WO2007072899A1 - 黄色発光蛍光体及びそれを用いた白色発光素子 - Google Patents

黄色発光蛍光体及びそれを用いた白色発光素子 Download PDF

Info

Publication number
WO2007072899A1
WO2007072899A1 PCT/JP2006/325473 JP2006325473W WO2007072899A1 WO 2007072899 A1 WO2007072899 A1 WO 2007072899A1 JP 2006325473 W JP2006325473 W JP 2006325473W WO 2007072899 A1 WO2007072899 A1 WO 2007072899A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
white
blue
light emitting
Prior art date
Application number
PCT/JP2006/325473
Other languages
English (en)
French (fr)
Inventor
Ryo Yoshimatsu
Original Assignee
Nec Lighting, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Lighting, Ltd. filed Critical Nec Lighting, Ltd.
Priority to US12/158,908 priority Critical patent/US20090309112A1/en
Priority to EP06842981A priority patent/EP1964906A4/en
Publication of WO2007072899A1 publication Critical patent/WO2007072899A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/77068Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a yellow light-emitting phosphor, and a white light-emitting element and a lighting device using such a yellow light-emitting phosphor.
  • LEDs Light emitting diodes
  • LEDs are small, have high power efficiency and high brightness, and have a long service life. Therefore, they are used as lamps, lighting fixtures, and liquid crystal display devices. In recent years, it has been widely used as an illumination device such as a backlight.
  • the method of combining blue, green and red LEDs shown in (a) above is to produce white light by mixing the light of the three primary colors. Although it is simple, it requires three LED chips and has the problem that it is difficult to obtain a uniform emission color that does not depend on the viewing angle.
  • the method using fluorescence excited by the light from the LED shown in (b), (c) and (d) above can obtain white light emission using a single LED. Yes, large light energy with low power consumption It inherits the characteristics of LEDs that can be obtained.
  • Light-emitting elements that generate white light using the methods (b), (c), and (d) above are also called white LEDs and are attracting attention as light-emitting elements for illumination, and are actively developed. .
  • a blue LED using a nitride semiconductor is used, and the blue LED chip emits blue light in a sealing resin surrounding the blue LED chip.
  • JP-A-10-242513 discloses a material in which a fluorescent material that emits yellow, which is a complementary color, is dispersed.
  • YAG yttrium.aluminum.garnet
  • YAG yttrium.aluminum.garnet
  • a phosphor doped with Ce, ie, a YAG: Ce phosphor, is shown in the system acid matrix matrix.
  • Japanese Patent Application Laid-Open No. 11-46015 discloses a white LED formed by forming a non-particulate phosphor layer containing a similar yellow fluorescent material on a blue LED chip.
  • the peak wavelength of the fluorescence from the YAG: Ce phosphor is around 560 nm and the emission of yellowish green light. It is difficult to obtain. For this reason, these white LEDs emit a slightly pale white light, and thus have the problem of poor color reproducibility and low color rendering.
  • white LEDs are used in actual lighting, there is a strong demand for the ability to emit a slightly reddish warm white.
  • JP-T-2000-509912 discloses a three-wavelength type white LED in which a UV-LED, a blue phosphor, a green phosphor, and a red phosphor are combined.
  • this white LED has a transparent resin layer 3 formed in a dome shape on a transparent substrate 1 used as a front panel, and UV LED 5 is placed inside the transparent resin layer 3. Yes.
  • the transparent resin layer 3 is excited by ultraviolet light from the UV—LED 5 to emit red light, green light and Three kinds of phosphor powders 2 emitting blue light are mixed.
  • the surface of the transparent resin layer 3 formed in a dome shape is provided with a layer of a light reflecting material so as to act as the reflecting mirror 4.
  • YO is used as a red-emitting phosphor.
  • the emission wavelength is high at 370nm and the emission efficiency is in the range up to 410nm.
  • the phosphors proposed in Japanese Patent Publication No. 2000-509912 do not contain yellow light-emitting phosphors, and in order to further improve the color rendering of white LEDs, yellow regions are not included. It is necessary to improve the emission intensity in the region.
  • Patent Document 1 JP-A-10-242513
  • Patent Document 2 Japanese Patent Laid-Open No. 11-46015
  • Patent Document 3 Japanese Translation of Special Publication 2000-509912
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-60714
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-235934
  • Patent Document 6 JP-A-10-93146
  • Patent Document 7 Japanese Patent Laid-Open No. 10-65221
  • White light-emitting elements ie, white LEDs and white lasers
  • UV—LEDs and ultraviolet lasers that emit ultraviolet light, blue LEDs and blue lasers as excitation sources
  • white LEDs and white lasers The light emitted from the phosphors used in the past has not been able to obtain a sufficient color tone and has a low color rendering property. Therefore, when illumination is performed using a conventional white light emitting element, the object may appear different from the original color depending on the color of the object.
  • Conventional white light-emitting elements do not have sufficient characteristics suitable for lighting for commercial displays and household lighting. Hereinafter, it will be described that the conventional white light emitting element does not have sufficient color rendering properties.
  • the blue light, the green light emitting phosphor and the red light emitting phosphor are excited using ultraviolet rays from UV-LEDs, and blue light from these phosphors is emitted.
  • white light is obtained from green light and red light, it is difficult to improve color rendering because the light emission intensity in the yellow wavelength region is insufficient.
  • the special color rendering index R9 (red) is low.
  • the special color rendering index here is defined in JIS (Japanese Industrial Standards) Z8726 for the evaluation of the color rendering properties of the light source, and has seven types of test colors that correspond to realistic object colors. Is a quantitative evaluation of color appearance under the light source under test. The value of the special color rendering index is displayed for each test color.
  • white light emission is obtained from blue and its complementary color.
  • blue LED and its blue light are absorbed to emit yellow light (Y, Gd) (Al, Ga) O: Ce 3
  • JP 2005-60714 A and JP 2005-235 934 A disclose a white light emitting element using a blue light source and a yellow light emitting phosphor. It is disclosed that warm white light emission can be obtained by mixing phosphors having the above light emission.
  • an object of the present invention is to provide a novel yellow light-emitting phosphor useful in constructing a white light-emitting element having high color rendering properties.
  • Another object of the present invention is to provide a white light emitting device having such a yellow light emitting phosphor. Means for solving the problem
  • the yellow light-emitting phosphor of the present invention is represented by the general formula Ca_AlSiN: Eu, and has calcium a), aluminum (A1), silicon (Si), europium (Eu), and nitrogen (N) forces. .
  • the range of X in the above general formula is preferably 0.001 ⁇ x ⁇ 0.15.
  • a white LED that emits warm, light bulb-colored white light can be configured.
  • the white light emitting device of the present invention is a white light emitting device that emits white light by combining blue light and light emitted from a phosphor that emits a complementary color of blue, and the yellow light of the present invention is used as the phosphor.
  • a luminescent phosphor is used.
  • the white light emitting device of the present invention can be used to obtain a warm white color.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a white LED.
  • FIG. 2 is a diagram showing excitation spectra of YAG: Ce and Ca AlSi N: Eu.
  • FIG. 3 is a diagram showing emission spectra of YAG: Ce and Ca AlSi N: Eu.
  • FIG. 4 is a diagram showing the reflection spectrum of Ca AlSi4N: Eu.
  • Figure 5 shows the CIE of the emission spectra of YAG: Ce and Ca AlSi N: Eu.
  • FIG. 6 is a diagram showing an emission spectrum obtained when the value of x is changed in the yellow light emitting phosphor Ca AlSi N: Eu.
  • a yellow light-emitting phosphor represented by the general formula Ca_AlSiN: Eu was found.
  • a yellow light emitting phosphor composed of CaAlSi N: Eu has an ultraviolet light having a wavelength of about 300 to 500 nm, an ultraviolet light having an excitation band in the blue wavelength band, and a yellow light having an emission peak in the vicinity of about 588 nm. It is a yellow-emitting phosphor that emits light.
  • the yellow light emitting phosphor represented by the general formula Ca AlSi N: Eu has an excitation band in the wavelength band of 300 to 500 nm, and therefore has an emission peak in the wavelength region of 300 to 500 nm.
  • Yellow light can be emitted by the light emitting element.
  • this yellow light-emitting phosphor for example, an ultraviolet LED that emits ultraviolet light with a wavelength of 365 nm, an ultraviolet LED that emits light in the ultraviolet region around 400 nm, and a GaN-based blue light with a wavelength of around 400 to 500 nm.
  • Green-to-pure green LED can emit light with a high efficiency yellow with a peak around 588 nm.
  • a self-light emitting element such as an ultraviolet light emitting lamp, an organic EL (Electroluminescence) element, and an inorganic EL element can be used in addition to the LED and the laser diode.
  • the light source may be a combination of a self-luminous element and a phosphor that emits ultraviolet light or blue light when excited by light from the self-luminous element.
  • the emission peak wavelength of a phosphor emitting yellow light composed of the general formula Ca AlSi N: Eu is around 588 nm, and the optimum complementary color for light of this peak wavelength is blue with a wavelength power of about 40 to 475 nm. It is. Since such a wavelength region is a light emission region of a general blue LED, white light that is warmer than before can be obtained by combining a yellow light-emitting phosphor with Ca AlSi N: Eu power and a blue LED. be able to.
  • a blue LED is used as a light source for exciting the yellow light emitting phosphor
  • a light emitting element emitting blue light having a wavelength of 440 to 475 nm and a yellow light emitting phosphor may be combined, or A phosphor that emits blue light having a wavelength of 440 to 475 nm upon receiving ultraviolet light may be combined with this yellow light-emitting phosphor.
  • a light emitting element such as an inorganic EL element or an organic EL element can be used as a light emitting element that emits blue light.
  • inorganic EL elements or organic EL elements emit surface light. Therefore, if the optimal emission wavelength can be obtained with these EL elements, it can be said that the light-emitting element is optimal for a lighting device.
  • the color rendering property is obtained by blending the yellow light emitting phosphor with the red light emitting phosphor and the green light emitting phosphor.
  • a light emitting material having a main emission peak wavelength in a wavelength region of 600 to 660 nm such as CaS: Eu, (Ca, Sr) S: Eu, Ca Si N: Eu, CaAlSiN: Use Eu etc.
  • the green light emitting phosphor a light emitting material having a main light emission peak wavelength in a wavelength range of 500 to 560 nm, for example, BaMgAl 2 O 3: (Eu, Mn), SrGa S: Eu,
  • the color rendering property as a white light source is further improved by further adding a red light emitting phosphor having an emission peak wavelength of 600 to 660 nm and a green light emitting phosphor having an emission peak wavelength of 500 to 560 nm.
  • white light can be obtained even by using a light emitting element that emits ultraviolet light, such as a UV LED, an ultraviolet light emitting laser, an ultraviolet lamp, a blue light emitting phosphor, and the yellow light emitting phosphor of the present invention.
  • a light emitting element that emits ultraviolet light such as a UV LED, an ultraviolet light emitting laser, an ultraviolet lamp, a blue light emitting phosphor, and the yellow light emitting phosphor of the present invention.
  • the blue light emitting phosphor used in this case emits blue light when excited by ultraviolet rays from the light emitting element, and has a light emission peak wavelength in the vicinity of 440 to 470 nm as in the case of the blue LED described above. Preferred to have.
  • Examples of such blue light emitting phosphors include (Sr, Ca, Ba) (PO) Cl: Eu, (Sr, Ca, Ba, Mg).
  • the color rendering property as a white light emitting element can be improved by further blending the red light emitting phosphor and the green light emitting phosphor with respect to the yellow light emitting phosphor.
  • the red light emitting phosphor and the green light emitting phosphor used in this case the above-described red light emitting phosphor and green light emitting phosphor can be used.
  • the yellow light-emitting phosphor and the ultraviolet light-emitting element of the present invention are used, the color rendering is improved as in the case of combining the blue light-emitting element and the yellow light-emitting phosphor.
  • a power such as calcium nitride (Ca N) is used.
  • Ruthenium compound, aluminum nitride (A1N), silicon nitride (Si N), and europium oxide is used as a raw material for the synthesis of the yellow light-emitting phosphor of the present invention.
  • the ruthenium compound may be obtained by nitriding metallic calcium.
  • single-pium compounds can be obtained by nitriding metallic europium.
  • firing may be performed in an ammonia atmosphere.
  • firing may be performed in a high-pressure atmosphere of about 10 atm or less of nitrogen gas. Further, the obtained phosphor powder may be refired.
  • FIG. 2 shows the excitation spectra of YAG: Ce (comparative example), which is a conventional yellow light-emitting phosphor, and Ca AlSi N: Eu (example), which is a yellow light-emitting phosphor of the present invention.
  • the yellow light-emitting phosphor of the present invention is efficiently excited by light in the wavelength region of 300 to 500 nm and is therefore suitable for use in combination with a UV-LED or a blue LED. .
  • Fig. 3 shows the measurement results of the emission spectra of YAG: Ce (comparative example), which is a conventional yellow-emitting phosphor, and CaAlSiN: Eu (example), which is a yellow-emitting phosphor of the present invention.
  • the yellow light-emitting phosphor of the present invention has a light emission peak wavelength around 584 nm, and the emission intensity in the red region, which is a longer wavelength component, is stronger than that of the YAG: Ce phosphor.
  • Table 1 shows YAG: Ce phosphor and Ca AlSi N
  • the degree coordinate value is calculated from the emission spectrum of FIG. Also from the chromaticity coordinate values, it can be seen that the yellow light-emitting phosphor of the present invention emits yellow light with more redness.
  • Fig. 4 shows the result of measuring the reflection spectrum of the Ca AlSi N: Eu phosphor.
  • This reflection spectrum suggests that this phosphor absorbs light having a wavelength of 550 nm or less, that is, excited by light having a wavelength of 550 nm or less.
  • color LED a blue LED with CIE chromaticity coordinates (0.130, 0.075) was used.
  • the yellow light-emitting fluorescent material of the present invention is combined with a blue LED, a UV-LED, or the like. By combining, it can be used to construct a white light emitting element.
  • the basic shape of such a white light emitting element is disclosed in, for example, JP-A-10-242513, JP-A-11-46015, JP-A-2005-60714, JP-A-2005-235934, JP-A-5-235934. 10-93146 and JP-A-10-65221.
  • a white light emitting element can also be obtained by combining a light emitting element other than an LED, for example, a blue light emitting laser, an ultraviolet lamp emitting ultraviolet light, an excimer laser emitting ultraviolet light, and the like with the yellow light emitting phosphor of the present invention.
  • a white light emitting element may be configured by combining a planar light emitting element such as an inorganic EL element or an organic EL element, which has been actively developed in recent years, and the yellow light emitting phosphor of the present invention.
  • the white light-emitting element of the present invention when used to excite the yellow light-emitting phosphor is a point light source LED or laser element, the light from the light source is used. It is necessary to scatter, but when a planar light emitting element is used as an excitation light source, it is not necessary to scatter light, or light is scattered by providing a concave surface on the surface of the electrode of the planar light emitting element. Can do. Therefore, the use efficiency of light may be further improved by using a planar light emitting element as an excitation light source.
  • the white light-emitting element of the present invention can be used as a lighting device in a general home or a medical lighting device, and can also be used as a backlight light source in a liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 新規の黄色発光蛍光体は、一般式Ca1-xAlSi4N7:Euxで表され、カルシウム(Ca)、アルミニウム(Al)、シリコン(Si)、ユーロピウム(Eu)、窒素(N)からなる。上記一般式におけるxの範囲を0.001<x≦0.15とすることが好ましい。この黄色発光蛍光体は、青色光によって励起されて青色の補色である黄色光を発光するので、青色発光素子と組み合わせることにより、温かみのある白色光を発生するために用いることができる。

Description

明 細 書
黄色発光蛍光体及びそれを用いた白色発光素子
技術分野
[0001] 本発明は、黄色発光蛍光体と、そのような黄色発光蛍光体を用いた白色発光素子 及び照明装置とに関する。
背景技術
[0002] 発光ダイオード(LED : Light Emitting Diode)は、小型で電力効率が高ぐ高 輝度であって、かつ、長寿命であることから、ランプ、照明器具などとして、さらには液 晶表示装置のバックライト等の照明装置として、近年、広く利用されるようになってき ている。
[0003] LED自体は単一の波長ピークを有する光源である力 そのような LEDを白色ある いは昼光色光源として用いることが検討され、 LEDを用いた白色発光素子が開発さ れて ヽる。 LEDを用いる白色発光素子を実現する方法としては:
(a)青色 '緑色'赤色の 3種類の LEDを組み合わせる;
(b)青色 LEDと、青色 LEDからの青色光によって青色の補色である黄色を発光す る蛍光材料とを組み合わせる;
(c)紫外線 LEDと、紫外線 LEDからの紫外線によってそれぞれ青色、緑色、赤色 を発光する 3種類の蛍光材料とを組み合わせる;
(d)青色 LEDと、青色 LEDの発光を受けて赤色 ·緑色を発光する蛍光材料を組み 合わせる;
などの方法が検討されて 、る。
[0004] 上記 (a)に示した青色 ·緑色 ·赤色の各色の LEDを組み合わせる方法は、三原色 のそれぞれの光を混合して白色光を生成するものであると 、う点で動作原理自体は 単純なものであるが、 3個の LEDチップを必要とし、また、見る角度に依存しない均 一な発光色を得ることは難しい、という課題を有する。これに対し、上記 (b) , (c) , (d )に示す、 LEDからの光によって励起される蛍光を用いる方法は、単一の LEDを用 いて白色の発光を得ることができるものであり、低消費電力で大きな光エネルギーを 得られるという LEDの特徴を引き継ぐものである。上記 (b) , (c) , (d)の方法を用い て白色光を発生する発光素子は、白色 LEDとも呼ばれて照明用の発光素子として 注目されており、活発な開発がなされている。
[0005] 上記 (b)のタイプの白色 LEDとして、窒化物半導体を用いた青色 LEDを使用し、 そのような青色 LEDチップを包囲する封止榭脂中に、青色 LEDの発光を受けて青 色の補色となる黄色を発光する蛍光材料を分散させたものが、例えば、特開平 10— 242513号公報に開示されている。この公報では、黄色蛍光材料の一例として、(Y, Gd) (Al, Ga) O の組成式で知られる YAG (イットリウム.アルミニウム.ガーネット)
3 5 12
系酸ィ匕物母体格子中に Ceをドープした蛍光体すなわち YAG: Ce蛍光体が示され ている。特開平 11— 46015号公報には、同様の黄色蛍光材料を含む非粒子性状 の蛍光体層を青色 LEDチップ上に成膜して形成された白色 LEDが開示されて 、る
[0006] しかしながら、上記構成の白色 LEDでは、 YAG : Ce蛍光体からの蛍光のピーク波 長が 560nm付近であって黄緑色の発光であるために、可視光領域の長波長側の発 光が得られにくい。そのためこれらの白色 LEDは、やや青白い白色の発光となるの で、色再現性が悪ぐ演色性が低い、という課題を有する。実際の生活照明に白色 L EDを用いる場合には、やや赤みを帯びた暖色系の白色を発光できることが強く求め られている。
[0007] これに対し、上記 (c)に示す、紫外線 LED (UV-LED)と青色発光蛍光体、緑色 発光蛍光体及び赤色発光蛍光体を組み合わせた 3波長型の白色 LED、及び、上記 (d)に示す、青色 LEDに緑色蛍光体及び赤色蛍光体を組み合わせる 3波長型の白 色 LEDは、上記 (b)に示す 2波長型の白色 LEDが有する課題を解決するために開 発されているものである。
[0008] 特表 2000— 509912号公報には、 UV— LEDと青色蛍光体と緑色蛍光体と赤色 蛍光体とを組み合わせた 3波長型の白色 LEDが開示されている。この白色 LEDは、 図 1に示すように、前面パネルとして用いられる透明基板 1上に透明榭脂層 3をドーム 状に形成し、透明榭脂層 3の内部には UV— LED5が配置されている。透明榭脂層 3 には、 UV— LED5からの紫外光によって励起されてそれぞれ赤色光、緑色光及び 青色光を発光する 3種類の蛍光体粉末 2が混入されている。また、ドーム状に形成さ れている透明榭脂層 3の表面は、反射鏡 4として作用するよう、光反射性の材料の層 が設けられている。特表 2005— 509912号公報では、赤色発光蛍光体として Y O
2 2
S :Eu3+等が例示され、青色発光蛍光体として(Ba, Sr, Ca, Mg) (PO ) CI: Eu2
10 4 5 2
+や BaMgAl O : Eu2+等が例示され、緑色発光蛍光体として ZnS : (Cu, Al)や B
10 17
aMgAl O : (Eu, Mn)等が例示されている。ここで用いられている UV—LED5は
10 17
、発光波長が 370nm力も 410nmまでの範囲で高い発光効率を有している。しかし ながら、特表 2000 - 509912号公報にぉ ヽて提案されて ヽる蛍光体の中には黄色 発光蛍光体が含まれておらず、白色 LEDのさらなる演色性改善のためには、黄色領 域での発光強度の改善が必要である。
[0009] 以下、本明細書中で引用した文献を列挙する。
特許文献 1 :特開平 10— 242513号公報
特許文献 2:特開平 11—46015号公報
特許文献 3:特表 2000 - 509912号公報
特許文献 4:特開 2005— 60714号公報
特許文献 5:特開 2005 - 235934号公報
特許文献 6:特開平 10— 93146号公報
特許文献 7 :特開平 10— 65221号公報
発明の開示
発明が解決しょうとする課題
[0010] 紫外線を発光する UV— LED及び紫外線レーザや、青色 LED及び青色レーザな どを励起源とした白色発光素子 (すなわち、白色 LED及び白色レーザなど)は、それ らにお!/、て従来から使用されて!/、る蛍光体による発光では十分な色調が得られず、 演色性の低いものとなっていた。したがって、従来の白色発光素子を用いて照明を 行った場合には、物体の色によってはその物体が本来の色とは異なる色に見えてし まう場合がある。従来の白色発光素子は、商品のディスプレー用の照明、家庭の照 明用途に対して適した十分な特性を有していない。以下に、従来の白色発光素子が 十分な演色性を有しな 、ことにつ 、て説明する。 [0011] 上記 (c)に示す白色発光素子では、 UV— LEDからの紫外線を用いて青色発光蛍 光体、緑色発光蛍光体及び赤色発光蛍光体を励起させ、これらの蛍光体からの青 色光、緑色光及び赤色光から白色光を得ているが、黄色波長領域での発光強度が 不足するため、演色性を高めることが難しい。特に、特殊演色評価数である R9 (赤) が低いことが問題である。ここでいう特殊演色評価数とは、光源の演色性の評価のた めに JIS (日本工業規格) Z8726において定められたものであって、現実的な物体の 色に対応した 7種類の試験色について、試験対象の光源の下での色の見え方を定 量的に評価するものである。特殊演色評価数の値は、個々の試験色ごとに表示され る。
[0012] 上記 (d)に示す白色発光素子では、青色とその補色とから白色の発光を得る。ここ で、青色 LEDとその青色光を吸収して黄色を発光する (Y, Gd) (Al, Ga) O : Ce3
3 5 12
+蛍光体 (YAG: Ce蛍光体)との組み合わせを用いる場合、蛍光体から得られる黄色 力 補色として最適な波長よりも短波長側にシフトした波長領域のものであるために、 赤色波長領域での発光強度が低く、充分な演色性を得ることができな 、。
[0013] これらの点を改善するものとして、特開 2005— 60714号公報ゃ特開 2005— 235 934号公報には、青色光源と黄色発光蛍光体とを用いる白色発光素子において、黄 赤色あるいは赤色の発光を有する蛍光体を混ぜることで、温かみのある白色発光が 得られることが開示されている。例えば特開 2005— 60714号公報には、 YAG系の 蛍光体に対し、 610〜614nmにピークを持つ橙色と黄色との間の色調色を発光する 蛍光体 Ca Si N: Eu (X=0. 01〜0. 03)を混ぜることで、暖かみのある白色発
2-x 5 8
光が得られることが開示されている。
[0014] このように、励起光の補色を発光する蛍光体に対し、さら、黄赤色あるいは赤色の 発光を有する蛍光体を混ぜることで暖かみのある白色の発光が得られるが、 2種類の 蛍光体を使う必要があると 、う課題がある。
[0015] そこで本発明の目的は、演色性の高い白色発光素子を構成する際に有用な新規 の黄色発光蛍光体を提供することにある。
[0016] 本発明の別の目的は、そのような黄色発光蛍光体を有する白色発光素子を提供す ることにめる。 課題を解決するための手段
[0017] 本発明の黄色発光蛍光体は、一般式 Ca _ AlSi N: Euで表され、カルシウムお a)、アルミニウム (A1)、シリコン(Si)、ユーロピウム (Eu)、窒素(N)力もなる。本発明 の黄色発光蛍光体においては、上記一般式における Xの範囲を 0. 001 < x≤0. 15 とすることが好ましい。
[0018] 本発明の黄色発光窒化物蛍光体を用いることで、暖かみのある電球色の白色光を 発光する白色 LEDを構成することができる。
[0019] また本発明の白色発光素子は、青色光と青色の補色を発光する蛍光体からの発光 とを組み合わせて白色光を発光する白色発光素子であって、蛍光体として、本発明 の黄色発光蛍光体を使用する。本発明の白色発光素子は、暖かみのある白色を得 るために用いることができる。
図面の簡単な説明
[0020] [図 1]図 1は、白色 LEDの構成の一例を示す模式断面図である。
[図 2]図 2は、 YAG : Ceと Ca AlSi N: Eu の励起スペクトルを示す図である。
0. 97 4 7 0. 03
[図 3]図 3は、 YAG : Ceと Ca AlSi N: Eu の発光スペクトルを示す図である。
0. 97 4 7 0. 03
[図 4]図 4は、 Ca AlSi4N: Eu の反射スペクトルを示す図である。
0. 97 7 0. 03
[図 5]図 5は、 YAG : Ceと Ca AlSi N: Eu のそれぞれの発光スペクトルの CIE
0. 97 4 7 0. 03
色度座標での位置を示す図である。
[図 6]図 6は、黄色発光蛍光体 Ca AlSi N: Euにおいて、 xの値を変えたときに得 られた発光スペクトルを示す図である。
符号の説明
[0021] 1 透明基板
2 蛍光体粉末
3 透明榭脂層
4 反射鏡
5 UV-LED
発明を実施するための最良の形態 [0022] 本発明者らは黄色発光蛍光体の研究開発を重ねた結果、カルシウム (Ca)、アルミ -ゥム (A1)、シリコン(Si)、ユーロピウム(Eu)、窒素(N)からなり、一般式 Ca _ AlSi N: Euで表される黄色発光蛍光体を見い出した。後述するように、 Ca AlSi N: Euからなる黄色発光蛍光体は、波長がおよそ 300〜500nmの紫外力も青色の波 長帯域に励起帯を有し、約 588nm付近に発光ピークを有する黄色光を発光する黄 色発光蛍光体である。
[0023] 一般式 Ca AlSi N :Euで表される黄色発光蛍光体は、 300〜500nmの波長 帯域に励起帯を持って 、るために、 300〜500nmの波長領域内に発光ピークを持 つた発光素子によって、黄色の発光を起こすことができる。この黄色発光蛍光体に依 れば、例えば、波長 365nmの紫外線を発光する紫外 LED、波長 400nm前後の紫 外領域の光を発光する紫外 LED、及び波長 400〜500nm付近の発光を持つ GaN 系青緑色〜純緑色 LEDの発光を受けて、波長約 588nm付近にピークを有する黄 色を高効率で発光することができる。本発明の黄色発光素子を励起するための光源 としては、 LED、レーザダイオードのほかに、紫外線発光ランプ、有機 EL (Electrol uminescence)素子及び無機 EL素子のような自発光素子を用いることができる。さ らには、自発光素子とそのような自発光素子からの光によって励起されて紫外光ある いは青色光を発光する蛍光体とを組み合わせた光源であってもよ 、。
[0024] 一般式 Ca AlSi N :Euからなる黄色を発光する蛍光体の発光ピーク波長は 58 8nm付近であるが、このピーク波長の光に対する最適な補色は、波長力 40〜475 nm程度の青色である。このような波長領域は、一般的な青色 LEDの発光領域であ るので、 Ca AlSi N: Eu力 なる黄色発光蛍光体と青色 LEDとを組み合わせる ことによって、従来よりも暖かみのある白色光を得ることができる。ここでは、黄色発光 蛍光体を励起するための光源として青色 LEDを用いる場合を説明したが、波長が 4 40〜475nmの青色を発光する発光素子と黄色発光蛍光体とを組み合わせてもよく 、あるいは紫外光を受けて波長 440〜475nmの青色を発光する蛍光体とこの黄色 発光蛍光体とを組み合わせてもよい。この場合も、青色光を発光する発光素子として 、無機 EL素子、有機 EL素子等の発光素子を用いることができる。無機 EL素子ある いは有機 EL素子は、 LEDのような点光源の発光素子とは異なり、面発光させること ができるので、それらの EL素子によって最適な発光波長が得られる場合には、照明 装置として最適な発光素子であると!/ヽえる。
[0025] 青色 LEDと本発明の黄色発光蛍光体とを組み合わせて白色発光素子を構成する 場合、黄色発光蛍光体に対し、赤色発光蛍光体と緑色発光蛍光体とをブレンドする ことによって、演色性をさらに向上させることができる。この際に用いられる赤色発光 蛍光体としては、波長 600〜660nmの領域に主発光ピーク波長を有する発光材料 、例えば、 CaS :Eu、 (Ca, Sr) S :Euや、 Ca Si N: Eu、 CaAlSiN: Eu等を用いる
2 5 8 3
ことができる。また、緑色発光蛍光体としては、波長 500〜560nmの領域に主発光ピ ーク波長を有する発光材料、例えば、 BaMgAl O : (Eu, Mn)や、 SrGa S: Eu、
10 17 2 4
SrAl O: Eu、 Ba SiO: Eu等を用いることができる。このように、黄色発光蛍光体に
2 4 2 4
対し、発光ピーク波長が 600〜660nmの赤色発光蛍光体と発光ピーク波長が 500 〜560nmの緑色発光蛍光体とをさらに加えることで、白色光源としての演色性がさら に改善される。
[0026] さらに、紫外線を発光する発光素子、例えば、 UV— LED、紫外線発光レーザ、紫 外線ランプ等と、青色発光蛍光体と、本発明の黄色発光蛍光体とを用いても白色光 を得ることができる。この際に用いる青色発光蛍光体は、発光素子からの紫外線によ つて励起されて青色光を発光するものであり、上述の青色 LEDの場合と同様に、 44 0〜470nm付近に発光ピーク波長を有するものであることが好ま 、。そのような青 色発光蛍光体としては、例えば、(Sr, Ca, Ba) (PO ) Cl:Eu、 (Sr, Ca, Ba, Mg
10 4 5
) (PO ) CI: Eu、 BaMgAl O : Eu等を用いることができる。これらの場合であつ
10 4 5 10 17
ても、黄色発光蛍光体に対し、赤色発光蛍光体と緑色発光蛍光体とをさらにブレンド することによって、白色発光素子としての演色性を向上させることができる。この際に 用いる赤色発光蛍光体及び緑色発光蛍光体としては、上述の赤色発光蛍光体及び 緑色発光蛍光体を用いることができる。このように、本発明の黄色発光蛍光体と紫外 線発光素子とを使用する場合も、青色発光素子と黄色発光蛍光体とを組み合わせる 場合と同様に、演色性の改善が行なわれる。
[0027] 次に、本発明に基づく黄色発光蛍光体の製造方法について説明する。
[0028] 本発明の黄色発光蛍光体合成の原料としては、窒化カルシウム(Ca N )などの力 ルシゥム化合物と、窒化アルミニウム (A1N)と、窒化ケィ素(Si N )と、酸化ユーロピ
3 4
ゥム(Eu O )などのユーロピウム化合物とが用いられてる。なお、ここで用いられる力
2 3
ルシゥム化合物は、金属カルシウムを窒化させることによって得てもよい。同様に、ュ 一口ピウム化合物も、金属ユーロピウムを窒化させることによって得てもょ 、。
[0029] これらの原材料は、本発明の黄色発光蛍光体の組成式に従って秤量、採取し、乾 式で十分良く混合される。その後、この混合物をカーボンルツボゃカーボントレイ、窒 化ホウ素ルツボゃ窒化ホウ素トレイなどの耐熱容器に充填し、水素—窒素を混合さ せた還元雰囲気中で 1500°C〜2000°Cで 3〜10時間で焼成し、得られた焼成物を 粉砕し、その後、洗浄、乾燥、篩い分けなどの工程を実施することによって、本発明 の黄色発光蛍光体が得られる。なお、焼成時の水素 窒素の混合比は、窒素に対し て 10%〜90%の水素雰囲気とすることが好ましぐ窒素:水素 = 1: 3となる混合比が より好ましい。水素ガスと窒素ガスとの混合雰囲気下で焼成を行う代わりに、アンモ- ァ雰囲気中で焼成を行うようにしてもよい。また、窒素ガスを 10気圧以下程度の高圧 雰囲気にして焼成を行ってもよい。また、得られた蛍光体粉末を再焼成してもよい。 実施例
[0030] 以下、本発明の黄色発光蛍光体について、実施例に基づいてさらに詳しく説明す る。
[0031] 図 2は、従来の黄色発光蛍光体である YAG : Ce (比較例)と本発明の黄色発光蛍 光体である Ca AlSi N: Eu (実施例)のそれぞれの励起スペクトルについての
0. 97 4 7 0. 03
測定結果を対比して示している。図 2に示されるように、本発明の黄色発光蛍光体は 、波長 300〜500nmの領域の光で効率よく励起され、したがって、 UV— LEDや青 色 LEDと組み合わせて使用するのに適している。
[0032] 従来の YAG系の蛍光体では、その励起スペクトルにおいて、青色レーザの発光ピ ークである波長 470nm近傍に急峻なスペクトル構造が存在する。このため、青色 LE Dと YAG系の黄色発光蛍光体とを組み合わせた場合には、青色 LEDの発光波長の ばらつきによって、色ずれが発生することがある。し力しながら、一般式 Ca AlSi N : Eu (0. 001 <x≤0. 15)で表される本発明の黄色発光蛍光体の励起スペクトル では、従来の YAG系の蛍光体におけるもののような波長 470nm付近での急峻な構 造が存在しない。本発明の黄色発光蛍光体を用いることにより、励起光源として用い る青色 LEDの発光波長のばらつきにもかかわらず白色光における色ずれの発生が 防止される。
[0033] 図 3は、従来の黄色発光蛍光体である YAG : Ce (比較例)と本発明の黄色発光蛍 光体である Ca AlSi N : Eu (実施例)のそれぞれの発光スペクトルの測定結
0. 97 4 7 0. 03
果を対比して示している。図 3からは、本発明の黄色発光蛍光体は、波長 584nm付 近に発光ピーク波長を有しており、 YAG : Ce蛍光体と比べ、より長波長成分である 赤色領域の発光強度が強 、ことが分かる。表 1は、 YAG: Ce蛍光体と Ca AlSi N
0. 97 4
: Eu 蛍光体のそれぞれにつ!/、ての発光色の CIE色度座標を示して!/、る。この色
7 0. 03
度座標値は、図 3の発光スペクトルカゝら計算されたものである。色度座標値からも、本 発明の黄色発光蛍光体が、より赤みが力つた黄色発光を呈することがわかる。
[0034] [表 1]
Figure imgf000011_0001
[0035] 図 4は、 Ca AlSi N : Eu 蛍光体の反射スペクトルを測定した結果を示してい
0. 97 4 7 0. 03
る。この反射スペクトルから、この蛍光体が 550nm以下の波長の光を吸収する、すな わち 550nm以下の波長の光により励起されることが示唆される。
[0036] 次に、青色 LEDとその補色関係にある黄色を発光する蛍光体とを組み合わせた白 色 LEDにつ 、て、黄色発光蛍光体として従来の YAG: Ceを用いた場合と本発明の 黄色発光蛍光体 Ca AlSi N: Eu を用いた場合とを対比させて説明する。青
0. 97 4 7 0. 03
色 LEDとしては、 CIE色度座標(0. 130, 0. 075)の青色 LEDを用いた。
[0037] 図 5及び表 1に示される、蛍光体の CIE色度座標値と黒体輻射上の白色色度値か ら、 YAG : Ceを用いて構成された白色 LEDでは、白色色度が(0. 27, 0. 28)であ つて青色が力つた白色光が得られるのに対し、本発明の黄色発光蛍光体 Ca A1S
0. 97 i N : Eu を用いた場合には、白色色度 (0. 43, 0. 41)である電球色の白色が得
4 7 0. 03
られることがゎカゝる。 [0038] 次に、本発明の一般式 C&i_ AlSi4N7: Euについて、式中の xの値を変化させたと きの発光スペクトルの変化について説明する。表 2は、 Xの値を変えたときに得られた 発光強度比と発光ピーク波長の測定結果を示している。また図 6は、表 2の実施例 1 〜4の蛍光体につ ヽて発光スペクトルを測定した結果を示して!/ヽる。励起光の波長は 450應とした。
[0039] [表 2]
Figure imgf000012_0001
[0040] 表 2及び図 6に示されるように、 Xの値が小さいほど、すなわちユーロピウム(Eu)の ドープ量が小さいほど、発光ピーク波長が短波長側にシフトし、かつ発光強度比が小 さくなつている。ユーロピウムの組成比 Xは、これが小さくなると発光強度比が小さくな り、実用に耐えられなくなるために、 0. 001程度が下限であると思われる。一方、ュ 一口ピウムの含有率が多すぎると濃度消光が生じ、発光強度が低下するので、 x=0 . 1程度の組成比のときに発光強度比が極大となり、 x=0. 15〜0. 2程度が上限で あるものと思われる。
[0041] ここで上述した実施例の黄色発光蛍光体の製造方法の一例を説明する。
[0042] 原料として Ca N、 A1N、 Si N及び Eu Oの各粉末を用い、これらの粉末を秤量
3 2 3 4 2 3
した。ここでは、 Ca AlSi N : Eu の目的組成になるように、 Ca N = 5. 1255g
0. 97 4 7 0. 03 3 2
、 A1N= 13. 1482g、 Si N = 20. 0000g、 Eu O =0. 5644gを秤量した。次に、
3 4 2 3
これら原料をメノウ乳鉢にいれ、メノウ乳棒を用いて良く混ぜ合わせることにより、乾式 混合を行った。混合した粉末を窒化ホウ素ルツボに充填し、電気炉内ににセットし、 窒素:水素 = 1: 3の還元雰囲気中にお 、て 1600°Cの焼成を 6時間施した。焼成後 は徐冷して、得られた焼成物を粉砕混合し、目的試料を得た。
[0043] 本発明の黄色発光蛍光材料は、上述したように、青色 LEDや UV— LEDなどと組 み合わせることによって、白色発光素子を構成するために使用することができる。この ような白色発光素子の基本的な形状は、例えば、特開平 10— 242513号公報、特 開平 11— 46015号公報、特開 2005— 60714号公報、特開 2005— 235934号公 報、特開平 10— 93146号公報及び特開平 10— 65221号公報などに開示されてい る。
[0044] また、 LED以外の発光素子、例えば、青色発光レーザや紫外線を発光する紫外線 ランプ、紫外線を発光するエキシマレーザ等を本発明の黄色発光蛍光体と組み合わ せることによつても白色発光素子を構成することができる。さらには、近年活発な開発 が行なわれている、無機 EL素子や有機 EL素子のような平面発光素子と本発明の黄 色発光蛍光体とを組み合わせて白色発光素子を構成してもよい。
[0045] 本発明の白色発光素子を照明装置として用いる場合、黄色発光蛍光体を励起する ために用いられる光源が点光源である LEDやレーザ素子である場合には、それらの 光源からの光を散乱させる必要があるが、励起光源として平面発光素子を用いる場 合には、光を散乱させる必要がないか、あるいは、平面発光素子の電極の表面に凹 凸を設けることで光を散乱させることができる。したがって、励起光源として平面発光 素子を使用することによって、光の利用効率をさらに向上できる可能性がある。
[0046] 本発明の白色発光素子は、一般の家庭における照明装置や、医療用の照明装置 としての用途を有するとともに、さらに、液晶表示装置におけるバックライト光源などと して使用することができる。

Claims

請求の範囲
[I] 一般式 Cai xAlSi4N7: Ειΐχ 表される黄色発光蛍光体。
[2] 0. 001 <x≤0. 15である請求項 1に記載の黄色発光蛍光体。
[3] 青色光と前記青色光の補色を発光する蛍光体からの発光とを組み合わせて白色 光を発光する白色発光素子であって、前記蛍光体が請求項 1に記載の黄色発光蛍 光体である白色発光素子。
[4] 赤色光を発光する赤色発光蛍光体と、緑色光を発光する緑色発光蛍光体と、をさ らに有する請求項 3に記載の白色発光素子。
[5] 青色光を発光する青色発光素子と、前記青色光によって励起される請求項 1に記 載の黄色発光蛍光体とを有する白色発光素子。
[6] 前記青色発光素子が青色 LEDである、請求項 5に記載の白色発光素子。
[7] 赤色光を発光する赤色発光蛍光体と、緑色光を発光する緑色発光蛍光体と、をさ らに有する請求項 5に記載の白色発光素子。
[8] 紫外光を発光する紫外線発光素子と、前記紫外光によって青色光を発光する青色 発光蛍光体と、前記紫外光及び Zまたは前記青色光によって励起される請求項 1に 記載の黄色発光蛍光体とを有する白色発光素子。
[9] 赤色光を発光する赤色発光蛍光体と、緑色光を発光する緑色発光蛍光体と、をさ らに有する請求項 8に記載の白色発光素子。
[10] 前記紫外線発光素子が発光する紫外光が、波長が 300〜400nmの紫外線である
、請求項 8に記載の白色発光素子。
[II] 請求項 3に記載の白色発光素子を用いたことを特徴とする照明装置。
[12] 請求項 5に記載の白色発光素子を用いたことを特徴とする照明装置。
PCT/JP2006/325473 2005-12-21 2006-12-21 黄色発光蛍光体及びそれを用いた白色発光素子 WO2007072899A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/158,908 US20090309112A1 (en) 2005-12-21 2006-12-21 Yellow-Emitting Phosphor and White Light Emitting Device Using the Same
EP06842981A EP1964906A4 (en) 2005-12-21 2006-12-21 YELLOW LIGHT EMITTING FLUORESCENT AND WHICH MAKES USE WHITE LIGHT EMITTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005368207A JP4932248B2 (ja) 2005-12-21 2005-12-21 黄色発光蛍光体、それを用いた白色発光素子、およびそれを用いた照明装置
JP2005-368207 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007072899A1 true WO2007072899A1 (ja) 2007-06-28

Family

ID=38188674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325473 WO2007072899A1 (ja) 2005-12-21 2006-12-21 黄色発光蛍光体及びそれを用いた白色発光素子

Country Status (7)

Country Link
US (1) US20090309112A1 (ja)
EP (1) EP1964906A4 (ja)
JP (1) JP4932248B2 (ja)
KR (1) KR20080081058A (ja)
CN (1) CN101346452A (ja)
TW (1) TWI356507B (ja)
WO (1) WO2007072899A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096823A (ja) * 2007-10-12 2009-05-07 National Institute For Materials Science 蛍光体と発光器具
US20100127613A1 (en) * 2008-11-17 2010-05-27 Brian Thomas Collins Luminescent Particles, Methods of Identifying Same and Light Emitting Devices Including the Same
JP2011249573A (ja) * 2010-05-27 2011-12-08 三菱電機照明株式会社 発光装置及び波長変換シート及び照明装置
JP2013539490A (ja) * 2010-12-28 2013-10-24 北京宇極科技発展有限公司 酸窒化物発光材料及びその調製方法並びにそれによって製造された照明光源

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517400B2 (ja) * 2006-07-11 2014-06-11 日本碍子株式会社 青色発光窒化アルミニウム材料及びその製造方法
JP4228012B2 (ja) 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
BRPI0807118A2 (pt) * 2007-02-06 2014-04-08 Koninkl Philips Electronics Nv Material, uso de um material, dispositivo de emissão de luz, e, sistema.
JP2008244469A (ja) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
JP5578597B2 (ja) 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 蛍光体及びその製造方法、並びにそれを用いた発光装置
TWI422060B (zh) * 2008-07-07 2014-01-01 Advanced Optoelectronic Tech 暖色系光源
JP5641384B2 (ja) 2008-11-28 2014-12-17 独立行政法人物質・材料研究機構 表示装置用照明装置及び表示装置
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
KR101641378B1 (ko) * 2011-12-30 2016-07-20 인터매틱스 코포레이션 전하 평형을 위한 침입형 양이온을 갖는 질화물 인광체
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
JP5746672B2 (ja) * 2012-09-25 2015-07-08 株式会社東芝 蛍光体、発光装置、および蛍光体の製造方法
CN102925153B (zh) * 2012-11-23 2014-01-15 中国科学院长春光学精密机械与物理研究所 颜色可调的单一相荧光材料及其应用
JP6081235B2 (ja) * 2013-03-07 2017-02-15 株式会社東芝 白色発光装置
TWI527274B (zh) * 2013-04-29 2016-03-21 新世紀光電股份有限公司 發光二極體封裝結構
CN106252489A (zh) * 2013-05-13 2016-12-21 新世纪光电股份有限公司 发光二极管封装结构
CN103333684A (zh) * 2013-06-27 2013-10-02 彩虹集团公司 一种氮化物红色荧光粉及其制备方法
WO2016063965A1 (ja) * 2014-10-23 2016-04-28 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置
WO2018215068A1 (en) * 2017-05-24 2018-11-29 Osram Opto Semiconductors Gmbh Light-emitting device and method for producing a light-emitting device
EP3761379A4 (en) 2018-02-26 2021-12-01 Kyocera Corporation LIGHT EMITTING DEVICE AND LIGHTING DEVICE

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465221A (en) 1987-09-04 1989-03-10 Nippon Kokan Kk Method for controlling flowing speed distribution of furnace gas in blast furnace
JPH0193146A (ja) 1987-10-03 1989-04-12 Oki Electric Ind Co Ltd 多層配線の形成方法
JPH1065221A (ja) 1997-05-17 1998-03-06 Nichia Chem Ind Ltd 発光ダイオード
JPH1093146A (ja) 1997-10-20 1998-04-10 Nichia Chem Ind Ltd 発光ダイオード
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JPH1146015A (ja) 1997-07-28 1999-02-16 Nichia Chem Ind Ltd 発光ダイオード及びその形成方法
JP2000509912A (ja) 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 白色光発光ダイオード
JP2003206481A (ja) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源として少なくとも1つのledを備えた照明ユニット
JP2005060714A (ja) 2004-10-27 2005-03-10 Nichia Chem Ind Ltd 窒化物蛍光体及びそれを用いた発光装置
JP2005235934A (ja) 2004-02-18 2005-09-02 National Institute For Materials Science 発光素子及び照明器具
JP2005336450A (ja) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP2005336253A (ja) * 2004-02-18 2005-12-08 National Institute For Materials Science 蛍光体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511849B2 (ja) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、光源、並びにled
US7391060B2 (en) * 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465221A (en) 1987-09-04 1989-03-10 Nippon Kokan Kk Method for controlling flowing speed distribution of furnace gas in blast furnace
JPH0193146A (ja) 1987-10-03 1989-04-12 Oki Electric Ind Co Ltd 多層配線の形成方法
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JP2000509912A (ja) 1997-03-03 2000-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 白色光発光ダイオード
JPH1065221A (ja) 1997-05-17 1998-03-06 Nichia Chem Ind Ltd 発光ダイオード
JPH1146015A (ja) 1997-07-28 1999-02-16 Nichia Chem Ind Ltd 発光ダイオード及びその形成方法
JPH1093146A (ja) 1997-10-20 1998-04-10 Nichia Chem Ind Ltd 発光ダイオード
JP2003206481A (ja) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源として少なくとも1つのledを備えた照明ユニット
JP2005235934A (ja) 2004-02-18 2005-09-02 National Institute For Materials Science 発光素子及び照明器具
JP2005336253A (ja) * 2004-02-18 2005-12-08 National Institute For Materials Science 蛍光体の製造方法
JP2005336450A (ja) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP2005060714A (ja) 2004-10-27 2005-03-10 Nichia Chem Ind Ltd 窒化物蛍光体及びそれを用いた発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964906A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096823A (ja) * 2007-10-12 2009-05-07 National Institute For Materials Science 蛍光体と発光器具
US20100127613A1 (en) * 2008-11-17 2010-05-27 Brian Thomas Collins Luminescent Particles, Methods of Identifying Same and Light Emitting Devices Including the Same
US9464225B2 (en) * 2008-11-17 2016-10-11 Cree, Inc. Luminescent particles, methods of identifying same and light emitting devices including the same
JP2011249573A (ja) * 2010-05-27 2011-12-08 三菱電機照明株式会社 発光装置及び波長変換シート及び照明装置
JP2013539490A (ja) * 2010-12-28 2013-10-24 北京宇極科技発展有限公司 酸窒化物発光材料及びその調製方法並びにそれによって製造された照明光源

Also Published As

Publication number Publication date
JP2007169428A (ja) 2007-07-05
KR20080081058A (ko) 2008-09-05
CN101346452A (zh) 2009-01-14
TW200739956A (en) 2007-10-16
TWI356507B (en) 2012-01-11
EP1964906A1 (en) 2008-09-03
JP4932248B2 (ja) 2012-05-16
EP1964906A4 (en) 2010-04-21
US20090309112A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4932248B2 (ja) 黄色発光蛍光体、それを用いた白色発光素子、およびそれを用いた照明装置
JP4228012B2 (ja) 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
Sakuma et al. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-α-SiAlON ceramic phosphors
TWI374178B (en) Novel aluminate-based green phosphors
KR101080215B1 (ko) 형광체, 그 제조방법 및 발광 장치
EP1630220A2 (en) Phosphor mixture and light emitting device using the same
JP2006124501A (ja) 蛍光体混合物および発光装置
JP2007039517A (ja) 青色系発光蛍光体およびそれを用いた発光装置
US20080247934A1 (en) White light emitting diode component having two phosphors and related phosphor and formation method
JP2005179498A (ja) 赤色蛍光体材料、赤色蛍光体材料を用いた白色発光ダイオードおよび白色発光ダイオードを用いた照明機器
JP4309242B2 (ja) 赤色蛍光体材料、赤色蛍光体材料を用いた白色発光ダイオードおよび白色発光ダイオードを用いた照明機器
CN107636113A (zh) 荧光体及其制造方法、以及led灯
JP2014031520A (ja) 蛍光体及び前記蛍光体を有する照明システム
US20080309219A1 (en) Phosphors and lighting apparatus using the same
JP2006219636A (ja) 蛍光体及びその製造方法、発光装置
JP4098354B2 (ja) 白色発光装置
CN114806578A (zh) 氟氧化物磷光体组合物及其照明装置
JP2006104413A (ja) 蛍光体およびそれを用いた白色発光素子
JP2004123764A (ja) 赤色発光蛍光体およびそれを用いた発光素子
JP3792665B2 (ja) 赤色発光蛍光体、発光素子及び蛍光ランプ
JP2004124049A (ja) 赤色発光蛍光体、発光素子及び蛍光ランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048833.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006842981

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087017856

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12158908

Country of ref document: US