WO2007061106A1 - 酸素燃焼ボイラの燃焼制御方法及び装置 - Google Patents

酸素燃焼ボイラの燃焼制御方法及び装置 Download PDF

Info

Publication number
WO2007061106A1
WO2007061106A1 PCT/JP2006/323652 JP2006323652W WO2007061106A1 WO 2007061106 A1 WO2007061106 A1 WO 2007061106A1 JP 2006323652 W JP2006323652 W JP 2006323652W WO 2007061106 A1 WO2007061106 A1 WO 2007061106A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
oxygen
exhaust gas
combustion
boiler body
Prior art date
Application number
PCT/JP2006/323652
Other languages
English (en)
French (fr)
Inventor
Toshihiko Yamada
Toshiro Fujimori
Shinichi Takano
Original Assignee
Electric Power Development Co., Ltd.
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co., Ltd., Ihi Corporation filed Critical Electric Power Development Co., Ltd.
Priority to AU2006316951A priority Critical patent/AU2006316951C1/en
Priority to EP06833456A priority patent/EP1959193B1/en
Priority to US12/094,785 priority patent/US8584604B2/en
Priority to PL06833456T priority patent/PL1959193T3/pl
Priority to CN2006800517134A priority patent/CN101336351B/zh
Publication of WO2007061106A1 publication Critical patent/WO2007061106A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/22Methods of steam generation characterised by form of heating method using combustion under pressure substantially exceeding atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/002Control by recirculating flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/30Premixing fluegas with combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/50Control of recirculation rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99006Arrangements for starting combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/26Controlling height of burner oxygen-air ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/10Generating vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a combustion control method and apparatus for an oxyfuel boiler, and more particularly to a combustion control method and apparatus for an oxyfuel boiler when oxyfuel combustion is performed using an existing air combustion boiler.
  • Thermal power plants are attracting attention as a fixed source of these substances. Petroleum, natural gas, and coal are used as fuels for thermal power generation, and in particular, coal is expected to grow in the future due to the large amount of minable reserves.
  • Coal has a higher carbon content than natural gas and oil, and contains other components such as hydrogen, nitrogen and sulfur, and inorganic ash. Most of the composition is nitrogen (about 70%), other carbon dioxide CO, sulfur oxide SOx
  • Nitrogen oxide NOx, and dust and oxygen (about 4%) consisting of ash and unburned coal particles. Therefore, exhaust gas treatment such as denitration, desulfurization, and dedusting is performed on the combustion exhaust gas, and NOx, SOx, and fine particles are discharged to the chimney force atmosphere so that they are below the environmental emission standard value.
  • NOx generated in the combustion exhaust gas includes thermal NOx generated by oxidizing nitrogen in the air with oxygen and fuel NOx generated by oxidizing nitrogen in the fuel.
  • a combustion method that reduces the flame temperature has been used to reduce thermal NOx
  • a combustion method that forms an excess fuel region that reduces NOx in the combustor has been used to reduce fuel NOx.
  • Patent Document 1 a part of the combustion exhaust gas taken out from the combustion furnace power and treated with exhaust gas is branched, and the branched combustion exhaust gas supplied to the combustion furnace is supplied with oxygen or An exhaust gas recirculation method is known which is mixed with a combustion gas such as air.
  • Patent Document 1 Japanese Patent No. 3068888
  • Patent Document 1 the combustion exhaust gas is cooled with a cooling device to liquefy and store carbon dioxide and further compress oxygen to be liquefied and stored, and the stored liquefied oxygen is stored. Since a part of the gas is recirculated to the combustion gas supply system, there is a problem that the apparatus is disadvantageous in terms of energy.
  • the concentration of oxygen contained in the combustion exhaust gas generated by the combustion apparatus is generally as low as about 4%.
  • the oxygen that has been cooled with a cooling device and separated into carbon dioxide and liquid is compressed with a blower for compression.
  • equipment and power energy are required for liquefaction recovery.
  • Patent Document 1 as a combustion gas, the ratio of oxygen in a mixed gas of carbon dioxide obtained by separating from combustion exhaust gas and oxygen separated from air is expressed as oxygen in air. Although it is described that it is used at the same rate as the ratio of fuel, it is conceivable that the load will fluctuate in the combustion device. Thus, in Patent Document 1, the technique for stable operation of the oxyfuel boiler was not considered at all.
  • the present invention has been made in view of the above problems, and sets the supply amount of oxygen to be supplied to the boiler body based on the boiler load command, and is based on the heat recovery amount of the boiler body!
  • An object of the present invention is to provide a combustion control method and apparatus for an oxyfuel boiler that can be used.
  • the present invention separates air into oxygen and other nitrogen-based gas by an oxygen separator, and heats feed water by burning the oxygen and fuel obtained by the oxygen separator in a boiler body.
  • Combustion control of an oxyfuel combustion boiler that generates steam and at least dedusts the combustion exhaust gas from the boiler body, and then recirculates a part of the combustion exhaust gas to the boiler body as a recirculation gas.
  • boiler Oxygen combustion boiler combustion characterized in that the oxygen concentration in the total gas introduced into the boiler body is adjusted by controlling the recirculation flow rate of the recirculation gas so that the heat recovery amount of the body becomes the target heat recovery amount Control method.
  • a system for supplying the oxygen to the boiler body by mixing the oxygen with the recirculation gas and a system for supplying the oxygen directly to the boiler body are provided, and the oxygen supplied to both systems It is preferable to control the amount of heat collected in the boiler body by changing the flow rate ratio.
  • the recirculation flow rate of the recirculation gas is controlled so that the heat recovery amount of the boiler body is equal to the heat recovery amount of the existing air combustion boiler. It is preferable to do.
  • the present invention introduces a fuel supply means, an oxygen separation device that separates air into oxygen and a nitrogen-based gas, a fuel supplied by the fuel supply means, and an oxygen supplied by the oxygen separation device.
  • a boiler body that heats feed water by firing to generate steam, a flue that guides the combustion exhaust gas burned in the boiler body to the outside, and an exhaust gas treatment means that collects at least dust in the flue;
  • An exhaust gas recirculation passage for recirculating a part of the combustion exhaust gas treated by the exhaust gas treatment means to the boiler body, the combustion control device for an oxyfuel boiler having the boiler body in response to a boiler load command
  • An oxygen supply amount controller for controlling the supply amount of oxygen to be supplied; a recirculation flow rate adjusting means provided in the exhaust gas recirculation flow path; an inlet thermometer for measuring a feed water temperature supplied to the boiler body; and a boiler Main unit outlet An outlet thermometer that measures the steam temperature, an inlet temperature measured by the inlet thermometer, and a heat amount measuring device that measures
  • the exhaust gas temperature for measuring the combustion exhaust gas temperature of the boiler instead of or together with the inlet thermometer and the outlet thermometer. It is preferable to measure the amount of heat collected in the boiler body by providing a meter and introducing the temperature of the exhaust gas detected by the exhaust gas thermometer to the heat amount measuring device.
  • an air supply system for supplying air for starting the boiler is switchably connected to the exhaust gas recirculation flow path.
  • the amount of oxygen supplied to the boiler body is set based on the boiler load command, and the amount of heat collected from the boiler body is measured to determine the boiler. It is included in the recirculation gas because the oxygen concentration in the total gas introduced into the boiler body is adjusted by controlling the recirculation flow rate of the combustion exhaust gas so that the heat recovery amount of the main body becomes the target heat recovery amount.
  • the amount of oxygen supplied to the boiler body, including oxygen, will be adjusted, so the combustion control of the boiler body will be greatly simplified and stabilized, and therefore easily applied to existing air-fired boilers and burned. If it can be controlled stably, an excellent effect can be obtained.
  • FIG. 1 is a block diagram showing an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the configuration of the boiler body in FIG.
  • FIG. 1 is a block diagram showing an example of an oxyfuel boiler according to the present invention when applied to a coal fired boiler.
  • Coal 1 as a fuel is pulverized by a pulverized coal mill 2 as a fuel supply means, and is supplied as a pulverized coal fuel 3 to a burner 5a provided in a wind box 5 of a boiler body 4 (furnace) shown in FIG.
  • Air 8 is supplied to the oxygen separator 6 by a blower 7, and the oxygen separator 6 separates the air 8 into oxygen 9 and other nitrogen-based gas 10.
  • Oxygen 9 separated by the oxygen separator 6 is partly supplied to the exhaust gas recirculation passage 13 described later by the system 12a through the oxygen supply passage 12, mixed with the recirculation gas 14a, and supplied to the wind box 5, The remainder is supplied directly to PANA 5a by system 12b.
  • the pulverized coal fuel 3 burns with oxygen 9 as an oxidant.
  • the coal contains components such as carbon, hydrogen, nitrogen, sulfur, These are oxidized by oxygen 9 to form diacid carbon CO, nitrogen oxide NOx, sulfur oxide SOx. It generates acid gas.
  • the combustion exhaust gas 14 containing acid gas such as CO, NOx, SOx, and dust passes through the flue 15.
  • the flue gas 14 has a high concentration of carbon dioxide and CO.
  • Combustion exhaust gas 14 mainly composed of carbon dioxide and carbon dioxide passing through 22 is led to a mixer 23 and mixed with a nitrogen-based gas 10 separated by the oxygen separation device 6 and diluted, and then led to a chimney 24. Exhausted.
  • the flue 15 between the desulfurizer 22 and the mixer 23 is connected to a carbon dioxide recovery passage 25 for taking out the combustion exhaust gas 14, and is connected to the flow controllers 26a and 26b (adjusting dampers). Therefore, the flue gas 14 taken out to the diacid-carbon capture channel 25 is further dust-removed by the filter 27, and then recovered as liquid oxalate-carbon 29 by compression by the compressor 28. At this time, the exhaust gas components 30 such as NOx and SOx that do not liquidate are introduced into the mixer 23, mixed with the nitrogen main gas 10, diluted, and led to the chimney 24.
  • An exhaust gas recirculation flow path 13 is connected to the flue 15 at the outlet of the dust collector 21 via a branch flow path 31 for extracting a part of the combustion exhaust gas 14, and the exhaust gas recirculation flow path
  • the recirculation fan 32 (recirculation flow rate adjusting means) provided in 13 supplies the recirculation gas 14a to the wind box 5 of the boiler body 4 through the gas preheater 16.
  • the inlet 9 of the wind box 5 in the exhaust gas recirculation flow path 13 is supplied with oxygen 9 by the system 12a.
  • the exhaust gas recirculation flow path 13 of Fig. 1 includes the recirculation system path 32a that leads to the wind box 5 through the gas preheater 16 and the adjustment damper 32c branched from the recirculation system path 32a as described above. And a fuel transfer system path 32b from which a part of the recirculation gas 14a is taken out via the primary air fan 32d, and the fuel transfer system path 32b further includes the recirculation gas 14a. Further, a preheating system path 32b ′ that partially guides the gas through the gas preheater 16 and a bypass system path 32b ”that guides the remainder of the recirculated gas 14a by bypassing the gas preheater 16 are provided.
  • the recirculated gas 14a that passed through 'and the bypass system 32b' merged and led to the pulverized coal mill 2 The By adjusting the flow regulators 33a, 33b (adjusting dampers) provided in the preheating path 32b 'and the bypass path 32b ", the temperature of the recirculation gas 14a led to the pulverized coal mill 2 is adjusted. Yes.
  • an air supply system 44 for supplying air 8 for starting the boiler is connected to the inlet of the recirculation fan 32 in the exhaust gas recirculation flow path 13, and the branch flow path 31 and the air supply are supplied.
  • air 8 can be supplied to the recirculation fan 32 by flow rate regulators 44 a and 44 b provided in the supply system 44.
  • the opening degree of the oxygen flow rate adjusting means 11a, l ib provided in each of the systems 12a, 12b is adjusted according to the boiler load command 35 (fuel supply command).
  • an oxygen supply amount controller 34 that controls the supply amount of oxygen 9 supplied to the boiler body 4 is provided.
  • the setting of the amount of oxygen supplied to the boiler body 4 by the oxygen flow rate adjusting means 11a, l ib is set in the total gas in which the recirculation gas 14a and oxygen 9 supplied to the boiler body 4 are combined.
  • Oxygen concentration that is, oxygen concentration power including oxygen (about 4%) in the recirculation gas 14a
  • the boiler body 4 obtained in advance by an exhaust gas circulation type air combustion boiler that operates in an stable manner Set to be equivalent to the oxygen concentration in the total gas supplied. Accordingly, the oxygen supply amount controller 34 determines that the total oxygen supply amount supplied to the boiler body 4 in accordance with the boiler load command 35 (fuel supply command)
  • the oxygen flow rate adjusting means 11a, l ib is controlled so that the oxygen supply amount becomes the same.
  • the oxygen supply amount controller 34 ignites the Pana flame by changing the flow rate of the oxygen 9 supplied by the systems 12a and 12b by changing the opening degree of the oxygen flow rate control means 11a and ib. Change the position so that the amount of heat collected by the boiler body 4 can be improved.
  • the boiler body 4 includes a feed water heater for supplying to the boiler body 4 as shown in FIG.
  • An inlet thermometer 37 (Tl) that measures the temperature of the feed water 36 from 17 and an outlet thermometer 39 (T2) that measures the temperature of the steam 38 at the outlet of the boiler body 4 are provided.
  • a heat recovery amount measuring device 40 is provided to measure the amount of heat recovery of the boiler body 4, and the heat recovery amount measuring device 40 further includes
  • the recirculation fan 32 (recirculation flow rate adjustment means) is controlled so that the measured heat recovery amount 41 becomes the target heat recovery amount 42 (heat recovery amount that can be stably operated as obtained in the existing air combustion boiler).
  • a recirculation flow controller 43 is provided.
  • an exhaust gas thermometer 45 for measuring the temperature of the combustion exhaust gas 14 at the outlet of the boiler body 4 is provided, and the detected exhaust gas temperature of the exhaust gas thermometer 45 is guided to the heat recovery amount measuring device 40, so that the boiler body 4 Measure the amount of heat collected.
  • the exhaust gas thermometer 45 may be provided alone to measure the amount of heat collected from the boiler body 4, and is provided together with the inlet thermometer 37 and the outlet thermometer 39 to reduce the amount of heat collected from the boiler body 4. You may make it measure.
  • the supply of oxygen 9 is divided into two systems 12a and 12b, and a part is mixed with the recirculation gas 14a of the exhaust gas recirculation flow path 13 and supplied to the wind box 5 by the system 12a.
  • the remainder is exemplified in the case where the system 12b supplies it directly to the burner 5a, but all oxygen is mixed with the recirculation gas 14a in the exhaust gas recirculation flow path 13 and supplied to the wind box 5.
  • each component is kept below the environmental emission standard value and discharged from the chimney 24 to the atmosphere.
  • the flow regulators 26a and 26b are adjusted to supply a part or all of the flue gas 14 guided to the chimney 24 to the compressor 28 to supply liquid. Recover carbon dioxide 29.
  • the flue gas 14 introduced into the chimney 24 and the exhaust gas components 30 such as NOx and SOx not liquidated by the compressor 28 are led to the mixer 23 and supplied with a large amount of nitrogen from the oxygen separator 6. Since it is diluted with the gas 10, it can be discharged from the chimney 24. Thus, steady operation is started.
  • the oxygen supply amount controller 34 controls the oxygen flow rate adjusting means 11a, ib, and from the oxygen supply flow path 12.
  • the flow rate of oxygen 9 supplied to the boiler body 4 via the systems 12a and 12b is controlled so as to be a set flow rate.
  • the supply amount of oxygen supplied to the boiler body 4 is the oxygen concentration in the total gas of the recirculation gas 14a and oxygen 9 supplied to the boiler body 4, ie, the recirculation gas 14a.
  • the oxygen concentration, including oxygen (about 4%) is obtained in advance in an existing air-fired boiler that is stably operated, and is equivalent to the oxygen concentration in the total gas supplied to the boiler body 4 It is controlled to become.
  • the feed water temperature at the inlet of the boiler body 4 detected by the inlet thermometer 37 and the steam temperature at the outlet of the boiler body 4 detected by the outlet thermometer 39 are supplied to the heat recovery amount measuring device 40.
  • the flue gas temperature from the exhaust gas thermometer 45 is guided to the heat recovery measuring device 40 alone or together with the boiler inlet temperature and the boiler outlet temperature, and the heat recovery measuring device 40 is connected to the heat recovery amount of the boiler body 4.
  • 41 is input to the recirculation flow rate controller 43, and the recirculation flow rate controller 43 sets the heat recovery amount 41 to the target heat recovery amount 42.
  • the recirculation fan 32 (recirculation flow rate adjusting means) is controlled to adjust the recirculation flow rate of the recirculation gas 14a.
  • the recirculation flow rate controller 43 recirculates so that the heat recovery amount 41 is equivalent to the target heat recovery amount 42 that can be stably operated and obtained in advance with an existing air combustion boiler.
  • Fan 32 is adjusted to control the recirculation flow rate of recirculation gas 14a.
  • the amount of oxygen supplied to the boiler body 4 is controlled by the combustion of the boiler body 4
  • the recirculation flow rate of the recirculation gas 14a is controlled so that the heat recovery amount of the boiler body 4 is equivalent to that of the existing air combustion boiler based on the boiler load command 35
  • the oxygen supply amount controller 34 can change the flow rate of the oxygen 9 supplied from the systems 12a, 12b by changing the opening of the oxygen flow rate adjusting means 11a, lib, so The amount of heat collected by the boiler body 4 can be improved by changing the ignition position. For example, increasing the flow rate of the system 12b that supplies the oxygen 9 directly to the burner 5a can increase the amount of heat collected, so the flow rate of the oxygen 9 supplied by the control of the recirculation flow controller 43 and the supply of the oxygen 9 by the systems 12a and 12b. It is preferable to implement in combination with control for changing the ratio.
  • coal contains volatile components such as carbon, hydrogen, nitrogen, sulfur, etc., CO, NOx, SOx
  • the present invention can also be applied to a thermal power generation boiler that uses natural gas and petroleum as fuels, which contain a small amount of acid gas such as nitrogen and sulfur.
  • the gas processing means can be omitted or the apparatus can be made smaller, and the pulverized coal mill 2 and its fuel transfer path 32b can be omitted.
  • combustion control method and apparatus for the oxyfuel boiler of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 既存の空気燃焼ボイラに容易に適用して燃焼を安定且つ容易に制御できる酸素燃焼ボイラの燃焼制御方法及び装置を提供する。  ボイラ負荷指令35に対応した設定量の酸素をボイラ本体4に供給し、且つ、ボイラ本体4に供給する給水の入口温度と蒸気の出口温度からボイラ収熱量を計測し、ボイラ本体4の収熱量41が目標の収熱量42になるように燃焼排ガス14aの再循環流量を制御してボイラ本体4に導入される全ガス中の酸素濃度を調節する。

Description

明 細 書
酸素燃焼ボイラの燃焼制御方法及び装置
技術分野
[0001] 本発明は、酸素燃焼ボイラの燃焼制御方法及び装置に係わり、特に既存の空気燃 焼ボイラを用いて酸素燃焼を行う場合における酸素燃焼ボイラの燃焼制御方法及び 装置に関する。
背景技術
[0002] 近年、地球温暖化が地球規模の環境問題として大きく取り上げられている。地球温 暖化は大気中の二酸ィヒ炭素 COの濃度の増加が主要因の一つであることが明らか
2
にされており、火力発電所はこれらの物質の固定排出源として注目されている。火力 発電用燃料としては石油、天然ガス、石炭が使用されており、特に石炭は採掘可能 埋蔵量が多ぐ今後需要が伸びることが予想される。
[0003] 石炭は天然ガス及び石油と比較して炭素含有量が多ぐその他水素、窒素、硫黄 等の成分、無機質である灰分を含んでいるため、石炭を空気燃焼させると、燃焼排ガ スの組成は殆どが窒素 (約 70%)となり、その他二酸化炭素 CO、硫黄酸化物 SOx
2 、 窒素酸化物 NOx、及び灰分や未燃焼の石炭粒子からなる塵と酸素 (約 4%)を含ん だものとなる。そこで、燃焼排ガスは脱硝、脱硫、脱塵等の排ガス処理を実施し、 NO x、 SOx、微粒子が環境排出基準値以下になるようにして煙突力 大気に排出してい る。
[0004] 前記燃焼排ガスに生じる NOxには、空気中の窒素が酸素で酸ィ匕されて生成するサ 一マル NOxと、燃料中の窒素が酸化されて生成するフューエル NOxとがある。従来 、サーマル NOxの低減には火炎温度を低減する燃焼法が採られ、またフューエル N Oxの低減には、燃焼器内に NOxを還元する燃料過剰の領域を形成する燃焼法が 採られてきた。
[0005] また、石炭のような硫黄を含む燃料を使用した場合には、燃焼によって燃焼排ガス 中に SOxが生じるため、湿式或いは乾式の脱硫装置を備えて除去して!/、る。
[0006] 一方、燃焼排ガス中に多量に発生する二酸化炭素も高効率で分離除去することが 望まれている。燃焼排ガス中の二酸ィ匕炭素を回収する方法としては、従来よりァミン 等の吸収液中に吸収させる手法や、固体吸着剤に吸着させる吸着法、あるいは膜分 離法等が検討されているが、いずれも変換効率が低ぐ実用化には至っていない。
[0007] そこで、燃焼排ガス中の二酸ィ匕炭素の分離とサーマル NOxの抑制の問題を同時 に達成する有効な手法としては、空気に代えて酸素で燃料を燃焼させる手法が提案 されている(例えば特許文献 1参照)。
[0008] 石炭を酸素で燃焼すると、サーマル NOxの発生は無くなるため、燃焼排ガスのほと んどは二酸化炭素となり、その他フューエル NOx、 SOxを含んだガスとなるため、燃 焼排ガスを冷却することにより、前記二酸ィ匕炭素を液ィ匕して分離することが比較的容 易になる。
[0009] し力しながら、酸素で燃焼した場合には火炎温度が高くなり、燃焼炉を構成する材 料の耐熱性や寿命向上を図る必要があるといった技術課題がある。この問題を解決 するひとつの対策法としては、特許文献 1に示すように、燃焼炉力 取り出して排ガス 処理した燃焼排ガスの一部を分岐し、この分岐した燃焼排ガスを燃焼炉に供給する 酸素或いは空気等の燃焼用気体に混合させるようにした排ガス再循環方法が知られ ている。
[0010] この排ガス再循環のため、 特許文献 1では、燃焼排ガス処理手段で処理した燃焼 排ガスを、 80°C以下に冷却して二酸ィ匕炭素を液化'貯蔵することによって酸素と分 離し、更に酸素は、圧縮用送風ブロワにより圧縮して液化'貯蔵し、この貯蔵した酸素 を気化させて前記燃焼用気体供給系に再循環させる手段を備えたものとして 、る。 特許文献 1:特許第 3068888号公報
発明の開示
発明が解決しょうとする課題
[0011] しかし、特許文献 1に示される手法では、燃焼排ガスを冷却装置で冷却して二酸ィ匕 炭素を液化'貯蔵し、更に酸素を圧縮して液化'貯蔵し、貯蔵した液化酸素の一部を 燃焼用気体供給系に再循環するようにしているために、装置、エネルギ的に不利に なる問題がある。
[0012] 即ち、燃焼装置力 の燃焼排ガス中に含まれる酸素の濃度は一般に 4%程度と低 い値となっており、このように少ない含有量の酸素を回収するために、冷却装置で冷 却して二酸ィ匕炭素を液ィ匕分離した後の酸素を、圧縮用送風ブロワで圧縮して液化回 収して 、るために、装置及び動力エネルギが必要となる問題がある。
[0013] また、前記したように、酸素によって燃焼する場合には火炎温度が高くなり、燃焼炉 を構成する材料の耐熱性や寿命の問題があるため、特許文献 1では燃焼排ガスを再 循環することを前提として 、るけれども、酸素燃焼ボイラの安定運転を可能にするた めにどのように制御するかにっ 、ては全く触れられておらず、よって上記特許文献 1 に記載された手法で酸素燃焼ボイラを実際に稼働させることはできない。
[0014] 即ち、例えば、特許文献 1によれば、燃焼用気体として、燃焼排ガスから分離して 得られた二酸化炭素と空気から分離した酸素の混合気体中の酸素の割合を、空気 中の酸素の割合と等しくして用いる、と記載されているけれども、燃焼装置では負荷 が変動することが考えられ、従って、負荷が増加して燃料供給量が増加した場合に は当然酸素不足の状態が生じるのであり、このように特許文献 1では酸素燃焼ボイラ を安定運転するための手法については全く考えられていな力つた。
[0015] 本発明は、上記課題に鑑みてなしたもので、ボイラ負荷指令に基づいてボイラ本体 に供給する酸素の供給量を設定し、且つボイラ本体の収熱量に基づ!、て燃焼排ガス の再循環流量を制御してボイラ本体に導入される全ガス中の酸素濃度を調節するこ とによって、既存の空気燃焼ボイラにも容易に適用して燃焼を安定且つ容易に制御 できるようにした酸素燃焼ボイラの燃焼制御方法及び装置を提供することを目的とす る。
課題を解決するための手段
[0016] 本発明は、酸素分離装置により空気を酸素と他の窒素主体ガスとに分離し、前記 酸素分離装置で得られた酸素と燃料とをボイラ本体で燃焼することにより給水を加熱 して蒸気を発生し、ボイラ本体力ゝらの燃焼排ガスを少なくとも脱塵処理した後、燃焼 排ガスの一部を再循環ガスとして前記ボイラ本体に再循環するようにして 、る酸素燃 焼ボイラの燃焼制御方法であって、ボイラ負荷指令に対応した設定量の酸素を前記 ボイラ本体に供給し、且つ、前記ボイラ本体に供給する給水の入口温度と蒸気の出 口温度、及び又はボイラの燃焼排ガス温度を用いてボイラ収熱量を計測し、ボイラ本 体の収熱量が目標の収熱量になるように前記再循環ガスの再循環流量を制御して ボイラ本体に導入される全ガス中の酸素濃度を調節することを特徴とする酸素燃焼 ボイラの燃焼制御方法、に係るものである。
[0017] 前記酸素燃焼ボイラの燃焼制御方法において、前記酸素を再循環ガスに混合して ボイラ本体に供給する系統と前記酸素を直接ボイラ本体に供給する系統とを設け、 両系統に供給する酸素の流量割合を変更することによりボイラ本体の収熱量を制御 することは好ましい。
[0018] また、前記酸素燃焼ボイラの燃焼制御方法にお!、て、前記ボイラ本体の収熱量が 既存の空気燃焼ボイラの収熱量と同等になるように前記再循環ガスの再循環流量を 制御することは好ましい。
[0019] 本発明は、燃料供給手段と、空気を酸素と窒素主体ガスとに分離する酸素分離装 置と、前記燃料供給手段力 の燃料と前記酸素分離装置力 の酸素とを導入して燃 焼することにより給水を加熱して蒸気を発生するボイラ本体と、該ボイラ本体で燃焼し た燃焼排ガスを外部に導く煙道と、該煙道に備えた少なくとも集塵を行う排ガス処理 手段と、該排ガス処理手段によって処理した燃焼排ガスの一部を前記ボイラ本体に 再循環する排ガス再循環流路と、を有する酸素燃焼ボイラの燃焼制御装置であって 、ボイラ負荷指令に応じて前記ボイラ本体に供給する酸素の供給量を制御する酸素 供給量制御器と、前記排ガス再循環流路に備えた再循環流量調節手段と、前記ボイ ラ本体に供給する給水温度を計測する入口温度計と、ボイラ本体出口の蒸気温度を 計測する出口温度計と、前記入口温度計で計測した入口温度と前記出口温度計で 計測した出口温度に基づいてボイラ本体の収熱量を計測する収熱量計測装置と、該 収熱量計測装置にて計測される収熱量が目標の収熱量になるように前記再循環流 量調節手段による再循環ガスの再循環流量を制御する再循環流量制御器と、を備 えたことを特徴とする酸素燃焼ボイラの燃焼制御装置、に係るものである。
[0020] 前記酸素燃焼ボイラの燃焼制御装置にお!、て、前記入口温度計及び出口温度計 に代えて又は該入口温度計及び出口温度計と共に、ボイラの燃焼排ガス温度を計 測する排ガス温度計を設け、該排ガス温度計の検出排ガス温度を前記収熱量計測 装置に導 、てボイラ本体の収熱量を計測することは好ま 、。 [0021] また、前記酸素燃焼ボイラの燃焼制御装置にお!、て、前記排ガス再循環流路に、 ボイラ起動時用の空気を供給する空気供給系を切替可能に接続することは好ましい 発明の効果
[0022] 本発明の酸素燃焼ボイラの燃焼制御方法及び装置によれば、ボイラ負荷指令に基 づいてボイラ本体に供給する酸素の供給量を設定し、且つ、ボイラ本体の収熱量を 計測しボイラ本体の収熱量が目標の収熱量になるように燃焼排ガスの再循環流量を 制御してボイラ本体に導入される全ガス中の酸素濃度を調節するようにしたので、再 循環ガス中に含まれる酸素も含めてボイラ本体に供給する酸素量が調節されること になり、よってボイラ本体の燃焼制御が非常に簡略化されて安定し、よって、既存の 空気燃焼ボイラにも容易に適用して燃焼を安定に制御できると 、う優れた効果を奏し 得る。
図面の簡単な説明
[0023] [図 1]本発明の実施例を示すブロック図である。
[図 2]図 1におけるボイラ本体部分の構成説明図である。
符号の説明
[0024] 2 微粉炭ミル (燃料供給手段)
3 微粉炭燃料 (燃料)
4 ボイラ本体
6 酸素分離装置
8 空気
9 酸素
10 窒素主体ガス
11a, l ib 酸素流量調節手段
12a, 12b 系統
13 排ガス再循環流路
14 燃焼排ガス
14a 再循環ガス 15 煙道
19 排ガス処理手段
32 再循環ファン (再循環流量調節手段)
34 酸素供給量制御器
35 ボイラ負荷指令
36 給水
37 入口温度計
38 蒸気
39 出口温度計
40 収熱量計測装置
41 計測された収熱量
42 目標の収熱量
43 再循環流量制御器
44 空気供給系
45 排ガス温度計
発明を実施するための最良の形態
[0025] 以下、本発明の実施例を添付図面を参照して説明する。
図 1は石炭焚ボイラに適用した場合における本発明の酸素燃焼ボイラの一例を示 すブロック図である。燃料である石炭 1は、燃料供給手段としての微粉炭ミル 2で粉砕 され微粉炭燃料 3となって図 2に示すボイラ本体 4 (火炉)のウィンドボックス 5に備え たパーナ 5aに供給される。酸素分離装置 6にはブロワ 7により空気 8が供給されてお り、酸素分離装置 6は空気 8を酸素 9と他の窒素主体ガス 10とに分離するようになつ ている。酸素分離装置 6で分離した酸素 9は、酸素供給流路 12により一部は系統 12 aにより後述する排ガス再循環流路 13に供給され再循環ガス 14aと混合してウィンド ボックス 5に供給され、また残部は系統 12bにより直接パーナ 5aに供給される。
[0026] 前記ボイラ本体 4内では、前記微粉炭燃料 3が酸化剤である酸素 9と共に燃焼する 力 この時、石炭には炭素、水素、窒素、硫黄等の成分が含まれているために、これ らが酸素 9によって酸ィ匕されて二酸ィ匕炭素 CO、窒素酸化物 NOx、硫黄酸化物 SOx 等の酸性ガスを発生する。
[0027] 前記 CO、 NOx、 SOx等の酸性ガス、粉塵を含む燃焼排ガス 14は、煙道 15を通つ
2
て、ガス予熱器 16、給水加熱器 17、前記酸素 9を予熱する酸素予熱器 18を経た後 、排ガス処理手段 19としての集塵装置 21で脱塵され、更に排ガス処理手段 19として の脱硝装置 20で NOxが除去され、排ガス処理手段 19としての脱硫装置 22で SOx が除去される。燃焼排ガス 14は二酸化炭素 COの濃度が高められており、脱硫装置
2
22を通った二酸ィ匕炭素主体の燃焼排ガス 14は、混合器 23に導かれて前記酸素分 離装置 6で分離した窒素主体ガス 10と混合して希釈された後、煙突 24に導かれて排 気される。
[0028] 前記脱硫装置 22と混合器 23との間の煙道 15には燃焼排ガス 14を取り出すための 二酸化炭素回収流路 25が接続してあり、流量調節器 26a, 26b (調整ダンバ)によつ て二酸ィ匕炭素回収流路 25に取り出された燃焼排ガス 14は、フィルタ 27にて更に除 塵された後、圧縮機 28による圧縮によって液ィ匕ニ酸ィ匕炭素 29として回収され、この 時液ィ匕しない NOx、 SOx等の排ガス成分 30は、前記混合器 23に導いて前記窒素 主体ガス 10と混合し希釈して煙突 24に導くようにしている。
[0029] 前記集塵装置 21出口の煙道 15には、燃焼排ガス 14の一部を取り出す分岐流路 3 1を介して排ガス再循環流路 13が接続してあり、該排ガス再循環流路 13に備えた再 循環ファン 32 (再循環流量調節手段)により再循環ガス 14aが、前記ガス予熱器 16 を介してボイラ本体 4のウィンドボックス 5に供給されるようにして 、る。排ガス再循環 流路 13におけるウィンドボックス 5の入口には前記系統 12aによって酸素 9が供給さ れるようになっている。
[0030] 尚、図 1の排ガス再循環流路 13は、前記したように前記ガス予熱器 16を通してウイ ンドボックス 5に導く再循環系路 32aと、再循環系路 32aから分岐し調整ダンバ 32c及 びプライマリーエアファン 32dを介して再循環ガス 14aの一部を取り出すようにした燃 料搬送系路 32bとから構成されており、更に、該燃料搬送系路 32bは、再循環ガス 1 4aの更に一部を前記ガス予熱器 16を通して導く予熱系路 32b'と、再循環ガス 14a の残りをガス予熱器 16を迂回して導く迂回系路 32b"とからなっており、前記予熱系 路 32b'と迂回系路 32b"を通った再循環ガス 14aは合流して微粉炭ミル 2に導かれ る。予熱系路 32b 'と迂回系路 32b"に備えた流量調節器 33a, 33b (調整ダンバ)を 調整することによって、前記微粉炭ミル 2に導く再循環ガス 14aの温度を調節するよう になっている。
[0031] また、前記排ガス再循環流路 13における再循環ファン 32の入口には、ボイラ起動 時用の空気 8を供給する空気供給系 44が接続してあり、前記分岐流路 31と空気供 給系 44に備えた流量調節器 44a, 44bによって、前記燃焼排ガス 14に代えて空気 8 を再循環ファン 32に供給できるようにして 、る。
[0032] 酸素燃焼を行う場合には、前述したように火炎温度が高くなり、ボイラ本体 4を構成 する材料の耐熱性や寿命の問題があるため、実際に酸素燃焼ボイラを安定運転する ことは困難であり、特に酸素の供給量は僅かな変化であっても燃焼状態が大きく変 動するため、図 1では酸素燃焼ボイラを安定して酸素燃焼するための燃焼制御装置 を設けている。
[0033] 図 1の酸素燃焼ボイラでは、前記系統 12a, 12bの夫々に設けた酸素流量調節手 段 11a, l ibの開度を、ボイラ負荷指令 35 (燃料供給指令)に応じて調節することに よりボイラ本体 4に供給する酸素 9の供給量を制御するようにした酸素供給量制御器 34を設けている。
[0034] 前記酸素流量調節手段 11a, l ibによってボイラ本体 4に供給する酸素の供給量 の設定は、ボイラ本体 4に供給される再循環ガス 14aと酸素 9とが合計された全ガス 中における酸素濃度、即ち、前記再循環ガス 14a中の酸素 (約 4%)も含んだ酸素濃 度力 既存の安定運転して 、る排ガス循環方式の空気燃焼ボイラによって予め得て おいたボイラ本体 4に供給される全ガス中の酸素濃度と同等になるように設定する。 従って、前記酸素供給量制御器 34は、ボイラ負荷指令 35 (燃料供給指令)に応じて 、ボイラ本体 4に供給される全酸素の供給量が、既存の空気燃焼ボイラで予め求めら れた全酸素供給量となるように酸素流量調節手段 11a, l ibを制御する。また、前記 酸素供給量制御器 34は、前記酸素流量調節手段 11a, l ibの開度を変えて系統 1 2a, 12bによって供給される酸素 9の流量割合を変更することにより、パーナ火炎の 着火位置を変更してボイラ本体 4の収熱量を改善できるようにして 、る。
[0035] また、前記ボイラ本体 4には、図 2に示す如ぐボイラ本体 4に供給する給水加熱器 17からの給水 36の温度を計測する入口温度計 37 (Tl)と、ボイラ本体 4出口の蒸気 38の温度を計測する出口温度計 39 (T2)を設け、前記入口温度計 37で計測した入 口温度と前記出口温度計 39で計測した出口温度に基づ 、てボイラ本体 4の収熱量 を計測するようにした収熱量計測装置 40を設け、更に、該収熱量計測装置 40によつ て計測された収熱量 41が目標の収熱量 42 (既存の空気燃焼ボイラで予め得られて いる安定運転可能な収熱量)になるように、前記再循環ファン 32 (再循環流量調節 手段)を制御する再循環流量制御器 43を設けて 、る。
[0036] また、前記ボイラ本体 4出口の燃焼排ガス 14の温度を計測する排ガス温度計 45を 設け、該排ガス温度計 45の検出排ガス温度を前記収熱量計測装置 40に導 、てボイ ラ本体 4の収熱量を計測するようにして ヽる。この排ガス温度計 45は単独で設けてボ イラ本体 4の収熱量を計測するようにしてもよぐまた、前記入口温度計 37及び出口 温度計 39と一緒に備えてボイラ本体 4の収熱量を計測するようにしてもよい。
[0037] 尚、上記実施例では酸素 9の供給を 2つの系統 12a, 12bに分け、一部は系統 12a により排ガス再循環流路 13の再循環ガス 14aと混合してウィンドボックス 5に供給し、 また残部は系統 12bにより直接パーナ 5aに供給する場合にっ 、て例示したが、全て の酸素を排ガス再循環流路 13の再循環ガス 14aと混合してウィンドボックス 5に供給 することちでさる。
[0038] 以下に上記実施例の作用を説明する。
[0039] 図 1の酸素燃焼ボイラの起動時には、流量調節器 44aを全閉にして流量調節器 44 bを開け、再循環ファン 32の駆動により空気 8をボイラ本体 4のパーナ 5aに供給し、 微粉炭ミル 2から供給される微粉炭燃料 3を空気によって燃焼する。空気 8で微粉炭 燃料 3を燃焼すると燃焼排ガス 14の組成は約 70%が窒素となり、残りは二酸ィ匕炭素 CO、 SOx、水蒸気等になる。この燃焼排ガス 14は排ガス処理手段 19の集塵装置 2
2
1、脱硝装置 20、脱硫装置 22で排ガス処理されることにより各成分が環境排出基準 値以下に保持されて、煙突 24から大気中に排出される。
[0040] ボイラ本体 4の収熱が所定値に到達すると、酸素分離装置 6で得られた酸素 9をボ イラ本体 4のパーナ 5aに供給して酸素燃焼を行 、、流量調節器 44bを全閉にして流 量調節器 44aを開けることにより、燃焼排ガス 14の一部を排ガス再循環流路 13によ り再循環ガス 14aとしてボイラ本体 4のパーナ 5aに供給する。すると、再循環ガス 14a の供給によって空気 8に含まれていた窒素の供給がなくなるので、燃焼排ガス 14中 の窒素の濃度は徐々に減少する。燃焼排ガス 14に残存する窒素が略なくなった後 は、流量調節器 26a, 26bを調節して煙突 24に導かれる燃焼排ガス 14の一部あるい は全部を圧縮機 28に供給して液ィ匕ニ酸ィ匕炭素 29を回収する。尚、前記煙突 24〖こ 導かれる燃焼排ガス 14、及び圧縮機 28で液ィ匕しない NOx、 SOx等の排ガス成分 30 は、混合器 23に導かれて前記酸素分離装置 6からの大量の窒素主体ガス 10と混合 して希釈されるので、煙突 24から排出することができる。これにより定常運転に入る。
[0041] 定常運転においては、ボイラ本体 4の燃焼を制御するボイラ負荷指令 35に基づい て、前記酸素供給量制御器 34は酸素流量調節手段 11a, l ibを制御し、酸素供給 流路 12から系統 12a, 12bを介してボイラ本体 4に供給される酸素 9の流量を設定さ れた流量になるように制御する。この時、ボイラ本体 4に供給する酸素の供給量は、 ボイラ本体 4に供給される再循環ガス 14aと酸素 9とが合計された全ガス中における 酸素濃度、即ち、前記再循環ガス 14a中の酸素 (約 4%)も含んだ酸素濃度が、既存 の安定運転されて 、る空気燃焼ボイラにぉ 、て予め得てぉ 、たボイラ本体 4に供給 される全ガス中の酸素濃度と同等になるように制御される。
[0042] 一方、前記入口温度計 37で検出して 、るボイラ本体 4入口の給水温度と、出口温 度計 39で検出しているボイラ本体 4出口の蒸気温度とが収熱量計測装置 40に導か れ、また排ガス温度計 45からの燃焼排ガス温度が単独で、又は前記ボイラ入口温度 及びボイラ出口温度と共に収熱量計測装置 40に導かれており、収熱量計測装置 40 はボイラ本体 4の収熱量 41を計測し、該収熱量計測装置 40で計測した収熱量 41は 再循環流量制御器 43に入力されており、再循環流量制御器 43は前記収熱量 41が 目標の収熱量 42になるように再循環ファン 32 (再循環流量調節手段)を制御して、 再循環ガス 14aの再循環流量を調節する。
[0043] この時、前記再循環流量制御器 43は、前記収熱量 41が、既存の空気燃焼ボイラ で予め得ておいた安定運転可能な目標の収熱量 42と同等になるように、再循環ファ ン 32を調節して再循環ガス 14aの再循環流量を制御する。
[0044] 上記したように、ボイラ本体 4に供給する酸素供給量を、ボイラ本体 4の燃焼を制御 するボイラ負荷指令 35に基づ 、た設定値で制御し、且つボイラ本体 4の収熱量が、 既存の空気燃焼ボイラの場合と同等になるように前記再循環ガス 14aの再循環流量 を制御するようにしたので、信頼性を有する既存の空気燃焼ボイラの構成 ·技術を用 いて酸素燃焼ボイラを実施することが可能になり、よって、特に既存の空気燃焼ボイ ラを酸素燃焼ボイラへ変更して利用することが有効に可能になる。
[0045] また、前記酸素供給量制御器 34は、前記酸素流量調節手段 11a, l ibの開度を 変えて系統 12a, 12bから供給する酸素 9の流量割合を変更できるので、パーナ火 炎の着火位置を変更してボイラ本体 4の収熱量を改善することができる。例えばバー ナ 5aに直接酸素 9を供給する系統 12bの流量を増やすと、収熱量を高めることがで きるので、再循環流量制御器 43による制御と、系統 12a, 12bにより供給する酸素 9 の流量割合を変更する制御とを組み合わせて実施することは好ましい。
[0046] また、前記実施例では、石炭焚ボイラに適用した場合を例示して説明しており、石 炭は炭素、水素、窒素、硫黄等の揮発分を含むために、 CO、 NOx、 SOx
2 等の酸性 ガスを生じるが、窒素、硫黄等の含有量が少ない天然ガス及び石油を燃料とする火 力発電ボイラ等においても本発明は適用することができ、又この場合には、前記排ガ ス処理手段を省略あるいは小さい規模の装置としたり、更に微粉炭ミル 2とその燃料 搬送系路 32bを省略することができる。
[0047] なお、本発明の酸素燃焼ボイラの燃焼制御方法及び装置は、上記実施例にのみ 限定されるものではなぐ本発明の要旨を逸脱しない範囲内において種々変更を加 え得ることは勿論である。

Claims

請求の範囲
[1] 酸素分離装置により空気を酸素と他の窒素主体ガスとに分離し、前記酸素分離装 置で得られた酸素と燃料とをボイラ本体で燃焼することにより給水を加熱して蒸気を 発生し、ボイラ本体力ゝらの燃焼排ガスを少なくとも脱塵処理した後、燃焼排ガスの一 部を再循環ガスとして前記ボイラ本体に再循環するようにして ヽる酸素燃焼ボイラの 燃焼制御方法であって、ボイラ負荷指令に対応した設定量の酸素を前記ボイラ本体 に供給し、且つ、前記ボイラ本体に供給する給水の入口温度と蒸気の出口温度、及 び又はボイラの燃焼排ガス温度を用いてボイラ収熱量を計測し、ボイラ本体の収熱 量が目標の収熱量になるように前記再循環ガスの再循環流量を制御してボイラ本体 に導入される全ガス中の酸素濃度を調節してなる酸素燃焼ボイラの燃焼制御方法。
[2] 前記酸素を再循環ガスに混合してボイラ本体に供給する系統と前記酸素を直接ボ イラ本体に供給する系統とを設け、両系統に供給する酸素の流量割合を変更するこ とによりボイラ本体の収熱量を制御する、請求項 1記載の酸素燃焼ボイラの燃焼制御 方法。
[3] 前記ボイラ本体の収熱量が既存の空気燃焼ボイラの収熱量と同等になるように前 記再循環ガスの再循環流量を制御する、請求項 1記載の酸素燃焼ボイラの燃焼制 御方法。
[4] 前記ボイラ本体の収熱量が既存の空気燃焼ボイラの収熱量と同等になるように前 記再循環ガスの再循環流量を制御する、請求項 2記載の酸素燃焼ボイラの燃焼制 御方法。
[5] 燃料供給手段と、空気を酸素と窒素主体ガスとに分離する酸素分離装置と、前記 燃料供給手段力 の燃料と前記酸素分離装置力 の酸素とを導入して燃焼すること により給水を加熱して蒸気を発生するボイラ本体と、該ボイラ本体で燃焼した燃焼排 ガスを外部に導く煙道と、該煙道に備えた少なくとも集塵を行う排ガス処理手段と、該 排ガス処理手段によって処理した燃焼排ガスの一部を前記ボイラ本体に再循環する 排ガス再循環流路と、を有する酸素燃焼ボイラの燃焼制御装置であって、ボイラ負荷 指令に応じて前記ボイラ本体に供給する酸素の供給量を制御する酸素供給量制御 器と、前記排ガス再循環流路に備えた再循環流量調節手段と、前記ボイラ本体に供 給する給水温度を計測する入口温度計と、ボイラ本体出口の蒸気温度を計測する出 口温度計と、前記入口温度計で計測した入口温度と前記出口温度計で計測した出 口温度に基づ!、てボイラ本体の収熱量を計測する収熱量計測装置と、該収熱量計 測装置にて計測される収熱量が目標の収熱量になるように前記再循環流量調節手 段による再循環ガスの再循環流量を制御する再循環流量制御器と、を備えてなる酸 素燃焼ボイラの燃焼制御装置。
[6] 前記入口温度計及び出口温度計に代えて又は該入口温度計及び出口温度計と 共に、ボイラの燃焼排ガス温度を計測する排ガス温度計を設け、該排ガス温度計の 検出排ガス温度を前記収熱量計測装置に導いてボイラ本体の収熱量を計測するよう にした、請求項 5記載の酸素燃焼ボイラの燃焼制御装置。
[7] 前記排ガス再循環流路に、ボイラ起動時用の空気を供給する空気供給系を切替可 能に接続した、請求項 5記載の酸素燃焼ボイラの燃焼制御装置。
[8] 前記排ガス再循環流路に、ボイラ起動時用の空気を供給する空気供給系を切替可 能に接続した、請求項 6記載の酸素燃焼ボイラの燃焼制御装置。
PCT/JP2006/323652 2005-11-28 2006-11-28 酸素燃焼ボイラの燃焼制御方法及び装置 WO2007061106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2006316951A AU2006316951C1 (en) 2005-11-28 2006-11-28 Combustion control method and device of oxygen combustion boiler
EP06833456A EP1959193B1 (en) 2005-11-28 2006-11-28 Method and apparatus for controlling combustion in oxygen fired boiler
US12/094,785 US8584604B2 (en) 2005-11-28 2006-11-28 Method and apparatus for controlling combustion in oxygen fired boiler
PL06833456T PL1959193T3 (pl) 2005-11-28 2006-11-28 Sposób i urządzenie do sterowania spalaniem w kotle ze spalaniem w tlenie
CN2006800517134A CN101336351B (zh) 2005-11-28 2006-11-28 氧燃烧锅炉的燃烧控制方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-342356 2005-11-28
JP2005342356A JP4731293B2 (ja) 2005-11-28 2005-11-28 酸素燃焼ボイラの燃焼制御方法及び装置

Publications (1)

Publication Number Publication Date
WO2007061106A1 true WO2007061106A1 (ja) 2007-05-31

Family

ID=38067326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323652 WO2007061106A1 (ja) 2005-11-28 2006-11-28 酸素燃焼ボイラの燃焼制御方法及び装置

Country Status (9)

Country Link
US (1) US8584604B2 (ja)
EP (1) EP1959193B1 (ja)
JP (1) JP4731293B2 (ja)
KR (1) KR101007513B1 (ja)
CN (1) CN101336351B (ja)
AU (1) AU2006316951C1 (ja)
ES (1) ES2372620T3 (ja)
PL (1) PL1959193T3 (ja)
WO (1) WO2007061106A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251598A1 (en) * 2008-03-06 2010-11-17 IHI Corporation Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
EP2261558A1 (en) * 2008-03-06 2010-12-15 IHI Corporation Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
EP2251596A4 (en) * 2008-03-06 2012-05-09 Ihi Corp METHOD FOR SUPPLYING CARBON DIOXIDE INTO OXYGEN COMBUSTION BOILER AND CARBON DIOXIDE FEEDING APPARATUS
EP2267367A4 (en) * 2008-03-06 2012-06-13 Ihi Corp METHOD FOR CONTROLLING OXYGEN FEED IN AN OXYGEN COMBUSTION BOILER AND DEVICE THEREFOR
US8601960B2 (en) 2008-03-06 2013-12-10 Ihi Corporation Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
US9810425B2 (en) 2008-03-06 2017-11-07 Ihi Corporation Pulverized coal burner for oxyfuel combustion boiler
CN109690188A (zh) * 2016-09-09 2019-04-26 Geesco有限公司 锅炉设施及其操作方法
WO2023223591A1 (ja) * 2022-05-17 2023-11-23 日立造船株式会社 廃棄物焼却設備

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807991B2 (en) * 2007-07-10 2014-08-19 Babcock & Wilcox Power Generation Group, Inc. Oxy-fuel combustion oxidant heater internal arrangement
US20090158978A1 (en) * 2007-12-20 2009-06-25 Foster Wheeler Energy Corporation Method of controlling a process of generating power by oxyfuel combustion
KR100891726B1 (ko) * 2007-12-21 2009-04-03 한국에너지기술연구원 공기 퍼지장치를 가지는 순산소연소 보일러
KR100902175B1 (ko) * 2007-12-24 2009-06-10 한국에너지기술연구원 관측창 및 화염센서의 냉각이 가능한 순산소연소장치
US8230796B2 (en) * 2008-02-27 2012-07-31 Andrus Jr Herbert E Air-fired CO2 capture ready circulating fluidized bed steam generators
PL2267366T3 (pl) * 2008-03-06 2015-11-30 Ihi Corp Sposób i urządzenie do sterowania spalaniem w kotle do spalania tlenowo-paliwowego
US8662884B2 (en) * 2008-03-06 2014-03-04 Ihi Corporation Method and apparatus of controlling oxygen supply for boiler
US8453585B2 (en) * 2008-04-14 2013-06-04 Babcock & Wilcox Power Generation Group, Inc. Oxy-combustion coal fired boiler and method of transitioning between air and oxygen firing
JP4644725B2 (ja) * 2008-05-07 2011-03-02 株式会社日立製作所 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法
US20090320725A1 (en) * 2008-06-25 2009-12-31 Alstom Technology Ltd. Furnace system with internal flue gas recirculation
JP5183372B2 (ja) * 2008-08-29 2013-04-17 株式会社日立製作所 酸素燃焼ボイラシステム及び燃焼方法
US8636500B2 (en) * 2008-09-26 2014-01-28 Air Products And Chemicals, Inc. Transient operation of oxy/fuel combustion system
JP5178453B2 (ja) 2008-10-27 2013-04-10 株式会社日立製作所 酸素燃焼ボイラ及び酸素燃焼ボイラの制御方法
JP5210799B2 (ja) 2008-10-31 2013-06-12 株式会社日立製作所 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの制御方法
EP2411734A4 (en) * 2009-03-26 2014-12-17 Fadi Eldabbagh SYSTEM FOR REDUCING EMISSIONS AND ENHANCING THE ENERGY EFFICIENCY OF FOSSIL FUEL AND BIOFUEL COMBUSTION SYSTEMS
JP5417068B2 (ja) * 2009-07-14 2014-02-12 株式会社日立製作所 酸素燃焼ボイラ及び酸素燃焼ボイラの制御方法
JP4896194B2 (ja) 2009-09-30 2012-03-14 株式会社日立製作所 酸素燃焼ボイラプラント
JP5459318B2 (ja) 2009-11-09 2014-04-02 株式会社Ihi 酸素燃焼ボイラの酸素混合装置
FI122154B (fi) 2010-01-12 2011-09-15 Foster Wheeler Energia Oy Menetelmä erilaisten polttoaineiden polttamiseksi happipolttokattilassa
FR2957409B1 (fr) * 2010-03-11 2012-08-31 Air Liquide Procede de generation d'electricite mettant en oeuvre une unite de separation des gaz de l'air et une unite de combustion
DE102010030909A1 (de) * 2010-03-31 2011-10-06 Hitachi Power Europe Gmbh Verfahren zur Wärmerückintegration aus einem Rauchgasstrom gewonnener thermischer Energie
FI123166B (fi) * 2010-04-23 2012-11-30 Foster Wheeler Energia Oy Menetelmä polton säätämiseksi cfb-kattilalaitoksessa
AU2010353332B2 (en) 2010-05-18 2013-09-26 Mitsubishi Hitachi Power Systems, Ltd. Flue gas desulfurization device, combustion system and combustion method
JP5535782B2 (ja) * 2010-06-16 2014-07-02 三菱重工業株式会社 燃焼システム
JP5352548B2 (ja) * 2010-08-31 2013-11-27 株式会社日立製作所 酸素燃焼ボイラプラントの制御装置,制御方法,表示方法
JP5427741B2 (ja) * 2010-09-21 2014-02-26 株式会社日立製作所 多目的火力発電システム
KR101139669B1 (ko) * 2010-09-24 2012-05-14 한국전력공사 재순환가스율을 조절하는 듀얼보일러 및 재순환가스율 조절 방법
US9513000B2 (en) 2010-09-29 2016-12-06 Mitsubishi Hitachi Power Systems, Ltd. Oxygen combustion system and method for operating same
WO2012042693A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 酸素燃焼システム及びその運転方法
JP5487509B2 (ja) 2010-10-15 2014-05-07 バブコック日立株式会社 ボイラ燃焼システムとその運転方法
JP2012088016A (ja) * 2010-10-22 2012-05-10 Babcock Hitachi Kk 酸素燃焼式ボイラ及びその運転方法
JP2012093002A (ja) * 2010-10-25 2012-05-17 Babcock Hitachi Kk ボイラシステム及びボイラシステムの運用方法
EP2641019A2 (en) * 2010-11-16 2013-09-25 ALSTOM Technology Ltd Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
JP5728956B2 (ja) * 2011-01-14 2015-06-03 株式会社Ihi 酸素燃焼ボイラシステム
US20120222591A1 (en) * 2011-03-04 2012-09-06 Foster Wheeler North America Corp. Method of and Apparatus for Selective Catalytic NOx Reduction in a Power Boiler
JP5789146B2 (ja) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 微粉炭焚きボイラ設備の運転方法および微粉炭焚きボイラ設備
JP6019565B2 (ja) 2011-11-16 2016-11-02 株式会社Ihi 酸素燃焼ボイラの微粉燃料供給方法及び酸素燃焼ボイラシステム
JP5800423B2 (ja) * 2011-11-29 2015-10-28 三菱日立パワーシステムズ株式会社 バーナおよびこれを備えたボイラ
JP5929253B2 (ja) * 2012-02-01 2016-06-01 株式会社Ihi 酸素燃焼循環流動層ボイラ及びその温度制御装置
MX352998B (es) 2012-03-14 2017-12-15 Ihi Corp Sistema de calderas de oxicombustión.
JP5979668B2 (ja) * 2012-09-28 2016-08-24 三菱日立パワーシステムズ株式会社 固体燃料バーナを備えた燃焼装置とその運転方法
WO2014063249A1 (en) * 2012-10-24 2014-05-01 Maralto Environmental Technologies Ltd. Heat exchanger and method for heating a fracturing fluid
EP2724766A1 (en) * 2012-10-26 2014-04-30 Alstom Technology Ltd A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
CN103234213B (zh) * 2013-04-27 2015-10-14 东南大学 一种富氧燃烧热量利用的方法及装置
CN103196130B (zh) * 2013-04-27 2015-04-08 东南大学 一种富氧燃烧机组热量梯级利用的方法及装置
US20150083032A1 (en) * 2013-09-20 2015-03-26 Massachusetts Institute Of Technology Combustion System
CN104296543A (zh) * 2014-09-24 2015-01-21 中科苏派能源科技靖江有限公司 一种脱硝和余热回收一体化炉
KR101971588B1 (ko) * 2017-08-30 2019-04-23 한국생산기술연구원 재연소 저 질소산화물 연소기를 포함하는 열매체 보일러
KR102038474B1 (ko) * 2017-08-30 2019-10-30 한국생산기술연구원 저 질소산화물 연소기를 포함하는 열매체 보일러
KR101882361B1 (ko) * 2018-04-17 2018-07-26 주식회사 한신비텍 배기가스 재순환과 산소 농도 제어를 이용한 능동 제어식 초 저녹스형 수관식 보일러
US10845052B1 (en) 2019-12-20 2020-11-24 Jupiter Oxygen Corporation Combustion system comprising an annular shroud burner
JP7037698B1 (ja) * 2021-11-12 2022-03-16 三菱重工パワーインダストリー株式会社 燃焼設備
WO2024053250A1 (ja) * 2022-09-09 2024-03-14 株式会社日本サーモエナー ボイラシステム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276322A (ja) * 1986-05-22 1987-12-01 Babcock Hitachi Kk 窒素酸化物低減装置
JPH05231609A (ja) * 1991-05-28 1993-09-07 Hitachi Ltd 燃焼装置及びその運転方法
JPH07318016A (ja) * 1994-05-24 1995-12-08 Electric Power Dev Co Ltd 二酸化炭素回収型排ガス再循環ボイラ設備の燃焼バーナ
JPH08338602A (ja) * 1995-06-14 1996-12-24 Babcock Hitachi Kk ボイラ制御装置
JPH10110904A (ja) * 1996-10-08 1998-04-28 Babcock Hitachi Kk ボイラ制御装置
JPH1194205A (ja) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd 多炭種対応制御装置
JP2001235103A (ja) * 2000-02-21 2001-08-31 Babcock Hitachi Kk 酸素燃焼ボイラとその運転方法
JP2003090511A (ja) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd ボイラのso3抑制式空燃比制御方法
EP1435485A1 (en) * 2002-12-26 2004-07-07 Hitachi Ltd. Solid fuel boiler and method of operating combustion apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040719A (en) * 1952-04-21 1962-06-26 Bailey Meter Co Vapor generating and superheating systems
US3284615A (en) * 1956-09-24 1966-11-08 Burroughs Corp Digital control process and system
JPS5019026A (ja) 1973-06-20 1975-02-28
JPS5236610B2 (ja) * 1974-05-09 1977-09-17
DE3501189A1 (de) * 1985-01-16 1986-07-17 Henkel KGaA, 4000 Düsseldorf Verfahren und anlage zur reduzierung des no(pfeil abwaerts)x(pfeil abwaerts)-gehaltes von mittels fossiler brennstoffe beheizten grossfeuerungsanlagen
JP3181649B2 (ja) 1991-12-20 2001-07-03 電源開発株式会社 ボイラの二酸化炭素回収装置
US5906806A (en) * 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
US6029588A (en) * 1998-04-06 2000-02-29 Minergy Corp. Closed cycle waste combustion
US6314896B1 (en) * 1999-06-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
US6202574B1 (en) * 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
JP4161515B2 (ja) 2000-05-30 2008-10-08 株式会社Ihi 酸素燃焼ボイラ設備の排ガス酸素濃度制御方法及び装置
US6574962B1 (en) * 2001-11-23 2003-06-10 Justin Chin-Chung Hsu KOH flue gas recirculation power plant with waste heat and byproduct recovery
US6935251B2 (en) * 2002-02-15 2005-08-30 American Air Liquide, Inc. Steam-generating combustion system and method for emission control using oxygen enhancement
JP4416661B2 (ja) * 2002-10-30 2010-02-17 クレブス アンド シスラー エルピー 効率向上および排出低減のための酸素富化燃焼によるボイラーの改善

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276322A (ja) * 1986-05-22 1987-12-01 Babcock Hitachi Kk 窒素酸化物低減装置
JPH05231609A (ja) * 1991-05-28 1993-09-07 Hitachi Ltd 燃焼装置及びその運転方法
JPH07318016A (ja) * 1994-05-24 1995-12-08 Electric Power Dev Co Ltd 二酸化炭素回収型排ガス再循環ボイラ設備の燃焼バーナ
JPH08338602A (ja) * 1995-06-14 1996-12-24 Babcock Hitachi Kk ボイラ制御装置
JPH10110904A (ja) * 1996-10-08 1998-04-28 Babcock Hitachi Kk ボイラ制御装置
JPH1194205A (ja) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd 多炭種対応制御装置
JP2001235103A (ja) * 2000-02-21 2001-08-31 Babcock Hitachi Kk 酸素燃焼ボイラとその運転方法
JP2003090511A (ja) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd ボイラのso3抑制式空燃比制御方法
EP1435485A1 (en) * 2002-12-26 2004-07-07 Hitachi Ltd. Solid fuel boiler and method of operating combustion apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959193A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251598A1 (en) * 2008-03-06 2010-11-17 IHI Corporation Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
EP2261558A1 (en) * 2008-03-06 2010-12-15 IHI Corporation Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
EP2251598A4 (en) * 2008-03-06 2012-05-09 Ihi Corp METHOD FOR CONTROLLING THE FLOW OF PRIMARY RETURN EXHAUST GAS IN AN OXYGEN COMBUSTION BOILER AND DEVICE THEREFOR
EP2251596A4 (en) * 2008-03-06 2012-05-09 Ihi Corp METHOD FOR SUPPLYING CARBON DIOXIDE INTO OXYGEN COMBUSTION BOILER AND CARBON DIOXIDE FEEDING APPARATUS
EP2261558A4 (en) * 2008-03-06 2012-06-06 Ihi Corp METHOD FOR CONTROLLING EXHAUST GASES IN A BOILER FOR BURNING OXYGEN AND DEVICE THEREFOR
EP2267367A4 (en) * 2008-03-06 2012-06-13 Ihi Corp METHOD FOR CONTROLLING OXYGEN FEED IN AN OXYGEN COMBUSTION BOILER AND DEVICE THEREFOR
AU2008352262B2 (en) * 2008-03-06 2012-06-21 Electric Power Development Co., Ltd. Method and facility for feeding carbon dioxide to oxyfuel combustion boiler
US8490556B2 (en) 2008-03-06 2013-07-23 Ihi Corporation Method and facility for feeding carbon dioxide to oxyfuel combustion boiler
US8550016B2 (en) 2008-03-06 2013-10-08 Ihi Corporation Method and apparatus of controlling flow rate of primary recirculating exhaust gas in oxyfuel combustion boiler
US8550017B2 (en) 2008-03-06 2013-10-08 Ihi Corporation Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
US8601960B2 (en) 2008-03-06 2013-12-10 Ihi Corporation Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
US9429315B2 (en) 2008-03-06 2016-08-30 Ihi Corporation Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
US9810425B2 (en) 2008-03-06 2017-11-07 Ihi Corporation Pulverized coal burner for oxyfuel combustion boiler
CN109690188A (zh) * 2016-09-09 2019-04-26 Geesco有限公司 锅炉设施及其操作方法
CN109690188B (zh) * 2016-09-09 2020-03-31 Geesco有限公司 锅炉设施及其操作方法
US10731846B2 (en) 2016-09-09 2020-08-04 Geesco Co., Ltd. Boiler facility and operating method thereof
WO2023223591A1 (ja) * 2022-05-17 2023-11-23 日立造船株式会社 廃棄物焼却設備

Also Published As

Publication number Publication date
AU2006316951C1 (en) 2010-09-09
CN101336351A (zh) 2008-12-31
JP2007147162A (ja) 2007-06-14
AU2006316951A1 (en) 2007-05-31
KR20080083627A (ko) 2008-09-18
EP1959193A1 (en) 2008-08-20
KR101007513B1 (ko) 2011-01-19
JP4731293B2 (ja) 2011-07-20
PL1959193T3 (pl) 2012-02-29
CN101336351B (zh) 2011-04-06
EP1959193B1 (en) 2011-10-19
AU2006316951B2 (en) 2010-04-29
EP1959193A4 (en) 2009-09-02
US20090272300A1 (en) 2009-11-05
US8584604B2 (en) 2013-11-19
ES2372620T3 (es) 2012-01-24

Similar Documents

Publication Publication Date Title
JP4731293B2 (ja) 酸素燃焼ボイラの燃焼制御方法及び装置
JP5138028B2 (ja) 酸素燃焼ボイラの酸素供給制御方法及び装置
JP5270661B2 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
US8453585B2 (en) Oxy-combustion coal fired boiler and method of transitioning between air and oxygen firing
JP5208195B2 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
JP5107418B2 (ja) 酸素燃焼ボイラの一次再循環排ガス流量制御装置
JP5107419B2 (ja) 酸素燃焼ボイラの燃焼制御装置
EP2329192A2 (en) Transient operation of oxy/fuel combustion system
AU2011315008B2 (en) Boiler combustion system and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12094785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006316951

Country of ref document: AU

Ref document number: 1020087012666

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006833456

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5265/DELNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006316951

Country of ref document: AU

Date of ref document: 20061128

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200680051713.4

Country of ref document: CN