WO2007055001A1 - 車両用ワイパー制御装置および方法 - Google Patents

車両用ワイパー制御装置および方法 Download PDF

Info

Publication number
WO2007055001A1
WO2007055001A1 PCT/JP2005/020477 JP2005020477W WO2007055001A1 WO 2007055001 A1 WO2007055001 A1 WO 2007055001A1 JP 2005020477 W JP2005020477 W JP 2005020477W WO 2007055001 A1 WO2007055001 A1 WO 2007055001A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
detection surface
light receiving
receiving element
data
Prior art date
Application number
PCT/JP2005/020477
Other languages
English (en)
French (fr)
Inventor
Kazuto Kokuryo
Yoshiteru Makino
Tetsuya Nakashima
Original Assignee
Niles Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niles Co., Ltd. filed Critical Niles Co., Ltd.
Priority to US12/084,540 priority Critical patent/US7772794B2/en
Priority to PCT/JP2005/020477 priority patent/WO2007055001A1/ja
Priority to JP2007544020A priority patent/JP4717075B2/ja
Priority to EP05805929A priority patent/EP1950109A4/en
Publication of WO2007055001A1 publication Critical patent/WO2007055001A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Definitions

  • the present invention relates to a vehicle wiper control device, and more particularly to a vehicle wiper control device characterized by raindrop detection and control.
  • one of the points is a mechanism for detecting raindrops, which is called a rain sensor.
  • a rain sensor configuration using an optical method light emitted from a light emitting element is reflected by a detection surface provided on the windshield, and the reflected light is received by a light receiving element to detect raindrops.
  • the structure to do is known. That is, the light emitting element, the detection surface, and the light receiving element are arranged so that the reflected light from the detection surface enters the light receiving element in a state where nothing is attached to the detection surface.
  • the reflection condition on the detection surface changes, so that the amount of light incident on the light receiving element decreases and the output decreases. This change was captured and raindrops were detected.
  • a method which is performed by comparison with a predetermined reference value, is often used to identify a change in the amount of light in the light receiving element.
  • rain sensors have set multiple reference values according to various modes, or updated the reference values sequentially according to the situation.
  • the logic for detecting raindrops is complicated, and as a result, high-speed processing for detection determination is difficult. Furthermore, all of these methods are based on judging the condition of the detection surface, and raindrop detection is performed by comparison with reference values. Therefore, it was difficult to completely prevent malfunctions due to the influence of external light and the condition of the detection surface such as dirt.
  • JP-A-2001-180447 JP 2002-277386 A and JP 2003-306127 A propose a detection device and a wiper control device using the detection device.
  • a detection device that reflects light emitted from a light emitting element on a detection surface and receives the reflected light on a light receiving element to detect the state of the detection surface. And a means for generating a delay signal from the signal from the light receiving element, a means for obtaining a difference between the signal from the light receiving element and the delay signal, and a determining means for determining the state of the detection surface by the occurrence of the difference.
  • a detection device characterized by the above has been disclosed.
  • a feature of this technique is that it is possible to instantaneously detect dynamic adhesion itself such as raindrops, which was impossible with the prior art.
  • the dynamic fluctuation of the deposit can be indirectly detected by the dynamic fluctuation of the signal of the light receiving element obtained through the deposit attached on the detection surface.
  • the fluctuation pattern of the signal indirectly detects the fluctuation pattern of the deposit, which is determined by the physical properties of the deposit, and determines what force the deposit is and what state the deposit is in. It was something that could be done.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-180447
  • Patent Document 2 JP 2002-277386 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-306127
  • Patent Document 4 Special Table 2001—518857
  • Patent Document 5 Japanese Patent No. 3073632
  • the wiper blade passes over the detection surface of the above-described rain sensor for each wiping operation by the wiper.
  • the signal change of the light receiving element due to the wiper blade passing over the detection surface cannot be distinguished from the signal change at the time of attachment of raindrops. It will be misjudged. Therefore, in the conventional wiper control device, the signal from the light receiving element when passing through the wiper blade is not processed. In other words, while the wiper was operating, the signal from the light receiving element was masked.
  • the wiper drive device operates the motor until the wiper blade returns to the stop position (storage position) without stopping the wiping operation even if the switch is turned off while the wiper is operating.
  • the wiper driving device outputs a signal (wiper operation signal) indicating that the wiper is operating.
  • this wiper operation signal is used to easily mask the signal from the light receiving element. That is, the conventional wiper control device recognizes the start of driving of the wiper using the wiper operation signal, and determines the period for masking the signal from the light receiving element.
  • the rain sensor cannot sufficiently grasp the state of attachment of raindrops.
  • a sensor for position detection may be provided on the rotation axis of the wiper, and the period during which the wiper blade passes the detection surface can be grasped in detail to shorten the mask period.
  • this method is not preferable because of its cost, and the mask period is not changed. It should be noted that the provision of the mask period was of course performed in the conventional threshold method, and was also necessary in the conventional technique proposed by the present inventors.
  • the present invention has been made in view of the above problems. That is, according to the present invention, signal processing when passing through the wiper blade and signal change when raindrops are attached can be distinguished by devising signal processing and estimating the deposits on the detection surface. Means for solving the problems for the purpose of providing a wiper control device capable of wiper control that promptly follows changes in the state of the detection surface
  • a vehicle wiper control device includes: a light emitting element that irradiates light to the detection surface using a part of a windshield glass surface of the vehicle as a detection surface; An optical unit including a light receiving element disposed at a position for receiving light emitted from the light emitting element and reflected by the detection surface, and analyzing the change in the output signal of the light receiving element.
  • the vehicle wiper control device comprising: an estimation unit that estimates a state; and a wiper control unit that controls an operation of a wiper attached to the vehicle according to an estimation result signal output from the estimation unit.
  • a displacement status data generating unit that obtains displacement status data representing the displacement status of the output signal of the light receiving device, and the light receiving device of the light receiving device when there is an attachment or contact on the detection surface
  • a pattern data storage unit preliminarily storing displacement status pattern data representing the displacement status of the output signal and displacement status pattern data representing the displacement status of the output signal of the light receiving element when a wiper blade passes over the detection surface
  • a collation unit that collates the displacement state data obtained by the displacement state data generation unit with the displacement state pattern data stored in the pattern data storage unit and outputs an estimation result signal representing the state of the detection surface It is characterized by comprising.
  • attachment means an object or substance that stays at least temporarily on the detection surface, but also includes an object or substance that moves from the position where it first attached.
  • the “contact object” includes an object that touches the detection surface at least temporarily and moves on the detection surface, and includes an object that passes over the detection surface such as drooping water, a human finger, or a wiper blade.
  • the vehicular wiper control device when there is an adhering substance or a contacting object on the detection surface, it is attached on the detection surface as displacement status pattern data representing the displacement status of the output signal of the light receiving element.
  • displacement status pattern data representing the displacement status of the output signal of the light receiving element.
  • a plurality of types of displacement status pattern data relating to the form of moisture in contact are stored in advance in the pattern data storage unit.
  • a displacement amount of sampling data in each of the plurality of sampling data strings is obtained as the displacement state data generation unit force and the displacement state data.
  • the displacement state data generation unit includes, as the displacement state data, a displacement amount representing a difference in displacement amount of sampling data in each of the plurality of sampling data strings. It is preferable to obtain the difference.
  • the displacement status data generation unit may continuously determine whether the sampling data is positive or negative in each of the plurality of sampling data strings as the displacement status data. It is preferable to obtain a continuous displacement amount representing an amount displaced in the direction.
  • the displacement status data generation unit As the displacement status data, it is preferable that the number of continuous displacements representing the number of times the sampling data is continuously displaced in either positive or negative direction in each of the plurality of sampling data strings.
  • the pattern data storage unit includes a displacement state pattern that represents a displacement state of an output signal of the light receiving element when there is a deposit or a contact on the water-repellent detection surface.
  • Data displacement status pattern data indicating the displacement status of the output signal of the light receiving element when the wiper blade passes over the water-repellent detection surface, and when there is an adherent or contact on the hydrophilic detection surface
  • Displacement state pattern data representing the displacement state of the output signal of the light receiving element and displacement state pattern data representing the displacement state of the output signal of the light receiving element when the wiper blade passes over the hydrophilic detection surface in advance.
  • water-repellent (hydrophilic) detection surface means that the surface of the windshield glass including the detection surface is subjected to a water-repellent (hydrophilic) effect (coating, etc.) And by coating the surface of windshield glass so that its surface tension is higher (or lower) than uncoated glass.
  • the pattern data storage unit further includes displacement state pattern data representing a displacement state of an output signal of the light receiving element when a human hand contacts the detection surface. Preferably stored.
  • the pattern data storage unit further stores displacement state pattern data representing a displacement state of an output signal of the light receiving element when an oil film adheres to the detection surface. It is preferable.
  • the wiper control device can monitor the state of the detection surface even during the wiper operation without masking the signal from the light receiving element, by the configuration as described above. Therefore, the state of the detection surface can be constantly monitored regardless of the operating state of the wiper. Therefore, it is possible to provide a wiper control device that promptly follows changes in the state of the detection surface.
  • FIG. 1 is a block diagram showing a configuration of a wiper control device useful for an embodiment of the present invention, including peripheral configurations.
  • FIG. 2 is a block diagram showing a schematic configuration of an estimation unit of the vehicle wiper control device according to the present embodiment.
  • FIG. 3 is a timing chart showing the sampling timing of the displacement status data generation unit.
  • FIG. 4 is an explanatory view showing a calculation example of an increase displacement amount and a decrease displacement amount.
  • FIG. 5 shows a calculation example of the difference (increase) in the increased displacement amount (2-a) and the difference (increase) in the increased displacement amount (2-b).
  • FIG. 6 shows an example of calculating the difference (decrease) in the decrease displacement amount (2-c) and the difference (decrease) in the decrease displacement amount (2-d).
  • Fig. 7 shows an example of calculating the continuously increasing displacement amount (3-a) and the continuously decreasing displacement amount (3-b).
  • FIG. 8 shows a calculation example of the number of continuously increasing displacements in (4a) and the number of continuously decreasing displacements in (4b).
  • 6 is a graph showing an increased displacement amount (b), a decreased displacement amount (c), a continuously increased displacement amount (d), and a continuously decreased displacement amount (e) generated based on the obtained sampling data string.
  • 6 is a graph showing an increased displacement amount (b), a decreased displacement amount (c), a continuously increasing displacement amount (d), and a continuously decreasing displacement amount (e) generated based on the data sequence.
  • Fig. 12 shows the output signal waveform (a) from the light receiving element when condensation is attached to the detection surface.
  • 5 is a graph showing the increased displacement amount (b), the decreased displacement amount (c), the continuously increased displacement amount (d), and the continuously decreased displacement amount (e) generated based on the above.
  • FIG. 14 is an explanatory diagram showing an example of a situation displacement pattern.
  • Fig. 15 is generated based on the output signal waveform (a) from the light receiving element when raindrops are attached to the detection surface and the sampling data string obtained with a sampling period of 8N (ie, 4 ms).
  • 6 is a graph showing an increased displacement (b), a decreased displacement (c), a continuously increased displacement (d), and a continuously decreased displacement (e).
  • Fig. 16 is generated based on the output signal waveform (a) from the light receiving element when raindrops are attached to the detection surface and the sampling data string obtained with a sampling period of 64N (ie, 32 ms).
  • 6 is a graph showing the increased displacement (b), the decreased displacement (c), the continuously increased displacement (d), and the continuously decreased displacement (e).
  • Fig. 17 is generated based on the output signal waveform (a) from the light receiving element when raindrops are attached to the detection surface and the sampling data string obtained with a sampling period of 512 N (ie 256 msec) It is a graph which shows increase displacement amount (b), decrease displacement amount (c), continuous increase displacement amount (d), and continuous decrease displacement amount (e).
  • FIG. 18 is an explanatory diagram showing a situation displacement pattern obtained by converting the maximum value of FIG. 14 into seven level values.
  • FIG. 19 is an explanatory diagram showing the situation displacement pattern obtained by converting the maximum value of FIG. 14 into three levels.
  • FIG. 20 (a) is an explanatory diagram showing an example of five types of situation displacement patterns
  • FIG. 20 (b) is an explanatory diagram showing an example of displacement situation data obtained during operation.
  • FIG. 21 is an explanatory diagram showing the difference values obtained from FIG. 20 (a) and FIG. 20 (b). 22] Fig. 22 shows an example of displacement pattern obtained separately for water repellency and hydrophilicity. It is a clear diagram.
  • FIG. 1 is a block diagram showing a configuration of a wiper control device that is useful for an embodiment of the present invention, including peripheral configurations.
  • the wiper control device includes an optical unit 1 that outputs a signal representing the optical state of the detection surface 2a provided on the windshield glass 2 of the vehicle, Based on the output signal from the optical unit 1, an estimation unit 6 that estimates the deposit on the detection surface 2 a and a wiper control unit 7 that outputs a wiper control signal according to the estimation result of the estimation unit 6 are provided.
  • the wiper control signal is sent from the wiper control unit 7 to a motor for driving the wiper, and controls the operation speed and operation interval of the wiper.
  • the optical unit 1 is configured such that light emitted from a light emitting element 3 such as an LED is introduced into the windshield glass 2 through the prism glass 5a, and is set to a part of the surface outside the vehicle. And is incident on a light receiving element 4 such as a photodiode (PD) through a prism glass 5b.
  • the light emitted from the light emitting element 3 is preferably converted into parallel light using a lens or the like (not shown).
  • the light incident on the light receiving element 4 is also condensed on the light receiving surface of the light receiving element 3 using the lens 9 or the like.
  • the light from the light emitting element 3 is configured to be totally reflected several times in the prism glasses 5a and 5b and the windshield glass 2.
  • the optical unit 1 includes each component including the light-emitting element 3, the detection surface 2a, and the light-receiving element 4 so that the output of the light-receiving element 4 is maximized when water droplets or the like are not attached to the detection surface 2a.
  • the element position has been adjusted.
  • the total reflection condition on the detection surface 2a is broken, and at least part of the light emitted from the light emitting element 3 to the detection surface 2a is not totally reflected on the detection surface 2a. It falls out of the car and the output of the light receiving element 4 decreases. Therefore, by analyzing the change in the output signal of the light receiving element 4 by the estimation unit 6, the adhesion of moisture to the detection surface 2a is estimated.
  • the vehicle wiper control device that focuses on the present embodiment does not mask the output signal from the light receiving element 4. That is, for conventional vehicles As described above, the wiper control device masks the output signal from the light receiving element 4 during the ON period of the wiper operation signal or a specific period within that period, and does not perform the deposit estimation process during this period. It was. On the other hand, the vehicle wiper control device that is effective in the present embodiment is used in the estimation unit 6 over the entire period without masking the output signal from the light receiving element 4.
  • the vehicle wiper control device that is effective in the present embodiment includes the change in the output signal of the light receiving element 4 when the wiper blade passes over the detection surface 2a, and the light receiving element when raindrops or the like adhere to the detection surface 2a. It can be distinguished from the change in output signal of 4.
  • a detailed configuration example for realizing this function will be described with reference to the drawings.
  • FIG. 2 is a block diagram showing a schematic configuration of the estimation unit 6 of the vehicle wiper control device according to the present embodiment.
  • the estimation unit 6 includes a displacement status data generation unit 61, a matching unit 62, a displacement status data storage unit 63, and a pattern data storage unit 64.
  • the displacement status data generation unit 61 inputs an output signal from the light receiving element 4, samples the output signal at a plurality of types of sampling periods, and calculates a difference between two temporally consecutive sampling values. The calculated result is temporarily stored in the displacement status data storage unit 63 as displacement status data representing the calculation result for each sampling period.
  • FIG. 3 shows the sampling timing of the displacement status data generator 61.
  • the displacement status data generation unit 61 performs sampling at a cycle N as shown in FIG.
  • the sampling period of data necessary for the estimation unit 6 to perform the process of estimating the state of the detection surface 2a once is 512N. That is, the estimation unit 6 generates a plurality of sampling data sequences from the data sampled at the cycle N from the output signal of the light receiving element 4, and estimates the state of the detection surface 2a based on the generated plurality of sampling data sequences.
  • the displacement state data generation unit 61 generates an output signal of the light receiving element 4 based on each of a plurality of sampling data strings obtained at a plurality of types of cycles such as cycles N, 2N, 4 ⁇ ,. Displacement status data representing the displacement status is generated.
  • the displacement status data generating unit 61 obtains m pieces (a, b) obtained at a predetermined clock cycle ⁇ .
  • a sampling data string consisting of sampling data of m 2 ab ) and a clock period obtained by multiplying clock period N by 2 a , ... , 2 aX e (c is an integer between 1 and b) (2 b + l), (2) + (m / 2 aX e ) + l) sampling data sequences are preferably generated as the plurality of sampling data sequences. ,.
  • the displacement state data generation unit 61 For example, as in the present embodiment, when the sampling period of data necessary for the estimation unit 6 to perform the process of estimating the state of the detection surface 2a once is 512 N, the displacement state data generation unit 61 For example, a sampling data string consisting of 513 sampling data obtained at period N, a sampling data string consisting of 65 sampling data obtained at period 8N, and nine sampling data obtained at period 64N A total of four types of sampling data strings are generated: a sampling data string consisting of two sampling data obtained with a cycle of 512N. Alternatively, in addition to this example, a total of five types of sampling data sequences obtained with periods N, 4 N, 16 N, 64 N, and 256 N may be generated.
  • the length of the basic sampling period N (base sampling period) and the length of the data sampling period required for the estimation unit 6 to perform the process of estimating the state of the detection surface 2a once are as follows. Any setting may be made according to the accuracy required for the wiper control device. Although the embodiment of the present invention is not limited to this, as an example, it is conceivable that the period N is set to 500 ⁇ sec.
  • the displacement state data generated by the displacement state data generation unit 61 for example, the following data can be considered.
  • the above (3) and (4) are preferably classified according to whether the continuously displaced direction is an increasing direction or a decreasing direction, and are generated as the following displacement status data.
  • (4-b) A continuously decreasing displacement number representing the number of times the sampling data is continuously displaced in the decreasing direction in each of the plurality of sampling data strings.
  • Fluctuation components for a plurality of sampling times are discriminated by each of these data (1) to (4) or the following (1_a) to (4_b). That is, it is considered that the fluctuation of the viscosity of the deposit or the contact can be estimated from this fluctuation component.
  • the fluctuation of the viscosity of the deposit or the contact can be estimated from this fluctuation component.
  • raindrops It can be considered that inertia is almost constant by force. When this raindrop collides with the glass surface, the shape change of the raindrop due to the impact depends on its viscosity. Even if the viscosity is the same, if the inertia is different, the degree of shape change will be different.
  • the detection surface sensitivity In order to reliably determine the degree of this change in the amount of sensor output (voltage change), the detection surface sensitivity must be constant, but parallel light with a constant luminous flux density is used as a vehicle wiper control device. Realizing this in the optical part is impossible technically and cost-effectively. For this reason, in the vehicle wiper control device of this embodiment, by determining the degree of change in the shape of deposits such as raindrops on the detection surface 2a from the change in the output amount of the light receiving element 4 on the time axis, The ability to discriminate from each other the situation of water adhesion (raindrops, dripping water, condensation, etc.) on the windshield 2 that occurs in a typical situation. Further, from the change of the output amount of the light receiving element 4 on the time axis, in addition to the moisture adhesion, it is possible to discriminate between the various kinds of adhered matter or contact matter on the detection surface 2a.
  • Fig. 4 shows an example of calculating the increased displacement amount (1a) and the decreased displacement amount (1b).
  • S 1 in two sampling data S 1, S (assumed to be sampled in order of S 1, S) in the sampling data string, S i ⁇ i i + li i + li +1 If so, the value of S-S is the amount of increase displacement at the sampling timing of S. S ⁇ i + l i i + l i
  • the value of the increased displacement at the sampling timing of S is set to 0. I + l i + l
  • Fig. 5 shows the difference in increase displacement amount (increase) in (2—a) and the increase displacement amount difference in (2–b).
  • the incremental displacement difference (increase) at the sampling timing of i i + l i i + l i + is u _u, and increases
  • Fig. 6 shows the difference in the decrease in displacement (2 ⁇ c) (increase) and the difference in decrease in displacement (2 ⁇ d).
  • the displacement difference (decrease) is 0. If D> D, i i + 1 i + 1 at the sampling timing of S
  • FIG. 7 shows a calculation example of the continuously increasing displacement amount (3-a) and the continuously decreasing displacement amount (3-b).
  • the value is the continuously decreasing displacement amount obtained by adding the current decreasing displacement amount to the previous continuously decreasing displacement amount.
  • the continuously decreasing displacement is cleared to 0 as shown in Fig. 7.
  • the sampling data continuously increases in the sampling data string, the value obtained by adding the current increased displacement amount to the previous continuously increased displacement amount is the continuously increased displacement amount.
  • the displacement of the sampling data changes from increasing calorie to decreasing or when the displacement force is 3 ⁇ 4, the continuously increasing displacement amount is cleared and becomes zero.
  • FIG. 8 shows an example of calculating the number of continuously increasing displacements in (4 ⁇ 1a) and the number of continuously decreasing displacements in (4 ⁇ 1b).
  • the value obtained by adding 1 to the number of continuously decreasing displacements up to the previous time is the number of continuously decreasing displacements.
  • the displacement of the sampling data changes from decreasing to increasing, or when the displacement is 0, the number of consecutively decreasing displacements is cleared and becomes 0, as shown in FIG.
  • the value obtained by adding 1 to the number of continuously increasing displacements up to the previous time is the number of continuously increasing displacements. If the displacement of the sampling data changes from increasing Q to decreasing or if the displacement is 0, the number of consecutively increasing displacements is cleared and becomes 0.
  • the displacement status data generation unit 61 stores the displacement status data individually generated from the plurality of sampling data strings having different sampling periods as described above in the displacement status data storage unit 63.
  • the displacement status data stored in the displacement status data storage unit 63 may be the displacement status data itself generated by the displacement status data generation unit 61, but the storage capacity of the displacement status data storage unit 63 is saved.
  • the displacement situation data generation unit 61 may obtain the feature amount of the displacement situation data generated from the plurality of sampling data strings, and store the obtained feature amount.
  • the feature amount for example, the maximum value of the displacement status data generated from each sampling data string, or a value obtained by further expressing the maximum value with a predetermined level value can be used.
  • the maximum value for example, the maximum value of the displacement status data generated from each sampling data string, or a value obtained by further expressing the maximum value with a predetermined level value can be used.
  • the maximum value for example, the maximum value of the displacement status data generated from each sampling data string, or a value obtained by further expressing the maximum value
  • the collation unit 62 is preliminarily stored in the pattern data storage unit 64 and the displacement status data generated by the displacement status data generation unit 61 and stored in the displacement status data storage unit 63 as described above.
  • the state of the detection surface 2a is estimated by checking the displacement status pattern.
  • the pattern data storage unit 64 stores displacement status patterns according to various aspects of the deposit on the detection surface 2a (for example, raindrops, dripping water, condensation, etc.) and contact objects other than the deposit (passing objects). Displacement state pattern caused by (including) is stored. Examples of the displacement state pattern generated by the contact object include a displacement state pattern when the wiper blade passes over the detection surface and a displacement state pattern when a human finger touches the detection surface. “Finger touches the detection surface” assumes that the detection surface touches the detection surface when cleaning the window glass at a gas station. Condensation includes not only condensation but also drizzle.
  • the wiper control device when the wiper control device according to the present invention is implemented, it is not always necessary to use all of the displacement status data exemplified in the above (11a) to (41b). Any displacement status data other than that may be used.
  • the wiper control device which is effective in carrying out the present invention, stores all the displacement status patterns for collation with the displacement status data exemplified in the above (11a) to (41b). You do n’t have to. For example, the above-mentioned (l _ a) ⁇ (4
  • the above-mentioned displacement status data is generated from a plurality of sampling data sequences obtained at a plurality of types of sampling periods, and the same is applied in advance.
  • the force that the deposit on the detection surface 2a is in what form, and the contact object on the detection surface 2a (including a passing object such as a wiper blade) It is possible to estimate whether exists.
  • the detection surface 2a is based on the displacement state data generated from a plurality of sampling data strings obtained at a plurality of types of sampling periods. The principle by which the state can be estimated will be described.
  • the behavior after adhering to the detection surface 2a also differs depending on the form.
  • the output fluctuation of the light receiving element 4 after the adhesion varies depending on the behavior of the adhered moisture. This applies not only to moisture but also to various substances that may adhere to or come into contact with the detection surface 2a. That is, the present inventors have found that the output fluctuation of the light receiving element 4 after something is attached to or in contact with the detection surface 2a has a unique displacement pattern depending on the characteristics of the attached matter or the contacted matter.
  • the fluctuation of the output of the light receiving element 4 after moisture or the like adheres to the detection surface 2a that is, the “fluctuation” is analyzed, so that the adhesion or contact of the detection surface 2a
  • the form and the like can be determined.
  • the vertical axis represents the output of the light receiving element 4 (unit: dots), and the horizontal axis represents the elapsed time from the start of sampling (unit: 500 ⁇ sec).
  • One dot which is the unit of the vertical axis, is the A inside the microcomputer that constitutes the displacement status data generation unit 61. Indicates the unit of 1 resolution of the / D converter.
  • the signals indicated by the solid and broken lines in FIG. 13 are wiper operation signals indicating whether or not the wiper is operating. The wiper is active while this signal is high, and the wiper is stopped when this signal is low.
  • the maximum value of each displacement amount is obtained as the feature amount of each displacement amount obtained when raindrops adhere, and the maximum value is further set to a predetermined level value. Convert to Accordingly, similarly to this, the displacement status data generating unit 61 of the wiper control device using the displacement status pattern described here, as the characteristic amount of each displacement amount obtained as the displacement status data, A maximum value of the quantity is obtained, and a value obtained by converting the maximum value into the predetermined level value is obtained and stored in the displacement status data storage unit 63.
  • the maximum value of the increased displacement shown in Fig. 9 (b) is 33
  • the maximum value of the decreased displacement shown in Fig. 9 (c) is 36
  • the value is 34
  • the maximum value of the continuously decreasing displacement shown in Fig. 9 (e) is 36.
  • the maximum value from each displacement amount when passing dripping water shown in (b) to (e) of FIG. 10 and each displacement at the time of finger contact shown in (b) to (e) of FIG. From the maximum value from the amount, the maximum value from each displacement amount when condensation adheres as shown in (b) to (in Fig. 12, and from each displacement amount when passing through the wiper blade shown in (b) to (e) in Fig.
  • the maximum value of each is obtained, and the result is shown in the column of d (N) in Fig. 14.
  • Figures 15 to 17 show 8N (ie, 4ms), 64N (ie, 32ms), 512N (ie, 256ms) from the output signal when raindrops are attached as shown in Figure 9 (a). Incremental displacement generated based on the sampling data sequence obtained in the sampling period (b) in each figure, Declined displacement (c in each figure), Continuous incremental displacement (d in each figure (d) )), Continuously decreasing displacement ((e) in each figure). Based on these, in the columns d (8N), d (64N), and d (512N) in FIG. 14, the maximum value of each displacement when the state of the detection surface 2a is “raindrop adhesion” is obtained.
  • the detection surface 2a is in a sampling cycle of 8N, 64N, and 512N when passing through dripping water, touching a finger, attaching condensation, and passing through a wiper blade, respectively.
  • the maximum value of each displacement generated based on the obtained sampling data string is shown in the columns d (8N), d (64N), and d (512N) in FIG.
  • the detection surface 2a is in each of the following cases: attachment of raindrops, passage of dripping water, contact of fingers, adhesion of condensation, passage of wiper blades
  • attachment of raindrops, passage of dripping water, contact of fingers, adhesion of condensation, passage of wiper blades The aspect of the sampling data string obtained in a plurality of types of sampling periods and the displacement status pattern consisting of the maximum value of each displacement amount are significantly different from each other.
  • the output change of the light receiving element 4 when the wiper blade passes is slower than the output change when raindrops adhere. Therefore, in the displacement state pattern obtained in a short sampling period, the displacement amount when the wiper blade passes is smaller than the displacement amount when raindrops adhere.
  • the output of the light receiving element 4 when the wiper blade passes is reduced by the mass of water collected by the wiper blade passing on the detection surface 2a, and after the wiper blade passes, the detection surface Since moisture does not remain on 2a, the output returns instantly. Therefore, the displacement pattern when the wiper blade passes shows a large amount of displacement in both the decreasing direction and the increasing direction.
  • the attachment of moisture such as raindrops to the detection surface 2a and the passage of the wiper blade based on the output signal of the light receiving element 4 are performed. Can be identified. For this reason, the state of the detection surface 2a is estimated throughout the entire period regardless of whether or not the wiper is operating so that it is not necessary to mask the output signal of the light receiving element during the period when the wiper is operating. can do. This enables wiper operation control that quickly follows the change in the state of the detection surface 2a.
  • the displacement state pattern the five types of patterns shown in Fig. 20 (a) (when raindrops are attached, when wipers are passed, when dripping water is passed, when fingers are touched, when condensation is attached)
  • the wiper control device of the present embodiment is stored in advance in the S pattern data storage unit 64 It is assumed that the displacement status data generation unit 61 obtains the displacement status data shown in FIG. 20 (b) and stores it in the displacement status data storage unit 63 during the operation.
  • the matching unit 62 reads the displacement status data of FIG. 20 (b) from the displacement status data storage unit 63 and matches the displacement status pattern of FIG. 20 (a) stored in the pattern data storage unit 64. To do.
  • the collation unit 62 determines the displacement status data for each type of displacement status data (increase displacement amount, decrease displacement amount, increase continuous displacement amount, decrease continuous displacement amount,...) For each state of the detection surface. The difference between the value of and the value of the displacement state pattern is calculated. The difference values calculated from Fig. 20 (a) and Fig. 20 (b) are as shown in Fig. 21.
  • the collation unit 62 calculates the sum of the calculated differences for each state of the detection surface. Then, the matching order is determined in ascending order of the sum of differences. According to the result shown in FIG. 21, the collation unit 62 estimates that the state of the detection surface 2a at this time is a state in which raindrops are attached.
  • the collation unit 62 uses the displacement state data generated by the displacement state data generation unit 61 and the displacement state pattern obtained experimentally and stored in advance in the pattern data storage unit 64. By comparing, the state of the detection surface 2a can be estimated.
  • Water repellent treatment is sometimes performed by coating a surface of a windshield of an automobile with a water repellent agent to form a water repellent glass.
  • the behavior of raindrops adhering to the detection surface is different from that on normal glass (glass that has not been subjected to water repellent treatment).
  • the contact area is smaller than that of normal glass.
  • raindrops adhering to the water-repellent glass are easy to move on the detection surface due to wind pressure or the like, the signal from the light receiving element also changes due to this movement.
  • the effect of the water repellent treatment does not last semipermanently and is reduced by wiping the glass surface with a wiper blade. Therefore, in practice, as the water repellent effect is reduced, it is difficult to control at the time of force transition that needs to be shifted to the control logic in the case of normal glass. In addition, it is not realistic for the driver to set whether or not the windshield is water repellent to determine which control logic to use. This is because the setting is troublesome and the setting may be forgotten. In addition, automatic car wash machines may be washed using a water repellent treatment agent. In this case, the surface of the windshield including the detection surface that is not related to the driver's recognition is water-repellent. Therefore, conventionally, when the windshield has been subjected to water repellent treatment, it has been difficult to accurately estimate the state of the detection surface.
  • the windshield is water-repellent (when water-repellent treatment is performed) and the case where it is hydrophilic (The displacement state pattern may be stored in advance in the pattern data storage section 64 for each of the cases where the oil film removal process is performed. In this way, the state of the detection surface can be accurately estimated regardless of whether the windshield is water-repellent or hydrophilic.
  • Various displacements generated from sampling data sequences obtained at multiple sampling periods are used. Even if the status data shows that the detection surface is in the same condition such as raindrop attachment or wiper passage, the detection surface 2a is water repellent and hydrophilic, as shown in Fig. 22.
  • the estimation unit 6 of the vehicle wiper control device that is effective in the present embodiment outputs the output signal of the light receiving element 4 that is obtained when a typical deposit or contact exists on the detection surface. It has a pattern data storage unit 64 that stores in advance a displacement status pattern representing the displacement status. Then, the collation unit 62 collates the displacement status data acquired from the output signal within the predetermined sampling period with the displacement status pattern, so that the state of the detection surface 2a in the sampling period, that is, the detection surface 2a Also adherent to Estimates whether there is a contact (including a passing object on the detection surface).
  • the wiper control unit 7 performs wiper operation control in accordance with the estimation results by the collation unit 62 for various states of the detection surface 2a as described above.
  • the wiper control unit 7 may perform wiper operation control according to only the estimation result from the matching unit 62.
  • the wiper control unit 7 refers to signals obtained from other sensors installed in the vehicle and how to operate the wiper. It is also possible to determine the force to be activated.
  • the wiper control unit 7 activates the wiper, for example, when the collation unit 62 estimates that raindrops are attached to the detection surface 2a.
  • this embodiment does not show an example of determining the rainfall situation (rain intensity), but since the displacement situation pattern differs depending on the intensity of rain, the rainfall situation is determined from the feature amount of the displacement situation data.
  • the wiper may be operated at an appropriate wiping interval depending on the rain conditions. When it is estimated that condensation has occurred, do not operate the wiper. This is because if the driver's field of view is obstructed by normal condensation, operating the wiper as little as possible increases the possibility that the driver will recognize that the wiper has malfunctioned. However, it is necessary to operate the wiper if condensation occurs that blocks the driver's view.
  • the wiper control unit 7 It is preferable to operate the wiper, assuming that the field of view is blocked.
  • the wiper When it is estimated that dripping water has passed, the wiper is operated to remove dripping water.
  • the wiper control unit 7 It is preferable to operate the wiper on the assumption that the field of view is blocked. In addition, If the collating unit 62 estimates that dripping water has occurred on the detection surface 2a even immediately after the wiper is activated, it is preferable to assume that the dripping water has been continuously generated and operate the wiper continuously. In addition, if the water is dripping so as to drastically deteriorate the driver's field of view, wiping is performed at an early interval. Otherwise, the frequency of wiping does not have to be high.
  • the wiper should not be operated if it is stopped.
  • the present invention can be industrially used as a vehicle wiper control device capable of wiper control following the state change of the detection surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 ワイパーブレード通過時と雨滴等の付着時の信号変化を区別し、検知面の状態変化にすみやかに追従するワイパー制御が可能なワイパー制御装置を提供する。推定部(6)は、ワイパーが作動している期間と作動していない期間との両方において、複数種類のサンプリング周期で得られた複数のサンプリングデータ列のそれぞれに基づいて、前記受光素子の出力信号の変位状況を表す変位状況データを求める変位状況データ生成部(61)と、前記検知面に付着物または接触物がある場合と、前記検知面上をワイパーブレードが通過した場合とのそれぞれの受光素子の出力信号の変位状況を表す変位状況パターンデータを予め格納したパターンデータ記憶部(64)と、変位状況データ生成部(61)によって求められた変位状況データと、パターンデータ記憶部(64)の変位状況パターンデータとを照合し、検知面の状態を表す推定結果信号を出力する照合部(62)とを備える。

Description

明 細 書
車両用ワイパー制御装置および方法
技術分野
[0001] 本発明は、車両用ワイパー制御装置に関し、特に雨滴の検知ゃ制御に特徴を有す る車両用ワイパー制御装置に関する。
背景技術
[0002] 従来より、車両に用いられるワイパー制御装置が数多く提案されている。このワイパ 一制御装置において、ポイントとなる一つが雨滴を検知する機構であり、レインセンサ 一と呼ばれている。光学方式を用いたレインセンサーの構成例として、発光素子から 発せられた光を、ウィンドシールド上に設けられた検知面で反射させ、この反射した 光を受光素子で受光することにより、雨滴を検知する構成が知られている。すなわち 、検知面に何も付着していない状態で、検知面による反射光が受光素子に入射する ように、発光素子、検知面、および受光素子を配置する。そして、検知面に水等が付 着すると、検知面での反射条件が変化することにより、受光素子に入射する光量が 減少し、その出力が低下する。この変化をとらえて、雨滴の検知を行っていた。
[0003] 上述した従来の構成において、受光素子における光量の変化の識別には、所定の 基準値との比較により行う方式(閾値法)が多く採用されていた。
[0004] ところで、このようなワイパー制御装置は、実際は、種々の条件の下で使用される。
従って、誤作動防止の手だてが講じられていなければならなレ、。このため、レインセ ンサ一では、種々のモードに応じて複数の基準値を設定したり、状況に応じて基準 値を順次更新したりしてレ、た。
[0005] このように、上述した従来のレインセンサーでは、雨滴検知のロジックが複雑化し、 ひいては検知判断の高速処理を困難にしていた。さらに、これらの方法はいずれも、 検知面の状態を判断することを基本とし、基準値との比較により雨滴検知を行ってい る。したがって、外光による影響や、汚れ等の検知面の状況に影響され、完全に誤作 動を防止することは困難であった。
[0006] このような不具合を解決するために、本発明者らは、特開 2001— 180447号公報 、特開 2002 - 277386号公報、特開 2003— 306127号公報において、検出装置 やそれを用いたワイパー制御装置等を提案した。
[0007] 上述した特開 2001— 180447号公報では、「発光素子から発せられた光を検知面 で反射させ、該反射光を受光素子で受光して検知面の状態を検出する検出装置に おいて、前記受光素子からの信号から遅れ信号を生成する手段、前記受光素子から の信号と前記遅れ信号の差分を求める手段、および前記差分の発生により、検知面 の状態を判断する判断手段を有することを特徴とする検出装置」を開示した。
[0008] この技術の特徴は、従来技術では不可能であった、雨滴等の動的な付着そのもの を、瞬時に検出できることにあった。
[0009] また、特開 2002— 277386号公報では、「発光手段から発せられた光を透明板に 導入し、前記透明板の検出面にて反射させ、該反射光を受光素子で受光して検出 面の状態を検出する検出装置において、前記受光素子からの信号をサンプリングす るサンプリング部と、前記受光素子からの信号のゆらぎを検出するゆらぎ検出部と、 前記ゆらぎ検出部が検出した前記信号のゆらぎの変化パターンから前記付着物を判 断する判断部を備えることを特徴とする検出装置」を開示した。
[0010] この技術の特徴は、以下のようであった。すなわち、検出面上に付着した付着物を 通して得た受光素子の信号の動的なゆらぎによって、間接的に付着物の動的なゆら ぎを検出することができる。さらに、その信号のゆらぎの変化パターンによって、間接 的に付着物の物性により決まる付着物のゆらぎの変化パターンを検出し、付着物が 何である力、付着物がどのような状態であるかを判断することができるものであった。
[0011] さらに、特開 2003— 306127号公報に開示した技術では、上述の 2つの技術を組 み合わせて、ワイパー制御を行うものであった。
[0012] このほ力 \特表 2001 _ 518857号公幸艮( 098/45148)に開示されたヮィノ ー 作動装置では、雨の識別および水滴の識別に加えて、霧および霧雨の識別が可能 である。この装置において、水分センサの測定値は、増分値に対応付けられている。 連続する 2つの増分値の差分値はそれぞれ符号付きで、メモリ内で、これより前に同 様に形成した差分値から成る合計に加算されて、払拭動作の制御に用いられている [0013] また、特許第 3073632号公報には、「下記の過程、風防ガラスの監視部分上の水 分の存在を示すセンサ信号中の降下エッジの存在を検出し、前記降下エッジの形状 を識別し、所定の期間中にセンサ信号の降下エッジの形状と数に基づきワイパー系 により雨滴模様を検出し、識別した雨滴模様に基づき風防ガラス'ワイパー系を制御 する、力 成ることを特徴とする方法」が開示されている。
特許文献 1:特開 2001— 180447号公報
特許文献 2 :特開 2002— 277386号公報
特許文献 3 :特開 2003— 306127号公報
特許文献 4 :特表 2001— 518857号公報
特許文献 5:特許第 3073632号公報
発明の開示
発明が解決しょうとする課題
[0014] ところで、上述したレインセンサーの検知面上を、ワイパーによる払拭動作毎にワイ パーブレードが通過する。従来のレインセンサーでは、検知面上をワイパーブレード が通過したことによる受光素子の信号変化を、雨滴等の付着時の信号変化と区別す ることができず、ワイパーブレードの通過を雨滴の付着と誤判定することになる。そこ で、従来のワイパー制御装置では、ワイパーブレード通過時における受光素子から の信号を処理しないようにしていた。つまり、ワイパーが作動している期間は、受光素 子からの信号をマスクしてレ、た。
[0015] なお、ワイパー駆動装置には、ワイパー作動中にスィッチをオフしても、その時点で 払拭動作を止めずに、ワイパーブレードが停止位置 (収納位置)に戻るまでは、モー ターを稼働させておくための仕組みがある。つまり、ワイパー駆動装置は、ワイパーが 作動中であることを示す信号 (ワイパー作動信号)を出力している。
[0016] 従来のワイパー制御装置では、受光素子からの信号をマスクすることを簡単に行う ために、このワイパー作動信号を利用していた。すなわち、従来のワイパー制御装置 は、ワイパー作動信号を利用してワイパーの駆動開始を認識し、受光素子からの信 号をマスクする期間を決定していた。
[0017] ここで、降雨の状況が急激に変化した場合を考える。例えば、払拭動作が開始した 直後に、急に雨が激しく降り出したとする。このような状況は、車両がトンネルから出 て豪雨の中に進入した場合などに、しばしば発生する。このような場合、ワイパーによ る払拭動作で検知面の雨滴が払拭されることにより、検知面が初期化された後であつ ても、検知面にはすぐに雨滴が付着する。そのため、ワイパーブレードが停止位置に 戻るまでには、検知面は既に雨滴で覆われている。ワイパーブレードが停止位置に 戻ることにより、ワイパー作動信号が OFFとなり、そのときの検知面の状態を初期状 態として、レインセンサーによる雨滴検出動作が開始される。しかし、このとき、上述し たように検知面が既に雨滴で覆われているため、レインセンサーの検知感度が低下 した状態で、雨滴検出動作が開始されることとなる。
[0018] この場合、レインセンサーは、雨滴の付着状況を十分に把握することができない。
従って、ウィンドシールドにかなりの雨滴が付着しているので、早いタイミングでワイパ 一を作動させて雨滴を払拭する必要があるにも関わらず、運転者の希望するタイミン グでワイパーが作動しなレ、ことが多レ、。
[0019] トンネルを出た後の大雨等の他に、検知面の状況が急激に変化し、すみやかにヮ ィパーを作動させることが好ましい場合としては、トラックなどの跳ね上げ水が力かつ た場合、車両の屋根に溜まっていた雨滴が検知面に大量に垂れてきて視界が確保 できない場合や、湿度の高レ、トンネルに入って一瞬にしてウィンドシールドが曇った 場合などが挙げられる。従来は、ワイパー作動中に出力信号がマスクされることにより 、このような検知面の急激な状況変化を把握することが困難であった。
[0020] もちろん、例えば、ワイパーの回転軸に位置検知用のセンサを設けて、ワイパーブ レードが検知面を通過する期間を細かく把握し、マスク期間を短くすることも可能であ る。しかし、この手法はコストがかかるので好ましくない上、マスク期間を設けることに 変わりはない。なお、マスク期間を設けることは、従来の閾値法ではもちろん行われて いたし、本発明者らが提案した従来技術でも必要であった。
[0021] 以上のとおり、従来のワイパー制御装置では、ワイパーブレードが検知面を通過す る期間、受光素子からの信号をマスクしなければならないことで、レインセンサーが本 来有している検知感度を損なレ、、検知面の状況変化に追従したすみやかなワイパー 制卸が困難であった。 [0022] 本発明は、上記の課題を鑑みてなされたものである。すなわち、本発明は、信号処 理を工夫し、検知面上の付着物等を推定することにより、ワイパーブレード通過時の 信号変化と、雨滴の付着時の信号変化とを区別することができ、検知面の状態変化 にすみやかに追従するワイパー制御が可能なワイパー制御装置の提供を目的とする 課題を解決するための手段
[0023] 上記の目的を達成するために、本発明に力かる車両用ワイパー制御装置は、車両 のウィンドシールドガラス表面の一部を検知面として、前記検知面へ光を照射する発 光素子と、前記発光素子から出射されて前記検知面で反射された光を受光する位置 に配置された受光素子とを含む光学部と、前記受光素子の出力信号の変化を解析 することにより前記検知面の状態を推定する推定部と、前記推定部から出力される推 定結果信号に従って、車両に取り付けられたワイパーの作動を制御するワイバー制 御部とを備えた車両用ワイパー制御装置において、前記推定部は、前記受光素子 の出力信号から、ワイパーが作動している期間と作動していない期間との両方にお レ、て、複数種類のサンプリング周期で得られた複数のサンプリングデータ列のそれぞ れに基づいて、前記受光素子の出力信号の変位状況を表す変位状況データを求め る変位状況データ生成部と、前記検知面に付着物または接触物がある場合の前記 受光素子の出力信号の変位状況を表す変位状況パターンデータと、前記検知面上 をワイパーブレードが通過した場合の前記受光素子の出力信号の変位状況を表す 変位状況パターンデータとを予め格納したパターンデータ記憶部と、前記変位状況 データ生成部によって求められた変位状況データと、前記パターンデータ記憶部に 格納されている変位状況パターンデータとを照合し、前記検知面の状態を表す推定 結果信号を出力する照合部とを備えたことを特徴とする。
[0024] なお、上記の「付着物」とは、検知面に少なくとも一時的にとどまる物体または物質 を意味するが、最初に付着した位置から移動するものも含む。 「接触物」とは、検知面 に少なくとも一時的に接触し、検知面上を移動するものを含み、垂れ水や人間の指 やワイパーブレードのように検知面上を通過するものを含む。
[0025] 上記の構成によれば、複数種類のサンプリング周期で得られた複数のサンプリング データ列のそれぞれに基づいて、前記受光素子の出力信号の変位状況を表す変位 状況データを求め、パターンデータ記憶部に予め格納されている変位状況パターン データとを照合することにより、ワイパーが作動している期間と作動していない期間と の全期間を通じて、検知面の状態を推定することができる。これにより、検知面の状 態変化にすみやかに追従するワイパー制御が可能なワイパー制御装置を提供する こと力 Sできる。
[0026] 本発明にかかる車両用ワイパー制御装置において、前記検知面に付着物または 接触物がある場合の前記受光素子の出力信号の変位状況を表す変位状況パターン データとして、前記検知面上に付着または接触している水分の形態に関する複数種 類の変位状況パターンデータが、前記パターンデータ記憶部に予め格納されたこと が好ましい。
[0027] 本発明にかかる車両用ワイパー制御装置において、前記変位状況データ生成部 、所定のクロック周期 Nで得られた m (a, bを整数として、 m= 2aXb)個のサンプリン グデータからなるサンプリングデータ列と、前記クロック周期 Nに 2a、 2aX 2、 · · ·、 2aXc ( cは b以下の整数)をそれぞれ乗じたクロック周期で得られる 2b個、 2W個、 · · ·、 (m/ 2aX e)個のサンプリングデータからなるサンプリングデータ列とを、前記複数のサンプリ ングデータ列として生成することが好ましレ、。
[0028] 本発明にかかる車両用ワイパー制御装置において、前記変位状況データ生成部 力 前記変位状況データとして、前記複数のサンプリングデータ列のそれぞれにおけ るサンプリングデータの変位量を求めることが好ましい。
[0029] 本発明にかかる車両用ワイパー制御装置において、前記変位状況データ生成部 が、前記変位状況データとして、前記複数のサンプリングデータ列のそれぞれにおけ るサンプリングデータの変位量の差分を表す変位量差分を求めることが好ましい。
[0030] 本発明にかかる車両用ワイパー制御装置において、前記変位状況データ生成部 が、前記変位状況データとして、前記複数のサンプリングデータ列のそれぞれにお いて、サンプリングデータが連続的に正負いずれかの方向へ変位した量を表す連続 変位量を求めることが好ましい。
[0031] 本発明にかかる車両用ワイパー制御装置において、前記変位状況データ生成部 、前記変位状況データとして、前記複数のサンプリングデータ列のそれぞれにお いて、サンプリングデータが連続的に正負いずれかの方向へ変位した回数を表す連 続変位回数を求めることが好ましい。
[0032] 本発明にかかる車両用ワイパー制御装置において、前記パターンデータ記憶部が 、撥水性の検知面に付着物または接触物がある場合の前記受光素子の出力信号の 変位状況を表す変位状況パターンデータと、撥水性の検知面上をワイパーブレード が通過した場合の前記受光素子の出力信号の変位状況を表す変位状況パターンデ ータと、親水性の検知面に付着物または接触物がある場合の前記受光素子の出力 信号の変位状況を表す変位状況パターンデータと、親水性の検知面上をワイパーブ レードが通過した場合の前記受光素子の出力信号の変位状況を表す変位状況パタ ーンデータとを予め格納したことが好ましい。
[0033] 上記の「撥水性 (親水性)の検知面」とは、この検知面を含むウィンドシールドガラス の表面に、撥水 (親水)効果のある加工(コーティングなど)が施されている場合と、ゥ インドシールドガラスの表面をコーティングすることにより、その表面張力をコーティン グしないガラスよりも高く(または低く)した場合の両方を含む。
[0034] 本発明にかかる車両用ワイパー制御装置において、前記パターンデータ記憶部が 、前記検知面に人間の手が接触した場合の前記受光素子の出力信号の変位状況を 表す変位状況パターンデータをさらに格納したことが好ましい。
[0035] 本発明にかかる車両用ワイパー制御装置において、前記パターンデータ記憶部が 、前記検知面に油膜が付着した場合の前記受光素子の出力信号の変位状況を表す 変位状況パターンデータをさらに格納したことが好ましい。
発明の効果
[0036] 本発明によるワイパー制御装置は、以上のような構成によって、受光素子からの信 号をマスクすることなぐワイパー作動中にも検知面の状態を監視することができる。 したがって、ワイパーの作動状態に拘わらず、常時検知面の状態を監視することがで きる。このため、検知面の状態変化にすみやかに追従するワイパー制御装置を提供 できる。
図面の簡単な説明 [図 1]図 1は、本発明の一実施形態に力かるワイパー制御装置の構成を、周辺構成を 含めて示したブロック図である。
[図 2]図 2は、本実施形態にかかる車両用ワイパー制御装置の推定部の概略構成を 示すブロック図である。
[図 3]図 3は、変位状況データ生成部のサンプリングタイミングを示すタイミング図であ る。
[図 4]図 4は、増加変位量および減少変位量の算出例を示す説明図である。
[図 5]図 5に、上記(2— a)の増加変位量差分 (増加分)および(2— b)の増加変位量 差分 (減少分)の算出例を示す。
[図 6]図 6に、上記(2— c)の減少変位量差分 (増加分)および(2— d)の減少変位量 差分 (減少分)の算出例を示す。
[図 7]図 7に、上記( 3— a)の連続増加変位量および( 3— b)の連続減少変位量の算 出例を示す。
[図 8]図 8に、上記 (4 a)の連続増加変位回数および (4 b)の連続減少変位回数 の算出例を示す。
[図 9]図 9は、検知面に雨滴が付着したときの受光素子からの出力信号波形 (a)と、サ ンプリング周期 Ν (Ν = 500 μ秒)のサンプリング周期で得られたサンプリングデータ 歹 IJに基づいて生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d)、 連続減少変位量 (e)を示すグラフである。
[図 10]図 10は、検知面上を車両の屋根からの垂れ水が通過したときの受光素子から の出力信号波形(a)と、サンプリング周期 Ν (Ν = 500 μ秒)のサンプリング周期で得 られたサンプリングデータ列に基づいて生成された増加変位量 (b)、減少変位量 (c) 、連続増加変位量 (d)、連続減少変位量 (e)を示すグラフである。
[図 11]図 11は、検知面上に指が接触したときの受光素子からの出力信号波形 (a)と 、サンプリング周期 Ν (Ν = 500 μ秒)のサンプリング周期で得られたサンプリングデ ータ列に基づいて生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d )、連続減少変位量 (e)を示すグラフである。
[図 12]図 12は、検知面に結露が付着したときの受光素子からの出力信号波形(a)と 、サンプリング周期 N (N = 500 μ秒)のサンプリング周期で得られたサンプリングデ ータ列に基づいて生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d )、連続減少変位量 (e)を示すグラフである。
園 13]図 13は、検知面上をワイパーブレードが通過したときの受光素子からの出力 信号波形(a)と、サンプリング周期 N (N = 500 μ秒)のサンプリング周期で得られた サンプリングデータ列に基づいて生成された増加変位量 (b)、減少変位量 (c)、連続 増加変位量 (d)、連続減少変位量 (e)を示すグラフである。
[図 14]図 14は、状況変位パターンの一例を示す説明図である。
園 15]図 15は、検知面に雨滴が付着したときの受光素子からの出力信号波形 (a)と 、 8N (すなわち 4m秒)のサンプリング周期で得られたサンプリングデータ列に基づい て生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d)、連続減少変 位量 (e)を示すグラフである。
園 16]図 16は、検知面に雨滴が付着したときの受光素子からの出力信号波形 (a)と 、 64N (すなわち 32m秒)のサンプリング周期で得られたサンプリングデータ列に基 づいて生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d)、連続減 少変位量 (e)を示すグラフである。
園 17]図 17は、検知面に雨滴が付着したときの受光素子からの出力信号波形 (a)と 、 512N (すなわち 256m秒)のサンプリング周期で得られたサンプリングデータ列に 基づいて生成された増加変位量 (b)、減少変位量 (c)、連続増加変位量 (d)、連続 減少変位量 (e)を示すグラフである。
[図 18]図 18は、図 14の最大値を 7段階のレベル値に変換して得られる状況変位パタ ーンを示す説明図である。
園 19]図 19は、図 14の最大値を 3段階のレベル値に変換して得られる状況変位パタ ーンを示す説明図である。
園 20]図 20 (a)は、 5種類の状況変位パターンの一例を示す説明図、図 20 (b)は、 動作時に得られた変位状況データの一例を示す説明図である。
園 21]図 21は、図 20 (a)および図 20 (b)から得られた差分値を表す説明図である。 園 22]図 22は、撥水性、親水性の別に得られた変位状況パターンの一例を示す説 明図である。
発明を実施するための最良の形態
[0038] 以下に、図面を参照しながら、本発明の一実施形態について、詳細に説明する。
図 1は、本発明の一実施形態に力かるワイパー制御装置の構成を、周辺構成を含め て示したブロック図である。
[0039] 図 1に示すように、本実施形態に力、かるワイパー制御装置は、車両のウィンドシー ルドガラス 2に設けられた検知面 2aの光学的状態を表す信号を出力する光学部 1と、 光学部 1からの出力信号に基づいて検知面 2aに対する付着物を推定する推定部 6と 、推定部 6の推定結果に従ってワイパー制御信号を出力するワイパー制御部 7を備 えている。ワイパー制御信号は、ワイパー制御部 7からワイパー駆動用のモーター等 に送られ、ワイパーの作動スピードや作動間隔等を制御する。
[0040] 光学部 1は、 LEDなどの発光素子 3から発せられた光が、プリズムガラス 5aを経て、 ウィンドシールドガラス 2に導入され、その車外側の表面の一部に設定された検知面 2aで全反射され、プリズムガラス 5bを経て、フォトダイオード(PD)などの受光素子 4 に入射するように構成されている。発光素子 3から発せられた光は、レンズ等(図示せ ず)を用いて平行光とすることが好ましい。また、受光素子 4に入射する光も、レンズ 9 等を用いて受光素子 3の受光面に集光されるようにすることが好ましい。なお、図 1に 示した光学部 1では、発光素子 3からの光は、プリズムガラス 5a, 5bやウィンドシール ドガラス 2内を何回か全反射するように構成されてレ、る。
[0041] 光学部 1では、検知面 2aに水滴等が付着していない場合に受光素子 4の出力が最 大になるように、発光素子 3、検知面 2a、および受光素子 4を含む各構成要素の位 置が調整されている。ここで、検知面 2aに水滴等が付着すると、検知面 2aにおける 全反射条件が崩れ、発光素子 3から検知面 2aへ照射された光の少なくとも一部が検 知面 2aで全反射されずに車外へ抜けてしまい、受光素子 4の出力が低下する。そこ で、受光素子 4の出力信号の変化を、推定部 6にて解析することにより、検知面 2aへ の水分の付着等が推定される。
[0042] 本実施形態に力 ^かる車両用ワイパー制御装置は、従来の車両用ワイパー制御装 置とは異なり、受光素子 4からの出力信号をマスクしない。すなわち、従来の車両用 ワイパー制御装置は、前述したように、ワイパー作動信号が ONの期間またはその期 間内の特定の期間は、受光素子 4からの出力信号をマスクし、この期間は付着物推 定処理を行わなかった。これに対して、本実施形態に力かる車両用ワイパー制御装 置は、推定部 6において、受光素子 4からの出力信号をマスクすることなぐ全期間に わたって利用する。また、本実施形態に力かる車両用ワイパー制御装置は、ワイパー ブレードが検知面 2a上を通過した時の受光素子 4の出力信号の変化と、検知面 2a に雨滴等が付着した時の受光素子 4の出力信号の変化とを区別できる。以下、この 機能を実現するための詳細な構成例について、図面を参照しながら説明する。
[0043] 図 2は、本実施形態にかかる車両用ワイパー制御装置の推定部 6の概略構成を示 すブロック図である。図 2に示すように、推定部 6は、変位状況データ生成部 61、照 合部 62、変位状況データ記憶部 63、およびパターンデータ記憶部 64を備えている 。変位状況データ生成部 61は、受光素子 4からの出力信号を入力し、複数種類のサ ンプリング周期でこの出力信号をサンプリングすると共に、時間的に連続する 2つの サンプリング値の差分を算出する。算出された結果は、サンプリング周期毎に算出結 果を表した変位状況データとして、変位状況データ記憶部 63に一時的に格納される
[0044] ここで、変位状況データ生成部 61による変位状況データの生成処理について、図 3を参照しながら説明する。図 3は、変位状況データ生成部 61のサンプリングタイミン グを示す。変位状況データ生成部 61は、例えば、図 3に示すように、周期 Nでサンプ リングを行う。なお、本実施形態では、推定部 6が検知面 2aの状態を推定する処理を 1回行うために必要なデータのサンプリング期間を、 512Nとする。つまり、推定部 6は 、受光素子 4の出力信号から周期 Nでサンプリングしたデータから複数のサンプリン グデータ列を生成し、生成した複数のサンプリングデータ列に基づいて検知面 2aの 状態を推定する。
[0045] 変位状況データ生成部 61は、周期 N, 2N, 4Ν· · ·のような複数種類の周期で得ら れた複数のサンプリングデータ列のそれぞれに基づいて、受光素子 4の出力信号の 変位状況を表す変位状況データを生成する。
[0046] なお、変位状況データ生成部 61は、所定のクロック周期 Νで得られた m個(a, bを 整数として、 m= 2a b)のサンプリングデータからなるサンプリングデータ列と、クロック 周期 Nに 2a、 · · ·、 2aX e (cは 1以上 b以下の整数)をそれぞれ乗じたクロック周期で得 られる(2b+ l)個、 · · ·、((m/2aX e) + l)個のサンプリングデータからなるサンプリン グデータ列とを、前記複数のサンプリングデータ列として生成することが好ましレ、。
[0047] 例えば、本実施形態のように、推定部 6が検知面 2aの状態を推定する処理を 1回 行うために必要なデータのサンプリング期間が 512Nである場合、変位状況データ生 成部 61は、例えば、周期 Nで得られた 513個のサンプリングデータからなるサンプリ ングデータ列、周期 8Nで得られた 65個のサンプリングデータからなるサンプリングデ ータ列、周期 64Nで得られた 9個のサンプリングデータ力 なるサンプリングデータ列 、周期 512Nで得られる 2個のサンプリングデータからなるサンプリングデータ列の、 合計 4種類のサンプリングデータ列を生成する。あるいは、この例以外に、周期 N, 4 N, 16N, 64N, 256Nでそれぞれ得られる合計 5種類のサンプリングデータ列を生 成しても良い。
[0048] なお、基本となるサンプリング周期 N (ベースサンプリング周期)の長さや、推定部 6 が検知面 2aの状態を推定する処理を 1回行うために必要なデータのサンプリング期 間の長さは、ワイパー制御装置として求められる精度等に応じて、任意に設定すれ ば良い。本発明の実施形態をこれに限定する趣旨ではないが、一例としては、周期 Nを 500 μ秒とすることが考えられる。
[0049] また、変位状況データ生成部 61が生成する変位状況データとしては、例えば、以 下のようなデータが考えられる。
(1)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの変位 量、
(2)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの変位 量の差分、
(3)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータが連 続的に増加方向または減少方向のいずれかへ変位した量を表す連続変位量、
(4)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータが連 続的に増加方向または減少方向のいずれかへ変位した回数を表す連続変位回数。 [0050] なお、上記(1)および(2)については、負のデータを取り扱う繁雑さを避けるために 、以下のようにさらに分類された変位状況データとして生成することが好ましい。 (1 a)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 増加変位量、
(1 -b)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 減少変位量、
(2 _ a)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 増加変位量差分 (増加分)、
(2 _b)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 増加変位量差分 (減少分)、
(2 _ c)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 減少変位量差分 (増加分)、
(2 - d)前記複数のサンプリングデータ列のそれぞれにおけるサンプリングデータの 減少変位量差分 (減少分)。
[0051] また、上記(3)および (4)については、連続的に変位した方向が増加方向または減 少方向のいずれであるかによって分類し、以下の変位状況データとして生成すること が好ましい。
(3— a)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータ が連続的に増加方向へ変位した量を表す連続増加変位量、
(3 -b)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータ が連続的に減少方向へ変位した量を表す連続減少変位量、
(4- a)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータ が連続的に増加方向へ変位した回数を表す連続増加変位回数、
(4-b)前記複数のサンプリングデータ列のそれぞれにおいて、サンプリングデータ が連続的に減少方向へ変位した回数を表す連続減少変位回数。
[0052] これらのデータ(1)〜(4)または下記の(1 _ a)〜(4_b)のそれぞれによって、複 数のサンプリング時間に対するゆらぎ成分が判別される。すなわち、このゆらぎ成分 より、付着物や接触物の粘性変化等が推測できると考えられる。例えば、雨滴は、浮 力により慣性がほぼ一定であると考えることができる。この雨滴がガラス表面に衝突す る場合、衝突による雨滴の形状変化は、その粘性に依存する。なお、粘性が同じであ つても慣性が異なれば、形状変化の度合いは異なる。この形状変化の度合いをセン サ出力(電圧変化)量で確実に判断するためには、検知面感度が一定でなければな らないが、光束密度を一定とした平行光を車両用ワイパー制御装置の光学部におい て実現することは、技術的にもコスト的にも不可能である。このため、本実施形態の車 両用ワイパー制御装置では、検知面 2aへの雨滴等の付着物の形状変化度合いを、 受光素子 4の出力量の時間軸上での変化から判定することにより、一般的な状況で 発生するウィンドシールド 2への水分付着状況(雨滴、垂れ水、結露など)を互いに判 別すること力 Sできる。また、受光素子 4の出力量の時間軸上での変化から、これらの 水分付着以外に、検知面 2aに対する様々な付着物または接触物の種類を互いに判 另リすること力 Sできる。
[0053] ここで、図 4に、上記(1 a)の増加変位量および(1 b)の減少変位量の算出例を 示す。図 4に示すように、サンプリングデータ列において連続する 2つのサンプリング データ S , S (S , S の順にサンプリングされたものとする)において、 S < S であ i i+l i i+l i ί+1 れば、 S —Sの値を、 S のサンプリングタイミングにおける増加変位量とする。 S≥ i+l i i+l i
S であれば、 S のサンプリングタイミングにおける増加変位量の値を 0とする。同様 i+l i+l
に、サンプリングデータ列において連続する 2つのサンプリングデータ S , S (S , S
i i+l i i+l の順にサンプリングされたものとする)において、 S〉S であれば、 S—S の値を、 s
i i+l i i+l
のサンプリングタイミングにおける減少変位量とする。 S≤S であれば、 S のサン i+l i i+l i+l プリングタイミングにおける減少変位量の値を 0とする。
[0054] 図 5に、上記(2— a)の増加変位量差分 (増加分)および(2— b)の増加変位量差分
(減少分)の算出例を示す。図 5に示すように、増加変位量差分 (増加分)および増加 変位量差分 (減少分)は、上記(l _a)の増加変位量力 求められる。サンプリングデ ータ列において連続する 2つのサンプリングデータ S , S (S , S の順にサンプリン
i i+l i i+l
グされたものとする)についての増加変位量 U, U において、 Uく U であれば、 s
i i+l i i+l i+ のサンプリングタイミングにおける増加変位量差分 (増加分)は u _uであり、増加
1 i+l i
変位量差分 (減少分)は 0である。 U >U であれば、 S のサンプリングタイミングに
i i+l i+l おける増加変位量差分 (増加分)は 0であり、増加変位量差分 (減少分)は U— U で i i+1 ある。なお、 u =u であれば、増加変位量差分 (増加分)および増加変位量差分( i i+1
減少分)はレ、ずれも 0である。
[0055] 図 6に、上記(2— c)の減少変位量差分 (増加分)および(2— d)の減少変位量差分
(減少分)の算出例を示す。図 6に示すように、減少変位量差分 (増加分)および減少 変位量差分 (減少分)は、上記(l _b)の減少変位量力 求められる。サンプリングデ ータ列において連続する 2つのサンプリングデータ S , S (S , S の順にサンプリン i i+1 i i+1
グされたものとする)についての減少変位量 D, D において、 D < D であれば、 S i i+1 i i+1 i+ のサンプリングタイミングにおける減少変位量差分 (増加分)は D _Dであり、減少
1 i+1 i
変位量差分 (減少分)は 0である。 D >D であれば、 S のサンプリングタイミングに i i+1 i+1
おける減少変位量差分 (増加分)は 0であり、減少変位量差分 (減少分)は D— D で i i+1 ある。なお、 D =D であれば、減少変位量差分 (増加分)および減少変位量差分( i i+1
減少分)はレ、ずれも 0である。
[0056] 図 7に、上記(3— a)の連続増加変位量および(3— b)の連続減少変位量の算出例 を示す。図 7に示すように、サンプリングデータ列においてサンプリングデータが連続 して減少する場合は、前回までの連続減少変位量に今回の減少変位量を加算した 値力 連続減少変位量となる。サンプリングデータの変位が減少から増加に転じた場 合または変位が 0である場合は、図 7に示すように、連続減少変位量はクリアされて 0 となる。また、サンプリングデータ列においてサンプリングデータが連続して増加する 場合は、前回までの連続増加変位量に今回の増加変位量を加算した値が、連続増 加変位量となる。サンプリングデータの変位が増カロから減少に転じた場合または変位 力 ¾である場合は、連続増加変位量はクリアされて 0となる。
[0057] 図 8に、上記(4一 a)の連続増加変位回数および (4一 b)の連続減少変位回数の算 出例を示す。図 8に示すように、サンプリングデータ列においてサンプリングデータが 連続して減少する場合は、前回までの連続減少変位回数に 1を加算した値が、連続 減少変位回数となる。サンプリングデータの変位が減少から増加に転じた場合または 変位が 0である場合は、図 8に示すように、連続減少変位回数はクリアされて 0となる。 また、サンプリングデータ列においてサンプリングデータが連続して増加する場合は 、前回までの連続増加変位回数に 1を加算した値が、連続増加変位回数となる。サ ンプリングデータの変位が増力 Qから減少に転じた場合または変位が 0である場合は、 連続増加変位回数はクリアされて 0となる。
[0058] 変位状況データ生成部 61は、上述のようにサンプリング周期が互いに異なる複数 のサンプリングデータ列から個々に生成された変位状況データを、変位状況データ 記憶部 63へ記憶する。なお、変位状況データ記憶部 63へ記憶される変位状況デー タは、変位状況データ生成部 61によって生成された変位状況データそのものであつ ても良いが、変位状況データ記憶部 63の記憶容量を節約するために、変位状況デ ータ生成部 61が、前記複数のサンプリングデータ列から生成された変位状況データ の特徴量を求め、求められた特徴量を記憶させても良レ、。特徴量としては、例えば、 それぞれのサンプリングデータ列から生成された変位状況データの最大値や、この 最大値をさらに所定のレベル値で表現した値などを用いることができる。また、最大 値に限らず、変位状況データの平均値、積算値、差分値などを特徴量として使用す ることちでさる。
[0059] 照合部 62は、上述のように変位状況データ生成部 61によって生成されて変位状 況データ記憶部 63に記憶された変位状況データと、パターンデータ記憶部 64に予 め記憶されている変位状況パターンとを照合することにより、検知面 2aの状態を推定 する。
[0060] パターンデータ記憶部 64は、検知面 2aに対する付着物の様々な態様 (例えば、雨 滴、垂れ水、結露など)に応じた変位状況パターンや、付着物以外の接触物(通過物 を含む)が原因で生じる変位状況パターンを記憶している。接触物によって生じる変 位状況パターンとしては、例えば、ワイパーブレードが検知面上を通過した時の変位 状況パターンや、検知面に人間の指が触れた場合などの変位状況パターンがある。 なお、「検知面に指が触れる」とは、ガソリンスタンドなどで、窓ガラスの清掃時に検知 面に指等が触れることを想定したものである。結露状態は、結露の他に霧雨の付着し た状態も含む。
[0061] これらの変位状況パターンは、検知面 2a上に上述のような付着物または接触物が 存在する状態を実験的に再現し、その状態で発光素子 3から検知面 2aへ光を照射 したときの受光素子 4の出力信号に基づいて、上述した変位状況データと全く同じ方 法によって求められる。すなわち、変位状況パターンも、変位状況データと同じぐ互 レ、に異なるサンプリング周期で得られたサンプリングデータ列から生成される。
[0062] なお、本発明にかかるワイパー制御装置を実施する際には、上記の(1一 a)〜(4一 b)に例示した変位状況データの全てを必ずしも用いなくても良いし、これら以外の何 らかの変位状況データを用いても良い。言い換えれば、本発明の実施に力、かるワイ パー制御装置は、上記の(1一 a)〜(4一 b)に例示した変位状況データと照合するた めの全ての変位状況パターンを記憶していなくても良レ、。例えば、上記(l _ a)〜(4
-b)のいずれか一種類のみの変位状況データを用いる場合でも、複数種類のサン プリング周期で得られた複数のサンプリングデータ列から上記変位状況データをそ れぞれ生成し、同じように予め求められている変位状況パターンと照合することによ つて、検知面 2aの付着物がどのような態様である力、、また、検知面 2a上に接触物(ヮ ィパーブレード等の通過物を含む)が存在するかを推定することは可能である。ただ し、より高い推定精度が求められる場合は、上記の(1 a)〜(4 b)に例示したよう な変位状況データをできるだけ多種類用いることが好ましい。
[0063] ここで、本実施形態の車両用ワイパー制御装置におレ、て、複数種類のサンプリング 周期で得られた複数のサンプリングデータ列から生成された変位状況データに基づ いて、検知面 2aの状態を推定できる原理について説明する。
[0064] 最初に、検知面 2aへ付着する水分の形態と受光素子 4の出力との関係について説 明する。例えば、大粒の雨と霧雨とを比較する。大粒の雨が検知面 2aに付着すると、 検知面 2aのかなりの面積が雨粒によって被覆される結果、受光素子 4からの出力は 大きく低下する。さらに、付着した後の雨粒は、持っている運動エネルギーが大きい ので、検知面 2aに付着した後もかなりの時間にわたって揺らいでいることになる。検 知面 2a上で大きな雨粒が揺らいでいると、受光素子 4からの出力も増加減少を繰り 返して、揺らぐことになる。一方、霧雨のような非常に小さな雨粒が検知面 2aに付着 すると、検知面 2aのうち少しの面積しか被覆されないので、受光素子 4からの出力は あまり低下しない。さらに、付着した後の雨粒は、持っている運動エネルギーが小さい ので、付着後すぐにその揺らぎは収まってしまう。その結果、受光素子 4の出力もすぐ に安定することになる。
[0065] このように、付着する水分の形態が異なると、検知面 2aに付着した後の挙動もその 形態に応じて異なる。そして、付着した水分の挙動に対応して、付着後の受光素子 4 の出力変動も異なる。なお、これは、水分に限らず、検知面 2aに付着または接触す る可能性のある様々な物質についても同様である。すなわち、本発明者らは、検知 面 2aに何かが付着後または接触中の受光素子 4の出力変動が、付着物または接触 物の特性に応じて固有の変位パターンを有することを見出した。この原理により、検 知面 2aに水分等が付着した後または接触している間における受光素子 4の出力変 動、すなわち「揺らぎ」を分析することにより、検知面 2aに対する付着物または接触物 の形態等を判定することができる。
[0066] ここで、本実施形態に力、かるワイパー制御装置のパターンデータ記憶部 64に予め 格納される変位状況パターンの具体例について説明する。なお、ここでは、検知面 2 aについて実験的に 5種類の状態(雨滴の付着、垂れ水の通過、指の接触、結露の 付着、ワイパーブレードの通過)を再現し、それぞれの状態での受光素子 4からの出 力信号から、サンプリング周期を N, 8N, 64N, 512Nとして 4種類のサンプリングデ 一タ列を得た。なお、 Ν = 500 μ秒とした。そして、これらのサンプリングデータ列から 、増加変位量(1 a)、減少変位量(1 b)、連続増加変位量(3— a)、連続減少変 位量(3— b)の 4種類にっレ、ての変位状況パターンを得た。
[0067] 図 9〜図 13に、検知面 2aに雨滴が付着したとき(図 9)、検知面 2a上を車両の屋根 力 の垂れ水が通過したとき(図 10)、検知面 2a上に指が接触したとき(図 11)、検知 面 2aに結露が付着したとき(図 12)、検知面 2a上をワイパーブレードが通過したとき( 図 13)、のそれぞれの場合における受光素子 4からの出力信号波形 (各図の(a) )と、 それぞれの出力信号からサンプリング周期 N (N = 500 a秒)のサンプリング周期で 得られたサンプリングデータ列に基づいて生成された増加変位量 (各図の(b) )、減 少変位量 (各図の(c) )、連続増加変位量 (各図の(d) )、連続減少変位量 (各図の(e ) )を示す。図 9〜図 13のそれぞれにおいて、縦軸は受光素子 4の出力(単位はドット )を表し、横軸はサンプリング開始からの経過時間(単位は 500 μ秒)を表す。なお、 縦軸の単位である 1ドットは、変位状況データ生成部 61を構成するマイコン内部の A /Dコンバータの 1分解能の単位を示す。また、図 13中に実線と破線で示した信号 は、ワイパーが作動中か否かを表すワイパー作動信号である。この信号が高レベル の間はワイパーが作動しており、低レベルの間はワイパーが停止している。
[0068] この例では、図 9に示すように得られた雨滴付着時の各変位量の特徴量として、こ れらの各変位量の最大値を求め、さらにその最大値を所定のレベル値に変換する。 従って、ここで説明している変位状況パターンを用いるワイパー制御装置の変位状 況データ生成部 61は、これと同様に、変位状況データとして得られた各変位量の特 徴量として、それらの変位量の最大値を求め、さらにそれを上記所定のレベル値に 変換した値を求めて、変位状況データ記憶部 63へ格納すれば良い。
[0069] 例えば、図 9 (b)に示す増加変位量の最大値は 33、図 9 (c)に示す減少変位量の 最大値は 36、図 9 (d)に示す連続増加変位量の最大値は 34、図 9 (e)に示す連続減 少変位量の最大値は 36である。これと同様にして、図 10の(b)〜(e)に示す垂れ水 通過時の各変位量からの最大値、図 11の(b)〜(e)に示す指の接触時の各変位量 からの最大値、図 12の(b)〜( に示す結露付着時の各変位量からの最大値、図 1 3の(b)〜(e)に示すワイパーブレード通過時の各変位量からの最大値を、それぞれ 求める。その結果を、図 14の d (N)の欄に示す。
[0070] また、図 15〜図 17は、図 9 (a)に示した雨滴付着時の出力信号から、 8N (すなわ ち 4m秒), 64N (すなわち 32m秒), 512N (すなわち 256m秒)のサンプリング周期 で得られたサンプリングデータ列に基づいて生成された増加変位量 (各図の (b) )、 減少変位量 (各図の(c) )、連続増加変位量 (各図の(d) )、連続減少変位量 (各図の (e) )を示す。これらに基づき、図 14の d (8N)、 d (64N)、 d (512N)の欄において、 検知面 2aの状態が「雨滴付着」である場合の各変位量の最大値が求められる。
[0071] また、図示を省略するが、検知面 2aの状態が、垂れ水通過時、指接触時、結露付 着時、ワイパーブレード通過時のそれぞれについて、 8N, 64N, 512Nのサンプリン グ周期で得られたサンプリングデータ列に基づいて生成された各変位量の最大値を 図 14の d (8N)、 d (64N)、 d (512N)の欄に示した。
[0072] 以上のように、検知面 2aの各種状態を実験的に再現し、図 14に示すような各変位 量の最大値が求められると、次に、これらの最大値は、検知面 2aの状態毎に所定の レベル値に変換される。例えば、図 18に示す例は、最大値を 7段階のレベル値に変 換したものである。また、図 19に示す例は、最大値を 3段階のレベル値に変換したも のである。なお、図 18および図 19では、説明の分かりやすさを重視して、各レベル値 を記号で示した。しかし、実際のレベル値は、数値等で表現され、変位状況パターン としてパターンデータ記憶部 64に格納される。
[0073] なお、図 9〜図 19から分かるように、検知面 2aの状態が、雨滴の付着、垂れ水の通 過、指の接触、結露の付着、ワイパーブレードの通過、のそれぞれの場合について、 複数種類のサンプリング周期で得られるサンプリングデータ列の態様および各変位 量の最大値からなる変位状況パターンは、互いに顕著に異なっている。
[0074] 例えば、ワイパーブレードが通過した際の受光素子 4の出力変化は、雨滴が付着し た場合の出力変化よりも遅い。従って、短サンプリング周期で得られた変位状況バタ ーンにおいて、ワイパーブレードが通過した場合の変位量は、雨滴が付着した場合 の変位量よりも小さくなる。また、ワイパーブレードが通過した場合の受光素子 4の出 力は、ワイパーブレードにより集められた水分の塊が検知面 2a上を通過することによ り低下し、ワイパーブレードが通過した後は検知面 2a上に水分が残らないため、瞬時 に出力が元に戻る。従って、ワイパーブレードが通過した場合の変位状況パターンは 、減少方向および増加方向の両方について大きな変位量を示す。
[0075] 従って、本実施形態によれば、上述した変位状況パターンを用いることにより、受光 素子 4の出力信号に基づいて、検知面 2aに対する雨滴等の水分の付着と、ワイパー ブレードの通過とを識別することができる。このため、従来のように、ワイパーが作動し ている期間に受光素子の出力信号をマスクする必要がなぐワイパーが作動している か否かに関わらず、全期間を通じて検知面 2aの状態を推定することができる。これに より、検知面 2aの状態変化にすばやく追従するワイパー作動制御が可能となる。
[0076] 次に、照合部 62の処理の一例について、図 20および図 21を参照しながら具体的 に説明する。
[0077] ここでは、変位状況パターンとして、検知面の状態に関して図 20 (a)に示す 5種類 のパターン (雨滴付着時、ワイパー通過時、垂れ水通過時、指接触時、結露付着時) 力 Sパターンデータ記憶部 64に予め格納されており、本実施形態のワイパー制御装置 の作動時に、変位状況データ生成部 61によって、図 20 (b)に示す変位状況データ が得られ、変位状況データ記憶部 63に記憶されたものとする。
[0078] 照合部 62は、変位状況データ記憶部 63から図 20 (b)の変位状況データを読み出 し、パターンデータ記憶部 64に格納されている図 20 (a)の変位状況パターンと照合 する。ここで、照合部 62は、検知面の状態毎に、各種の変位状況データ (増加変位 量、減少変位量、増加連続変位量、減少連続変位量、 · · · )について、変位状況デ ータの値と変位状況パターンの値との差分を算出する。図 20 (a)および図 20 (b)か ら算出される差分値は、図 21に示すとおりである。
[0079] 照合部 62は、さらに、図 21に示すように、検知面の状態毎に、算出された差分の 合計を算出する。そして、差分の合計が小さい順に、一致順位を決定する。図 21に 示す結果によれば、照合部 62は、このときの検知面 2aの状態は、雨滴が付着した状 態であると推定する。
[0080] 以上の処理により、照合部 62は、変位状況データ生成部 61によって生成された変 位状況データと、実験的に求められパターンデータ記憶部 64に予め格納されている 変位状況パターンとを照合することにより、検知面 2aの状態を推定することができる。
[0081] なお、上記の例では、検知面 2aの状態に関して、 5種類のパターン(雨滴付着時、 ワイパー通過時、垂れ水通過時、指接触時、結露付着時)の変位状況パターンをパ ターンデータ記憶部 64に予め格納した構成について説明した。しかし、変位状況パ ターンはこれらのみに限定されず、例えば、検知面 2aが撥水性力親水性かによつて 互いに異なる変位状況パターンを予め格納しておくことも効果的である。以下、その 理由を説明する。
[0082] 自動車のウィンドシールドの表面に撥水剤をコーティングする撥水処理をして、撥 水性ガラスにすることがある。この場合、検知面に付着した雨滴の挙動は、通常のガ ラス (撥水処理を施していないガラス)上における挙動とは異なる。例えば撥水性ガラ スの場合、同じ質量の雨滴でも、その接触面積が通常のガラスと比べて小さくなる。 また、撥水性ガラスに付着した雨滴は、風圧等で検知面上を動きやすくなつているの で、この動きによっても、受光素子からの信号は変化する。さらに、ワイパーで雨滴を 払拭すると、その直後はガラス表面に薄い水膜となるが、ガラス表面の撥水性により、 この水膜が小さな水粒になる。この場合も、受光素子からの信号は通常の場合と異な つている。従って、撥水性ガラスの場合と、通常のガラスの場合とにおいて、互いに異 なる制御ロジックを用いる必要がある。
[0083] しかし、撥水処理の効果は、半永久的には持続せず、ワイパーブレードでガラス表 面が払拭されることにより低減していく。従って、実際には、撥水効果が低減していく に従って、通常のガラスの場合の制御ロジックへ移行させる必要がある力 移行時点 の制御は困難である。また、いずれの制御ロジックを用いるかを決定するために、ウイ ンドシールドに撥水処理がなされているか否力、を運転者に設定させるのは現実的で はない。設定の手間が面倒であり、設定を忘れる可能性もあるからである。また、 自動 洗車機では、撥水性を有する処理剤を用いて洗車される場合がある。この場合、運 転者の認識とは関係なぐ検知面を含むウィンドシールドの表面が撥水性になってい る。従って、従来、ウィンドシールドに撥水処理がなされた場合、検知面の状態を正 しく推定することは難しかった。
[0084] これに対して、本実施形態に力かる車両用ワイパー制御装置によれば、ウィンドシ 一ルドが撥水性である場合 (撥水処理がなされている場合)と、親水性である場合( 油膜とりの処理がなされている場合)とのそれぞれについて、変位状況パターンをパ ターンデータ記憶部 64に予め格納しておけば良い。このように、ウィンドシールドが 撥水性または親水性のいずれであっても検知面の状態を正確に推定できるのは、複 数種類のサンプリング周期で得られたサンプリングデータ列から生成された各種の変 位状況データが、検知面の状態が雨滴付着またはワイパー通過等のように同様の条 件であっても、検知面 2aが撥水性力親水性かで、図 22に示すように、互いに顕著に 異なる特徴量を持つことによる。
[0085] 以上のとおり、本実施形態に力かる車両用ワイパー制御装置の推定部 6は、検知 面に対して典型的な付着物または接触物が存在する場合に得られる受光素子 4の 出力信号の変位状況を表した変位状況パターンを予め蓄積したパターンデータ記 憶部 64を有する。そして、照合部 62が、所定のサンプリング期間内に上記出力信号 から取得された変位状況データと、上記変位状況パターンとを照合することにより、 当該サンプリング期間における検知面 2aの状態、すなわち検知面 2aに付着物また は接触物(検知面上の通過物を含む)があるかを推定する。この構成により、検知面 2a上をワイパーブレードが通過したことを、雨滴等の付着物や他の接触物と相互に 識別して推定できるので、ワイパーの作動中にも、受光素子からの信号をマスクする 必要がなくなる。したがって、ワイパーの作動の如何に関わらず、全期間を通じて雨 滴等の付着を検出できるようになり、トンネルの出口付近で大雨に遭遇したような場 合でも、検知面の状態変化にすみやかに追従する適切なワイパー制御が可能となる
[0086] なお、上述したような検知面 2aの各種の状態に対する照合部 62による推定結果に 応じて、ワイパー制御部 7はワイパー作動制御を行う。なお、ワイパー制御部 7は、照 合部 62による推定結果のみに従ってワイパー作動制御を行っても良いが、車両に設 けられた他のセンサ類から得られる信号を参照して、ワイパーをどのように作動させる 力、を決定しても良い。
[0087] ワイパー制御部 7は、例えば、照合部 62により検知面 2aに雨滴が付着していると推 定された際は、ワイパーを作動させる。なお、本実施形態では、降雨状況(雨の激し さ)を判別する例を示していないが、雨の激しさに応じて変位状況パターンは異なる ので、変位状況データの特徴量から降雨状況を推測し、降雨状況に応じて適切な払 拭間隔でワイパーを作動させても良い。結露が生じていると推定された際は、ワイパ 一を作動させない。通常の結露によって運転者の視界が遮られる場合は少なぐワイ パーを作動させると、運転者が、ワイパーが誤作動したと認識する可能性が高いから である。ただし、運転者の視界が遮られるような結露が発生している場合は、ワイパー を作動させる必要がある。すなわち、照合部 62によって検知面 2a上に結露が発生し たと推定されており、かつ、受光素子 4の出力変化が短時間で大きく変化している場 合は、ワイパー制御部 7は、運転者の視界が遮られていると推測し、ワイパーを作動 させることが好ましい。
[0088] また、垂れ水通過と推定された際は、垂れ水を除去すべくワイパーを作動させる。
すなわち、照合部 62によって検知面 2a上に垂れ水が発生したと推定されており、か つ、受光素子 4の出力が短時間で大きく変化している場合は、ワイパー制御部 7は、 運転者の視界が遮られていると推測し、ワイパーを作動させることが好ましい。なお、 ワイパー作動直後も検知面 2a上に垂れ水が発生したと照合部 62によって推定され る場合は、垂れ水経過が継続して発生していると推測し、ワイパーを連続作動させる ことが好ましい。また、運転者の視界を著しく悪化させる程度の垂れ水であれば、早 い間隔で払拭を行い、そうでない場合は、払拭頻度は高くなくて良い。
[0089] また、指が接触したと推定された際は、停止時であれば、ワイパーを作動させなレ、。
これは、例えばガソリンスタンドにおいてエンジンを停止する前に作業員がウィンドシ 一ルドの清掃を行おうとした場合等に、ワイパーが作動してしまうことを防止するため である。なお、車両が停止しているかどうかは、当該車両のパーキングブレーキまた はサイドブレーキの状態を表す信号、フューエルキャップのオープン信号、パーキン グレンジ入力信号、ハザード入力信号等を併用すれば、より確実に判定することがで きる。
[0090] 以上のとおり、本発明の一実施形態について説明したが、本発明の実施形態は上 記の例のみに限定されず、種々の変更が可能である。
産業上の利用可能性
[0091] 本発明は、検知面の状態変化に追従したワイパー制御が可能な車両用ワイパー制 御装置として産業上利用可能である。

Claims

請求の範囲
[1] 車両のウィンドシールドガラス表面の一部を検知面として、前記検知面へ光を照射 する発光素子と、前記発光素子から出射されて前記検知面で反射された光を受光す る位置に配置された受光素子とを含む光学部と、
前記受光素子の出力信号の変化を解析することにより前記検知面の状態を推定す る推定部と、
前記推定部から出力される推定結果信号に従って、車両に取り付けられたワイパ 一の作動を制御するワイバー制御部とを備えた車両用ワイパー制御装置において、 前記推定部は、
前記受光素子の出力信号から、ワイパーが作動している期間と作動していない期 間との両方において、複数種類のサンプリング周期で得られた複数のサンプリングデ ータ列のそれぞれに基づいて、前記受光素子の出力信号の変位状況を表す変位状 況データを求める変位状況データ生成部と、
前記検知面に付着物または接触物がある場合の前記受光素子の出力信号の変位 状況を表す変位状況パターンデータと、前記検知面上をワイパーブレードが通過し た場合の前記受光素子の出力信号の変位状況を表す変位状況パターンデータとを 予め格納したパターンデータ記憶部と、
前記変位状況データ生成部によって求められた変位状況データと、前記パターン データ記憶部に格納されてレ、る変位状況パターンデータとを照合し、前記検知面の 状態を表す推定結果信号を出力する照合部とを備えたことを特徴とする車両用ワイ パー制御装置。
[2] 前記検知面に付着物または接触物がある場合の前記受光素子の出力信号の変位 状況を表す変位状況パターンデータとして、前記検知面上に付着または接触してい る水分の形態に関する複数種類の変位状況パターンデータが、前記パターンデータ 記憶部に予め格納された、請求項 1に記載の車両用ワイパー制御装置。
[3] 前記変位状況データ生成部力 所定のクロック周期 Nで得られた m (a, bを整数とし て、 m= 2aXb)個のサンプリングデータからなるサンプリングデータ列と、前記クロック 周期 Nに 2a、 2aX 2、 · · ·、 2aX e (cは b以下の整数)をそれぞれ乗じたクロック周期で得ら れる 2b個、 2b1個、 · · ·、(m/2aX e)個のサンプリングデータからなるサンプリングデー タ列とを、前記複数のサンプリングデータ列として生成する、請求項 1に記載の車両 用ワイパー制御装置。
[4] 前記変位状況データ生成部が、前記変位状況データとして、前記複数のサンプリ ングデータ列のそれぞれにおけるサンプリングデータの変位量を求める、請求項:!〜 3のいずれ力、 1項に記載の車両用ワイパー制御装置。
[5] 前記変位状況データ生成部が、前記変位状況データとして、前記複数のサンプリ ングデータ列のそれぞれにおけるサンプリングデータの変位量の差分を表す変位量 差分を求める、請求項 1〜3のいずれ力 4項に記載の車両用ワイパー制御装置。
[6] 前記変位状況データ生成部が、前記変位状況データとして、前記複数のサンプリ ングデータ列のそれぞれにおいて、サンプリングデータが連続的に正負いずれかの 方向へ変位した量を表す連続変位量を求める、請求項:!〜 3のいずれか 1項に記載 の車両用ワイパー制御装置。
[7] 前記変位状況データ生成部が、前記変位状況データとして、前記複数のサンプリ ングデータ列のそれぞれにおいて、サンプリングデータが連続的に正負いずれかの 方向へ変位した回数を表す連続変位回数を求める、請求項:!〜 3のいずれか 1項に 記載の車両用ワイパー制御装置。
[8] 前記パターンデータ記憶部が、撥水性の検知面に付着物または接触物がある場合 の前記受光素子の出力信号の変位状況を表す変位状況パターンデータと、撥水性 の検知面上をワイパーブレードが通過した場合の前記受光素子の出力信号の変位 状況を表す変位状況パターンデータと、親水性の検知面に付着物または接触物が ある場合の前記受光素子の出力信号の変位状況を表す変位状況パターンデータと 、親水性の検知面上をワイパーブレードが通過した場合の前記受光素子の出力信 号の変位状況を表す変位状況パターンデータとを予め格納した、請求項:!〜 7のい ずれか 1項に記載の車両用ワイパー制御装置。
[9] 前記パターンデータ記憶部が、前記検知面に人間の手が接触した場合の前記受 光素子の出力信号の変位状況を表す変位状況パターンデータをさらに格納した、請 求項 1〜8のいずれか 1項に記載の車両用ワイパー制御装置。
[10] 前記パターンデータ記憶部が、前記検知面に油膜が付着した場合の前記受光素 子の出力信号の変位状況を表す変位状況パターンデータをさらに格納した、請求項
1〜9のいずれか一項に記載の車両用ワイパー制御装置。
[11] 車両のウィンドシールドガラス表面の一部を検知面として、前記検知面へ光を照射 する発光素子と、前記発光素子から出射されて前記検知面で反射された光を受光す る位置に配置された受光素子とを含む光学部から、前記受光素子の出力信号を入 力し、その変化を解析することにより前記検知面の状態を推定し、その推定結果に従 つて、車両に取り付けられたワイパーの作動を制御する車両用ワイパー制御方法に おいて、
前記受光素子の出力信号から、ワイパーが作動している期間と作動していない期 間との両方において、複数種類のサンプリング周期で得られた複数のサンプリングデ ータ列のそれぞれに基づいて、前記受光素子の出力信号の変位状況を表す変位状 況データを求める変位状況データ生成ステップと、
前記検知面に付着物または接触物がある場合の前記受光素子の出力信号の変位 状況を表す変位状況パターンデータと、前記検知面上をワイパーブレードが通過し た場合の前記受光素子の出力信号の変位状況を表す変位状況パターンデータとを 予め格納したパターンデータ記憶部の前記変位状況パターンデータと、前記変位状 況データ生成ステップによって求められた変位状況データとを照合し、前記検知面 の状態を表す推定結果を得る照合ステップとを含むことを特徴とする車両用ワイパー 制御方法。
PCT/JP2005/020477 2005-11-08 2005-11-08 車両用ワイパー制御装置および方法 WO2007055001A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/084,540 US7772794B2 (en) 2005-11-08 2005-11-08 Apparatus and method for controlling vehicular wiper
PCT/JP2005/020477 WO2007055001A1 (ja) 2005-11-08 2005-11-08 車両用ワイパー制御装置および方法
JP2007544020A JP4717075B2 (ja) 2005-11-08 2005-11-08 車両用ワイパー制御装置および方法
EP05805929A EP1950109A4 (en) 2005-11-08 2005-11-08 DEVICE AND METHOD FOR CONTROLLING VEHICLE WIPER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020477 WO2007055001A1 (ja) 2005-11-08 2005-11-08 車両用ワイパー制御装置および方法

Publications (1)

Publication Number Publication Date
WO2007055001A1 true WO2007055001A1 (ja) 2007-05-18

Family

ID=38023011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020477 WO2007055001A1 (ja) 2005-11-08 2005-11-08 車両用ワイパー制御装置および方法

Country Status (4)

Country Link
US (1) US7772794B2 (ja)
EP (1) EP1950109A4 (ja)
JP (1) JP4717075B2 (ja)
WO (1) WO2007055001A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092503A (ja) * 2007-10-09 2009-04-30 Niles Co Ltd 車両用ワイパー制御装置
JP2009192433A (ja) * 2008-02-15 2009-08-27 Denso Corp 雨滴検出装置
JP2010096604A (ja) * 2008-10-16 2010-04-30 Denso Corp 視界状態検知装置および視界確保装置
JP2010112796A (ja) * 2008-11-05 2010-05-20 Denso Corp 撥水効果判定装置、撥水効果判定装置用プログラム及び撥水効果判定方法
JP2014139544A (ja) * 2013-01-21 2014-07-31 Denso Corp 付着物判定装置
JP2018103725A (ja) * 2016-12-26 2018-07-05 株式会社ヴァレオジャパン ワイパー動作検出装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180099B2 (en) * 2002-07-16 2012-05-15 Trw Limited Rain detection apparatus and method
US9561806B2 (en) * 2015-02-25 2017-02-07 Electro-Motive Diesel, Inc. Visibility control system and method for locomotive
US9994175B2 (en) * 2016-03-04 2018-06-12 Honda Motor Co., Ltd. System for preconditioning a vehicle and method thereof
KR101856937B1 (ko) 2016-10-14 2018-06-19 현대자동차주식회사 자동차의 레인 센서 및 그 제어 방법
US11718254B2 (en) * 2020-11-03 2023-08-08 Rod Partow-Navid Impact prevention and warning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916374A (en) * 1989-02-28 1990-04-10 Donnelly Corporation Continuously adaptive moisture sensor system for wiper control
JP3034031B2 (ja) * 1989-12-22 2000-04-17 リビー―オーウェンズ―フォード・カンパニー 雨滴応答型ワイパ制御装置
JP2001516669A (ja) * 1997-09-13 2001-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レインセンサの駆動装置および駆動方法
JP2002277386A (ja) * 2001-01-10 2002-09-25 Nippon Sheet Glass Co Ltd 検出装置およびその検出方法、それを用いたワイパー制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276388A (en) 1991-12-14 1994-01-04 Leopold Kostal Gmbh & Co. Kg Apparatus and method for controlling a windshield wiping system
US5345549A (en) 1992-10-30 1994-09-06 International Business Machines Corporation Multimedia based security systems
DE19713835A1 (de) 1997-04-04 1998-10-08 Bosch Gmbh Robert Vorrichtung zum Betreiben eines Scheibenwischers
US7050949B2 (en) * 1999-12-28 2006-05-23 Niles Co., Ltd. Signal processing method and device
JP2001180447A (ja) 1999-12-28 2001-07-03 Nippon Sheet Glass Co Ltd 検出装置およびそれを用いたワイパー制御装置
ATE384647T1 (de) * 2002-03-13 2008-02-15 Niles Co Ltd Verfahren zur steuerung eines wischers und wischersteuerung
JP4065713B2 (ja) * 2002-04-15 2008-03-26 ナイルス株式会社 ワイパー制御方法、およびワイパー制御装置
JP4259916B2 (ja) * 2003-05-15 2009-04-30 ナイルス株式会社 ワイパー制御方法、およびワイパー制御装置
JP4389692B2 (ja) * 2004-06-24 2009-12-24 株式会社デンソー 雨滴検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916374A (en) * 1989-02-28 1990-04-10 Donnelly Corporation Continuously adaptive moisture sensor system for wiper control
JP3034031B2 (ja) * 1989-12-22 2000-04-17 リビー―オーウェンズ―フォード・カンパニー 雨滴応答型ワイパ制御装置
JP2001516669A (ja) * 1997-09-13 2001-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レインセンサの駆動装置および駆動方法
JP2002277386A (ja) * 2001-01-10 2002-09-25 Nippon Sheet Glass Co Ltd 検出装置およびその検出方法、それを用いたワイパー制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950109A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092503A (ja) * 2007-10-09 2009-04-30 Niles Co Ltd 車両用ワイパー制御装置
JP2009192433A (ja) * 2008-02-15 2009-08-27 Denso Corp 雨滴検出装置
JP2010096604A (ja) * 2008-10-16 2010-04-30 Denso Corp 視界状態検知装置および視界確保装置
JP2010112796A (ja) * 2008-11-05 2010-05-20 Denso Corp 撥水効果判定装置、撥水効果判定装置用プログラム及び撥水効果判定方法
JP2014139544A (ja) * 2013-01-21 2014-07-31 Denso Corp 付着物判定装置
JP2018103725A (ja) * 2016-12-26 2018-07-05 株式会社ヴァレオジャパン ワイパー動作検出装置

Also Published As

Publication number Publication date
US7772794B2 (en) 2010-08-10
US20090134830A1 (en) 2009-05-28
EP1950109A1 (en) 2008-07-30
EP1950109A4 (en) 2011-08-10
JPWO2007055001A1 (ja) 2009-04-30
JP4717075B2 (ja) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4717075B2 (ja) 車両用ワイパー制御装置および方法
EP1609687B1 (en) Rain detection system and method for controlling the same
JP3691488B2 (ja) 付着物検出装置およびそれを用いた制御装置
JP2001180447A (ja) 検出装置およびそれを用いたワイパー制御装置
US7154241B2 (en) Wiper control method and wiper control device
JP2004501025A (ja) 汚染状態の異なるプレートの表面を清掃するための自動制御装置およびその制御方法
EP1358096B1 (en) Sensing device and its sensing method, and wiper controlling apparatus using the same
JP4935706B2 (ja) 雨滴検出装置
US5319293A (en) Apparatus and method for controlling a windshield wiping system
US8076887B2 (en) Wiper controller
WO2004101333A1 (ja) ワイパー制御方法、およびワイパー制御装置
JP4098440B2 (ja) 降雨状態検出方法及び降雨状態検出装置
KR100375378B1 (ko) 자동차용 와이퍼 자동 제어 시스템
JP2829520B2 (ja) ワイパ制御装置
JP4259916B2 (ja) ワイパー制御方法、およびワイパー制御装置
EP1637416B1 (en) Method and device for controlling wiper
JPH0257455A (ja) 雨滴感応式オートワイパ制御装置
JPH0238167A (ja) 雨滴検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007544020

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12084540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005805929

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005805929

Country of ref document: EP