WO2007099646A1 - 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 - Google Patents

円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 Download PDF

Info

Publication number
WO2007099646A1
WO2007099646A1 PCT/JP2006/304200 JP2006304200W WO2007099646A1 WO 2007099646 A1 WO2007099646 A1 WO 2007099646A1 JP 2006304200 W JP2006304200 W JP 2006304200W WO 2007099646 A1 WO2007099646 A1 WO 2007099646A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cross
axis
sensor
measured
Prior art date
Application number
PCT/JP2006/304200
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Kawai
Kyoichi Teramoto
Yoichi Kawamorita
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to CN2006800325736A priority Critical patent/CN101258380B/zh
Priority to EP06728630.2A priority patent/EP1992909B1/en
Priority to PCT/JP2006/304200 priority patent/WO2007099646A1/ja
Priority to US11/469,094 priority patent/US7328125B2/en
Publication of WO2007099646A1 publication Critical patent/WO2007099646A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • the present invention relates to a shape of a cross-sectional circle in a direction perpendicular to the axis of a cylinder, a method for measuring a cylindrical shape, and a measuring apparatus used therefor.
  • the present invention relates to a technique that contributes to accuracy measurement when the outer surface of a cylindrical member is cut as a means for obtaining a highly accurate cylindrical member.
  • the present inventors are particularly concerned with electrophotographic copying machines, laser beam printers, facsimile machines, image forming members of printing apparatuses, or substrates thereof. The present invention was applied to the measurement and the effect was confirmed. Background art
  • an electrophotographic photosensitive drum and a developing sleeve in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile machine, and a printing machine use a cylindrical member whose shape and dimensions are finished with a predetermined accuracy.
  • An electrophotographic photosensitive drum is manufactured by applying a photosensitive film on the surface of a drum base finished to a certain accuracy.
  • the photosensitive film is uneven, which causes a defect in the image of the image forming apparatus. Accordingly, in order to obtain a highly accurate image forming apparatus, high accuracy is required for the cylindricality and roundness of the drum base.
  • the surface shape is a belt-like shape while a cylinder to be measured (cylinder to be measured; the same applies hereinafter) is placed on a rotatable base and rotated.
  • a method of measuring by a laser or other measuring means see, for example, Japanese Patent Application Laid-Open No. 06-2 0 1 3 75 (Patent Document 1)).
  • a method of measuring the cylindrical shape by measuring the dimension of blocking the belt-shaped laser by gripping and rotating both ends of the cylinder to be measured with some gripping tool for example, Japanese Patent Laid-Open No.
  • the measurement means that suits the purpose should be used.
  • the field of measuring the dimensional accuracy of the circular shape of the cylinder in particular, the circular shape of the cylinder that is supposed to have a high level of accuracy as originally intended in the present invention.
  • the number of measurement points is relatively small. Therefore, industrially, it is preferable to reduce the number of measurement points as much as possible to shorten the processing time.
  • the number of measurement points is increased in evaluating the shape defect on the cylindrical surface of 3 ⁇ 45 minutes, it is difficult to evaluate all the fine defects such as hairline-like scratch defects. It is not desirable to increase the number of measurement points.
  • an alternative evaluation method based on image processing or other surface defect analysis should be used instead.
  • the measurement load is small, individual measurement values are accurate, and the measurement points It is best to keep the number to a minimum.
  • the surface shape can be used as a strip laser or other measuring means while standing on a conventional rotatable base and rotating it. Therefore, the measurement method (for example, Japanese Patent Laid-Open Publication No. 06-2 0 1 3 75 (Patent Document 1)) can obtain a highly accurate measurement value.
  • a method of measuring the measured value obtained by rotating the measured cylinder without fixing the rotating shaft and approximating the measured value obtained from the displacement detector facing the outer periphery of the measured cylinder is simple and can reduce the influence of measurement accuracy on the measurement results, but the measurement results are approximate calculation values.
  • the accuracy of each measurement value is improved by increasing the order of approximate calculation, and the number of measurement points is required to be at least 64 points, or more than 100 points. . Therefore, this method cannot be expected to reduce the number of measurement points, and requires a relatively long measurement time.
  • the industrial product that minimizes the load on measurement, enables accurate measurement of individual values and minimizes the number of measurement points. It does not provide a method for measuring the dimensional accuracy of the circumferential shape of a cylinder as an evaluation. Disclosure of the invention
  • the present invention has a small load on measurement in the measurement of a cylindrical shape, in particular, the measurement of a circumferential shape, and each measurement value is accurate and has a measurement point.
  • the main purpose was to efficiently reduce the number of
  • a method for measuring the shape of a circle having a cross section perpendicular to the axis of the cylinder wherein the rotation axis of the cylinder to be measured set in the cross circle intersects the cross section circle.
  • a distance between the reference point and the circumference is calculated based on a change in the distance of at least three predetermined points on the circumference of the cross-sectional circle with respect to the reference point, which is a point, by the rotation of the cylinder.
  • a method for measuring the shape of a circle having a cross section perpendicular to the axis of a cylinder characterized by having a shape for specifying the shape of the cross section circle.
  • the measurement base is a point where the cylindrical receiving jig and the cross section perpendicular to the rotation axis are located on the same cross section perpendicular to the rotation axis of the cylinder. Aimed at the quasi-point (0.) and ⁇ . 3 pieces fixed in a fan shape with a predetermined angle ( ⁇ °) between each other with the center at the center, and from the following (i)
  • the sensor (S 1 to Sm) for detecting m displacements allows the measurement reference point (O 0 ) on each detection axis to be perpendicular to the cylinder axis. Measuring the distance (L 1 to Lm) to a point on the circumference of the section circle formed;
  • (vi) A step of calculating the circumferential shape of the cross-sectional circle using the obtained distances. Furthermore, according to the present invention, the cylindrical receiving jig is located on the same cross section perpendicular to the rotation axis of the cylinder, and the rotation axis of the cylinder and the cross section perpendicular to the rotation axis intersect. Directed to a certain reference point (O 0 ) and 0.
  • a measuring means comprising a table having a sensor for detecting a fixed displacement, the shape of a circle with a cross section perpendicular to the axis of the cylinder is obtained by the following steps (i) to (vi).
  • the desired measurement method is provided:
  • each measurement value is influenced by the number of measurement points because it is possible to obtain a measurement result directly measured without the approximate calculation of each measurement value.
  • the number of measurement points for measuring the circumferential shape (dimensional accuracy) of the cylinder on the premise of having a high accuracy level as originally intended in the present invention is 10 points, or It is possible to perform measurements necessary to guarantee product accuracy with a minimum number of measurement points of about 20 points, so that the present invention can measure cylinder accuracy as an industrial product evaluation.
  • the cylinder is covered.
  • a plurality of detectors that measure the cylinder dimensions of the cylinder from the direction perpendicular to the cylinder central axis of the cylinder are provided. Parallel to the axis And a method of calculating a plurality of detection signals at desired positions obtained from the plurality of detectors, and measuring the cylindricity and roundness of the cylinder.
  • the cylindricity of the cylinder to be measured is obtained by calculating the circular shape and roundness of the cross section perpendicular to the central axis of the cylinder by using the above-mentioned measuring method of the circular shape.
  • a method for measuring a cylindrical shape of a cylinder is provided.
  • a cylinder receiving jig for placing and rotating a cylinder to be measured is mounted on a mounting base provided so as to be reciprocally parallel to the rotation axis of the cylinder to be measured. , Located on the same cross section that is perpendicular to the rotation axis of the cylinder to be measured, and toward the measurement reference point (O.) that is the point where the rotation axis of the cylinder to be measured and the cross section perpendicular to the rotation axis intersect. And o. 1 using a measuring means having a sensor for detecting three or more displacements arranged in a fan shape with a predetermined angle ( ⁇ .) Between each other and fixed to a mounting base. A method for measuring the shape of a cylinder according to the flowchart shown in FIG.
  • the measurement target cylinder receiving jig and the measurement target cylinder are positioned on the same cross section perpendicular to the rotation axis of the measurement target cylinder, and the rotation axis of the measurement target cylinder and the cross section perpendicular to the rotation axis are provided. 0 at the measurement reference point ( ⁇ 0 ), which is the intersection. From the following (i) to (i) using a measuring means comprising a table having sensors for detecting three or more displacements arranged in a fan shape with a predetermined angle (0 °) between each other and centered on A method of measuring a cylindrical shape to obtain the cylindricity of the cylinder to be measured by the step of V iii):
  • the measurement cylinder receiving jig and the rotation of the measurement cylinder are located on the same cross section perpendicular to the axis, and the rotation axis of the measurement cylinder and the rotation axis are perpendicular to each other. Is directed to the measurement reference point (0.), which is the point where the break 3 ⁇ 45.
  • a sensor for detecting two displacements, and the angle of the angle between 3 and 5 8 'or SB and SB' is a positive integer multiple of ⁇ .
  • a measuring means consisting of a table having a sensor for detecting the displacement that has been placed and fixed
  • the cylinder of the cylinder to be measured is subjected to the steps (i) to (V iii) below.
  • a cylindrical shape measurement method for determining cylindricity is provided:
  • the cylindrical center axis is a straight line connecting the circle centers of the two cross-sectional circles at both ends of the cylinder to be measured.
  • the cross-sectional circle calculated from the central axis of the cylinder and the circumferential shape from the intersection of the cross-sectional circles other than the two cross-sectional circles at both ends of the measured cylinder to a predetermined point on the circumference of each cross-sectional circle A step to calculate the distance and find the difference between the maximum and minimum values of the distance.
  • a sensor for detecting displacement in a cylinder to be measured is provided.
  • a measuring method of the cylindrical shape of the cylinder is provided, characterized in that the thickness of the cylinder to be measured, the center of the inner circumference circle, and the roundness are obtained by arranging the sensor.
  • a measurement method as described above comprising a plurality of cylinders having different diameters, and a composite cylinder that shares a rotation axis within an outer circumference of all the cylinders. Then, measure at least one cylinder constituting the composite cylinder by any one of the methods described above, and measure the cylindrical shape using a sensor for detecting at least one displacement of each of the cylinders other than the one cylinder.
  • a method for measuring the cylindrical shape of a composite cylinder is provided that reduces all cylindrical shapes, concentricity, and thickness of the composite cylinder.
  • the measurement target cylinder receiving jig is located on the same cross section perpendicular to the rotation axis of the measurement target cylinder, the rotation axis of the measurement target cylinder and the rotation axis.
  • the measurement reference point ( ⁇ 0 ) which is the point where the perpendicular cross section intersects, and o.
  • ⁇ 0 the measurement reference point
  • ⁇ ° Centered on the center of the cylinder, with a predetermined angle ( ⁇ °) between each other and arranged in a fan shape so that it can reciprocate in parallel to the rotation axis of the cylinder to be measured, which has a sensor for detecting three or more displacements fixed.
  • a cylindrical shape measuring apparatus comprising: a measuring means comprising a platform provided; and a computing means for executing the following steps (i) to (V iii):
  • the measurement target cylinder receiving jig is located on the same cross section perpendicular to the rotation axis of the measurement target cylinder, the rotation axis of the measurement target cylinder and the rotation axis.
  • the measurement reference point (O 0 ) which is the point where the perpendicular cross section intersects, and o. Centered at the angle ( ⁇ °), the sensor for detecting the two displacements S ⁇ and S.
  • a measuring means comprising a table provided in a sector so as to be able to reciprocate in parallel with the rotation axis of the cylinder to be measured, which has a sensor for detecting a fixed displacement arranged in a fan shape, and from the following step (i):
  • a cylinder shape measuring device characterized by comprising: an arithmetic means for executing (V iii): (i) Measurement reference point (O.) force on each detection axis by the sensor for detecting the displacement force Distance to the point on the circumference of the cross-sectional circle perpendicular to the axis of the cylinder to be measured (L 1 To L4), and
  • the cylinder to be measured is rotated by 0 ° in the direction from the first sensor SA to the second sensor SB, and again from the measurement reference point (o.) on each detection axis by the sensor for detecting the displacement. Measuring a distance to a point on the circumference of a cross-sectional circle perpendicular to the axis of the cylinder to be measured;
  • the above-mentioned “calculate the circumferential shape of the cross-sectional circle” means, for example, obtaining the center position of the circle of the cross-sectional circle by the least square method or obtaining the roundness.
  • this cylindrical center is regarded as a virtual center, that is, a center that may be moved by rotation. That is, as shown in Fig. 23, when the cylinder is rotated at a predetermined angle ( ⁇ °) with the starting point of the floating center as a reference point, the floating center moves from the starting point, and when the cylinder is rotated again, the floating center further moves. When the cylinder is rotated sequentially and finally the cylinder is rotated 360 °, the floating center takes the locus of the floating center as shown in the figure.
  • the measurement method of the present invention does not limit the measurement reference position mechanically, and the measurement cylinder determines the position of this floating center at every step based on the transition of the numerical value obtained from the probe sequentially according to the measurement.
  • the shape of the circle to be measured can be specified by tracking and theoretically capturing each time it rotates and calculating the distance between the floating center and a point on the circumference of the circle to be measured. Therefore, according to the method of the present invention, there is no need to accurately limit the center of the cylinder, i.e., the measurement reference position, and the cylinder can be easily and highly accurate without any heavy load. It is possible to measure.
  • the method of rotating the cylinder to be measured is not limited, and measurement can be performed with both ends open or with components such as flanges attached. Therefore, even if the measurement mechanism using the measurement method of the present invention is installed in the production line, problems such as interference with the transport means do not occur, and very simple and highly accurate measurement is possible.
  • rotation axis As used in this specification, “rotation axis”, “cylindrical axis”, and the “point” that intersects them are points that do not have a straight line or area with no thickness, such as those used mathematically. As shown in Fig. 2, the cylinder to be measured has its outer peripheral surface Since it rotates as a reference, the rotation axis and point have a certain range unless at least the cylinder to be measured is a true cylinder, or the outer peripheral surface in contact with the mouth 6 is not a perfect circle. Further, as used herein, “rotary axis” and “cylindrical axis” mean substantially the same. The numerical values indicating the range will be described below.
  • the range of the rotation axis preferably satisfies the following formula and d2 * 10 1 3 when a circle with a radius of 1L is shown as the range centered on the least square center of the cross-sectional circle to be measured.
  • the following formula and I d2 ′ 10-4 are satisfied, and most preferably, the following formula and d ⁇ d2′10-5 are satisfied.
  • T cylindricity of the cylinder to be measured
  • Figure 1 is a measurement flowchart.
  • Figure 2 is a schematic diagram of the measuring instrument.
  • FIG. 3 is an explanatory diagram of the measurement position.
  • FIG. 4 is an explanatory diagram regarding the movement of the floating center.
  • FIG. 5 is an explanatory diagram (1) regarding the calculation of the floating center position.
  • FIG. 6 is an explanatory diagram (2) regarding the calculation of the floating center position.
  • FIG. 7 is a diagram illustrating sensor positions for detecting the displacement of the first embodiment.
  • FIG. 8 is a diagram illustrating sensor positions for detecting the displacement of the second embodiment.
  • FIG. 9 shows data obtained from Example 1 from the measured values of the sensors No. 1 to No. 5 for detecting displacement to the circle center coordinate position.
  • FIG. 10 shows data from the measured values of the sensor for detecting displacement to the center coordinate position of samples No 6 to No 10 obtained in Example 1.
  • FIG. 10 shows data from the measured values of the sensor for detecting displacement to the center coordinate position of samples No 6 to No 10 obtained in Example 1.
  • Figure 11 shows the Cartesian coordinate position of each point with reference to the center coordinate position, the distance to each point, the maximum value and the minimum value of samples No 1 to No 5 obtained in Example 1. Value.
  • Figure 12 shows the Cartesian coordinate position of each point with reference to the center coordinate position, the distance to each point, the maximum value and the minimum value of Samples No 6 to No 10 obtained in Example 1. Value.
  • FIG. 13 shows the roundness obtained in Example 1 and Comparative Example 1.
  • FIG. 14 is a graph comparing the roundness obtained in Example 1 and Comparative Example 1.
  • FIG. 15 shows the time required for measurement and the difference obtained in Example 1 and Comparative Example 1.
  • FIG. 16 shows the distance between the sensor for detecting displacement and the measured cylinder surface obtained in Example 2.
  • Fig. 1.7 shows the difference value generated by the rotation of Fig. 7 obtained in Example 2 and the numerical value obtained by subtracting from the constant to make a positive integer.
  • FIG. 18 shows the displacement amount of the surface of the cylinder 1 to be measured obtained in Example 2 with reference to the floating center.
  • FIG. 19 shows the coordinate values and distances obtained in Example 2 by converting FIG. 9 into orthogonal coordinate positions.
  • FIG. 20 shows the distances from the respective coordinate positions to the respective measurement points on the circumference, the maximum values, and the minimum values obtained in Example 3.
  • FIG. 21 shows the cylindricity of the measured cylinder obtained in Example 4.
  • FIG. 22 shows the cylindricity of the measured cylinder obtained in Example 5.
  • Fig. 23 is a diagram showing the actual trajectory of the movement of the floating center relative to the starting point of the floating center due to the rotation of the cylinder at 360 degrees when the cylinder to be measured is rotated at a predetermined angle t. .
  • FIG. 1 An example of an apparatus used for measuring the shape of a circular cross-section of a cylinder according to this embodiment is shown in FIG.
  • the measuring device is mounted on a cylindrical receiving jig (roller 6) that can rotate the cylinder 1 to be measured, and is attached to the rotating shaft of the cylinder 1 to be measured by a guide rail 4 and a ball screw 5 so as to be able to reciprocate in parallel.
  • the measurement base which is located on the same mounting section 2 on the same cross section perpendicular to the rotation axis of the cylinder 1 to be measured, is the point where the rotation axis of the cylinder 1 to be measured and the cross section perpendicular to the rotation axis intersect. Point 0.
  • Sensor S 1 for detecting three displacements which are arranged in a fan shape with a predetermined angle (0 °) between each other and centered on measurement reference point O 0 and fixed to mounting base 2 Has S 2 and S 3. Sensors for detecting three displacements S 1, S 2 and S 3 and the center of rotation of two rollers 6 are fixed to the same machine, and their positions do not always change.
  • the travel distance from L to O n 1 ⁇ L 1 ⁇ L 1 2, is obtained.
  • a L 2 i can be obtained from the arguments included in the following two equations, that is, the included angle of the sensor for detecting displacement and the measured value. From equation (7) above,
  • L 2. L 2, - as ⁇ L 2 i, obtain the L 2 0.
  • the third step further rotate the cylinder to be measured 30 ° clockwise.
  • the measurement points 2 or 1 on the circumference in the second stage above move to 2 2 , 1 2 , 1 2 2 respectively, and sensors S 1, S 2, S 3 is the circumferential points 3 2 , 2 2 and 1 2 and the measurement reference point 0, respectively.
  • sensors S 1 to S 3 for detecting displacement points 3 2 , 2 2 and 1 2 and 0 on the circumference, respectively. Measure the distance between.
  • Find the distance traveled from (AL3 2 ) and from there the floating center O n .
  • And point 3 on the circumference. Find the distance to.
  • rotate the cylinder by 30 ° in the same way, floating center On .
  • Distance to each L4. L 5. 0, L 6. , L 7. , L 8. , L 9. And L 10.
  • L 1 1. , L 1 2 0 can be obtained using a similar method to obtain a more accurate measurement result.
  • the rotation error angle is 0 °, the circumference on the detection axis, and the measurement reference position O.
  • is very small.
  • the heel is about 0.007 6 / xm.
  • This number is 1.5 10_ 4% Deaction for measurement values as an error, the error in addition to the measurement reproducibility of the general displacement measuring instrument of the stop of general or One inexpensive rotation mechanism Considering that the accuracy can be expected to be about 0.04 ° as a reproducibility, it can be said that the effect on the measurement results is extremely small.
  • the required distance L 1. ⁇ L 12. Using the known least-squares center method, calculate the circle center position and each radial distance at the Cartesian coordinate position.
  • the roundness A of the cross-sectional circle perpendicular to the central axis is L 1 0 'to L 12. It can be obtained as the difference between the maximum and minimum values of,.
  • the measurement methods described above are less affected by the outer diameter, inner diameter, and length of the cylinder to be measured.
  • the outer diameter is, for example, a very thin number of about ⁇ 5 ⁇ . It can be used for thick things up to meters.
  • displacement detection means that can be used in this measurement method. For example, it is effective to use means such as an electric micrometer, an eddy current displacement detector, a laser displacement detector, and a dial gauge. .
  • the cylinder to be measured is very thin or soft with respect to its length and weight, or is very thin, it is bent under the influence of gravity during measurement. If there is a possibility that the measurement results may be affected due to elastic deformation such as unevenness, it is effective to make the measurement with the center axis of the cylinder to be measured parallel to the direction of gravity or other external action. It is.
  • the position of the cross section perpendicular to the central axis of both ends is closer to both ends of the cylinder to be measured. .
  • the displacement is generally detected in parallel with the cylindrical axis direction such as the guide rail 4.
  • the accuracy of the means for moving the sensor is important.
  • the shape formed by the locus of the floating center point obtained when the cylinder to be measured rotates during measurement is substantially circular, and the cylinder to be measured is mounted on the roller-shaped cylindrical receiving jig as described above. Rotating the roller-shaped cylindrical support jig If the runout is very small, the same rotation will be repeated. In other words, even if the cylinder to be measured rotates several times, all points on the surface of the cylinder always follow almost the same trajectory for each rotation.
  • the number of rotations is reduced. It is also very effective to measure with only one rotation.
  • a 3 0 0 3 aluminum tube with an outer diameter of ⁇ 8 4. O mm, an inner diameter of 78.0 mm, and a length of 3 6 0. 0 samples were prepared and used as Sands No. 1 to Sample No. 10.
  • the sensor S 0, S 45, and S 90 for detecting the displacement of the cylinder to be measured of the sample No. 1 is replaced with one sensor for detecting each displacement.
  • the measurement axis intersects at a predetermined point in the circle of the cross section in the direction perpendicular to the axis of the cylinder. In other words, it was placed on a cylindrical receiving jig of a cylindrical measuring instrument arranged in a fan shape with the angle of 45 ° between each other, centered on that point.
  • the sensors for detecting the above three displacements are placed at a position of 8 O mm in the direction of the center of the cylinder from one end of the cylinder to be measured.
  • the sensors for detecting the displacement are MC H 3 3 5 manufactured by Mitutoyo Corporation. An electric micrometer was used. Then, the measurement was performed 8 times in total by rotating 45 ° per measurement with the rotary drive transmitter.
  • the distance from the intersection of the detection axes to the sensor for detecting each displacement is measured in advance, and the measured value of the sensor for detecting the displacement in this embodiment is the same for each detection axis. It is assumed that the distance from the intersection point to the intersection point between the cylindrical surface on the same cross section perpendicular to the rotation axis of the cylinder to be measured and each detection axis is measured.
  • the cylinder to be measured was rotated at a speed of 6 revolutions per minute.
  • the time required for the measurement was measured as the time from when the cylinder to be measured was placed on the cylinder receiving jig until the cylinder to be measured completed one rotation for measurement.
  • the measurement position at the S 0 position at the start of measurement is 0 °, and the measurement position on the circumferential surface reaches S 0 as the measurement cylinder rotates. And add 45 ° in order.
  • the movement distances on the detection axis of the sensors S 45 and S 90 for detecting the displacement are calculated using the equations (1) and (2).
  • the movement distance on each axis is the difference between the measured value of S45 on the detection axis of S45 and the measured value of S0 before 4.5 ° rotation, and on the detection axis of S90. Calculated as the difference between the measured value of S90 and the measured value of S45 before 45 ° rotation.
  • ⁇ X at the Cartesian coordinate position was obtained using Equation 13 above, and subsequently calculated using Equation 12 as ⁇ y.
  • delta chi and A y are the moving distance of the floating center O n where indicated by orthogonal coordinates.
  • the true value of S 0 position namely to determine the distance to the measured cylinder surface where the floating center O n and standards. Then, to convert the distance to each point relative to the floating center O n the orthogonal coordinate position.
  • the true circle center coordinate O (x, y) was obtained by the least square center method, and the center X coordinate and the center Y coordinate were obtained.
  • the measured values from the sensor for detecting each displacement to the circle center coordinate position are shown in FIG. 9 and FIG.
  • the distances of the X and Y axis components from the central coordinate position to each point, the distance to each point, and the maximum and minimum values are shown in Fig. 11 and Fig. 12.
  • Sample No. 1 to Sample No. 10 measured in Example 1 were measured using a roundness measuring instrument (trade name: Round Test RA—H5000 AH; manufactured by Mitutoyo Corporation). The roundness of the outer surface at a position of 80 mm from the lower end of the cylinder in the direction of the center axis of the cylinder was measured. The time required for the measurement was measured as the time until the cylinder to be measured was placed on the rotary table, then automatically centered, automatically leveled, and all the automatic measurements were continuously performed by a series of programs. . .
  • Figures ⁇ 3 and 14 show the roundness values measured in Example 1 and Control Example 1 and the respective differences. In addition, each required time measured in Example 1 and Control Example 1 is shown in FIG.
  • a 3 0 0 3 aluminum tube that has been pre-machined as a cylinder to be measured and has a set outer diameter of ⁇ 80.0 mm, an incline of ⁇ 7 4. O mm, and a length of 3 60.0 mm Prepared.
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to FIG.
  • the sensor for detecting the displacement is located on the same cross section perpendicular to the rotation axis about 30 mm from the one end of the cylinder to be measured in the direction of the center axis of the cylinder and the rotation axis of the cylinder to be measured.
  • S 0 and S 1 5 and S 6 0 and S 75 are sandwiched between each other with the intersection point as the center.
  • the corners were arranged in a fan shape with a 15 ° angle between them.
  • the sensor for detecting the displacement uses a sensor for detecting the eddy current type displacement manufactured by KA MAN, and the sensor for detecting each displacement is such that the distances at the intersections are equal to each other. Located in Adjusted. Then, the measurement was performed 24 times by rotating 15 ° per measurement with the rotary drive transmission device, and the displacement between the sensor for detecting each displacement and the surface of the cylinder to be measured was measured as a distance.
  • the measurement at the S 0 position is set to 0 ° at the start of measurement, and on the circumferential surface that reaches S 0 according to the rotation of the cylinder to be measured. Add 15 ° in order to the measured position. This is shown in Figure 16.
  • each measured value is regarded as a difference value, so the first measured value, that is, the measured value of sensor S 0 for detecting the displacement when the cylinder to be measured has never rotated. Is set to 0, and all other measurement results are calculated as differences from S0. In addition, all difference values are converted to positive numbers to facilitate subsequent calculations. In this embodiment, the total difference value is subtracted from 50 as an arbitrary constant to obtain a positive numerical value. This is shown in Figure 17.
  • the respective moving distances on the detection axes of the sensors S 15 and S 75 for detecting the displacement are calculated using the formula 2.
  • the movement distance on each axis is the difference between the measured value of S15 on the detection axis of S15 and the measured value of S before 15 ° rotation, and the measurement of S75 on the detection axis of S75.
  • ⁇ X at the Cartesian coordinate position is obtained using the term b in the equation shown in the equation (12), and then expressed as Ay as shown in the equation (12). Calculated using the AL 2 i term.
  • Fig. 18 The displacement of each point based on the floating center O n obtained in Fig. 8 is converted into Cartesian coordinate components, and the true circle center coordinates O (x, y) are obtained using x n and y n obtained in this way.
  • the displacement amount in the X-axis component and a Y-axis component at each point relative to the floating center O n, and the true radial displacement amount to respective points their maximum value (53. 3 ⁇ ) And minimum
  • the direction from one end of the cylinder 1 to be measured to the other end is 30 mm. 35 mm, 40 mm, 60 mm, 80 mm, 90 mm, 120 mm, 140 mm mm, 1 50 mm, 18 Omm, 20 Omm, 21 Omm, 2 40 mm, 260 mm, 270 mm, 300 mm, 3 10 mm, 320 mm s 330 mm, 350 mm, perpendicular to 20 cylindrical central axes
  • the cross-sectional circle was taken as the circle to be measured, and a total of 24 points were measured at 15 ° per measurement circumference, and the distance between the sensor for detecting each displacement and the surface of the cylinder to be measured was obtained.
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to that shown in FIG. 3 Omm, 40 mm, 60 mm, 80 mm, 90 mm, 120 mm, 140 mm, 150 mm. 180 mm. 2 00 mm. 210 mm, 240 mm, from one end of cylinder 1 to the other
  • the cross-sectional circles perpendicular to the 12 cylindrical central axes were measured circles, and the cylindricity was measured for each of these circles in the same manner as in Example 3. The results are shown in FIG.
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to FIG. 3 Omm, 35mm, 4 Omm, 6 Omm, 8 Omm, 9 Omm, 12 Omm, 14 Omm, 150.mm, I 8 Omm, 20 Omm, 21 from one end of cylinder 1 to the other 20 cylinders of Omm, 24 Omm, 26 Omm, 27 Omm, 30 Omm, .31 Omm, 32 Omm, 33 Omm, 35 Omm, and the cross-sectional circle perpendicular to the central axis are measured circles.
  • the cylindricity was measured in the same manner as in Example 3. The results are shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本発明の目的は、円筒体形状の寸法測定、特には円周形状の測定において測定にかかる負荷が少なく、個々の測定値が極めて正確、かつ測定ポイント数を効率的に低減する測定方法を提供することにある。本発明は、円筒体の軸に対して直交する断面の円の形状の測定方法において、該断面円内に設定した基準点に対する該断面円の円周上の少なくとも3つの所定の点の距離の該円筒の回転による変化に基づいて、該基準点と該円周との間の距離を算出して該断面円の形状を特定する工程を有することを特徴とする。

Description

明 細 書 円形状の測定方法、 円筒^^状の測定方法及び円筒形状の測定装置 技術分野 '
本発明は円筒の軸に直交する方向の断面円の形状、 及び円筒形状の測定方法 並びにこれに用いる測定装置に関する。 特に、 本発明は精度の良い円筒部材を 得る手段として円筒部材の外表面を切削加工した際の精度測定に寄与する技 術に関する。 本発明で得られた測定技術の適用範囲は多岐にわたるが、 本発明 者らは、 特に電子写真方式の複写機やレーザービームプリンター、 同ファクシ ミリ、 又は印刷装置の画像形成部材、 又はその基体の測定に本発明を適応し、 その効果を確認した。 背景技術
従来、 電子写真方式の複写機、 レーザービームプリンター、 ファクシミリ、 印刷機等の画像形成装置における電子写真感光ドラムや現像スリーブは、 形状 寸法が所定の精度に仕上げられだ円筒部材を用いる。 電子写真感光ドラムほ所 定の精度に仕上げられたドラム基体の表面に感光膜を施すことによって製造 される。 しかしながら該ドラム基体の寸法精度が低いと感光膜に凹凸が生じ、 このために萌像形成装置の画像に欠陥が生じるという問題がある。 従って、 精 度の高い画像形成装置を得るためには、 該ドラム基体の円筒度および真円度等 に高い精度が求められる。
さらに、 こうしたドラム基体を製造する工程においても、 その寸法精度を保 証することを目的とした高精度な測定機能が必要であり、 それを目的とした方 法として、 以下の従来技術が知られている。 回転可能な基台に被測定円筒 (測 定対象の円筒。 以下同じ。) を立ててこれを回転させながら、 表面形状を帯状 レーザーその他の測定手段によって測定する方法 (例えば、 特開平 0 6— 2 0 1 3 7 5号公報 (特許文献 1 ) 参照)。 被測定円筒の両端を何らかの把持具に て把持して回転させ、 帯状レーザーをさえぎる寸法を測定して円筒形状を測定 する方法 (例えば、 特開平 0 8— 0 0 5 3 4 1号公報 (特許文献 2 ) 参照)。 回転軸を固定することなく被測定円筒を回転させ、 被測定円筒の外周部に臨む 変位検出器から得た測定値を近似算出させて測定する方法 (例えば、 特開平 0 6 - 1 4 7 8 7 9号公報 (特許文献 3 ) 参照) 等。 しかしながら、 近年ではこ うした画像形成装置の高画質化への要求に加えて、 製造コストの低減を目的と した、 より簡便な測定方式が不可欠となってきている。 さらに、 円筒形状の測 定方法を工業的な製品評価としてのニーズに則して言及すれば、 評価するべき 項目をその円筒としての寸法精度と表面の部分的な形状欠陥に切り分け、 それ ぞれの目的に合った測定手段を用いるべきである。 ここで寸法精度の測定にお いては、 円筒の円周形状、 特には本発明で対象とするようなもともと高い精度 レベルを有することを前提とする円筒の円周形状の寸法精度を測定する分野 においては、 個々の測定値が極めて正確であれば、 測定ポイント数は比較的少 数であっても十分な評価とすることが可能である。 したがって、 工業的には測 定ポィント数を可能な限り削減して処理時間の短縮を図ることが好ましい。 一 方、 円筒表面の ¾5分的な形状欠陥を評価するにあたって測定ポイント数を増や しても、 ヘアライン状の傷欠陥等の微細な欠陥を全て評価するには困難であり、 この点においても測定ポイント数を増加させることは好ましくな,い。 したがつ て、 それに代わる画像処理その他の表面欠陥の分析等による評価手段を用レ、る べきである。 すなわち、 工業的な製品評価として円筒の円周形状の寸法精度測 定を行うに際して、測定効率を追求する観点から、測定にかかる負荷が少なく、 個々の測定値が正確であって、 かつ測定ポイント数を最小限に抑えることが最 も好ましいと言える。 この点において、 従来の、 回転可能な基台に被測定円筒 を立ててこれを回転させながら表面形状を帯状レーザーその他の測定手段に よって測定する方法(例えば、特開平 0 6— 2 0 1 3 7 5号公報(特許文献 1 ) 参賄) では、 非常に高精度な測定値を得ることが可能である反面、 測定にあた り基台上の被測定円筒を精密に心出しする等の準備作業が必要で、 測定時間と 負荷の削減が容易ではない。 また被測定円筒の両端を何らかの把持具で把持し て回転させ、 帯状レーザーをさえぎる寸法を測定して円筒形状を測定する方法 (例えば、 特開平 0 8— 0 0 5 3 4 1号公報 (特許文献 2 ) 参照) では、 比較 的簡便な測定が可能である反面、 円筒の肉厚の偏りが測定値に影響を及ぼしこ り、 両端の把持具の勘合隙間寸法や、 把持力による端部変形、 あるいは被測定 円筒を回転させる時点で発生する軸の振れ等が測定誤差を生じたりする原因 になり易い。 また、 回転軸を固定することなく被測定円筒を回転させ、 被測定 円筒の外周部に臨む変位検出器から得た測定値を近似算出させて測定する方 法 (例えば、 特開平 0 6— 1 4 7 8 7 9号公報 (特許文献 3 ) 参照) では、 簡 便かつ測定 ίこかかる機器精度の測定結果におよぼす影響を抑制できる反面、 測 定結果が近似算出値であることから測定ポイント数と近似計算の次数を増加 させることによって個々の測定値の正確性を向上させるという特徴を有して おり、 その測定ボイント数は少なくとも 6 4点、 または 1 0 0点以上が必要と されている。 従ってこの方法では測定ポイント数の削減があまり望めず、 比較 的長い測定時間を要してしまう。
このように従来技術においては、 測定効率の観点から、 測定にかかる負荷を 最少にし、 個々の測定値が正確であり、 かつ測定ポイント数を最小限に抑える ことを可能とした、 工業的な製品評価としての円筒の円周形状の寸法精度測定 方法を提供するにいたっていない。 発明の開示
本発明は、 こうした問題に鑑み、 円筒形状の寸法測定、 特には円周形状の測 定において測定にかかる負荷が少なく、 個々の測定値が正確、 かつ測定ポイン ト数を効率的に低減することを主たる目的として成された。
即ち本 ¾明の一態様によれば、 円筒の軸に対して直交する断面の円の形状の 測定方法であって、 該断面円内に設定した、 被測定円筒の回転軸と断面円が交わる 点である基準点に対する該断面円の円周上の少なくとも 3つの所定の点の距離 の該円筒の回転による変化に基づいて、 該基準点と該円周との間の距離を算出 して該断面円の形状を特定するェ毪を有することを特徴とする円筒の軸に対 して直交する断面の円の形状測定方法が提供される。
具体的には、 円筒受け治具と、 該円筒の回転軸と直角を成す同一断面上に位 置し、 該円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基 準点 (0。) に向けられ、 かつ〇。を中心として互いに所定の角度 (θ ° ) を挟 んで扇状に配置して固定された 3個.以上の変位を検出するためのセンサーを 有する台からなる測定手段を用いて、 下記 ( i ) から (V i ) のステップによ つて該円筒の軸に対して直交する断面の円の形状を求める測定方法である :
( i ) m個 (ここで mは 3以上) の変位を検出するための該センサー (S 1 から Sm) により、 各検知軸上の測定基準点 (O0) から該円筒の軸と直角を 成す断面円の円周上の点までの距離 (L 1から Lm) を測定するステップと、
( i i) 該円筒を第一のセンサー S 1から第二のセンサ一 S 2の方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基 点
(O0) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップ.と、 ,
( i i i ) 該円筒の Θ。'回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 Ο 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (〇。一〇 ') を算 出し、 変位を検出するための該センサー Sm軸上の、 0 'カ ら、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記ステップ ( i i ) 力 ら .( i v ) を繰り返して、 n個の距離を測定す るステップと、 -
(v i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップ。 さらに、 本発明によれば、 円筒受け治具と、 該円筒の回転軸と直角を成す同 一断面上に位置し、 該円筒の回転軸と該回転軸と直角を成す断面とが交わる点 である測定基準点 (O0) に向けられ、 かつ 0。を中心として、 角度 (0° ) を 挟んで配置された、 S Aと SBの 2つの変位を検出するためのセンサーと、 角 度 (ひ。 ) を挟んで配置された、 SA' と SB' の 2つの変位を検出するため のセンサーとを有し、 SAと SA' 又は SBと SB' の挟角の角度が、 前記 0 の正の整数倍であることを特徴とする 4個の扇状に配置して固定された変位 を検出するためのセンサ一を有する台からなる測定手段を用いて、 下記 ( i ) から (v i) のステップによって該円筒の軸に対して直交する断面の円の形状 を求める測定方法が提供される :
( i) 変位を検出するための該センサーにより、 各検知軸上の測定基準点 (O 。) から該円筒の軸と直角を成す断面円の円周上の点までの距離 (L 1から L 4) を測定するステップと、
( i i) 該円筒を第一のセンサー S Aから第二のセンサー SBの方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点
(0。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、
( i i i ) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (〇。—〇 ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O '力ゝら、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記ステップ ( i i ) から ( i V ) を繰り返して、 n個の距離を測定す るステップと、 ( V i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップ。 従来の測定方法の殆どが、 より高い測定精度を得ることを目的として、 測定 基準位置として円筒中心の機械的限定の正確さを追求することに負荷を要し ているのに対し、 本発明で提供する方法では、 この円筒中心が回転によって移 動してしまうような仮想中心すなわち浮動中心であることを前提として捉え ている。 よって、 本発明の測定方法は、 測定基準位置を機械的に限定すること なく、 測定に従って順次測定子より得られる数値の変遷を元にこの浮動中心の 位置を被測定円筒が一刻み毎に回転するたびに追跡して理論的に捕捉、 限定す ることを主たる特徴とする。 従って、 本発明の測定方法によれば前記した円筒 中心、 すなわち測定基準位置を正確に限定する必要が無いことから、 こめよう な一切の負荷を伴うことなく簡便に、 かつ高い精度を伴って円筒の円周形状を 測定することが可能である。
加えて、 本発明で提供する方法では、 各測定値は近似算出されること無く直 接計測された測定結果を得ることが可能であること力 ら、 各測定値は測定ボイ ント数に影響されることが無い。 これにより前述の、 本発明で対象とするよう なもともと高い精度レベルを^"することを前提とする円筒の円周形状 (寸法精 度) を測定するにあたっての測定ポイント数は 1 0点、 或いは 2 0点程度、 す なわち必要最小限な測定ボイント数で製品の精度保証に必要な測定を行うこ とが可能である。 したがって、 本発明は工業的な製品評価として円筒の精度測 定を行うにあたり、 測定効率を追求する観点から極めて理想的であるといえる。 また、 本発明の別の一態様によれば、 この方法を用いて円筒の円筒形状を測 定する方法として、 円筒を被測定物としてその円周方向に回転させて該円筒の 円筒形状を測定するにあたり、 該円筒の円筒中心軸に対して垂直方向から該円 筒の円筒寸法を計測する複数の検出器を該円筒中心軸に対し平行に移動する 工程と、 前記複数の検出器から得られた所望の位置での複数の検出信号を演算 する工程とを有し、 該円筒の円筒度と真円度を測定する方法において、 被測定 円筒を回転して測定するにあたり、 上記の円周形状の測定方法を用いて前記円 筒中心軸と直角を成す断面の円周形状と真円度を求めることによって該被測 定円筒の円筒度を測定することを特徴とする円筒の円筒形状の測定方法が提 供される。
また本発明のさらなる一態様によれば、 被測定円筒を載置し、 これを回転す る円筒受け治具ど、 該被測定円筒の回転軸に平行に往復可能に設けられた取り 付け台に、 該被測定円筒の回転軸と直角を成す同一断面上に位置し、 該被測定 円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基準点 (O 。) に向けられ、 かつ o。を中心として互いに所定の角度 ( θ。 ) を挟んで扇状 に配置して取り付け台に固定された 3個以上の変位を検出するためのセンサ 一を有している測定手段を用いて、 図 1に示すフローチャートに従って円筒の 形状を測定する方法が提供される。
具体的には、 被測定円筒受け治具と、 該被測定円筒の回転軸と直角を成す同 一断面上に位置し、 該被測定円筒の回転軸と該回転軸と直角を成す断面とが交 わる点である測定基準点 (Ο 0) に けられ、 かつ 0。を中心として互いに所定 の角度 (0 ° ) を挟んで扇状に配置して固定された 3個以上の変位を検出する ためのセンサーを有する台からなる測定手段を用いて、 下記 ( i ) から (V i i i ) のステップによって該被測定円筒の円筒度を求める円筒形状の測定方法 である :
( i ) m個 (ここで mは 3以上) の変位を検出するための該センサー (S 1 から S m) により、 各検知軸上の測定基準点 (O 0) 力 ら該円筒の軸と直角を 成す断面円の円周上の点までの距離 (L 1から L m) を測定するステップと、 ( i i ) 該円筒を第一のセンサー S 1から第二のセンサー S 2の方向に 0。 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点 (0。) 力 ら該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、 ( i i i ) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (00— 0 ,) を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記ステップ ( i i ) から (i V ) を操り返して、 n個の距離を測定す るステップと、
( V i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i ) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) から (v i) により該断面円について円 周形状を算出するステップと、
( V i i i ) 上記ステップ ( i ) から (V i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 . 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
本発明の他の態様によれば、 被測定円筒受け治具と、 該被測定円筒の回転 -軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回転軸と直角 を成す断 ¾5.とが交わる点である測定基準点 (0。) に向けられ、 かつ 0。を中心 として、 角度 (0° ) を挟んで配置された、 S Aと S Bの 2つの変位を検出す るためのセンサーと、 角度 (θ° ) を挟んで配置された、 SA' と SB, の 2 つの変位を検出するためのセンサーとを有し、 3 と 5八' 又は SBと SB' の挟角の角度が、 前記 Θの正の整数倍であることを特徴とする 4個の扇状に配 置して固定された変位を検出するためのセンサーを有する台からなる測定手 段を用いて、 下記 (i ) から (V i i i ) のステップによって該被測定円筒の 円筒度を求める円筒形状の測定方法が提供される :
( i )変位を検出するだめの該センサーにより、各検知軸上の測定基準点(O 。) から該被測定円.筒の軸と直角を成す断面円の円周上の点までの距離 (L 1 から L4) を測定するステップと、
( i i ) 該被測定円筒を第一のセンサー S Aから第二のセンサ一 SBの方向に 0° 回転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定 基準点 (o。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの 距離を測定するステップと、
( i i i ) 該被測定円筒の 0° 回転前と後の変位を検出するための該センサー による測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。_0 ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、 (v) 上記ステップ ( i i) 力 ら ( i V ) を繰り返して、 n個の距離を測定す るステップと、
(v i) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ (i ) 力 ら (V i ) により該断面円について円 周形状を算出するステップと、
(v i i i) 上記ステップ ( i) から (v i i) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
本発明のさらに別の態樺によれば、 被測定円筒内に変位を検出するためのセ ンサーを配置して、 被測定円筒の肉厚、 及び内周円の円中心、 及び真円度を求 めることを特徴とする円筒の円筒形状の測定方法が提供される。
また、 本発明のさらに別の態様によれば、 上記の測定方法であって、 径の異 なる複数の円筒からなり、 該全ての円筒の外周円内に回転軸を共有する複合円 筒に対して、 該複合円筒を構成する少なくとも 1つの円筒を、 上記のいずれか の方法で測定し、 前記 1つの円筒以外の円筒をそれぞれ少なくとも 1つの変位 を検出するためのセンサーを用いて円筒形状を測定し、 全ての円筒形状、 同軸 度、 及び複合円筒の肉厚を める、 複合円筒の円筒形状の測定方法が提供され る。
更に本発明の別の態様によれば、 被測定円筒受け治具と、 該被測定円筒の回 転軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回転軸と直 角を成す断面とが交わる点である測定基準点 (Ο 0) に向けられ、 かつ o。を中 心として互いに所定の角度 ( θ ° ) を挟んで扇状に配置して固定された 3個以 上の変位を検出するためのセンサーを有する該被測定円筒の回転軸に平行に 往復可能に設けられた台からなる測定手段と、 下記ステップ ( i ) から (V i i i ) を実行する演算手段と.、 を具備していることを特徴とする円筒の形状測 定装置が提供される :
( i ) m個 (ここで mは 3以上) の変位を検出するための該センサー (S 1 から S m) により、 各検知軸上の測定基準点 (〇。) 力 ら該円筒の軸と直角を 成す断面円.の円周上の点までの距離 (L 1から L m) を測定するステップと、 ( i i ) 該円筒を第一のセンサー S 1から第二のセンサー S 2の方向に 0 ° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点 (0。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、
( i i i ) 該円筒の 0 ° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、 ( i v) 変位を検出するための該センサー Sm軸上の距離 (0。一 Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
(v) 上記ステップ ( i i ) 力 ら ( i V ) を繰り返して、 n個の距離を測定す るステップと、
(v i) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i ) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) から (V i ) により該断面円について円 周形状を算出するステップと、 '
(v i i i) 上記ステップ ( i) から (v i i) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直錄 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
更に本発明の別の態様によれば、 被測定円筒受け治具と、 該被測定円筒の回 転軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回転軸と直 角を成す断面とが交わる点である測定基準点 (O0) に向けられ、 かつ o。を中 心として、 角度 (θ° ) を挟んで配置された、 S Αと S Βの 2つの変位を検出 . するためのセンサーと、 角度 (0° :) を挟んで配置された、 SA' と SB' の 2つの変位を検出するためのセンサーとを有し、 SAと SA' Xは SBと SB, の挟角の角度が、 前記 0の正の整数倍であることを特徴とする 4個の扇状に配 置して固定された変位を検出するためのセンサーを有する該被測定円筒の回 転軸に平行に往復可能に設けられた台からなる測定手段と、下記ステップ( i ) から (V i i i ) を実行する演算手段と、 を具備していることを特徴とする円 筒の形状測定装置が提供される : ( i )変位を検出するための該センサーにより、各検知軸上の測定基準点(O 。) 力 該被測定円筒の軸と直角を成す断面円の円周上の点までの距離 (L 1 から L4) を測定するステップと、
( i i ) 該被測定円筒を第一のセンサー S Aから第二のセンサー SBの方向に 0° 回転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定 基準点 (o。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの 距離を測定するステップと、
( i i i) 該被測定円筒の 0° 回転前と後の変位を検出するための該センサー による測定値の変化から、 浮動中心 O一の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。— Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記ステップ ( i i ) 力 ら ( i V ) を繰り返して、 n個の距離を測定す るステップと、
(v i) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) から (v i) により該断面円について円 周形状を.算出するステップと、
( V i i i ) 上記ステップ ( i ) から (V i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
上記 nは、 断面円の円周形状を算出するために要する数であり、 例えば、 均 等に 0° 間隔で上記距離を求めて断面円の円周形状を算出する場合には、 n = 3 6 0 ° Z θ。 となる。
上記の.「断面円の円周形状を算出」 とは、 例えば、 最小自乗法により該断面 円の円中心位置を求めたり、 真円度を求めたりすることを意味する。
従来の測定方法の殆どが、 より高い測定精度を得ることを目的として、 測定 基準位置として円筒中心の機械的限定の正確さを追求することに負荷を要す るのに対し、 本発明で提供する方法では、 この円筒中心を仮想中心すなわち回 転により移動してもよい中心として捉えている。 すなわち、 図 2 3に示すよう に、 浮動中心の始点を基準点として、 円筒を所定角度 (θ ° ) で回転させると 浮動中心は始点から移動し、 さらに再度回転させると浮動中心は更に移動し、 順次回転させ、 最終的に 3 6 0度の円筒の回転により、 浮動中心は図示するよ うな浮動中心の軌跡をとることとなる。 よって、 本発明の測定方法は、 測定基 準位置を機械的に限定することなく、 測定に従って順次測定子より得られる数 値の変遷を元にこの浮動中心の位置を測定円筒が一刻み毎に回転するたびに 追跡して理論的に捕捉し、 該浮動中心と測定対象たる円の円周上の点との距離 を算出することにより、 該測定対象たる円の形状を特定することができる。 し たがって、 本発明の方法によれば前記の円筒中心、 すなわち測定基準位置を正 確に限定する必要が無く、 力かる一切の負荷を伴うことなく簡便に、 かつ高い 精度を伴って円筒を測定することが可能である。 カロえて、 本発明で提供する方 法では被測定円筒の測定にあたって回転させる方法が限定されず、 両端部を開 放させたまま、 或いはフランジ等の部品を装着した状態での測定が可能である こと力 ら、 本発明の測定方法を用いた測定機構を生産ライン中に搭載しても搬 送手段との干渉などの問題が発生せず、 非常に簡便かつ高精度な測定が可能で ある。
なお、 本明細書において使用する、 「回転軸」、 「円筒の軸」、 およびそれらと 交わる' 「点」 は、 例えば数学的に用いるような太さを持たない直線や面積をも たない点を指すのではなく、 図 2に示すように、 被測定円筒は自身の外周面を 基準として回転するので、 少なくとも被測定円筒が真円筒でないか、 或いはコ 口 6に当接する外周面が真円形状でない限り、 回転軸や点.は、 ある範囲を持つ ている。 さらに、 本明細書で使用する 「回転軸」 と 「円筒の軸」 は実質的に同 じことを意味している。 以下に、 その範囲を示す数値について説明する。 回転軸の範囲は、 測定され る断面円の最小自乗中心を中心として、 1Lを半径とする円を範囲として示し たとき、 好ましくは、 下記式且つ Iじく d2*10一 3 を満たし、 さらに好ましく は、 下記式且つ Iじく d2' 10-4を満たし、 最も好ましくは、 下記式且つ じ <d2'10- 5を満たす。
= d22 - ( L-T) 2 d 2 :測定される断面円の平均半径値
T :被測定円筒の円筒度
例えば、 最も好ましい場合の回転軸の範囲は、 d 2 = 50.00 mmかつ T = 0.05 mmとした場合には、 lL 'く 0.0005 mm, lL< 0. 274 mmとなり、 計算による回転軸の範囲は φ 0. 548mmとなる。
また 1Lの現実性として、 このような精度でのセンサーの位置決めは、 現代 の機械加工技術の水準 (当業界での一般的な限界は、 d 2 = 50隱のとき 1L 0.002mm程度である。 ) からすれば、 なんら問題なく可能な範囲でも ある。 図面の簡単な説明
図 1は、 測定フローチャートである。
図 2は、 測定機概略図である。
図 3は、 測定位置説明図である。 図 4は、 浮動中心の移動に関する説明図である。
図 5は、 浮動中心位置の算出に関する説明図 (1 ) である。
図 6は、 浮動中心位置の算出に関する説明図 (2 ) である。
図 7は、 実施例 1の変位を検出するためのセンサー位置を示す図である。 図 8は、 実施例 2の変位を検出するためのセンサー位置を示す図である。 図 9は、 実施例 1で得た、 サンプル N o 1から N o 5の、 変位を検出するた めのセンサ一の測定値から円中心座標位置までのデータである。
図 1 0は、 実施例 1で得た、 サンプル N o 6から N o 1 0の、 変位を検出す るためのセンサ一の測定値から 中心座標位置までのデータである。
図 1 1は、 実施例 1で得た、 サンプル N o 1から N o 5の、 中心座標位置を 基準とした各点の直交座標位霄、 及び各点までの距離と、 その最大値と最小値 である。
図 1 2は、 実施例 1で得た、 サンプル N o 6から N o 1 0の、 中心座標位置 を基準とした各点の直交座標位置、 及び各点までの距離と、 その最大値と最小 値である。
図 1 3は、 実施例 1及び比較例 1で得た真円度である。
図 1 4は、 実施例 1及び比較例 1で得た真円度を比較するグラフである。 図 1 5は、 実施例 1及び比較例 1で得た、 測定所要時間と差である。
図 1 6は、 実施例 2で得た、 変位を検出するためのセンサーと被測定円筒表 面までの距離である。 '
図 1 .7は、 実施例 2で得た、 図 7の回転によって生じた差分値と、 定数から 減算して正の整数とした数値である。
図 1 8は、 実施例 2で得た、 浮動中心を基準とした被測定円筒 1表面の変位 量である。
図 1 9は、 実施例 2で得た、 図 9を直交座標位置に変換した座標値と距離で ある。 図 2 0は、 実施例 3で得た、 各座標位置から前記各交点と.円周上の各測定点 までの距離と、 最大値と、 最小値である。
図 2 1は、 実施例 4で得た、 被測定円筒の円筒度である。
図 2 2は、 実施例 5で得た、 被測定円筒の円筒度である。
図 2 3は、 被測定円筒を所定の角度回転さ tた場合の、 円筒の 3 6 0度の回 転による浮動中心の始点を基準とした実際の浮動中心の移動の軌跡を示す図 である。 発明を実施するための最良の形態
以下の説明は本発明で用レ、る方法の一実施形態であって、 同様の効果は他の 形態においても得られることは当業者であれば容易に理解されよう。
本実施態様に係る円筒の断面円の形状測定に用いる装置の一例を図 2に示 す。 当該測定装置は、 被測定円筒 1を回転可能な円筒受け治具 (コロ 6 ) 上に 載置し、 ガイ ドレール 4及びボールねじ 5によって被測定円筒 1の回転軸に平 行に往復可能に取り付けた取り付け台 2に、 被測定円筒 1の回転軸と直角を成 す同一断面上に位置し、 被測定円筒 1の回転軸と、 該回転軸と直角を成す断面 とが交わる点である測定基準点 0。に向けられ、かつ測定基準点 O 0を中心とし て互いに所定の角度 (0 ° ) を挟んで扇状に配置して取り付け台 2に固定され た 3個の変位を検出するためのセンサー S 1、 S 2及ぴ S 3を有する。 3つの 変位を検出するためのセンサ一 S 1、 S 2及び S 3と 2つのコロ 6の回転中心 は、 同一の機械に固定されており、 互いの位置は常に変化しない。
次に、当該円筒の、軸と直交する断面の円の形状の測定方法について述べる。 ここでは、 被測定円筒 1の 1測定あたりの回転角度 θ ° を 3 0 ° とした。 従つ て円周上の測定点は図 3に示す通り 1 0から 1 2。の 1 2点となる。そして本測 定方法では最終には、 浮動中心の始点 (Ο η =。) と被測定円の円周上の各点 1。 から 1 2。との距離を算出し、 被測定円の形状を特定することになる。 第一段階として、 変位を検出するためのセンサー S 1、 S 2及び S 3を用い ることで、 O。 (On = 0) と被測定円の円周上の点 10、 1 2。及び 1 1。との間 の距離 L 1。、 L 12。及び L 1 1。を測定する。
第二段階として、 円筒を右方向に 30° 回転させると、 第一段階での円周上 の測定点 1。、 12。及び 1 1。は、 図 4に示すように、 各々 1い 12い 1 1 丄に移動し、 また変位を検出するためのセンサー S 1、 S 2及び S 3は、 各々 円周上の点 2ぃ 1 i及び 12 iと測定基準点 0。との距離を測定可能となる。 こ のとき、 浮動中心 On =。が、 被測定円の真の中心と一致していない且つ被測定 円が真円形状でないことを前提として、 Onは On = 1に移動する。この時点では、 浮動中心 On =。と円周上の点 2 iとの距離は不明である。次いで、変位を検出す るためのセンサー S l、 S 2及び S 3を用いて、 各々円周上の点 2い 1 ,及び 12!と測定基準点 0。との距離 L 2い L 1〗及び L 1 2〗を測定する。
ここで、回転による各距離の変化から浮動中心 onの現在位置 on=1の位置を 求める。 L l。、 L 1 2。は既知であることから、 変位を検出するためのセンサ 一 S 2及び S 3の各検知軸上における On =。から On = 1への移動距離 Δ L 1い 厶 L 1 2 ,が求まる。
厶 L l ^L l i一 L l0 ' . ' (l)
Figure imgf000019_0001
以降、 この 2つの距離を用いて変位を検出するためのセンサー S 1の検知軸 上での浮動中心 On = 1の移動距離 Δ L 2 iを求める。 そして、 し 21と厶し 21 の差をとることで、 浮動中心 On =。と円周上の点 2。との距離が求まる。 即ち、 図 5に示すように 1 を3とし、 変位を検出するためのセンサー S 1の検 知軸と浮動中心 On = 1の最短距離すなわち変位を検出するためのセンサー S 1 の検知軸を y軸とする直交座標で表すところの浮動中心 O π = の X軸成分での 移動距離を bとし、 aと bをそれぞれ図 5に示す r及び r ' を用いて表せば、 r · sin ^+Γ Β · · · ノ . r, + r · sin θ , = b - · · (4)
r ' = (b - a · sin0!) / (cos20 · · · (5)
r = a -sin0 λ · [(b - a - sind!) / (cos2 Θ - · · (6)
更に、 図 5より、
Δ L 2 j= r · cos0 ,であることから、
厶 L 2! = a · cos Θ j - tan θ 1 ( b - a · sin Θ J · · · ( 7 )
ここで、 図 6より、
厶 L 1 2 — b ' sin (θ !+ θ 2) =厶し 2 cos ( θ x+ Θ 2) - · · (8) 厶 L 2 i= [ Δ L 1 2! - b - sin (θ 2)1 / [cos (θ ,+ θ 2)] - · · (9)
a - cos Θ y—tand! · (b— a - sin0!) = [厶 L l S !— b - sin (θ 1+ θ 2)] / [cos (θ !+ Θ 2)] · - - (1 0)
b = [a (cos Θ! +sin0 j · tan Θ j) · cos ( Θ j + Θ 2) — Δ L 1 2 J Z [tan θ , - cos (Θ j+ Θ 2) —sin (θ !+ Θ 2)] · - - (1 1)
従って、 A L 2 iは、 以下の 2つの式に含まれる引数、 すなわち変位を検出 するためのセンサーの互いの挟角と測定値によって求めることが可能である。 上記式 (7) より、
Δ L 2 !
Figure imgf000020_0001
t ( b - Δ L 1 t · sin Θ · · - (1 2) b = [厶 L 1 · (cos Θ 1 +sin 0 tan 0】) · cos ( Θ j + Θ 2) - Δ L 1 2 J / [tan0! - cos (θ ,+ Θ 2) 一 sin ( θ x+ Θ 2)] · · - (1 3)
上記式 (1 2) 及び (1 3) を用いて求められた Δ L 2 ,から、
L 2。 = L 2 ,—厶 L 2 iとして、 L 20を得る。
第三段階として、 更に被測定円筒を右方向に 30° 回転させる。 すると、 上 記第二段階に於ける円周上の測定点 2い 1い は、 各々 22、 12、 1 2 2に移動し、 また変位を検出するためのセンサー S 1、 S 2、 S 3は、 各々円 周上の点 32、 22及び 12と測定基準点 0。との距離を測定可能となる。 また浮 動中心 On = 1は、 更に On = 2に移動する。 次いで、 変位を検出するためのセン サー S 1〜S 3を用いて、各々円周上の点 32、 22及び 12と 0。との間の距離 を測定する.。 これらの測定値を用いて、 上記と同様の方法にて浮動中心 On = 2 の〇n = 0からの移動距離を算出し、 更にその計算結果を用いて、 変位を検出す るためのセンサー S 1の測定軸 (y軸) 上における Οπ = の On =。からの移動 距離 (AL32) を求め、 そこから浮動中心 On =。と円周上の点 3。との距離を 求める。 以降、 同様に円筒を 30° ずつ回転させ、 浮動中心 On =。と円周上の 点 40、 50、 6。、 7。、 80、 9。及び 10。各々との距離 L4。、 L 5.0、 L 6 。、 L 7。、 L 8。、 L 9。及び L 10。を求める。 このとき、 L 1 1。、 L 1 20、 についても同様な方法を用いて算出すれば、 より高い精度の測定結果を得るこ とができる。
また、 被測定円筒 1を測定に従って回転させるときに生じることが予想され る、 回転角度に起因する誤差について言及すれば、 回転誤差角度を 0° 、 検知 軸上の円周と測定基準位置 O。との距離を L j、 測定基準位置◦。で検知軸と前 記回転誤差角度を挟んで交差する軸上の、 測定基準位置 O。から円周までの距 離を L2としたとき、 検知距離に与える誤差 Δ L' は以下の式:
iL = L ,— L 2 · cos 0
として与えられ、 ΔΙ は非常に小さい。 一例として、 測定対象円の平均半径 が 5 Ommであって、 回転誤差が 0. 1° 生じた場合の厶し' は、 約 0. 07 6 /xmと る。 この数値は、 誤差として測定値に対して 1. 5 10_4%でぁ つて、 この誤差は前記の一般的な変位測定器の測定再現性に加えて、 一般的か つ安価な回転機構の停止精度がその再現性としてほぼ 0. 04° 程度を十分期 待できることを考慮すれば、 測定結果に与える影響は極めて小さいといえる。 続いて、 求められた距離 L 1。〜L 12。力ゝら、 既知の最小自乗中心法を用い て、 直交座標位置における円中心位置および各半径方向距離を算出する。
次に、 浮動中心 On = 0を直交座標における原点 (0, 0) として、 距離 L l。 〜L 1 2。から、 円周上の測定点 1。〜1 2。の当該直交座標内における位置を 定める。 計算の便宜上、 いったん nを iに置き換えて測定点 1。〜1 2。までの 引数とし、 直交座標位置成分をそれぞれ Xい y iとすれば、 以下の式: x, L sin{— r ( i -1) } y i =L cos{— ^! · ( i 一 1) } として求めることができる。 なお、 上式で ø〗を の角度として用いているの は、各被測定点の直行座標位置を図 3に順じて表すためであって、その角度は、 直交座標系の Y軸を 0° として反時計方向に順次加算する。
ここで真の円中心 Oの直交座標位置を O (x、 y) とすれば、 以下の式:
2∑ x , = 2∑ y -t
Λ _ 12 y 1 2 として求めることができる。 このとき両式右項の分母に与える 1 2は、 3 6 0° を 0 ,すなわち 3 0° で割った数であり、 この数は 0 iによって変化する。 続いて真円度 Aを求める。 求めた O (x、 y) を直交座標上の原点 (0、 0) に置き換え、 これに伴って移動する円周上の測定点 1。〜1 2。の位置を 1'0' 〜1 2。' とすれば'、 直交座標位置成分 (xn、 y n) は、 以下の式:
χ π
Figure imgf000022_0001
1 - y
で与えられる。得られた 1。'〜1 2。'の直交座標位置成分(xn、 y J より、 真の各半径方向の変位量 L 1。' 〜L 1 2。' は、 以下の式:
Figure imgf000022_0002
で与えられる。 このとき中心軸直角断面円の真円度 Aは L 10' 〜L 1 2。, の 最大値と最小値の差として求めることができる。
以上の測定と算出を被測定円筒 1の所望の各中心軸と直角を成す断面円に ついて求め、 各測定断面円について、 円中心位置および半径方向の変位量を得 る。
次に、 被測定円筒 1の円筒度を求める。 測定された各中心軸と直角を成す断面円のうち、 被測定円筒 1の両端 2つの 中心軸と直角を成す断面円の両円中心同士を結ぶ直線と、 その他の各中心軸と 直角を成す断面円の交点の位置を、 距離比例計算によって求める。 続いて、 式 1 3に示した方法を用いて、 前記各交点と円周上の各測定点を結ぶ直線上の変 位量を半径方向の距離として算出する。 ここで、 得られた全ての距離の、 最大 値と最小値の差を被測定円筒の円筒度として得ることができる。
以上述べた測定方法は、 被測定円筒の外径、 内径、 及び長さによってその機 能が影響を受ける度合いが小さいことから、 例えば外径においては、 φ 5 πιηι 程度の非常に細いものから数メートルに至る太いものにまで用いることがで きる。 さらに、 この測定方法に用いることのできる変位検出手段としては多岐 にわたり、 例えば、 電気式マイクロメーター、 渦電流式変位検出器、 レーザー. 変位検出器、 ダイヤルゲージ等の手段を用いることが有効である。 また、 被測 定円筒が自身の長さや重量に対して非常に細い力 または材質として軟ら力レ、 か、 或いは非常に薄肉である等の理由から、 測定中に重力の影響を受けて撓む 等の弾性変形を生じて測定結果に影響を与える可能性が有る場合は、 被測定円 简の円筒中心軸を重力その他の外的作用方向に対して平行に近づけて測定を 行うことが有効である。
加えて、 最終的に求めるべき円筒度の正確性をより向上させるためには、 両 端の中心軸と直角を成す断面の位置が、 より被測定円筒の両端部に近いことが 好ましい。 .
ここで、 前記円筒度の測定のような、 円筒軸方向の位置を違えた複数の回転 によって測定を行う際には、 一般に前記ガイ ドレール 4のような円筒軸方向に 平行に変位を検出するためのセンサーを移動させる手段の精度が重要になる。 しかしながら、 被測定円筒が測定に際して回転する際に得られる前記浮動中心 点軌跡の成す形はほぼ円形状であって、 また、 被測定円筒が前記のようなコロ 状の円筒受け冶具に载置されて回転する場合は、 コロ状の円筒受け冶具の回転 振れが非常に小さければ、 同じ回転を繰り返すこととなる。 すなわち被測定円 筒が複数回回転しても円筒表面の全ての点は回転毎に常にほぼ同一の軌跡を 迪ることになる。 このことから、 円筒度の測定ような円筒軸方向の位置を違え た複数の回転によって測定.を行う際に前記浮動中心点の軌跡が複数得られて も、 全ての軌跡すなわち円形状はほぼ同心の関係にあるか、 あるいは円形状で なくとも中心位置を共有する相似の形状を成す。 したがって、 測定によって得 られた複数の断面円を前記中心位置を共通の基準として配置すれば、 前記ガイ ドレール 4のような変位を検出するためのセンサーの移動手段の精度に影響 を受けない円筒度の算出、 測定が可能となる。
また、 各円筒中心軸と直角を成す断面の円周形状の測定にあたって被測定円 筒を回転させる際、 各測定位置において回転を停止させることなく変位を検出 するためのセンサーによる測定を行うことも、 測定時間の短縮において有効で ある。
さらに、 変位を検出するためのセンサーを固定する前記取り付け台を複数台 使用して、 同時に複数の円筒中心軸と直角を成す断面の円周形状を測定するこ とによって、 より少ない回転数、 特には 1回転のみでの測定を行うことも非常 に有効である。
以下に本発明を実施例により具体的に説明するが、 本発明はこれらの実施例 により限定されるものではなレ、。
(実施例 1 )
被測定円筒として予め切削加工を施された、加工設定外径が Φ 8 4 . O mm、 内径が 7 8 . 0 mm、 長さ 3 6 0 . 0 mmの A 3 0 0 3アルミニウム管を 1 0本準備し、 サンズル N o . 1〜サンプル N o . 1 0とした。
サンプル N o . 1の被測定円筒を、 図 7に示す様に、 3つの変位を検出する ためのセンサー S 0、 S 4 5、 及び S 9 0を、 各変位を検出するためのセンサ 一の測定軸が、 該円筒の軸に直交する方向の断面の円内の所定の点において交 わり、 且つその点を中心として、 それぞれ互いに挟角として 4 5 ° を挟んで扇 状に配置した円筒測定器の円筒受け治具上に載置した。 上記 3つの変位を検出 するためのセンサーは、 被測定円筒の一端から円筒中心軸方向に 8 O mmの位 置に配置し、 変位を検出するためのセンサーは株式会社ミットョ製 MC H 3 3 5電気式マイクロメーターを使用した。 そして前記の回転駆動伝達機にて一測 定回数あたり 4 5 ° ずつ回転させて測定を計 8回行った。 なお、 前記検出軸同 士の交点から各変位を検出するためのセンサーまでの距離は予め計測してあ り、 本実施例における変位を検出するためのセンサーの測定値は、 各検出軸同 士の交点から、 被測定円筒の回転軸と直角を成す同一断面上の円筒表面と前記 各検出軸との交点までの距離を測定したものとして示す。
測定に際して被測定円筒は、 毎分 6回転の速度で回転させた。 このとき測定 に要した時間を、 被測定円筒を前記円筒受け治具に載置してから被測定円筒が 測定のために 1回転を終了するまでの間として測定した。
以降、 実施例 1で使用する図の表枠中では、 測定開始時点で S 0位置におけ る測定を 0 ° とし、 被測定円筒の回転に従って S 0に到達する円周表面上の被 測定位置に順次 4 5 ° を加算して与える。
前記浮動中心の移動距離を求めるには、 変位を検出するためのセンサー S 4 5、 及び S 9 0の検知軸上における各移動距離を、 前記式 (1 )、 ( 2 ) を用い て算出する。 このとき各軸上での移動距離は、 S 4 5の検知軸上では S 4 5の 測定値と 4 .5 ° 回転前の S 0の測定値との差、 S 9 0の検知軸上では S 9 0の 測定値と 4 5 ° 回転前の S 4 5の測定値との差としてそれぞれ算出する。 次に、 前記式 1 3を用いて、 直交座標位置における Δ Xを求め、 続いて厶 y として、 前記式 1 2を用いて算出した。 ここで Δ χ及び A yは、 直交座標位置 で示すところの浮動中心 O nの移動距離である。 続いて、 この を S Oの測 定値から減算することによって、 S 0位置の真値、 すなわち浮動中心 O nを基 準とした被測定円筒表面までの距離を求めた。 次に、 浮動中心 Onを基準とした各点までの距離を直交座標位置に変換した。 こうして求まった xn、 ynを用いて、 真の円中心座標 O (x、 y) を前記最小 自乗中心法で求め、 中心 X座標および中心 Y座標を得た。
続いて、 求められた中心座標位置から各点までの X軸成分及び Y軸成分の距 離、 及び該各点までの直線距離すなわち真の各点の半径方向距離、 加えてその 最大値と最小値の差から真円度を得た。
以上について、 サンプル No. 2からサンプル No. 10についても同様に 測定し、 前記所要時間と真円度を求めた。
以上の測定によって得られたデータのゔち、 前記各変位を検出するためのセ ンサ一の測定値から前記円中心座標位置までについて図 9及び図 1 0に示す。 続いて、 前記中心座標位置から各点までの X軸成分及び Y軸成分の距離、 該各 点までの距離と、 及びその最大値と最小値を図.1 1及び図 12に示す。
(対照例 1 )
実施例 1で測定したサンプル N o . 1〜サンプル No. 10のアルミニウム 管を、 真円度測定器 (商品名 : ラウンドテスト RA— H5000 AH;株式会 社ミツトヨ社製) を用いて、 被測定円筒の載置時下端から円筒中心軸方向 80 mm位置の外表面真円度を測定した。 測定に際しての所要時間を、 被測定円筒 を回転テーブルに載置してから、 自動心出し、 自動水平だし、 自動測定を全て —連のプログラムによって連続動作させ、 これが終了するまでの間として測定 した。 .
なお、 前記自動心出し及び自動水平だし工程については、 自動かつ高速モー ドを採用し、 心だし位置を被測定円筒下端から 2 Omm、 水平だし位置を前記 下端から 8 Ommとし、 倍率 5000倍、 領域 8 μ nu'1回転テーブル回転速度 を l O r pmと設定して、 自動心出し、 自動水平だし及び真円度測定を実施し た。 また、 被測定円筒を前記回転テーブル上に载置するにあたっては、 測定に かかる時間の短縮を考慮し、 同社製三爪チヤックその他の固定具を使用せずに 直接載置し、 かつ載置位置のばらつきによって自動心出し及び自動水平だし動 作が複数回動作することから発生する前記所要時間の増長を無くすために、 自 動心出し又は自動水平だし動作が 2回以上必要であった測定についてはデー タとして採用せず、 自動心出し及び動作水平だし動作が 1回のみで終了する測 定が得られるまで再試行し、 これを所要時間のデータとした。
[評価]
実施例 1及び対照例 1で測定した各真円度の値とそれぞれの差を図 Γ 3及 び図 1 4に示す。 また、 実施例 1及び対照例 1で測定した各所要時間を図 1 5 に示す。
図 1 3及び図 1 4力 ら、 実施例 1と対照例 1の各測定方法による測定結果の 差が、 最大でも 2 . であり、 十分小さいと判断できる。
また図 1 5より、 実施例 1の測定所要時間が、 対照例 1の測定所要時間に対 して平均で 5 4 . 7 %短縮できていることが確認できる。
(実施例 2 )
被測定円筒として予め切削加工を施された、加工設定外径が ψ 8 0 . 0 mm , 內径が φ 7 4 . O mm、 長さ 3 6 0 . 0 mmの A 3 0 0 3アルミニウム管を準 備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に载置した。 変 位を検出するためのセンサーは、 被測定円筒の一端から円筒中心軸方向に 3 0 m m中央よ.りの回転軸と直角を成す同一断面上に位置して被測定円筒の回転 軸と該回転軸と直角を成す断面とが交わる点に向けられるような図 8に示す 取り付け台に、 S 0と S 1 5、及び S 6 0と S 7 5を、前記交点を中心として、 それぞれ互いに挟角として 1 5 ° を挟んで扇状に配置した。 さらに S Oと S 6 0を挟角 6 0 ° になるように配置した。 変位を検出するためのセンサ一は K A MA N社製渦電流式変位を検出するためのセンサーを使用し、 また各変位を検 出するためのセンサーは、 前記交点がらの距離が互いに等しくなるように位置 を調整した。 そして前記の回転駆動伝達機にて一測定回数あたり 15° ずつ回 転させて測定を計 24回行い、 各変位を検出す ためのセンサーと被測定円筒 表面との変位量を距離として測定した。 以降、 実施例 2及び実施例 3で使用す る図の表枠中では、 測定開始時点で S 0位置における測定を 0° とし、 被測定 円筒の回転に従って S 0に到達する円周表面上の被測定位置に順次 1 5° を 加算して与える。 これを図 1 6に示す。
次に算出の便宜上各測定値を差分値として捉えるため、 最初の測定値、 すな わち被測定円筒が一度も回転していない時点での変位を検出するためのセン サー S 0の測定値を 0として、 それ以外の全ての計測結果を S 0との差分とし て算出する。 加えて、 以降の計算を円滑に行うために全ての差分値を正の数に 変換する。 本実施例では、 任意の定数として 50 から全差分値を減算し、 正 の数値とした。 これを図 1 7に示す。
次に、 前記浮動中心の移動距離を求めるにあたり、 変位を検出するためのセ ンサー S 1 5、 及び S 75の検知軸上における各移動距離を、 前記式 2を用い て算出する。 このとき各軸上での移動距離は、 S 15の検知軸上では S 1 5の 測定値と 15° 回転前の Sひの測定値との差、 S 75の検知軸上では S 75の 測定値と 1 5° 回転前の S 60の測定値との差としてそれぞれ算出する。 求めた 2軸上での移動距離から、 前記式 (12) で示した式のうち bの項を 用いて直交座標位置における Δ Xを求め、 続いて Ayとして、 前記式 (1 2) に示した A.L 2 iの項を用いて算出した。 続いて、 この yを S Oから減算す ることによって、 S O位置の真値、 すなわち浮動中心 Onを基準とした被測定 円筒 1表面の変位量が求められる。 以降、 同様に被測定円筒の一周分の測定を 行う。 これを図 18に示す。
次に、 円の真の中心を求める。
図 1 8で求まった浮動中心 Onを基準とした各点の変位量を直交座標成分に 変換し、 こうして求まった xn、 y nを用いて、真の円中心座標 O (x、 y) を、 前記最小自乗中心法を用いて求め、 (一4. 5、 -0. 5) を、得た。 加えて、 浮動中心 Onを基準とした各点での X軸成分及び Y軸成分の変位量、 及び該各 点までの真の半径方向の変位量と、 それらの最大値 (53. 3 μΐη) と最小値
(47. 2 μπι)の差を求めることによって、真円度として 6. Ι μπιを得た。 これを図 19に示す。
(実施例 3)
実施例 2に記載の機器を用いて、 被測定円筒 1の一方の端から他方の端に向 力つて 30 mm. 35 mm、 40 mm, 60 mm, 80 mm, 90 mm、 1 2 0mm、 140 mm, 1 50 mm, 18 Omm、 20 Omm、 21 Omm、 2 40 mm, 260 mm, 270 mm, 300 mm, 3 10 mm, 320 mms 330 mm, 350mmの、 20の円筒中心軸と直角を成す断面円を被測定円 とし、 これらに対してそれぞれ一測定周あたり 15° ずつ計 24点の測定を行 い、 各変位を検出するためのセンサーと被測定円筒表面との距離を得た。
次に、 測定値を実施例 2と同様の方法を用いて正の差分値とし、 続いて実施 例 2と同様に各被測定円の浮動中心 Onを基準とした被測定円筒表面の変位量 を求めた。'
次に、 実施例 2と同様に各被測定円の中心座標、 浮動中心 Onを基準としだ 各点の変位量の X軸成分及び Y軸成分と、 これらの各最大値と最小値、 および これらによる真円度を求めた。
続いて、 .測定した 20の被測定円のうち両端に位置する 2つの被測定円、 す なわち円筒中心軸方向の 3 Omm位置と 350 mm位置の両円中心同士を結 ぶ直線と、その他の各被測定円との交点の位置を、距離比例計算により求めた。 次に、 各被測定円ごとに前記各交点を基準とした円周上の各測定点の x、 y座 標成分としての変位量を算出し、 さらに、 前記各座標成分としての変位量から 前記各交点を基準とした円周上の各測定点の半径方向の変位量を求めた。 これ を図 20に示す。 ここで、 得られた全ての距離の、 最大値 (54. 5 μ m) と 最小値 (45. 5 m) の差をもって被測定円筒の円筒度 9. 0 /i.mを得た。 (実施例 4)
被測定円筒として予め切削加工を施ざれた、加工設定外径が φ 30. Omm, 内径が Ψ 28. 5mm、 長さ 260. 0 mmの A 3003アルミニウム管を 1 0本準備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に載置した。 被 測定円筒 1の一方の端から他方の端に向かって 3 Omm、 40 mm, 60 mm, 80 mm, 90 mm, 120 mm, 140 mm, 150 mm. 180 mm. 2 00mm. 210mm, 240mmの、 12の円筒中心軸と直角を成す断面円 を被測定円とし、 これらに対してそれぞれ実施例 3と同様な方法で円筒度を測 定した。 この結果を図 21に示す。
(実施例 5)
被測定円筒として予め切削加工を施された、 加工設定外径が ψ 180. Om m、 内径が φ 1 74. Omm、 長さ 370. 0 mmの A 3003ァノレミニゥム 管を 10本準備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に载置した。 被 測定円筒 1の一方の端から他方の端に向かって 3 Omm、 35mm, 4 Omm, 6 Omm、 8 Omm、 9 Omm、 12 Omm、 14 Omm、 150.mm、 I 8 Omm、 20 Omm, 21 Omm, 24 Omm, 26 Omm, 27 Omm, 3 0 Omm, .31 Omm, 32 Omm, 33 Omm, 35 Ommの、 20の円筒 中心軸と直角を成す断面円を被測定円とし、 これらに対してそれぞれ実施例 3 と同様な方法で円筒度を測定した。 この結果を図 22に示す。
本発明により円筒形状の測定が容易になり、 本発明は精度の良い円筒部材を 作る技術として利用が期待される。

Claims

請 求 の 範 囲
1. 円筒受け治具と、 該円筒の回転軸と直角を成す同一断面上に位置し、 該円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基準点 (O0) に向けられ、 かつ 。を中心として互いに所定の角度 (0° ) を挟んで 扇状に配置して固定された 3個以上の変位を検出するためのセンサーを有す る台からなる測定手段を用いて、 下記 ( i ) から (V i ) のステップによって 該円筒の軸に対して直交する断面の円の形状を求める測定方法:
( i ) m個 (ここで mは 3以上) の変位を検出するための該センサー (S 1 から Sm) により、 各検知軸上の測定基準点 (O0) から該円筒の軸と直角を 成す断面円の円周上の点までの距離 (L 1から Lm) を測定するステップと、 ( i i ) 該円筒を第一のセンサ一 S 1から第二のセンサー S 2の方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点 (〇。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、
( i i i ) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。一 Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す.断面円の円周上の点までの新たな距離を測定するステップと、
(v) 上記ステップ ( i i ) 力 ら ( i V ) を繰り返して、 n個の距離を ¾定す るステップと、
(v i) 得られた該各距離を用いて該断面円の円周形状を算出するステップ。
2. 円筒受け治具と、 該円筒の回転軸と直角を成す同一断面上に位置し、 該円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基準点
(〇。) に向けられ、かつ 0。を中心として、角度(0° ) を挟んで配置された、 S Aと S Bの 2つの変位を検出するためのセンサーと、 角度 (0° ) を挟んで 配置された、 SA' と SB' の 2つの変位を検出するためのセンサーとを有す ることを特徴とする 4個の扇状に配置して固定された変位を検出するための センサーを有する台からなる測定手段を用いて、 下記 ( i ) から (V i ) のス テツプによって該円筒の軸に対して直交する断面の円の形状を求める測定方 法:
( i) 変位を検出するための該センサ一により、 各検知軸上の測定 S準点 (O 。) から該円筒の軸と直角を成す断面円の円周上の点までの距離 (L 1から L 4) を測定するステップと、
( i i ) 該円筒を第一のセンサー S Aから第二のセンサー S Bの方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点
(0。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、 -
( i i i) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。一 Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記ステップ ( i i) カゝら ( i v) を繰り返して、 n個の距離を測定す るステップと、
(v i) 得られた該各距離を用いて該断面円の円周形状を算出するステップ。
3. 被測定円筒受け治具と、 該被測定円筒の回転軸と直角を成す同一断面 上に位置し、 該被測定円筒の回転軸と該回転軸と直角を成す断面とが交わる点 である測定基準点 (O0) に向けられ、 かつ〇。を中心として互いに所定の角度
(0° ) を挟んで扇状に配置して固定された 3個以上の変位を検出するための センサーを有する台からなる測定手段を用いて、 下記 .(i ) から (v i i i ) のステップによって該被測定円筒の円筒度を求 める円筒形状の測定方法:
( i) m個 (ここで mは 3以上) の変位を検出するための該センサ一 (S 1 から Sm) により、 各検知軸上の測定基準点 (O0) 力 ら該円筒の軸と直角を 成す断面円の円周上の点までの距離 (L 1から Lm) を測定するステップと、 ( i i ) 該円筒を第一のセンサー S 1から第二のセンサー S 2の方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点 (o。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、
( i i i ) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。— Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
(v) 上記ステップ ( i i ) 力 ら ( i V) を繰り返して、 n個の距離を測定す るステップと、
(v i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップ 、 (v i i ) 該台を被測定円筒の回転軸に平行に移動させ、 該被 ¾定円筒の異な る断面円について上記ステップ ( i ) から (v i ) により該断面円について円 周形状を算出するステップと、
(v i i i ) 上記ステップ ( i ) から (v i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
4. 被測定円筒受け治具と、 該被測定円筒の回転軸と直角を成す同一断面 上に位置し、 該被測定円筒の回転軸と該回転軸と直角を成す断面とが交わる点 である測定基準点 (o。) に向けられ、 かつ 0。を中心として、 角度 (θ。 ) を 挟んで配置された、 S Αと S Βの 2つの変位を検出するためのセンサーと、 角 度 (0° ) を挾んで配置された、 SA' と SB' の 2つの変位を検出するため のセンサーとを有することを特徴とする 4個の扇状に配置して固定された変 位を検出するためのセンサーを有する台からなる測定手段を用いて、
下記 ( i ) から (V i i i ) のステップによって該被測定円筒の円筒度を求
-3
2
める円筒形状の測定方法:
( i )変位を検出するための該センサーにより、各検知軸上の測定基準点(O
。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの距離 (L 1 から L4) を測定するステップと、
( i i) 該被測定円筒を第一のセンサー S Aから第二のセンサー SBの方向に θ° 回転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定 基準点 (〇。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの 距離を測定するステップと、
( i i i) 該被測定円筒の Θ。 回転前と後の変位を検出するための該センサー による測定値の変化から、 浮動中心 Ο,の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。一 Ο ' ) を算 出し、 変位.を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と ¾:角を成す断面円の円周上の点までの新たな距離を測定するステップと、
(v) 上記ステップ ( i i) から ( i v) を繰り返して、 n個の距離を測定す るステップと、
(v i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) から (v i ) により該断面円について円 周形状を算出するステップと、
( v i i i ) 上記ステップ ( i ) から (v i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テップ。
5 . 前記被測定円筒内に変位を検出するためのセンサ一を配置して、 前記 被測定円筒の肉厚、 及び内周円の円中心、 及び真円度を求めることを特徴とす る請求項 3又は 4に記載の円筒の円筒形状の測定方法。
6 . 請求項 3乃至 5のいずれかに記載の測定方法であって、 径の異なる複 数の円筒からなり、 該全ての円筒の外周円内に回転軸を共有する複合円筒に対 して、 該複合円筒を構成する少なくとも 1つの円筒を、 請求項 3乃至 5のいず れかに記載の方法で測定し、 前記 1つの円筒以外の円筒をそれぞれ少なくとも 1つの変位を検出するためのセンサーを用いて円筒形状を測定し、 全ての円筒 形状、 同軸度、 及び複合円筒の肉厚を求めることを特徴とする複合円筒の円筒 形状の測定方法。
7 . 被測定円筒受け治具と、 該被測定円筒の回転軸と直角を成す同一断面 上に位置し、 該被測定円筒の回転軸と該回転軸と直角を成す断面とが交わる点 である測定基準点 (〇。) に向けられ、 かつ 0。を中心として互いに所定の角度 ( 0 ° ) を挟んで扇状に配置して固定された 3個以上の変位を検出するための センサーを有する該被測定円筒の回転軸に平行に往復可能に設けられた台か らなる測定手段と、
下記ステップ ( i ) から (V i i i ) を実行する演算手段と、 を具備している ことを特徴とする円筒の形状測定装置:
( i ) m個 (ここで mは 3以上) の変位を検出するための該センサー (S 1 から Sm) により、 各検知軸上の測定基準点 (Ο。·) から該円筒の軸と直角を 成す断面円の円周上の点までの距離 (L 1から Lm) を測定するステップと、 ( i i ) 該円筒を第一のセンサー S 1から第二のセンサー S 2の方向に 0° 回 転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定基準点 (0。) から該円筒の軸と直角を成す断面円の円周上の点までの距離を測定す るステップと、
( i i i ) 該円筒の 0° 回転前と後の変位を検出するための該センサーによる 測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (0。一 Ο ,) を算 出し、 変位を検出するための該センサー Sm軸上の、 O '力 ら、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
(v) 上記ステップ (i i ) から (i V ) を繰り返して、 n個の距離を測定す るステップと、
(v i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i ) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) 力 ら (V i ) により該断面円について円 周形状を算出するステップと、
(v i i i ) 上記ステップ ( i ) から (v i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を弇出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
8. 被測定円筒受け治具と、 該被測定円筒の回転軸と直角を成す同一断面 上に位置し、 該被測定円筒の回転軸と該回転軸と直角を成す断面とが交わる点 である測定基準点 (〇。) に向けられ、 かつ 0。を中心として、 角度 (6° ) を 挟んで配置された、 S Aと SBの 2つの変位を検出するためのセンサ一と、 角 度 (0° ) を挟んで配置された、 SA' と SB' の 2つの変位を検出するため のセンサーとを有することを特徴とする 4個の扇状に配置して固定された変 位を検出するためのセンサーを有する該被測定円筒の回転軸に平行に往復可 能に設けられた台からなる測定手段と、
下記ステップ ( i ) から (V i i i ) を実行する演算手段と、 を具備してい ることを特徴とする円筒の形状測定装置:
( i )変位を検出するための該センサーにより、各検知軸上の測定基準点(O 。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの距離 ('L.1 から L4) を測定するステップと、
( i i) 該被測定円筒を第一のセンサー S Aから第二のセンサー SBの方向に θ。 回転させ、 再度変位を検出するためのセンサーにより、 各検知軸上の測定 基準点 (ο。) から該被測定円筒の軸と直角を成す断面円の円周上の点までの 距離を測定するステップと、
( i i i ) 該被測定円筒の 6° 回転前と後の変位を検出するための該センサー による測定値の変化から、 浮動中心 O 'の位置を算出するステップと、
( i v) 変位を検出するための該センサー Sm軸上の距離 (Ο0— Ο ') を算 出し、 変位を検出するための該センサー Sm軸上の、 O 'から、 該円筒の軸と 直角を成す断面円の円周上の点までの新たな距離を測定するステップと、
( V ) 上記.ステップ ( i i ) 力 ら ( i V ) を繰り返して、 n個の距離を測定す るステップと、
( V i ) 得られた該各距離を用いて該断面円の円周形状を算出するステップと、 (v i i ) 該台を被測定円筒の回転軸に平行に移動させ、 該被測定円筒の異な る断面円について上記ステップ ( i ) から (V i ) により該断面円について円 周形状を算出するステップと、
(v i i i ) 上記ステップ ( i ) から (v i i ) により円周形状とを算出した 断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ直線 からなる円筒中心軸とし、 該円筒中心軸と該円周形状を算出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交点から各断面円の円 周上の所定の点までの距離を算出し、 該距離の最大値と最小値の差を求めるス テツプ。
PCT/JP2006/304200 2004-09-01 2006-02-28 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 WO2007099646A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800325736A CN101258380B (zh) 2006-02-28 2006-02-28 圆形、圆筒形的测定方法及圆筒形的测定设备
EP06728630.2A EP1992909B1 (en) 2006-02-28 2006-02-28 Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
PCT/JP2006/304200 WO2007099646A1 (ja) 2006-02-28 2006-02-28 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
US11/469,094 US7328125B2 (en) 2004-09-01 2006-08-31 Measuring method of cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304200 WO2007099646A1 (ja) 2006-02-28 2006-02-28 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/281,603 Continuation-In-Part US20060074587A1 (en) 2004-09-01 2005-11-18 Measuring method of circular shape, measuring method of cylindrical shape, and measuring apparatus of cylindrical shape

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/469,094 Continuation-In-Part US7328125B2 (en) 2004-09-01 2006-08-31 Measuring method of cylindrical body

Publications (1)

Publication Number Publication Date
WO2007099646A1 true WO2007099646A1 (ja) 2007-09-07

Family

ID=38458771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304200 WO2007099646A1 (ja) 2004-09-01 2006-02-28 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Country Status (3)

Country Link
EP (1) EP1992909B1 (ja)
CN (1) CN101258380B (ja)
WO (1) WO2007099646A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136035A (zh) * 2015-09-15 2015-12-09 常州铭赛机器人科技股份有限公司 非接触式测量圆桶圆心坐标的装置及其方法
CN106429494A (zh) * 2016-09-23 2017-02-22 常州铭赛机器人科技股份有限公司 装甑***和其甑桶的圆心的检测方法
CN107300359A (zh) * 2017-08-03 2017-10-27 唐大春 不规则孔周长测量及周长和直径的检测装置及方法
CN109458930A (zh) * 2018-12-20 2019-03-12 芜湖安普机器人产业技术研究院有限公司 一种铸管承口轴线标定及圆度检测方法
CN113008191A (zh) * 2021-01-26 2021-06-22 武汉船用机械有限责任公司 轴状工件内孔直线度的测量方法
CN113432566A (zh) * 2021-08-02 2021-09-24 南宁市自然资源信息集团有限公司 一种树木周长测量装置及使用方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014014726B1 (pt) * 2011-12-21 2021-08-24 National Oilwell Varco, L.P. Sistema e método para medir tubo
FR2985306B1 (fr) * 2011-12-29 2018-06-15 Vallourec Oil And Gas France Dispositif de mesure d'un profil interne ou externe d'un composant tubulaire
CN102878968B (zh) * 2012-09-20 2015-07-29 湖北三江航天险峰电子信息有限公司 一种大型深盲孔尺寸的在线检测方法
SG11201505070VA (en) 2012-12-29 2015-08-28 Hoya Corp Glass substrate for magnetic disk and magnetic disk
US9261382B2 (en) 2014-05-22 2016-02-16 General Electric Company System and method for mechanical runout measurement
CN104792246B (zh) * 2015-04-08 2017-05-03 海宁市新艺机电有限公司 一种工件倒圆角检测方法
TWI558978B (zh) * 2015-06-24 2016-11-21 智泰科技股份有限公司 真圓度量測裝置及真圓度量測方法
CN105180832B (zh) * 2015-10-26 2019-05-24 国网福建省电力有限公司泉州供电公司 一种电缆弯曲度测量方法
CN105499508B (zh) * 2015-12-09 2017-11-03 北京钢研高纳科技股份有限公司 一种大尺寸薄壁环形窄通道铸件的陶芯制作方法
CN105698701A (zh) * 2016-02-14 2016-06-22 南通润邦重机有限公司 斗轮堆取料机斗轮结构检测工装及其检测方法
CN108168457B (zh) * 2017-12-28 2020-02-07 长春长光精密仪器集团有限公司 一种圆柱度误差测量方法及测量***
CN109059734B (zh) * 2018-08-22 2020-04-21 王宁 一种电气工程用电缆转弯半径测量仪
CN109855547B (zh) * 2019-01-13 2021-04-09 宁波鄞科科技咨询有限公司 一种汽车玻璃的测量装置
CN110411344B (zh) * 2019-08-06 2021-07-20 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种校准方法、校准装置、校准***及电子设备
CN112504159B (zh) * 2020-10-27 2022-04-08 成都飞机工业(集团)有限责任公司 一种变截面筒状零件内腔三维形貌测量装置及方法
CN114087972B (zh) * 2021-12-02 2022-11-29 北京理工大学 一种长孔类零件形状误差测量装置
CN116638021A (zh) * 2023-05-16 2023-08-25 武汉理工大学 一种大型锥形筒体电磁冲击复合辊轧成形设备与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148819A (ja) * 1990-10-12 1992-05-21 Sumitomo Metal Ind Ltd ロールプロフィール測定方法およびその装置
JP2000249540A (ja) * 1999-03-02 2000-09-14 Tokyo Seimitsu Co Ltd 円筒物の形状測定装置及び測定方法
WO2006025603A1 (ja) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073413A (ja) * 1983-09-30 1985-04-25 Mitsubishi Heavy Ind Ltd 真円度測定方法
FR2579745B1 (fr) * 1985-03-28 1990-06-01 Usinor Procede et dispositif de mesure des dimensions d'un corps de revolution et leurs applications
JPH0779797B2 (ja) * 1989-07-28 1995-08-30 キヤノン株式会社 ケラトメータ
JP3004488B2 (ja) * 1992-11-04 2000-01-31 三菱重工業株式会社 円筒形状の測定方法
AU2003204227B2 (en) * 2003-05-16 2009-02-19 Dana Australia Pty Ltd Method and Apparatus for Measuring Centreline Runout and Out of Roundness of a Shaft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148819A (ja) * 1990-10-12 1992-05-21 Sumitomo Metal Ind Ltd ロールプロフィール測定方法およびその装置
JP2000249540A (ja) * 1999-03-02 2000-09-14 Tokyo Seimitsu Co Ltd 円筒物の形状測定装置及び測定方法
WO2006025603A1 (ja) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992909A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136035A (zh) * 2015-09-15 2015-12-09 常州铭赛机器人科技股份有限公司 非接触式测量圆桶圆心坐标的装置及其方法
CN106429494A (zh) * 2016-09-23 2017-02-22 常州铭赛机器人科技股份有限公司 装甑***和其甑桶的圆心的检测方法
CN107300359A (zh) * 2017-08-03 2017-10-27 唐大春 不规则孔周长测量及周长和直径的检测装置及方法
CN109458930A (zh) * 2018-12-20 2019-03-12 芜湖安普机器人产业技术研究院有限公司 一种铸管承口轴线标定及圆度检测方法
CN113008191A (zh) * 2021-01-26 2021-06-22 武汉船用机械有限责任公司 轴状工件内孔直线度的测量方法
CN113008191B (zh) * 2021-01-26 2023-10-27 武汉船用机械有限责任公司 轴状工件内孔直线度的测量方法
CN113432566A (zh) * 2021-08-02 2021-09-24 南宁市自然资源信息集团有限公司 一种树木周长测量装置及使用方法

Also Published As

Publication number Publication date
EP1992909A1 (en) 2008-11-19
CN101258380B (zh) 2011-05-04
CN101258380A (zh) 2008-09-03
EP1992909A4 (en) 2012-08-01
EP1992909B1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2007099646A1 (ja) 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
JP6775446B2 (ja) ケーブルの製造方法、ケーブルの検査方法およびケーブル外観検査装置
US7328125B2 (en) Measuring method of cylindrical body
JP5265029B2 (ja) 真円度測定装置及び先端子良否判定方法
WO2006025603A1 (ja) 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
EP1985966A1 (en) Apparatus and method for checking threaded elements
JP4363830B2 (ja) 管体の形状測定方法、同装置、管体の検査方法、同装置、管体の製造方法および同システム
JP2012159499A (ja) ボールねじの測定装置および測定方法
JP2001033233A (ja) 管状および棒状被検査物の検査方法
JP3682027B2 (ja) モータコア内径測定装置及び方法
JP2008008879A (ja) 測定装置、測定基準及び精密工作機械
JP2006266910A (ja) 円筒形状の測定方法及び測定装置
JP4897951B2 (ja) 管状体の振れ測定方法及びその装置
JP4557940B2 (ja) 被測定円筒の軸に直交する断面円の形状の測定方法および被測定円筒の円筒形状の測定方法
JP2010071778A (ja) 大径管の外径測定装置
JPH06147879A (ja) 円筒形状の測定方法
JP6717287B2 (ja) 溶接管の溶接部の形状寸法測定装置
CN108061503A (zh) 一种在jd25-c测长仪上检测锥形部件外径的方法
JP2007232637A (ja) 円筒状基体上の塗膜の膜厚測定方法及び測定装置
JPH05248842A (ja) 円筒状物体の外形の真直度測定装置
JPS6130681B2 (ja)
JPS60142201A (ja) 薄肉円環の直径測定装置
JP2010112929A (ja) 軸受用ころの外径測定装置
JP2004151091A (ja) 管体の形状測定方法および同装置
CN110125724B (zh) 一种轴心轨迹测试及圆度误差分离测量的***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032573.6

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2006728630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006728630

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE