WO2007100017A1 - 金属表面処理用組成物、金属表面処理方法、及び金属材料 - Google Patents

金属表面処理用組成物、金属表面処理方法、及び金属材料 Download PDF

Info

Publication number
WO2007100017A1
WO2007100017A1 PCT/JP2007/053831 JP2007053831W WO2007100017A1 WO 2007100017 A1 WO2007100017 A1 WO 2007100017A1 JP 2007053831 W JP2007053831 W JP 2007053831W WO 2007100017 A1 WO2007100017 A1 WO 2007100017A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
compound
metal
metal surface
group
Prior art date
Application number
PCT/JP2007/053831
Other languages
English (en)
French (fr)
Inventor
Toshio Inbe
Thomas Kolberg
Original Assignee
Nippon Paint Co., Ltd.
Chemetall Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200780007366XA priority Critical patent/CN101395299B/zh
Priority to EP20070737550 priority patent/EP1997934B1/en
Priority to JP2008502828A priority patent/JPWO2007100017A1/ja
Priority to KR1020087023951A priority patent/KR101315417B1/ko
Priority to CA2644789A priority patent/CA2644789C/en
Priority to BRPI0708467-6A priority patent/BRPI0708467B1/pt
Application filed by Nippon Paint Co., Ltd., Chemetall Gmbh filed Critical Nippon Paint Co., Ltd.
Priority to MX2008011097A priority patent/MX2008011097A/es
Priority to US12/224,635 priority patent/US8287662B2/en
Priority to ES07737550.9T priority patent/ES2522584T3/es
Publication of WO2007100017A1 publication Critical patent/WO2007100017A1/ja
Priority to US13/613,544 priority patent/US9028667B2/en
Priority to US14/677,302 priority patent/US20150211140A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal

Definitions

  • Metal surface treatment composition Metal surface treatment composition, metal surface treatment method, and metal material
  • the present invention relates to a metal surface treatment composition used for metal surface treatment, a metal surface treatment method for performing surface treatment of a metal material using the metal surface treatment composition, and the metal surface treatment method. It is related with the metal material processed by.
  • the zinc phosphate-based treatment agent is a highly reactive treatment agent having a high concentration of metal ions and acid, the economical efficiency and workability in wastewater treatment are poor.
  • water-insoluble salts are generated and precipitate as precipitates.
  • Such precipitates are generally called sludge, and there is a problem of cost generation due to removal and disposal of such sludge.
  • phosphoric acid has a risk of impacting the environment due to eutrophication. Therefore, it requires labor in the treatment of waste liquid and is preferably not used.
  • it is necessary to adjust the surface, and there is a problem that the process becomes long.
  • a chemical conversion treatment agent containing a dinoleconium compound is known (for example, see Patent Document 2).
  • the chemical conversion treatment agent comprising this dinoleconium compound is a treatment agent that has a metal ion concentration and an acid concentration that are not so high and reactivity is not so high. Is good.
  • it has properties superior to those of the above-described zinc phosphate processing agents in that the generation of sludge is suppressed.
  • Patent Document 3 discloses a chemical conversion treatment agent which is a metal surface treatment composition having the following constitution. That is, this chemical conversion treatment agent is a chemical conversion treatment agent containing a water-soluble resin, and the water-soluble resin has at least structural units represented by the following formulas (1) and (2).
  • zirconium acts as a film forming component of the chemical conversion film
  • fluorine acts as an etching agent for the metal material, whereby the corrosion resistance and adhesion of the metal material can be improved.
  • a water-soluble resin containing an amino group specifically, a polybulamine resin or a polyallylamine resin, acts on the surface force of the metal material, and on the coating film formed after the chemical conversion treatment. The adhesion between the surface of the material and the coating film can be improved.
  • Patent Document 1 JP-A-10-204649
  • Patent Document 2 JP-A-7-310189
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-218074
  • the present invention has been made in view of the problems as described above, and the object thereof is a metal capable of forming a chemical conversion film capable of obtaining sufficient base hiding, coating adhesion, and corrosion resistance.
  • the object is to provide a surface treatment composition, a metal surface treatment method for treating the surface of a metal material using the metal surface treatment composition, and a metal material treated by the metal surface treatment method.
  • the present inventors have intensively studied to solve the above problems.
  • the content of the primary and secondary amino groups in the polyamine compound is specified.
  • the present invention has been completed. More specifically, the present invention provides the following.
  • a metal surface treatment composition used for metal surface treatment comprising a dinoleconium compound and / or a titanium compound, and a polyamine compound having a number average molecular weight of 150 to 500,000,
  • the polyamine compound has a primary and Z or secondary amino group of 0.1 mmol or more and 17 mmol or less per lg of solid content, and the zirconium compound and / or the titanium compound in the metal surface treatment composition.
  • the content is lOppm or more and lOOOOppm or less in terms of a metal element, and the mass ratio of zirconium element and / or titanium element contained in the dinoleconium compound and / or titanium compound with respect to the polyamine compound is 0.
  • Metal surface treatment composition that is 1 or more and 100 or less
  • the polyamine compound includes a primary and / or secondary amino group-containing compound, an amine reducing compound A having a functional group A reactive with the primary and / or secondary amino group, and
  • the composition for metal surface treatment according to (1) which is a product produced by the reaction of.
  • the product is based on 100 mmol of the primary and / or secondary amino groups.
  • the metal surface treatment composition according to (2) which is produced by reacting the functional group A with 1 mmol or more and 60 mmol or less.
  • a metal surface treatment composition used for metal surface treatment comprising a zirconium compound and / or a titanium compound, and a polyamine compound having a number average molecular weight of 150 or more and 500,000 or less,
  • the polyamine compound includes a primary and / or secondary amino group-containing compound and an amine activity containing at least one functional group B that reduces the amine activity by interacting with the primary and / or Z or secondary amino group.
  • the content of the zirconium compound and / or titanium compound in the metal surface treatment composition is lOppm or more and 10,000ppm or less in terms of metal element
  • the mass ratio of zirconium element and / or titanium element contained in the zirconium compound and / or titanium compound with respect to the polyamine compound is 0.1 or more.
  • the composition for metal surface treatment which is 100 or less.
  • the functional group B is at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, and a phosphorous acid group (5) or (6
  • the polyamine compound is a compound having at least one of structural units represented by the following formula (1), formula (2), and formula (3): 7) A composition for treating a metal surface according to any of the above.
  • R in formula (3) is an alkylene group having 1 to 6 carbon atoms, and R is represented by the following formulas (4) to (6)
  • R is a substituent represented by _OH, -OR, or _R (R and R are carbon atoms of 1 to 6
  • R in Formula (6) is a hydrogen atom, an aminoalkyl group having 1 to 6 carbon atoms, or carbon numbers:! To 6)
  • R is a hydrogen atom or an aminoalkyl group having 1 to 6 carbon atoms.
  • the metal surface treatment composition comprises nitric acid, nitrous acid, sulfuric acid, sulfurous acid, persulfuric acid, Acid, carboxylic acid group-containing compound, sulfonic acid group-containing compound, hydrochloric acid, bromic acid, chloric acid, hydrogen peroxide, HMnO, HVO, HWO, and HMoO, and salts thereof
  • At least one metal selected from the group consisting of magnesium, zinc, calcium, aluminum, gallium, indium, copper, iron, manganese, nickel, cobalt, cerium, strontium, rare earth elements, and silver
  • the metal surface treatment composition further comprises at least one selected from the group consisting of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and a double-sided surfactant.
  • a nonionic surfactant an anionic surfactant, a cationic surfactant, and a double-sided surfactant.
  • a metal surface treatment method for treating a surface of a metal material wherein the metal surface treatment liquid containing the metal surface treatment composition according to any one of (1) to (13) is used as the metal material
  • a metal surface treatment method comprising: a treatment liquid contact step for contacting the metal material; and a water washing step for washing the metal material that has undergone the treatment liquid contact step.
  • An acid contact step in which the metal material that has undergone the water washing step is contacted with an acidic aqueous solution containing at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and dinoleconium.
  • a method for treating a metal surface according to any one of (14) to (16).
  • a polymer-containing liquid contact step in which the metal material that has undergone the water washing step is contacted with a polymer-containing liquid containing at least one of a water-soluble polymer compound and a water-dispersible polymer compound.
  • (14) to (17) A method for treating a metal surface according to any one of the above differences.
  • the polyamine compound in the metal surface treatment composition containing a zirconium compound and Z or titanium compound, and a polyamine compound having an amino group, has a number average molecular weight. 150 to 500,000 or less and 0.1 to 17 mmol primary and Z or secondary amino groups per lg of solid content, zirconium compounds in the metal surface treatment composition and / or The content of the titanium compound is not less than lOppm and not more than lOOOOppm in terms of metal element, and the mass ratio of zirconium element and / or titanium element contained in the dinoleconium compound and / or titanium compound to the polyamine compound is For metal surface treatments that can form a conversion coating with sufficient substrate hiding, coating adhesion, and corrosion resistance by being from 1 to 100 It is possible to provide a Narubutsu. Also, using this metal surface treatment composition A metal surface treatment method for performing a surface treatment of a metal material, and a metal material treated by the metal surface treatment method can be provided.
  • the metal surface treatment composition according to the present embodiment is used for metal surface treatment and contains a zirconium compound and / or a titanium compound and a polyamine compound.
  • the metal surface treatment composition according to the present embodiment is diluted and adjusted with water to obtain a metal surface treatment solution, which is used for metal surface treatment.
  • Zirconium and / or titanium derived from the zirconium compound and / or titanium compound component contained in the metal surface treatment composition is a chemical film forming component.
  • a chemical conversion film containing zirconium and / or titanium on the metal material the corrosion resistance and wear resistance of the metal material can be improved.
  • the surface treatment of the metal material is performed with the metal surface treatment composition containing zirconium and Z or titanium according to the present embodiment, a dissolution reaction of the metal constituting the metal material occurs.
  • a metal dissolution reaction occurs, when the zirconium and Z or titanium fluorides are contained, the metal ion forces rF 2 and / or TiF 2 _ eluted in the metal surface treatment composition
  • Titanium hydroxide or oxide is produced. And it is thought that it precipitates on the surface of the hydroxide or oxide power metal material of this zirconium and Z or titanium. Since the metal surface treatment composition according to this embodiment is a reactive chemical conversion treatment agent, it can be used for immersion treatment of metal materials having complicated shapes. Moreover, since a chemical conversion film firmly attached to the metal material can be obtained by a chemical reaction, it can be washed with water after the treatment.
  • the zirconium compound is not particularly limited, and examples thereof include K ZrF.
  • Examples thereof include luconyl and zirconium carbonate.
  • the titanium compound is not particularly limited, but examples thereof include alkali metal fluorotitanate, fluorotitanate such as (NH) TiF, and fluorotitanate such as HTiF.
  • Examples thereof include soluble fluorotitanates such as acids, titanium fluoride, titanium oxide, and the like.
  • the content of zirconium and / or titanium in the metal surface treatment composition according to this embodiment is preferably in the range of lOppm or more and lOOOOppm or less in terms of metal element. If it is less than lOppm, a sufficient amount of film cannot be obtained on the metal material. On the other hand, if it exceeds lOOOOppm, no further effect can be expected, which is economically disadvantageous.
  • This content is more preferably 50 ppm or more and lOOO ppm or less in terms of metal element.
  • the metal surface treatment composition according to this embodiment further includes a fluorine compound.
  • the elemental fluorine contained in the metal surface treatment composition according to the present embodiment plays a role of an etching agent for metal material and a complexing agent for dinoleconium and / or titanium.
  • the source of elemental fluorine is not particularly limited, but for example, fluorine such as hydrofluoric acid, ammonium fluoride, boron fluoride, ammonium hydrogen fluoride, sodium fluoride, sodium hydrogen fluoride, etc. Can be mentioned. It is also possible to use a complex fluoride as a supply source, for example, hexafluorosilicate, specifically, hydrofluoric acid, zinc hydrofluoric acid, manganese key hydrofluoride, key hydrofluoric acid matrix. Examples thereof include gnesium, nickel nickel hydrofluoride, iron iron hydrofluoride, calcium hydrofluoric acid, and the like.
  • the content of free fluorine element in the metal surface treatment composition according to this embodiment is from 0. Olppm to lOOppm.
  • the “content of free fluorine element” means the concentration of fluorine ions in a free state in the treatment bath, and is a meter having a fluorine ion electrode. It is calculated
  • the content of the free fluorine element in the metal surface treatment composition is more preferably from 0.1 ppm to 20 ppm.
  • the polyamine compound contained in the metal surface treatment composition according to this embodiment is a polymer compound having a plurality of amino groups in the molecule. Since this polyamine compound containing an amino group acts on both the chemical conversion film and the coating film formed thereafter, the adhesion between them can be improved.
  • the polyamine compound has a number average molecular weight in the range of 150 to 500,000. If it is less than 150, a chemical conversion film having sufficient film adhesion cannot be obtained, which is not preferable. If it exceeds 5000 00, film formation may be hindered.
  • the lower limit is more preferably 5000, and the upper limit is more preferable than 70000 force S.
  • polyamine compound is a polyamine compound adopting the following structure. That is, this polyamine compound is a compound having at least one of structural units represented by the following formulas (1), (2) and (3).
  • R in the formula (3) is an alkylene group having 1 to 6 carbon atoms, and R is represented by the following formulas (4) to (6)
  • R is _OH, -OR, or _R (R and R are carbon numbers:! To 6
  • R in Formula (6) is a hydrogen atom, an aminoalkyl group having 1 to 6 carbon atoms, or carbon numbers:! To 6)
  • R is a hydrogen atom or an aminoalkyl group having 1 to 6 carbon atoms.
  • the polyamine compound includes a polybulamine resin composed only of the structural unit represented by the above formula (1), a polyallylamine resin composed only of the structural unit represented by the above formula (2), and the above formula (3). Particularly preferred is a polysiloxane consisting only of structural units.
  • polysiloxanes examples include N— (2 aminoethyl) 3 aminopropylmethyl dimethyoxysilane, N— (2 aminoethyl) 3 aminopropyltrimethoxysilane, N— (2-aminoethyl) 3 Minopropyltriethoxysilane, 3-aminopropyltrimethoxysila , 3-Aminopropyltriethoxysilane, 3-Triethoxysilyl-1-N- (1,3-dimethylenobutylidene) propylamine, N-phenyl-1-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) 2 Examples include hydrochloride of aminoethyl 13-aminopropyltrimethoxysilane.
  • the polybulamine resin, polyallylamine resin, and polysiloxane are particularly preferable in that they are excellent in the effect of improving adhesion.
  • the polybulamine resin is not particularly limited, and for example, a commercially available polybulamine resin such as PVAM-0595B (manufactured by Mitsubishi Chemical Co., Ltd.) can be used.
  • the polyallylamine resin is not particularly limited.
  • commercially available polyallylamine resins such as PAA-01, PAA-10C, PAA-H_10C, and PAA-D-41HC are all manufactured by Nitto Boseki Co., Ltd. are used. be able to.
  • the polyaminosiloxane is not particularly limited, and a commercially available polysiloxane can be used.
  • two or more of polyvinylinamine resin, polyallylamine resin, and polysiloxane may be used in combination.
  • the polyamine compound has primary and / or secondary amino groups.
  • the primary amine and / or secondary amino group of the polyamine compound specifically, the active hydrogen of the primary and / or secondary amino group (hereinafter referred to as ammine). It is necessary to control (activity) appropriately. If the primary and / or secondary amino groups of the polyamine compound are small, adhesion cannot be obtained. Conversely, if it is more than necessary, the excess primary and / or secondary amino groups can adversely affect blisters. This is because the adhesion of the coating film and the corrosion resistance are deteriorated as well as the base concealing property.
  • the first means for appropriately controlling the amine activity possessed by the polyamine compound is that the primary and Z or secondary amino groups possessed by the polyamine compound are 0.1 mmol or more per lg of solid content. Control to less than millimolar. More preferably, it is controlled to 3 mmol or more and 15 mmol or less per lg of solid content.
  • These resins also have primary and / or secondary amino groups exceeding 17 mmol per lg resin solids, so primary and Z or secondary amino groups should not exceed 17 mmol per lg solids. Need to be controlled.
  • the amine value can be measured in accordance with American Testing and Materials Association standards (ASTM D 2073 and ASTM D 2074).
  • the polyamine compound in order to control the primary and Z or secondary amino groups to "0.1 mmol or more and 17 mmol or less per lg of solid content", the polyamine compound can be used as "primary and / or secondary.
  • a compound containing an amino group hereinafter referred to as a primary and / or secondary amino group-containing compound
  • the product is a product (product) produced by the above reaction, that is, the primary and / or secondary amino groups are reacted with other functional groups, or the bulamine amine allylamine contains other vinyl groups. It is desirable to control the primary and / or secondary amino groups so as not to exceed 17 millimoles per gram of solid content by copolymerization with a compound containing a allylic group-containing compound.
  • the product is preferably produced by reacting 1 to 60 mmol of functional group A with 100 mmol of primary and / or secondary amino groups.
  • the amount is less than 1 mol, excess amino groups have an adverse effect and blisters are generated, resulting in deterioration of the adhesion of the coating and the corrosion resistance as well as the substrate concealment. If it exceeds 60 millimoles, adhesion with a coating film formed thereafter cannot be obtained.
  • the product is produced by reacting 1 to 30 mmol of functional group A with respect to 100 mmol of primary and / or secondary amino groups.
  • the functional group A having reactivity with the primary and / or secondary amino group is not particularly limited, and examples thereof include a glycidyl group, an isocyanate group, an aldehyde group, and an acid anhydride group.
  • the primary and / or secondary amino group-containing compound is polyallylamine, and is a functional group A force S isocyanate group
  • the polyamineramine and the amine-reducing compound A having an isocyanate group
  • the primary and / or secondary amino groups are 17 mmol or less per lg of the solid content. Therefore, as a result of qualitative measurement of the metal surface treatment composition according to the present embodiment, when the polyamine compound is detected, the polyamine compound is 17 millimoles per lg of primary and / or secondary amine amino solids. It is estimated that
  • the second means for appropriately controlling the amine activity of the polyamine compound is to use a polyamine compound, a primary and / or secondary amino group-containing compound, and a primary and / or secondary amino group.
  • “the interaction between the primary and / or secondary amino group and the other functional group B” means the primary and / or secondary amino group and the other functional group B. , Which are derived from ionic bond strength, hydrogen bond strength, dipole interaction force, and van der Waalska, etc., and have sufficient surface hiding, coating adhesion, and corrosion resistance. An interaction that can be formed.
  • the product produced by the interaction between the primary and / or secondary amino group-containing compound and the amine-reducing compound B having the functional group B is reduced to 100 mmol of primary and / or secondary amino groups.
  • the functional group B is produced by interaction between 1 mmol and 60 mmol. If the amount is less than 1 millimolar, excess amino groups have an adverse effect, and blisters are generated, resulting in deterioration of the adhesion of the coating and the corrosion resistance as well as the substrate concealment. If it exceeds 60 mmol, adhesion to the coating film formed after that is obtained. I can't. More preferably, the product is produced by interacting 1 to 30 mmol of functional group B with 100 mmol of primary and / or secondary amino groups.
  • the functional group B that interacts with the primary and Z or secondary amino groups is not particularly limited, and examples thereof include a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, and a phosphorous acid group. Can be mentioned.
  • Examples of the compound having at least one of the functional group A and the functional group B include 3_isocyanatopropyl monotriethoxysilane, colloidal silica, epoxy resin, acetic anhydride, and Although polyphosphoric acid etc. can be mentioned, it is not limited to these illustrations. Further, commercially available KBE9007 (manufactured by Shin-Etsu Chemical Co., Ltd.), XS1003 (manufactured by Chisso Corporation), etc. can be used as they are.
  • the mass ratio of zirconium element and / or titanium element contained in the zirconium compound and / or titanium compound to the polyamine compound is 0.1. More than 100. If it is less than 0.1, corrosion resistance and adhesion cannot be obtained. If it exceeds 100, cracks are likely to occur in the surface treatment film layer, making it difficult to obtain a uniform film.
  • the mass ratio is 0.5 or more and 20 or less.
  • the pH of the metal surface treatment composition used in the present embodiment is preferably 1.5 or more and 6.5 or less. If the pH is less than 1.5, etching may be excessive and sufficient film forming force S may not be obtained, or the film may become uneven and adversely affect the appearance of the coating. On the other hand, if it exceeds 6.5, etching becomes insufficient and a good film cannot be obtained.
  • the pH is more preferably 2 or more and 5 or less, and more preferably 2.5 or more and 4.5 or less.
  • the pH of the metal surface treatment composition can be adjusted using an acidic compound such as nitric acid or sulfuric acid and a basic compound such as sodium hydroxide, potassium hydroxide or ammonia.
  • an acidic compound such as nitric acid or sulfuric acid
  • a basic compound such as sodium hydroxide, potassium hydroxide or ammonia.
  • the metal surface treatment composition according to this embodiment includes at least one selected from the group consisting of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • a surfactant can be contained.
  • the nonionic surfactant, the anionic surfactant, the cationic surfactant and the amphoteric surfactant conventionally known ones can be used.
  • the metal surface treatment composition used in the present embodiment contains these surfactants, a good film can be formed without degreasing and cleaning the metal material in advance.
  • the metal surface treatment composition according to this embodiment may contain a metal element capable of imparting adhesion and corrosion resistance to the coating film.
  • Metals that are chemical conversion treatment agents Metal elements that can be included in the composition for surface treatment include magnesium, zinc, calcium, ano-remium, gallium, indium, copper, iron, manganese, nickel, cobanoleto, cerium, strontium, rare earth Element and silver are mentioned.
  • the metal surface treatment composition according to this embodiment may contain an oxidizing agent for promoting the film formation reaction.
  • oxidizing agents that can be contained in the metal surface treatment composition include nitric acid, nitrous acid, sulfuric acid, sulfurous acid, persulfuric acid, phosphoric acid, carboxylic acid group-containing compounds, sulfonic acid group-containing compounds, hydrochloric acid, bromic acid, Chloric acid, hydrogen peroxide, HMnO
  • the metal surface treatment method for performing the metal surface treatment of the present embodiment is not particularly limited by bringing the metal surface treatment liquid containing the metal surface treatment composition according to the present embodiment into contact with the metal material. It can be carried out. That is, the metal surface treatment method according to the present embodiment includes a treatment liquid contact step in which a metal surface treatment liquid containing a metal surface treatment composition is contacted. Examples of the metal surface treatment method include an immersion method, a spray method, a roll coat method, and a pouring treatment method.
  • the treatment temperature in the surface treatment is preferably in the range of 20 ° C. or more and 70 ° C. or less. There is a possibility that sufficient film formation may not be performed at temperatures below 20 ° C, and there are inconveniences such as the need for temperature adjustment in summer. Even at temperatures above 70 ° C, there is no particular effect. It is just a bad IJ.
  • the treatment temperature is more preferably in the range of 30 ° C to 50 ° C.
  • the treatment time in the surface treatment is preferably in the range of 5 seconds to 1100 seconds. If it is 5 seconds or less, it is inconvenient because a sufficient film amount cannot be obtained, and if it is 1100 seconds or more, it is meaningless because an effect cannot be obtained even if the film amount is increased beyond this.
  • the treatment time is more preferably in the range of 30 seconds to 120 seconds.
  • the metal surface treatment method according to the present embodiment does not require the surface adjustment treatment as compared with the treatment with a zinc phosphate-based chemical conversion treatment agent that has been put into practical use. For this reason, it becomes possible to perform the chemical conversion treatment of the metal material with fewer steps.
  • the metal surface treatment method according to the present embodiment can be electrolytically treated using a metal material as a cathode.
  • a hydrogen reduction reaction takes place at the metal material interface, which is the cathode, and the pH rises.
  • the stability of the compound containing zirconium and / or titanium elements at the cathode interface decreases, and the surface treatment film is deposited as an oxide or a hydroxide containing water.
  • Examples of the metal material used in the metal surface treatment method according to the present embodiment are not particularly limited, and examples thereof include a steel plate and an aluminum plate.
  • the steel sheet includes any of a cold-rolled steel sheet or a hot-rolled steel sheet, and a mild steel sheet or a high-tensile steel sheet, and is not particularly limited.
  • an iron-based substrate iron-based metal material
  • an aluminum-based substrate aluminum-based substrate (aluminum) Metal base material
  • zinc base material zinc base material
  • magnesium base material magnesium base material
  • An iron-based substrate is a substrate (metal material) made of iron and / or an alloy thereof
  • an aluminum-based substrate is a substrate (metal material) made of aluminum and Z or an alloy thereof
  • a zinc-based substrate is zinc and It means a base material (metal material) made of Z or its alloy.
  • a magnesium-based substrate means a substrate (metal material) that is made of magnesium and Z or an alloy thereof.
  • the iron-based substrate used as the metal material according to the present embodiment is not particularly limited, and examples thereof include a cold-rolled steel plate and a hot-rolled steel plate.
  • the aluminum base material is not particularly limited.
  • an aluminum base such as a 5000 series anodremium alloy, a 6000 series anoreminum alloy, an aluminum series electroplating, a melting platter, or a vapor deposition platter.
  • a steel plate etc. can be mentioned.
  • a zinc-type base material For example, galvanized steel plate, zinc-nickel plating steel plate, zinc-iron plating steel plate, zinc-chromium plating steel plate, zinc aluminum plating steel plate, zinc titanium plating steel plate Zinc-based electroplated steel such as zinc-magnesium-plated steel sheet, zinc-manganese-plated steel sheet, zinc-plated steel such as zinc-plated steel, zinc-plated alloy-plated steel, etc.
  • Zinc-based electroplated steel such as zinc-magnesium-plated steel sheet, zinc-manganese-plated steel sheet, zinc-plated steel such as zinc-plated steel, zinc-plated alloy-plated steel, etc.
  • high-strength steel sheets There are various grades of high-strength steel sheets depending on the strength and manufacturing method. For example, JSC 440J, 440P, 440W, 590R, 590T, 590Y, 780T, 780Y, 980Y, 1180Y can be listed.
  • the surface of the ferrous metal material contains 10 mg / m 2 or more of dinoleconium element and Z or titanium element, the mass ratio of zirconium element and / or titanium element to nitrogen element by XPS analysis of the surface treatment coating layer is: It is preferably from 0.05 to 500.
  • the surface treatment film layer formed on the surface of the metal material contains zirconium element and Z or titanium element of lOmgZm 2 or more
  • the nitrogen source by XPS analysis of the surface treatment film layer is preferably 0.05 or more and 500 or less.
  • the surface treatment coating layer contains zirconium element and Z or titanium element in an amount of 5 mgZm 2 or more, the mass ratio of dinolenium element and Z or titanium element to nitrogen element by XPS analysis of the surface treatment coating layer is 0.05 or more 500 It is preferable that
  • the surface treatment film layer contains 5 mgZm 2 or more of zirconium element and Z or titanium element, the mass ratio of zirconium element and / or titanium element to nitrogen element by XPS analysis of the surface treatment film layer is 0.05 or more 500 It is preferable that
  • the amount of the surface treatment film formed by the metal surface treatment method of the present embodiment is preferably 800 mg / m 2 when zirconium and / or titanium is less than lg / m 2 in terms of metal elements. The following is more preferable.
  • the metal material according to the present embodiment is preferably a metal material cleaned by a degreasing process. Furthermore, the metal material of this embodiment is preferably subjected to a degreasing treatment and then a water washing treatment. These degreasing treatments and water washing treatments are performed to remove oils and dirt adhering to the surface of the metal material, and usually with a degreasing agent such as a phosphorus-free and nitrogen-free degreasing cleaning solution. Immersion treatment is performed for several minutes at 55 ° C. If desired, a preliminary degreasing treatment can be performed before the degreasing treatment.
  • the water washing treatment after the degreasing treatment is performed by spraying at least once with a large amount of washing water in order to wash the degreasing agent with water.
  • Power S can be. That is, in this case, the metal material is degreased simultaneously in the treatment liquid contact step.
  • the metal material on which the chemical conversion film is formed by the metal surface treatment method according to the present embodiment is preferably subjected to a water washing treatment before the coating film formation to be performed thereafter. That is, in the metal surface treatment method according to the present embodiment, the metal surface treatment liquid containing the metal surface treatment composition is contacted with the metal material, and the metal material that has undergone the treatment liquid contact process is washed with water. And a water washing step. By performing the water washing treatment before forming the coating film, impurities on the surface of the chemical conversion film are removed, so that the adhesion with the coating film can be further improved and good corrosion resistance can be imparted.
  • the chemical conversion film formed by the metal surface treatment method according to the present embodiment incorporates a polyamine compound that is a polymer, it can be washed with water before the coating film is formed. That is, in the case of a monomeric amine compound, there is a possibility that it may be removed by washing with water. However, if it is a polyamine compound that is a polymer, zirconium and / or titanium that forms a chemical conversion film is formed. It interacts strongly with hydroxides or oxides and there is no such risk. Therefore, the chemical conversion film formed by the metal surface treatment method according to the present embodiment does not lose its adhesion even if it is washed with water.
  • the final water washing is preferably performed with pure water.
  • washing can be carried out by combining these methods, which may be either spray water washing or immersion water washing.
  • the water washing treatment after the surface treatment After performing the water washing treatment after the surface treatment, it may be dried as necessary according to a known method.
  • the water washing treatment is performed. It can be painted without any subsequent drying treatment. That is, a wet and unpainted coating method can be employed as a coating method after the chemical conversion film is formed by the metal surface treatment method according to the present embodiment. Therefore, the metal surface treatment method according to the present embodiment can be applied to metal materials before electrodeposition coating, in particular, automobile bodies and motorcycles before electrodeposition coating. It is possible to shorten the surface treatment process for vehicle outer plates such as bodies and various parts.
  • Examples of the coating film formed on the chemical conversion film after forming the chemical conversion film by the metal surface treatment method according to the present embodiment include conventionally known paints such as electrodeposition paints, solvent paints, aqueous paints, and powder paints.
  • the coating film formed by can be mentioned.
  • the cationic electrodeposition coating is made of a resin having a functional group showing reactivity or compatibility with an amino group, so that it is a polyamine containing an amino group contained in a metal surface treatment composition that is a chemical conversion treatment agent. It is a force that can enhance the adhesion between the electrodeposition coating film and the chemical conversion film by the action of the compound.
  • the cationic electrodeposition coating is not particularly limited, and examples thereof include known cationic electrodeposition coatings made of an aminated epoxy resin, an aminated acrylic resin, a sulfonated epoxy resin, and the like.
  • the metal material may be contacted with an acidic aqueous solution containing at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and dinoleconium. That is, the metal surface treatment method according to the present embodiment includes cobalt, nickel, tin, copper, titanium, and zirconium after the water washing step of washing the metal material that has undergone the treatment liquid contact step.
  • An acid contact step of contacting an acidic aqueous solution containing at least one selected from the group may be included. Thereby, corrosion resistance can further be improved.
  • At least one source selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, which are metal elements, is not particularly limited, but is easily available.
  • a salt, an organometallic compound, etc. can be used conveniently.
  • the acidic aqueous solution containing the metal element preferably has a pH of 2-6.
  • the metal surface treatment liquid containing the metal surface treatment composition according to the present embodiment is contacted with the metal material. After the water washing step of washing the metal material with the treatment liquid contact step, or after being subjected to the electrolytic treatment. Thereafter, the metal material may be brought into contact with a polymer-containing liquid containing at least one of a water-soluble polymer compound and a water-dispersible polymer compound. That is, the metal surface treatment method according to this embodiment includes washing at least one of a water-soluble polymer compound and a water-dispersible polymer compound in the metal material after the water washing step in which the metal material that has undergone the treatment liquid contact step is washed. It may also include a polymer-containing liquid contact step for contacting the polymer-containing liquid. Thereby, corrosion resistance can further be improved.
  • the water-soluble polymer compound and the water-dispersible polymer compound are not particularly limited, and examples thereof include polybutyl alcohol, poly (meth) acrylic acid, a copolymer of acrylic acid and methacrylic acid, ethylene and ( Copolymers with acrylic monomers such as (meth) acrylic acid and (meth) acrylate, copolymers of ethylene and vinyl acetate, polyurethane, amino-modified phenolic resin, polyester resin, epoxy resin, tannin, tannic acid And salts thereof, phytic acid.
  • a commercially available cold-rolled steel sheet (SPC, manufactured by Nippon Test Panel, 70 mm X I 50 mm X O. 8 mm) was prepared as a metal material.
  • a metal surface treatment composition was prepared. Specifically, as a polyamine compound having a primary and / or secondary amino group, 1% by weight of PAA10C (polyallylamine, effective concentration 10./., Manufactured by Nittobo Co., Ltd.), functional group A and / or functional group KBM403 (3-glycidoxypropyl monotrimethoxysilane, effective concentration: 100%, manufactured by Shin-Etsu Chemical Co., Ltd.) as a compound having B in a weight ratio of 1: 0.5, a reaction temperature of 25 ° C, and a reaction time of 60 minutes A PAA-epoxy reactant (1: 0.5) was obtained by reaction.
  • PAA10C polyallylamine, effective concentration 10./., Manufactured by Nittobo Co., Ltd.
  • functional group A and / or functional group KBM403 3-glycidoxypropyl monotrimethoxysilane, effective concentration: 100%, manufactured by Shin-Etsu Chemical Co
  • a metal surface treatment composition was prepared so that the concentration was 2 OOppm.
  • This metal surface treatment composition was adjusted with a sodium hydroxide aqueous solution to a metal surface treatment solution having a pH of 3.5. The temperature of the metal surface treatment solution was adjusted to 30 ° C, and then the washed metal material was immersed for 60 seconds.
  • the amount of primary and / or secondary amino groups in the PAA-epoxy reactant (1: 0.5) (moles of primary and / or secondary amino groups per lg of solid content of the polyamine compound) Number) was calculated by the following formula (1).
  • the results are shown in Table 1.
  • the amount of primary and / or secondary amino group can be calculated by Formula (1), the results are shown in Tables 1 and 2.
  • the amount of amine group determined by calculation is used as a substitute for the amine value determined by measurement.
  • PAA—epoxy reactant (1: 0.5) is a condensate obtained by reacting PAA10C and KBM403 at a weight ratio of 1: 0.5
  • the metal material subjected to chemical conversion treatment was sprayed with tap water for 30 seconds. Next, spraying was performed for 10 seconds with ion-exchanged water.
  • the metal material after the water washing treatment was dried at 80 ° C for 5 minutes in an electric drying furnace.
  • the amount of skin film was determined by measuring the amount of Zr, Si, and C contained in the metal surface treatment composition using “XRF1700” (Shimadzu X-ray fluorescence analyzer). / m 2 ) was measured.
  • XRF1700 Shiadzu X-ray fluorescence analyzer
  • m 2 m 2
  • X-ray photoelectron analyzer X-ray photoelectron analyzer
  • the surface of the obtained test plate was analyzed to determine the mass ratio of the zirconium element to the nitrogen element on the coating surface. .
  • the mass ratio was determined from the peak intensity ratio between the Is orbital of the nitrogen element and the 3d orbital of the zirconium element. The results are shown in Table 1.
  • Cationic electrodeposition paint “Electrodeposition Power Nitas 110 (trade name)” (manufactured by Nippon Paint Co., Ltd.) is applied to each wet metal material that has been washed with water after chemical conversion treatment. A film was formed. The dry film thickness after electrodeposition coating was 20 zm. Thereafter, each metal material was washed with water and then baked by heating at 170 ° C for 20 minutes to obtain a test plate.
  • a test plate was obtained in the same manner as in Example 1, except that the metal surface treatment composition was prepared so that the concentration of the PAA-epoxy reactant (1: 0.5) was 50 ppm instead of 200 ppm.
  • the metal surface treatment composition was prepared so that the concentration of the PAA-epoxy reactant (1: 0.5) was 50 ppm instead of 200 ppm.
  • PAA10C 1% by weight of the above PAA10C was reacted with acetic anhydride (reagent) at a weight ratio of 1: 0.5, a reaction temperature of 25 ° C, and a reaction time of 60 minutes, and this product (PAA-acetic anhydride reactant) was reacted with A test plate was obtained in the same procedure as in Example 1 except that a metal surface treatment composition was prepared in place of the PA A-epoxy reactant (1: 0.5).
  • PAA10C instead of the above PAA-epoxy reactant (1: 0.5), and Snow Tetus N (Colloidal Silica, manufactured by Nissan Chemical Co., Ltd.) were added to the metal surface treatment composition to give a PAA10C concentration of 200 ppm,
  • a test plate was obtained in the same procedure as in Example 1 except that the composition for metal surface treatment was prepared so that the colloidal silica concentration was 200 ppm.
  • PAA-3 low molecular weight polyallylamine, effective concentration 15./. Manufactured by Nitto Boseki Co., Ltd.
  • KBM403 KBM403
  • a test plate was obtained in the same procedure as in Example 1 except that the reactant) was replaced with the PAA-epoxy reactant (1: 0.5) and a metal surface treatment composition was prepared.
  • PAA-1112 (Arylamine.Dimethylallylamine copolymer, nonvolatile content 15% by mass, A test plate was obtained in the same manner as in Example 1 except that Nitto Boseki Co., Ltd.) was replaced with the above PAA-epoxy reactant (1: 0.5) to prepare a metal surface treatment composition.
  • KBE903 (3-Aminopropyl-triethoxysilane, effective concentration 100%, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 N-2 (aminoethyl) _ 3-Aminopropyl-trimethoxysilane, effective concentration 100%, Shin-Etsu) (Chemical Industry Co., Ltd.) 15 parts by weight from a dropping funnel, and dropwise into 70 parts by weight of deionized water (solvent temperature: 25 ° C) as a solvent over 60 minutes.
  • KBE603-KBM903 cocondensate a polycondensate of onolegananosilane having an active ingredient of 30%.
  • a test plate was prepared in the same manner as in Example 1 except that this KBE603-KBM903 cocondensate was used in place of the PAA_epoxy reactant (1: 0.5) to prepare a metal surface treatment composition. Obtained.
  • test plate was prepared in the same procedure as in Example 1 except that nitric acid (reagent) was added to the metal surface treatment composition to prepare a metal surface treatment composition so that the nitric acid concentration was 200 ppm. Got.
  • metal nitrate (reagent) and hydrogen fluoride (reagent) are added to the metal surface treatment composition to prepare a metal surface treatment composition so that the aluminum nitrate concentration is 500 ppm and the hydrogen fluoride concentration is lOOOppm.
  • a test plate was obtained in the same procedure as in Example 1 except that.
  • Resitop PL4012 (Phenol resin, manufactured by Gunei Chemical Co., Ltd.) was added to the metal surface treatment composition to prepare a metal surface treatment composition with a phenol resin concentration of 200 ppm.
  • a test plate was obtained in the same manner as in Example 1.
  • Ade force Toll LB_83 (surfactant, manufactured by Asahi Denka Co., Ltd.) was added to the metal surface treatment composition so that the concentration of the above PAA-epoxy reactant (1: 0.5) was 50 ppm instead of 200 ppm.
  • a test plate was obtained in the same procedure as in Example 1 except that the composition for metal surface treatment was prepared so that the surfactant concentration was 200 ppm.
  • cerium nitrate (reagent) was added to the metal surface treatment composition so that the concentration of the above PAA-epoxy reactant (1: 0.5) would be 50 ppm instead of 200 ppm, and the cerium nitrate concentration would be lOppm.
  • a test plate was obtained in the same manner as in Example 1 except that the metal surface treatment composition was prepared as described above.
  • a test plate was obtained in the same procedure as in Example 1 except that the metal material was changed from the SPC to a high-tensile steel plate (70 mm X 150 mm X O. 8 mm).
  • a test plate was obtained in the same manner as in Example 1 except that the metal surface treatment composition was prepared without adding the PAA-epoxy reactant (1: 0.5) to the metal surface treatment composition. .
  • Example 2 Without adding the above-mentioned PAA-epoxy reactant (1: 0.5) produced in Example 1, and further adding magnesium nitrate (reagent), the composition for metal surface treatment so that the magnesium nitrate concentration becomes 200 ppm.
  • a test plate was obtained in the same manner as in Example 1 except that the product was prepared.
  • Example 2 Without adding the PAA-epoxy reactant (1: 0.5) produced in Example 1, add sodium nitrite (reagent) and add metal so that the sodium nitrite concentration is 2000 ppm. A test plate was obtained in the same procedure as in Example 1 except that the surface treatment composition was prepared.
  • KB M903 (3-aminopropyl-triethoxysilane: effective concentration 100%: manufactured by Shin-Etsu Chemical Co., Ltd. ) was added in the same manner as in Example 1 except that a metal surface treatment composition was prepared so that the KBM903 concentration was 200 ppm.
  • a resin top PL4012 (amino modified phenolic resin, manufactured by Gunei Chemical Co., Ltd.) was further added.
  • a test plate was obtained in the same procedure as in Example 1 except that the metal surface treatment composition was prepared so that the concentration of the top PL4 012 was 200 PP m.
  • the PAA10C was added to the metal surface treatment composition to prepare a metal surface treatment composition to a PAA10C concentration of 200 ppm. Obtained a test plate in the same procedure as in Example 1.
  • a test plate was obtained in the same manner as in Example 1 except that the chemical conversion treatment was changed to the zinc phosphate treatment shown below.
  • a test plate was obtained in the same procedure as in Comparative Example 7 except that the metal material was changed to the high-tensile steel plate (70 mm ⁇ 150 mm ⁇ 0.8 mm) instead of the SPC.
  • the swollen width of the coating film after 00 cycles was measured.
  • the metal material processed by the metal surface treatment method obtained by the present invention has sufficient base hiding property, coating film adhesion, and corrosion resistance, for example, an automobile body before painting, a motorcycle body, etc. It is preferably used in fields where painting treatment is subsequently performed, such as vehicle skins, various parts, container outer surfaces, and coil coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

 十分な素地隠蔽性、塗膜密着性、及び耐食性を得ることができる化成皮膜を形成できる金属表面処理用組成物、この金属表面処理用組成物を用いて金属材料の表面処理を行う金属表面処理方法等を提供する。  金属の表面処理に用いられる金属表面処理用組成物は、ジルコニウム化合物及び/又はチタン化合物と、数平均分子量が150以上500000以下であるポリアミン化合物と、を含有し、ポリアミン化合物は、固形分1gあたり0.1ミリモル以上17ミリモル以下の1級及び/又は2級アミノ基を有し、金属表面処理用組成物中における前記ジルコニウム化合物及び/又はチタン化合物の含有量は、金属元素換算で10ppm以上10000ppm以下であり、ポリアミン化合物に対する、ジルコニウム化合物及び/又はチタン化合物中に含まれるジルコニウム元素及び/又はチタン元素の質量比は、0.1以上100以下である。

Description

明 細 書
金属表面処理用組成物、金属表面処理方法、及び金属材料
技術分野
[0001] 本発明は、金属の表面処理に用いられる金属表面処理用組成物、この金属表面 処理用組成物を用いて金属材料の表面処理を行う金属表面処理方法、及びこの金 属表面処理方法により処理されてなる金属材料に関する。
背景技術
[0002] 一般的に、被処理物に塗装を施す場合、耐食性及び塗膜の密着性を確保する観 点から、表面処理が施される。特に、金属 (金属材料、金属構造物)を塗装する場合 には、金属表面に化学的に化成皮膜を形成する化成処理 (表面処理)が施される。
[0003] その化成処理の一例としては、クロム酸塩によるクロメートィ匕成処理がある力 クロム による有害性が指摘されるようになっており、近年、クロムを含まない処理剤(表面処 理剤、化成処理剤)であるリン酸亜鉛系処理剤による処理(リン酸亜鉛処理)が広く行 われている (例えば、特許文献 1参照)。
[0004] しかしながら、リン酸亜鉛系処理剤は、金属イオン及び酸濃度が高く非常に反応性 の高い処理剤であるため、排水処理における経済性、作業性が良好でなレ、。また、リ ン酸亜鉛系処理剤による金属表面処理に伴っては、水に不溶な塩類が生成して沈 殿となって析出する。このような沈殿物は、一般にスラッジと呼ばれ、このようなスラッ ジを除去し、廃棄することによるコストの発生等が問題とされている。また、リン酸ィォ ンは、富栄養化によって環境に対して負荷を与えるおそれがあるため、廃液の処理 に際して労力を要し、使用しないことが好ましい。更に、リン酸亜鉛系処理剤による金 属表面処理においては、表面調整を行うことが必要とされており、工程が長くなるとい う問題もある。
[0005] このようなリン酸亜 1^系処理剤又はクロメートィ匕成処理剤以外の処理剤として、ジノレ コニゥム化合物を含む化成処理剤が知られている(例えば、特許文献 2参照)。この ジノレコニゥム化合物からなる化成処理剤は、金属イオンの濃度及び酸濃度がそれほ ど高くなく反応性もあまり高くない処理剤であり、排水処理における経済性、作業性 が良好である。また、スラッジの発生が抑制される点で上述したようなリン酸亜鉛系処 理剤に比べて優れた性質を有してレヽる。
[0006] しかし、ジルコニウム化合物からなる処理剤によって得られた化成皮膜は、カチオン 電着塗装等により得られる塗膜との密着性が良好とは言えない。そこで、このようなジ ルコニゥム化合物からなる処理剤においては、リン酸イオン等の成分を併用すること によって、密着性の向上や耐食性を改善することが行われている。しかし、リン酸ィォ ンを併用した場合、上述したような富栄養化とレ、う問題が生じる。
[0007] また、水溶性樹脂成分の添カ卩による塗膜密着性の向上が試みられている(例えば、 特許文献 3参照)。この特許文献 3には、以下の構成からなる金属表面処理用組成 物である化成処理剤が開示されている。即ち、この化成処理剤は、水溶性樹脂を含 む化成処理剤であって、水溶性樹脂は少なくとも下記式(1)、(2)で表される構成単 位を有する。
[化 1]
- CH2— CH ^—— (1 ) - CH2— CH - - - (2)
I ノ 飞 j ノ
NH2 CH2
NH2
[0008] この化成処理剤によれば、ジルコニウムは化成皮膜の皮膜形成成分として、フッ素 は金属材料に対するエッチング剤として、それぞれ作用することにより、金属材料の 耐食性や密着性を向上させることができる。更に、アミノ基を含有する水溶性樹脂、 具体的には、ポリビュルァミン樹脂又はポリアリルアミン樹脂は、金属材料の表面ば 力、りでなぐ化成処理の後に形成される塗膜に作用することにより、金属材料の表面 と塗膜との密着性を向上させることができる。
特許文献 1 :特開平 10— 204649号公報
特許文献 2 :特開平 7— 310189号公報
特許文献 3:特開 2004— 218074号公報
発明の開示
発明が解決しょうとする課題 [0009] し力しながら、特許文献 3に記載の化成処理剤では、水溶性樹脂のァミノ基が化成 処理剤中に過剰に存在する場合、水分子が過剰のァミノ基に引き寄せられる。この 引き寄せられた水分子は、塗膜を浮き上がらせるブリスターを発生させ、素地隠蔽性 とともに、塗膜密着性及び耐食性を悪化させる。
[0010] 本発明は、以上のような課題に鑑みてなされたものであり、その目的は、十分な素 地隠蔽性、塗膜密着性、及び耐食性を得ることができる化成皮膜を形成できる金属 表面処理用組成物、この金属表面処理用組成物を用いて金属材料の表面処理を行 う金属表面処理方法、及びこの金属表面処理方法により処理されてなる金属材料を 提供することにある。
課題を解決するための手段
[0011] 本発明者らは上述の課題を解決するために鋭意研究した。その結果、ジノレコニゥム 化合物及び/又はチタン化合物と、ポリアミン化合物と、を含有する金属表面処理用 組成物において、ポリアミン化合物中の 1級、 2級ァミノ基の含有量を特定することに より、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的に は、本発明は以下のようなものを提供する。
[0012] (1) 金属の表面処理に用いられる金属表面処理用組成物であって、ジノレコニゥム 化合物及び/又はチタン化合物と、数平均分子量が 150以上 500000以下である ポリアミン化合物と、を含有し、前記ポリアミン化合物は、固形分 lgあたり 0. 1ミリモル 以上 17ミリモル以下の 1級及び Z又は 2級アミノ基を有し、前記金属表面処理用組 成物中における前記ジルコニウム化合物及び/又はチタン化合物の含有量は、金 属元素換算で lOppm以上 lOOOOppm以下であり、前記ポリアミンィ匕合物に対する、 前記ジノレコニゥム化合物及び/又はチタン化合物中に含まれるジルコニウム元素及 び/又はチタン元素の質量比は、 0. 1以上 100以下である金属表面処理用組成物
[0013] (2) 前記ポリアミン化合物は、 1級及び/又は 2級ァミノ基含有化合物と、前記 1級 及び/又は 2級ァミノ基と反応性を有する官能基 Aを有するァミン活性低減化合物 A と、の反応により生成された生成物である(1)記載の金属表面処理用組成物。
[0014] (3) 前記生成物は、前記 1級及び/又は 2級ァミノ基 100ミリモルに対して、前記 官能基 Aを 1ミリモル以上 60ミリモル以下反応させて生成されたものである(2)記載 の金属表面処理用組成物。
[0015] (4) 前記官能基 Aは、グリシジノレ基、イソシァネート基、アルデヒド基、及び、酸無 水物基よりなる群から選ばれる少なくとも 1種である(2)又は(3)記載の金属表面処 理用組成物。
[0016] (5) 金属の表面処理に用いられる金属表面処理用組成物であって、ジルコニウム 化合物及び/又はチタン化合物と、数平均分子量が 150以上 500000以下である ポリアミン化合物と、を含有し、前記ポリアミン化合物は、 1級及び/又は 2級ァミノ基 含有化合物と、前記 1級及び Z又は 2級ァミノ基と相互作用してアミン活性を低減さ せる官能基 Bを少なくとも一つ含有するァミン活性低減化合物 Bと、の相互作用により 生成された生成物であり、前記金属表面処理用組成物中における前記ジルコニウム 化合物及び/又はチタン化合物の含有量は、金属元素換算で lOppm以上 10000 ppm以下であり、前記ポリアミン化合物に対する、前記ジルコニウム化合物及び/又 はチタン化合物中に含まれるジルコニウム元素及び/又はチタン元素の質量比は、 0. 1以上 100以下である金属表面処理用組成物。
[0017] (6) 前記生成物は、前記 1級及び/又は 2級ァミノ基 100ミリモルに対して、前記 官能基 Bを 1ミリモル以上 60ミリモル以下相互作用させて生成されたものである(5)記 載の金属表面処理用組成物。
[0018] (7) 前記官能基 Bは、カルボキシル基、スルホン酸基、リン酸基、シラノール基、及 び、亜リン酸基よりなる群から選ばれる少なくとも 1種である(5)又は(6)いずれか記 載の金属表面処理用組成物。
[0019] (8) 前記ポリアミン化合物は、下記の式(1)、式(2)、及び、式(3)で表される構成 単位のうち少なくとも 1種を有する化合物である(1)から (7)レ、ずれか記載の金属表 面処理用組成物。
[化 2] CH2— CH - CH2— CH - - - - (2)
I ノ ゝ I ノ
NH2 CH2
I
NH,
Figure imgf000006_0001
(式(3)中の Rは、炭素数 1〜6のアルキレン基であり、 Rは、下記式(4)から(6)で
1 2
表される置換基である、 Rは、 _〇H、 -OR、又は、 _R (R、 Rは炭素数 1〜6の
3 4 5 4 5
アルキル基を表す。 ) )
[化 3]
Figure imgf000006_0002
Figure imgf000006_0003
(式(6)中の Rは、水素原子、炭素数 1〜6のァミノアルキル基、又は、炭素数:!〜 6
6
のアルキル基であり、 Rは、水素原子、又は、炭素数 1〜6のァミノアルキル基である
。 )
[0020] (9) 前記金属表面処理用糸且成物の pHは、 1 · 5以上 6· 5以下である(1)から(8) レ、ずれか記載の金属表面処理用組成物。
[0021] (10) フッ素化合物を更に含有し、前記金属表面処理用組成物中における遊離フ ッ素元素の含有量は、 0. Olppm以上 lOOppm以下である(1)から(9)いずれか記 載の金属表面処理用組成物。
[0022] (11) 前記金属表面処理用組成物は、硝酸、亜硝酸、硫酸、亜硫酸、過硫酸、リ ン酸、カルボン酸基含有化合物、スルホン酸基含有化合物、塩酸、臭素酸、塩素酸 、過酸化水素、 HMnO、 HVO 、 H WO、及び、 H MoO、並びに、これらの塩類
4 3 2 4 2 4
よりなる群から選ばれる少なくとも 1種の酸化剤を更に含有する(1)から(10)いずれ か記載の金属表面処理用組成物。
[0023] (12) マグネシウム、亜鉛、カルシウム、アルミニウム、ガリウム、インジウム、銅、鉄 、マンガン、ニッケル、コバルト、セリウム、ストロンチウム、希土類元素、及び、銀よりな る群から選ばれる少なくとも 1種の金属元素を更に含有する(1)から(11)いずれか記 載の金属表面処理用組成物。
[0024] (13) 前記金属表面処理用組成物は、ノニオン系界面活性剤、ァニオン系界面活 性剤、カチオン系界面活性剤、及び、両面活性剤よりなる群から選ばれる少なくとも 1 種を更に含有する(1)から(12)レ、ずれか記載の金属表面処理用組成物。
[0025] (14) 金属材料の表面を処理する金属表面処理方法であって、(1)から(13)いず れか記載の金属表面処理用組成物を含む金属表面処理液を前記金属材料に接触 させる処理液接触工程と、前記処理液接触工程を経た金属材料を水洗する水洗ェ 程と、を含む金属表面処理方法。
[0026] (15) 前記処理液接触工程において、前記金属材料の脱脂処理を同時に行う(1 4)記載の金属表面処理方法。
[0027] (16) 前記処理液接触工程において、前記金属材料を陰極として電解処理する( 14)又は(15)記載の金属表面処理方法。
[0028] (17) 前記水洗工程を経た金属材料に、コバルト、ニッケル、スズ、銅、チタン、及 び、ジノレコニゥムからなる群より選ばれる少なくとも 1種を含有する酸性水溶液を接触 させる酸接触工程を含む(14)から(16)レ、ずれか記載の金属表面処理方法。
[0029] (18) 前記水洗工程を経た金属材料に、水溶性高分子化合物及び水分散性高分 子化合物のうち少なくとも一方を含有する高分子含有液を接触させる高分子含有液 接触工程を含む(14)から(17)レ、ずれか記載の金属表面処理方法。
[0030] (19) (14)から(18)いずれか記載の金属表面処理方法により処理されてなる金 属材料。
[0031] (20) 鉄系金属材料表面に表面処理皮膜層を有する(19)記載の金属材料であ つて、前記表面処理皮膜層は、ジルコニウム元素及び/又はチタン元素を 10mg/ m2以上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジルコ二 ゥム元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属材料。
[0032] (21) 亜鉛系金属材料表面に表面処理皮膜層を有する(19)記載の金属材料で あって、前記表面処理皮膜層は、ジルコニウム元素及び/又はチタン元素を 10mg /m2以上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジルコ ニゥム元素及び Z又はチタン元素質量比は、 0. 05以上 500以下である金属材料。
[0033] (22) アルミニウム系金属材料表面に表面処理皮膜層を有する(19)記載の金属 材料であって、前記表面処理皮膜層は、ジルコニウム元素及び/又はチタン元素を 5mgZm2以上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジ ルコニゥム元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属材 料。
[0034] (23) マグネシウム系金属材料表面に表面処理皮膜層を有する(19)記載の金属 材料であって、前記表面処理皮膜層は、その最表面に、ジノレコニゥム元素及び/又 はチタン元素を 5mg/m2以上含有し、前記表面処理皮膜層の XPS分析による窒素 元素に対するジルコニウム元素及び/又はチタン元素質量比は、 0. 05以上 500以 下である金属材料。
発明の効果
[0035] 本発明によれば、ジルコニウム化合物及び Z又はチタンィ匕合物と、アミノ基を有す るポリアミン化合物と、を含有する金属表面処理用組成物において、上記ポリアミン 化合物は、数平均分子量が 150以上 500000以下であり、かつ、固形分 lgあたり 0. 1ミリモル以上 17ミリモル以下の 1級及び Z又は 2級アミノ基を有し、上記金属表面処 理用組成物中におけるジルコニウム化合物及び/又はチタン化合物の含有量は、 金属元素換算で lOppm以上 lOOOOppm以下であり、上記ポリアミン化合物に対す る、上記ジノレコニゥム化合物及び/又はチタン化合物中に含まれるジルコニウム元 素及び/又はチタン元素の質量比は、 0. 1以上 100以下であることによって、十分 な素地隠蔽性、塗膜密着性、及び耐食性を有する化成皮膜を形成できる金属表面 処理用組成物を提供することができる。また、この金属表面処理用組成物を用いて 金属材料の表面処理を行う金属表面処理方法、及びこの金属表面処理方法により 処理されてなる金属材料を提供することができる。
発明を実施するための形態
[0036] 以下、本発明の実施形態について説明する。
[0037] ぐ金属表面処理用組成物 >
本実施形態に係る金属表面処理用組成物は、金属の表面処理に用いられるもの であり、ジルコニウム化合物及び/又はチタン化合物と、ポリアミン化合物と、を含有 するものである。
[0038] また、本実施形態に係る金属表面処理用組成物は、水で希釈、調整されて金属表 面処理液とされ、金属の表面処理に供される。
[0039] [ジルコニウム化合物及び/又はチタン化合物成分]
前記金属表面処理用組成物に含まれるジルコニウム化合物及び/又はチタン化 合物成分由来のジルコニウム及び/又はチタンは、化成皮膜形成成分である。金属 材料にジルコニウム及び/又はチタンを含む化成皮膜が形成されることにより、金属 材料の耐食性ゃ耐磨耗性を向上させることができる。
[0040] 本実施形態に係るジルコニウム及び Z又はチタンを含む金属表面処理用組成物 により金属材料の表面処理を行うと、金属材料を構成する金属の溶解反応が起こる。 金属の溶解反応が起こると、ジルコニウム及び Z又はチタンのフッ化物を含む場合 は、金属表面処理用組成物中に溶出した金属イオン力 rF 2 及び/又は TiF 2_の
6 6 フッ素を引き抜くことにより、また、界面の pHが上昇することにより、ジルコニウム及び
/又はチタンの水酸化物又は酸化物が生成する。そして、このジルコニウム及び Z 又はチタンの水酸化物又は酸化物力 金属材料の表面に析出すると考えられる。本 実施形態に係る金属表面処理用組成物は反応型化成処理剤であるため、複雑な形 状を有する金属材料の浸漬処理にも用いることが可能である。また、化学反応により 強固に金属材料に付着した化成皮膜を得ることができるため、処理後に水洗を行うこ とも可能である。
[0041] ジルコニウム化合物としては特に限定されるものではないが、例えば、 K ZrF等の
2 6 アルカリ金属フルォロジルコネート、(NH ) ZrF等のフルォロジルコネート、 H ZrF 等の可溶性フルォロジルコネート、フッ化ジルコニウム、酸化ジルコニウム、硝酸ジ
6
ルコニル、炭酸ジルコニウム、等を挙げることができる。
[0042] チタン化合物としては特に限定されるものではなレ、が、例えば、アルカリ金属フルォ 口チタネート、(NH ) TiF等のフルォロチタネート、 H TiF等のフルォロチタネート
4 2 6 2 6
酸等の可溶性フルォロチタネート等、フッ化チタン、酸化チタン、等を挙げることがで きる。
[0043] [ジノレコニゥム及び/又はチタンの含有量]
本実施形態に係る金属表面処理用組成物中におけるジルコニウム及び/又はチ タンの含有量は、金属元素換算で lOppm以上 lOOOOppm以下の範囲内であること が好ましい。 lOppm未満であると、金属材料上に十分な皮膜量が得られず、一方で lOOOOppmを超えると、それ以上の効果は望めず経済的に不利となる。この含有量 は、金属元素換算で 50ppm以上 lOOOppm以下であることがより好ましい。
[0044] [遊離フッ素成分]
本実施形態に係る金属表面処理用組成物には、フッ素化合物を更に含有すること あでさる。
[0045] 本実施形態に係る金属表面処理用組成物に含まれるフッ素元素は、金属材料の エッチング剤及びジノレコニゥム及び/又はチタンの錯化剤としての役割を果たすもの である。フッ素元素の供給源としては特に限定されるものではないが、例えば、フッ化 水素酸、フッ化アンモニゥム、フッ化ホウ素酸、フッ化水素アンモニゥム、フッ化ナトリ ゥム、フッ化水素ナトリウム等のフッ化物を挙げることができる。また、錯フッ化物を供 給源とすることも可能であり、例えば、へキサフルォロケィ酸塩、具体的には、ケィフッ 化水素酸、ケィフッ化水素酸亜鉛、ケィフッ化水素酸マンガン、ケィフッ化水素酸マ グネシゥム、ケィフッ化水素酸ニッケル、ケィフッ化水素酸鉄、ケィフッ化水素酸カル シゥム等を挙げることができる。
[0046] [遊離フッ素成分の含有量]
本実施形態に係る金属表面処理用組成物における遊離フッ素元素の含有量は、 0 . Olppm以上 lOOppm以下である。ここで、「遊離フッ素元素の含有量」とは、処理 浴中で遊離状態にあるフッ素イオンの濃度を意味し、フッ素イオン電極を有するメー ターで処理浴を測定することにより求められる。金属表面処理用組成物おける遊離フ ッ素元素の含有量が 0. Olppm未満であると、溶液が不安定となり沈殿が生じる場合 があり、かつエッチング力が低下して十分に皮膜形成が行われない。一方で、 ΙΟΟρ pmを超えると、エッチング過多となりジルコニウムの皮膜形成が行われなレ、。この金 属表面処理用組成物中における遊離フッ素元素の含有量は、 0. lppm以上 20pp m以下であることがより好ましい。
[0047] [ポリアミンィ匕合物]
本実施形態に係る金属表面処理用組成物に含まれるポリアミン化合物は、分子中 に複数のアミノ基を有する高分子化合物である。このアミノ基を含有するポリアミンィ匕 合物は、化成皮膜と、その後に形成される塗膜の双方に作用するため、両者の密着 性を向上させることができる。
[0048] [ポリアミン化合物の分子量]
ポリアミン化合物は、数平均分子量が 150以上 500000以下の範囲内である。 150 未満であると、充分な塗膜密着性を有する化成皮膜が得られず好ましくない。 5000 00を超えると、皮膜形成を阻害するおそれがある。上記下限は、 5000がより好ましく 、上記上限は、 70000力 Sより好ましレヽ。
[0049] [ァミノ基含有化合物の構造式]
ポリアミンィ匕合物の一例としては、以下の構造を採用するポリアミン化合物を挙げる ことがでさる。即ち、このポリアミンィ匕合物は、少なくとも一部に下記式(1)、(2)、 (3) で表される構成単位のうち 1種を有する化合物である。
[化 4]
CH2— CH - CH2— CH - - - - (2)
I ノ ゝ I ノ
NH2 CH2
I
NH,
Figure imgf000012_0001
(式(3)中の Rは、炭素数 1〜6のアルキレン基であり、 Rは、下記の式(4)から(6)
1 2
で表される置換基であり、 Rは、 _〇H、 -OR、又は、 _R (R、 Rは炭素数:!〜 6
3 4 5 4 5
のアルキル基である。)である。 )
[化 5]
Figure imgf000012_0002
(式(6)中の Rは、水素原子、炭素数 1〜6のァミノアルキル基、又は、炭素数:!〜 6
6
のアルキル基であり、 Rは、水素原子、又は、炭素数 1〜6のァミノアルキル基である
。 )
ポリアミン化合物は、上記式(1)で表される構成単位のみからなるポリビュルァミン 樹脂、上記式(2)で表される構成単位のみからなるポリアリルアミン樹脂、及び、上記 式(3)で表される構成単位のみからなるポリシロキサンであることが特に好ましレ、。ポ リシロキサンの一例としては、 N— (2 アミノエチル) 3 ァミノプロピルメチルジメト キシシラン、 N— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— (2- アミノエチル) 3—ァミノプロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラ ン、 3—ァミノプロピルトリエトキシシラン、 3—トリエトキシシリル一 N— (1, 3—ジメチ ノレ一ブチリデン)プロピルァミン、 N フエニル一 3—ァミノプロピルトリメトキシシラン、 N— (ビニルベンジル) 2 アミノエチル一 3 ァミノプロピルトリメトキシシランの塩 酸塩等を挙げることができる。上記ポリビュルァミン樹脂、ポリアリルァミン樹脂及びポ リシロキサンは、特に、密着性を向上する効果に優れている点で好ましい。
[0051] 上記ポリビュルァミン樹脂としては特に限定されず、例えば、 PVAM— 0595B (三 菱化学社製)等の市販のポリビュルァミン樹脂を使用することができる。上記ポリアリ ルァミン樹脂としては特に限定されず、例えば、 PAA— 01、 PAA- 10C, PAA—H _ 10C、 PAA—D— 41HC いずれも日東紡績社製)等の市販のポリアリルアミン樹 脂を使用することができる。上記ポリアミノシロキサンとしては特に限定されず、市販 のポリシロキサンを使用することができる。また、ポリビニノレアミン樹脂、ポリアリルアミ ン樹脂、及び、ポリシロキサンのうち 2種以上を併用してもよい。
[0052] 上記ポリアミンィ匕合物は、 1級及び/又は 2級アミノ基を有する。本実施形態に係る 金属表面処理用組成物では、上記ポリアミン化合物が有する 1級及び/又は 2級アミ ノ基、具体的には、 1級及び/又は 2級ァミノ基の活性水素(以下、ァミン活性)を適 切に制御する必要がある。ポリアミン化合物の有する 1級及び/又は 2級ァミノ基が 少ないと密着性が得られず、逆に、必要以上に多い場合は、余分な 1級及び/又は 2級ァミノ基が悪影響を及ぼし、ブリスターが発生することにより、素地隠蔽性とともに 、塗膜密着性及び耐食性を悪化させるためである。
[0053] [ァミン活性を適切に制御するための第 1の手段]
ポリアミンィ匕合物が有するァミン活性を適切に制御するための第 1の手段は、ポリア ミンィ匕合物が有する 1級及び Z又は 2級ァミノ基を、固形分 lgあたり 0. 1ミリモル以上 17ミリモル以下に制御することである。より好ましくは、固形分 lgあたり 3ミリモル以上 15ミリモル以下に制御する。
[0054] しかし、樹脂固形分 lgあたりの 1級及び/又は 2級ァミノ基のモル数が 0. 1ミリモル 未満であると、その後に形成される塗膜との密着性が得られず、樹脂固形分 lgあたり の 1級及び Z又は 2級ァミノ基のモル数が 17ミリモルを超えると、余分なァミノ基が悪 影響を及ぼし、ブリスターが発生することにより、素地隠蔽性とともに、塗膜密着性及 び耐食性を悪化させる。
[0055] ここで、ポリアミン化合物のうち、例えば、上記式(1)で表される構成単位のみから なる化合物であるポリビエルアミン榭脂のアミン価(「樹脂固形分 lgあたりの 1級及び /又は 2級ァミノ基のミリモル数」とする)は 23. 3、上記式(2)で表される構成単位の みからなる化合物であるポリアリルアミン樹脂のアミン価は 17. 5であり、上記いずれ の樹脂も、樹脂固形分 lgあたり 17ミリモルを超える 1級及び/又は 2級アミノ基を有し ているため、 1級及び Z又は 2級ァミノ基を、固形分 lgあたり 17ミリモルを超えないよ うに制御する必要がある。なお、上記アミン価は、米国試験 ·材料協会規格 (ASTM D 2073及び ASTM D 2074)に従って測定することが可能である。
[0056] これに対して、ポリアミン化合物力 上記式(3)で表される構成単位のみからなるポ リシロキサンである場合は、固形分 lgあたり 17ミリモルを超えることはない。
[0057] 以上より、 1級及び Z又は 2級ァミノ基を、「固形分 lgあたり 0. 1ミリモル以上 17ミリ モル以下」に制御するために、ポリアミン化合物は、「1級及び/又は 2級アミノ基を含 有する化合物(以下、 1級及び/又は 2級ァミノ基含有化合物)と、上記 1級及び/又 は 2級ァミノ基と反応性を有する官能基 Aを有するァミン活性低減化合物と、の反応 により生成された物(生成物)であることが好ましい。即ち、 1級及び/又は 2級ァミノ 基を他の官能基と反応させたり、又は、ビュルアミンゃァリルアミンを他のビニル基含 有化合物ゃァリル基含有化合物と共重合させたりすることにより、 1級及び/又は 2 級ァミノ基が固形分 lgあたり 17ミリモルを超えないように制御することが望ましい。
[0058] <反応割合 >
更に、上記生成物は、 1級及び/又は 2級ァミノ基 100ミリモルに対して、官能基 A を 1ミリモル以上 60ミリモル以下反応させて生成されたものであることが好ましい。 1ミ リモル未満の場合は、過剰なァミノ基が悪影響を及ぼし、ブリスターが発生することに より、素地隠蔽性とともに、塗膜密着性及び耐食性が悪化する。 60ミリモルを超える 場合には、その後に形成される塗膜との密着性が得られない。上記生成物は、 1級 及び/又は 2級ァミノ基 100ミリモルに対して、官能基 Aを 1ミリモル以上 30ミリモル以 下反応させて生成されたものであることがより好ましレ、。
[0059] <官能基 A> 1級及び/又は 2級ァミノ基と反応性を有する官能基 Aとしては特に限定されず、例 えば、グリシジル基、イソシァネート基、アルデヒド基、及び、酸無水物基等を挙げるこ とができる。
[0060] ここで、例えば、 1級及び/又は 2級ァミノ基含有化合物がポリアリルァミンであり、 官能基 A力 Sイソシァネート基である場合に、ポリアリルァミンとイソシァネート基を有す るァミン活性低減化合物 Aと、の反応により生成されたポリアミン化合物は、 1級及び /又は 2級ァミノ基が、固形分 lgあたり 17ミリモル以下となる。従って、本実施形態に 係る金属表面処理用組成物を定性測定した結果、上記ポリアミン化合物が検出され た場合は、ポリアミン化合物は、 1級及び/又は 2級ァミノ基力 固形分 lgあたり 17ミ リモル以下と推定される。
[0061] [ァミン活性を適切に制御するための第 2の手段]
また、ポリアミン化合物が有するァミン活性を適切に制御するための第 2の手段は、 ポリアミンィ匕合物を、 1級及び/又は 2級ァミノ基含有化合物と、 1級及び/又は 2級 ァミノ基と相互作用してァミン活性を低減させる官能基 Bを少なくとも一つ含有するァ ミン活性低減化合物 Bと、の相互作用により生成された生成物とすることである。即ち 、 1級及び/又は 2級ァミノ基と、他の官能基 Bと、の相互作用により、ポリアミン化合 物が有するァミン活性を適切に制御する。ここで、本発明において、「1級及び/又 は 2級ァミノ基と、他の官能基 Bと、の相互作用」とは、 1級及び/又は 2級ァミノ基と、 他の官能基 Bとの、イオン結合力、水素結合力、双極子相互作用力、及び、ファンデ ルヮールスカ等に由来する相互作用であって、十分な素地隠蔽性、塗膜密着性、及 び耐食性を有する化成皮膜を形成することができるような相互作用をいう。
[0062] <相互作用割合 >
更に、 1級及び/又は 2級ァミノ基含有化合物と、官能基 Bを有するァミン活性低減 化合物 Bと、の相互作用により生成された生成物は、 1級及び/又は 2級ァミノ基 100 ミリモルに対して、官能基 Bを 1ミリモル以上 60ミリモル以下相互作用させて生成され たものであることが好ましい。 1ミリモル未満の場合は、過剰なァミノ基が悪影響を及 ぼし、ブリスターが発生することにより、素地隠蔽性とともに、塗膜密着性及び耐食性 が悪化する。 60ミリモルを超える場合には、その後に形成される塗膜との密着性が得 られない。上記生成物は、 1級及び/又は 2級ァミノ基 100ミリモルに対して、官能基 Bを 1ミリモル以上 30ミリモル以下相互作用されて生成されたものであることがより好 ましい。
[0063] [官能基 B]
ここで、 1級及び Z又は 2級ァミノ基と相互作用する官能基 Bとしては特に限定され ず、例えば、カルボキシル基、スルホン酸基、リン酸基、シラノール基、及び、亜リン酸 基等を挙げることができる。
[0064] 上記官能基 A、及び、上記官能基 Bのうち少なくとも一方を有する化合物の例示と しては、 3 _イソシァネートプロピル一トリエトキシシラン、コロイダルシリカ、エポキシ 樹脂、無水酢酸、及び、ポリリン酸等を挙げることができるが、これらの例示に限定さ れない。また、市販されている KBE9007 (信越化学工業社製)、 XS1003 (チッソ社 製)等をそのまま使用することも可能である。
[0065] [ポリアミン化合物に対するジルコニウム元素及び/又はチタン元素の質量比] また、ポリアミン化合物に対する、ジルコニウム化合物及び/又はチタン化合物中 に含まれるジルコニウム元素及び/又はチタン元素の質量比は、 0. 1以上 100以下 である。 0. 1未満であると、耐食性、密着性を得ることができない。 100を超えると、表 面処理皮膜層にクラックが発生し易くなり、均一な皮膜を得ることが困難となる。好ま しくは、上記質量比は、 0. 5以上 20以下である。
[0066] [金属表面処理用組成物の pH]
本実施形態で用いられる金属表面処理用組成物の pHは、 1. 5以上 6. 5以下であ ることが好ましい。 pHが 1. 5未満であると、エッチングが過剰となり充分な皮膜形成 力 Sできなくなる場合や、皮膜が不均一となり、塗装外観に悪影響を与える場合がある 。一方で、 6. 5を超えると、エッチングが不充分となり良好な皮膜が得られない。 pH は、 2以上 5以下であることがより好ましぐ 2. 5以上 4. 5以下の範囲であることが更に 好ましい。
[0067] なお、金属表面処理用組成物の pHは、硝酸、硫酸等の酸性化合物、及び、水酸 化ナトリウム、水酸化カリウム、アンモニア等の塩基性化合物を使用して調整すること ができる。 [0068] [界面活性剤]
また、本実施形態に係る金属表面処理用組成物には、ノニオン系界面活性剤、ァ 二オン系界面活性剤、カチオン系界面活性剤及び両性界面活性剤からなる群から 選ばれる少なくとも 1種の界面活性剤を含有することができる。ノニオン系界面活性 剤、ァニオン系界面活性剤、カチオン系界面活性剤及び両性界面活性剤としては、 それぞれ従来公知のものを用いることができる。本実施形態に用いられる金属表面 処理用組成物がこれらの界面活性剤を含有する場合は、金属材料をあらかじめ脱脂 処理し、清浄化しておかなくても、良好な皮膜を形成させることができる。
[0069] [金属元素]
本実施形態に係る金属表面処理用組成物には、塗膜に密着性及び耐食性を付与 させることが可能である金属元素を含有させることができる。化成処理剤である金属 表面処理用組成物に含有させることのできる金属元素としては、マグネシウム、亜鉛 、カルシウム、ァノレミニゥム、ガリウム、インジウム、銅、鉄、マンガン、ニッケル、コバノレ ト、セリウム、ストロンチウム、希土類元素、及び、銀が挙げられる。
[0070] [酸化剤]
また、本実施形態に係る金属表面処理用組成物には、皮膜形成反応を促進するた めの酸化剤を含有させることができる。金属表面処理用組成物に含有させることので きる酸化剤としては、硝酸、亜硝酸、硫酸、亜硫酸、過硫酸、リン酸、カルボン酸基含 有化合物、スルホン酸基含有化合物、塩酸、臭素酸、塩素酸、過酸化水素、 HMnO
、 HVO 、 H WO、及び、 H MoO、並びに、これらの塩類が挙げられる。
4 3 2 4 2 4
[0071] <金属表面処理方法 >
本実施形態の金属の表面処理を行う金属表面処理方法は、特に限定されるもので はなぐ本実施形態に係る金属表面処理用組成物を含む金属表面処理液を金属材 料に接触させることによって行うことができる。即ち、本実施形態に係る金属表面処理 方法は、金属表面処理用組成物を含む金属表面処理液を接触させる処理液接触ェ 程を含む。上記金属表面処理方法の一例としては、浸漬法、スプレー法、ロールコ ート法、流しかけ処理法等を挙げることができる。
[0072] [表面処理条件] 表面処理における処理温度は、 20°C以上 70°C以下の範囲内であることが好ましい 。 20°C以下では、十分な皮膜形成が行われない可能性があり、また、夏場に温度調 整が必要となる等の不都合があり、 70°C以上にしても、特に効果はなぐ経済的に不 禾 IJとなるだけである。この処理温度は、 30°C以上 50°C以下の範囲であることがより好 ましい。
[0073] 表面処理における処理時間は、 5秒以上 1100秒以下の範囲内であることが好まし レ、。 5秒以下では、十分な皮膜量が得られないので不都合であり、 1100秒以上では 、これ以上の皮膜量を増加させても効果が得られないので無意味である。この処理 時間は、 30秒以上 120秒以下の範囲であることがより好ましい。
[0074] 本実施形態に係る金属表面処理方法は、従来から実用化されているリン酸亜鉛系 化成処理剤による処理と比較して、表面調整処理を行わなくてもよい。このため、より 少ない工程で金属材料の化成処理を行うことが可能となる。
[0075] また、本実施形態に係る金属表面処理方法は、金属材料を陰極として電解処理す ることもできる。この場合、陰極である金属材料界面で水素の還元反応が起こり、 pH が上昇する。 pHの上昇に伴い、陰極界面でのジルコニウム及び/又はチタンの元 素を含む化合物の安定性が低下し、酸化物又は水を含む水酸化物として、表面処 理皮膜が析出する。
[0076] [金属材料]
本実施形態に係る金属表面処理方法において用いられる金属材料としては、特に 限定されるものではなレ、が、例えば、鋼板、アルミニウム板等を挙げることができる。 鋼板は、冷延鋼板又は熱延鋼板、及び軟鋼板又は高張力鋼板のいずれをも含むも のであり、特に限定されず、例えば鉄系基材 (鉄系金属材料)、アルミニウム系基材( アルミニウム系金属材料)、亜鉛系基材(亜鉛系金属材料)、及び、マグネシウム系基 材 (マグネシウム系金属材料)等を挙げることができる。鉄系基材とは鉄及び/又は その合金からなる基材 (金属材料)、アルミニウム系基材とはアルミニウム及び Z又は その合金からなる基材 (金属材料)、亜鉛系基材とは亜鉛及び Z又はその合金から なる基材 (金属材料)を意味する。マグネシウム系基材とはマグネシウム及び Z又は その合金力 なる基材 (金属材料)を意味する。 [0077] また、本実施形態に係る金属表面処理方法は、鉄系基材、アルミニウム系基材、及 び、亜鉛系基材等の複数の金属基材からなる金属材料に対しても、同時に適用する こと力 Sできる。 自動車車体や自動車用部品等は、鉄、亜鉛、アルミニウム等の種々の 金属材料により構成されているが、本実施形態の金属表面処理方法によれば、この ような自動車車体や自動車車体用部品等に対しても、一回で良好な表面処理を施 すことができる。
[0078] 本実施形態に係る金属材料として用いられる鉄系基材としては、特に限定されず、 例えば、冷延鋼板、熱延鋼板等を挙げることができる。また、アルミニウム系基材とし ては、特に限定されず、例えば、 5000番系ァノレミニゥム合金、 6000番系ァノレミニゥ ム合金、アルミニウム系の電気めつき、溶融めつき、蒸着めつき等のアルミニウムめつ き鋼板等を挙げることができる。また、亜鉛系基材としては、特に限定されず、例えば 、亜鉛めつき鋼板、亜鉛—ニッケルめっき鋼板、亜鉛—鉄めつき鋼板、亜鉛—クロム めっき鋼板、亜鉛 アルミニウムめっき鋼板、亜鉛 チタンめつき鋼板、亜鉛ーマグ ネシゥムめっき鋼板、亜鉛 マンガンめっき鋼板等の亜鉛系の電気めつき、溶融めつ き、蒸着めつき鋼板等の亜鉛又は亜鉛系合金めつき鋼板等を挙げることができる。高 張力鋼板としては、強度や製法により多種多様なグレードが存在するが、例えば JSC 440J、 440P、 440W、 590R、 590T、 590Y、 780T、 780Y、 980Y、 1180Y等を 挙げること力 Sできる。
[0079] [表面処理皮膜量]
冷延鋼板、熱延鋼板、铸鉄、焼結材等の鉄系金属材料の耐食性を高め、均一な表 面処理皮膜を形成し、良好な密着性を得るためには、鉄系金属材料表面に形成さ れる表面処理皮膜層がジノレコニゥム元素及び Z又はチタン元素を 10mg/m2以上 含有する場合は、表面処理皮膜層の XPS分析による窒素元素に対するジルコユウ ム元素及び/又はチタン元素質量比は、 0. 05以上 500以下であることが好ましい。
[0080] また、亜鉛又は亜鉛めつき鋼板、合金化溶融亜鉛めつき鋼板等の亜鉛系金属材料 の耐食性を高め、均一な化成皮膜を形成し、良好な密着性を得るためには、亜鉛系 金属材料表面に形成される表面処理皮膜層がジルコニウム元素及び Z又はチタン 元素を lOmgZm2以上含有する場合は、表面処理皮膜層の XPS分析による窒素元 素に対するジルコニウム元素及び/又はチタン元素質量比は、 0. 05以上 500以下 であることが好ましい。
[0081] 更に、アルミニウム铸物、アルミニウム合金板等のアルミニウム系金属材料の耐食 性を高め、均一な化成皮膜を形成し、良好な密着性を得るためには、アルミニウム系 金属材料表面に形成される表面処理皮膜層がジルコニウム元素及び Z又はチタン 元素を 5mgZm2以上含有する場合は、表面処理皮膜層の XPS分析による窒素元 素に対するジノレコニゥム元素及び Z又はチタン元素質量比は、 0. 05以上 500以下 であることが好ましい。
[0082] 更に、マグネシウム合金板、マグネシウム錡物等のマグネシウム系金属材料の耐食 性を高め、均一な化成皮膜を形成し、良好な密着性を得るためには、マグネシウム系 金属材料表面に形成される表面処理皮膜層がジルコニウム元素及び Z又はチタン 元素を 5mgZm2以上含有する場合は、表面処理皮膜層の XPS分析による窒素元 素に対するジルコニウム元素及び/又はチタン元素質量比は、 0. 05以上 500以下 であることが好ましい。
[0083] いずれの金属材料においても、表面処理皮膜層の皮膜量の上限は特にないが、 皮膜量が多すぎると、表面処理皮膜層にクラックが発生し易くなり、均一な皮膜を得 る作業が困難となる。この点で、本実施形態の金属表面処理方法によって形成され た表面処理皮膜の皮膜量は、ジルコニウム及び/又はチタンを金属元素換算で lg /m2以下であるのが好ましぐ 800mg/m2以下であるのがより好ましい。
[0084] [金属材料の前処理]
本実施形態に係る金属材料は、脱脂処理により清浄化された金属材料であること が好ましい。更には、本実施形態の金属材料は、脱脂処理をした後、水洗処理を行 うことが好ましレ、。これら脱脂処理や水洗処理は、金属材料の表面に付着している油 分や汚れを除去するために行われるものであり、無リン'無窒素脱脂洗浄液等の脱脂 剤により、通常 30°C〜55°Cにおいて数分間程度の浸漬処理がなされる。所望により 、脱脂処理の前に、予備脱脂処理を行うことも可能である。また、脱脂処理後の水洗 処理は、脱脂剤を水洗するために、大量の水洗水によって少なくとも 1回以上、スプ レー処理により行われる。 [0085] なお、上述したように、金属表面処理用組成物が上記界面活性剤を含有する場合 は、金属材料をあらかじめ脱脂処理し、清浄化しておかなくても、良好な皮膜を形成 させること力 Sできる。即ち、この場合には、処理液接触工程において、金属材料の脱 脂処理が同時に行われる。
[0086] [金属材料の後処理]
本実施形態に係る金属表面処理方法により化成皮膜が形成された金属材料は、そ の後実施される塗膜形成の前に水洗処理を行うことが好ましい。即ち、本実施形態 に係る金属表面処理方法は、金属表面処理用組成物を含む金属表面処理液を前 記金属材料に接触させる処理液接触工程と、処理液接触工程を経た金属材料を水 洗する水洗工程と、を含む。塗膜形成の前に水洗処理を行うことにより、化成皮膜の 表面の不純物が除去されるため、塗装塗膜との密着性をより向上でき、良好な耐食 性を付与できる。
[0087] 本実施形態に係る金属表面処理方法により形成された化成皮膜は、ポリマーであ るポリアミン化合物が取り込まれているため、塗膜形成前に水洗処理を行うことが可 能である。即ち、単量体のアミンィ匕合物である場合には、水洗処理を行うと除去され てしまうおそれがあつたところ、ポリマーであるポリアミン化合物であれば化成皮膜を 形成するジルコニウム及び/又はチタンの水酸化物又は酸化物と強固に相互作用 し、そのようなおそれがない。従って、本実施形態に係る金属表面処理方法によって 形成された化成皮膜は、水洗処理を行っても密着性が損なわれることがなレ、。
[0088] 上記表面処理後の水洗処理において、最終の水洗は、純水で実施されることが好 ましレ、。この表面処理後の水洗処理においては、スプレー水洗又は浸漬水洗のいず れであってもよぐこれらの方法を組み合わせて水洗することもできる。
[0089] 表面処理後に水洗処理を実施した後には、公知の方法に従って必要に応じて乾 燥してもよいが、本実施形態に係る金属表面処理方法で化成皮膜を形成した場合 は、水洗処理後に乾燥処理を行わずに塗装することができる。即ち、本実施形態に 係る金属表面処理方法で化成皮膜を形成した後の塗料の塗布方法として、ウエット アンドゥエツト塗装方法を採用することができる。従って、本実施形態に係る金属表面 処理方法は、電着塗装前の金属材料、特に、電着塗装前の自動車車体、二輪車車 体等の乗物外板、各種部品等の表面処理工程を短縮することができる。
[0090] [その後形成される塗膜]
本実施形態に係る金属表面処理方法により化成皮膜を形成した後に、化成皮膜上 に形成される塗膜としては、例えば、電着塗料、溶剤塗料、水性塗料、粉体塗料等 の従来公知の塗料により形成される塗膜を挙げることができる。
[0091] これらの塗料のうち、電着塗料、特にカチオン電着塗料を用いて塗膜を形成するこ とが好ましい。通常、カチオン電着塗料は、ァミノ基との反応性又は相溶性を示す官 能基を有する樹脂からなるため、化成処理剤である金属表面処理用組成物に含まれ るアミノ基を含有するポリアミン化合物の働きにより、電着塗膜と化成皮膜の密着性を より高めること力できる力 である。カチオン電着塗料としては、特に限定されず、例 えばアミノ化エポキシ樹脂、アミノ化アクリル樹脂、スルホ二ゥム化エポキシ樹脂等か らなる公知のカチオン電着塗料を挙げることができる。
[0092] 本実施形態に係る金属表面処理用組成物を含む金属表面処理液を接触させる処 理液接触工程を経た金属材料を水洗する水洗工程後、又は、接触させて電解処理 した後には、金属材料を、コバルト、ニッケル、スズ、銅、チタニウム及びジノレコニゥム からなる群から選ばれる少なくとも 1種を含有する酸性水溶液と接触させてもよい。即 ち、本実施形態に係る金属表面処理方法は、処理液接触工程を経た金属材料を水 洗する水洗工程後、金属材料に、コバルト、ニッケル、スズ、銅、チタン、及び、ジルコ ニゥムからなる群より選ばれる少なくとも 1種を含有する酸性水溶液を接触させる酸接 触工程を含んでもよい。これにより、耐食性を更に高めることができる。
[0093] 金属元素であるコバルト、ニッケル、スズ、銅、チタニウム及びジルコニウム力 なる 群から選ばれる少なくとも 1種の供給源は、特に限定されないが、入手が容易である
、前記金属元素の酸化物、水酸化物、塩化物、硝酸塩、ォキシ硝酸塩、硫酸塩、ォ キシ硫酸塩、炭酸塩、ォキシ炭酸塩、リン酸塩、ォキシリン酸塩、シユウ酸塩、ォキシ シユウ酸塩、有機金属化合物等を好適に用いることができる。
[0094] 前記金属元素を含有する酸性水溶液の pHは、 2〜6であるのが好ましい。酸性水 溶液の PHは、リン酸、硝酸、硫酸、フッ化水素酸、塩酸、有機酸等の酸や、水酸化 ナトリウム、水酸化カリウム、水酸化リチウム、アルカリ金属塩、アンモニア、アンモニゥ ム塩、アミン類等のアルカリで調整することができる。
[0095] 本実施形態に係る金属表面処理用組成物を含む金属表面処理液を金属材料に 接触させる処理液接触工程を経た金属材料を水洗する水洗工程後、又は、接触さ せて電解処理した後には、金属材料を、水溶性高分子化合物及び水分散性高分子 化合物のうち少なくとも一方を含有する高分子含有液と接触させてもよい。即ち、本 実施形態に係る金属表面処理方法は、処理液接触工程を経た金属材料を水洗する 水洗工程後、金属材料に、水溶性高分子化合物及び水分散性高分子化合物のうち 少なくとも一方を含有する高分子含有液を接触させる高分子含有液接触工程を含ん でもよレ、。これにより、耐食性を更に高めることができる。
[0096] 水溶性高分子化合物及び水分散性高分子化合物としては、特に限定されないが、 例えば、ポリビュルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共 重合体、エチレンと(メタ)アクリル酸、(メタ)アクリルレート等のアクリル系単量体との 共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、ァミノ変性フエノール 樹脂、ポリエステル樹脂、エポキシ樹脂、タンニン、タンニン酸及びその塩、フィチン 酸が挙げられる。
実施例
[0097] 次に、本発明を実施例及び比較例を挙げて更に具体的に説明するが、本発明はこ れらの実施例にのみ限定されるものではなレ、。なお、配合量は特に断りのない限り、 質量部を表す。
[0098] ぐ実施例 1 >
市販の冷延鋼板(SPC、 日本テストパネル社製、 70mm X I 50mm X O. 8mm)を 金属材料として用意した。
[0099] [化成処理前の金属材料の前処理]
〔脱脂処理〕
具体的には、アルカリ脱脂処理剤として「サーフクリーナー EC92 (商品名)」(日本 ペイント社製)を使用して、 40°Cで 2分間、上記金属材料の脱脂処理を行った。
[0100] 〔脱脂処理後の水洗処理〕
脱脂処理をした後、水洗槽で浸漬洗浄した後、水道水で約 30秒間スプレー洗浄を 行った。
[0101] [化成処理]
金属材料を表面処理 (化成処理)する前に、金属表面処理用組成物を調製した。 具体的には、 1級及び/又は 2級アミノ基を有するポリアミン化合物として 1重量%の PAA10C (ポリアリルァミン、有効濃度 10。/。、 日東紡績社製)と、官能基 A及び/又 は官能基 Bを有する化合物として KBM403 (3—グリシドキシプロピル一トリメトキシシ ラン、有効濃度 100%、信越化学工業社製)を、重量比 1 : 0. 5、反応温度 25°C、反 応時間 60分で反応させ PAA—エポキシ反応体(1 : 0. 5)を得た。次に、上記 PAA —エポキシ反応体(1 : 0. 5) )と、ジルコニウムとしてジルコンフッ化水素酸(試薬)と、 を使用し、ジノレコニゥム濃度が 200PPm、 PAA—エポキシ反応体(1 : 0. 5)濃度が 2 OOppmとなるように金属表面処理用組成物を調製した。この金属表面処理用組成物 を水酸化ナトリウム水溶液により、 pHを 3. 5にした金属表面処理液に調整した。金属 表面処理液の温度を 30°Cに調整し、その後、水洗処理した金属材料を 60秒間浸漬 処理した。
[0102] なお、上記 PAA—エポキシ反応体(1 : 0. 5)の 1級及び/又は 2級アミノ基量(ポリ ァミン化合物の固形分 lgあたりの 1級及び/又は 2級ァミノ基のモル数)を下記数式 (1)により求めた。その結果を表 1に示す。更に、以下の実施例及び比較例において 、数式(1)により 1級及び/又は 2級ァミノ基量の計算が可能であれば、その結果を 表 1及び表 2に示した。以下の実施例及び比較例では、測定して求めるァミン価の代 用として、計算によって求めたアミン基量を用いている。
[数 1] ァミン基量二 ( m X - n Y ) / ( m + η ) · · ·数式 ( 1 )
[0103] (数式中、ポリアミン化合物と、官能基 Α及び/又は官能基 Βを有する化合物との固 形分質量比を、 m: nとすると、官能基 A及び/又は官能基 Bを有する化合物 lgあた りの官能基 A及び/又は官能基 Bのミリモル数を Yとし、上記官能基 A及び/又は官 能基 Bを有する化合物が金属表面処理用組成物に含有されてレ、なレ、場合のポリアミ ン化合物 lgあたりに含まれる 1級及び/又は 2級ァミノ基のミリモル数を Xとした。 ) [0104] 例えば、実施例 1の PAA—エポキシ反応体(1:0· 5)の場合、 PAA10Cのァミン 当量は「57」であり、 PAA10Cの lgあたりの 1級及び/又は 2級アミノ基量は、(1/5 7) X1000 = 17.5 (ミリモノレ/ g)となる。また、 KBM403のエポキシ当量は「236」 であり、 KBM403の lgあたりのエポキシ基量 fま、 (1/236) X 1000 = 4.2 (ミリモノレ /g)である。 PAA—エポキシ反応体(1:0.5)は、 PAA10Cと KBM403とを 1:0.5 の重量比で反応させた縮合物なので、 PAA—エポキシ反応体(1:0.5)のァミン基 量は、上記数式(1)によれば'、 m=l、 n = 0.5、X=17.5、 Y=4.2となり、(1*17 .5-0.5*4.2)/(1+0.5)=10.3と計算される。
[0105] [化成処理後の水洗処理]
化成処理を施した金属材料に対して、水道水で 30秒間のスプレー処理を実施した 。次いで、イオン交換水で 10秒間のスプレー処理を行った。
[0106] [乾燥処理]
水洗処理後の金属材料を電気乾燥炉において、 80°Cで 5分間乾燥した。なお、皮 膜量は、「XRF1700」(島津製作所製蛍光 X線分析装置)を用いて、金属表面処理 用組成物に含まれる Zr、 Si、 C量を測定することにより、化成皮膜量 (mg/m2を)を 測定した。また、 X線光電子分析装置 (XPS、機器名: ESCA3200、島津製作所社 製)を用いて、得られた試験板の表面分析を行い、皮膜表面の窒素元素に対するジ ルコニゥム元素の質量比を求めた。具体的には、窒素元素の Is軌道とジルコニウム 元素の 3d軌道とのピーク強度比から上記質量比を求めた。その結果を表 1に示す。
[0107] [電着塗装]
化成処理後に水洗処理を施したウエットな状態にある各々の金属材料に対し、カチ オン電着塗料「電着パワー二タス 110(商品名)」(日本ペイント社製)を塗布し、電着 塗膜を形成した。電着塗装後の乾燥膜厚は、 20 zmであった。その後、各々の金属 材料を水洗した後、 170°Cで 20分間加熱して焼付けることで、試験板を得た。
[0108] <実施例 2>
上記 PAA—エポキシ反応体(1:0.5)の濃度を 200ppmではなぐ 50ppmとなるよ うに金属表面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を 得た。 [0109] <実施例 3>
1質量%の上記 PAA10Cと、デナコール EX211 (エポキシ、ナガセケムテックス社 製)とを、重量比 1:1で反応させ、この生成物(PAA—デナコール EX211反応体)を 、上記 PAA—エポキシ反応体(1:0.5)に代えて金属表面処理用組成物を調製した 以外は、実施例 1と同様の手順で、試験板を得た。
[0110] <実施例 4>
1重量0 /0の上記 PAA10Cと、 KBE9007(3—イソシァネートプロピル—トリエトキシ シラン、有効濃度 100%、信越化学工業社製)とを、重量比 1:1、反応温度 25°C、反 応時間 15分で反応させ、この生成物(PAA— KBE9007反応体)を、上記 PAA_ エポキシ反応体(1:0.5)に代えて金属表面処理用組成物を調製した以外は、実施 例 1と同様の手順で、試験板を得た。
[0111] <実施例 5>
1重量%の上記 PAA10Cと、無水酢酸 (試薬)とを、重量比 1:0.5、反応温度 25 °C、反応時間 60分で反応させ、この生成物(PAA—無水酢酸反応体)を、上記 PA A—エポキシ反応体(1 :0.5)に代えて金属表面処理用組成物を調製した以外は、 実施例 1と同様の手順で、試験板を得た。
[0112] <実施例 6>
上記 PAA—エポキシ反応体(1:0.5)に代えて上記 PAA10Cを、更に、スノーテツ タス N (コロイダルシリカ、 日産化学社製)を金属表面処理用組成物に添加して、 PA A10C濃度が 200ppm、コロイダルシリカ濃度が 200ppmとなるように金属表面処理 用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0113] <実施例 7>
1質量%の PAA— 3(低分子ポリアリルァミン、有効濃度 15。/。、 日東紡績社製)と、 上記 KBM403とを、重量比 1:0.5で反応させ、この生成物(PAA低分子—ェポキ シ反応体)を、上記 PAA—エポキシ反応体(1:0.5)に代えて金属表面処理用組成 物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0114] <実施例 8>
PAA— 1112 (ァリルァミン.ジメチルァリルアミン共重合体、不揮発分 15質量%、 日東紡績社製)を、上記 PAA—エポキシ反応体(1 : 0. 5)に代えて金属表面処理用 組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0115] <実施例 9 >
KBE903 (3—ァミノプロピル—トリエトキシシラン、有効濃度 100%、信越化学工業 社製)を 15質量部と、 KBM603 (N— 2 (アミノエチル) _ 3—ァミノプロピル一トリメト キシシラン、有効濃度 100%、信越化学工業社製)を 15質量部とを滴下漏斗から、 溶媒である 70質量部の脱イオン水中(溶媒温度: 25°C)に 60分かけて均一に滴下し た後、窒素雰囲気下、 25°Cで 24時間反応を行い、有効成分 30%のォノレガノシラン の重縮合物(以下、 KBE603— KBM903共縮合物という)を得た。この KBE603— KBM903共縮合物を、上記 PAA_エポキシ反応体(1 : 0. 5)に代えて金属表面処 理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0116] <実施例 10 >
更に、硝酸 (試薬)を金属表面処理用組成物に添加して、硝酸濃度が 200ppmとな るように金属表面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験 板を得た。
[0117] <実施例 11 >
更に、硝酸アルミニウム (試薬)及びフッ化水素 (試薬)を金属表面処理用組成物に 添加して、硝酸アルミニウム濃度が 500ppm、フッ化水素濃度が lOOOppmとなるよう に金属表面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得 た。
[0118] <実施例 12 >
更に、レジトップ PL4012 (フエノール樹脂、群栄化学社製)を金属表面処理用組 成物に添加して、フエノール樹脂濃度が 200ppmとなるように金属表面処理用組成 物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0119] <実施例 13 >
1質量0 /0の PVAM— 0595B (ポリビュルアミン:有効濃度 11 %:ダイヤ二トリックス 社製)と、上記 KBM403とを、重量比 1 : 0. 5で反応させ、この生成物(PVA—ェポ キシ反応体)を、上記 PAA—エポキシ反応体(1 : 0. 5)に代えて金属表面処理用組 成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0120] <実施例 14 >
上記 PAA—エポキシ反応体(1 : 0. 5)の濃度を 200ppmではなぐ 50ppmとなるよ うに、更に、アデ力トール LB_83 (界面活性剤、旭電化社製)を金属表面処理用組 成物に添加して、界面活性剤濃度が 200ppmとなるように金属表面処理用組成物を 調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0121] <実施例 15 >
上記 PAA—エポキシ反応体(1 : 0. 5)の濃度を 200ppmではなぐ 50ppmとなるよ うに、更に、硝酸セリウム (試薬)を金属表面処理用組成物に添加して、硝酸セリウム 濃度が lOppmとなるように金属表面処理用組成物を調製した以外は、実施例 1と同 様の手順で、試験板を得た。
[0122] <実施例 16 >
金属材料を、上記 SPCから高張力鋼板(70mm X 150mm X O. 8mm)に変更した 以外は、実施例 1と同様の手順で、試験板を得た。
[0123] <比較例 1 >
上記 PAA—エポキシ反応体(1 : 0. 5)を金属表面処理用組成物に加えずに金属 表面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0124] <比較例 2 >
実施例 1で生成した上記 PAA—エポキシ反応体(1 : 0. 5)を加えずに、更に、硝酸 マグネシウム (試薬)を添加して硝酸マグネシウム濃度が 200ppmとなるように金属表 面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0125] <比較例 3 >
実施例 1で生成した上記 PAA—エポキシ反応体(1 : 0. 5)をカ卩えずに、更に、亜硝 酸ナトリウム (試薬)を添加して亜硝酸ナトリウム濃度が 2000ppmとなるように金属表 面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0126] <比較例 4 >
実施例 1で生成した上記 PAA_エポキシ反応体(1 : 0. 5)をカ卩えずに、更に、 KB M903 (3—ァミノプロピル—トリエトキシシラン:有効濃度 100%:信越化学工業社製 )を添カ卩して KBM903濃度が 200ppmとなるように金属表面処理用組成物を調製し た以外は、実施例 1と同様の手順で、試験板を得た。
[0127] <比較例 5 >
実施例 1で生成した上記 PAA_エポキシ反応体(1 : 0. 5)をカ卩えずに、更に、レジ トップ PL4012 (ァミノ変性フエノーノレ樹脂、群栄化学社製)を添カ卩してレジトップ PL4 012濃度が 200PPmとなるように金属表面処理用組成物を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0128] <比較例 6 >
上記 PAA—エポキシ反応体(1 : 0. 5)に代えて、上記 PAA10Cを金属表面処理 用組成物に添カ卩して、 PAA10C濃度 200ppmとなるように金属表面処理用組成物 を調製した以外は、実施例 1と同様の手順で、試験板を得た。
[0129] <比較例 7 >
化成処理を以下に示すリン酸亜鉛処理に変更した以外は、実施例 1と同様な操作 を実施し、試験板を得た。
[0130] [リン酸亜鉛処理]
金属材料として上記 SPCを用意し、脱脂処理及び水洗処理を施した金属材料に対 し、 0. 3%のサーフファイン GL1 (日本ペイント社製表面調整剤)を用いて、室温で 3 0秒間浸漬して表面調整を行った。その後、サーフダイン SD— 6350 (日本ペイント 社製リン酸亜鉛系化成処理剤)を用いて、 42°Cで 2分間の浸漬処理を実施した。
[0131] <比較例 8 >
金属材料を、上記 SPCの代わりに、上記高張力鋼板(70mm X 150mm X 0. 8m m)に変更した以外は、比較例 7と同様の手順で、試験板を得た。
[0132] <試験 >
[二次密着性試験 (SDT) ]
実施例及び比較例で得られた試験板に、素地まで達する縦平行カットを 2本入れ、 5質量°/^&〇1水溶液中にて、 50°Cで 480時間の浸漬を行った。次いで、水洗及び 風乾を行った後、カット部に接着テープ「エルパック LP_ 24 (商品名)」(ニチバン社 製)を密着させ、更に接着テープを急激に剥離した。剥離した接着テープに付着した 塗料の最大幅の大きさを測定した。結果を表 1及び表 2に示す。
[表 1]
差替え用紙(規則 2¾ 膦隳 A J¾ Is
Figure imgf000031_0001
[0134] [表 2]
差狻え J弒 mm
Figure imgf000033_0002
Figure imgf000033_0001
[0135] [サイクル腐食試験(CCT) ]
実施例及び比較例で得られた試験板のエッジ'裏面をテープシールし、カッターで クロスカット疵(金属に達する疵)を入れ、以下の条件により CCT試験を行った。結果 を表 1及び表 2に示す。
[0136] <CCT試験条件〉
35°C、湿度 95%に保たれた塩水噴霧試験器中で、 35°Cに保温した 5%NaCl水 溶液を 2時間違続噴霧した。次いで、 60°C、湿度 20〜30%の条件下で 4時間乾燥 した後、 50°C、湿度 95%以上の湿潤下で 2時間保持した。これを 1サイクルとして、 2
00サイクル後の塗膜の膨れ幅を測定した。
[0137] ' [スラッジ観察]
差換え熠 mm) 実施例及び比較例で化成処理を行い、室温で 30日経過後に、化成処理剤中の濁 り(スラッジの発生)を目視により比較して、作業性を下記の基準で評価した。結果を 表 1及び表 2に示す。
◎:透明液体
〇:わずかにうすく濁る
△:濁る
X:沈殿物 (スラッジ)発生
[0138] 表 1及び表 2に示される通り、特定のポリアミン化合物を添加した実施例の場合、ポ リアミン化合物を添加しない比較例よりも、塗料の剥離が顕著に少なぐ皮膜量も多 レ、ことが分かった。従って、本発明によれば、含有する 1級、 2級のアミノ基の含有量 を特定したポリアミン化合物を添加することにより、十分な素地隠蔽性及び塗膜密着 性を得ることができるとともに、腐食を防止することができることが分かった。
産業上の利用可能性
[0139] 本発明により得られる金属表面処理方法により処理されてなる金属材料は、十分な 素地隠蔽性、塗膜密着性、及び耐食性を備えるため、例えば、塗装前の自動車車体 、二輪車車体等の乗物外板、各種部品、容器外面、コイルコーティング等の、塗装処 理がその後施される分野において好ましく使用される。

Claims

請求の範囲
[1] 金属の表面処理に用いられる金属表面処理用組成物であって、
ジルコニウム化合物及び Z又はチタン化合物と、
数平均分子量が 150以上 500000以下であるポリアミン化合物と、を含有し、 前記ポリアミンィ匕合物は、固形分 lgあたり 0. 1ミリモル以上 17ミリモル以下の 1級及 び/又は 2級アミノ基を有し、
前記金属表面処理用組成物中における前記ジルコニウム化合物及び/又はチタ ン化合物の含有量は、金属元素換算で lOppm以上 lOOOOppm以下であり、 前記ポリアミンィ匕合物に対する、前記ジノレコニゥム化合物及び/又はチタン化合物 中に含まれるジルコニウム元素及び/又はチタン元素の質量比は、 0. 1以上 100以 下である金属表面処理用組成物。
[2] 前記ポリアミン化合物は、 1級及び/又は 2級ァミノ基含有化合物と、前記 1級及び /又は 2級ァミノ基と反応性を有する官能基 Aを有するァミン活性低減化合物 Aと、 の反応により生成された生成物である請求項 1記載の金属表面処理用組成物。
[3] 前記生成物は、前記 1級及び/又は 2級ァミノ基 100ミリモルに対して、前記官能 基 Aを 1ミリモル以上 60ミリモル以下反応させて生成されたものである請求項 2記載 の金属表面処理用組成物。
[4] 前記官能基 Aは、グリシジル基、イソシァネート基、アルデヒド基、及び、酸無水物 基よりなる群から選ばれる少なくとも 1種である請求項 2又は 3記載の金属表面処理 用組成物。
[5] 金属の表面処理に用いられる金属表面処理用組成物であって、
ジルコニウム化合物及び z又はチタン化合物と、
数平均分子量が 150以上 500000以下であるポリアミン化合物と、を含有し、 前記ポリアミン化合物は、 1級及び Z又は 2級ァミノ基含有化合物と、前記 1級及び /又は 2級ァミノ基と相互作用してァミン活性を低減させる官能基 Bを少なくとも一つ 含有するァミン活性低減化合物 Bと、の相互作用により生成された生成物であり、 前記金属表面処理用組成物中における前記ジルコニウム化合物及び/又はチタ ン化合物の含有量は、金属元素換算で lOppm以上 lOOOOppm以下であり、 前記ポリアミンィ匕合物に対する、前記ジノレコニゥム化合物及び/又はチタン化合物 中に含まれるジルコニウム元素及び/又はチタン元素の質量比は、 0. 1以上 100以 下である金属表面処理用組成物。
[6] 前記生成物は、前記 1級及び Z又は 2級ァミノ基 100ミリモルに対して、前記官能 基 Bを 1ミリモル以上 60ミリモル以下相互作用させて生成されたものである請求項 5記 載の金属表面処理用組成物。
[7] 前記官能基 Bは、カルボキシル基、スルホン酸基、リン酸基、シラノール基、及び、 亜リン酸基よりなる群から選ばれる少なくとも 1種である請求項 5又は 6いずれか記載 の金属表面処理用組成物。
[8] 前記ポリアミン化合物は、下記の式(1)、式(2)、及び、式(3)で表される構成単位 のうち少なくとも 1種を有する化合物である請求項 1から 7いずれか記載の金属表面 処理用組成物。
Figure imgf000037_0001
Figure imgf000037_0002
(式(3)中の Rは、炭素数 1〜6のアルキレン基であり、 Rは、下記の式(4)から(6)
1 2
で表される置換基であり、 Rは、 _〇H、 -OR、又は、 _R (R、 Rは炭素数:!〜 6
3 4 5 4 5
のアルキル基である。)である。 )
[化 2] 一 NH
Figure imgf000038_0001
Figure imgf000038_0002
(式(6)中の Rは、水素原子、炭素数 1〜6のァミノアルキル基、又は、炭素数:!〜 6
6
のアルキル基であり、 Rは、水素原子、又は、炭素数 1〜6のァミノアルキル基である
。)
[9] 前記金属表面処理用組成物の pHは、 1. 5以上 6. 5以下である請求項 1から 8レ、 ずれか記載の金属表面処理用組成物。
[10] フッ素化合物を更に含有し、
前記金属表面処理用組成物中における遊離フッ素元素の含有量は、 0. Olppm 以上 lOOppm以下である請求項 1から 9いずれか記載の金属表面処理用組成物。
[11] 前記金属表面処理用組成物は、硝酸、亜硝酸、硫酸、亜硫酸、過硫酸、リン酸、力 ルボン酸基含有化合物、スルホン酸基含有化合物、塩酸、臭素酸、塩素酸、過酸化 水素、 HMn〇、 HVO、 H WO、及び、 H Mo〇、並びに、これらの塩類よりなる
4 3 2 4 2 4
群から選ばれる少なくとも 1種の酸化剤を更に含有する請求項 1から 10いずれか記 載の金属表面処理用組成物。
[12] マグネシウム、亜鉛、カルシウム、ァノレミニゥム、ガリウム、インジウム、銅、鉄、マンガ ン、ニッケル、コバルト、セリウム、ストロンチウム、希土類元素、及び、銀よりなる群か ら選ばれる少なくとも 1種の金属元素を更に含有する請求項 1から 11いずれか記載 の金属表面処理用組成物。
[13] 前記金属表面処理用組成物は、ノニオン系界面活性剤、ァニオン系界面活性剤、 カチオン系界面活性剤、及び、両面活性剤よりなる群から選ばれる少なくとも 1種を 更に含有する請求項 1から 12いずれか記載の金属表面処理用組成物。
[14] 金属材料の表面を処理する金属表面処理方法であって、
請求項 1から 13いずれか記載の金属表面処理用組成物を含む金属表面処理液を 前記金属材料に接触させる処理液接触工程と、
前記処理液接触工程を経た金属材料を水洗する水洗工程と、を含む金属表面処 理方法。
[15] 前記処理液接触工程において、前記金属材料の脱脂処理を同時に行う請求項 14 記載の金属表面処理方法。
[16] 前記処理液接触工程において、前記金属材料を陰極として電解処理する請求項 1
4又は 15記載の金属表面処理方法。
[17] 前記水洗工程を経た金属材料に、コバルト、ニッケル、スズ、銅、チタン、及び、ジ ルコニゥムからなる群より選ばれる少なくとも 1種を含有する酸性水溶液を接触させる 酸接触工程を含む請求項 14から 16いずれか記載の金属表面処理方法。
[18] 前記水洗工程を経た金属材料に、水溶性高分子化合物及び水分散性高分子化 合物のうち少なくとも一方を含有する高分子含有液を接触させる高分子含有液接触 工程を含む請求項 14から 17いずれか記載の金属表面処理方法。
[19] 請求項 14から 18いずれか記載の金属表面処理方法により処理されてなる金属材 料。
[20] 鉄系金属材料表面に表面処理皮膜層を有する請求項 19記載の金属材料であつ て、
前記表面処理皮膜層は、ジルコニウム元素及び/又はチタン元素を 10mg/m2以 上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジルコニウム 元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属材料。
[21] 亜鉛系金属材料表面に表面処理皮膜層を有する請求項 19記載の金属材料であ つて、
前記表面処理皮膜層は、ジルコニウム元素及び/又はチタン元素を lOmgZm2以 上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジルコニウム 元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属材料。
[22] アルミニウム系金属材料表面に表面処理皮膜層を有する請求項 19記載の金属材 料であって、
前記表面処理皮膜層は、ジノレコニゥム元素及び/又はチタン元素を 5mgZm2以 上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対するジルコニウム 元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属材料。
マグネシウム系金属材料表面に表面処理皮膜層を有する請求項 19記載の金属材 料であって、
前記表面処理皮膜層は、その最表面に、ジルコニウム元素及び/又はチタン元素 を 5mgZm2以上含有し、前記表面処理皮膜層の XPS分析による窒素元素に対する ジノレコニゥム元素及び/又はチタン元素質量比は、 0. 05以上 500以下である金属 材料。
PCT/JP2007/053831 2006-03-01 2007-02-28 金属表面処理用組成物、金属表面処理方法、及び金属材料 WO2007100017A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP20070737550 EP1997934B1 (en) 2006-03-01 2007-02-28 Composition for metal surface treatment, metal surface treatment method, and metal material
JP2008502828A JPWO2007100017A1 (ja) 2006-03-01 2007-02-28 金属表面処理用組成物、金属表面処理方法、及び金属材料
KR1020087023951A KR101315417B1 (ko) 2006-03-01 2007-02-28 금속 표면 처리를 위한 조성물, 금속 표면 처리 방법, 및 금속 물질
CA2644789A CA2644789C (en) 2006-03-01 2007-02-28 Composition for metal surface treatment, metal surface treatment method, and metal material
BRPI0708467-6A BRPI0708467B1 (pt) 2006-03-01 2007-02-28 Composição para tratamento de superfície de metal, método de tratamento de superfície de metal, e material de metal
CN200780007366XA CN101395299B (zh) 2006-03-01 2007-02-28 金属表面处理用组成物、金属表面处理方法以及金属材料
MX2008011097A MX2008011097A (es) 2006-03-01 2007-02-28 Composicion para el tratamiento de superficies metalicas, metodo para el tratamiento de superficies metalicas y material metalico.
US12/224,635 US8287662B2 (en) 2006-03-01 2007-02-28 Composition for metal surface treatment, metal surface treatment method and metal material
ES07737550.9T ES2522584T3 (es) 2006-03-01 2007-02-28 Composición para tratamiento de la superficie metálica, método de tratamiento de la superficie metálica, y material metálico
US13/613,544 US9028667B2 (en) 2006-03-01 2012-09-13 Composition for metal surface treatment, metal surface treatment method, and metal material
US14/677,302 US20150211140A1 (en) 2006-03-01 2015-04-02 Composition for Metal Surface Treatment, Metal Surface Treatment Method, and Metal Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-054860 2006-03-01
JP2006054860 2006-03-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/224,635 A-371-Of-International US8287662B2 (en) 2006-03-01 2007-02-28 Composition for metal surface treatment, metal surface treatment method and metal material
US13/613,544 Division US9028667B2 (en) 2006-03-01 2012-09-13 Composition for metal surface treatment, metal surface treatment method, and metal material

Publications (1)

Publication Number Publication Date
WO2007100017A1 true WO2007100017A1 (ja) 2007-09-07

Family

ID=38459118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053831 WO2007100017A1 (ja) 2006-03-01 2007-02-28 金属表面処理用組成物、金属表面処理方法、及び金属材料

Country Status (11)

Country Link
US (3) US8287662B2 (ja)
EP (1) EP1997934B1 (ja)
JP (1) JPWO2007100017A1 (ja)
KR (1) KR101315417B1 (ja)
CN (2) CN101395299B (ja)
BR (1) BRPI0708467B1 (ja)
CA (1) CA2644789C (ja)
ES (1) ES2522584T3 (ja)
MX (1) MX2008011097A (ja)
WO (1) WO2007100017A1 (ja)
ZA (1) ZA200807991B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327090A (ja) * 2006-06-07 2007-12-20 Nippon Parkerizing Co Ltd 金属の表面処理液、表面処理方法、表面処理材料
JP2008174604A (ja) * 2007-01-17 2008-07-31 Shin Etsu Chem Co Ltd コーティング剤組成物及びその製造方法、該組成物で被覆又は表面処理されてなる物品
WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate
JP2009185366A (ja) * 2008-02-08 2009-08-20 Nippon Paint Co Ltd 水系表面処理組成物
WO2010049198A1 (de) * 2008-10-28 2010-05-06 Henkel Ag & Co. Kgaa Lackhaftung durch polyvinylamine in sauren wässrigen polymerhaltigen korrosionsschutzmitteln
JP2011088083A (ja) * 2009-10-23 2011-05-06 Nippon Paint Co Ltd 鉄系基材を粉体塗膜で被覆する方法
US20120064369A1 (en) * 2009-06-04 2012-03-15 Akira Tachiki Steel sheet for container use with excellent organic film performance and method of production of same
JP2012514669A (ja) * 2009-05-18 2012-06-28 パンガン グループ スチール バナジウム アンドチタニウム カンパニー リミテッド 塗料組成物および不動態化亜鉛めっき材料
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
JP2016089232A (ja) * 2014-11-06 2016-05-23 日新製鋼株式会社 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
CN110241453A (zh) * 2019-04-25 2019-09-17 西南大学 一种缓释氟和铈的可降解锌合金骨钉及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2522584T3 (es) * 2006-03-01 2014-11-17 Chemetall Gmbh Composición para tratamiento de la superficie metálica, método de tratamiento de la superficie metálica, y material metálico
ATE398688T1 (de) 2006-04-19 2008-07-15 Ropal Ag Verfahren zur herstellung eines korrosionsgeschützten und hochglänzenden substrats
ES2415979T3 (es) * 2007-09-27 2013-07-29 Chemetall Gmbh Método para producir un material metálico tratado superficialmente, y método para producir un artículo metálico revestido
WO2009117397A1 (en) 2008-03-17 2009-09-24 Henkel Corporation Metal treatment coating compositions, methods of treating metals therewith and coated metals prepared using the same
DE102008014465B4 (de) 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung
US8188496B2 (en) 2008-11-06 2012-05-29 Samsung Led Co., Ltd. Semiconductor light emitting device including substrate having protection layers and method for manufacturing the same
JP5727511B2 (ja) 2009-12-28 2015-06-03 日本パーカライジング株式会社 ジルコニウム、銅、亜鉛、及び硝酸塩を含有する金属前処理組成物、並びに金属基材上の関連するコーティング
JP5860583B2 (ja) * 2010-01-29 2016-02-16 日本パーカライジング株式会社 金属表面処理剤及び金属表面処理方法
JP5688639B2 (ja) * 2010-12-24 2015-03-25 日本パーカライジング株式会社 アルミニウム合金用エッチング剤
JP6055263B2 (ja) * 2011-10-14 2016-12-27 日本ペイント・サーフケミカルズ株式会社 自動車部品の製造方法
TW201333264A (zh) * 2011-10-14 2013-08-16 Nippon Paint Co Ltd 化成處理劑
KR20150046303A (ko) * 2012-08-29 2015-04-29 피피지 인더스트리즈 오하이오 인코포레이티드 리튬을 함유하는 지르코늄 전처리 조성물, 관련된 금속 기판 처리 방법 및 관련된 코팅된 금속 기판
BR112015011962B1 (pt) * 2012-11-26 2022-01-11 Chemetall Gmbh Método para revestir superfícies metálicas de substratos
RU2673849C2 (ru) * 2013-07-10 2018-11-30 Шеметалл Гмбх Способ нанесения покрытий на металлические поверхности субстратов и покрытые данным способом изделия
US20170081542A1 (en) * 2014-05-14 2017-03-23 Chemetall Gmbh Method for Coating Metal Surfaces of Substrates and Objects Coated in Accordance With Said Method
US10113070B2 (en) * 2015-11-04 2018-10-30 Ppg Industries Ohio, Inc. Pretreatment compositions and methods of treating a substrate
EP3559311A4 (en) * 2016-12-22 2020-08-19 Henkel AG & Co. KGaA USE OF PREFORMED REACTION PRODUCTS MADE FROM CATECHOL COMPOUNDS AND FUNCTIONALIZED CO REACTANT COMPOUNDS TO REDUCE THE OXIDATION OF BLANK METAL SURFACES
CA3042087C (en) * 2016-12-22 2024-02-13 Henkel Ag & Co. Kgaa Reaction products of catechol compounds and functionalized co-reactant compounds for metal pretreatment applications
CA3041337C (en) 2016-12-22 2024-05-28 Henkel Ag & Co. Kgaa Treatment of conversion-coated metal substrates with preformed reaction products of catechol compounds and functionalized co-reactant compounds
CN109778160A (zh) * 2017-11-14 2019-05-21 中国宝武钢铁集团有限公司 医用镁合金植入体用处理剂及其使用方法
CN109304287B (zh) * 2018-11-30 2021-09-28 沈阳帕卡濑精有限总公司 一种适用于整车厂高铝混合车身的前处理工艺
US20220282115A1 (en) * 2019-08-23 2022-09-08 Ppg Industries Ohio, Inc. Systems and methods for improved lap shear strength and displacement of two-component structural adhesives
KR102176895B1 (ko) 2020-07-28 2020-11-10 주식회사 성진케미칼 금속면에 페인트 접착력이 우수한 금속산화막을 형성시키기 위한 화학조성물 및 그의 사용방법
CN111940611B (zh) * 2020-08-07 2024-06-04 和县卜集振兴标准件厂 一种提高合金钢冲压模具精密度的方法
KR20230052550A (ko) 2021-10-13 2023-04-20 주식회사 성진케미칼 금속표면에 페인트 접착력이 우수한 금속산화막을 형성시키기 위한 친환경성 화학조성물 및 그 사용방법
CN115466947B (zh) * 2022-08-31 2024-01-16 马鞍山钢铁股份有限公司 一种免涂装耐候钢表面稳定化处理剂及免涂装耐候钢的表面处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158397A (en) * 1981-03-26 1982-09-30 Nippon Paint Co Ltd Pretreatment for surface of metal for cation type electrodeposition painting
JPH07310189A (ja) 1994-03-24 1995-11-28 Nippon Parkerizing Co Ltd アルミニウム含有金属材料用表面処理組成物および表面処理方法
JPH10204649A (ja) 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd 金属表面のりん酸塩処理水溶液及び処理方法
WO2004032594A2 (en) 2002-10-10 2004-04-22 Nalco Company Chrome free final rinse for phosphated metal surfaces
EP1433877A1 (en) 2002-12-24 2004-06-30 Nippon Paint Co., Ltd. Pretreatment method for coating
JP2004218071A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 脱脂兼化成処理剤及び表面処理金属
JP2004218074A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2005325401A (ja) 2004-05-13 2005-11-24 Nippon Paint Co Ltd 亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3542168A1 (de) * 1985-11-29 1987-06-04 Basf Lacke & Farben Bindemittel fuer die kathodische elektrotauchlackierung
US6736908B2 (en) * 1999-12-27 2004-05-18 Henkel Kommanditgesellschaft Auf Aktien Composition and process for treating metal surfaces and resulting article
JP3857866B2 (ja) * 2000-02-29 2006-12-13 日本ペイント株式会社 ノンクロメート金属表面処理剤、表面処理方法および処理された塗装鋼材
US7077895B2 (en) * 2001-10-30 2006-07-18 Kansai Paint Co., Ltd. Coating compound for forming titanium oxide film, method for forming titanium oxide film and metal susbstrate coated with titanium oxide film
JP4526807B2 (ja) * 2002-12-24 2010-08-18 日本ペイント株式会社 塗装前処理方法
EP1433876B1 (en) * 2002-12-24 2013-04-24 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
KR100550526B1 (ko) 2002-12-26 2006-02-10 엘지전자 주식회사 드럼세탁기
JP4351926B2 (ja) * 2003-02-17 2009-10-28 日本ペイント株式会社 防錆処理剤及び防錆処理方法
JP2005023422A (ja) * 2003-06-09 2005-01-27 Nippon Paint Co Ltd 金属表面処理方法及び表面処理金属
ES2522584T3 (es) * 2006-03-01 2014-11-17 Chemetall Gmbh Composición para tratamiento de la superficie metálica, método de tratamiento de la superficie metálica, y material metálico

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158397A (en) * 1981-03-26 1982-09-30 Nippon Paint Co Ltd Pretreatment for surface of metal for cation type electrodeposition painting
JPH07310189A (ja) 1994-03-24 1995-11-28 Nippon Parkerizing Co Ltd アルミニウム含有金属材料用表面処理組成物および表面処理方法
JPH10204649A (ja) 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd 金属表面のりん酸塩処理水溶液及び処理方法
WO2004032594A2 (en) 2002-10-10 2004-04-22 Nalco Company Chrome free final rinse for phosphated metal surfaces
EP1433877A1 (en) 2002-12-24 2004-06-30 Nippon Paint Co., Ltd. Pretreatment method for coating
JP2004218071A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 脱脂兼化成処理剤及び表面処理金属
JP2004218074A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2005325401A (ja) 2004-05-13 2005-11-24 Nippon Paint Co Ltd 亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1997934A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327090A (ja) * 2006-06-07 2007-12-20 Nippon Parkerizing Co Ltd 金属の表面処理液、表面処理方法、表面処理材料
JP2008174604A (ja) * 2007-01-17 2008-07-31 Shin Etsu Chem Co Ltd コーティング剤組成物及びその製造方法、該組成物で被覆又は表面処理されてなる物品
WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate
WO2009020794A3 (en) * 2007-08-03 2009-03-26 Ppg Ind Ohio Inc Pretreatment compositions and methods for coating a metal substrate
US8673091B2 (en) 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
JP2009185366A (ja) * 2008-02-08 2009-08-20 Nippon Paint Co Ltd 水系表面処理組成物
JP2012506953A (ja) * 2008-10-28 2012-03-22 日本パーカライジング株式会社 重合体を含有する酸性かつ水性の防食剤中のポリビニルアミンによる塗料密着性
US8142897B2 (en) 2008-10-28 2012-03-27 Henkel Kgaa Paint adhesion by polyvinyl amines in acidic aqueous corrosion protection product containing polymers
WO2010049198A1 (de) * 2008-10-28 2010-05-06 Henkel Ag & Co. Kgaa Lackhaftung durch polyvinylamine in sauren wässrigen polymerhaltigen korrosionsschutzmitteln
AU2009309946B2 (en) * 2008-10-28 2015-02-05 Henkel Ag & Co. Kgaa Paint adhesion by polyvinyl amines in acidic aqueous corrosion protection product containing polymers
JP2012514669A (ja) * 2009-05-18 2012-06-28 パンガン グループ スチール バナジウム アンドチタニウム カンパニー リミテッド 塗料組成物および不動態化亜鉛めっき材料
US20120064369A1 (en) * 2009-06-04 2012-03-15 Akira Tachiki Steel sheet for container use with excellent organic film performance and method of production of same
US9212423B2 (en) * 2009-06-04 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container use with excellent organic film performance and method of production of same
JP2011088083A (ja) * 2009-10-23 2011-05-06 Nippon Paint Co Ltd 鉄系基材を粉体塗膜で被覆する方法
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
JP2016089232A (ja) * 2014-11-06 2016-05-23 日新製鋼株式会社 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
CN110241453A (zh) * 2019-04-25 2019-09-17 西南大学 一种缓释氟和铈的可降解锌合金骨钉及其制备方法

Also Published As

Publication number Publication date
US20130244026A1 (en) 2013-09-19
CN101395299B (zh) 2012-10-03
US20150211140A1 (en) 2015-07-30
US8287662B2 (en) 2012-10-16
CN101395299A (zh) 2009-03-25
CN102828173A (zh) 2012-12-19
EP1997934A1 (en) 2008-12-03
BRPI0708467B1 (pt) 2022-06-14
KR20080109792A (ko) 2008-12-17
CN102828173B (zh) 2015-07-29
US20090239093A1 (en) 2009-09-24
ES2522584T3 (es) 2014-11-17
ZA200807991B (en) 2009-12-30
US9028667B2 (en) 2015-05-12
JPWO2007100017A1 (ja) 2009-07-23
KR101315417B1 (ko) 2013-10-07
EP1997934A4 (en) 2010-04-28
CA2644789A1 (en) 2007-09-07
BRPI0708467A2 (pt) 2011-05-31
CA2644789C (en) 2015-04-28
MX2008011097A (es) 2008-10-21
EP1997934B1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2007100017A1 (ja) 金属表面処理用組成物、金属表面処理方法、及び金属材料
US8828151B2 (en) Composition for metal surface treatment, metal surface treatment method and metal material
KR101352394B1 (ko) 금속 표면 처리를 위한 조성물, 금속 표면 처리 방법, 및 금속 물질
EP1455002B1 (en) Pretreatment method for coating
JP4276530B2 (ja) 化成処理剤及び表面処理金属
JP2007262577A (ja) 金属表面処理用組成物、金属表面処理方法、及び金属材料
EP1433876A1 (en) Chemical conversion coating agent and surface-treated metal
JP2004218070A (ja) 塗装前処理方法
WO2008029926A1 (fr) Procédé de traitement de surface d&#39;une base métallique, matériau métallique traité au moyen de ce procédé de traitement de surface, et procédé de revêtement de matériau métallique
EP2708619B1 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
CN110869534A (zh) 化成处理剂、涂装前处理方法和金属构件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502828

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011097

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2644789

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780007366.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5267/CHENP/2008

Country of ref document: IN

Ref document number: 1020087023951

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12224635

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0708467

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080901