WO2007077896A1 - カプセル型医療装置誘導システム及びその制御方法 - Google Patents

カプセル型医療装置誘導システム及びその制御方法 Download PDF

Info

Publication number
WO2007077896A1
WO2007077896A1 PCT/JP2006/326146 JP2006326146W WO2007077896A1 WO 2007077896 A1 WO2007077896 A1 WO 2007077896A1 JP 2006326146 W JP2006326146 W JP 2006326146W WO 2007077896 A1 WO2007077896 A1 WO 2007077896A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
medical device
capsule medical
output signal
capsule
Prior art date
Application number
PCT/JP2006/326146
Other languages
English (en)
French (fr)
Inventor
Akio Uchiyama
Atsushi Kimura
Isao Aoki
Original Assignee
Olympus Medical Systems Corp.
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp., Olympus Corporation filed Critical Olympus Medical Systems Corp.
Priority to CN2006800496316A priority Critical patent/CN101351143B/zh
Priority to EP06843528A priority patent/EP1972253A4/en
Priority to JP2007552971A priority patent/JP4891924B2/ja
Publication of WO2007077896A1 publication Critical patent/WO2007077896A1/ja
Priority to US12/147,262 priority patent/US20080306340A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery

Definitions

  • the present invention relates to a guidance system for a capsule medical device that is inserted into a body cavity and obtains in-vivo information, and a control method thereof.
  • a medical device guidance system that can be magnetically guided as disclosed in JP-A-2004-255174.
  • a medical device guidance system is inserted into a body cavity, and a capsule body with a spiral projection on the outer peripheral surface contains a magnet magnetized in a direction perpendicular to the longitudinal direction, and operation instructions are given.
  • the traveling direction of the capsule body can be smoothly changed by the magnetic field generated by the magnetic field control device and the rotating magnetic field generation device based on the above. By freely changing the advancing direction of the capsule body, it is possible to change the direction of the capsule body during imaging and image a desired part.
  • a first capsule medical device guidance system includes an in-vivo information acquisition unit that acquires in-vivo information, a communication unit that outputs the acquired in-vivo information as an output signal, a magnet, In synchronism with the output signal sent from the communication unit, a magnetic field generation unit that generates a magnetic field for acting on the magnet and moving the capsule medical device in a target direction. And a control unit for controlling the magnetic field generation unit.
  • the second capsule medical device guidance system is a capsule type that includes an in-vivo information acquisition unit that acquires in-vivo information, a communication unit that outputs the acquired in-vivo information as an output signal, and a magnet.
  • a medical device a position detection unit that detects a position of the capsule medical device; and a magnetic field generation unit that generates a magnetic field to act on the magnet and move the capsule medical device in a target direction.
  • the control unit controls the magnetic field generation unit in synchronization with the output signal, and the position detection unit detects the position of the capsule medical device in synchronization with the output signal.
  • a third capsule medical device guidance system includes an in-vivo information acquisition unit that acquires in-vivo information, a communication unit that outputs the acquired in-vivo information as an output signal at regular intervals, and a magnet.
  • a capsule medical device a position detection unit that detects a position of the capsule medical device, a magnetic field generation unit that generates a magnetic field that acts on the magnet and moves the capsule medical device in a target direction.
  • a control unit that controls the magnetic field generation unit in synchronization with the output signal, and the control unit detects the capsule detected by the position detection unit when the output signal is transmitted.
  • Information on the position and orientation of the medical device is received, the direction and magnitude of the magnetic field generated from the magnetic field generator is calculated based on the information, and the output signal is not transmitted. Sometimes it is controlled so as to generate a magnetic field from the magnetic field generator.
  • the fourth capsule medical device guidance system includes a body information acquisition unit that acquires in-vivo information, a communication unit that outputs the acquired in-vivo information as an output signal, and a magnet.
  • a medical device a first magnetic field generator that generates a magnetic field for acting on the magnet and moving the capsule medical device in a target direction, and a force applied to the magnet to be applied to the capsule medical device.
  • a second magnetic field generation unit that generates a magnetic field for reducing the gravitational force, and a control unit that controls the first and second magnetic field generation units in synchronization with the output signal.
  • the fifth capsule medical device guidance system is a capsule type including an in-vivo information acquiring unit that acquires in-vivo information, a communication unit that outputs the acquired in-vivo information as an output signal, and a magnet. Acting on a medical device and the magnet, and acting on a magnetic field and the magnet for moving the capsule medical device in a target direction, the capsule medical device A magnetic field generation unit that generates a magnetic field combined with a magnetic field for reducing gravity applied to the control unit, and a control unit that controls the magnetic field generation unit in synchronization with the output signal.
  • the control method of the capsule medical device guidance system is configured to observe the inside of the body cavity while moving the body cavity in a target direction by a magnetic field applied to a magnet provided in the capsule type medical device.
  • a control method for a system for guiding a capsule medical device wherein the internal information acquired by the capsule medical device in the body cavity is transmitted as an output signal to the outside in synchronization with the output signal to be transmitted.
  • the generation of the magnetic field is stopped during a period in which the output signal is transmitted.
  • the control method of the capsule medical device guidance system is configured to move in a target direction in a body cavity based on a detected position by a magnetic field applied to a magnet provided in the capsule medical device.
  • a system control method for guiding a capsule medical device for observing the inside of a body cavity is configured to move in a target direction in a body cavity based on a detected position by a magnetic field applied to a magnet provided in the capsule medical device.
  • the control method of the capsule medical device guidance system includes a target direction in a body cavity based on a position and posture detected by a magnetic field applied to a magnet provided in the capsule medical device.
  • a method of controlling a system for guiding a capsule medical device that observes the inside of a body cavity while being moved to a position, and when the output signal is transmitted, information on the position and posture of the detected capsule medical device The control method is to calculate the direction and magnitude of the magnetic field to be generated based on the calculation result and to generate the magnetic field based on the calculation result when the output signal is not transmitted.
  • the control method of the capsule medical device guidance system includes a target direction in a body cavity based on a position and posture detected by a magnetic field applied to a magnet provided in the capsule medical device.
  • a method for controlling a capsule medical device guidance system is directed to a target direction in a body cavity based on a position and posture detected by a magnetic field applied to a magnet provided in the capsule medical device.
  • FIG. 1 is a diagram showing a configuration of a capsule medical device guidance system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the first capsule endoscope in the present embodiment.
  • FIG. 3 is a diagram showing a cross-sectional configuration of a second capsule endoscope in the present embodiment.
  • FIG. 4 is a diagram showing a cross-sectional configuration of a third capsule endoscope in the present embodiment.
  • FIG. 5 is a diagram showing a cross-sectional configuration of a fourth capsule endoscope in the present embodiment.
  • FIG. 6 is a diagram showing a cross-sectional configuration of a fifth capsule endoscope in the present embodiment.
  • FIG. 7 is a diagram showing an example of a magnetic field viewed from the Y-axis direction with respect to guidance with respect to the first capsule endoscope.
  • FIG. 8 is a timing chart for explaining a first control method of the capsule medical device guidance system.
  • FIG. 9 is a timing chart for explaining a second control method of the capsule medical device guidance system.
  • FIG. 10 is a diagram showing an example of a magnetic field viewed from the Y-axis direction regarding guidance for explaining a third control method of the capsule medical device guidance system.
  • FIG. 11 is a diagram for explaining posture control in consideration of gravity in the capsule endoscope.
  • FIG. 12 is a diagram for explaining posture control in consideration of buoyancy in a capsule endoscope.
  • FIG. 1 A capsule medical device guidance system according to an embodiment of the present invention shown in FIG. 1 will be described.
  • This capsule medical device guidance system is roughly divided into a capsule medical device 21 shown in FIGS. 2 to 6 and a magnetic guidance device 1 that generates a magnetic field for guiding a capsule endoscope.
  • a capsule endoscope 21 will be described as an example.
  • the magnetic induction device 1 mainly includes an induction coil group (Xl, X2, Yl, Y2, Zl, ⁇ 2, Dl, D2, D3, D4, D5, D6, D7, D8) and an induction coil power supply 2
  • a guidance control device 3 a controller 4, a sense coil unit 5 (5a to 5i), a position detection device 6, a reception antenna unit 7 (7a, 7b, 7c), an antenna selector 8, and a reception
  • a device 9 a display device 10, a drive coil 11, and a drive coil drive unit 12 are configured.
  • the 14 induction coil groups XI, X2, Yl, Z2, Zl, ⁇ 2, and D1 to D8 each have an air-core electromagnet and form an induction magnetic field generation unit.
  • the induction coils are arranged on each surface of the rectangular parallelepiped.
  • the direction in which the capsule endoscope 21 moves forward and backward is the X-axis direction, and is orthogonal to the X-axis direction horizontally.
  • the direction is the vertical axis direction
  • the vertical direction (gravity direction) perpendicular to the X-axis direction is the vertical axis direction.
  • induction coils XI and ⁇ 2 face each other, and are arranged around the front and rear surfaces that form magnetic lines of force in the X-axis direction and are perpendicular to the X-axis direction.
  • induction coil XI side is the front and induction coil ⁇ 2 side is the rear. Also, moving from induction coil ⁇ 2 toward induction coil XI is defined as a forward movement, and vice versa.
  • the induction coils Yl and ⁇ ⁇ 2 face each other, form magnetic lines of force in the axial direction, and are respectively arranged around both side surfaces that are perpendicular to the axial direction.
  • Two induction coils D3 and D7 are arranged on one side of these two sides so that the surface is divided into two inside the induction coil Y1, and on the other opposite side, the surface is placed inside the induction coil ⁇ 2. 2 induction coils D1 to divide into 2 , D5 is placed.
  • the induction coils Zl and l2 face each other, form magnetic lines of force in the radial direction, and are respectively disposed around the upper and lower surfaces with respect to the radial direction.
  • two induction coils D4 and D8 are arranged so that the surface is divided into two inside the induction coil Z1 on the upper surface, and the surface is divided into two inside the induction coil ⁇ 2 on the opposite lower surface 2
  • Two induction coils D2 and D6 are arranged.
  • the induction coil Z1 side is the upper side and the induction coil ⁇ 2 side is the lower side.
  • moving from induction coil ⁇ 2 toward induction coil Z1 is considered as rising, and vice versa.
  • the alternating magnetic field formed by the drive coil 11 acts on the magnetic induction coil 31 to generate an induced current, and a magnetic field is generated from the magnetic induction coil.
  • This alternating magnetic field includes one or more frequency components in the vicinity of the resonance frequency formed by a coil (magnetic induction coil 31) (described later) provided in the capsule endoscope 21 and a capacitor 33.
  • the generated induced magnetic field is detected by a plurality of sense coils 5 a to 5 i, a signal including position information is generated, and transmitted to the position detection device 6. Based on this signal, the position detection device calculates position and orientation information in the capsule endoscope 21. This position and orientation information is sent to the guidance control device 3 and used for calculation to obtain the magnetic field to be generated by the induction coil group.
  • the induction coil groups XI, X2, Yl, ⁇ 2, Zl, ⁇ 2, and D1 to D8 generate a magnetic gradient (first magnetic gradient) acting on the magnet in the capsule endoscope 21 and move forward.
  • This is a first magnetic gradient generating means that pulls in a desired direction by moving backward, up and down and moving left and right.
  • the induction coil Z1 has a force to lower the capsule endoscope 21 that works by gravity.
  • a magnetic gradient (second magnetic gradient) acting on the magnet in the capsule endoscope 21 is generated so as to cancel, and the influence of gravity is eliminated.
  • the induction coil D4, D8 can also generate the same action as the induction coil Z1.
  • This induction coil Z1 is a second magnetic gradient generating means that eliminates the influence of gravity acting when moving in the desired direction.
  • the induction coil Z2 is connected to the capsule endoscope 21 by the induction coil group described above.
  • the induction coil D2 and D6 can generate the same action as the induction coil Z1.
  • the induction coils XI and X2, Y1 and Y2, Z1 and ⁇ 2 that are arranged to face each other are generated when a magnetic field is generated in the same direction in the space surrounded by these induction coils. Form a uniform magnetic field, and if they are generated in opposite directions, a gradient magnetic field can be formed. Further, the coils D1 to D8 can be similarly driven appropriately to form a highly uniform magnetic field, a gradient magnetic field, or the like. Therefore, by individually controlling these 14 induction coils, it is possible to generate a magnetic field having a desired magnetic field strength and a desired magnetic gradient at a desired spatial position.
  • the induction coil group XI, X2, Yl, Y2, Zl, Z2 By tilting the capsule endoscope 21 by a combination of Dl to D8, for example, by generating a magnetic field so that the front end side is upward and the rear end side is downward, and taking an oblique posture rising forward Monkey.
  • induction coils are connected to an induction coil power source 2 that is driven individually.
  • the induction coil power source 2 is controlled by a command from the induction control device 3 and appropriately energizes the induction coil required for forming the magnetic field to generate a desired magnetic field in a desired space.
  • the position detection system for detecting the position information (spatial position) of the capsule endoscope 21 applies an induction magnetic field to the coil provided in the capsule endoscope 21.
  • Drive coil 11 that forms a magnetic field for generating
  • sense coil group 5 for detecting the induced magnetic field generated by the capsule endoscope 21, and signal force based on the induced magnetic field obtained by the sense coil group 5
  • a position detection device 6 that generates position information of the endoscope 21 (a position in the three-dimensional space and a direction of the capsule endoscope), and a drive coil drive unit 12 that drives the drive coil 11 according to an instruction from the position detection device 6 Constitute.
  • the nine sense amplifiers 5a to 5i constituting the sense coil group 5 are provided with the induction coil Y1 so that the accurate position and posture of the capsule endoscope 21 are required. Are arranged so as to be parallel and uniform in the plane.
  • a pair of sense coil groups 5 and a drive coil 11 arranged opposite to each other are provided to detect the position with respect to the Z axis in order to detect the position and orientation three-dimensionally.
  • the position detection device 6 is instructed by the guidance control device 3 to detect position information, and drives the drive coil drive unit 12 based on the instruction.
  • the drive coil drive unit 12 supplies an alternating current to the drive coil 11 to form a magnetic field, and generates an induced magnetic field from the capsule endoscope 21 in the magnetic field.
  • Each sense coil of the sense coil group 5 detects a signal based on the induced magnetic field generated by the capsule endoscope 21 and outputs the signal to the position detection device 6.
  • the position detection device 6 generates position and orientation information of the capsule endoscope 21 from a signal based on the guidance magnetic field and outputs the information to the guidance control device 3.
  • the guidance control device 3 determines a desired moving direction in consideration of the position and posture information of the capsule endoscope 21 by the position detection device 3, and generates a magnetic field suitable for the movement 2 To instruct.
  • the induction coil power supply 2 supplies current to the induction coil groups XI, X2, Yl, ⁇ 2, Zl, ⁇ 2, and D1 to D8 in accordance with the instructions of the induction control device 3. Thereby, a magnetic field suitable for the movement is generated by the induction coil group, and the capsule endoscope 21 can be guided smoothly.
  • the controller 4 is an input operation unit operated by an operator, for example, an input device that instructs the traveling direction and tilt of the capsule endoscope 21 by tilting a joystick in an arbitrary direction.
  • an input device that instructs the traveling direction and tilt of the capsule endoscope 21 by tilting a joystick in an arbitrary direction.
  • various members such as buttons, touch panels, and line-of-sight input devices arranged so as to be able to instruct the traveling direction in all directions can be applied as the input operation unit of the controller 4.
  • the guidance control device 3 receives the instruction signal from the controller 4, the position and orientation information from the position detection device 6, and the signals related to the respective driving states of the induction coil from the reception device 9, and receives the capsule endoscope 21. To calculate the magnetic force (magnetic field) to move to the desired position, and to generate the magnetic force, each induction coil XI, X2, Yl, ⁇ 2, Zl, ⁇ 2, and the magnetic force borne by D1 to D8 And sends a command to each induction coil power supply. [0034] In addition, the guidance control device 3 performs a treatment to stop the generation of the magnetic field during the communication period in which the image data captured by the capsule endoscope 21 is transmitted to the reception device 9. At the same time, based on an instruction from the guidance control device, the position detection device 6 drives the drive coil 11 to acquire position information from the sense coil group 5 during the communication period.
  • the three receiving antennas 7 are connected to a receiving device via an antenna selector 8 that performs a selection operation.
  • These receiving antennas 7 include a receiving antenna 7a (AX) that receives communication data (in-vivo information including image data) in the X-axis direction, and a receiving antenna 7b (AY) that receives in-vivo information from the Y-axis direction.
  • the receiving antenna 7c (AZ) that receives in-vivo information from the Z-axis direction can detect the in-vivo information in the three-axis direction.
  • the antenna selector 8 selects the antennas 7a, 7b, and 7c used for communication. This antenna selector 8 receives the antennas that are least affected by the magnetic field in response to the intensity of the magnetic field, the direction, and the amount of magnetic field gradient generated by the induction coil group at each receiving antenna position. Identify and select its receive antenna. By selecting the receiving antenna 7, communication between the capsule endoscope 21 and the receiving device 9 can be stabilized.
  • the receiving device 9 transmits timing for receiving in-vivo information from the capsule endoscope 21 to the guidance control device 3.
  • the induction control device 3 stops the generation of the induction magnetic field by the induction coil group and the drive coil 11 during the communication period in which the in-vivo information (image data) is communicated.
  • the in-vivo information can be received from the capsule endoscope 21 by the receiving device without being affected by the induced magnetic field.
  • the communication period does not overlap with the movement and position detection period, so that it is possible to eliminate the influence of the induced magnetic field on the in-vivo information and the influence of the induced magnetic field on the receiving antenna.
  • this stop treatment is performed when the strength of the magnetic field generated near the capsule endoscope 21 and the amount of magnetic field inclination are large, or when the strength of the magnetic field generated near the receiving antenna 7 is increased. This is useful in that it can eliminate the influence of the point and the induction magnetic field on the receiving antenna without affecting the image data. Further, even when the magnetic field intensity generated from the induction coil is high, the position detection device 6 can be operated normally.
  • the display device 10 is, for example, a liquid crystal display or the like, and is generated by the receiving device 9.
  • the image captured by the capsule endoscope 21 is displayed on the screen.
  • data relating to the displayed image for example, a shooting situation may be displayed on the display screen together with the image.
  • FIG. 2 shows a cross-sectional configuration of the first capsule endoscope in the present embodiment.
  • the capsule container 23 of the first capsule endoscope 21 includes a transparent hemispherical tip container 23a disposed on the front end side, and a rear cylindrical container having a right cylindrical shape that transmits infrared rays and a hemispherical rear end. 23b.
  • the capsule container 23 houses a capsule endoscope main body, which will be described later, and is sealed with a watertight structure.
  • the propelling direction of the capsule endoscope 21 is, for example, the cylindrical axis direction indicated by C in FIG.
  • the capsule endoscope body is broadly divided into an imaging unit that images the inner wall surface of the body cavity of the subject, a power supply unit that drives the imaging unit, and an induction magnetic field generation that generates an induction magnetic field by the drive coil 11 described above. , A driving magnet for driving the capsule endoscope 21 and a transmitting unit for transmitting in-vivo information including captured image data to the receiving antenna 7.
  • a photographing optical system 26 having a fixed focus lens, an imaging element 25 having a CMOS or CCD equal force mounted on the imaging-side substrate 24a, and the vicinity of the photographing optical system 26 are provided.
  • the imaging side substrate 24a, the power source side substrate 24b, and the front battery substrate 43a are sealed and fixed integrally as an adhesive fixing portion 29 with an adhesive.
  • a small battery 32 having a button battery power a pair of battery substrates 43 (43a, 43b) provided with power terminals (not shown) for taking out power from the small battery 32, and the small battery 32 are provided.
  • the heat shrink tube 34 that is fixed so as to be sandwiched between battery substrates, the power supply side substrate 24b to which the circuit wiring is electrically connected by the circuit wiring of the imaging side substrate 24a and the flexible substrate, etc., and the power supply side substrate 24b And a power supply circuit 28 to which the power of the small battery 32 is supplied.
  • a magnetic body 30 provided on the outer periphery of the adhesive fixing part 29, an induction coil 31 provided via the magnetic body 30 and a battery substrate on the front end side are provided for induction.
  • a coil 31 and a capacitor 33 constituting a CL resonance circuit are provided.
  • the induction coil 31 is formed in a ring shape having a maximum outer shape slightly smaller than the inner diameter of the capsule container 23.
  • the magnetic body 30 has a role of converging an external magnetic field in the induction coil 31.
  • the magnetic body 30 is preferably made of a material having a high saturation magnetic flux density and high magnetic permeability, such as an amorphous magnetic body and fine med (Hitachi Metals).
  • a material shaped into a thin film it is possible to reduce the volume of the magnetic material when it is placed in the capsule endoscope.
  • a disk-shaped drive magnet 42 is disposed on the rear battery substrate 43b.
  • the material of the magnet 42 is a force suitable for neodymium cobalt or the like, but is not limited to this.
  • the magnet 42 has an N pole magnetized upward and an S pole magnetized downward so that the direction of the magnetic field line is along the Z-axis direction.
  • a transmission unit As a transmission unit, a communication circuit 36 mounted on the back surface side (magnet 42 side) of the transmission substrate 40, an antenna 37 disposed on the front surface side (rear end container 23b), and exposed communication A shield part 35 that covers the circuit 36 and shields the magnetic force of the magnet 42, and an optical switch 38 that is mounted on the transmitting board 40 on the side where the antenna 37 is provided and that turns on / off the capsule endoscope drive is provided. Yes.
  • the magnetization direction of the magnet 42 and the direction of the antenna 37 connected to the transmission circuit 36 are arranged by changing the angle by 90 degrees. This is because the condition that the magnetic field generated from the magnet 42 is incident 90 degrees from the direction of the antenna 37 is satisfied. As a result, the influence of the magnetic field from the magnet 42 on the antenna 37 is minimized.
  • the shield part 35 is made of a magnetic material as a material, and has an effect of attracting a magnetic field in the vicinity of the antenna 37. Therefore, the intensity of the magnetic field incident on the antenna 37 can be reduced, the influence of the magnetic field on the wireless communication between the transmission circuit 36 and the antenna 37 can be suppressed low, and stable wireless communication is realized.
  • the optical switch 38 is sensitive to infrared rays and the like.
  • the rear end container 23b of the capsule container 23 is made of a material that transmits infrared rays (at a wavelength at which the optical switch is sensitive) at least in the vicinity of the optical switch.
  • the optical switch 38 when the infrared light emitting device power is also irradiated with infrared rays, the optical switch 38 is turned on, energized and activated from the small battery 32 via the power supply circuit, and imaging processing and transmission processing are started.
  • the optical switch 38 is configured to perform a toggle operation, and once the infrared ray is irradiated, the capsule endoscope is kept in the on state. In addition, it is possible to add a configuration that turns off when infrared rays are irradiated in the on state.
  • the shield circuit 35 covers the communication circuit 36, the influence of the strong magnetic field in the magnet 42 on the transmission circuit and the radio circuit (for example, noise is superimposed or the communicable distance is shortened) is kept low. be able to. As a result, clear image data with less noise can be transmitted to the receiving device 9.
  • FIG. 3 shows a cross-sectional configuration of the second capsule endoscope in the present embodiment.
  • the second capsule endoscope is provided with a spiral portion 25 in which a wire having a circular cross section is spirally wound on the outer periphery of the capsule container 23 with respect to the first capsule endoscope described above.
  • the other components are the same as those of the first capsule endoscope, and the same reference numerals are assigned and description thereof is omitted.
  • a rotating magnetic field for the second capsule endoscope is formed from the induction coil power supply 2 to the induction coil group, and the second capsule endoscope 21 is placed on the axis C shown in FIG. Rotate in the R direction.
  • the second capsule endoscope 21 moves forward or backward along the axis C direction according to the direction in which the spiral portion 25 rotates.
  • the second capsule endoscope 21 can be rotated in a tilted position by controlling the induction coil group, it is possible to move forward or backward in the tilting direction. it can.
  • the second capsule endoscope configured as described above can obtain the same function and effect as those obtained by the first capsule endoscope described above.
  • FIG. 4 shows a cross-sectional configuration of the third capsule endoscope in the present embodiment.
  • the third capsule endoscope has a configuration in which the arrangement of the magnet 42 and the induction coil 31 in the configuration of the first capsule endoscope described above is interchanged.
  • the other components are the first This is the same as the capsule endoscope of FIG.
  • FIG. 4 shows a configuration example in which induction coils 52 and 53 are arranged in the Z-axis direction and the Y-axis direction, respectively. Also, in the vicinity of these induction coils 52 and 53, capacitors 54 and 55 are arranged to connect to both ends of each coil to form an LC resonance circuit, and are adjusted to have different resonance frequencies. Has been.
  • the intersecting induction coils 52 and 53 generate an induction magnetic field by the magnetic field formed by the drive coil 11.
  • the induction coils 52 and 53 are both perpendicular to the axis C and oriented in different directions, the direction of the axis C (ie, the direction of the induction coil at each resonance frequency (that is, The capsule endoscope propulsion direction) can be detected.
  • the magnet 51 is arranged with the magnetic poles (N pole forward and S pole backward) along the cylindrical axis (axis C direction) of the capsule endoscope.
  • a ring-shaped or bar-shaped magnet is arranged in a barrel shape, and is formed on the outer periphery of the adhesive fixing portion 29. Is provided.
  • the third capsule endoscope configured as described above can obtain the same function and effect as those obtained by the first capsule endoscope described above.
  • FIG. 5 shows a cross-sectional configuration of the fourth capsule endoscope in the present embodiment.
  • the fourth capsule endoscope is configured such that the magnet 42, the transmission circuit 36, and the antenna 37 in the configuration of the first capsule endoscope described above are replaced.
  • the other components are the same as those of the first capsule endoscope, and the same reference numerals are given and description thereof is omitted.
  • the fourth capsule endoscope surrounds the transmission circuit 36 and the antenna 37 except for the electromagnetic wave radiation direction of the antenna 37 by the shield part 62, and opens an optical switch window in a part of the optical switch. 38 are arranged. A plurality of optical switches 38 may be provided in different directions.
  • the shield part 62 is provided in contact with the battery substrate 43b, and a magnet 63 equivalent to the magnet 42 of the first capsule endoscope is provided behind the shield part 62b.
  • the rear end container 61 of the capsule container 23 is formed on a flat surface where the rear end is not hemispherical. However, the rear end is hemispherical There is no problem even if it exists.
  • the fourth capsule endoscope configured as described above can obtain the same operational effects as those obtained from the first capsule endoscope described above. Further, according to this configuration, the magnetic field lines in the vicinity of the antenna 37 penetrate through the shield part 62, and the strength can be reduced. Therefore, it is possible to reduce the influence of the magnetic field generated by the magnet 63 on the antenna 37 and to prevent the transmission performance from deteriorating.
  • the amount of magnetic flux entering the substrate can be reduced by forming a magnetic body serving as a shield member on the substrate using a thin film forming technique such as vapor deposition or sputtering. Accordingly, it is possible to prevent the circuit formed in the capsule endoscope 21 from malfunctioning due to the influence and influence of the magnetic field of the magnet and the magnetic field of the induction coil.
  • FIG. 6 shows a cross-sectional configuration of the fifth capsule endoscope in the present embodiment.
  • This fifth capsule endoscope Provides electrodes 64 and 65 exposed on the surface of the capsule container, and passes a current signal as in-vivo information through a body cavity tissue as a subject to generate an electric field in the living body.
  • a so-called electric field communication system is used in which the in-vivo information is received by an electric field sensor attached to the body surface of the patient.
  • the other components are the same as those of the first capsule endoscope, and the same reference numerals are assigned and description thereof is omitted.
  • the radio is used as a communication medium. Therefore, the receiver and the transmission path between them are used. This effect can be eliminated, and a stable and clear image can be obtained in which noise is difficult to be superimposed. Since the communication circuit and the antenna can be omitted, the configuration becomes simple and the capsule container can be further miniaturized. In addition, if a microphone is connected to the receiving device side by providing a speaker in the transmission circuit, the same operation and effect can be obtained even in communication using sound waves.
  • Figure 7 shows the first capsule endoscope shown in Figure 2 from the Y-axis direction when guiding An example of the lines of magnetic force in the viewed magnetic field is shown.
  • This magnetic field is formed in the space surrounded by the induction coils Zl, Z2, D2, D4, D6 and D8, and the capsule endoscope is placed in that space from the induction coil X2 to the induction coil XI shown in FIG.
  • the tip is oriented in the X-axis direction.
  • the induction coil Z1 is caused to generate a magnetic force that is directed upward in the Z-axis direction as shown in the figure.
  • a magnetic field strength is generated in the lower side (induction coil Z2 side) where the magnetic field strength is weaker and the upper part is stronger.
  • the magnet 42 in the capsule endoscope 21 acts in a direction in which the magnetic field is strong, that is, an attractive force (herein referred to as an upward attractive force) attracted upward.
  • the capsule endoscope 21 Upon receiving this upward attraction, the capsule endoscope 21 rises in the space.
  • the guidance control device 3 By controlling the strength of the upward attractive force with the guidance control device 3, it is possible to create a state in which the gravity acting on the capsule endoscope 21 is cancelled.
  • a magnetic field as shown in FIG. 7 is formed in the induction coils D2 and D4 to generate a traction force that moves forward. Therefore, when the magnetic fields of the induction coils D2 and D4 are superimposed on the magnetic field of the induction coil Z1, the capsule endoscope 21 moves forward while canceling the gravity acting on the endoscope itself.
  • the capsule endoscope 21 has moved in a state where its own weight (mass of capsule endoscope X gravity acceleration) is applied to the body cavity tissue.
  • the capsule endoscope 21 reduces its own weight and moves in a state where the reaction force due to viscosity is weakened. Is possible.
  • this ascending force is applied too strongly, the capsule endoscope 21 will lift the body cavity tissue force more than necessary. If the capsule endoscope 21 floats away from the body cavity tissue, the attractive force further increases as it approaches the induction coil Z1, and this time, it is suddenly attracted to the induction coil Z1 and may rise more than the user desires. is there.
  • FIG. 8 (a) shows the magnitude and timing of the magnetic field strength that generates the upward attractive force in the Z-axis direction by the induction coil Z1
  • Fig. 8 (b) shows the force pulling in the X-axis direction by the induction coils D2 and D4. This shows the magnitude and timing of magnetic field generation.
  • FIG. 8 (c) shows a timing at which the position detection device 6 acquires a signal (position and orientation information signal) based on the induced magnetic field from each sense coil of the sense coil group 5.
  • Fig. 8 (d) shows the timing of transmitting in-vivo information from the capsule endoscope 21 to the receiving device 9 and performing a pause or imaging
  • Fig. 8 (e) shows the surface of the body cavity and the Z of the endoscope. The positional relationship of directions is shown.
  • the timing of each operation in FIG. 8 is set based on the timing at which imaging by the capsule endoscope 21 and transmission of image data are performed. Needless to say, the reference timing may be set as appropriate without being limited to such transmission timing.
  • the position of the capsule endoscope 21 is detected, and the position of the capsule endoscope 21 sinks into the body cavity surface (nl in FIG. 8 (e)), and the magnetic field strength is lower than the target value. Increases the magnetic field strength of induction coil Z1 at the next timing (n2). At this time, if the capsule endoscope 21 is raised too much, the magnetic field strength generated at the next timing is weakened (n3).
  • the positional relationship in the Z direction between the body cavity surface and the capsule endoscope 21 shown in FIG. 8 (e) is conceptually shown. In practice, the capsule endoscope 21 is substantially in contact with the body cavity surface. It is in a touched state where the body cavity surface is not weighted (or is not sinking due to weight).
  • an upward magnetic field in the Z direction as shown in FIG. 7 is generated for the induction coils D2 and D4.
  • This magnetic field has a magnetic gradient that increases in the direction of force from the induction coil X2 to the induction coil XI, and is an attractive force that is pulled forward along the X-axis direction with respect to the capsule endoscope 21. Therefore, the capsule endoscope 21 is pulled forward by the induction coils D2 and D4 in a state where gravity is canceled by the electric field of the induction coil Z1, and moves smoothly with little friction with the body cavity surface.
  • the magnetic field strength is controlled based on the position information of the capsule endoscope 21 to maintain the state where the applied gravity is canceled, and the capsule endoscope 21 and the tissue in the body cavity are maintained. Reduce the frictional force acting between the two. Capsule endoscope in its gravity canceled state
  • an ON signal having a predetermined short pulse width as a drive signal applied to the induction coils Z1, D2 and D4 is applied to one magnetic field.
  • the magnetic field strength is controlled by the number of times of application within the formation period.
  • the magnetic field strength is controlled by generating a magnetic field in a pulse manner with each induction coil and controlling the interval between the generated magnetic fields. This can be realized by adding a known switching circuit to the induction coil power supply 2.
  • each induction coil Zl, D2, and D4 generates a magnetic field in a pulse manner, and the magnetic field strength is controlled by controlling the interval between the generated magnetic fields.
  • the configuration of the induction coil power supply can be simplified.
  • the same control method can be realized by applying a PWM (Pulse Width Modulation) control method that controls the on-time (pulse width).
  • the third control method shown in FIG. 10 realizes the same movement of the capsule endoscope 21 by driving different combinations of guide coils with respect to the first control method described above.
  • the third capsule endoscope shown in FIG. 4 is suitable for the third control method.
  • the magnet 51 is arranged along the cylindrical axis (X-axis direction) of the capsule endoscope with the magnetic pole (N pole forward, S pole backward). Yes.
  • the magnetic induction coils 52 and 53 intersect (here, orthogonal), and are also arranged so as to be orthogonal to the direction of the magnetic force lines of the magnet 51.
  • the winding is wound around a core formed of a needle-like magnetic body, and the capacitors 54 and 55 are connected respectively.
  • the L component or the C component is adjusted so that the two induction coils 52 and 53 have different resonance frequencies.
  • the direction of the magnetic lines of force from the magnet 51 is changed so that the induction coils 52 and 53 Since it can be arranged perpendicular to the longitudinal direction, the influence of the magnetic field from the magnet 51 can be minimized, and the capsule endoscope can be seen by detecting the directions of the two magnetic induction coils 52 and 53, respectively.
  • the direction of the mirror can be determined.
  • the direction of the magnet built in the capsule endoscope 21 shown in FIG. 10 is a force that is directed in the propulsion direction (X direction shown in FIG. 10) of the capsule endoscope 21 as shown in FIG.
  • the induction coils D4 and D8 generate a gradient magnetic field whose magnetic field strength becomes stronger as it is directed in the Z direction (upward), thereby creating an attractive force against gravity and the X direction from the induction coil XI (left direction on the paper).
  • the gradient magnetic field that increases the magnetic field strength is generated as the process proceeds to step S1, and the capsule endoscope 21 can be propelled in the X direction with reduced gravity.
  • the posture of the capsule endoscope 21 is inclined obliquely from the horizontal direction, for example, an oblique posture in which the distal end portion of the endoscope rises and the rear end portion contacts the inner wall of the digester.
  • the 14 induction coil groups XI, X2, Yl, Y2, Zl, ⁇ 2 and D1 to D8 for example, using the set of induction coils Zl, Z2, the upper direction in the Z-axis direction A first magnetic field that is directed in the direction and a second magnetic field that is directed leftward in the X-axis direction by the induction coils XI and X2 are formed.
  • the magnetic field synthesized by the first magnetic field and the second magnetic field becomes the external magnetic field H shown in FIG.
  • the capsule endoscope 21 since gravity acts on the capsule endoscope 21, the capsule endoscope 21 does not become parallel to the external magnetic field H and faces the direction of the capsule endoscope 21.
  • the magnet 42 of the magnet 42 is M
  • the external magnetic field is H
  • the angle between M and H is ⁇
  • the mass of the capsule endoscope 21 is m
  • the gravitational acceleration is g
  • the Z direction and the capsule endoscope 21 ⁇ is the angle formed by the orientation
  • G is the gravity of the capsule endoscope 21
  • P is the fulcrum that is the center of rotation when the capsule endoscope 21 is directed upward and ⁇ is changed
  • the distance from the fulcrum P is 1
  • the fulcrum P is located on the side where the imaging optical system 26 in the capsule endoscope 21 is installed. It can be the center of the hemispherical shape of the exterior end of the.
  • the magnetic field generated by the induction coil group is controlled.
  • the magnetic field in the ⁇ direction By measuring the magnetic field in the ⁇ direction, it can be directed in the desired direction (the ⁇ direction) without being affected by the gravity applied to the capsule endoscope 21.
  • the capsule endoscope 21 exists in an oblique posture in such a magnetic field, for example, if an electric field that generates an attractive force pulling forward is formed in the induction coil XI, the capsule endoscope 2 is moved behind the capsule container 23. Move to the front while keeping the slanted posture with only the end touching the inner wall of the digester. Such movement can easily get over and move even if there is some unevenness in the wall movement path inside the digester. Furthermore, by using the induction coil Z1 described above to superimpose an electric field that cancels the heavy force, it is possible to move with further reduced frictional force.
  • a desired posture is realized by forming a magnetic field by the induction coil group. For example, when water remains on the inner wall of the gastrointestinal tract and the tip of the capsule endoscope 21 is lifted, the combination of induction coil XI, ⁇ 2 and induction coil Zl, ⁇ 2 is used as shown in FIG. Create an oblique posture.
  • a third magnetic field directed in the down-axis direction by the induction coils Zl and ⁇ 2 and a fourth magnetic field directed in the X-axis direction by the induction coils XI and ⁇ 2 are formed. Even if the leading end or the trailing end of the capsule endoscope 21 is lifted by buoyancy by such a magnetic field, it is possible to easily control the posture and image a desired portion.
  • the capsule endoscope system of the present invention forms a magnetic field for canceling gravity applied to the capsule endoscope, and moves or changes the posture of the magnetic field.
  • the capsule endoscope can be controlled easily and controlled by reducing the frictional resistance by reducing the contact area of the capsule endoscope that touches the surface of the body cavity by raising the entire device.
  • the magnetic field generated from the position detection device and the induction coil group is controlled in synchronization with the data transmission of the capsule endoscope, the data transmission and the position are not affected by the magnetic field generated by the induction coil. Detection can be performed, and the stability of the capsule medical device guidance system is improved.
  • the capsule endoscope can be moved in a state of being inclined with the tip facing upward, and moved due to the presence of unevenness on the surface of the body cavity on the passage route. You can easily get over difficult places.
  • movement in a state where the rear end or the front end is in contact with the body cavity surface in such an oblique posture can be realized with a weak magnetic field strength compared to the magnetic field for lifting the entire capsule endoscope. Miniaturization can be realized without requiring a large output of the coil power supply.
  • the present invention generates a magnetic field environment in a desired direction with respect to the capsule medical device, eliminates a movement error due to gravity with respect to the operation, and reduces the frictional resistance acting on the capsule medical device.
  • a capsule medical device guidance system that operates properly with low attraction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 誘導磁界を発生させる面を少なくとも前後の2つの領域に分割するように誘導コイルを配置して、カプセル内視鏡本体に掛かる重力をキャンセルするための磁界を形成し、移動させる又は姿勢を変化させる磁界に重畳して、体腔表面に接する内視鏡の接触面積を減少させて摩擦抵抗を減少させて移動させるカプセル型医療装置誘導システムとその制御方法である。

Description

明 細 書
カプセル型医療装置誘導システム及びその制御方法
技術分野
[0001] 本発明は、体腔内に挿入されて体内情報を得るカプセル型医療装置に対する誘 導システム及びその制御方法に関する。
背景技術
[0002] 従来、体内情報を得る医療装置の中に体腔内を移動しつつ、定期的に画像情報 を送信するカプセル型医療装置が知られて!/ヽる。
[0003] このカプセル型医療装置としては、特開 2004— 255174号公報に開示されるよう な磁気的に誘導することができる医療装置誘導システムが提案されている。この提案 においては、医療装置誘導システムが体腔内に挿入され、外周面に螺旋状突起が 設けられたカプセル本体が、その長手方向に直交する方向に着磁された磁石を内 蔵し、操作指示に基づく磁界制御装置及び回転磁界発生装置により発生された磁 界によりカプセル本体の進行方向を円滑に変化させることができる。カプセル本体の 進行方向を自由に変化させることにより、撮像時にカプセル本体の向きを換えて、所 望する部位を撮像することが可能である。
[0004] また、特開 2003— 111720号公報には、測定器具や検体採取器具等を搭載して 、直線状磁石を備え、自由に移動する体内ロボットとなるキャリアヘッドを体内におい て遠隔制御で移動させて位置を決定するために 3D勾配磁界を発生させて患者の検 查領域を撮像する装置が提案されて 、る。
発明の開示
[0005] 本発明の実施形態に従う第 1のカプセル型医療装置誘導システムは、体内情報を 取得する体内情報取得部と、取得した体内情報を出力信号として外部に出力する通 信部と、磁石とを有するカプセル型医療装置と、前記磁石に作用させ、前記カプセル 型医療装置を目的の方向に移動させるための磁界を発生する磁界発生部と、前記 通信部より送出される前記出力信号に同期して、前記磁界発生部を制御する制御部 とを有する。 [0006] さらに、第 2のカプセル型医療装置誘導システムは、体内情報を取得する体内情報 取得部と、取得した体内情報を出力信号として外部に出力する通信部と、磁石とを有 するカプセル型医療装置と、前記カプセル型医療装置の位置を検出する位置検出 部と、前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるた めの磁界を発生する磁界発生部と、から構成され、前記制御部は、前記出力信号が 同期して、前記磁界発生部を制御し、前記位置検出部は、前記出力信号に同期して 、前記カプセル型医療装置の位置を検出する。
[0007] また、第 3のカプセル型医療装置誘導システムは、体内情報を取得する体内情報 取得部と、取得した体内情報を出力信号として外部に一定の間隔で出力する通信部 と、磁石とを有するカプセル型医療装置と、前記カプセル型医療装置の位置を検出 する位置検出部と、前記磁石に作用させ、前記カプセル型医療装置を目的の方向 に移動させるための磁界を発生する磁界発生部と、前記出力信号に同期して、前記 磁界発生部を制御する制御部と、から構成され、前記制御部は、前記出力信号が送 出されている時に、前記位置検出部により検出された前記カプセル型医療装置の位 置及び姿勢に関する情報を受け取り、前記情報に基づき、前記磁界発生部から発生 させる磁界の方向及び大きさを算出処理し、前記出力信号が送出されていない時に は、前記磁界発生部から磁界を発生するように制御する。
[0008] さらに、第 4のカプセル型医療装置誘導システムは、体内情報を取得する体内情報 取得部と、取得した体内情報を出力信号として外部に出力する通信部と、磁石とを有 するカプセル型医療装置と、前記磁石に作用させ、前記カプセル型医療装置を目的 の方向に移動させるための磁界を発生する第 1の磁界発生部と、前記磁石に作用さ せ、前記カプセル型医療装置に掛カる重力を軽減するための磁界を発生する第 2の 磁界発生部と、前記出力信号に同期して前記第 1及び第 2の磁界発生部を制御する 制御部と、を有する。
[0009] また、第 5のカプセル型医療装置誘導システムは、体内情報を取得する体内情報 取得部と、取得した体内情報を出力信号として外部に出力する通信部と、磁石とを有 するカプセル型医療装置と、前記磁石に作用させ、前記カプセル型医療装置を目的 の方向に移動させるための磁界と前記磁石に作用させ、前記カプセル型医療装置 に掛かる重力を軽減するための磁界とを合成した磁界を発生する磁界発生部と、前 記出力信号に同期して前記磁界発生部を制御する制御部と、を有する。
[0010] 第 6に、カプセル型医療装置誘導システムの制御方法は、カプセル型医療装置内 に設けられた磁石に作用させる磁界により、体腔内で目的の方向に移動させつつ、 該体腔内を観察するカプセル型医療装置を誘導するシステムの制御方法であって、 前記体腔内で前記カプセル型医療装置が取得した体内情報を外部に出力信号とし て送出する時に、送出される前記出力信号に同期して、前記出力信号が送出される 期間は前記磁界の発生を停止させる。
[0011] 第 7に、カプセル型医療装置誘導システムの制御方法は、カプセル型医療装置内 に設けられた磁石に作用させる磁界により、検出された位置に基づき体腔内で目的 の方向に移動させつつ該体腔内を観察するカプセル型医療装置を誘導するシステ ムの制御方法であって、
前記体腔内で前記カプセル型医療装置が取得した体内情報を外部に出力信号と して送出する時に、送出される前記出力信号に同期して、前記出力信号が送出され る期間は、前記磁界の発生を停止させ、及び前記カプセル型医療装置の位置を検 出することを特徴とする。
[0012] 第 8に、カプセル型医療装置誘導システムの制御方法は、カプセル型医療装置内 に設けられた磁石に作用させる磁界により、検出された位置及び姿勢に基づき、体 腔内で目的の方向に移動させつつ該体腔内を観察するカプセル型医療装置を誘導 するシステムの制御方法であって、前記出力信号が送出されている時には、検出さ れた前記カプセル型医療装置の位置及び姿勢に関する情報に基づき、発生させる 前記磁界の方向及び大きさを算出し、前記出力信号が送出されていない時には、算 出結果に基づき前記磁界を発生させる制御方法である。
[0013] 第 9に、カプセル型医療装置誘導システムの制御方法は、カプセル型医療装置内 に設けられた磁石に作用させる磁界により、検出された位置及び姿勢に基づき、体 腔内で目的の方向に移動させつつ該体腔内を観察するカプセル型医療装置を誘導 するシステムの制御方法であって、発生される前記磁界の大きさは、磁界が発生され る継続時間を調整することにより制御する。 [0014] 第 10に、カプセル型医療装置誘導システムの制御方法は、カプセル型医療装置 内に設けられた磁石に作用させる磁界により、検出された位置及び姿勢に基づき、 体腔内で目的の方向に移動させつつ該体腔内を観察するカプセル型医療装置を誘 導するシステムの制御方法であって、発生される前記磁界の大きさは、磁界パルスの 本数を調整することにより制御する。
図面の簡単な説明
[0015] [図 1]図 1は、 本発明の一実施形態に係るカプセル型医療装置誘導システムの構成 を示す図である。
[図 2]図 2は、本実施形態における第 1のカプセル内視鏡の断面構成を示す図である
[図 3]図 3は、本実施形態における第 2のカプセル内視鏡の断面構成を示す図である
[図 4]図 4は、本実施形態における第 3のカプセル内視鏡の断面構成を示す図である
[図 5]図 5は、本実施形態における第 4のカプセル内視鏡の断面構成を示す図である
[図 6]図 6は、本実施形態における第 5のカプセル内視鏡の断面構成を示す図である
[図 7]図 7は、第 1のカプセル内視鏡に対して、誘導に関する Y軸方向から見た磁界 の一例を示す図である。
[図 8]図 8は、 カプセル型医療装置誘導システムの第 1の制御方法について説明す るためのタイミングチャートである。
[図 9]図 9は、 カプセル型医療装置誘導システムの第 2の制御方法について説明す るためのタイミングチャートである。
[図 10]図 10は、カプセル型医療装置誘導システムの第 3の制御方法について説明 するための誘導に関する Y軸方向から見た磁界の一例を示す図である。
[図 11]図 11は、カプセル内視鏡における重力を考慮した姿勢制御について説明す るための図である。 [図 12]図 12は、カプセル内視鏡における浮力を考慮した姿勢制御について説明す るための図である。
発明を実施するための最良の形態
[0016] 以下、図面を参照して本発明の実施形態について詳細に説明する。
図 1に示す本発明の一実施形態に係るカプセル型医療装置誘導システムについて 説明する。このカプセル型医療装置誘導システムは、図 2乃至図 6に示すカプセル型 医療装置 21と、カプセル内視鏡を誘導するための磁界を発生する磁気誘導装置 1と に大別される。本実施形態におけるカプセル型医療装置としては、カプセル内視鏡 2 1を一例として説明する。
[0017] 磁気誘導装置 1は、主として、誘導コイル群(Xl、 X2、 Yl、 Y2、 Zl、 Ζ2、 Dl、 D2 、 D3、 D4、 D5、 D6、 D7、 D8)と、誘導コイル用電源 2と、誘導制御装置 3と、コント ローラ 4と、センスコイル部 5 (5a〜5i)と、位置検出装置 6と、受信アンテナ部 7 (7a, 7 b, 7c)と、アンテナセレクタ 8と、受信装置 9と、表示装置 10と、ドライブコイル 11と、ド ライブコイル駆動部 12とで構成される。
[0018] また、 14個の誘導コイル群 XI、 X2、 Yl、 Υ2、 Zl、 Ζ2、 D1乃至 D8は、それぞれ 空芯電磁石を有し、誘導磁界発生部を形成する。本実施形態における誘導コイルの 配置は、直方体の各面に配置される。ここで、図 1の矢印で示すように、カプセル内 視鏡 21が前進後進する方向(又は被検体となる人体が移動する方向)を X軸方向と し、この X軸方向と水平に直交する方向を Υ軸方向、及び X軸方向と垂直に直交する 上下方向(重力方向)を Ζ軸方向とする。
[0019] これらの軸方向において、誘導コイル XI, Χ2は対向し、 X軸方向に磁力線を形成 してこの X軸方向に対して垂直となる前後面の周囲にそれぞれ配置される。以下の 方向では、誘導コイル XI側を前方とし、誘導コイル Χ2側を後方とする。また、誘導コ ィル Χ2から誘導コイル XIに向か 、移動することを前進とし、その反対を後進とする。
[0020] また、誘導コイル Yl, Υ2は対向し、 Υ軸方向に磁力線を形成し、 Υ軸方向に対して 垂直となる両側面の周囲にそれぞれ配置される。これらの両側面の一方の面で、誘 導コイル Y1の内側には面を 2分割するように 2つの誘導コイル D3, D7が配置され、 他方の対向面で誘導コイル Υ2の内側には面を 2分割するように 2つの誘導コイル D1 , D5が配置される。
[0021] 同様に、誘導コイル Zl, Ζ2は対向し、 Ζ軸方向に磁力線を形成し、この Ζ軸方向に 対して上下面の周囲にそれぞれ配置される。これらのうち上面で誘導コイル Z1の内 側には面を 2分割するように 2つの誘導コイル D4, D8が配置され、対向する下面で 誘導コイル Ζ2の内側には面を 2分割するように 2つの誘導コイル D2, D6が配置され る。以下の方向では、誘導コイル Z1側を上方とし、誘導コイル Ζ2側を下方とする。ま た、誘導コイル Ζ2から誘導コイル Z1に向かい移動することを上昇とし、その反対を下 降とする。
[0022] また、ドライブコイル 11で形成した交番磁界は、磁気誘導コイル 31に作用して誘導 電流を生成させて、磁気誘導コイルから磁界が発生する。この交番磁界は、カプセル 内視鏡 21内に設けられた後述するコイル (磁気誘導コイル 31)とコンデンサ 33で形 成される共振周波数近傍の周波数成分を 1つまたは複数含んでいる。
[0023] この発生した誘導磁界は複数のセンスコイル 5a〜5iにより検出されて位置情報を 含む信号が生成され、位置検出装置 6に送信される。位置検出装置ではこの信号に 基づき、カプセル内視鏡 21における位置及び姿勢情報を算出する。この位置及び 姿勢情報は、誘導制御装置 3に送られ、誘導コイル群で生成すべき磁界を求める計 算に使用される。
[0024] 誘導コイル群 XI、 X2、 Yl、 Υ2、 Zl、 Ζ2及び、 D1乃至 D8は、カプセル内視鏡 21 内の磁石に作用する磁気勾配 (第 1の磁気勾配)を発生して、前進後進、上昇下降 及び左右移動させることにより、所望する方向に牽引する第 1の磁気勾配発生手段 である。
[0025] また、誘導コイル Z1は、前述した誘導コイル群によりカプセル内視鏡 21を上昇させ て所望する方向に牽引する際に、重力によって働くカプセル内視鏡 21を下降させよ うとする力をキャンセルするようにカプセル内視鏡 21内の磁石に作用する磁気勾配( 第 2の磁気勾配)を発生して、重力による影響を排除する。尚、誘導コイル D4, D8に おいても誘導コイル Z1と同じ作用を発生させることもできる。この誘導コイル Z1は、所 望する方向に移動させる際に働く重力による影響を排除する第 2の磁気勾配発生手 段である。一方、誘導コイル Z2は、前述した誘導コイル群によりカプセル内視鏡 21を 下降させて所望する方向に牽引する際に、浮力によって働くカプセル内視鏡 21を浮 き上がらせようとする浮力をキャンセルするようにカプセル内視鏡 21内の磁石に作用 する磁気勾配を発生して、浮力による影響を排除する。尚、誘導コイル D2, D6にお いても誘導コイル Z1と同じ作用を発生させることもできる。
[0026] 具体的には、対向配置される誘導コイル XIと X2、 Y1と Y2、 Z1と Ζ2は、これらの誘 導コイルで囲まれた空間内に、同一方向に磁界を発生させた場合には均一磁界を 形成し、それぞれに反対方向に発生させた場合には傾斜磁界を形成することができ る。また、 D1〜D8のコイルは、同様に適宜駆動することにより均一性の高い磁界又 は、傾斜磁界等を形成することができる。従って、これらの 14個の誘導コイルを個々 に制御することにより、所望の空間位置に所望の磁界強度、所望の磁気勾配を有す る磁界を発生させることがでさる。
[0027] このような誘導コイル群の配置によれば、カプセル内視鏡 21に対して、前進後進、 上昇下降及び左右移動だけではなぐ誘導コイル群 XI、 X2、 Yl、 Y2、 Zl、 Z2及び 、 Dl乃至 D8の組み合わせにより、カプセル内視鏡 21を傾ける、例えば、先端側を 上方及び後端側を下方になるように磁界を発生して、前方に立ち上がった斜め姿勢 を取らせることちでさる。
[0028] これらの誘導コイルは、個々に駆動する誘導コイル用電源 2に接続されている。この 誘導コイル用電源 2は、誘導制御装置 3からの指令に制御され、磁界の形成上必要 とされる誘導コイルに適宜通電して、所望の空間に所望の磁界を生成する。
[0029] 本実施形態において、カプセル内視鏡 21の位置情報 (空間位置)を検出するため の位置検出システム (位置検出手段)は、カプセル内視鏡 21内に設けたコイルに誘 導磁界を発生させるための磁界を形成するドライブコイル 11と、カプセル内視鏡 21 が発生した誘導磁界を検出するためのセンスコイル群 5と、センスコイル群 5で得られ た誘導磁界に基づく信号力 カプセル内視鏡 21の位置情報 (3次元空間での位置と カプセル内視鏡の向き)を生成する位置検出装置 6と、位置検出装置 6の指示により ドライブコイル 11を駆動するドライブコイル駆動部 12とで構成する。
[0030] センスコイル群 5を構成する 9個のセンスアンプ 5a〜5iは、カプセル内視鏡 21の正 確な位置及び姿勢が求められるように、誘導コイル Y1が設けられて 、る側面に対し て、平行で面内に均一となるように配置されている。尚、本実施形態では、対向配置 される一対のセンスコイル群 5とドライブコイル 11を設けて、 Z軸に関する位置を検出 する例を示している力 3次元的に位置及び姿勢を検出するためには、交差する 2面 、例えば上面と側面にそれぞれ一対を設けた方が好ましい。さらに検出精度を高め るためには、センスコイルの数量もある程度、多い方が好ましい。
[0031] 位置検出装置 6は、誘導制御装置 3から位置情報を検出するタイミングを指示され 、その指示に基づき、ドライブコイル駆動部 12を駆動する。ドライブコイル駆動部 12 は、ドライブコイル 11に交流電流を供給して磁界を形成させて、磁界内のカプセル内 視鏡 21から誘導磁界を発生させる。センスコイル群 5の各センスコイルは、カプセル 内視鏡 21が発生した誘導磁界に基づく信号を検出して位置検出装置 6に出力する 。位置検出装置 6は、誘導磁界に基づく信号からカプセル型内視鏡 21の位置及び 姿勢情報を生成し、誘導制御装置 3に出力する。誘導制御装置 3は、位置検出装置 3によるカプセル内視鏡 21の位置及び姿勢情報を考慮して所望する移動方向を決 定し、その移動に好適する磁界を生成するように誘導コイル用電源 2へ指示する。誘 導コイル用電源 2は、誘導制御装置 3の指示に従い誘導コイル群 XI、 X2、 Yl、 Υ2 、 Zl、 Ζ2及び、 D1乃至 D8に電流を流す。これにより、その移動に好適する磁界が 誘導コイル群により生成されて、カプセル内視鏡 21をスムーズに誘導することができ る。
[0032] コントローラ 4は、操作者が操作する入力操作部例えば、ジョイスティックを任意の 方向に倒すことにより、カプセル型内視鏡 21の進行方向や傾きを指示する入力装置 である。コントローラ 4の入力用操作部としては、ジョイスティックの他には、全方位の 進行方向に指示できるように配置されたボタン、タツチパネル、視線入力装置等種々 の部材を適用することができる。
[0033] 誘導制御装置 3は、コントローラ 4からの指示信号、位置検出装置 6からの位置及び 姿勢情報及び、受信装置 9からの誘導コイルのそれぞれの駆動状況に関する信号を 受け、カプセル内視鏡 21を所望する位置に移動させるための磁力 (磁界)を算出し、 その磁力を発生させるために、それぞれの誘導コイル XI、 X2、 Yl、 Υ2、 Zl、 Ζ2及 び、 D1乃至 D8が負担する磁力を求め、各誘導コイル用電源に指令を送信する。 [0034] また、誘導制御装置 3は、カプセル内視鏡 21が撮影した画像データを受信装置 9 へ送信している通信期間は、磁界の発生を停止する処置を行う。同時に通信期間に は、誘導制御装置の指示に基づき、位置検出装置 6は、ドライブコイル 11を駆動して 、センスコイル群 5からの位置情報を取得する。
[0035] 3つの受信アンテナ 7は、選択動作を行うアンテナセレクタ 8を介して受信装置に接 続されている。これらの受信アンテナ 7は、 X軸方向力も通信データ (画像データを含 む体内情報)を受信する受信アンテナ 7a (AX)と、 Y軸方向から体内情報を受信す る受信アンテナ 7b (AY)と、 Z軸方向から体内情報を受信する受信アンテナ 7c (AZ) とで構成され、 3軸方向における体内情報を検出することができる。
[0036] アンテナセレクタ 8は、通信に使用するアンテナ 7a、 7b、 7cを選択する。このアンテ ナセレクタ 8は、それぞれの受信アンテナの位置に誘導コイル群が発生して!/、る磁界 の強度、方向及び磁界傾斜の量を受けて、最も磁界の影響を受けていない受信アン テナを識別し、その受信アンテナを選択する。この受信アンテナ 7を選択することによ り、カプセル内視鏡 21と受信装置 9との通信を安定させることができる。
[0037] 受信装置 9は、カプセル内視鏡 21からの体内情報を受信するタイミングを誘導制 御装置 3に送信している。前述したように、誘導制御装置 3は、体内情報 (画像データ )が通信される通信期間は、誘導コイル群及びドライブコイル 11による誘導磁界の発 生を停止させている。この停止処置により、誘導磁界の影響を受けずに、カプセル内 視鏡 21から体内情報を受信装置で受けることができる。この停止処置により、通信期 間と、移動動作及び位置検出期間とが重ならないため、誘導磁界による体内情報へ のノイズや誘導磁界の受信アンテナへの影響を排除できる。
[0038] 従って、この停止処置は、カプセル内視鏡 21近傍に生成される磁界の強度、磁界 傾斜の量が大きい場合、又は受信アンテナ 7の近傍に生成される磁界の強度、磁界 傾斜の量が大き 、場合にぉ 、て、画像データにノイズの影響を与えな 、点や誘導磁 界の受信アンテナへの影響を排除できる点で有用である。また、誘導コイルから発生 する磁界強度が高い場合であっても、位置検出装置 6を正常に動作させることができ る。
[0039] 表示装置 10は、例えば、液晶ディスプレイ等力 なり、受信装置 9により生成された カプセル型内視鏡 21で撮像された画像を画面表示する。この画像表示の際に、表 示される画像に関するデータ例えば、撮影状況等を表示画面に画像と併せて表示し てもよい。次に図 2乃至図 5を参照して、本実施形態のカプセル内視鏡 21における 第 1乃至第 5の構成例について説明する。
図 2は、本実施形態における第 1のカプセル内視鏡の断面構成を示して!/ヽる。 この第 1のカプセル内視鏡 21のカプセル容器 23は、前端側に配置される透明で半 球形状の先端容器 23aと、赤外線を透過する正円筒形状で後端が半球形状を成す 後端容器 23bとから構成される。このカプセル容器 23は、後述するカプセル内視鏡 本体を収納し、水密構造で密閉されている。このカプセル内視鏡 21の推進方向は、 例えば図 2の Cで示す円筒軸方向とする。
[0040] カプセル内視鏡本体につ!、て説明する。
カプセル内視鏡本体は、大別して、被検者の体腔内管路の内壁面を撮像する撮像 部、撮像部を駆動する電源部、前述したドライブコイル 11により誘導磁場を発生させ る誘導磁界発生部、カプセル型内視鏡 21を駆動する駆動用磁石及び撮像された画 像データを含む体内情報を受信アンテナ 7に送信する送信部により構成される。
[0041] まず、撮像部として、固定焦点レンズを有する撮影光学系 26と、撮像側基板 24a上 に実装される CMOS又は CCD等力もなる撮像素子 25と、撮影光学系 26の近傍に 設けられた調光可能な LED力も成る照明部 39と、撮像素子 25に対して裏面側の撮 像側基板 24aに実装される撮像素子 25からの画像信号に所定の画像処理を施す画 像処理回路 27とを備えている。また、撮像側基板 24a及び電源側基板 24b及び前 方の電池用基板 43aは、接着固定部 29として接着剤で封止して一体的に固定され る。
[0042] さらに電源部として、ボタン電池等力もなる小型電池 32と、小型電池 32から電源を 取り出す図示しない電源端子が設けられる一対の電池用基板 43 (43a、 43b)と、小 型電池 32を電池用基板で挟むように固定する熱収縮チューブ 34と、撮像側基板 24 aの回路配線とフレキシブル基板等により回路配線が電気的に接続される電源側基 板 24bと、電源側基板 24b上に設けられ小型電池 32の電源が供給される電源回路 2 8とを備えている。 [0043] 磁界発生部としては、接着固定部 29の外周上に設けられる磁性体 30と、磁性体 3 0を介して設けられる誘導コイル 31と、前端側の電池用基板上に設けられ、誘導コィ ル 31と CL共振回路を構成するコンデンサ 33とを備えている。
[0044] この誘導コイル 31は、カプセル容器 23の内径より僅か〖こ小さい最大外形を持つリ ング形状に形成される。磁性体 30は、外部からの磁界を誘導コイル 31内に収束させ る役割を持つ。磁性体 30は、アモルファス磁性体、ファインメッド(日立金属)など飽 和磁束密度、透磁率の共に高い素材が適している。また、薄膜に整形されている素 材を用いると、カプセル内視鏡内に配置する上で磁性体の体積を小さくすることがで きるという効果が得られる。
[0045] さらに、後方の電池用基板 43bに円盤形状の駆動用磁石 42が配置される。磁石 4 2の材質としては、ネオジゥムコバルト等が好適する力 これに限定されるものではな い。この磁石 42は、磁力線の方向が Z軸方向に沿うように、上方に N極が着磁され下 方に S極が着磁されている。このように極性を設定することにより、カプセル内視鏡 21 が磁気誘導装置 1の誘導コイル群に対して常に一定方向を向くこととなる。従って、 撮像された画像における絶対的な天地を決定することができる。
[0046] 送信部として、送信用基板 40の裏面側 (磁石 42側)に実装される通信回路 36と、 その表面側(後端容器 23b)に配置されるアンテナ 37と、露出している通信回路 36を 覆 、磁石 42の磁力を遮蔽するシールド部 35と、アンテナ 37が設けられた側の送信 用基板 40上に実装され、カプセル内視鏡駆動のオンオフを行う光スィッチ 38とを備 えている。
[0047] このような配置において、磁石 42の着磁方向と、送信回路 36に接続されたアンテ ナ 37の向きは、 90度角度を変えて配置されている。これは、磁石 42から発生する磁 界がアンテナ 37の向きと 90度ずれて入射する条件を成立するためである。これによ り、磁石 42からの磁界によるアンテナ 37への影響を小さく抑えている。
[0048] シールド部 35は、その材料としては磁性材料で構成されており、アンテナ 37近傍 の磁界を吸い寄せる効果を有する。従って、アンテナ 37に入射される磁界の強度を 軽減することができ、送信回路 36及びアンテナ 37間の無線通信への磁界の影響を 低く抑えることができ、安定した無線通信が実現する。 [0049] また、光スィッチ 38は、赤外線等に感度を有する。カプセル容器 23の後端容器 23 bは少なくとも光スィッチ近傍においては、赤外線 (光スィッチが感度を有する波長に ぉ 、て)を透過する材料で構成されて 、る。光スィッチ 38に図示しな 、赤外線発光 装置力も赤外線を照射すると、光スィッチ 38がオンして、小型電池 32から電源回路 を介して通電して起動し、撮像処理及び送信処理が開始される。この光スィッチ 38 は、トグル動作するように回路が構成されており、一度赤外線を照射されるとカプセル 内視鏡はオン状態を維持する。また、オン状態の時に、度赤外線が照射されると、ォ フする構成を追加してもよ 、。
[0050] このシールド部 35により通信回路 36を覆う構成により磁石 42における強力な磁界 による送信回路、無線回路への影響 (例えば、ノイズが重畳する又は、通信可能距離 が短くなる等)を低く抑えることができる。これにより受信装置 9には、ノイズの少ない 鮮明な画像データを送信できる。
[0051] 図 3は、本実施形態における第 2のカプセル内視鏡の断面構成を示している。
この第 2のカプセル内視鏡は、前述した第 1のカプセル内視鏡に対して、カプセル 容器 23の外周上に、断面円形の線材を螺旋状に巻いた螺旋部 25が備えられている 。これ以外の構成部位は、第 1のカプセル内視鏡と同等であり、同じ参照符号を付し て説明を省略する。
[0052] この構成により、誘導コイル用電源 2から誘導コイル群に対して、第 2のカプセル内 視鏡に対する回転磁界を形成して、第 2のカプセル内視鏡 21を図 3に示す軸 C回り R方向に回転させる。第 2のカプセル内視鏡 21は、螺旋部 25の回転する方向により 、軸 C方向に沿って、前進又は後進を行う。さらに、誘導コイル群を制御して、第 2の カプセル内視鏡 21が傾 、た姿勢を取らせた状態で回転させることもできるため、斜 め方向に対しても前進又は後進を行うことができる。このように構成された第 2のカブ セル内視鏡は、前述した第 1のカプセル内視鏡が得られる作用効果と同等のものを 得ることができる。
[0053] 図 4は、本実施形態における第 3のカプセル内視鏡の断面構成を示している。
この第 3のカプセル内視鏡は、前述した第 1のカプセル内視鏡の構成における磁石 42と、誘導コイル 31の配置を入れ替えた構成である。これ以外の構成部位は、第 1 のカプセル内視鏡と同等であり、同じ参照符号を付して説明を省略する。
[0054] 第 3のカプセル内視鏡において、第 1のカプセル内視鏡では、リング形状であった 誘導コイル 31に対して、 2本の直線的な棒状の誘導コイル 52、 53を交差するように 配置している。図 4は、 Z軸方向と Y軸方向にそれぞれ誘導コイル 52、 53を配置した 構成例を示している。また、これらの誘導コイル 52、 53の近傍には、それぞれのコィ ル両端に接続して LC共振回路を形成するためのコンデンサ 54、 55が配置されてお り、異なる共振周波数になるように調整されている。この交差する誘導コイル 52、 53 は、ドライブコイル 11により形成される磁界により誘導磁界を発生させる。この様に誘 導コイル 52, 53が共に軸 Cに対して垂直で、それぞれ異なる方向を向いているため 、それぞれの共振周波数でそれぞれの誘導コイルの向きを求めることにより軸 Cの方 向(つまり、カプセル内視鏡の推進方向)を検出できる。また、第 3のカプセル内視鏡 は、磁石 51がカプセル内視鏡の円筒軸 (軸 C方向)に沿って磁極 (N極を前方、 S極 を後方)を向けて配置されている。また、前述した第 1のカプセル内視鏡における円 盤形状の磁石 42に換わって、例えば、リング形状又は、棒状の磁石を樽状に並べた 構成を成し、接着固定部 29の外周上に設けられている。このように構成された第 3の カプセル内視鏡は、前述した第 1のカプセル内視鏡が得られる作用効果と同等のも のを得ることができる。
[0055] 図 5は、本実施形態における第 4のカプセル内視鏡の断面構成を示している。
この第 4のカプセル内視鏡は、前述した第 1のカプセル内視鏡の構成における磁石 42と、送信回路 36及びアンテナ 37を入れ替えた配置となっている。これ以外の構成 部位は、第 1のカプセル内視鏡と同等であり、同じ参照符号を付して説明を省略する
[0056] 第 4のカプセル内視鏡は、送信回路 36及びアンテナ 37をシールド部 62によりアン テナ 37の電磁波放射方向を除いて包囲し、一部に光スィッチ窓を開口して、光スィ ツチ 38を配置している。光スィッチ 38は、異なる方向に複数設けてもよい。このシー ルド部 62は、電池用基板 43bに接して設けられており、その後方に第 1のカプセル 内視鏡の磁石 42と同等な磁石 63が設けられている。カプセル容器 23の後端容器 6 1は、後端が半球形状ではなぐ平坦面に形成されている。但し、後端が半球形状で あっても問題はない。
[0057] このように構成された第 4のカプセル内視鏡は、前述した第 1のカプセル内視鏡が 得られる作用効果と同等のものを得ることができる。さらに、この構成によれば、アン テナ 37近傍の磁力線は、シールド部 62内を貫くことになり、強度を低下させることが できる。従って、アンテナ 37に与える磁石 63の生成する磁界による影響を減少させ て、送信性能の低下を防止することができる。
[0058] また、シールド部材となる磁性体を蒸着又は、スパッタリング等の薄膜形成技術を 用いて、基板上に形成することで、基板内に入る磁束の量を減少することができる。 従って、カプセル内視鏡 21に形成される回路が磁石の磁界及び誘導コイルの磁界 による悪!、影響を受けて、誤動作することを防止することができる。
[0059] 図 6は、本実施形態における第 5のカプセル内視鏡の断面構成を示している。
前述した第 1のカプセル内視鏡の構成における体内情報 (画像データ)を通信回路 36及びアンテナ 37を用いて無線 (電波を用いた無線)により送信していた力 この第 5のカプセル内視鏡は、カプセル容器表面に露出する電極 64、 65を設けて、間に被 検体となる体腔組織を通して体内情報となる電流信号を流し、生体内に電界を発生 させる。受信アンテナに代わって、患者の体表面に取り付けた電界センサにより、そ の体内情報を受け取る所謂、電界通信方式を用いた構成である。これ以外の構成部 位は、第 1のカプセル内視鏡と同等であり、同じ参照符号を付して説明を省略する。
[0060] この構成によれば、前述した第 1のカプセル内視鏡が得られる作用効果にカ卩えて、 無線を通信媒体として用いて 、な 、ため、受信装置及びそれらの間の伝送路にかか る影響をなくすことができ、ノイズが重畳しにくぐ安定したクリアな画像を取得すること ができる。通信回路及びアンテナが省略できるため、簡易な構成となり、カプセル容 器のさらなる小型化が実現できる。また、送信回路にスピーカを設けることにより、受 信装置側にマイクロフォンを接続すれば、音波による通信でも同様の作用効果を得 ることがでさる。
[0061] 次に、このように構成されたカプセル型医療装置誘導システムの第 1の制御方法に ついて説明する。
図 7は、図 2に示した第 1のカプセル内視鏡に対して、誘導する際の Y軸方向から 見た磁界における磁力線の一例を示している。この磁界は、誘導コイル Zl、 Z2、 D2 、 D4、 D6及び D8で囲まれた空間内に形成され、その空間内にカプセル内視鏡が 図 6に示す誘導コイル X2から誘導コイル XIの方向(X軸方向)に先端を向けている。
[0062] この磁界内で誘導コイル Z1に、図示するような Z軸方向で上に向力う磁力を発生さ せる。カプセル内視鏡 21は、下方 (誘導コイル Z2側)では、磁界強度が弱ぐ上方が 強くなる磁界強度が発生する。このように磁気勾配が存在する空間内では、カプセル 内視鏡 21内の磁石 42は磁界の強い方向、即ち上方に引き寄せる引力(ここでは、 上昇引力と称する)が働く。
[0063] この上昇引力を受けると、カプセル内視鏡 21は空間内で上昇する。この上昇引力 の強さを誘導制御装置 3で制御することによって、カプセル内視鏡 21に働く重力をキ ヤンセルした状態を作り出すことができる。この時、例えば、誘導コイル D2、 D4に図 7 に示すような磁界を形成して前進する牽引力を発生させる。よって、誘導コイル Z1の 磁界に誘導コイル D2、 D4の磁界を重畳すると、カプセル内視鏡 21は、内視鏡自体 に働く重力をキャンセルしつつ前進する。
[0064] つまり、従来では、カプセル内視鏡 21は体腔組織に自己の重さ(カプセル内視鏡 の質量 X重力加速度)を掛けた状態で移動して 、た。これに対して本実施形態では 、カプセル内視鏡 21は自己の重さを軽減させて、粘性による反力が弱まった状態で 移動することとなるため、従来よりも弱い磁界強度でも同等の移動が可能となる。但し 、この上昇引力は、強く働力せ過ぎると、カプセル内視鏡 21を体腔組織力も必要以 上に浮き上がる。カプセル内視鏡 21が体腔組織からー且浮かんでしまうと、誘導コィ ル Z1に近づくため引力がさらに強まり、今度は急激に誘導コイル Z1に吸い寄せられ 、ユーザが所望した以上に浮き上がってしまう虞がある。
[0065] 図 8のタイミングチャートに示すような制御を行い、この浮き上がり状態を防止しつつ 移動して、且つ体内情報の通信が安定して行う。図 8 (a)は、誘導コイル Z1による Z 軸方向に上昇引力を発生する磁場強度の大きさと発生タイミングを示し、図 8 (b)は、 誘導コイル D2、 D4による X軸方向に牽引する力を発生する磁場強度の大きさと発生 タイミングを示している。さらに、図 8 (c)は、位置検出装置 6がセンスコイル群 5の各 センスコイルから誘導磁界に基づく信号 (位置及び姿勢情報信号)を取得するタイミ ングを示し、図 8 (d)は、カプセル内視鏡 21から受信装置 9に体内情報の送信と休止 又は撮影を行うタイミングを示し、図 8 (e)は、体腔表面と内視鏡の Z方向の位置関係 を示している。
[0066] 本実施形態において、図 8における各動作のタイミングは、カプセル内視鏡 21によ る撮像と画像データの送信を行うタイミングを基準として設定されている。勿論、この ような送信タイミングに限定されるものではなぐ適宜を基準となるタイミングを設定し てもよい。
[0067] まず、カプセル内視鏡 21の位置検出を行い、カプセル内視鏡 21の位置が体腔表 面に沈み込んで(図 8 (e)における nl)、磁界強度が目標値より低い場合には、次の タイミングで誘導コイル Z1の磁界強度を強めて上昇させる (n2)。この時、カプセル内 視鏡 21が上昇し過ぎている場合には、次のタイミングで発生する磁界強度を弱くす る(n3)。尚、図 8 (e)に示す体腔表面とカプセル内視鏡 21の Z方向の位置関係は、 概念的に示しているものであり、実際には、カプセル内視鏡 21は体腔表面にほぼ接 触している状態であり、体腔表面に重みが掛カ ない状態 (又は重さで沈み込んで いない状態)である。
[0068] この時に、誘導コイル D2、 D4に対して、図 7に示すような Z方向の上向きの磁界を 発生させる。この磁界は、誘導コイル X2から誘導コイル XIに向力 方向に磁気勾配 が大きくなり、カプセル内視鏡 21に対しては、 X軸方向に沿って前方に牽引される引 力となる。従って、カプセル内視鏡 21は、誘導コイル Z1の電界により重力がキャンセ ルされた状態で誘導コイル D2、 D4により前方に牽引され、体腔表面とは少ない摩擦 でスムーズに移動する。
[0069] このカプセル内視鏡 21が前進するにつれて、誘導コイル D2、 D4によるカプセル内 視鏡の位置での磁界の勾配は大きくなり、牽引力が増大する。即ち、移動する速度 が速まる。カプセル内視鏡 21を一定の速度で移動させるには、推進力を一定に保つ 必要があるため、図 8 (b)に示すように、誘導コイル D2、 D4に発生する磁界強度を 徐々に小さくする。
[0070] 以上説明したように、カプセル内視鏡 21の位置情報に基づき磁界強度を制御して 、掛カゝる重力をキャンセルした状態を維持させて、カプセル内視鏡 21と体腔内組織 の間に作用する摩擦力を軽減する。その重力のキャンセル状態で、カプセル内視鏡
21を移動させたい方向に傾斜した勾配磁界を発生させることにより、移動に伴う抵抗 力を減少させて誘導する操作を容易なものにすることができ、さらに従来よりも弱い磁 界強度でも同等に移動させることができる。
[0071] 次に、カプセル型医療装置誘導システムの第 2の制御方法について説明する。
この第 2の制御方法は、図 9 (a)、(b)に示すように誘導コイル Z1、D2及び D4に印 加する駆動信号に予め定めた短時間のパルス幅のオン信号を 1つの磁界形成期間 内で印加する回数により、磁界強度が制御する方法である。この方法によって、それ ぞれの誘導コイルでパルス的に磁界を発生させて、その発生する磁界の間隔を制御 することにより磁界強度が制御される。誘導コイル用電源 2に対して、公知なスィッチ ング回路を付加することにより、実現できる。
[0072] このような構成により、各誘導コイル Zl、 D2及び D4は、それぞれパルス的に磁界 を発生し、その発生する磁界の間隔を制御することにより磁界強度が制御される。こ の制御により、誘導コイル用電源の構成を単純にすることができる。また、同等な制 御方式として、オン時間(パルス幅)を制御する PWM (Pulse Width Modulation)制御 方式を適用しても同様に実現できる。
[0073] 次に、カプセル型医療装置誘導システムの第 3の制御方法について説明する。
図 10に示す第 3の制御方法は、前述した第 1の制御方法に対して、異なる誘導コィ ルの組み合わせをそれぞれ駆動して、同様なカプセル内視鏡 21の移動を実現する ものである。図 4に示した第 3のカプセル内視鏡が第 3の制御方法に好適する。
[0074] 前述した第 3のカプセル内視鏡は、磁石 51がカプセル内視鏡の円筒軸 (X軸方向) に沿って磁極 (N極を前方、 S極を後方)を向けて配置されている。磁気誘導コイル 5 2、 53は、交差 (ここでは、直交)し、磁石 51の磁力線の方向に対しても、それぞれが 直交するように配置されている。また、本実施形態における誘導コイル 52、 53は、針 状の磁性体で形成されたコアに巻き線が卷回され、さらにコンデンサ 54、 55がそれ ぞれ接続されている。この 2つの誘導コイル 52、 53は異なる共振周波数を有するよう に、 L成分又は C成分が調整されている。
[0075] このように構成することにより、磁石 51からの磁力線の向きを誘導コイル 52、 53の 長手方向の向きと垂直になるように配置できるため、磁石 51からの磁界の影響を最 小に抑えることができると共に、 2つの磁気誘導コイル 52、 53の方向をそれぞれ検出 することでカプセル内視鏡の方向を求めることができる。
[0076] また、図 10に示すカプセル内視鏡 21に内蔵される磁石の向きは、カプセル内視鏡 21の推進方向(図 10に示す X方向)を向いている力 図 10に示すような磁界を付加 することで、図 7に示す状態と同様の制御を行うことができる。つまり、誘導コイル D4, D8により Z方向(上向き)に向力うほど磁界強度が強くなる勾配磁界を発生させること で、重力に逆らう引力を形成し、誘導コイル XIより X方向(紙面左方向)に行くに従い 、磁界強度が強くなる勾配磁界を発生させ、カプセル内視鏡 21を X方向に重力を軽 減した状態で推進させることができる。
[0077] 次に、図 11を参照して、カプセル内視鏡 21における姿勢制御について説明する。 前述した図 1における磁気誘導装置 1と、図 4に示した第 3のカプセル内視鏡 21を 用いて説明する。
カプセル内視鏡 21の姿勢を水平方向から斜めに傾いた姿勢、例えば、内視鏡先 端部が立ち上がり、後端部が消化官内壁に接するような斜め姿勢の場合について説 明する。この姿勢を取るためには、 14個の誘導コイル群 XI、 X2、 Yl、 Y2、 Zl、 Ζ2 及び、 D1乃至 D8のうち、例えば、誘導コイル Zl、 Z2の組を用いて Z軸方向の上方 向に向力う第 1の磁界と、誘導コイル XI、 X2による X軸方向の紙面左方向に向かう 第 2の磁界とを形成する。尚、誘導コイル Zl、 Z2による第 1の磁界のみでも傾カゝせる ことは可能である。ここで、第 1の磁界と第 2の磁界で合成された磁界が図 11に示す 外部磁界 Hとなる。しかしながら、カプセル内視鏡 21には重力が作用するため、カブ セル内視鏡 21は、外部磁界 Hと平行にはならず、カプセル内視鏡 21の向きの方向 を向くこととなる。この時、磁石 42の磁ィ匕を M、外部磁界を H、 Mと Hのなす角を δ、 カプセル内視鏡 21の質量を m、重力加速度を g、 Z方向とカプセル内視鏡 21の向き とのなす角を Θ、カプセル内視鏡 21の重力を G、カプセル内視鏡 21が上方向を向き Θを変化させたときの回転中心となる支点を P、支点 Pとの距離を 1とする。この時、簡 単のために支点 Pは、カプセル内視鏡 21内の撮像光学系 26が設置されて 、な 、側 の外装端部の半球状形状の中心とすることができる。以上の定義した事項を用いるこ とにより、
[数 1] ( mgl sxn θ
ο = sin—丄 I
H - M ソ
[0078] と表すことができる。これにより、カプセル内視鏡 21を Θ方向に向けるためには、 Θ
= Θ— δ方向に磁界を付加すればよいことになる。この様に誘導コイル群で発生さ せる磁界を制御する。この Θ方向の磁界をカ卩えることにより、カプセル内視鏡 21に掛 力る重力の影響を受けず、所望する方向( Θ方向)に向けることができる。 このような 磁界中に斜め姿勢でカプセル内視鏡 21が存在する場合に、例えば、誘導コイル XI に前方に牽引する引力を発生する電界を形成すると、カプセル内視鏡 2はカプセル 容器 23の後端部のみを消化官内壁に接して、斜め姿勢を保持した状態で前方に移 動する。このような移動は、消化官内上の壁移動経路に多少の凹凸があつたとしても 、容易に乗り越えて移動することができる。さらに、前述した誘導コイル Z1を用いて重 力をキャンセルする電界を重畳させることにより、さらに摩擦力を減少させて移動する ことができる。
[0079] 一方、体腔内に水等が残存していた場合には、重力を上回る浮力が発生する場合 がある。このような状態になると、水に対して比重が重い側が下方を向いた斜め姿勢 となり、所望する箇所の撮像が困難になる虞がある。これに対して、本実施形態では 、誘導コイル群による磁界を形成して、所望する姿勢を実現する。例えば、消化管内 壁上に水が残存し、カプセル内視鏡 21の先端部が浮き上がった場合には、誘導コィ ル XI、 Χ2と誘導コイル Zl、 Ζ2の組を用いて図 12に示すような斜め姿勢を作り出す 。即ち、これらの誘導コイルを用いて、誘導コイル Zl、 Ζ2による Ζ軸下方向に向かう 第 3の磁界と、誘導コイル XI、 Χ2による X軸方向に向力う第 4の磁界とを形成する。こ のような磁界により、浮力でカプセル内視鏡 21の先端部又は後端部が浮き上がった 姿勢になったとしても、容易に姿勢を制御して所望する箇所を撮像することができる。
[0080] 以上説明したように、本発明のカプセル内視鏡システムは、カプセル内視鏡に掛か る重力をキャンセルするための磁界を形成し、移動させる又は姿勢を変化させる磁界 に重畳させて、装置全体を浮き上がらせて体腔表面に接するカプセル内視鏡の接触 面積を減少させて、摩擦抵抗を減少させることにより、カプセル内視鏡を容易に動作 制御でき且つ、重力が影響して移動時及び姿勢の向き操作時に発生する操作者と の感覚的な移動誤差を排除でき、操作量に対応する動作を実現することができる。
[0081] さらに、カプセル内視鏡のデータ送信に同期して位置検出装置及び誘導コイル群 から発生する磁界を制御するため、誘導コイルが発生する磁界の影響を受けず、デ ータ送信と位置検出を行うことができ、カプセル型医療装置誘導システムの安定性が 向上する。
[0082] また、カプセル内視鏡の姿勢を制御することにより、先端を上方に向ける立ち上がり 斜め姿勢を取らせた状態で移動することができ、通過経路上にある体腔表面の凹凸 の存在により移動し難い箇所においても容易に乗り越えることができる。また、このよ うな斜め姿勢で後端部又は先端部を体腔表面に接触させた状態による移動は、カブ セル内視鏡全体を浮き上がらせるための磁界に比べて弱い磁界強度で実現できる ため、誘導コイル用電源の大きな出力を必要とせず、小型化が実現できる。
[0083] 尚、本発明は前述した実施形態に限定されるものではなぐ発明の用紙を変更しな い範囲で種々の変更を行うことができる。また、本発明で説明した実施形態の構成部 位は、必ずしも全て搭載する必要はなぐ実施可能な構成部位のみを利用することも 可能である。
[0084] 本発明は、カプセル型医療装置に対して所望する方向を向くような磁界環境を生 成し、操作に対する重力による移動誤差を排除し且つ、カプセル型医療装置に働く 摩擦抵抗を低減して、低引力において適正に動作するカプセル型医療装置誘導シ ステムを提供することができる。

Claims

請求の範囲
[1] 体内情報を取得する体内情報取得部と、取得した体内情報を出力信号として外部 に出力する通信部と、磁石とを有するカプセル型医療装置と、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界を発生する磁界発生部と、
前記通信部より送出される前記出力信号に同期して、前記磁界発生部を制御する 制御部と、
を有することを特徴とするカプセル型医療装置誘導システム。
[2] 前記制御部は、前記出力信号が送出される期間には、前記磁界発生部の駆動を 停止させることを特徴とする請求項 1に記載のカプセル型医療装置誘導システム。
[3] 体内情報を取得する体内情報取得部と、取得した体内情報を出力信号として外部 に出力する通信部と、磁石とを有するカプセル型医療装置と、
前記カプセル型医療装置の位置を検出する位置検出部と、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界を発生する磁界発生部と、から構成され、
前記制御部は、前記出力信号が同期して、前記磁界発生部を制御し、 前記位置検出部は、前記出力信号に同期して、前記カプセル型医療装置の位置 を検出することを特徴とするカプセル型医療装置誘導システム。
[4] 前記制御部は、前記出力信号が送出される期間には、前記磁界発生部の駆動を 停止させ、前記位置検出部は、前記出力信号が送出される期間にのみ、前記カプセ ル型医療装置の位置を検出することを特徴とする請求項 3に記載のカプセル型医療 装置誘導システム。
[5] 前記磁界発生部から発生させる磁界の大きさを、磁界が発生される継続時間を調 整することにより制御することを特徴とする請求項 3に記載のカプセル型医療装置誘 導システム。
[6] 前記磁界発生部から発生させる磁界の大きさを、磁界パルスの本数を調整すること により制御することを特徴とする請求項 3に記載のカプセル型医療装置誘導システム
[7] 体内情報を取得する体内情報取得部と、取得した体内情報を出力信号として外部 に一定の間隔で出力する通信部と、磁石とを有するカプセル型医療装置と、 前記カプセル型医療装置の位置を検出する位置検出部と、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界を発生する磁界発生部と、
前記出力信号に同期して、前記磁界発生部を制御する制御部と、から構成され、 前記制御部は、前記出力信号が送出されている時に、前記位置検出部により検出 された前記カプセル型医療装置の位置及び姿勢に関する情報を受け取り、前記情 報に基づき、前記磁界発生部から発生させる磁界の方向及び大きさを算出処理し、 前記出力信号が送出されていない時には、前記磁界発生部から磁界を発生するよ うに制御することを特徴とするカプセル型医療装置誘導システム。
[8] 前記磁界発生部の発生する磁界が磁気勾配を有することを特徴とする請求項 7に 記載のカプセル型医療装置誘導システム。
[9] 前記磁界発生部の発生する磁界が、回転磁界であることを特徴とする請求項 7に 記載のカプセル型医療装置誘導システム。
[10] 前記磁界発生部から発生させる磁界の大きさを、磁界が発生される継続時間を調 整することにより制御することを特徴とする請求項 7に記載のカプセル型医療装置誘 導システム。
[11] 前記磁界発生部から発生させる磁界の大きさを、磁界パルスの本数を調整すること により制御することを特徴とする請求項 7に記載のカプセル型医療装置誘導システム
[12] 体内情報を取得する体内情報取得部と、取得した体内情報を出力信号として外部 に出力する通信部と、磁石とを有するカプセル型医療装置と、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界を発生する第 1の磁界発生部と、
前記磁石に作用させ、前記カプセル型医療装置に掛カる重力を軽減するための磁 界を発生する第 2の磁界発生部と、
前記出力信号に同期して前記第 1及び第 2の磁界発生部を制御する制御部と、 を有することを特徴とするカプセル型医療装置誘導システム。
[13] 前記第 2の磁界発生部が前記カプセル型医療装置に掛かる浮力を軽減するため の磁界を発生させることを特徴とする請求項 12に記載のカプセル型医療装置誘導シ ステム。
[14] 前記第 1の磁界発生部と前記第 2の磁界発生部の少なくとも一方から発生させる磁 界の大きさを、磁界が発生される継続時間を調整することにより制御すること特徴とす る請求項 12に記載のカプセル型医療装置誘導システム。
[15] 前記第 1の磁界発生部と前記第 2の磁界発生部の少なくとも一方から発生させる磁 界の大きさを、磁界パルスの本数を調整することにより制御すること特徴とする請求項
12に記載のカプセル型医療装置誘導システム。
[16] 体内情報を取得する体内情報取得部と、取得した体内情報を出力信号として外部 に出力する通信部と、磁石とを有するカプセル型医療装置と、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界と前記磁石に作用させ、前記カプセル型医療装置に掛カる重力を軽減するた めの磁界とを合成した磁界を発生する磁界発生部と、
前記出力信号に同期して前記磁界発生部を制御する制御部と、
を有することを特徴とするカプセル型医療装置誘導システム。
[17] 前記磁界発生部は、
前記磁石に作用させ、前記カプセル型医療装置を目的の方向に移動させるための 磁界と前記磁石に作用させ、前記カプセル型医療装置に掛カる重力を軽減するた めの磁界とを合成した磁界を発生するように構成されたことを特徴とする請求項 16に 記載のカプセル型医療装置誘導システム。
[18] カプセル型医療装置内に設けられた磁石に作用させる磁界により、体腔内で目的 の方向に移動させつつ、該体腔内を観察するカプセル型医療装置を誘導するシス テムの制御方法であって、
前記体腔内で前記カプセル型医療装置が取得した体内情報を外部に出力信号と して送出する時に、
送出される前記出力信号に同期して、前記出力信号が送出される期間は前記磁界 の発生を停止させることを特徴とするカプセル型医療装置誘導システムの制御方法
[19] カプセル型医療装置内に設けられた磁石に作用させる磁界により、検出された位 置に基づき体腔内で目的の方向に移動させつつ該体腔内を観察するカプセル型医 療装置を誘導するシステムの制御方法であって、
前記体腔内で前記カプセル型医療装置が取得した体内情報を外部に出力信号と して送出する時に、送出される前記出力信号に同期して、前記出力信号が送出され る期間は、前記磁界の発生を停止させ、及び前記カプセル型医療装置の位置を検 出することを特徴とするカプセル型医療装置誘導システムの制御方法。
[20] カプセル型医療装置内に設けられた磁石に作用させる磁界により、検出された位 置及び姿勢に基づき、体腔内で目的の方向に移動させつつ該体腔内を観察する力 プセル型医療装置を誘導するシステムの制御方法であって、
前記出力信号が送出されている時には、検出された前記カプセル型医療装置の位 置及び姿勢に関する情報に基づき、発生させる前記磁界の方向及び大きさを算出し 前記出力信号が送出されていない時には、算出結果に基づき前記磁界を発生さ せることを特徴とするカプセル型医療装置誘導システムの制御方法。
[21] カプセル型医療装置内に設けられた磁石に作用させる磁界により、検出された位 置及び姿勢に基づき、体腔内で目的の方向に移動させつつ該体腔内を観察する力 プセル型医療装置を誘導するシステムの制御方法であって、
発生される前記磁界の大きさは、磁界が発生される継続時間を調整することにより 制御するカプセル型医療装置誘導システムの制御方法。
[22] カプセル型医療装置内に設けられた磁石に作用させる磁界により、検出された位 置及び姿勢に基づき、体腔内で目的の方向に移動させつつ該体腔内を観察する力 プセル型医療装置を誘導するシステムの制御方法であって、
発生される前記磁界の大きさは、磁界パルスの本数を調整することにより制御する カプセル型医療装置誘導システムの制御方法。
PCT/JP2006/326146 2005-12-27 2006-12-27 カプセル型医療装置誘導システム及びその制御方法 WO2007077896A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800496316A CN101351143B (zh) 2005-12-27 2006-12-27 胶囊型医疗装置引导***
EP06843528A EP1972253A4 (en) 2005-12-27 2006-12-27 CAPSUED MEDICAL DEVICE GUIDANCE SYSTEM AND CONTROL METHOD
JP2007552971A JP4891924B2 (ja) 2005-12-27 2006-12-27 カプセル型医療装置誘導システム及びその制御方法
US12/147,262 US20080306340A1 (en) 2005-12-27 2008-06-26 Encapsulated medical device guidance system, and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-376277 2005-12-27
JP2005376277 2005-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/147,262 Continuation US20080306340A1 (en) 2005-12-27 2008-06-26 Encapsulated medical device guidance system, and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2007077896A1 true WO2007077896A1 (ja) 2007-07-12

Family

ID=38218110

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/326146 WO2007077896A1 (ja) 2005-12-27 2006-12-27 カプセル型医療装置誘導システム及びその制御方法
PCT/JP2006/326148 WO2007074888A1 (ja) 2005-12-27 2006-12-27 カプセル型医療装置誘導システム及びその制御方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326148 WO2007074888A1 (ja) 2005-12-27 2006-12-27 カプセル型医療装置誘導システム及びその制御方法

Country Status (5)

Country Link
US (2) US20080306340A1 (ja)
EP (4) EP2384687B1 (ja)
JP (2) JP4891924B2 (ja)
CN (3) CN101351143B (ja)
WO (2) WO2007077896A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135545A3 (en) * 2008-06-19 2010-02-17 Olympus Medical Systems Corporation Magnetically guiding system and magnetically guiding method
WO2011118253A1 (ja) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システムおよびカプセル型医療装置の誘導方法
CN102227869A (zh) * 2008-09-26 2011-10-26 西门子公司 用于在工作空间中对磁体进行无接触地磁导航的线圈***
JP2014028307A (ja) * 2008-07-08 2014-02-13 Olympus Medical Systems Corp カプセル型医療装置誘導システム
WO2018230153A1 (ja) * 2017-06-13 2018-12-20 オリンパス株式会社 アンテナホルダ及びアンテナユニット

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462581B (zh) 2005-12-28 2015-11-04 奥林巴斯医疗株式会社 被检体内导入***
JP5006596B2 (ja) * 2006-08-21 2012-08-22 オリンパスメディカルシステムズ株式会社 カプセル内視鏡
EP2062523A4 (en) * 2006-09-14 2015-08-12 Olympus Medical Systems Corp MEDICAL GUIDANCE SYSTEM AND METHOD FOR CONTROLLING A MEDICAL DEVICE
WO2009022667A1 (ja) * 2007-08-13 2009-02-19 Olympus Medical Systems Corp. 体内観察システムおよび体内観察方法
JP5399253B2 (ja) * 2007-09-26 2014-01-29 オリンパスメディカルシステムズ株式会社 被検体内導入システム
DE102007051861B4 (de) * 2007-10-30 2020-03-12 Olympus Corporation Verfahren zur Führung eines Kapsel-Endoskops und Endoskopsystem
DE102008008681A1 (de) 2008-02-12 2009-09-03 Siemens Aktiengesellschaft Fahrwerkstraverse für ein Schienenfahrzeug
JP5121523B2 (ja) * 2008-03-24 2013-01-16 オリンパスメディカルシステムズ株式会社 位置検出システム
DE102008018723B3 (de) * 2008-04-14 2009-07-16 Siemens Aktiengesellschaft Verfahren zur Bewegungssteuerung einer Endoskopiekapsel
JP5248911B2 (ja) * 2008-05-09 2013-07-31 オリンパスメディカルシステムズ株式会社 カプセル型医療装置
JP5415717B2 (ja) * 2008-06-19 2014-02-12 オリンパスメディカルシステムズ株式会社 検査装置およびこれを用いた磁気誘導システム
JP5199020B2 (ja) * 2008-10-17 2013-05-15 オリンパスメディカルシステムズ株式会社 磁気誘導システムおよび磁気誘導システムの作動方法
US8241206B2 (en) * 2008-07-08 2012-08-14 Olympus Medical Systems Corp. System for guiding capsule medical device
US20100010306A1 (en) * 2008-07-08 2010-01-14 Olympus Medical Systems Corp. System for guiding capsule medical device
JP5385034B2 (ja) * 2008-07-08 2014-01-08 オリンパスメディカルシステムズ株式会社 誘導システムおよび誘導方法
JP2010110432A (ja) * 2008-11-05 2010-05-20 Olympus Corp 無線型被検体内情報取得装置
JP4903899B2 (ja) * 2008-11-28 2012-03-28 オリンパスメディカルシステムズ株式会社 カプセル型医療装置誘導システム
DE102009007513B4 (de) * 2009-02-05 2011-02-10 Siemens Aktiengesellschaft Ablösen einer Endoskopiekapsel von einer Oberfläche einer Flüssigkeit
DE102009010286B3 (de) * 2009-02-24 2010-11-25 Siemens Aktiengesellschaft Vorrichtung zum berührungslosen Führen eines Körpers in einem Arbeitsraum nebst zugehöriger Magnetfelderzeugungseinrichtung und zugehörigem magnetischen Körper
WO2010103866A1 (ja) * 2009-03-10 2010-09-16 オリンパスメディカルシステムズ株式会社 位置検出システムおよび位置検出方法
DE102009013352B4 (de) * 2009-03-16 2011-02-03 Siemens Aktiengesellschaft Spulenanordnungen zur Führung eines magnetischen Objekts in einem Arbeitsraum
DE102009013354B4 (de) * 2009-03-16 2011-02-17 Siemens Aktiengesellschaft Spulensystem, medizinische Vorrichtung sowie Verfahren zur berührungslosen magnetischen Navigation eines magnetischen Körpers in einem Arbeitsraum
EP2371263B8 (en) * 2009-11-09 2017-04-12 Olympus Corporation Capsule medical device guidance system
CN102256532B (zh) 2009-11-09 2013-11-06 奥林巴斯医疗株式会社 胶囊型医疗装置用引导***
EP2465408A4 (en) * 2009-11-10 2014-11-05 Olympus Medical Systems Corp GUIDING SYSTEM OF A CAPSULE MEDICAL DEVICE AND METHOD FOR GUIDING A CAPSULE MEDICAL DEVICE
US8684010B2 (en) * 2009-12-08 2014-04-01 Magnetecs Corporation Diagnostic and therapeutic magnetic propulsion capsule and method for using the same
DE102009060514A1 (de) * 2009-12-23 2011-06-30 Siemens Aktiengesellschaft, 80333 Spulensystem und Verfahren zur berührungslosen magnetischen Navigation eines magnetischen Körpers in einem Arbeitsraum
DE102009060608A1 (de) * 2009-12-23 2011-06-30 Siemens Aktiengesellschaft, 80333 Spulensystem und Verfahren zur berührungslosen magnetischen Navigation eines magnetischen Körpers in einem Arbeitsraum
EP2347699B1 (en) * 2010-01-22 2018-11-07 Novineon Healthcare Technology Partners Gmbh Capsule type endoscope including magnetic drive
DE102010006258A1 (de) 2010-01-28 2011-08-18 Siemens Aktiengesellschaft, 80333 Verfahren zur berührungslosen magnetischen Navigation
CN102802496B (zh) * 2010-02-18 2015-04-01 奥林巴斯医疗株式会社 位置检测***以及位置检测方法
JP4897120B2 (ja) * 2010-03-05 2012-03-14 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡起動システム
WO2012102240A1 (ja) * 2011-01-28 2012-08-02 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システムおよび磁界発生装置
DE102011004825B4 (de) * 2011-02-28 2019-05-02 Siemens Healthcare Gmbh Verfahren zum Steuern des Transports einer ein magnetisches Moment aufweisenden Endoskopkapsel
DE102011078500B4 (de) * 2011-07-01 2015-01-15 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Steuerung einer Endoskopkapsel
KR101256408B1 (ko) * 2011-08-25 2013-04-25 전남대학교산학협력단 마이크로로봇시스템 및 관형소화기관 검사용 캡슐형내시경시스템
US10045713B2 (en) 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
US9601930B2 (en) 2012-09-28 2017-03-21 Broadcom Corporation Power transmitting device having device discovery and power transfer capabilities
KR101410214B1 (ko) * 2012-11-23 2014-06-20 전남대학교산학협력단 캡슐형 내시경 구동 제어시스템 및 이를 포함하는 캡슐형 내시경 시스템
CN102973235A (zh) * 2012-11-27 2013-03-20 深圳市资福技术有限公司 一种胶囊内窥镜及其方位控制装置
CN103181748A (zh) * 2012-12-20 2013-07-03 深圳市资福技术有限公司 一种胶囊内窥镜运行姿态的控制***和控制方法
WO2014141251A1 (en) * 2013-03-11 2014-09-18 Given Imaging Ltd. Maneuvering coils setup for maneuvering a swallowable in-vivo device
WO2015061343A1 (en) 2013-10-22 2015-04-30 Rock West Solutions, Inc. System to localize swallowable pill sensor with three transmitting elements
JP6521707B2 (ja) * 2014-07-10 2019-05-29 キヤノン株式会社 穿刺プランニング装置及び穿刺システム
WO2016092926A1 (ja) * 2014-12-08 2016-06-16 オリンパス株式会社 カプセル型内視鏡システム
CN107072478B (zh) * 2015-01-06 2019-04-02 奥林巴斯株式会社 引导装置以及胶囊型医疗装置引导***
CN106572786B (zh) * 2015-03-30 2018-12-18 奥林巴斯株式会社 胶囊型内窥镜***以及磁场产生装置
US10478047B2 (en) * 2016-09-23 2019-11-19 Ankon Medical Technologies (Shanghai) Co., Ltd System and method for using a capsule device
CN211511733U (zh) * 2019-06-17 2020-09-18 深圳硅基智控科技有限公司 胶囊内窥镜的磁控装置
CN110638416B (zh) * 2019-09-29 2022-06-21 北京华亘安邦科技有限公司 一种胶囊内镜的悬浮控制方法及装置
CN111184497B (zh) * 2020-04-08 2020-07-17 上海安翰医疗技术有限公司 胶囊内窥镜控制方法及***
CN112656353A (zh) * 2021-02-01 2021-04-16 河南省中医院(河南中医药大学第二附属医院) 一种防雾型肛肠内窥镜
CN113100690A (zh) * 2021-03-29 2021-07-13 谈斯聪 一种体内微型机器人装置、最优化治疗调控***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003795A1 (en) * 1994-07-25 1996-02-08 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
JP2003260026A (ja) * 2002-03-08 2003-09-16 Olympus Optical Co Ltd 医療用磁気誘導装置
JP2004298560A (ja) * 2003-04-01 2004-10-28 Olympus Corp カプセル内視鏡システム
JP2005087737A (ja) * 2003-09-19 2005-04-07 Siemens Ag 磁気的にナビゲーション可能な装置
JP2005130943A (ja) * 2003-10-28 2005-05-26 Olympus Corp カプセル型医療装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681260A (en) * 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US6432041B1 (en) * 1998-09-09 2002-08-13 Olympus Optical Co., Ltd. Endoscope shape detecting apparatus wherein form detecting processing is controlled according to connection state of magnetic field generating means
US6401723B1 (en) * 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
WO2002082979A2 (en) * 2001-04-18 2002-10-24 Bbms Ltd. Navigating and maneuvering of an in vivo vechicle by extracorporeal devices
DE10142253C1 (de) * 2001-08-29 2003-04-24 Siemens Ag Endoroboter
JP4503930B2 (ja) * 2003-01-30 2010-07-14 オリンパス株式会社 医療装置
JP4091004B2 (ja) * 2003-02-04 2008-05-28 オリンパス株式会社 医療装置誘導システム
JP2004289560A (ja) * 2003-03-24 2004-10-14 Sony Corp 画像記録再生方法および画像記録再生装置
DE10340925B3 (de) * 2003-09-05 2005-06-30 Siemens Ag Magnetspulensystem zur berührungsfreien Bewegung eines magnetischen Körpers in einem Arbeitsraum
DE10341092B4 (de) * 2003-09-05 2005-12-22 Siemens Ag Anlage zur berührungsfreien Bewegung und/oder Fixierung eines magnetischen Körpers in einem Arbeitsraum unter Verwendung eines Magnetspulensystems
DE10346678A1 (de) * 2003-10-08 2005-05-12 Siemens Ag Endoskopieeinrichtung umfassend eine Endoskopiekapsel oder einen Endoskopiekopf mit einer Bildaufnahmeeinrichtung sowie Bildgebungsverfahren für eine solche Endoskopieeinrichtung
JP4515747B2 (ja) * 2003-10-27 2010-08-04 オリンパス株式会社 カプセル型医療装置
US7751866B2 (en) * 2004-03-08 2010-07-06 Olympus Corporation Detecting system of position and posture of capsule medical device
JP5030392B2 (ja) * 2004-06-14 2012-09-19 オリンパス株式会社 医療装置の位置検出システムおよび医療装置誘導システム
CN1332629C (zh) * 2004-09-02 2007-08-22 上海交通大学 主动式肠道内窥镜机器人***
DE102006010730A1 (de) * 2005-03-17 2006-09-28 Siemens Ag Einrichtung zur Positions- und/oder Orientierungsbestimmung eines navigierbaren Objects
DE102007051861B4 (de) * 2007-10-30 2020-03-12 Olympus Corporation Verfahren zur Führung eines Kapsel-Endoskops und Endoskopsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003795A1 (en) * 1994-07-25 1996-02-08 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
JP2003260026A (ja) * 2002-03-08 2003-09-16 Olympus Optical Co Ltd 医療用磁気誘導装置
JP2004298560A (ja) * 2003-04-01 2004-10-28 Olympus Corp カプセル内視鏡システム
JP2005087737A (ja) * 2003-09-19 2005-04-07 Siemens Ag 磁気的にナビゲーション可能な装置
JP2005130943A (ja) * 2003-10-28 2005-05-26 Olympus Corp カプセル型医療装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1972253A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968185B2 (en) 2008-06-19 2015-03-03 Olympus Medical Systems Corp. Magnetically guiding system and magnetically guiding method
US8303485B2 (en) 2008-06-19 2012-11-06 Olympus Medical Systems Corp. Magnetically guiding system and magnetically guiding method
US8419620B2 (en) 2008-06-19 2013-04-16 Olympus Medical Systems Corp. Magnetically guiding system and magnetically guiding method
EP2135545A3 (en) * 2008-06-19 2010-02-17 Olympus Medical Systems Corporation Magnetically guiding system and magnetically guiding method
JP2014028307A (ja) * 2008-07-08 2014-02-13 Olympus Medical Systems Corp カプセル型医療装置誘導システム
US9095261B2 (en) 2008-07-08 2015-08-04 Olympus Medical Systems Corp. System for guiding capsule medical device
CN102227869A (zh) * 2008-09-26 2011-10-26 西门子公司 用于在工作空间中对磁体进行无接触地磁导航的线圈***
JP2012503510A (ja) * 2008-09-26 2012-02-09 シーメンス アクチエンゲゼルシヤフト 作業空間において磁性体を非接触式に磁気ナビゲーションするためのコイルシステム
US8944999B2 (en) 2008-09-26 2015-02-03 Siemens Aktiengesellschaft Coil system for the contactless magnetic navigation of a magnetic body in a work space
WO2011118253A1 (ja) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システムおよびカプセル型医療装置の誘導方法
JP4932971B2 (ja) * 2010-03-26 2012-05-16 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システム
WO2018230153A1 (ja) * 2017-06-13 2018-12-20 オリンパス株式会社 アンテナホルダ及びアンテナユニット
JP6483335B1 (ja) * 2017-06-13 2019-03-13 オリンパス株式会社 アンテナホルダ及びアンテナユニット

Also Published As

Publication number Publication date
CN102688014A (zh) 2012-09-26
JPWO2007077896A1 (ja) 2009-06-11
JP4891924B2 (ja) 2012-03-07
JPWO2007074888A1 (ja) 2009-06-04
CN101351141B (zh) 2011-07-13
JP5042037B2 (ja) 2012-10-03
CN102688014B (zh) 2015-03-18
WO2007074888A1 (ja) 2007-07-05
EP1972253A4 (en) 2010-03-03
US9039606B2 (en) 2015-05-26
US20080294006A1 (en) 2008-11-27
EP2384687A1 (en) 2011-11-09
CN101351141A (zh) 2009-01-21
EP1972255A4 (en) 2010-03-03
EP1972255B1 (en) 2012-03-28
EP1972253A1 (en) 2008-09-24
US20080306340A1 (en) 2008-12-11
CN101351143A (zh) 2009-01-21
EP1972255A1 (en) 2008-09-24
CN101351143B (zh) 2012-07-04
EP2335559A1 (en) 2011-06-22
EP2384687B1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP4891924B2 (ja) カプセル型医療装置誘導システム及びその制御方法
JP4827525B2 (ja) カプセル型医療装置誘導システム
JP2007175188A5 (ja)
JP4709594B2 (ja) 磁気誘導医療システム
JP5385034B2 (ja) 誘導システムおよび誘導方法
US9339170B2 (en) Medical device including self-propelled capsule endoscope
JP4542326B2 (ja) カプセル型医療装置誘導システム
AU2013348680A1 (en) Operation control system of capsule type endoscope, and capsule type endoscope system comprising same
JP2011147785A (ja) 磁気駆動部を含むカプセル型内視鏡
JP2007236962A (ja) カプセル型医療装置誘導システム
WO2016067802A1 (ja) 誘導装置、カプセル型内視鏡誘導システム、及び誘導装置の作動方法
JP6028271B2 (ja) 自走式カプセル内視鏡のヒレ部材および走行制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049631.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007552971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006843528

Country of ref document: EP