WO2007093725A2 - Aqueous dispersions comprising carbon nanotubes, method for preparing and using same - Google Patents

Aqueous dispersions comprising carbon nanotubes, method for preparing and using same Download PDF

Info

Publication number
WO2007093725A2
WO2007093725A2 PCT/FR2007/050756 FR2007050756W WO2007093725A2 WO 2007093725 A2 WO2007093725 A2 WO 2007093725A2 FR 2007050756 W FR2007050756 W FR 2007050756W WO 2007093725 A2 WO2007093725 A2 WO 2007093725A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
aqueous dispersion
dispersion according
nanotubes
weight
Prior art date
Application number
PCT/FR2007/050756
Other languages
French (fr)
Other versions
WO2007093725A3 (en
Inventor
Stéphanie Magnet
Laurence Couvreur
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0601237A external-priority patent/FR2897361A1/en
Application filed by Arkema France filed Critical Arkema France
Publication of WO2007093725A2 publication Critical patent/WO2007093725A2/en
Publication of WO2007093725A3 publication Critical patent/WO2007093725A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Definitions

  • the present invention relates to the viscosification of aqueous solutions for the formulation of drilling muds. More specifically, the present invention relates to aqueous dispersions comprising carbon nanotubes, which have a high viscosity and which withstand prolonged exposure conditions at high temperature.
  • Drilling fluids are very often water-based fluids consisting of viscosifiers, corrosion inhibitors, lubricants, surfactants, and the like.
  • viscosifiers are natural polymers such as polysaccharides, cellulose derivatives, but also synthetic polymers of acrylic or vinyl type.
  • the polymers used to viscosify the process fluids tend to degrade quite rapidly. They often undergo a rapid alteration essentially by hydrolysis and oxidative cleavage, and irreversibly lose their viscosifying properties correlatively to the reduction of their molecular weight.
  • the patent FR 2587708 mentions the possibility of using crosslinked macromolecular gels with a copolymer structure of styrenesulphonic acids and of divinylarylsulphonic acids for the formulation of drilling fluids.
  • drilling fluids that are stable at these depths.
  • drilling fluids as they are used in the wells, are enriched with divalent cations (Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ ) which can lead to the formation of insoluble salts. with the constituents of said fluids resulting in their gelation and thus limiting their use.
  • the inventors have in fact developed new aqueous dispersions or suspensions having in particular a high viscosity, without going to frost, and endowed with excellent resistance to thermal degradation.
  • the high viscosity allows wells to be cleared of rock debris from drilling and held in suspension during the cessation of fluid flow.
  • the present invention thus relates to stable dispersions at temperatures greater than 300 ° C., or even greater than 400 ° C. and to their use in the oil exploitation as drilling fluid.
  • the subject of the invention is an aqueous dispersion of carbon nanotubes comprising:
  • Carbon nanotubes consist of a variety of carbon in an sp 2 configuration consisting of a long single tube, double or multi-walled aromatic rings contiguous to each other, aggregated or not.
  • the nanotube consists of a single tube, we speak of single wall nanotube, two tubes we speak of double wall nanotube. Beyond, we speak of multi-walled nanotube.
  • the carbon nanotubes are single-walled or multi-walled carbon nanotubes, and preferably multi-walled carbon nanotubes.
  • Carbon nanotubes can be prepared by various methods such as electric discharge, laser ablation or chemical vapor deposition. Among these techniques, the latter seems to be the only one likely to be able to ensure the production of a large quantity of carbon nanotubes.
  • the carbon nanotubes are manufactured according to one of the abovementioned techniques, and advantageously according to chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the nanotubes are modified on the surface in order to confer them with exacerbated properties of dispersibility in water.
  • the carbon nanotubes comprise hydrophilic groups directly present (or bonded) to the surface of these carbon nanotubes.
  • groups directly present on the surface of the nanotubes means groups that are covalently attached to the nanotubes.
  • at least part of the sulphonates is meant at least 50% of the hydrophilic groups, or even 80%.
  • all the hydrophilic groups directly present on the surface of the carbon nanotubes are, according to the invention, sulphonate groups.
  • the sulphonate groups are attached to the surface of the carbon nanotubes by means of a benzene ring.
  • Such functionalized nanotubes are less thermally stable than those of the present invention.
  • they are more difficult to obtain than those of the invention and their synthetic process uses reagents and leads to by-products harmful to the environment.
  • the surface-sulfated carbon nanotubes are obtained directly by sulphonation in the presence of the sulfur trioxide / triethylphosphate complex, or optionally in the presence of concentrated sulfuric acid, or of oleum.
  • the invention also relates to the process for the sulfonation of carbon nanotubes and the surface-modified carbon nanotubes obtained according to this process.
  • the carbon nanotubes according to the invention may advantageously, before any chemical modification, in particular before the sulphonation, be purified physically or chemically, in particular by washing with acidic solutions (for example sulfuric acid solutions and / or of hydrochloric acid) so as to rid them of mineral and / or metallic impurities and / or by treatment with sodium hypochlorite to obtain a greater amount of oxygen function.
  • acidic solutions for example sulfuric acid solutions and / or of hydrochloric acid
  • the invention also relates to the use of carbon nanotubes having on the surface sulfonate groups directly linked to carbon nanotubes and aqueous dispersions enclosing them for oil exploitation, in particular in or as drilling fluids.
  • the dispersions according to the invention because of the presence of carbon nanotubes, have a high viscosity. In case of prolonged exposure to high temperatures, especially at temperatures above 300 ° C., or even above 400 ° C., they undergo no chemical degradation and maintain a high viscosity. They are also very resistant to shear forces. In addition, they are very insensitive to multivalent metal ions, especially bivalent, and are resistant to oxygen and carbon dioxide, and are also stable in the presence of salts. Consequently, the dispersions according to the invention advantageously replace dispersions containing only polymers as viscosifiers, as well as those in which the nanotubes are functionalized with hydroxyl or carboxyl groups.
  • the percentage by weight of carbon nanotubes modified on their surface is between 0.001 and 10%, and for example between 0.001 to 5%. Then, the water content varies from 40% by weight to 99.999% by weight, especially from 60% to 99.1%.
  • the invention is not limited to aqueous dispersions containing only water and surface-modified carbon nanotubes, but also relates to aqueous dispersions, including in particular inorganic salts and optionally one or more organic solvents miscible with water as well as additives.
  • inorganic salts it is possible to use water-soluble potassium, sodium or ammonium salts, such as potassium or ammonium chloride, alone or as a mixture.
  • water-miscible organic solvents it is possible to use aliphatic alcohols having from 1 to 12 carbon atoms and in particular from 1 to 5 carbon atoms.
  • the alcohols that can be used can be chosen from methanol, isopropanol, propan-2-ol, propane-1,2-diol, ethylene glycol, propylene glycol, alone or as a mixture.
  • the organic solvents may represent up to 10% by weight of the dispersion, in particular from 0.01 to 4%.
  • the dispersion may contain only sulphated nanotubes and water, given the self-dispersive property of the sulphated nanotubes.
  • the dispersion may also contain as additive at least one constituent selected from the fluidifiers, deflocculants, anti-foam agents, anti-corrosion agents, surfactants, alone or in admixture.
  • additives may represent from 0.001% to 30% by weight of the dispersion, for example from 0.01% to 10%.
  • the invention also relates to an oil well drilling fluid, containing: from 0.001 to 20% by weight of carbon nanotubes modified on their surface by hydrophilic groups directly bonded to said surface, these hydrophilic groups being at least partly sulphonates and> at least 40% by weight of water.
  • the invention also relates to a process for preparing the aqueous dispersion described above which comprises the following steps: a) the sulfonation of at least a portion of the carbon nanotubes, b) the possible purification or grinding of the sulphated nanotubes obtained in step a), c) the addition of water, d) the possible addition of additives, the amount of added water being such that the dispersion obtained at the end of step d) contains by weight at least 40% of water and 0.001 to 20% of sulphated carbon nanotubes.
  • the sulphonation step according to the invention is carried out by treatment of purified or unpurified carbon nanotubes at a temperature above room temperature (greater than 25 ° C.) with, in particular, a sulfur trioxide / triethylphosphate complex, or by heating, at 250 ° C, the carbon nanotubes in concentrated sulfuric acid or oleum.
  • the optional step b) makes it possible to eliminate unreacted reagents and can be carried out by filtration and / or neutralization, followed by a possible washing.
  • the product is then filtered, washed with dichloroethane and then placed in methanol. Finally, the product at 40 ° C. is washed with 1N sodium hydroxide and then with methanol. The product obtained is dried under vacuum at 50 ° C. for 24 hours before being optionally finely ground (approximately 50 microns).
  • the analysis of the product is made by infra-red spectroscopy.
  • Examples 1 and 2 are used as they are at room temperature or optionally heated, in oil wells located at least 3000 meters. They remain stable (without decomposition of carbon nanotubes) despite the high temperature.

Abstract

The invention concerns aqueous dispersions comprising between 0.001 and 20% of surface-modified carbon nanotubes. Said dispersions have a high viscosity and are provided with excellent resistance to high temperatures. The invention also concerns their use in oil industry operations, in particular as drilling fluid.

Description

DISPERSIONS AQUEUSES COMPRENANT DES NANOTUBES DE CARBONE, LEUR PROCÉDÉ DE PRÉPARATION ET LEUR UTILISATION AQUEOUS DISPERSIONS COMPRISING CARBON NANOTUBES, PROCESS FOR THE PREPARATION THEREOF AND USE THEREOF
Domaine technique : La présente invention concerne la viscosification de solutions aqueuses pour la formulation de boues de forage. Plus précisément, la présente invention vise des dispersions aqueuses comprenant des nanotubes de carbone, qui présentent une viscosité élevée et qui résistent à des conditions d'exposition prolongée à haute température. Technique antérieure :Technical Field: The present invention relates to the viscosification of aqueous solutions for the formulation of drilling muds. More specifically, the present invention relates to aqueous dispersions comprising carbon nanotubes, which have a high viscosity and which withstand prolonged exposure conditions at high temperature. Prior art:
Les fluides de forage sont très souvent des fluides à base d'eau constitués d'agents viscosifiants, d'inhibiteurs de corrosion, de lubrifiants, d'agents tensioactifs, etc. Parmi les agents viscosifiants les plus utilisés, on trouve des polymères naturels tels que les polysaccharides, des dérivés cellulosiques, mais aussi des polymères synthétiques de type acrylique ou vinylique.Drilling fluids are very often water-based fluids consisting of viscosifiers, corrosion inhibitors, lubricants, surfactants, and the like. Among the most used viscosifiers are natural polymers such as polysaccharides, cellulose derivatives, but also synthetic polymers of acrylic or vinyl type.
En raison des hautes températures, du fort cisaillement (causé par le pompage), des hautes pressions, et du pH bas auxquels ces fluides sont exposés, les polymères employés pour viscosifier les fluides de traitement ont tendance à se dégrader assez rapidement. Ils subissent bien souvent une altération rapide essentiellement par hydrolyse et par scission oxydative, et perdent irréversiblement leurs propriétés viscosifiantes corrélativement à Ia réduction de leur masse moléculaire.Because of the high temperatures, high shear (caused by pumping), high pressures, and low pH to which these fluids are exposed, the polymers used to viscosify the process fluids tend to degrade quite rapidly. They often undergo a rapid alteration essentially by hydrolysis and oxidative cleavage, and irreversibly lose their viscosifying properties correlatively to the reduction of their molecular weight.
Pour pallier ces inconvénients, notamment de dégradation thermique, le brevet FR 2587708 mentionne la possibilité d'utiliser des gels macromoléculaires réticulés à structure de copolymères d'acides styrènesulfoniques et d'acides divinylarylsulfoniques pour la formulation de fluides de forages.To overcome these disadvantages, in particular thermal degradation, the patent FR 2587708 mentions the possibility of using crosslinked macromolecular gels with a copolymer structure of styrenesulphonic acids and of divinylarylsulphonic acids for the formulation of drilling fluids.
Plus récemment, il a été décrit que l'ajout de sels d'acide formique (WO 03 /012003) ou de sels d'acides oxaliques (WO 2005/061052) à des solutions aqueuses de polyacrylamides, dérivés cellulosiques ou biopolymères pouvait augmenter leur résistance thermique. II existe des solutions pratiques satisfaisantes pour la réalisation de fluides de forage capables d'opérer dans des conditions de température pas trop élevées (jusqu'à 200°C). Toutefois, l'art antérieur ne fournit pas de solution acceptable pour le forage à grande profondeur. En effet, les industries du pétrole et du gaz doivent actuellement creuser à des profondeurs de plus en plus importantes vers 3000 mètres, voire au-delà de 5000 mètres. Les fluides de forage sont alors soumis à des températures de plus en plus élevées, la température dans les formations souterraines augmentant au minimum de 1 0C pour 30 mètres de profond.More recently, it has been described that the addition of formic acid salts (WO 03/012003) or salts of oxalic acids (WO 2005/061052) to aqueous solutions of polyacrylamides, cellulose derivatives or biopolymers could increase their thermal resistance. There are satisfactory practical solutions for producing drilling fluids capable of operating under not too high temperature conditions (up to 200 ° C.). However, the prior art does not provide an acceptable solution for deep drilling. In fact, the oil and gas industries are currently digging deeper and deeper depths at around 3000 meters and even beyond 5000 meters. The drilling fluids are then subjected to temperatures higher and higher, the temperature in the underground formations increasing to a minimum of 1 0 C for 30 meters deep.
Il existe donc un réel besoin de mettre au point des fluides de forage qui soient stables à ces profondeurs. Par ailleurs, les fluides de forage au fur et à mesure de leur utilisation dans les puits s'enrichissent en cations bivalents (Ca2+, Mg2+, Ba2+, Sr2+) qui peuvent conduire à la formation de sels insolubles avec les constituants des dits fluides entraînant leur gélification et limitant ainsi leur utilisation.There is therefore a real need to develop drilling fluids that are stable at these depths. Furthermore, drilling fluids, as they are used in the wells, are enriched with divalent cations (Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ ) which can lead to the formation of insoluble salts. with the constituents of said fluids resulting in their gelation and thus limiting their use.
Exposé de l'invention :Presentation of the invention
De façon surprenante, les inventeurs ont trouvé qu'en utilisant une dispersion ou suspension aqueuse de nanotubes de carbone sulfatés, on résolvait les problèmes cités ci-dessus.Surprisingly, the inventors have found that by using an aqueous dispersion or suspension of sulphated carbon nanotubes, the problems mentioned above are solved.
Les inventeurs ont en effet mis au point de nouvelles dispersions ou suspensions aqueuses présentant notamment une forte viscosité, sans pour autant aller jusqu'au gel, et douées d'une excellente résistance à la dégradation thermique. La viscosité élevée permet de débarrasser les puits des débris de roches dus au forage et les maintenir en suspension pendant l'arrêt de la mise en circulation du fluide.The inventors have in fact developed new aqueous dispersions or suspensions having in particular a high viscosity, without going to frost, and endowed with excellent resistance to thermal degradation. The high viscosity allows wells to be cleared of rock debris from drilling and held in suspension during the cessation of fluid flow.
La présente invention se rapporte donc à des dispersions stables à des températures supérieures à 300°C, voire supérieure à 4000C et à leur utilisation dans l'exploitation pétrolière comme fluide de forage.The present invention thus relates to stable dispersions at temperatures greater than 300 ° C., or even greater than 400 ° C. and to their use in the oil exploitation as drilling fluid.
De façon plus précise, l'invention a pour objet une dispersion aqueuse de nanotubes de carbone comprenant :More specifically, the subject of the invention is an aqueous dispersion of carbon nanotubes comprising:
> de 0, 001 à 20 % en poids de nanotubes de carbone modifiés à leur surface par des groupements hydrophiles directement liés à la dite surface, ces groupements hydrophiles étant au moins en partie des sulfonates et,> from 0.001% to 20% by weight of carbon nanotubes modified at their surface by hydrophilic groups directly bonded to said surface, these hydrophilic groups being at least partly sulfonates and,
> au moins 40 % en poids d'eau.> at least 40% by weight of water.
Les nanotubes de carbone sont constitués d'une variété du carbone dans une configuration sp2 consistant en un long tube simple, double ou multi parois de cycles aromatiques accolés les uns aux autres, agrégés ou non. Lorsque le nanotube est constitué d'un seul tube, on parle de nanotube mono-paroi, de deux tubes on parle de nanotube double parois. Au-delà, on parle de nanotube multi-parois.Carbon nanotubes consist of a variety of carbon in an sp 2 configuration consisting of a long single tube, double or multi-walled aromatic rings contiguous to each other, aggregated or not. When the nanotube consists of a single tube, we speak of single wall nanotube, two tubes we speak of double wall nanotube. Beyond, we speak of multi-walled nanotube.
Selon l'invention, les nanotubes de carbone sont des nanotubes de carbone mono paroi ou multi-parois, et de préférence multi-parois. Les nanotubes de carbone peuvent être préparés selon différents procédés comme la décharge électrique, l'ablation laser ou le dépôt chimique en phase vapeur. Parmi ces techniques, cette dernière semble être la seule susceptible de pouvoir assurer la fabrication en quantité importante de nanotubes de carbone.According to the invention, the carbon nanotubes are single-walled or multi-walled carbon nanotubes, and preferably multi-walled carbon nanotubes. Carbon nanotubes can be prepared by various methods such as electric discharge, laser ablation or chemical vapor deposition. Among these techniques, the latter seems to be the only one likely to be able to ensure the production of a large quantity of carbon nanotubes.
Selon l'invention, les nanotubes de carbone sont fabriqués selon l'une des techniques précitées, et avantageusement selon le dépôt chimique en phase vapeur (CVD).According to the invention, the carbon nanotubes are manufactured according to one of the abovementioned techniques, and advantageously according to chemical vapor deposition (CVD).
On pourra se référer par exemple aux documents WO 86/03455, WO 03/002456 pour la préparation de nanotubes de carbone multi-parois distincts ou non agrégés selon la technique CVD.We can refer for example to WO 86/03455, WO 03/002456 for the preparation of carbon nanotubes multi-wall distinct or non-aggregated according to the CVD technique.
Selon l'invention, les nanotubes sont modifiés en surface, afin de leur conférer des propriétés exacerbées de dispersibilité dans l'eau.According to the invention, the nanotubes are modified on the surface in order to confer them with exacerbated properties of dispersibility in water.
Selon l'invention, les nanotubes de carbone comprennent des groupements hydrophiles directement présents (ou liés) à la surface de ces nanotubes de carbone. On parle alors de nanotubes modifiés à leur surface. On entend par groupements directement présents à la surface des nanotubes, des groupements fixés aux nanotubes de manière covalente. On entend par au moins en partie des sulfonates au moins 50 % des groupements hydrophiles, voire 80 %.According to the invention, the carbon nanotubes comprise hydrophilic groups directly present (or bonded) to the surface of these carbon nanotubes. We are talking about modified nanotubes on their surface. The term "groups" directly present on the surface of the nanotubes means groups that are covalently attached to the nanotubes. By at least part of the sulphonates is meant at least 50% of the hydrophilic groups, or even 80%.
De manière préférentielle, tous les groupements hydrophiles directement présents à la surface des nanotubes de carbone sont, selon l'invention, des groupements sulfonates. Dans la demande de brevet WO 2005/1 13434 qui vise des nanotubes fonctionnalisés, les groupements sulfonates sont fixés à la surface des nanotubes de carbone par l'intermédiaire d'un noyau benzénique. De tels nanotubes fonctionnalisés sont moins stables thermiquement que ceux de la présente invention. En outre, ils sont plus difficiles à obtenir que ceux de l'invention et leur procédé de synthèse utilise des réactifs et conduit à des sous produits néfastes pour l'environnement.Preferably, all the hydrophilic groups directly present on the surface of the carbon nanotubes are, according to the invention, sulphonate groups. In the patent application WO 2005/1 13434, which relates to functionalized nanotubes, the sulphonate groups are attached to the surface of the carbon nanotubes by means of a benzene ring. Such functionalized nanotubes are less thermally stable than those of the present invention. In addition, they are more difficult to obtain than those of the invention and their synthetic process uses reagents and leads to by-products harmful to the environment.
Selon l'invention, les nanotubes de carbone sulfatés à leur surface sont obtenus directement par sulfonation en présence du complexe trioxyde de soufre/triéthylphosphate, ou éventuellement en présence d'acide sulfurique concentré, ou d'oléum. L'invention a trait aussi au procédé de sulfonation des nanotubes de carbone et aux nanotubes de carbone modifiés en surface obtenus selon ce procédé.According to the invention, the surface-sulfated carbon nanotubes are obtained directly by sulphonation in the presence of the sulfur trioxide / triethylphosphate complex, or optionally in the presence of concentrated sulfuric acid, or of oleum. The invention also relates to the process for the sulfonation of carbon nanotubes and the surface-modified carbon nanotubes obtained according to this process.
Les nanotubes de carbone selon l'invention peuvent avantageusement, avant toute modification chimique, notamment avant la sulfonation, être purifiés physiquement ou chimiquement, notamment par des lavages à l'aide de solutions acides (par exemple des solutions d'acide sulfurique et/ou d'acide chlorhydrique) de manière à les débarrasser des impuretés minérales et/ou métalliques et/ou par traitement au moyen d'hypochlorite de sodium afin d'obtenir une plus grande quantité de fonctions oxygénées.The carbon nanotubes according to the invention may advantageously, before any chemical modification, in particular before the sulphonation, be purified physically or chemically, in particular by washing with acidic solutions (for example sulfuric acid solutions and / or of hydrochloric acid) so as to rid them of mineral and / or metallic impurities and / or by treatment with sodium hypochlorite to obtain a greater amount of oxygen function.
L'invention vise aussi l'utilisation des nanotubes de carbone présentant en surface des groupements sulfonates directement liés aux nanotubes de carbone et les dispersions aqueuses les renfermant pour l'exploitation pétrolière, notamment dans ou en tant que fluides de forage.The invention also relates to the use of carbon nanotubes having on the surface sulfonate groups directly linked to carbon nanotubes and aqueous dispersions enclosing them for oil exploitation, in particular in or as drilling fluids.
Les dispersions selon l'invention, en raison de la présence des nanotubes de carbone présentent une viscosité élevée. En cas d'exposition prolongée à des températures élevées, notamment à des températures supérieures à 3000C, voire supérieure à 4000C, elles ne subissent aucune dégradation chimique, et conservent une viscosité élevée. Elles résistent également très bien aux forces de cisaillement. En outre, elles sont très peu sensibles aux ions métalliques multivalents, notamment bivalents, et résistent bien à l'oxygène et au gaz carbonique, et sont aussi stables en présence de sels. Par conséquent, les dispersions selon l'invention remplacent avantageusement les dispersions renfermant uniquement des polymères comme viscosifiant, ainsi que celles dont les nanotubes sont fonctionnalisés par des groupements hydroxyles ou carboxyliques.The dispersions according to the invention, because of the presence of carbon nanotubes, have a high viscosity. In case of prolonged exposure to high temperatures, especially at temperatures above 300 ° C., or even above 400 ° C., they undergo no chemical degradation and maintain a high viscosity. They are also very resistant to shear forces. In addition, they are very insensitive to multivalent metal ions, especially bivalent, and are resistant to oxygen and carbon dioxide, and are also stable in the presence of salts. Consequently, the dispersions according to the invention advantageously replace dispersions containing only polymers as viscosifiers, as well as those in which the nanotubes are functionalized with hydroxyl or carboxyl groups.
Selon un mode de réalisation, le pourcentage en poids de nanotubes de carbone modifiés en leur surface est compris entre 0,001 et 10%, et par exemple entre 0,001 à 5%. Ensuite, la teneur en eau varie de 40% en poids à 99,999 % en poids, notamment de 60 % à 99,1 %.According to one embodiment, the percentage by weight of carbon nanotubes modified on their surface is between 0.001 and 10%, and for example between 0.001 to 5%. Then, the water content varies from 40% by weight to 99.999% by weight, especially from 60% to 99.1%.
L'invention ne se limite pas à des dispersions aqueuses contenant uniquement de l'eau et des nanotubes de carbone modifiés en surface, mais concerne aussi les dispersions aqueuses, comportant notamment des sels inorganiques et éventuellement un ou plusieurs solvants organiques miscibles avec l'eau, ainsi que des additifs.The invention is not limited to aqueous dispersions containing only water and surface-modified carbon nanotubes, but also relates to aqueous dispersions, including in particular inorganic salts and optionally one or more organic solvents miscible with water as well as additives.
A titre d'exemple de sels inorganiques, on peut utiliser les sels hydrosolubles de potassium, sodium, ammonium, tels que le chlorure de potassium ou d'ammonium, seul ou en mélange.As an example of inorganic salts, it is possible to use water-soluble potassium, sodium or ammonium salts, such as potassium or ammonium chloride, alone or as a mixture.
A titre d'exemple de solvants organiques miscibles à l'eau, on peut utiliser les alcools aliphatiques présentant de 1 à 12 atomes de carbone et en particulier de 1 à 5 atomes de carbone. Avantageusement, les alcools pouvant être utilisés peuvent être choisis parmi le méthanol, l'isopropanol, le propan-2-ol, le propane-l ,2-diol, l'éthylène glycol, le propylène glycol, seul ou en mélange. Les solvants organiques peuvent représenter jusqu'à 10 % en poids de la dispersion, notamment de 0,01 à 4 %. La dispersion peut ne contenir que des nanotubes sulfatés et de l'eau, compte tenu de la propriété auto dispersive des nanotubes sulfatés. Toutefois, la dispersion peut également renfermer comme additif au moins un constituant choisi parmi les fluidifiants, les défloculαnts, les agents anti-mousse, les agents anti-corrosion, les tensioactifs, seul ou en mélange. Ces additifs peuvent représenter de 0,001 % à 30 % en poids de la dispersion, par exemple de 0,01 à 10 %.As examples of water-miscible organic solvents, it is possible to use aliphatic alcohols having from 1 to 12 carbon atoms and in particular from 1 to 5 carbon atoms. Advantageously, the alcohols that can be used can be chosen from methanol, isopropanol, propan-2-ol, propane-1,2-diol, ethylene glycol, propylene glycol, alone or as a mixture. The organic solvents may represent up to 10% by weight of the dispersion, in particular from 0.01 to 4%. The dispersion may contain only sulphated nanotubes and water, given the self-dispersive property of the sulphated nanotubes. However, the dispersion may also contain as additive at least one constituent selected from the fluidifiers, deflocculants, anti-foam agents, anti-corrosion agents, surfactants, alone or in admixture. These additives may represent from 0.001% to 30% by weight of the dispersion, for example from 0.01% to 10%.
L'invention vise aussi un fluide de forage de puits de pétrole, contenant de : > de 0, 001 à 20 % en poids de nanotubes de carbone modifiés à leur surface par des groupements hydrophiles directement liés à la dite surface, ces groupements hydrophiles étant au moins en partie des sulfonotes et, > au moins 40 % en poids d'eau.The invention also relates to an oil well drilling fluid, containing: from 0.001 to 20% by weight of carbon nanotubes modified on their surface by hydrophilic groups directly bonded to said surface, these hydrophilic groups being at least partly sulphonates and> at least 40% by weight of water.
L'invention a trait aussi un procédé de préparation de la dispersion aqueuse décrite ci-dessus qui comprend les étapes suivantes : a) la sulfonation d'au moins une partie des nanotubes de carbone, b) l'éventuelle purification ou broyage des nanotubes sulfatés obtenus à l'étape a), c) l'ajout d'eau, d) l'éventuel ajout d'additifs, la quantité d'eau ajoutée étant telle que la dispersion obtenue à l'issue de l'étape d) contient en poids au moins 40% d'eau et de 0,001 à 20 % de nanotubes de carbone sulfatés.The invention also relates to a process for preparing the aqueous dispersion described above which comprises the following steps: a) the sulfonation of at least a portion of the carbon nanotubes, b) the possible purification or grinding of the sulphated nanotubes obtained in step a), c) the addition of water, d) the possible addition of additives, the amount of added water being such that the dispersion obtained at the end of step d) contains by weight at least 40% of water and 0.001 to 20% of sulphated carbon nanotubes.
L'étape de sulfonation selon l'invention est réalisée par traitement des nanotubes de carbone purifiés ou non, à une température supérieure à la température ambiante (supérieure à 250C) avec, en particulier, un complexe trioxyde de soufre/triéthylphosphate, ou en chauffant, à 250°C, les nanotubes de carbone dans de l'acide sulfurique concentré ou de l'oléum.The sulphonation step according to the invention is carried out by treatment of purified or unpurified carbon nanotubes at a temperature above room temperature (greater than 25 ° C.) with, in particular, a sulfur trioxide / triethylphosphate complex, or by heating, at 250 ° C, the carbon nanotubes in concentrated sulfuric acid or oleum.
L'étape b) éventuelle permet d'éliminer les réactifs n'ayant pas réagi et peut être réalisée par filtration et/ou neutralisation, suivi d'un éventuel lavage.The optional step b) makes it possible to eliminate unreacted reagents and can be carried out by filtration and / or neutralization, followed by a possible washing.
EXEMPLES :EXAMPLES
Procédé de sulfonation des nanotubes de carbone:Process of sulfonation of carbon nanotubes:
Dans un réacteur muni d'une agitation mécanique et d'un barbotage à l'azote contenant 200 cm3 de dichloro 1-2 éthane, on introduit 10 cm3 de trioxyde de soufre liquide.In a reactor equipped with a mechanical stirrer and sparging with nitrogen containing 200 cm 3 of dichloro ethane 1-2 was charged 10 cm3 of liquid sulfur trioxide.
Dans cette solution revenue à température ambiante (le mélange étant légèrement exothermique) sont introduits de 2 g de phosphate de triéthyle, l'homogénéisation et le refroidissement du bain de réaction s'effectuent sous agitation douce pendant 30 min. 2 g de nanotubes de carbone dans du dichloro 1-2 éthane (250 cm3) sont ajoutés sous agitation violente dans la solution acide. L'agitation est maintenue pendant 1 h.In this solution returned to room temperature (the mixture being slightly exothermic) are introduced with 2 g of triethyl phosphate, the homogenization and cooling of the reaction bath are carried out with gentle stirring for 30 min. 2 g of carbon nanotubes in 1-2 dichloroethane (250 cm 3 ) are added with violent stirring in the acid solution. Stirring is maintained for 1 hour.
Le produit est alors filtré, lavé au dichloroéthane, puis placé dans du méthanol. Enfin, le produit à 4O0C est lavé par de la soude 1 N puis au méthanol. Le produit obtenu est séché sous vide à 500C pendant 24 h avant d'être éventuellement finement broyé (environ 50 microns).The product is then filtered, washed with dichloroethane and then placed in methanol. Finally, the product at 40 ° C. is washed with 1N sodium hydroxide and then with methanol. The product obtained is dried under vacuum at 50 ° C. for 24 hours before being optionally finely ground (approximately 50 microns).
L'analyse du produit est faite par spectroscopie infra-rouge.The analysis of the product is made by infra-red spectroscopy.
Préparation de dispersions aqueuses selon l'invention :Preparation of aqueous dispersions according to the invention
Exemple 1 :Example 1
On mélange les différents réactifs suivants :The following reagents are mixed:
> 0,7 % en poids de propan-2-ol > 0,2 % de nanotubes sulfatés> 0.7% by weight of propan-2-ol> 0.2% of sulphated nanotubes
> eau qsp !00%> water qsp! 00%
Exemple 2 :Example 2
On mélange les différents réactifs suivants : > 1% erucic amidopropyl dimethyl betaineThe following reagents are mixed:> 1% erucic amidopropyl dimethyl betaine
> 0,2 % en poids de NaCI> 0.2% by weight of NaCl
. > 0,5 % en poids de propan-2-ol 0,5 %. > 0,5% by weight of propan-2-ol 0,5%
> 2% en poids de nanotubes sulfatés 2%> 2% by weight of sulphated nanotubes 2%
> Eau qsp 100%> Water qs 100%
Les dispersions des exemples 1 et 2 sont utilisées telles quelles à température ambiante ou éventuellement chauffées, dans des puits de pétrole, situés au moins à 3000 mètres. Elles restent stables (sans décomposition des nanotubes de carbone) malgré la température élevée. The dispersions of Examples 1 and 2 are used as they are at room temperature or optionally heated, in oil wells located at least 3000 meters. They remain stable (without decomposition of carbon nanotubes) despite the high temperature.

Claims

]R.eve:n.c3.iogLt:io:rαs] R.eve: n.c3.iogLt: io: rαs
J. Dispersion aqueuse de nanotubes de carbone, caractérisée en ce qu'elle comprend : > de 0, 001 à 20 % en poids de nanotubes de carbone modifiés à leur surface par des groupements hydrophiles directement liés à la dite surface, ces groupements hydrophiles étant au moins en partie des sulfonates et, > au moins 40 % en poids d'eau.J. An aqueous dispersion of carbon nanotubes, characterized in that it comprises: from 0.001 to 20% by weight of carbon nanotubes modified on their surface by hydrophilic groups directly linked to said surface, these hydrophilic groups being at least partly sulphonates and> at least 40% by weight of water.
2. Dispersion aqueuse selon Ia revendication 1 , caractérisée en ce qu'elle comprend de 0,001 à 10 % en poids de nanotubes de carbone modifiés en surface.2. An aqueous dispersion according to claim 1, characterized in that it comprises from 0.001 to 10% by weight of surface-modified carbon nanotubes.
3. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend de 0,001 à 5% en poids de nanotubes de carbone modifiés en surface.3. Aqueous dispersion according to any one of the preceding claims, characterized in that it comprises from 0.001 to 5% by weight of surface-modified carbon nanotubes.
4. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce que tous les groupements hydrophiles directement présents à la surface des nanotubes de carbone sont des sulfonates.4. An aqueous dispersion according to any one of the preceding claims, characterized in that all the hydrophilic groups directly present on the surface of the carbon nanotubes are sulfonates.
5. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce que les nanotubes sont des nanotubes multiparois.5. An aqueous dispersion according to any one of the preceding claims, characterized in that the nanotubes are multiwall nanotubes.
6. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce que les nanotubes sont préparés par dépôt chimique en phase vapeur.6. Aqueous dispersion according to any one of the preceding claims, characterized in that the nanotubes are prepared by chemical vapor deposition.
7. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle renferme au moins un additif choisi parmi les fluidifiants, les défloculants, les agents anti-mousse, les agents anti- corrosion, les tensioactifs ou leur mélange.7. Aqueous dispersion according to any one of the preceding claims, characterized in that it contains at least one additive selected from the fluidifiers, deflocculants, anti-foaming agents, anti-corrosion agents, surfactants or their mixture.
8. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend au moins 60 % à 99, 1 % d'eau. 8. aqueous dispersion according to any one of the preceding claims, characterized in that it comprises at least 60% to 99.1% water.
9. Dispersion aqueuse selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle contient au moins un solvant organique miscible à l'eau.9. An aqueous dispersion according to any one of the preceding claims, characterized in that it contains at least one organic solvent miscible with water.
10. Procédé de sulfonation de nanotubes de carbone tels que mis en oeuvre dans la J dispersion aqueuse selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à traiter les nanotubes de carbone en présence du complexe trioxyde de soufre/triéthylphosphate.10. Process for the sulfonation of carbon nanotubes as implemented in the aqueous dispersion according to one of the preceding claims, characterized in that it consists in treating the carbon nanotubes in the presence of sulfur trioxide / triethylphosphate complex.
7 1. Nanotubes de carbone susceptibles d'être obtenus selon le procédé tel que défini à io la revendication 10.1. Carbon nanotubes obtainable by the process as defined in claim 10.
12. Utilisation des dispersions selon l'une quelconque des revendications 1 à 9 pour l'exploitation pétrolière, notamment en tant que fluide de forage.12. Use of dispersions according to any one of claims 1 to 9 for oil exploitation, especially as a drilling fluid.
15 13. Utilisation de nanotubes de carbone présentant en surface des groupements sulfonates liés directement aux NTC pour l'exploitation pétrolière notamment dans des fluides de forage.13. Use of carbon nanotubes having on the surface sulfonate groups directly attached to CNTs for oil exploitation, particularly in drilling fluids.
14. Fluide de forage de puits de pétrole contenant14. Oil well drilling fluid containing
20 > de 0, 001 à 20 % en poids de nanotubes de carbone modifiés à leur surface par des groupements hydrophiles directement liés à la dite surface, ces groupements hydrophiles étant au moins en partie des sulfonates et, > au moins 40 % en poids d'eau.From 0.01 to 20% by weight of carbon nanotubes modified at their surface by hydrophilic groups directly linked to said surface, these hydrophilic groups being at least partly sulfonates and> at least 40% by weight of 'water.
5 15. Procédé de fabrication d'une dispersion aqueuse conforme à l'une des revendications 1 à 9 comprenant les étapes suivantes : a. la sulfonation des nanotubes de carbone, b. une éventuelle purification ou broyage des nanotubes sulfatés obtenus à l'étape a), 0 c. l'ajout d'eau, d. l'ajout éventuel d'additifs.15. The process for producing an aqueous dispersion according to any one of claims 1 to 9 comprising the following steps: a. sulfonation of carbon nanotubes, b. a possible purification or grinding of the sulphated nanotubes obtained in step a), 0 c. the addition of water, d. the possible addition of additives.
16. Procédé de fabrication d'une dispersion aqueuse selon la revendication 15, caractérisée en ce que l'étape de sulfonation des nanotubes consiste à traiter les 5 nanotubes de carbone en présence du complexe trioxyde de soufre/triéthylphosphate. 16. A process for producing an aqueous dispersion according to claim 15, characterized in that the step of sulfonating the nanotubes consists in treating the carbon nanotubes in the presence of the sulfur trioxide / triethylphosphate complex.
PCT/FR2007/050756 2006-02-13 2007-02-06 Aqueous dispersions comprising carbon nanotubes, method for preparing and using same WO2007093725A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0601237 2006-02-13
FR0601237A FR2897361A1 (en) 2006-02-13 2006-02-13 Aqueous dispersion of carbon nanotubes useful as drilling fluid for oil exploitation, comprises carbon nanotubes modified on their surface by hydrophilic groups such as sulfonates directly bound to their surface
US78690406P 2006-03-29 2006-03-29
US60/786,904 2006-03-29

Publications (2)

Publication Number Publication Date
WO2007093725A2 true WO2007093725A2 (en) 2007-08-23
WO2007093725A3 WO2007093725A3 (en) 2007-10-04

Family

ID=38290165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/050756 WO2007093725A2 (en) 2006-02-13 2007-02-06 Aqueous dispersions comprising carbon nanotubes, method for preparing and using same

Country Status (1)

Country Link
WO (1) WO2007093725A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538141A (en) * 2007-09-07 2010-12-09 アルケマ フランス Drilling fluid containing carbon nanotubes
WO2011159744A1 (en) * 2010-06-16 2011-12-22 Saudi Arbian Oil Company Drilling, drill-in and comletion fluids containing nanoparticle for use oil and gas field application and methods related thereto
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
WO2020214374A1 (en) * 2019-04-17 2020-10-22 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11370951B2 (en) 2019-04-17 2022-06-28 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11370706B2 (en) 2019-07-26 2022-06-28 Saudi Arabian Oil Company Cement slurries, cured cement and methods of making and use thereof
US11377944B2 (en) 2019-04-17 2022-07-05 Saudi Arabian Oil Company Methods of suspending proppants in hydraulic fracturing fluid
US11767466B2 (en) 2019-04-17 2023-09-26 Saudi Arabian Oil Company Nanocomposite coated proppants and methods of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331737A (en) * 2003-05-02 2004-11-25 Inr Kenkyusho:Kk Fluid for working

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200479 Derwent Publications Ltd., London, GB; AN 2004-802127 XP002411611 -& JP 2004 331737 A (INR KENKYUSHO KK) 25 novembre 2004 (2004-11-25) *
HUDSON J L ET AL: "Water soluble exfoliated nonroping single wall carbon nanotubes" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 126, 19 août 2004 (2004-08-19), pages 11158-11159, XP002380636 ISSN: 0002-7863 *
KINLOCH I A ET AL: "A rheological study of concentrated aqueous nanotube dispersions" POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 43, no. 26, décembre 2002 (2002-12), pages 7483-7491, XP004393265 ISSN: 0032-3861 *
PENG ET AL: "Sulfonated carbon nanotubes as a strong protonic acid catalyst" CARBON, vol. 43, no. 11, septembre 2005 (2005-09), pages 2405-2408, XP005000953 ISSN: 0008-6223 *
SHAFFER M S P ET AL: "Dispersion and packing of carbon nanotubes" CARBON, ELSEVIER, OXFORD, GB, vol. 36, no. 11, 1998, pages 1603-1612, XP002206259 ISSN: 0008-6223 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538141A (en) * 2007-09-07 2010-12-09 アルケマ フランス Drilling fluid containing carbon nanotubes
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
WO2011159744A1 (en) * 2010-06-16 2011-12-22 Saudi Arbian Oil Company Drilling, drill-in and comletion fluids containing nanoparticle for use oil and gas field application and methods related thereto
US8835363B2 (en) 2010-06-16 2014-09-16 Saudi Arabian Oil Company Drilling, drill-in and completion fluids containing nanoparticles for use in oil and gas field applications and methods related thereto
WO2020214374A1 (en) * 2019-04-17 2020-10-22 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11261363B2 (en) 2019-04-17 2022-03-01 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11370951B2 (en) 2019-04-17 2022-06-28 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11377944B2 (en) 2019-04-17 2022-07-05 Saudi Arabian Oil Company Methods of suspending proppants in hydraulic fracturing fluid
US11767466B2 (en) 2019-04-17 2023-09-26 Saudi Arabian Oil Company Nanocomposite coated proppants and methods of making same
US11370706B2 (en) 2019-07-26 2022-06-28 Saudi Arabian Oil Company Cement slurries, cured cement and methods of making and use thereof

Also Published As

Publication number Publication date
WO2007093725A3 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2007093725A2 (en) Aqueous dispersions comprising carbon nanotubes, method for preparing and using same
CA2143926C (en) Waterborne fluid and process using hydrophobically modified cellulosic derivatives as filtrate reducing agents
US10920063B2 (en) Polymer gel with nanocomposite crosslinker
CA2698226C (en) Drilling fluid containing carbon nanotubes
US8575075B2 (en) Oil-field viscosity breaker method utilizing a peracid
EP0722036A1 (en) Method and aqueous fluid using hydrophobically modified guar guns as fluid loss reducers
WO2014167056A1 (en) Fracturing fluids based on associative polymers and on labile surfactants
EP2265688A1 (en) Viscoelastic composition with improved stability
FR2988730A1 (en) NOVEL AQUEOUS FRACTURING FLUID COMPOSITION AND FRACTURING METHOD USING THE FLUID
CN103113486B (en) Sulfonic acid modified Carboxymethyl hydroxypropyl guar and its preparation method and application
FR2504544A1 (en) COMPOSITION WHICH CAN BE IMPARTED TO AQUEOUS SYSTEMS, A COMBINATION OF PSEUDOPLASTICITY AND FLUID LOSS CONTROL, AND METHOD OF USE
EP3331963B1 (en) Mixed dimers from alpha-olefin sulfonic acids
CA2863209C (en) Novel agent for inhibiting the swelling of clays, compositions comprising said agent and methods implementing said agent
FR2504545A1 (en) COMPOSITION CAPABLE OF IMPORTING A COMBINATION OF PSEUDOPLASTICITY AND CONTROL OF FLUID LOSS TO AQUEOUS SYSTEMS AND METHOD OF USE
FR2578549A1 (en) LIQUID COMPOSITIONS CONTAINING A POLYMER FOR THE THICKENING OF AQUEOUS MEDIA
WO2017089724A1 (en) Composition for limiting the formation and/or agglomeration of gas hydrates
CN107709510A (en) Phosphonic acids esterification polysaccharide and gel with and preparation method thereof
US20060131536A1 (en) Methods and compositions for thermal insulation
FR2687161A1 (en) COMPOSITIONS BASED ON SCLEROGLUCANE AND THEIR USE AS CEMENTING PAD.
CN106566514B (en) A kind of alkali-free binary combination flooding composition and its application in high temperature and high salt oil deposit
CN114773220B (en) Rigid double-tail surfactant, preparation method thereof and clean fracturing fluid
FR2897361A1 (en) Aqueous dispersion of carbon nanotubes useful as drilling fluid for oil exploitation, comprises carbon nanotubes modified on their surface by hydrophilic groups such as sulfonates directly bound to their surface
EP2984147A1 (en) Extraction fluids based on associative polymers and on labile surfactants
Ye et al. Study on the rheological behavior of the hydrophobically modified hydroxyethyl cellulose with 1, 2‐epoxyhexadecane
JP4841825B2 (en) Polyaniline / β-1,3-glucan complex

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07731582

Country of ref document: EP

Kind code of ref document: A2