WO2007065487A1 - Schraubenkompressor - Google Patents

Schraubenkompressor Download PDF

Info

Publication number
WO2007065487A1
WO2007065487A1 PCT/EP2006/005559 EP2006005559W WO2007065487A1 WO 2007065487 A1 WO2007065487 A1 WO 2007065487A1 EP 2006005559 W EP2006005559 W EP 2006005559W WO 2007065487 A1 WO2007065487 A1 WO 2007065487A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
screw compressor
stage
rotor housing
rotor
Prior art date
Application number
PCT/EP2006/005559
Other languages
English (en)
French (fr)
Inventor
Carsten Achtelik
Dieter HÜTTERMANN
Michael Besseling
Norbert Henning
Original Assignee
Ghh Rand Schraubenkompressoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ghh Rand Schraubenkompressoren Gmbh filed Critical Ghh Rand Schraubenkompressoren Gmbh
Priority to US12/094,388 priority Critical patent/US7713039B2/en
Priority to EP06754262A priority patent/EP1957799A1/de
Publication of WO2007065487A1 publication Critical patent/WO2007065487A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals

Definitions

  • the invention relates to a screw compressor with the features specified in the preamble of claim 1.
  • Screw compressors of this type are known for example from EP 0 993 553 Bl and EP 1 163 452 Bl. They have a vent duct open to the atmosphere connected to the relief chamber of the sealing arrangement.
  • the present invention is particularly advantageously applicable to a screw compressor that uses a gaseous medium, such as. B. air, to very high pressures, e.g. B. in the range of 30 to 50 bar, and which can be, in particular, the high pressure stage of a two-stage or multi-stage compressor unit.
  • the invention also relates to such a multi-stage, in particular three-stage screw compressor unit.
  • the sealing arrangements which seal the pressure-side shaft journals of the rotors in the rotor housing are exposed to a very high pressure load. Even if the sealing arrangement consists of a larger number of ring seals arranged in a row, there is no uniform pressure drop across the entire sealing arrangement, but the pressure drop occurs mainly at the outer, i.e. H. ring seals further away from the rotor, with the result that they are exposed to increased mechanical stress.
  • the object of the invention is to design the sealing arrangement for the pressure-side shaft journals in a screw compressor of the type specified in such a way that the pressure drop across the sealing arrangement is controlled and equalized can be, so that the reliability of the seal can be improved especially at very high final pressures of the screw compressor.
  • Figure 1 is a perspective, partially sectioned view of the screw compressor according to an embodiment of the invention.
  • FIG. 2 shows a cross section of the screw compressor from FIG. 1 approximately along the section line II-II from FIG. 1,
  • FIG. 3 shows a section substantially along the line III-III of FIG. 2.
  • FIG. 4 shows a perspective view of a three-stage screw compressor unit, the third stage of which is a screw compressor according to FIG. 1.
  • the screw compressor shown in FIG. 1 has a rotor housing 1, shown in section, in which two rotors 3 and 5 are rotatably mounted in parallel axes.
  • the axes of rotation of the rotors 3, 5 lie in a common vertical plane, which is also the sectional plane for the representation of the rotor housing 1.
  • Every rotor has a pro- fil section 7 or 9, which has a profile with helically extending ribs or grooves, the ribs and grooves of the two profile sections 7, 9 meshing and sealingly without contact.
  • Shaft journals 7a, 7b, 9a, 9b adjoin the profile sections 7, 9 on both sides, with their peripheral surface cooperating with sealing arrangements 11, 12 in order to seal the rotor in the rotor housing 1.
  • the shaft journals 7a, 7b, 9a, 9b are also rotatably supported in the rotor housing 1 by bearings 13, 15.
  • the upper rotor 3 in FIG. 1 is the main rotor and has at its left end in FIG. 1 an extension 7c of its shaft journal which is intended to receive a drive gear (not shown) which meshes with a corresponding gear of a drive gear (not shown) to drive the rotor 3 to rotate.
  • the two rotors 3, 5 have two meshing gears 17, 19 which form a synchronizing gear which rotates from the upper rotor 3 to the lower rotor 5, which is the secondary rotor, in the desired speed ratio transmits.
  • the screw compressor shown in FIG. 1 When the screw compressor shown in FIG. 1 is operating, its suction chamber 10, which is formed in the rotor housing 1 at the left end of the profile sections 7 and 9 in FIG. 1 and is connected to a suction nozzle (not shown), the gas to be compressed, in particular air , fed.
  • the gas supplied is preferably already pre-compressed by one or more upstream compressor stages (not shown) to an intermediate pressure, for example to a pressure in the range from 10 to 15 bar, preferably 12 bar.
  • This precompressed gas is conveyed to the right by the profile sections 7, 9 of the two rotors 3, 5 in FIG. 1 and is compressed to a final pressure which is preferably in the range from 30 to 50 bar, in particular around 40 bar.
  • the compressed gas leaves the rotor housing 1 at the right end of the profile sections 7, 9 in FIG. 1 through an outlet (not shown).
  • the rotor housing 1 is surrounded by a cooling jacket or cooling housing 21, which is predominantly formed in one piece with the rotor housing 1 and this at a distance surrounds.
  • the cooling housing 21 has large openings at the top and bottom, which are closed by means of a cover plate 23 and a base plate 25 which are fastened by screws. Between the rotor housing 1 and the cooling housing 21, 23, 25 there is a cooling space 27 which surrounds the rotor housing 1 in a ring .
  • FIG. 2 shows schematically and simplified a cross section approximately along the line II - II of Figure 1.
  • the rotor housing 1 for receiving the screw rotors (not shown) is surrounded by the cooling jacket or cooling housing 21, the side walls 21a, 21b of which are preferably in one piece with the rotor housing 1 are formed and which is closed at the top and bottom by the cover wall 23 or base plate 25.
  • the cooling housing 21 forms with the rotor housing 1 a cooling space 27 which surrounds the rotor housing 1 essentially completely in a ring and which is interrupted only at one point by a partition wall 29 connecting the rotor housing 1 to the side wall 21b of the cooling housing 21.
  • the partition 29 runs horizontally approximately halfway between the axis centers Ml, M2 of the screw rotors arranged vertically one above the other.
  • the cooling housing 21 has an inlet opening 31 and an outlet opening 33 for cooling liquid, for. B. cooling water or oil.
  • the inlet opening 31 opens into an inlet channel 35 which runs vertically upwards, the upper outlet opening 35 'of which is at a distance from the underside of the partition wall 29.
  • the black arrows in FIG. 2 indicate the flow path of the coolant supplied to the inlet opening 31. This is perpendicular through the inflow channel 35
  • a vent opening 41 with a small cross-section is formed at a height which corresponds approximately to the upper limit of the outlet opening 33. Air can escape through this ventilation opening 41 when the cooling space 27 is filled with coolant, as indicated by the dotted arrows in FIG Liquid level, can be filled and the volume of the residual air trapped above the liquid level 43 is very small.
  • a seepage opening 47 of very small cross-section is formed at the level of the lower limit of the inlet opening 31.
  • water can drain through the seepage opening 47 and the inlet opening 31 (as indicated by the lower dotted arrows in FIG. 2) until the liquid level in the cooling space 27 has reached the height of the seepage opening 47, i. H. has dropped to the level indicated by line 49.
  • the residual amount of cooling liquid remaining below line 49 when the cooling chamber 27 is emptied is therefore very small.
  • FIG. 3 shows further details of the invention which relate to the sealing arrangements 11 shown in FIG. 1 for sealing the pressure-side shaft journals 7b, 9b of the rotors 3, 5 in the rotor housing 1.
  • the sealing arrangement 11 consists of a number of ring seals I Ia, I Ib arranged in a row. In the embodiment shown, eight ring seals 11a, 11b are arranged one behind the other.
  • the ring seals I Ia, 1 Ib can preferably be lip seals, as such. B. is known from EP 0 993 553.
  • the seal arrangement 11 is surrounded by a first annular relief chamber 51 for collecting leakage gas passing through the seals 11a.
  • the relief space 51 can advantageously be seen between that from the rotor profile 7 first number of five sealing rings 11 a and the last three, ie outer ring seals 1 Ib.
  • the relief chamber 51 is connected to the suction chamber 10 of the screw compressor by a connecting channel 53 formed in the rotor housing 1 parallel to the rotor axis>.
  • the annular relief chamber 51 is therefore subjected to the suction pressure of the screw compressor prevailing in the suction chamber 10.
  • the air supplied to the suction chamber 10 can already be brought up to a pressure of, for example, upstream by the compressor stages. B. between 10 and 15 bar, in particular about 12 bar, and this is then the pressure prevailing in the relief chamber 51.
  • the high final pressure generated by the rotors e.g. B.
  • the first relief chamber 51 which is charged with the inlet pressure of the compressor, predefines a defined intermediate pressure at a defined point in the seal arrangement, thereby equalizing the pressure drop across the entire seal arrangement I Ia, I Ib, whereby the seals 1 Ib are mechanically relieved.
  • a second annular relief space 55 is provided, which is connected to the atmosphere in a manner known per se.
  • the task of this second relief chamber 55 is to keep the oil system used to lubricate the bearing 15 and the synchronous gear 17, 19 free of pressure and to keep the leakage gas through the seal arrangement 11 to the oil-lubricated areas as small as possible.
  • the sealing arrangement 11 'for the shaft journal 9b of the lower rotor 5 is designed in the same way as the sealing arrangement 11 of the shaft journal 7b and also has an annular relief chamber 51' which connects to the suction chamber 10 of the screw compressor through a ventilation duct ver is bound.
  • the venting duct 53 shown in FIGS. 2 and 3 is preferably a common connecting duct which is connected to both relief chambers 51, 51 'of the sealing arrangements 11, 11' and connects them to the suction chamber 10.
  • the ventilation duct 53 connecting the relief chamber 51 with the suction chamber 10 in the rotor housing 1 preferably runs in the immediate vicinity of the partition wall 29 connecting the rotor housing 1 with the cooling housing 21. Thanks to the intensive cooling of the partition wall 29, which acts like a cooling fin the coolant deflected at it, the connecting channel 53, and thus the leakage gas flowing in it to the suction space 10, is subjected to particularly intensive cooling.
  • FIG. 4 shows in perspective a three-stage screw compressor unit with three screw compressors 60, 70, 80, which are flange-mounted freely cantilevered parallel to one another on a gearbox housing 90, which essentially has the shape of a vertical disk. They are driven together by a drive gear mounted in the gear housing 90 and driven by a motor, as is known per se from DE 299 22 878.9 U1 and from DE-A-16 28 201 for two-stage compressor units.
  • the screw compressor 60 is the input stage (low-pressure stage) with intake opening 61 and outlet opening 63
  • the screw compressor 70 is the second stage or intermediate stage with inlet opening 71 and outlet opening 73
  • the screw compressor 80 is the final stage or high-pressure stage with inlet opening 81 and one In Figure 4 not visible outlet opening on the side facing away from the inlet opening 81.
  • FIG. 4 also shows an oil sump housing 95 flanged to the foot of the gear housing 90, which is connected by oil lines to the synchronous gears of the screw compressors 60, 70, 80 and to the drive gear arranged in the gear housing 90.
  • FIG. 4 Not shown in FIG. 4 are the connecting lines for the gas to be compressed, in particular air, connecting the inlets and outlets 61, 63, 71, 73, 81 of the three screw compressors 60, 70, 80. These can be carried out in the usual way. forms and z. B. be equipped with filters, intercoolers and / or silencers.
  • the screw compressor 80 of the third stage is a screw compressor designed according to FIGS. 1 to 3 according to the invention.
  • the three-stage compressor unit according to FIG. 4 is preferably designed such that the outlet pressure of the first stage 60 is approximately 3 to 6 bar, in particular approximately 3.5 bar, the second stage (intermediate stage) 70 an outlet pressure of approximately 10 to 15 bar, in particular approximately 12 bar, and the third stage (high pressure stage) generates an outlet pressure in the range from 30 to 50 bar, in particular approximately 40 bar.
  • the outlet pressure of approx. 12 bar generated by the second stage 70 is thus the pressure that prevails in the suction chamber 10 of the third stage 80 and thus also the relief chambers 51, 51 'of the sealing arrangements 11, 11' for the pressure-side shaft journals according to FIG 1 and 3 are acted upon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Supercharger (AREA)

Abstract

Ein Schraubenkompressor mit zwei in einem Rotorgehäuse gelagerten Rotoren hat für die Abdichtung der druckseitigen Wellenzapfen der Rotoren Dichtungsanordnungen (11, 11'), wobei jede Dichtungsanordnung eine Anzahl von aneinander gereihten Ringdichtungen (11a, 11b) aufweist und ihr an einer Zwischenposition ein ringförmiger Entlastungsraum (51) zugeordnet ist, der durch einen Entlüftungskanal (53) mit einem Raum im Rotorgehäuse verbunden ist, in welchem ein höherer Druck als Atmosphärendruck herrscht. Vorzugsweise ist der Entlüftungskanal mit dem Ansaugraum (10) des Rotorgehäuses (1) verbunden, und dieser wird von einer vorgeschalteten Kompressorstufe mit vorkomprimiertem Gas beaufschlagt.

Description

Schraubenkompressor
Die Erfindung betrifft einen Schraubenkompressor mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.
Schraubenkompressoren dieser Art sind beispielsweise aus EP 0 993 553 Bl und EP 1 163 452 Bl bekannt. Bei ihnen ist mit dem Entlastungsraum der Dichtungsanordnung ein zur Atmosphäre hin offener Entlüftungskanal verbunden.
Die vorliegende Erfindung ist mit besonderem Vorteil bei einem Schraubenkompressor anwendbar, der ein gasförmiges Medium, wie z. B. Luft, auf sehr hohe Drücke, z. B. im Bereich von 30 bis 50 bar, verdichtet und bei dem es sich insbesondere um die Hochdruckstufe eines zwei- oder mehrstufigen Verdichteraggregats handeln kann. Die Erfindung bezieht sich auch auf ein solches mehrstufiges, insbesondere dreistufiges Schrau- benkompressoraggregat.
Bedingt durch den hohen Verdichtungsdruck des Kompressors sind die Dichtungsanordnungen, die die druckseitigen Wellenzapfen der Rotoren im Rotorgehäuse abdichten, einer sehr hohen Druckbelastung ausgesetzt. Auch wenn die Dichtungsanordnung aus einer größeren Anzahl von aneinander gereihten Ringdichtungen besteht, stellt sich kein gleichmäßiger Druckabfall über die gesamte Dichtungsanordnung ein, sondern der Druckabfall tritt hauptsächlich an den äußeren, d. h. vom Rotor entfernteren Ringdichtungen auf mit der Folge, dass diese einer erhöhten mechanischen Belastung ausgesetzt sind.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Schraubenkompressor der angegebenen Art die Dichtungsanordnung für die druckseitigen Wellenzapfen so zu gestalten, dass der Druckabfall über die Dichtungsanordnung kontrolliert und vergleichmäßigt werden kann, so dass die Zuverlässigkeit der Dichtung insbesondere bei sehr hohen Enddrücken des Schraubenkompressors verbessert werden kann.
Die erfindungsgemäße Lösung der Aufgabe ist in Anspruch 1 angegeben. Die abhängigen Ansprüche beziehen sich auf weitere vorteilhafte Merkmale der Erfindung.
Es wurde erfindungsgemäß gefunden, dass durch die Vorgabe eines definierten Zwischendruckes an einer definierten Zwischenposition der Dichtungsanordnungen der druckseitigen Wellenzapfen der Rotoren der Druckverlauf in der Dichtungsanordnung kontrolliert und vergleichmäßigt werden kann mit der Folge, dass eine besonders wirksame und zuverlässige Abdichtung und eine Minimierung von Druckverlusten durch Leckgasaustritt erzielt werden kann.
Eine Ausführungsform der Erfindung wird anhand der Zeichnungen näher erläutert. Es zeigt
Figur 1 eine perspektivische, teilweise geschnittene Ansicht des Schraubenkompressors gemäß einer Ausführungsform der Erfindung;
Figur 2 einen Querschnitt des Schraubenkompressors von Figur 1 ungefähr längs der Schnittlinie II - II von Figur 1 ,
Figur 3 einen Schnitt im Wesentlichen entlang der Linie III - III von Figur 2.
Figur 4 eine perspektivische Darstellung eines dreistufigen Schraubenkompres- soraggregats, dessen dritte Stufe ein Schraubenkompressor gemäß Figur 1 ist.
Der in Figur 1 gezeigte Schraubenkompressor hat ein im Schnitt dargestelltes Rotorgehäuse 1, in welchem zwei Rotoren 3 und 5 parallelachsig drehbar gelagert sind. Die Drehachsen der Rotoren 3, 5 liegen in einer gemeinsamen vertikalen Ebene, die auch die Schnittebene für die Darstellung des Rotorgehäuses 1 ist. Jeder Rotor hat einen Pro- filabschnitt 7 bzw. 9, der ein Profil mit schraubenförmig verlaufenden Rippen bzw. Nuten aufweist, wobei die Rippen und Nuten der beiden Profilabschnitte 7, 9 berührungsfrei kämmend und abdichtend ineinander greifen. An die Profilabschnitte 7, 9 schließen sich beiderseits Wellenzapfen 7a, 7b, 9a, 9b an, mit deren Umfangsfläche Dichtungsanordnungen 11, 12 zusammenwirken, um den Rotor im Rotorgehäuse 1 abzudichten. Die Wellenzapfen 7a, 7b, 9a, 9b sind ferner durch Lager 13, 15 in dem Rotorgehäuse 1 drehbar gelagert.
Der in Figur 1 obere Rotor 3 ist der Hauptläufer und weist an seinem in Figur 1 linken Ende eine Verlängerung 7c seines Wellenzapfens auf, die zur Aufnahme eines Antriebszahnrades (nicht dargestellt) bestimmt ist, das mit einem entsprechenden Zahnrad eines Antriebsgetriebes (nicht dargestellt) kämmt, um den Rotor 3 zur Drehung anzutreiben. An dem in Figur 1 rechten Ende weisen die beiden Rotoren 3, 5 zwei miteinander kämmende Zahnräder 17, 19 auf, die ein Synchronisiergetriebe bilden, das die Drehung von dem oberen Rotor 3 auf den unteren Rotor 5, der der Nebenläufer ist, im gewünschten Drehzahlverhältnis überträgt.
Bei Betrieb des in Figur 1 gezeigten Schraubenkompressors wird seinem Ansaugraum 10, der an dem in Figur 1 linken Ende der Profilabschnitte 7 bzw. 9 in dem Rotorgehäuse 1 ausgebildet und mit einem (nicht dargestellten) Ansaugstutzen verbunden ist, das zu verdichtende Gas, insbesondere Luft, zugeführt. Vorzugsweise ist das zugeführte Gas bereits von einer oder mehreren vorgeschalteten Kompressorstufen (nicht dargestellt) auf einen Zwischendruck vorverdichtet, beispielsweise auf einen Druck im Bereich von 10 bis 15 bar, vorzugsweise 12 bar. Dieses vorverdichtete Gas wird durch die Profilabschnitte 7, 9 der beiden Rotoren 3, 5 in Figur 1 nach rechts gefördert und dabei auf einen Enddruck verdichtet, der vorzugsweise im Bereich von 30 bis 50 bar, insbesondere bei ca. 40 bar, liegt. Das verdichtete Gas verlässt das Rotorgehäuse 1 an dem in Figur 1 rechten, druckseitigen Ende der Profilabschnitte 7, 9 durch einen (nicht dargestellten) Auslass.
Das Rotorgehäuse 1 ist von einem Kühlmantel oder Kühlgehäuse 21 umgeben, das überwiegend einstückig mit dem Rotorgehäuse 1 ausgebildet ist und dieses mit Abstand umgibt. Oben und unten hat das Kühlgehäuse 21 großflächige Öffnungen, die mittels einer Deckelplatte 23 bzw. einer Bodenplatte 25, die durch Schrauben befestigt sind, verschlossen sind. Zwischen dem Rotorgehäuse 1 und dem Kühlgehäuse 21, 23, 25 befindet sich ein das Rotorgehäuse 1 ringförmig umgebender Kühlraum 27. :
Figur 2 zeigt schematisch und vereinfacht einen Querschnitt etwa entlang der Linie II - II von Figur 1. Das Rotorgehäuse 1 für die Aufnahme der (nicht dargestellten) Schraubenrotoren ist von dem Kühlmantel oder Kühlgehäuse 21 umgeben, dessen Seitenwände 21a, 21b vorzugsweise einstückig mit dem Rotorgehäuse 1 ausgebildet sind und welches oben und unten durch die Deckelwand 23 bzw. Bodenplatte 25 verschlossen ist. Das Kühlgehäuse 21 bildet mit dem Rotorgehäuse 1 einen das Rotorgehäuse 1 im Wesentlichen vollständig ringförmig umgebenden Kühlraum 27, der nur an einer Stelle durch eine das Rotorgehäuse 1 mit der Seitenwand 21b des Kühlgehäuses 21 verbindende Trennwand 29 unterbrochen ist. Die Trennwand 29 verläuft horizontal etwa in halber Höhe zwischen den Achsmittelpunkten Ml, M2 der lotrecht übereinander angeordneten Schraubenrotoren.
Das Kühlgehäuse 21 weist eine Einlassöffhung 31 und eine Auslassöffhung 33 für Kühlflüssigkeit, z. B. Kühlwasser oder Öl, auf. Die Einlassöffnung 31 mündet in einem lotrecht nach oben verlaufenden Einlaufkanal 35, dessen obere Austrittsöffnung 35' der Unterseite der Trennwand 29 mit einem Abstand gegenübersteht. Der Auslassöffnung 33 vorgelagert befindet sich ein lotrechter Ausströmkanal 37, dessen untere Einlauföffnung 37' der Oberseite der Trennwand 29 mit geringem Abstand gegenübersteht.
Die schwarzen Pfeile in Figur 2 kennzeichnen den Strömungsweg des der Einlassöffnung 31 zugeführten Kühlmittels. Dieses wird durch den Einströmkanal 35 senkrecht nach
oben gegen die Unterseite der Trennwand 29 gerichtet, an dieser scharf umgelenkt und fließt dann nach unten und in Fig. 2 im Uhrzeigersinn um den gesamten Umfang des Rotorgehäuses 1 herum, bis es auf die Oberseite der Trennwand 29 auftrifft, von dieser scharf nach oben umgelenkt und durch den Ausströmkanal 37 und die Auslassöffnung 33 abgezogen wird. In der den Ausströmkanal 37 vom Kühlraum 1 abtrennenden Wandung 39 ist in einer Höhe, die etwa der oberen Begrenzung der Auslassöffiiung 33 entspricht, eine Entlüf- tungsöffhung 41 mit kleinem Querschnitt ausgebildet. Durch diese Entlüftungsöffhung 41 kann beim Befüllen des Kühlraums 27 mit Kühlmittel Luft entweichen, wie in Figur 2 durch die oberen gepunkteten Pfeile angedeutet, so dass der Kühlraum 27 bis zur Höhe der Entlüftungsöffnung 41, d. h. bis zu dem in Figur 2 durch die Linie 43 angegebenen Flüssigkeitsstand, befüllt werden kann und das Volumen der oberhalb des Flüssigkeitsspiegels 43 eingeschlossenen Restluft sehr gering ist.
In der den Einströmkanal 35 vom Kühlraum 27 abtrennenden Wandung 45 ist in Höhe der unteren Begrenzung der Einlassöffhung 31 eine Sickeröffhung 47 sehr kleinen Querschnitts ausgebildet. Beim Entleeren der Kühlflüssigkeit aus dem Kühlraum 27 kann durch die Sickeröffhung 47 und die Einlassöffhung 31 Wasser ablaufen (wie durch die unteren gepunkteten Pfeile in Figur 2 angedeutet), bis der Flüssigkeitsspiegel im Kühlraum 27 die Höhe der Sickeröffhung 47 erreicht hat, d. h. bis auf das durch die Linie 49 angegebene Niveau abgesunken ist. Die beim Entleeren des Kühlraumes 27 unterhalb der Linie 49 verbleibende Restmenge an Kühlflüssigkeit ist deshalb sehr gering.
Figur 3 zeigt weitere Details der Erfindung, die sich auf die in Figur 1 gezeigten Dichtungsanordnungen 11 zum Abdichten der druckseitigen Wellenzapfen 7b, 9b der Rotoren 3, 5 im Rotorgehäuse 1 beziehen. Wie dargestellt, besteht die Dichtungsanordnung 11 aus einer Anzahl aneinander gereihter Ringdichtungen I Ia, I Ib. Bei der dargestellten Ausführungsform sind acht Ringdichtungen I Ia, 1 Ib hintereinander angeordnet. Bei den Ringdichtungen I Ia, 1 Ib kann es sich vorzugsweise um Lippendichtringe handeln, wie an sich z. B. aus EP 0 993 553 bekannt. An einer geeigneten Stelle, die zwischen einer ersten Anzahl von Ringdichtungen 1 Ia und einer zweiten Anzahl von Ringdichtungen I Ib liegt, ist die Dichtungsanordnung 1 1 von einem ersten ringförmigen Entlastungsraum 51 zum Auffangen von durch die Dichtungen 11 a hindurchtretendem Leckgas umgeben. Bei der Ausfuhrungsform von Figur 3 mit acht Ringdichtungen kann der Entlastungsraum 51 vorteilhafterweise zwischen der vom Rotorprofil 7 aus gesehen ersten Anzahl von fünf Dichtungsringen 11 a und den drei letzten, d. h. äußeren Ringdichtungen 1 Ib liegen.
Der Entlastungsraum 51 ist durch einen im Rotorgehäuse 1 parallel zur Rotorachse> ausgebildeten Verbindungskanal 53 mit dem Ansaugraum 10 des Schraubenkompressors verbunden. Der ringförmige Entlastungsraum 51 ist daher mit dem im Ansaugraum 10 herrschenden Ansaugdruck des Schraubenkompressors beaufschlagt. Bei der bevorzugten Verwendung des Schraubenkompressors als Hochdruckstufe eines mehrstufigen Kompressoraggregats kann die dem Ansaugraum 10 zugeführte Luft durch die vorgeschalteten Kompressorstufen bereits auf einen Druck von z. B. zwischen 10 und 15 bar, insbesondere ca. 12 bar, verdichtet sein, und dies ist dann auch der im Entlastungsraum 51 herrschende Druck. In Betrieb des Kompressors muss der von den Rotoren erzeugte hohe Enddruck, z. B. 40 bar, über die Dichtungsanordnung I Ia, I Ib auf Null abfallen. Es hat sich gezeigt, dass dieser Druckabfall nicht linear ist, sondern sich überwiegend auf die äußeren, vom Profilabschnitt 7, 9 entfernteren Ringdichtungen I Ib konzentriert und diese daher sehr stark mechanisch belastet. Durch den ersten Entlastungsraum 51 , der mit dem Einlassdruck des Kompressors beaufschlagt ist, wird an einer definierten Stelle der Dichtungsanordung ein definierter Zwischendruck vorgegeben und dadurch der Druckabfall über die gesamte Dichtungsanordnung I Ia, I Ib vergleichmäßigt, wodurch die Dichtungen 1 Ib mechanisch entlastet werden.
An dem rotorfernen Ende der Dichtungsanordnung 1 1 ist ein zweiter ringförmiger Entlastungsraum 55 vorgesehen, der in an sich bekannter Weise mit der Atmosphäre verbunden ist. Aufgabe dieses zweiten Entlastungsraums 55 ist es, das zur Schmierung der Lagers 15 und des Gleichlaufgetriebes 17, 19 dienende Ölsystem druckfrei zu halten und den Zutritt von Leckgas durch die Dichtungsanordung 11 hindurch zu den ölge- schmierten Bereichen möglichst klein zu halten.
Wie aus Figur 1 ersichtlich, ist die Dichtungsanordnung 11' für den Wellenzapfen 9b des unteren Rotors 5 in gleicher Weise ausgebildet wie die Dichtungsanordnung 11 des Wellenzapfens 7b und weist ebenfalls einen ringförmigen Entlastungsraum 51' auf, der durch einen Entlüftungskanal mit dem Ansaugraum 10 des Schraubenkompressors ver- bunden ist. Der in Figur 2 und 3 dargestellte Entlüftungskanal 53 ist vorzugsweise ein gemeinsamer Verbindungskanal, der an beide Entlastungsräume 51, 51' der Dichtungsanordnungen 1 1, 1 1 ' angeschlossen ist und diese mit dem Ansaugraum 10 verbindet.
Wie in Figur 2 dargestellt, verläuft der den Entlastungsraum 51 mit dem Ansaugraum 10 verbindende Entlüftungskanal 53 im Rotorgehäuse 1 vorzugsweise in unmittelbarer Nähe der das Rotorgehäuse 1 mit dem Kühlgehäuse 21 verbindenden Trennwand 29. Dank der intensiven Kühlung der nach Art einer Kühlrippe wirkenden Trennwand 29 durch das an ihr umgelenkte Kühlmittel wird auch der Verbindungskanal 53, und damit das in ihm zum Ansaugraum 10 strömende Leckgas, einer besonders intensiven Kühlung ausgesetzt.
Figur 4 zeigt perspektivisch ein dreistufiges Schraubenkompressoraggregat mit drei Schraubenkompressoren 60, 70, 80, die an einem Getriebegehäuse 90, das im Wesentlichen die Form einer lotrechten Scheibe hat, parallel zueinander frei auskragend angeflanscht sind. Sie werden gemeinsam von einem im Getriebegehäuse 90 gelagerten und durch einen Motor angetriebenen Antriebszahnrad angetrieben, wie dies für zweistufige Kompressoraggregate an sich aus DE 299 22 878.9 Ul und aus DE-A- 16 28 201 bekannt ist. In dem dargestellten Kompressoraggregat ist der Schraubenkompressor 60 die Eingangsstufe (Niederdruckstufe) mit Ansaugöffhung 61 und Auslassöffhung 63, der Schraubenkompressor 70 ist die zweite Stufe oder Zwischenstufe mit Einlassöffhung 71 und Auslassöffhung 73, und der Schraubenkompressor 80 ist die Endstufe oder Hochdruckstufe mit Einlassöffhung 81 und einer in Figur 4 nicht sichtbaren Auslassöffnung auf der von der Einlassöffhung 81 abgewandten Seite. Figur 4 zeigt ferner einen an den Fuß des Getriebegehäuses 90 angeflanschtes Ölsumpfgehäuse 95, das durch Ölleitungen mit den Gleichlaufgetrieben der Schraubenkompressoren 60, 70, 80 sowie mit dem im Getriebegehäuse 90 angeordneten Antriebsgetriebe verbunden ist.
In Figur 4 nicht dargestellt sind die die Ein- und Auslässe 61, 63, 71, 73, 81 der drei Schraubenkompressoren 60, 70, 80 miteinander verbindenden Verbindungsleitungen für das zu komprimierende Gas, insbesondere Luft. Diese können in üblicher Weise ausge- bildet und z. B. mit Filtern, Zwischenkühlern und/oder Schalldämpfern ausgestattet sein.
Bei dem Schraubenkompressor 80 der dritten Stufe handelt es sich um einen gemäß Figur 1 bis 3 ausgebildeten Schraubenkompressor gemäß der Erfindung. Das dreistufige Kompressoraggregat gemäß Figur 4 ist vorzugsweise so ausgelegt, dass der Auslassdruck der ersten Stufe 60 ca. 3 bis 6 bar, insbesondere ca. 3,5 bar, beträgt, die zweite Stufe (Zwischenstufe) 70 einen Auslassdruck von ca. 10 bis 15 bar, insbesondere ca. 12 bar erzeugt, und die dritte Stufe (Hochdruckstufe) einen Auslassdruck im Bereich von 30 bis 50 bar, insbesondere von ca. 40 bar erzeugt. Der von der zweiten Stufe 70 erzeugte Auslassdruck von ca. 12 bar ist somit der Druck, der im Ansaugraum 10 der dritten Stufe 80 herrscht und mit dem somit auch die Entlastungsräume 51, 51' der Dichtungsanordnungen 11, 11 ' für die druckseitigen Wellenzapfen gemäß Figur 1 und Figur 3 beaufschlagt sind.

Claims

Ansprüche
1. Schraubenkompressor mit zwei in einem Rotorgehäuse (1) achsparallel gelagerten Rotoren (3, 5), die mit schraubenförmigen Rippen und Nuten ineinander greifen und im Betrieb ein gasförmiges Medium, insbesondere Luft, von einem saugseitigen Ende in Richtung auf ein druckseitiges Ende der Rotoren fördern und dabei verdichten, wobei die Rotoren an ihren saugseitigen und druckseitigen Enden jeweils Wellenzapfen (7a, 7b, 9a, 9b) aufweisen, die im Rotorgehäuse (1) mittels Lagern (13, 15) gelagert und mittels je einer Dichtungsanordnung abgedichtet sind, wobei die Dichtungsanordnung (11, 11') jedes druckseitigen Wellenzapfens einen ringförmigen Entlastungsraum (51) aufweist, an den ein Entlüftungskanal (53) angeschlossen ist,
dadurch gekennzeichnet, dass der Entlüftungskanal (53) den Entlastungsraum (51) mit einem im Schraubenkompressor ausgebildeten Raum (10) verbindet, in welchem bei Betrieb des Schraubenkompressors ein Druck herrscht, der höher als Atmosphärendruck, aber niedriger als der Auslassdruck des Schraubenkompressors ist.
2. Schraubenkompressor nach Anspruch 1, dadurch gekennzeichnet, dass der Entlüftungskanal (53) den Entlastungsraum (51) mit dem Ansaugraum (10) des Rotorgehäuses (1) verbindet und dass der Ansaugraum (10) an eine vorgeschaltete Kompressorstufe angeschlossen ist, die dem Ansaugraum (10) ein vorkomprimiertes Gas mit höherem Druck als Atmosphärendruck zuführt.
3. Schraubenkompressor nach Anspruch 2, dadurch gekennzeichnet, dass sein Ansaugraum (10) durch die vorgeschaltete Kompressorstufe mit einem Druck im Bereich von 10 bis 15 bar, insbesondere ca. 12 bar, beaufschlagt ist und der Auslassdruck des Schraubenkompressors im Bereich von 30 bis 50 bar, insbesondere bei ca. 40 bar, liegt.
4. Schraubenkompressor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Schraubenkompressor die dritte Stufe (80) eines dreistufigen Kompressoraggregats ist, dessen erste und zweite Stufe (60, 70) ebenfalls Schraubenkompressoren sind.
5. Schraubenkompressor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dichtungsanordnung (11, 11') jedes druckseitigen Wellenzapfens eine Mehrzahl von hintereinander angeordneten Dichtungsringen (I Ia, I Ib) aufweist, und dass der Entlastungsraum (51) an einer solchen Stelle der Dichtungsanordnung vorgesehen ist, dass die Anzahl der Dichtungsringe (I Ia) zwischen dem Entlastungsraum (51) und dem Rotorprofϊl (7, 9) größer als die Anzahl der Dichtungsringe (1 Ib) zwischen dem Entlastungsraum (51) und dem Ende des Wellenzapfens (7a, 9a) ist.
6. Schraubenkompressor nach Anspruch 5, dadurch gekennzeichnet, dass die Anzahl der Dichtungsringe (I Ia, 1 Ib) acht beträgt und der Entlastungsraum zwischen dem vom Rotor aus gesehen fünften und sechsten Dichtungsring vorgesehen ist.
7. Schraubenkompressor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Entlüftungskanal (53) in einer mittels Kühlmittel gekühlten Wandung des Rotorgehäuses (1) ausgebildet ist.
PCT/EP2006/005559 2005-12-08 2006-06-09 Schraubenkompressor WO2007065487A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/094,388 US7713039B2 (en) 2005-12-08 2006-06-09 Helical screw compressor having a vented sealing arrangement
EP06754262A EP1957799A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058698 2005-12-08
DE102005058698.8 2005-12-08

Publications (1)

Publication Number Publication Date
WO2007065487A1 true WO2007065487A1 (de) 2007-06-14

Family

ID=36763690

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/EP2006/005557 WO2007065485A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor mit kühlmantel
PCT/EP2006/005559 WO2007065487A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor
PCT/EP2006/005558 WO2007065486A1 (de) 2005-12-08 2006-06-09 Mehrstufiges schraubenkompressoraggregat
PCT/EP2006/005556 WO2007065484A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005557 WO2007065485A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor mit kühlmantel

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/EP2006/005558 WO2007065486A1 (de) 2005-12-08 2006-06-09 Mehrstufiges schraubenkompressoraggregat
PCT/EP2006/005556 WO2007065484A1 (de) 2005-12-08 2006-06-09 Schraubenkompressor

Country Status (8)

Country Link
US (4) US7713039B2 (de)
EP (4) EP1957799A1 (de)
CN (2) CN101321954B (de)
AT (1) ATE498071T1 (de)
DE (1) DE502006008894D1 (de)
ES (1) ES2359015T3 (de)
HK (1) HK1127111A1 (de)
WO (4) WO2007065485A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527481A (zh) * 2013-10-30 2014-01-22 上海齐耀螺杆机械有限公司 一种螺杆压缩机

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669586B2 (en) * 2007-05-01 2010-03-02 Gm Global Technology Operations, Inc. Vented gear drive assembly for a supercharger
US20090142212A1 (en) * 2007-12-03 2009-06-04 Paul Xiubao Huang Rotary blower with noise abatement jacket enclosure
CN101498304B (zh) * 2009-03-11 2011-06-15 宁波鲍斯能源装备股份有限公司 一种煤层气双螺杆压缩机组
DE102009019220B4 (de) * 2009-04-30 2013-04-11 Leistritz Pumpen Gmbh Schraubenspindelpumpe
US8339714B2 (en) 2010-10-13 2012-12-25 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP5777379B2 (ja) * 2011-04-05 2015-09-09 株式会社日立産機システム 空気圧縮機
CN102322421B (zh) * 2011-08-29 2014-03-12 骆贻红 车载无油螺杆空气压缩机及其油路自循环冷却方法
US9951761B2 (en) 2014-01-16 2018-04-24 Ingersoll-Rand Company Aerodynamic pressure pulsation dampener
JP6228868B2 (ja) * 2014-03-10 2017-11-08 株式会社神戸製鋼所 スクリュ圧縮機
US9828995B2 (en) 2014-10-23 2017-11-28 Ghh Rand Schraubenkompressoren Gmbh Compressor and oil drain system
DE102014019117B4 (de) * 2014-12-19 2022-02-24 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Druckluftversorgungseinrichtung für Fahrzeug-Druckluftanlagen mit wenigstens einem Gehäuse aus Kunststoff
US9803639B2 (en) * 2014-12-19 2017-10-31 Ghh-Rand Schraubenkompressoren Gmbh Sectional sealing system for rotary screw compressor
CN107709729A (zh) * 2015-06-11 2018-02-16 伊顿公司 具有恒定导程螺旋角正时齿轮的增压器
CN105386972B (zh) * 2015-12-09 2017-05-17 合肥工业大学 一种具有动密封结构的螺杆真空泵
US10718334B2 (en) 2015-12-21 2020-07-21 Ingersoll-Rand Industrial U.S., Inc. Compressor with ribbed cooling jacket
US10451061B2 (en) 2016-05-06 2019-10-22 Ingersoll-Rand Company Compressor having non-contact and contact seals
CN108071586A (zh) * 2016-11-14 2018-05-25 上海汉钟精机股份有限公司 齿型转子组
TWI624596B (zh) * 2017-03-15 2018-05-21 亞台富士精機股份有限公司 可被遠端監控的幫浦機台及幫浦監控系統
EP3382203B1 (de) 2017-03-30 2024-05-15 Roper Pump Company LLC Exzenterschneckenpumpe mit integriertem heizmantel
CN108644117A (zh) * 2018-07-25 2018-10-12 宁波鲍斯能源装备股份有限公司 一种三级螺杆传动结构及其螺杆压缩机
CN110425133A (zh) * 2019-07-26 2019-11-08 宁波鲍斯能源装备股份有限公司 螺杆涡旋水平式三级压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335025A (en) * 1969-12-31 1973-10-24 Howden Godfrey Ltd Method of and apparatus for refrigeration
US4153395A (en) * 1976-09-04 1979-05-08 Howden Compressors Limited Compressors
EP0959251A1 (de) * 1998-05-18 1999-11-24 SGI-PROZESS-TECHNIK GmbH Drehzahnverdichter und Verfahren zum Betrieb eines solchen
EP0993553B1 (de) * 1998-04-30 2004-06-16 GHH-RAND Schraubenkompressoren GmbH & Co. KG. Dichtungsanordnung an einem wellenzapfen eines trockenlaufenden rotationsschraubenverdichters

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US562843A (en) * 1896-06-30 morse
US883911A (en) * 1907-07-09 1908-04-07 Harry Pierce Rotary engine.
US2575154A (en) * 1950-12-18 1951-11-13 Hydro Power Inc Rotary pump
US2849988A (en) * 1954-10-26 1958-09-02 Svenska Rotor Maskiner Ab Rotary devices and casing structures therefor
US3138320A (en) * 1959-01-15 1964-06-23 Svenska Roytor Maskiner Aktieb Fluid seal for compressor
DE1147443B (de) * 1960-07-11 1963-04-18 Gewerk Eisenhuette Westfalia Druckluftzahnradmotor
US3184155A (en) 1963-04-17 1965-05-18 Cooper Bessemer Corp Motor compressor unit
US3407996A (en) * 1966-06-22 1968-10-29 Atlas Copco Ab Screw compressor units
US4076468A (en) * 1970-07-09 1978-02-28 Svenska Rotor Maskiner Aktiebolag Multi-stage screw compressor interconnected via communication channel in common end plate
US3783710A (en) * 1972-11-16 1974-01-08 Twin Disc Inc Power transmitting drive apparatus
US4068984A (en) * 1974-12-03 1978-01-17 H & H Licensing Corporation Multi-stage screw-compressor with different tooth profiles
US3986801A (en) * 1975-05-06 1976-10-19 Frick Company Screw compressor
JPS5951190A (ja) * 1982-09-17 1984-03-24 Hitachi Ltd オイルフリ−スクリユ−圧縮機の油切り装置
JPS614889A (ja) * 1984-06-20 1986-01-10 Hitachi Ltd 多段式スクリユ−圧縮機
US4643654A (en) * 1985-09-12 1987-02-17 American Standard Inc. Screw rotor profile and method for generating
JP2511870B2 (ja) * 1986-03-20 1996-07-03 株式会社日立製作所 スクリユ−真空ポンプ装置
US4781553A (en) 1987-07-24 1988-11-01 Kabushiki Kaisha Kobe Seiko Sho Screw vacuum pump with lubricated bearings and a plurality of shaft sealing means
JP2515831B2 (ja) * 1987-12-18 1996-07-10 株式会社日立製作所 スクリユ―真空ポンプ
JP2619468B2 (ja) * 1988-04-06 1997-06-11 株式会社日立製作所 無給油式スクリュー流体機械
US4938672A (en) * 1989-05-19 1990-07-03 Excet Corporation Screw rotor lobe profile for simplified screw rotor machine capacity control
JPH03267593A (ja) * 1990-03-16 1991-11-28 Hitachi Koki Co Ltd ねじ溝真空ポンプ
JPH05231362A (ja) 1992-02-25 1993-09-07 Hitachi Ltd スクリュ流体機械
JPH05231361A (ja) 1992-02-26 1993-09-07 Hitachi Ltd オイルフリースクリュー圧縮機の診断方法およびその装置
JPH0658278A (ja) * 1992-08-05 1994-03-01 Ebara Corp 多段スクリュー式真空ポンプ
JP3254457B2 (ja) * 1992-09-18 2002-02-04 株式会社日立製作所 無給油式スクリュー圧縮機のロータ形成方法およびそのロータを用いた無給油式スクリュー圧縮機
DE4241141A1 (de) 1992-12-07 1994-06-09 Bhs Voith Getriebetechnik Gmbh Verdichteranlage mit einem im Antriebsstrang zwischen einer Antriebseinheit und einem Verdichterbereich der Anlage eingeschalteten Zahnradgetriebe
US6217304B1 (en) * 1995-10-30 2001-04-17 David N. Shaw Multi-rotor helical-screw compressor
JP3493850B2 (ja) * 1995-11-22 2004-02-03 石川島播磨重工業株式会社 機械駆動式過給機のシール構造
US5988994A (en) 1997-10-21 1999-11-23 Global Cooling Manufacturing Company Angularly oscillating, variable displacement compressor
JPH11223191A (ja) * 1998-02-04 1999-08-17 Hitachi Ltd 多段スクリューコンプレッサ
DE29904409U1 (de) * 1999-03-10 2000-07-20 GHH-RAND Schraubenkompressoren GmbH & Co. KG, 46145 Oberhausen Schraubenkompressor
DE29922878U1 (de) 1999-12-28 2001-05-10 GHH-RAND Schraubenkompressoren GmbH, 46145 Oberhausen Zweistufiger trockenlaufender Schraubenkompressor
JP4003378B2 (ja) * 2000-06-30 2007-11-07 株式会社日立プラントテクノロジー スクリュー圧縮機
US6478560B1 (en) * 2000-07-14 2002-11-12 Ingersoll-Rand Company Parallel module rotary screw compressor and method
DE10040020A1 (de) * 2000-08-16 2002-03-07 Bitzer Kuehlmaschinenbau Gmbh Schraubenverdichter
DE20110360U1 (de) * 2001-06-22 2002-10-31 GHH-RAND Schraubenkompressoren GmbH, 46145 Oberhausen Zweistufiger Schraubenkompressor
CN1399074A (zh) * 2001-07-27 2003-02-26 大晃机械工业株式会社 干式真空泵
US6981855B2 (en) * 2002-09-30 2006-01-03 Sandvik Ab Drilling rig having a compact compressor/pump assembly
DE20302989U1 (de) * 2003-02-24 2004-07-08 Werner Rietschle Gmbh + Co. Kg Drehkolbenpumpe
TW200506217A (en) 2003-03-19 2005-02-16 Ebara Corp Positive-displacement vacuum pump
US7232297B2 (en) * 2003-05-08 2007-06-19 Automotive Motion Technology Limited Screw pump
US20050089414A1 (en) * 2003-10-28 2005-04-28 Svenska Rotor Maskiner Ab Screw rotor and screw rotor compressor
CN2688936Y (zh) * 2004-03-15 2005-03-30 朱祚睿 同轴梯型多节螺杆式空气压缩机
US8342829B2 (en) * 2005-12-08 2013-01-01 Ghh Rand Schraubenkompressoren Gmbh Three-stage screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335025A (en) * 1969-12-31 1973-10-24 Howden Godfrey Ltd Method of and apparatus for refrigeration
US4153395A (en) * 1976-09-04 1979-05-08 Howden Compressors Limited Compressors
EP0993553B1 (de) * 1998-04-30 2004-06-16 GHH-RAND Schraubenkompressoren GmbH & Co. KG. Dichtungsanordnung an einem wellenzapfen eines trockenlaufenden rotationsschraubenverdichters
EP0959251A1 (de) * 1998-05-18 1999-11-24 SGI-PROZESS-TECHNIK GmbH Drehzahnverdichter und Verfahren zum Betrieb eines solchen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527481A (zh) * 2013-10-30 2014-01-22 上海齐耀螺杆机械有限公司 一种螺杆压缩机

Also Published As

Publication number Publication date
US7690901B2 (en) 2010-04-06
US9091268B2 (en) 2015-07-28
US20130011285A1 (en) 2013-01-10
EP1957798A1 (de) 2008-08-20
CN101321954A (zh) 2008-12-10
EP1957798B1 (de) 2011-02-09
EP1979618A1 (de) 2008-10-15
EP1957797B1 (de) 2016-09-28
US7713039B2 (en) 2010-05-11
US20080286138A1 (en) 2008-11-20
US20080286129A1 (en) 2008-11-20
WO2007065485A1 (de) 2007-06-14
CN101321954B (zh) 2012-06-13
HK1127111A1 (en) 2009-09-18
ES2359015T3 (es) 2011-05-17
CN101321955A (zh) 2008-12-10
DE502006008894D1 (de) 2011-03-24
WO2007065484A1 (de) 2007-06-14
EP1957799A1 (de) 2008-08-20
EP1957797A1 (de) 2008-08-20
US20090004036A1 (en) 2009-01-01
EP1979618B1 (de) 2016-04-27
ATE498071T1 (de) 2011-02-15
WO2007065486A1 (de) 2007-06-14

Similar Documents

Publication Publication Date Title
WO2007065487A1 (de) Schraubenkompressor
DE3438262C2 (de)
DE3705863C2 (de)
EP0030619B1 (de) Rotorverdichter, insbesondere Schraubenrotorverdichter, mit Schmiermittelzufuhr zu und Schmiermitteldrainage von den Lagern
DE102005000897B4 (de) Spiralverdichter mit variabler Leistung
EP0290662B1 (de) Zweiwellenvakuumpumpe mit Schöpfraum
DE102005040971B4 (de) Spiralverdichter mit Funktion zum Verhindern eines Schmierölverlustes
EP3298241B1 (de) Ölgeschmierte drehschieber-vakuumpumpe mit ölabscheide- und wiederaufbereitungseinrichtung
EP0156951A2 (de) Zweiwellen-Vakuumpumpe mit Getrieberaum-Evakuierung
DE102013007887A1 (de) Kompressionsvorrichtung und thermodynamisches System, das eine derartige Kompressionsvorrichtung umfasst
EP2592273A2 (de) Hydraulikpumpenanordnung
DE68924425T2 (de) Rotierender schraubverdichter mit ölablass.
DE202016004933U1 (de) Schmiersystem für einen elektrischen Kompressor
EP2229532B1 (de) Hubkolbenverdichter
EP2431613B1 (de) Vakuumpumpe mit wellendichtung
DE202014007117U1 (de) Klauenpumpe
DE4134964A1 (de) Spiralverdichter mit einem gesteuerten schmiermittelfluss
EP0569424B1 (de) Trockenlaufende vakuumpumpe
DE3513936A1 (de) Kuehleinrichtung fuer einen mehrstufigen verdichter
WO2003001064A1 (de) Zweistufiger schraubenkompressor
WO2017076803A1 (de) Trockenvakuumpumpe
DE102018205269B4 (de) Schraubenverdichter
DE10221396B4 (de) C02-Axialkolbenverdichter für Fahrzeugklimaanlagen
DE69223325T2 (de) Einlassregelvorrichtung für verdichter
DD203599C2 (de) Luftverdichteraggregat mit oelabscheidung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006754262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12094388

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006754262

Country of ref document: EP