのための送信機処理を行う(806)。次いで、所与のチャネル統計値(平均値と偏差値)に基づいてMIMOチャネルをランダムに発生させる(808)。そして、MIMOチャネルを介して送信機から信号を送信し(810)、受信機にて受信機処理してMIMO検出、復調、復号を行う(812)。
 続いて、受信機にてCRC検査を通過した(ACKとなった)コードワードの復号ビットを収集する(814)。その後、このシミュレーションにおいてMIMOチャネルが十分に模擬されるまでステップ804から814間の手順を繰り返す。次に、ステップ814にて収集された復号情報ピットを用いて、所与の係数bについての平均スループットを算出する(816)。その後、このシミュレーションにおいてステップ802から816間の手順を繰り返し、異なる係数bに関する平均スループットを得る。そして、最良の平均スループットをもたらす係数bを最終選択結果とする。
 図9は、静的パラメータ調整の処理手順を示す図である。受信機は、まず受信信号を検出して復号する(902)。そして、所与のMIMOチャネル推定結果に基づき、数式(14)、(15)から送信アンテナTx1とTx2のチャネル条件を算出する(904)。次に、現在の送信のCRC検査結果と全てのコードワードの再送信回数とに基づき、wを取得する(906)。そして、次回送信に使用するパワー調整用パラメータΔ,δとして、数式(18)にて与えられるパラメータ集合{Δ,δ}を二つのコードワードのACK/NACKのシグナリングに基づいて選択する(908)。この選択したパラメータ集合{Δ,δ}のインデックスを、アップリンクを介して送信機へフィードバックする。
(2)動的パラメータ調整
 動的調整では、復号信頼度とビット毎のSNRとの間の関係、すなわち平均LLR及び平均LLRとPERとの関係を表すDを用いたSNR=f(D)を、シミュレーションにより予め定めておく必要がある。
 図10は、動的パラメータ調整の処理手順を示す図である。受信機は、まず受信信号を検出して復号する(1002)。そして、復号失敗してNACKとなったコードワードの復号ビットの平均LLRを、Dによって算出する(1004)。この際、Dは下記の数式(19)によって求められる。
Figure JPOXMLDOC01-appb-M000017
 ここで、p(r|1)とp(r|0)はそれぞれ1と0として復号される情報確率を表す。
 次に、予め規定された平均LLRとPERの関係に基づき、所要PERに対応する所要平均LLRを算出する(1006)。そして、SNRと平均LLRとの関係に基づき、次回再送信用の所要SNRを抽出する(1008)。続いて、所要SNRに基づき、下記の数式(20)、(21)、(22)を解くことによって、パラメータ集合{Δ,δ}を決定する(1010)。この選択したパラメータ集合{Δ,δ}のインデックスを、アップリンクを介して送信機へフィードバックする。
 上記パラメータ集合{Δ,δ}を決定する際に、まず、パラメータΔ,δの組み合わせ(例えば4通り)を仮に設定する。そして、仮設定したパラメータΔ,δによるプリコーディング行列Cを数式(20)、(21)、(22)に代入し、各パラメータΔ,δにおけるSNRを算出する。その後、パラメータΔ,δの組み合わせの中から一番大きいSNRとなるパラメータ集合{Δ,δ}を選択する。ここで算出するSNRは、上述した図4及び図5におけるパラメータ決定時の復号信頼度として用いることができる。
Figure JPOXMLDOC01-appb-M000018
 上述したように、本実施形態では、MCWのMIMOシステムにおいてプリコーディングを適用し、HARQによる再送制御を行う場合に、各コードワードのACK/NACKに応じて、複数コードワードのうちの再送が必要なコードワードに対してより多くのパワーを割り当て、また、複数アンテナのうちの品質の良いアンテナに多くのパワーを割り当てるように、プリコーディング行列を決定する。これにより、高い送信品質が要求される再送コードワードの送信品質を改善でき、受信機における復号品質などの受信品質を向上させることができる。したがって、無線通信システムにおける伝送効率、伝送容量をさらに改善することが可能になる。
 なお、本発明は上記の実施形態において示されたものに限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 上記各実施形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 本出願は、2008年1月29日出願の日本特許出願(特願2008-017524)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、MIMOにおいてプリコーディングを採用する場合に、再送時の各コードワードの送信品質を改善することが可能となる効果を有し、複数のアンテナを使用して通信を行うMIMOシステム等に適用可能な無線通信装置、無線通信システム及び無線通信方法等として有用である。

Claims (18)

  1.  複数のアンテナを用いて複数コードワードによる通信を行う無線通信装置であって、
     送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信部と、
     前記受信した複数コードワードをそれぞれ復号する復号部と、
     前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定部と、
     前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディング(Precoding)によるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択部と、
     前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定部と、
     前記各コードワードの復号結果と、前記プリコーディング行列及び前記パラメータを指定する情報とを含むフィードバック情報を、前記送信装置へ送信するフィードバック情報出力部と、
     を備える無線通信装置。
  2.  請求項1に記載の無線通信装置であって、
     前記パラメータ決定部は、前記パラメータとして、全コードワードのパワーを一定に保ったまま各コードワードのパワーを調整するオフセット値を算出する無線通信装置。
  3.  請求項1に記載の無線通信装置であって、
     前記パラメータ決定部は、前記各コードワードの復号結果に基づき、復号結果が否で再送信が必要なコードワードに対してより多くのパワーを割り当てるパラメータを決定する無線通信装置。
  4.  請求項1に記載の無線通信装置であって、
     前記パラメータ決定部は、前記各コードワードの復号結果に基づき、復号結果が否で再送信が必要なコードワードが複数ある場合に、これらのコードワードにおいて復号信頼度が劣るコードワードに対してより多くのパワーを割り当てるパラメータを決定する無線通信装置。
  5.  請求項3または4に記載の無線通信装置であって、
     前記パラメータ決定部は、前記送信装置の複数のアンテナ毎のチャネル条件に基づき、良好なチャネル条件を有するアンテナに対してより多くのパワーを割り当てるパラメータを決定する無線通信装置。
  6.  請求項1に記載の無線通信装置であって、
     前記パラメータ決定部は、前記各コードワードの復号結果と再送回数とに基づき、復号結果が否で再送信が必要なコードワードに対して、再送回数が増えるにつれてより多くのパワーを割り当てるパラメータを決定する無線通信装置。
  7.  請求項1に記載の無線通信装置であって、
     前記パラメータ決定部は、前記各コードワードの復号品質を算出し、復号結果が否で再送信が必要なコードワードに対して、復号品質が最良となるように適応的にパワーを割り当てるパラメータを決定する無線通信装置。
  8.  複数のアンテナを用いて複数コードワードによる通信を行う無線通信装置であって、
     受信装置へ送信する複数コードワードを符号化する符号化部と、
     前記符号化した複数コードワードに関して、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディング(Precoding)を行うプリコーディング処理部と、
     前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信部とを備え、
     前記プリコーディング処理部は、前記受信装置からのフィードバック情報に含まれる、前記プリコーディングのためのプリコーディング行列と、このプリコーディング行列における各コードワードのパワーを調整するためのパラメータとを指定する情報に基づき、プリコーディングを実行する無線通信装置。
  9.  請求項8に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記プリコーディング行列におけるパラメータとして、全コードワードのパワーを一定に保ったまま各コードワードのパワーを調整するオフセット値を用いてプリコーディングを行う無線通信装置。
  10.  請求項8に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果に基づき、復号結果が否で再送信が必要なコードワードに対してより多くのパワーを割り当てたプリコーディングを行う無線通信装置。
  11.  請求項8に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果に基づき、復号結果が否で再送信が必要なコードワードが複数ある場合に、これらのコードワードにおいて復号信頼度が劣るコードワードに対してより多くのパワーを割り当てたプリコーディングを行う無線通信装置。
  12.  請求項10または11に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記複数のアンテナ毎のチャネル条件に基づき、良好なチャネル条件を有するアンテナに対してより多くのパワーを割り当てたプリコーディングを行う無線通信装置。
  13.  請求項8に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号結果と再送回数とに基づき、復号結果が否で再送信が必要なコードワードに対して、再送回数が増えるにつれてより多くのパワーを割り当てたプリコーディングを行う無線通信装置。
  14.  請求項8に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記複数コードワードのそれぞれの復号品質に基づき、復号結果が否で再送信が必要なコードワードに対して、復号品質が最良となるように適応的にパワーを割り当てたプリコーディングを行う無線通信装置。
  15.  請求項1~14のいずれかに記載の無線通信装置を備える無線通信基地局装置。
  16.  請求項1~14のいずれかに記載の無線通信装置を備える無線通信移動局装置。
  17.  複数のアンテナを用いて複数コードワードによる通信を行う無線通信システムであって、
     送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信部と、
     前記受信した複数コードワードをそれぞれ復号する復号部と、
     前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定部と、
     前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディング(Precoding)によるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択部と、
     前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定部と、
     前記受信装置へ送信する複数コードワードを符号化する符号化部と、
     前記符号化した複数コードワードに関して、前記プリコーディング行列及び前記パラメータに基づき、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディングを行うプリコーディング処理部と、
     前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信部と、
     を備える無線通信システム。
  18.  複数のアンテナを用いて複数コードワードによる通信を行う無線通信システムにおける無線通信方法であって、
     送信装置の複数のアンテナから伝送された複数コードワードの信号を受信する受信ステップと、
     前記受信した複数コードワードをそれぞれ復号する復号ステップと、
     前記受信した複数コードワードのそれぞれの伝搬路状況を推定するチャネル推定ステップと、
     前記各コードワードの伝搬路状況に基づき、将来の送信におけるプリコーディング(Precoding)によるビーム形成のためのプリコーディング行列を選択するプリコーディング行列選択ステップと、
     前記復号した複数コードワードのそれぞれの復号結果に基づき、前記プリコーディング行列における各コードワードのパワーを調整するためのパラメータを決定するパラメータ決定ステップと、
     前記受信装置へ送信する複数コードワードを符号化する符号化ステップと、
     前記符号化した複数コードワードに関して、前記プリコーディング行列及び前記パラメータに基づき、複数のアンテナに出力する信号の重み付けにより所定のビームを形成するためのプリコーディングを行うプリコーディング処理ステップと、
     前記プリコーディング処理後の信号を複数のアンテナを介して前記受信装置へ送信する送信ステップと、
     を有する無線通信方法。
PCT/JP2009/000149 2008-01-29 2009-01-16 無線通信装置、無線通信システム及び無線通信方法 WO2009096145A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008017524 2008-01-29
JP2008-017524 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009096145A1 true WO2009096145A1 (ja) 2009-08-06

Family

ID=40912502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000149 WO2009096145A1 (ja) 2008-01-29 2009-01-16 無線通信装置、無線通信システム及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2009096145A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260964A (ja) * 2008-04-11 2009-11-05 Ntt Docomo Inc 多入力多出力システムにおけるプリコーディング行列・ベクトルの選択方法及び装置
JP2011014979A (ja) * 2009-06-30 2011-01-20 Fujitsu Ltd 無線通信システム、無線通信装置及び制御装置
JP2013502766A (ja) * 2009-08-17 2013-01-24 富士通株式会社 プリコーディング行列コードブックグループを生成する方法及び装置
JP2013521933A (ja) * 2010-03-17 2013-06-13 スリーエム イノベイティブ プロパティズ カンパニー 電動空気浄化式呼吸用保護具
JP2013536626A (ja) * 2010-07-29 2013-09-19 トムソン ライセンシング 3ノード双方向協働のためのマルチイン・マルチアウト・ネットワーク符号化増幅転送中継方式
CN104253967A (zh) * 2014-09-26 2014-12-31 厦门亿联网络技术股份有限公司 一种实时视频通信传输控制方法
JP5707398B2 (ja) * 2010-06-21 2015-04-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置、基地局装置、再送方法及びリソース割り当て方法
RU2574854C2 (ru) * 2010-04-02 2016-02-10 Конинклейке Филипс Электроникс Н.В. Способ работы вторичной станции

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508958A (ja) * 1996-11-20 2001-07-03 インターナショナル モービル サテライト オーガニゼイション 高マージンの通知方法および装置
JP2005509316A (ja) * 2001-04-07 2005-04-07 モトローラ・インコーポレイテッド 送受信装置における多入力・多出力通信チャンネルを制御する方法およびシステム
WO2007091605A1 (ja) * 2006-02-08 2007-08-16 Ntt Docomo, Inc. 移動局及び基地局

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508958A (ja) * 1996-11-20 2001-07-03 インターナショナル モービル サテライト オーガニゼイション 高マージンの通知方法および装置
JP2005509316A (ja) * 2001-04-07 2005-04-07 モトローラ・インコーポレイテッド 送受信装置における多入力・多出力通信チャンネルを制御する方法およびシステム
WO2007091605A1 (ja) * 2006-02-08 2007-08-16 Ntt Docomo, Inc. 移動局及び基地局

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260964A (ja) * 2008-04-11 2009-11-05 Ntt Docomo Inc 多入力多出力システムにおけるプリコーディング行列・ベクトルの選択方法及び装置
JP2011014979A (ja) * 2009-06-30 2011-01-20 Fujitsu Ltd 無線通信システム、無線通信装置及び制御装置
JP2013502766A (ja) * 2009-08-17 2013-01-24 富士通株式会社 プリコーディング行列コードブックグループを生成する方法及び装置
US8675764B2 (en) 2009-08-17 2014-03-18 Fujitsu Limited Method and apparatus for generating a precoding matrix codebook group
JP2013521933A (ja) * 2010-03-17 2013-06-13 スリーエム イノベイティブ プロパティズ カンパニー 電動空気浄化式呼吸用保護具
KR101819764B1 (ko) 2010-03-17 2018-01-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 전동식 공기 정화 호흡기
US10441828B2 (en) 2010-03-17 2019-10-15 3M Innovative Properties Company Powered air-purifying respirator
RU2574854C2 (ru) * 2010-04-02 2016-02-10 Конинклейке Филипс Электроникс Н.В. Способ работы вторичной станции
JP5707398B2 (ja) * 2010-06-21 2015-04-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置、基地局装置、再送方法及びリソース割り当て方法
JP2013536626A (ja) * 2010-07-29 2013-09-19 トムソン ライセンシング 3ノード双方向協働のためのマルチイン・マルチアウト・ネットワーク符号化増幅転送中継方式
US9577722B2 (en) 2010-07-29 2017-02-21 Thomson Licensing Multiple in multiple out network coded amplify and forward relaying scheme for three node bidirectional cooperation
CN104253967A (zh) * 2014-09-26 2014-12-31 厦门亿联网络技术股份有限公司 一种实时视频通信传输控制方法

Similar Documents

Publication Publication Date Title
US9622261B2 (en) Method for selecting PMI for non-adaptive HARQ operation in a MIMO wireless communication system
JP4464836B2 (ja) マルチアンテナ通信装置の通信方法及びマルチアンテナ通信装置
EP2137835B1 (en) Method of transmitting data in multiple antenna system
EP2374252B1 (en) Efficient mimo transmission schemes
JP5153006B2 (ja) 無線通信システム、無線通信装置及び無線通信方法
US8243673B2 (en) Radio communication apparatus, radio communication system, and radio communication method
US9729272B2 (en) Feedback with unequal error protection
EP1821440A1 (en) Retransmitting method and transmitting method in multi-antenna transmission
US20080311939A1 (en) Acknowledgment aided space domain user scheduling for multi-user mimo
US20120057451A1 (en) Method of retransmission for supporting mimo in synchronous harq
JP2013009400A (ja) 多重入出力システムにおけるチャンネル品質情報フィードバック方法、データ伝送方法、ユーザ機器及び基地局
WO2009096145A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
CN107431955A (zh) 用于对干扰消除友好的具有速率***的速率指定
JP2010531614A (ja) Mimoシステムにおける無線リソース割り当てを改善するための方法及び装置
CN107210898A (zh) 用于对干扰消除友好的新型空中接口的辅助信息和用户设备反馈
JP5035338B2 (ja) データ再送方法及び,これを適用する無線通信システム
KR20150028335A (ko) 무선 통신 장치, 및 harq 응답의 송신 방법 및 수신 방법
Lukashova et al. Single-User MIMO ML successive interference canceling receiver with HARQ-IR protocol
WO2024058761A1 (en) A retransmission method for multiple access networks
JP5106501B2 (ja) マルチアンテナ通信装置の通信方法及びマルチアンテナ通信装置
Kim et al. A novel antenna allocation in V-BLAST system with hybrid ARQ
Kim et al. Impact of the antenna shuffling in V-BLAST system using NAK for H-ARQ in correlated fading channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP