CN114087972B - 一种长孔类零件形状误差测量装置 - Google Patents

一种长孔类零件形状误差测量装置 Download PDF

Info

Publication number
CN114087972B
CN114087972B CN202111463448.3A CN202111463448A CN114087972B CN 114087972 B CN114087972 B CN 114087972B CN 202111463448 A CN202111463448 A CN 202111463448A CN 114087972 B CN114087972 B CN 114087972B
Authority
CN
China
Prior art keywords
measuring device
inner cavity
main shell
ultrasonic
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111463448.3A
Other languages
English (en)
Other versions
CN114087972A (zh
Inventor
刘志兵
宋慈
王西彬
罗宏松
王耀武
刘炳鑫
李大光
冯彩霞
沈文华
腾龙龙
焦黎
解丽静
梁志强
颜培
周天丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202111463448.3A priority Critical patent/CN114087972B/zh
Publication of CN114087972A publication Critical patent/CN114087972A/zh
Application granted granted Critical
Publication of CN114087972B publication Critical patent/CN114087972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/06Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • G01B21/24Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

本发明公开了一种长孔类零件形状误差测量装置,属于长孔类零件形状误差测量领域,包括:基础装置包括主壳机构以及车床主轴,滑移装置与主壳机构固定连接,测量装置包括角度测量装置、干涉仪、干涉镜、反射镜、位移测量装置以及超声测量装置,超声测量装置固定于主壳机构上且与车床主轴回转轴线保持水平,反射镜固定于主壳机构以及超声测量单元连接面上,位移传感器与超声测量装置两者的轴线角度始终保持恒定且位于同一竖直平面内,标定装置包括标定球以及标定基准板,干涉仪以及干涉镜与反射镜同轴线设置,本发明结构简单、成本低廉、使用便捷,可以实现对长孔类零件的圆度和轴线直线度误差精确、高效的在线测量。

Description

一种长孔类零件形状误差测量装置
技术领域
本发明属于长孔类零件形状误差测量领域,更具体的说是涉及一种长孔类零件形状误差测量装置。
背景技术
随着现代装备生产的快速发展,高精度长孔类零件被广泛应用于航空、船舶、石油化工和冶金等制造业领域,长孔类零件的加工质量会直接影响整机性能,作为衡量长孔类零件加工质量的重要技术指标,圆度和轴线直线度误差超差会造成零件应力集中,降低其使用寿命,甚至会带来一定的安全隐患,由于长孔类零件一般长径比较大,测量过程受到内部空间狭小、轴向尺寸较大等因素的限制,对其形状误差测量仍然存在一定的困难,使用传统的误差测量设备,如三坐标测量机、圆度仪、塞规和量规等,均难以满足制造业对长孔类零件形状误差测量过程中仪器使用方便、精准、快速的要求,因此,如何提供一种便捷、精准、高效地检测长孔类零件的圆度和轴线直线度误差的装置是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种长孔类零件形状误差测量装置,结构简单,使用方便,能够实现对长孔类零件的圆度和轴线直线度误差进行精准、高效地测量,确保零件使用性能。
为了实现上述目的,本发明采用如下技术方案:
一种长孔类零件形状误差测量装置,包括:基础装置、测量装置、标定装置以及滑移装置;
所述基础装置包括主壳机构以及车床主轴;
所述滑移装置包括斜向滑移单元、水平滑移单元以及竖直滑移单元,所述滑移装置与所述主壳机构固定连接;
所述测量装置包括角度测量装置、干涉仪、干涉镜、反射镜、位移测量装置以及超声测量装置,所述角度测量装置固定于所述车床主轴一端,所述超声测量装置固定于所述主壳机构上且与所述车床主轴回转轴线保持水平,所述反射镜固定于所述主壳机构以及超声测量单元连接面上,所述位移传感器与所述超声测量装置两者的轴线角度始终保持恒定且位于同一竖直平面内;
所述标定装置包括标定球以及标定基准板;所述干涉仪以及所述干涉镜与所述反射镜同轴线设置,所述标定球与所述位移测量装置固定连接,所述主壳机构上设置有所述标定基准板;
角度测量装置与计算机通讯连接,位移测量装置、超声测量装置以及干涉仪经各自控制器与计算机通讯连接。
优选的,所述超声测量装置包括喷水机构、流水固定机构、探头夹头以及超声探头,所述流水固定机构与所述超声探头固定连接,所述流水固定机构外侧周向设置有若干个所述探头夹头,所述流水固定机构与所述喷水机构连通,所述喷水机构侧壁连通有水管。
优选的,所述主壳机构上设有中斜向内腔、右斜向内腔、左斜向内腔、上水平内腔以及下水平内腔。
优选的,斜向滑移单元包括:刻度手轮、斜向调动板、微型平面推力滚针轴承、丝杆螺母、丝杆、限位环以及两根斜向导杆,所述丝杆螺母固定在所述主壳机构上,两根所述斜向导杆分别与所述斜向调动板进行紧固;所述丝杆一端与所述刻度手轮连接,所述丝杆另一端连接所述限位环,所述丝杆周向设置两片所述微型平面推力滚针轴承,所述斜向导杆分别设置于所述右斜向内腔以及所述左斜向内腔内。
优选的,竖直滑移单元包括:竖直导杆、竖直挡板、滑轨、滑移调动板和夹紧镶条,所述滑移调动板与所述夹紧镶条固定连接,所述夹紧镶条与所述滑轨紧配合,所述竖直挡板与所述滑轨固定连接,所述竖直导杆设置于所述中斜向内腔内。
优选的,水平滑移单元包括:夹紧块以及两根水平导杆,所述水平滑移单元的两根所述水平导杆的圆柱面分别与所述夹紧块的上、下端凹槽相接触,所述水平导杆与所述滑移调动板固定连接,所述水平导杆设置于所述上水平内腔以及所述下水平内腔内。
优选的,所述位移测量装置包括电涡流位移传感器以及位移测量杆,所述电涡流位移传感器固定连接于所述位移测量杆一端,所述标定球固定连接于所述位移测量杆另一端,所述电涡流位移传感器的信号线缆经所述位移测量杆内腔由侧壁穿出并与控制器连接,所述位移测量杆与所述斜向调动板固定连接。
优选的,所述电涡流位移传感器与所述超声探头两者的轴线始终保持30°夹角恒定。
优选的,所述角度测量装置为旋转编码器。
优选的,旋转编码器通过PMAC控制卡与计算机实现连接,所述PMAC控制卡通过I/O接口分别接入所述电涡流位移传感器以及所述超声探头的控制器。
本发明的有益效果在于:
本发明以数控车床和基础结构为基础,以多传感器集成模式为方法,通过位移测量装置以及超声测量装置实现了对工件外表面轮廓和内表面轮廓的重构,并将测量坐标系下的样点坐标值统一于绝对坐标系,角度测量装置外接于车床主轴一端,车床主轴做回转运动的过程中能够精准记录旋转角度,角度测量装置能够在测量截面进行等角度采样,这既可以使同一截面相邻样点间的角度相等化,从而提升测量精度;也可以保证各测量截面的样点数量相同,便于后续评定,结构简单、成本低廉、使用便捷,可以实现对长孔类零件的圆度和轴线直线度误差精确、高效的在线测量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明的具体结构示意图;
图2为本发明的俯视图;
图3为本发明的正视图;
图4为本发明的局部剖视图;
图5为本发明的斜向滑移单元剖视图;
图6为本发明的车床结构示意图;
图7为本发明的测量原理示意图;
图8为本发明测量装置的参数标定原理示意图;
图9为本发明活络量块的模型结构示意图。
其中,图中:1-电涡流位移传感器,2-位移测量杆,3-刻度手轮,4-斜向调动板,5-M5×8型螺钉,6-M5×20型螺钉,7-M6×30型螺钉,8-标定球,9-标定基准板,10-竖直导杆垫圈,11-竖直导杆,12-弹性挡圈,13-竖直挡板,14-滑轨,15-夹持柄,16-水平导杆一,17-滑移调动板,18-水平导杆二,19-夹紧块,20-M6×30型螺钉,21-主壳机构,22-反射镜,23-轴用挡片,24-斜向挡圈,25-斜向导杆一,26-斜向导杆二,27-M5×16型螺钉,28-超声探头固定块,29-丝杆螺母,30-丝杆,31-滚花螺钉,32-进水机构垫圈,33-进水口螺母,34-锁紧螺母,35-微型平面推力滚针轴承一,36-微型平面推力滚针轴承二,37-M5×16型螺钉,38-M5×16型螺钉,39-夹紧镶条,40-喷水机构,41-M6×8螺钉,42-流水固定机构,43-密封圈,44-探头夹头,45-超声探头,46-旋转编码器,47-车床主轴,48-三角卡盘,49-干涉镜,50-激光干涉仪,51-工件,52-外表面轮廓,53-固定电涡流传感器轨迹,54-内表面轮廓,55-内孔拟合圆,56-锁紧螺钉,57-旋动块,58-固定块,59-顶针。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅附图1-5,一种长孔类零件形状误差测量装置包括:电涡流位移传感器1、斜向滑移单元、标定球8、主壳结构21、水平滑移单元、竖直滑移单元、夹持柄15、反射镜22、标定基准板9、超声探头固定块28和超声测量单元,电涡流位移传感器1依靠自身螺纹与位移测量杆2首端相连接,传感器信号线缆经位移测量杆2内腔由侧壁穿出,连接到采集设备上,这种布置方式使得电涡流位移传感器1既可随斜向滑移单元做斜向滑动,用以保证初始测量截面上测量坐标系原点尽可能与工件轴线重合;也可沿电涡流位移传感器1的轴线方向做前后移动,从而使传感器测量值位于可靠的量程范围内,位移测量杆2尾端连接标定球8,并使用紧固螺钉实现标定球8位置的固定,位移测量杆2通过M6×30型螺钉7与斜向滑移单元中的斜向调动板4实现装夹,既可随斜向滑移单元做斜向滑动,用以保证初始测量截面上测量坐标系原点尽可能与工件轴线重合,也可沿电涡流位移传感器1的轴线方向做前后移动,从而使传感器测量值位于可靠的量程范围内。
斜向滑移单元包括刻度手轮3、斜向调动板4、滚花螺钉31、斜向挡圈24、斜向导杆一25、斜向导杆二26、微型平面推力滚针轴承一35、微型平面推力滚针轴承二36、丝杆螺母29和丝杆30,丝杆30为阶梯轴式结构,有上、中、下3个阶梯面,根据轴径尺寸的不同,可分为上端轴、上中部轴、下中部轴和下端轴,上端轴与刻度手轮3连接,并利用上阶梯面和M5×8型螺钉5实现两者的固定,上中部轴周向分置微型平面推力滚针轴承一35和微型平面推力滚针轴承二36,前者位于斜向调动板4的凹槽平面上侧,后者位于中阶梯面与斜向调动板4之间,依靠锁紧螺母34、斜向调动板4和中阶梯面间的位置关系实现了两片轴承的轴向固定,下中部轴置于主壳机构21的中斜向内腔中,其周向的丝杆螺母29依靠M5×20型螺钉6固定在主壳机构21上,下端轴与限位环24连接,并利用下阶梯面和轴用挡圈23实现固定,斜向导杆一25和斜向导杆二26分别依靠螺钉与斜向调动板4进行紧固,并分别置于主壳机构21的右、左斜向内腔中,在斜向滑移单元工作前,打开滚花螺钉31,旋动刻度手轮3使整个单元做斜向移动,调整到合适位置后,旋紧滚花螺钉31,从而实现对当前位置的保持,当限位环24接触丝杆螺母29时,到达斜向滑移单元的上极限位置,而当微型平面推力滚针轴承二36接触丝杆螺母29时,出现下极限位置,在丝杆周向分置两片微型平面推力滚针轴承,并利用阶梯面和锁紧螺母实现两片轴承的轴向定位,既可以降低丝杆在旋转过程中所受的摩擦影响,也可以在微小轴向空间内提供极高的刚度,从而对丝杆进行一定程度的保护,提升其使用寿命。
水平滑移单元包括水平导杆一16、水平导杆二18、夹紧块19和M6×30型螺钉20,水平导杆一16和水平导杆二18分别置于主壳机构21的上、下水平内腔中,其末端依靠螺钉与滑移调动板17进行固定,夹紧块19位于主壳机构21上,其上端凹槽和下端凹槽分别与水平导杆一16和水平导杆二18的圆柱面相接触,当夹紧块19内部的M6×30型螺钉20拧紧后,夹紧块19和主壳机构21会对水平导杆一16和水平导杆二18产生一定的紧固力,阻碍水平滑移单元的运动,从而保持当前的测量装置状态,当M6×30型螺钉20被旋松后,紧固力下降,使得主壳机构21可以沿水平导杆一16和水平导杆二18做直线运动。
竖直滑移单元包括竖直导杆垫圈10、竖直导杆11、弹性挡圈12、竖直挡板13、滑轨14、滑移调动板17和夹紧镶条39,滑移调动板17以螺钉连接的形式和夹紧镶条39进行固定,并依靠夹紧镶条39与滑轨14实现紧配合,以保证自身的滑动状态,竖直挡板13通过M5×16型螺钉38与滑轨14进行固定,并利用竖直导杆11、弹性挡圈12和竖直导杆垫圈10实现对调整位置的保持,夹持柄15与滑轨14间使用螺钉固连,夹持柄15装夹于车床刀架上,使得测量装置随车床刀架作轴向或径向的直线运动,竖直滑移单元和标定单元统一集成在数控车床或基础结构上,依次联接,彼此配合,在圆度和轴线直线度误差测量上具有良好的效率和精度。
反射镜22粘贴固连在主壳机构与超声测量单元的连接面上,且位于超声测量单元后侧,用以接受来自激光干涉仪50透过干涉镜49的测量光路,激光干涉仪50和干涉镜49两者轴线需与反射镜22轴线始终位于同一直线上,且三者间不存在任何障碍物,以确保测量光路的准确性和稳定性,标定基准板9采用M5×16型螺钉37连接,超声探头固定块28采用M5×16型螺钉27连接,超声探头固定块28依靠M6×8螺钉41固定超声测量单元的位置,超声测量单元包括喷水机构40、流水固定机构42、密封圈43、探头夹头44和超声探头45,流水固定机构42右端依靠自身的夹持结构与超声探头45相连,其间放置密封圈43,保证水流不会外溢,并在外侧周向放置探头夹头44,以确保流水固定机构42与探头夹头44连接的稳定性,左端依靠螺纹结构与喷水机构40相连,可根据测量***对水流的需求,对喷水机构40的出水口和管路长度做出调整与更换,侧壁经进水机构垫圈和进水口螺母33与输送层流状态水流的水管相连,进水口螺母33可根据管径大小做出更换,以适应不同管路。
参阅附图6-7,利用三角卡盘48将被测工件一端固定在数控车床上,若工件很大,则另需使用顶尖对其另一端进行装夹,在车床主轴47末端,以螺钉连接的方式外接旋转编码器46;车床主轴47带动工件做转速恒定的旋转运动,每隔一定角度由旋转编码器46触发电涡流位移传感器1和超声探头45进行同时采样,该角度需要满足:
Figure BDA0003389478160000081
(n为正整数),此角度易于确定电涡流位移传感器1和超声探头15间的位置关系,使得两者的测量数据可以保持良好的一致对应性,在一次旋转过程中,可同时获得某位置对应的位移值和厚度值,将电涡流位移传感器1、超声探头45和激光干涉仪50的干涉镜49统一集成于位移测量装置上,且保证电涡流位移传感器1和超声探头45两者轴线位于同一竖直平面内,并间隔30°分开放置,位移测量装置依靠自身夹持柄结构与车床刀架紧固连接,车床刀架带动位移测量装置沿径向调整,可使各传感器的测量值位于可靠的量程范围内;车床刀架带动位移测量装置沿轴向进给,并利用激光干涉仪50、干涉镜49和反射镜22间的输出光光路、测量光光路、反射光光路以及汇合光光路记录位移测量装置的轴向位移,实现对多个测量截面的获取,旋转编码器46、电涡流位移传感器1、超声探头45和激光干涉仪50经数据采集和处理,以数字信号形式传输至上位机终端,旋转编码器46的方波脉冲信号接入PMAC控制卡,PMAC控制卡依靠计数器和比较器产生的触发脉冲经I/O接口分别接入电涡流位移传感器1和超声探头45两者的控制器,在这种采样控制模式下,旋转编码器46触发电涡流位移传感器1和超声探头45同时在测量截面进行等角度采样,这既可以使同一截面相邻样点间的角度相等化,从而提升测量精度;也可以保证各测量截面的样点数量相同,便于后续评定。
以电涡流位移传感器1和超声探头45两者轴线的交点为原点建立的测量坐标系为o'-x'y'z',主轴轴线方向为z′坐标轴,水平方向为x'坐标轴,竖直方向为y'坐标轴,在初始测量截面上,通过调整竖直滑移单元、斜向滑移单元,使电涡流位移传感器1和超声探头45两者轴线的交点尽可能落在工件轴线上,并以该截面的测量坐标系作为绝对坐标系o-xyz;通过调整水平滑移单元、位移测量杆2,使两传感器的测量值落在各自的可靠量程范围内,以满足传感器的使用条件,经测量与标定,得到测量坐标系原点到电涡流位移传感器1发射端的距离L,电涡流位移传感器1测量得到长孔类零件外表面上对应测量点到传感器发射端的位移值,以此描述工件外表面的实际轮廓;超声探头45经非接触式测量得到工件的壁厚值h,壁厚值h指在工件外表面与测量坐标系原点连线方向上外表面到对应内表面的距离值,根据几何关系,实现对工件内表面轮廓的描述,由于电涡流位移传感器1和超声探头45间隔30°布置,在数据处理时,需将电涡流位移传感器1对应的第n个测点与超声探头45对应的第一个测点相对应,使两传感器的测点保持一致,通过这种布置和处理方法,经一次旋转即可同时获得一个测量截面上所有测点的位移值e和壁厚值h,根据公式(1)计算可得测量坐标原点到孔类零件内表面上各测量位置的距离R。
R=L-e-h (1)
在每个测量截面上,根据求解的距离R、旋转编码器46记录的旋转角度和激光干涉仪50记录的测量截面沿轴向移动的距离l,按公式(2)计算得到各测量位置在绝对坐标下对应的坐标值,利用相关评定算法对截面圆度误差和截面圆心坐标值进行求解,获取多个测量截面圆心坐标后,使用直线度误差评定方法,对圆心坐标进行直线拟合,从而得到轴线直线度误差值。
Figure BDA0003389478160000101
参阅附图8,由测量原理可知,需要对电涡流位移传感器1和超声探头45两者轴线的交点(即测量坐标系原点)到测量装置上电涡流位移传感器1发射端的距离值L进行标定,根据几何关系,参数值L可按式(3)计算得到:
L=3r1+2h1+2h2-l1 (3)
其中,r1为标定球半径,l1为电涡流位移传感器1发射端到标定球8末端的距离值,h2为标定基准板9的基准平面到超声探头45轴线的距离值,这些参数值均可在装配完成后由三坐标测量机测量得到,且始终恒为定值;h1为标定基准板9的基准平面到标定球8下端的距离值,可使用本发明设计的活络量块进行测量,将活络量块置于标定基准板9的基准平面与标定球8下端之间,不断调整量块,使其上下测量面分别与标定球8下端、标定基准板9的基准平面相接触;利用千分尺测量此时量块的厚度值,即可获得距离值。
参阅附图9,活络量块包括:锁紧螺钉56、旋动块57、固定块58和顶针59,以旋动块57上表面作为活络量块的上测量面,以固定块58下表面作为活络量块的下测量面,打开锁紧螺钉56,顺时针或逆时针旋转旋动块57,其螺纹部分沿顶针59滑动,使量块的整体厚度发生变化;紧固锁紧螺钉56,可保持量块的当前厚度。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种长孔类零件形状误差测量装置,其特征在于,包括:基础装置、测量装置、标定装置以及滑移装置;
所述基础装置包括主壳机构以及车床主轴;
所述滑移装置包括斜向滑移单元、水平滑移单元以及竖直滑移单元,所述滑移装置与所述主壳机构固定连接;
所述测量装置包括角度测量装置、干涉仪、干涉镜、反射镜、位移测量装置以及超声测量装置,所述角度测量装置固定于所述车床主轴一端,所述超声测量装置固定于所述主壳机构上且与所述车床主轴回转轴线保持水平,所述反射镜固定于所述主壳机构以及超声测量装置连接面上,所述位移测量装置与所述超声测量装置两者的轴线角度始终保持恒定且位于同一竖直平面内;
所述标定装置包括标定球以及标定基准板;所述干涉仪以及所述干涉镜与所述反射镜同轴线设置,所述标定球与所述位移测量装置固定连接,所述主壳机构上设置有所述标定基准板;
角度测量装置与计算机通讯连接,位移测量装置、超声测量装置以及干涉仪经各自控制器与计算机通讯连接;
所述超声测量装置包括喷水机构、流水固定机构、探头夹头以及超声探头,所述流水固定机构与所述超声探头固定连接,所述流水固定机构外侧周向设置有若干个所述探头夹头,所述流水固定机构与所述喷水机构连通,所述喷水机构侧壁连通有水管;
所述主壳机构上设有中斜向内腔、右斜向内腔、左斜向内腔、上水平内腔以及下水平内腔;
斜向滑移单元包括:刻度手轮、斜向调动板、微型平面推力滚针轴承、丝杆螺母、丝杆、限位环以及两根斜向导杆,所述丝杆螺母固定在所述主壳机构上,两根所述斜向导杆分别与所述斜向调动板进行紧固;所述丝杆一端与所述刻度手轮连接,所述丝杆另一端连接所述限位环,所述丝杆周向设置两片所述微型平面推力滚针轴承,所述斜向导杆分别设置于所述右斜向内腔以及所述左斜向内腔内;
所述位移测量装置包括电涡流位移传感器以及位移测量杆,所述电涡流位移传感器固定连接于所述位移测量杆一端,所述标定球固定连接于所述位移测量杆另一端,所述电涡流位移传感器的信号线缆经所述位移测量杆内腔由侧壁穿出并与控制器连接,所述位移测量杆与所述斜向调动板固定连接;
所述电涡流位移传感器与所述超声探头两者的轴线始终保持30°夹角恒定。
2.根据权利要求1所述的一种长孔类零件形状误差测量装置,其特征在于,竖直滑移单元包括:竖直导杆、竖直挡板、滑轨、滑移调动板和夹紧镶条,所述滑移调动板与所述夹紧镶条固定连接,所述夹紧镶条与所述滑轨紧配合,所述竖直挡板与所述滑轨固定连接,所述竖直导杆设置于所述中斜向内腔内。
3.根据权利要求2所述的一种长孔类零件形状误差测量装置,其特征在于,水平滑移单元包括:夹紧块以及两根水平导杆,所述水平滑移单元的两根所述水平导杆的圆柱面分别与所述夹紧块的上、下端凹槽相接触,所述水平导杆与所述滑移调动板固定连接,所述水平导杆设置于所述上水平内腔以及所述下水平内腔内。
4.根据权利要求1所述的一种长孔类零件形状误差测量装置,其特征在于,所述角度测量装置为旋转编码器。
5.根据权利要求4所述的一种长孔类零件形状误差测量装置,其特征在于,旋转编码器通过PMAC控制卡与计算机实现连接,所述PMAC控制卡通过I/O接口分别接入所述电涡流位移传感器以及所述超声探头的控制器。
CN202111463448.3A 2021-12-02 2021-12-02 一种长孔类零件形状误差测量装置 Active CN114087972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111463448.3A CN114087972B (zh) 2021-12-02 2021-12-02 一种长孔类零件形状误差测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111463448.3A CN114087972B (zh) 2021-12-02 2021-12-02 一种长孔类零件形状误差测量装置

Publications (2)

Publication Number Publication Date
CN114087972A CN114087972A (zh) 2022-02-25
CN114087972B true CN114087972B (zh) 2022-11-29

Family

ID=80306411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111463448.3A Active CN114087972B (zh) 2021-12-02 2021-12-02 一种长孔类零件形状误差测量装置

Country Status (1)

Country Link
CN (1) CN114087972B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237818A (zh) * 2022-12-29 2023-06-09 广东中海万泰技术有限公司 一种深孔加工的偏移量测量方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307042A1 (de) * 1982-12-23 1984-06-28 Jenny Pressen AG, Frauenfeld Messgeraet und seine verwendung
US5274566A (en) * 1992-12-04 1993-12-28 United Technologies Corporation Aligning average axis of hollow workpiece cavity with rotary machine axis
CN1468672A (zh) * 2002-06-04 2004-01-21 Sms米尔股份有限公司 测定空心管坯偏心率的方法和装置
JP2007071852A (ja) * 2005-09-02 2007-03-22 Akio Katsuki 深穴測定装置および深穴測定方法
CN101036973A (zh) * 2007-03-29 2007-09-19 上海大学 高精度轧辊磨床轧辊圆度及辊形误差在线测量装置及方法
CN105651218A (zh) * 2016-02-29 2016-06-08 齐鲁工业大学 一种多阶梯轴行位公差在位检测装置及其检测方法
CN106595532A (zh) * 2016-11-02 2017-04-26 中北大学 深孔直线度检测方法
CN107367222A (zh) * 2016-05-12 2017-11-21 哈尔滨工业大学 电涡流传感器直线度补偿的电感传感器校准方法与装置
CN109211166A (zh) * 2018-09-30 2019-01-15 南京航空航天大学 一种基于壁厚和外型约束的舱体结构件在机快速找正装置及其找正方法
CN109373944A (zh) * 2018-12-04 2019-02-22 湖南大学 一种基于超声波的空气箔片轴承气膜厚度测量***及方法
CN110160462A (zh) * 2019-05-08 2019-08-23 北京理工大学 一种大型深孔零件镗削过程圆度与直线度的检测方法
CN110455226A (zh) * 2019-08-29 2019-11-15 天津大学 一种激光准直收发一体式直线度测量的标定***及方法
CN210108282U (zh) * 2019-05-29 2020-02-21 吉林大学 一种柱状零件外圆周尺寸及形位误差非接触智能检测仪
CN111006597A (zh) * 2019-11-13 2020-04-14 北京航星机器制造有限公司 一种薄壁圆筒壁厚测量***及壁厚均匀性判定方法
CN210773943U (zh) * 2019-11-13 2020-06-16 焦作大学 一种基于机器视觉的凸轮轴相位角测量装置
CN112504120A (zh) * 2020-12-04 2021-03-16 潍坊学院 一种螺杆测量机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099646A1 (ja) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
CN101439412B (zh) * 2008-12-23 2010-08-25 大连晨瑞自动化***有限公司 自动测量误差加工半组合式曲轴主轴颈基正圆的方法及设备
CN101975656B (zh) * 2010-09-06 2011-12-07 西安交通大学 一种微型燃气轮机模拟转子动态性能测试实验装置
CN103213033B (zh) * 2013-04-25 2016-08-10 杭州汽轮机股份有限公司 分离主轴回转误差的电跳动在位测量装置及测量方法
CN105423946B (zh) * 2015-11-27 2018-10-09 天津大学 基于激光位移传感器的轴颈轴心测量装置及测量标定方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307042A1 (de) * 1982-12-23 1984-06-28 Jenny Pressen AG, Frauenfeld Messgeraet und seine verwendung
US5274566A (en) * 1992-12-04 1993-12-28 United Technologies Corporation Aligning average axis of hollow workpiece cavity with rotary machine axis
CN1468672A (zh) * 2002-06-04 2004-01-21 Sms米尔股份有限公司 测定空心管坯偏心率的方法和装置
JP2007071852A (ja) * 2005-09-02 2007-03-22 Akio Katsuki 深穴測定装置および深穴測定方法
CN101036973A (zh) * 2007-03-29 2007-09-19 上海大学 高精度轧辊磨床轧辊圆度及辊形误差在线测量装置及方法
CN105651218A (zh) * 2016-02-29 2016-06-08 齐鲁工业大学 一种多阶梯轴行位公差在位检测装置及其检测方法
CN107367222A (zh) * 2016-05-12 2017-11-21 哈尔滨工业大学 电涡流传感器直线度补偿的电感传感器校准方法与装置
CN106595532A (zh) * 2016-11-02 2017-04-26 中北大学 深孔直线度检测方法
CN109211166A (zh) * 2018-09-30 2019-01-15 南京航空航天大学 一种基于壁厚和外型约束的舱体结构件在机快速找正装置及其找正方法
CN109373944A (zh) * 2018-12-04 2019-02-22 湖南大学 一种基于超声波的空气箔片轴承气膜厚度测量***及方法
CN110160462A (zh) * 2019-05-08 2019-08-23 北京理工大学 一种大型深孔零件镗削过程圆度与直线度的检测方法
CN210108282U (zh) * 2019-05-29 2020-02-21 吉林大学 一种柱状零件外圆周尺寸及形位误差非接触智能检测仪
CN110455226A (zh) * 2019-08-29 2019-11-15 天津大学 一种激光准直收发一体式直线度测量的标定***及方法
CN111006597A (zh) * 2019-11-13 2020-04-14 北京航星机器制造有限公司 一种薄壁圆筒壁厚测量***及壁厚均匀性判定方法
CN210773943U (zh) * 2019-11-13 2020-06-16 焦作大学 一种基于机器视觉的凸轮轴相位角测量装置
CN112504120A (zh) * 2020-12-04 2021-03-16 潍坊学院 一种螺杆测量机

Also Published As

Publication number Publication date
CN114087972A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US5111590A (en) Measuring method of machine tool accuracy using a computer aided kinematic transducer link and its apparatus
CN110470243B (zh) 基于非接触传感器且工件可偏置的内圆度测量方法及装置
US20140298668A1 (en) Device for detecting axis coplanarity of orthogonal rotary shafts having built-in intersection and precision detecting method
CN110906876A (zh) 非接触式极值法内径检测方法和装置
CN112747689B (zh) 一种面向深孔零件的圆度和直线度误差测量***
CN114087972B (zh) 一种长孔类零件形状误差测量装置
CN112247670A (zh) 一种单轴测量式测头及其测量方法
CN110186398B (zh) 一种具有运动偏差实时测量功能的旋转工作台及测量方法
CN107900781A (zh) 用于车床的接触式在线检测***的标定装置和标定方法
Kauschinger et al. Fast evaluation of the volumetric motion accuracy of multi-axis machine tools using a Double-Ballbar
CN112192317B (zh) 使用双球杆仪测量机床主轴空间三维误差的方法
CN117260389A (zh) 多传感器融合驱动的大型深孔零件形状误差在位测量***
JPS608701A (ja) 歯車の歯形及び歯すじを検査する持運び可能な検測装置並びに検測法
CN111895905B (zh) 一种用于六方轴直线度检测***的误差补偿方法
CN112985299A (zh) 一种基于路径规划的光学探针在线检测装置及其方法
CN209868137U (zh) 一种基于轧辊磨床的轧辊直径与锥度在位测量装置
CN109631720B (zh) 一种环形筒体的测量方法
CN109458914B (zh) 斜孔深度量具
CN107529473B (zh) 一种圆柱体变焦凸轮加工精度检测装置及其应用方法
CN213090624U (zh) 基于球杆仪进行多轴机床主轴三维误差测量的装置
CN108061503B (zh) 一种在测长仪上检测锥形部件外径的方法
CN114800048A (zh) 一种齿轮在机测量过程中基于齿距测量的径跳检测方法
CN110645876A (zh) 一种适于含能回转零件在机测量装置及测量方法
CN112719473B (zh) 一种双联齿轮齿槽快速对中方法及***
CN220690067U (zh) 数控外圆磨床外径在线测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant