WO2007052739A1 - Solubilization of carbon nanotube using aromatic polyimide - Google Patents

Solubilization of carbon nanotube using aromatic polyimide Download PDF

Info

Publication number
WO2007052739A1
WO2007052739A1 PCT/JP2006/321962 JP2006321962W WO2007052739A1 WO 2007052739 A1 WO2007052739 A1 WO 2007052739A1 JP 2006321962 W JP2006321962 W JP 2006321962W WO 2007052739 A1 WO2007052739 A1 WO 2007052739A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
aromatic polyimide
carbon nanotube
solution
solvent
Prior art date
Application number
PCT/JP2006/321962
Other languages
French (fr)
Japanese (ja)
Inventor
Naotoshi Nakashima
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Priority to JP2007542800A priority Critical patent/JP5119443B2/en
Publication of WO2007052739A1 publication Critical patent/WO2007052739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Definitions

  • the present invention belongs to the technical field of nanotechnology, and particularly relates to a novel technique for solubilizing carbon nanotubes.
  • Non-patent Document 1 carbon nanotubes discovered in sediments during fullerene production by Sumio Iijima et al. Have high conductivity, tensile strength, heat resistance, etc. based on their unique structures. Is expected to be used in various fields.
  • CNT carbon nanotubes
  • Non-Patent Document 2 As a method for dissolving carbon nanotubes, a method was proposed in which CNTs were cut short and then chemically modified at both ends (for example, Non-Patent Document 2). It will denature the properties. Recently, the present inventors have found that it is possible to dissolve SCNT such as a specific aromatic compound or DNA (for example, Non-Patent Document 3, Non-Patent Document 4, Patent Document 1). In addition, a method of solubilizing carbon nanotubes using polysaccharides (j8-1, 3, -glucan) (Patent Document 2) and a method of forming aqueous micelles using a surfactant to solubilize (Non Patents) Document 5) is also proposed!
  • SCNT such as a specific aromatic compound or DNA
  • the carbon nanotubes can be solubilized together with the polymer, for example, it is expected that a composite material having an excellent function that has characteristics derived from the polymer in addition to the characteristics of CNT will be obtained.
  • Non-Patent Document 1 S. Iijima, Nature, 354, 56 (1991)
  • Non-Patent Document 2 J. Chen et al., Science, 282, 95 (1998)
  • Non-Patent Document 3 N. Nakashima et al., Trans. Mater. Research Soc. Jpn, 29 525-528 (2004)
  • Non-Patent Document 4 N. Nakashima et al., Chem. Lett. 32,456 (2003)
  • Non-Patent Document 5 R. E. Smalley et al., Science 298, 2361 (2002)
  • Non-Patent Document 6 K. E. Wse et al., Chem. Phys. Lett. 391, 207 (2004)
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-28560
  • Patent Document 2 JP 2005-104762
  • An object of the present invention is to provide a new technology that can contribute to the effective use of carbon nanotubes by unwinding the bundle structure of carbon nanotubes to reliably dissolve the carbon nanotubes. There is to do.
  • the present invention provides a carbon nanotube solubilizing agent comprising an aromatic polyimide having a repeating unit represented by the following general formula [I].
  • AR represents a phenyl group or a condensed polycyclic aromatic group
  • X may or may not exist
  • Z represents a polarity for enhancing solvent solubility.
  • FIG. 1 shows a reaction scheme for synthesizing an example of an aromatic polyimide used in the present invention.
  • FIG. 2 Illustrates the visible near-infrared absorption spectrum of DMNT solution of SWNTZ aromatic polyimide measured in the solubility test of carbon nanotubes according to the present invention.
  • FIG. 3 illustrates an AFM image of SWNTZ polyimide obtained by the present invention.
  • FIG. 4 illustrates the results of two-dimensional mapping of near-infrared photoluminescence measured with a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
  • FIG. 5 illustrates an absorption spectrum measured by mixing another solvent in a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
  • FIG. 6a shows the FT-IR measurement result of one example of polyimide used in the present invention.
  • FIG. 6b shows the measurement result of 1 H-NMR of one example of polyimide used in the present invention.
  • FIG. 7a FT-IR measurement results of another example of polyimide used in the present invention are shown.
  • FIG. 7 b shows the measurement result of 1 H-NMR of another example of polyimide used in the present invention.
  • FIG. 8 shows the FT-IR measurement results of yet another example of the polyimide used in the present invention.
  • FIG. 9a shows the FT-IR measurement results of another example of polyimide used in the present invention.
  • FIG. 9b shows the measurement result of 1 H-NMR of another example of polyimide used in the present invention.
  • FIG. 10 illustrates a visible near infrared absorption spectrum of a DMSO solution of SWNTZ aromatic polyimide measured in a carbon nanotube solubility test according to the present invention.
  • FIG. 11 illustrates a visible near infrared absorption spectrum of an aqueous solution of SWNTZ aromatic polyimide measured in a carbon nanotube solubility test according to the present invention.
  • FIG. 12 illustrates the results of two-dimensional mapping of near-infrared photoluminescence obtained for a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
  • AR represents a phenyl group or a condensed polycyclic aromatic group
  • X represents However, in some cases, when present, it represents an oxygen atom or a sulfur atom
  • Z represents a polar substituent or a nonpolar substituent for increasing the solvent solubility.
  • aromatic group represented by AR include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, perylene ring, naphthacene ring, and other such tetravalent functional groups (substituted). May be included).
  • the polar substituent represented by Z is a functional group that imparts solubility to a polar solvent to the polyimide, and preferable examples include a sulfonic acid group, a phosphoric acid group, or Forces including, but not limited to, sulfate groups or their trialkylamine salts.
  • the alkyl of the trialkylamine salt has 1 to 18 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • Polyimides of formula [I] having such polar substituents are soluble in polar solvents.
  • the polar solvent is not limited to an aprotic solvent, and may be a protonic polar solvent (eg, water, methanol, ethanol, propanol, butanol, etc.). Sulphoxide (DMSO), dimethylformamide (DMF), m-cresol, and acetonitrile are preferred.
  • a protonic polar solvent eg, water, methanol, ethanol, propanol, butanol, etc.
  • Sulphoxide (DMSO), dimethylformamide (DMF), m-cresol, and acetonitrile are preferred.
  • the aromatic polyimide represented by the formula [I] as an object of the present invention may have a nonpolar substituent as Z.
  • the nonpolar substituent include a force including a long-chain alkyl group having 8 to 18 carbon atoms (which may be branched), but is not limited thereto.
  • Polyimides of formula [I] with such polar substituents are soluble in polar solvents (eg, hexane, benzene, toluene, jetyl ether, black mouth form, etc.).
  • Et represents an ethyl group.
  • FIG. 1 shows a synthesis scheme of an aromatic polyimide composed of repeating units represented by the above formulas [Pl], [P2], [P3], and [P4].
  • m-taresol is used as a solvent, and the starting materials, acid dianhydride and diamine, are added in the presence of triethylamine and benzoic acid at 80 ° C for 4 hours and at 180 ° C for 2 hours.
  • the desired aromatic polyimide is obtained by heating for 0 hour and re-precipitation in acetone for recovery (see Non-Patent Document 7).
  • the molecular weight of the aromatic polyimide thus obtained and used in the present invention is generally about 15000 to 50000.
  • Non-Patent Document 7 J. Fang et al., Macromolecules, 35, 9022 (2002)
  • the aromatic polyimide of the formula [I] is soluble in various solvents at room temperature!
  • the carbon nanotubes can be dissolved as follows. First, the aromatic polyimide is dissolved in a polar or nonpolar solvent as described above. Next, carbon nanotubes are added to the solvent solution of the aromatic polyimide thus obtained. Furthermore, the obtained aromatic polyimide and carbon nanotube solvent solution is irradiated with ultrasonic waves. If necessary, the solution after ultrasonic irradiation is subjected to centrifugal separation, whereby the bundled carbon nanotubes are reliably removed.
  • Another feature of the soluble method according to the present invention using an aromatic polyimide having an aromatic moiety is to selectively dissolve nanotubes of several structures having a specific chiral vector. Is to get.
  • an aromatic polyimide having a repeating unit represented by the above-mentioned formula [P2] is used, a single layer having a chiral index of (8, 6) is different from the case of using a normal surfactant.
  • Carbon nanotubes can be particularly soluble (see Example 4 below). This is presumably because the mechanism of solubilization differs from that in the solubilization method (Non-Patent Document 5) in which a micelle aqueous solution is formed using a surfactant.
  • a solution (solvent solution) or gel composed of aromatic polyimide and carbon nanotubes can be obtained by performing the above-described soluble method.
  • a solution or gel can be directly used for a film forming process or an extrusion molding process.
  • the aromatic polyimide ZCNT solution obtained by the above-described soluble liquefaction operation and CNT is soluble can be obtained by using other solvents such as water, ethanol, and acetonitrile. It can be mixed with polar solvents and individual CNTs remain dissolved independently when diluted with those solvents (see Example 5 below). Therefore, it is possible to prepare a composite system in which, for example, a soluble component is added to these solvents, using this property.
  • carbon nanotubes include single-walled carbon nanotubes (abbreviated as SWCNT or SWNT) and multi-walled nanotubes (abbreviated as MWCNT or MWNT).
  • SWCNT single-walled carbon nanotubes
  • MWCNT multi-walled nanotubes
  • the principle of the present invention can be applied to multi-walled nanotubes, but is particularly suitable for single-walled carbon nanotubes.
  • Carbon nanotubes” or “CNTs” as used in connection with the present invention shall refer primarily to single-walled carbon nanotubes.
  • Carbon nanotubes Purified SWNT (HiPco) Purchased from Carbon Nanotechnologies Co. Ultraviolet Visible Near-infrared absorption spectrum measurement: Spectrophotometer JASCO, V-570.
  • Example 2 Using the aromatic polyimide synthesized in Example 1, a solubility test of carbon nanotubes was performed. Each aromatic polyimide was dissolved in DMSO to prepare a DMSO solution having a concentration of 1 mg / mL of each aromatic polyimide. Purified SWNT was added to this DMSO solution and subjected to ultrasonic treatment for 15 minutes. After visual observation and measurement of the absorption spectrum, the same operation was repeated by increasing the concentration of SWNT. The concentration of SWNT was in the range of 0.1 to about 3 mg / mL (to polyimide weight ratio 0.1 to 3).
  • Fig. 2 shows the visible and near-infrared absorption spectrum measured during the solubility test conducted using P2 polyimide.
  • Measurement of the near-infrared absorption spectrum is one of means for indicating the presence of carbon nanotubes in which a bundle structure is unwound and dissolved individually in a solution or dispersion system (Non-patent Document 8).
  • Non-patent Document 8 the solubilization of carbon nanotubes using the wholly aromatic polyimide according to the present invention is characterized by the individual dissolution of SWNTs over a wide concentration range of SWNTs.
  • the spectrum is observed in the near infrared region. That is, for the viscous solution (spectrum b in Fig. 2) and gel (spectrum c in Fig. 2), the waveform and peak position of the spectrum measured by the solution with the low concentration of SWNT (spectrum a in Fig.
  • a SWNT solution with a bundle structure can be obtained in water even in water, and this is, for example, the visible-near infrared absorption of P4 polyimide ZS WNT aqueous solution.
  • the spectrum (Fig. 11) is obvious.
  • Non-Patent Document 8 R. E. Smalley et al., Science 297, 593 (2002)
  • FIG. 3 shows an AFM image when P2 aromatic polyimide is used.
  • the SWNT has a diameter of 95% or more in the range of 0.7 to 2.0 nm, and it is shown that most SWNTs exist in the dissolved state. According to the near-infrared absorption spectrum of Example 2. It agrees with the result.
  • a near-infrared photoluminescence two-dimensional mapping was determined for the DMSO solution of SWNTZ aromatic polyimide obtained in Example 2.
  • Fig. 4 shows the results when P2 aromatic polyimide is used
  • Fig. 12 shows the results when P4 aromatic polyimide is used. Samples were prepared by subjecting the solution to centrifugation at 10000 g for 3 hours.
  • SWNT As shown in FIG. 4, the presence of (8, 6), (9, 5), (12, 1) (14, 0) and (14, 9) SWNTs was observed, (8, 6 ) SWNT is particularly strong. Also, from Fig. 11, P4's polyimide has (7, 6), (9, 4), (8, 6), (8, 7), (9, 5) and (10, 5) chirality. It is understood that SWNTs with sol are dissolved in isolation. These are different from SWNT (Non-Patent Document 5), which is present in micellar aqueous solution when the surfactant SDS (sodium dodecyl sulfate) is used, and the carbon nanotubes according to the present invention proceed by a unique mechanism. It is guessed.
  • SDS sodium dodecyl sulfate
  • Fig. 5 shows the results of an absorption spectrum measurement when water is mixed in a DMSO solution of SWNTZ polyimide using P1 aromatic polyimide.
  • (a) is the stock solution before mixing
  • the absorption spectrum No substantial change was observed, and it was confirmed that even when the soluble solution was diluted with water, SWNTs were dissolved individually. By visual observation, the SWNTs remained soluble evenly. Similar results were obtained when diluted with acetonitrile or ethanol.
  • the aromatic polyimide synthesized in Example 1 was protonated to convert the triethylamine salt moiety into a sulfonic acid group. Protony was performed by immersing P1 and P2 membranes washed in hot methanol in 1N hydrochloric acid for 8-12 hours, washing with ultrapure water, and drying.
  • the polyimide obtained by protonating P1 and P2 still maintained solubility in DMSO. Therefore, a solubilization test of SWNT was performed using protonated P1 and P2 DMSO solutions according to the same method as in Example 2, and a visible and near infrared absorption spectrum was measured. Even when using a protonated polyimide, SWNTs can be solubilized in the same manner as with P1 and P2, and substantially the same absorption spectrum can be obtained, and triethylamine salts of P1 and P2 can be obtained. It was understood that the structure did not affect the solubility.

Abstract

Disclosed is a technique which can unbind the bundle structure of a carbon nanotube to solubilize the carbon nanotube completely, and is therefore helpful for the effective utilization of a carbon nanotube. The technique is characterized by using an aromatic polyimide having a repeat unit represented by the general formula [I]: [I] wherein AR represents a phenyl group or a fused polycyclic aromatic group; X may be present or absent and, when present, X represents an oxygen or sulfur atom; and Z represents a polar or non-polar substituent for increasing a solvent solubility. The polyimide is dissolved in a polar or non-polar solvent, a carbon nanotube is added to the polyimide solution in the solvent, and then the solution of the polyimide and the carbon nanotube in the solvent is irradiated with an ultrasonic wave, whereby the carbon nanotube can be solubilized.

Description

芳香族ポリイミドを用いるカーボンナノチューブの可溶ィ匕  Solubility of carbon nanotubes using aromatic polyimide
技術分野  Technical field
[0001] 本発明は、ナノテクノロジーの技術分野に属し、特に、カーボンナノチューブを可溶 化する新規な技術に関する。  The present invention belongs to the technical field of nanotechnology, and particularly relates to a novel technique for solubilizing carbon nanotubes.
背景技術  Background art
[0002] 近年、飯島澄男らによりフラーレン製造時の堆積物中に発見されたカーボンナノチ ユーブ (非特許文献 1)は、その特異な構造に基づく高い導電性、引張り強度、耐熱 性などを有することから各種分野への用途が期待されている。  [0002] In recent years, carbon nanotubes (Non-patent Document 1) discovered in sediments during fullerene production by Sumio Iijima et al. Have high conductivity, tensile strength, heat resistance, etc. based on their unique structures. Is expected to be used in various fields.
[0003] カーボンナノチューブ(以下、 CNTと略称することがある)の研究開発における大き な問題は、 CNTは多数のチューブが束になったバンドル構造を呈し溶媒にまったく 不溶であるということである。このため、 CNTに関するこれまでの検討は、主として物 理学や電子工学等の観点から行われ、化学や薬医学など力 のアプローチは遅れ て!、る。 CNTのバンドルをほどき溶媒に溶かすことができれば CNTの応用は飛躍的 に発展するものと考えられる。  [0003] A major problem in the research and development of carbon nanotubes (hereinafter abbreviated as CNT) is that CNT has a bundle structure in which many tubes are bundled and is completely insoluble in a solvent. For this reason, the previous studies on CNT have been conducted mainly from the viewpoints of physics and electronics, and approaches to power such as chemistry and pharmaceutical medicine have been delayed! If CNT bundles can be unwound and dissolved in a solvent, the application of CNTs is expected to develop dramatically.
[0004] カーボンナノチューブを可溶ィ匕する手法としては、当初、 CNTを短く切断して両端 に化学修飾する手法が提案されたが(例えば、非特許文献 2)、この手法は CNT本 来の性質を変性してしまう。最近、本発明者らは、特定の芳香族化合物や DNAなど 力 SCNTを可溶ィ匕し得ることを見出している(例えば、非特許文献 3、非特許文献 4、 特許文献 1)。この他に、多糖(j8— 1, 3—グルカン)を用いてカーボンナノチューブ を可溶化する方法 (特許文献 2)や、界面活性剤を用いて水性ミセルを形成させて可 溶化する方法 (非特許文献 5)なども提案されて!ヽる。  [0004] As a method for dissolving carbon nanotubes, a method was proposed in which CNTs were cut short and then chemically modified at both ends (for example, Non-Patent Document 2). It will denature the properties. Recently, the present inventors have found that it is possible to dissolve SCNT such as a specific aromatic compound or DNA (for example, Non-Patent Document 3, Non-Patent Document 4, Patent Document 1). In addition, a method of solubilizing carbon nanotubes using polysaccharides (j8-1, 3, -glucan) (Patent Document 2) and a method of forming aqueous micelles using a surfactant to solubilize (Non Patents) Document 5) is also proposed!
[0005] カーボンナノチューブをポリマーとともに可溶化することができれば、例えば、 CNT の特性に加えてそのポリマーに由来する特性も兼持する優れた機能の複合材料が 得られるものと期待される。  [0005] If the carbon nanotubes can be solubilized together with the polymer, for example, it is expected that a composite material having an excellent function that has characteristics derived from the polymer in addition to the characteristics of CNT will be obtained.
[0006] ポリイミドを利用してカーボンナノチューブを可溶ィ匕して複合材料を得ようとする試 みについては幾つかの先例も見出される。しかし、 CNTのバンドル構造をほどき個 々のチューブが独立して溶解した状態を作り出すことは困難であり、実際は CNTの バンドル (集合体)が透明なコロイド分散状態を呈して 、るにすぎな!、場合が多!、。 例えば、 Wiseらは、二トリル基を有する全芳香族ポリイミドと CNT (単層 CNT)とから 成る複合体について検討しているが(非特許文献 6)、この文献は CNTが当該ポリィ ミド中で安定に分散されると報告して 、るのにとどまって 、る。 [0006] Some precedents have also been found for attempts to use carbon to dissolve carbon nanotubes to obtain composite materials. However, unwinding the CNT bundle structure It is difficult to create a state where each tube is dissolved independently. Actually, the bundle (aggregate) of CNTs is a transparent colloidal dispersion state. For example, Wise et al. Have studied a composite composed of wholly aromatic polyimide having a nitrile group and CNT (single-walled CNT) (Non-patent Document 6). This document describes CNT in the polyimide. It is reported that it is stably dispersed, and it stays there.
非特許文献 1 : S. Iijima, Nature, 354, 56(1991)  Non-Patent Document 1: S. Iijima, Nature, 354, 56 (1991)
非特許文献 2 : J. Chen他、 Science, 282, 95(1998)  Non-Patent Document 2: J. Chen et al., Science, 282, 95 (1998)
非特許文献 3 : N. Nakashima他、 Trans. Mater. Research Soc. Jpn, 29 525-528(2004) 非特許文献 4 : N. Nakashima他、 Chem. Lett. 32,456(2003)  Non-Patent Document 3: N. Nakashima et al., Trans. Mater. Research Soc. Jpn, 29 525-528 (2004) Non-Patent Document 4: N. Nakashima et al., Chem. Lett. 32,456 (2003)
非特許文献 5 : R. E. Smalley他、 Science 298, 2361(2002)  Non-Patent Document 5: R. E. Smalley et al., Science 298, 2361 (2002)
非特許文献 6 : K. E. Wse他、 Chem. Phys. Lett. 391, 207(2004)  Non-Patent Document 6: K. E. Wse et al., Chem. Phys. Lett. 391, 207 (2004)
特許文献 1:特開 2005 - 28560号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-28560
特許文献 2 :特開 2005— 104762号公報  Patent Document 2: JP 2005-104762
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、カーボンナノチューブのバンドル構造をほどきカーボンナノチュ ーブを確実に可溶ィ匕して、カーボンナノチューブの有効利用に資することができるよ うな新し 、技術を提供することにある。 [0007] An object of the present invention is to provide a new technology that can contribute to the effective use of carbon nanotubes by unwinding the bundle structure of carbon nanotubes to reliably dissolve the carbon nanotubes. There is to do.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、研究を重ねた結果、特定の構造を有するポリイミドが各種の溶媒に溶 解することに注目し、このポリイミドを利用することによって如上の目的が達成され得 ることを見出し本発明を導き出した。 [0008] As a result of repeated research, the present inventor has paid attention to the fact that a polyimide having a specific structure is dissolved in various solvents, and that the above object can be achieved by using this polyimide. The present invention was derived.
[0009] 力べして、本発明は、下記の一般式 [I]で表わされる繰り返し単位を有する芳香族ポ リイミドから成るカーボンナノチューブ可溶化剤を提供するものである。 [0009] In essence, the present invention provides a carbon nanotube solubilizing agent comprising an aromatic polyimide having a repeating unit represented by the following general formula [I].
[0010] [化 1] [0010] [Chemical 1]
Figure imgf000005_0001
式 [I]中、 ARはフエ-ル基または縮合多環芳香族基を表し、 Xは存在しない場合も あり存在する場合は酸素原子または硫黄原子を表し、 Zは溶媒可溶性を高めるため の極性置換基または非極性置換基を表す。
Figure imgf000005_0001
In the formula [I], AR represents a phenyl group or a condensed polycyclic aromatic group, X may or may not exist, represents an oxygen atom or a sulfur atom, and Z represents a polarity for enhancing solvent solubility. Represents a substituent or a nonpolar substituent.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明で用いられる芳香族ポリイミドの例を合成するための反応スキームを示 す。 FIG. 1 shows a reaction scheme for synthesizing an example of an aromatic polyimide used in the present invention.
[図 2]本発明に従うカーボンナノチューブの可溶ィ匕試験において測定した SWNTZ 芳香族ポリイミドの DMSO溶液の可視 近赤外吸収スペクトルを例示する。  [Fig. 2] Illustrates the visible near-infrared absorption spectrum of DMNT solution of SWNTZ aromatic polyimide measured in the solubility test of carbon nanotubes according to the present invention.
[図 3]本発明によって得られる SWNTZポリイミドの AFM像を例示する。  FIG. 3 illustrates an AFM image of SWNTZ polyimide obtained by the present invention.
[図 4]本発明に従う SWNTZ芳香族ポリイミドの DMSO溶液にっ 、て測定した近赤 外フォトルミネッセンス 2次元マッピングの結果を例示する。  FIG. 4 illustrates the results of two-dimensional mapping of near-infrared photoluminescence measured with a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
[図 5]本発明に従う SWNTZ芳香族ポリイミドの DMSO溶液に他の溶媒を混合して 測定した吸収スペクトルを例示する。  FIG. 5 illustrates an absorption spectrum measured by mixing another solvent in a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
[図 6a]本発明で用いられるポリイミドの 1例の FT— IRの測定結果を示す。  FIG. 6a shows the FT-IR measurement result of one example of polyimide used in the present invention.
[図 6b]本発明で用いられるポリイミドの 1例の1 H— NMRの測定結果を示す。 FIG. 6b shows the measurement result of 1 H-NMR of one example of polyimide used in the present invention.
[図 7a]本発明で用いられるポリイミドの別の例の FT— IRの測定結果を示す [FIG. 7a] FT-IR measurement results of another example of polyimide used in the present invention are shown.
[図 7b]本発明で用いられるポリイミドの別の例の1 H— NMRの測定結果を示す。 FIG. 7 b shows the measurement result of 1 H-NMR of another example of polyimide used in the present invention.
[図 8]本発明で用いられるポリイミドの更に別の例の FT— IRの測定結果を示す。 FIG. 8 shows the FT-IR measurement results of yet another example of the polyimide used in the present invention.
[図 9a]本発明で用いられるポリイミドの他の例の FT— IRの測定結果を示す。 FIG. 9a shows the FT-IR measurement results of another example of polyimide used in the present invention.
[図 9b]本発明で用いられるポリイミドの他の例の1 H— NMRの測定結果を示す。 FIG. 9b shows the measurement result of 1 H-NMR of another example of polyimide used in the present invention.
[図 10]本発明に従うカーボンナノチューブ可溶ィ匕試験において測定した SWNTZ 芳香族ポリイミドの DMSO溶液の可視 近赤外吸収スペクトルを例示する。 [図 11]本発明に従うカーボンナノチューブ可溶ィ匕試験において測定した SWNTZ 芳香族ポリイミドの水溶液の可視 近赤外吸収スペクトルを例示する。 FIG. 10 illustrates a visible near infrared absorption spectrum of a DMSO solution of SWNTZ aromatic polyimide measured in a carbon nanotube solubility test according to the present invention. FIG. 11 illustrates a visible near infrared absorption spectrum of an aqueous solution of SWNTZ aromatic polyimide measured in a carbon nanotube solubility test according to the present invention.
[図 12]本発明に従う SWNTZ芳香族ポリイミドの DMSO溶液について求めた近赤 外フォトルミネッセンス 2次元マッピングの結果を例示する。  FIG. 12 illustrates the results of two-dimensional mapping of near-infrared photoluminescence obtained for a DMSO solution of SWNTZ aromatic polyimide according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 既述のように、本発明のカーボンナノチューブ可溶化剤を構成するポリイミドの繰り 返し単位を表わす式 [I]中、 ARはフエニル基または縮合多環芳香族基を表し、 Xは 存在しな!ヽ場合もあり存在する場合は酸素原子または硫黄原子を表し、 Zは溶媒可 溶性を高めるための極性置換基または非極性置換基を表す。このうち、 ARで表され る芳香族基の好ましい例としては、ベンゼン環、ナフタレン環、アントラセン環、フエナ ントレン環、ピレン環、ペリレン環、ナフタセン環など力 成る 4価の官能基 (置換され ていてもよい)が挙げられる。  [0012] As described above, in the formula [I] representing the repeating unit of the polyimide constituting the carbon nanotube solubilizer of the present invention, AR represents a phenyl group or a condensed polycyclic aromatic group, and X represents However, in some cases, when present, it represents an oxygen atom or a sulfur atom, and Z represents a polar substituent or a nonpolar substituent for increasing the solvent solubility. Among these, preferred examples of the aromatic group represented by AR include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, perylene ring, naphthacene ring, and other such tetravalent functional groups (substituted). May be included).
[0013] また、式 [I]中、 Zで表される極性置換基とは、極性溶媒に対する可溶性を当該ポリ イミドに付与する官能基であり、好ましい例として、スルホン酸基、リン酸基もしくは硫 酸基、またはそれらのトリアルキルアミン塩が挙げられる力 これらに限定されるもの ではない。ここで、トリアルキルアミン塩のアルキルは炭素数 1から 18のものであり、特 に炭素数 1から 12のものが好ましい。このような極性置換基を有する式 [I]のポリイミド は、極性溶媒に可溶性である。極性溶媒としては、非プロトン性溶媒に限らず、プロト ン性極性溶媒(例えば、水、メタノール、エタノール、プロパノール、ブタノールなど) でもよいが、一般的には、非プロトン性極性溶媒 (例えば、ジメチルスルホキシド (DM SO)、ジメチルホルムアミド(DMF)、 m—クレゾール、ァセトニトリル)が好ましい。  [0013] In the formula [I], the polar substituent represented by Z is a functional group that imparts solubility to a polar solvent to the polyimide, and preferable examples include a sulfonic acid group, a phosphoric acid group, or Forces including, but not limited to, sulfate groups or their trialkylamine salts. Here, the alkyl of the trialkylamine salt has 1 to 18 carbon atoms, and particularly preferably 1 to 12 carbon atoms. Polyimides of formula [I] having such polar substituents are soluble in polar solvents. The polar solvent is not limited to an aprotic solvent, and may be a protonic polar solvent (eg, water, methanol, ethanol, propanol, butanol, etc.). Sulphoxide (DMSO), dimethylformamide (DMF), m-cresol, and acetonitrile are preferred.
[0014] 本発明の対象とする式 [I]で表わされる芳香族ポリイミドは、 Zとして非極性置換基を 有するものであってもよい。非極性置換基として好ましい例は、炭素数 8から 18の長 鎖アルキル基 (分岐してもよい)が挙げられる力 これらに限定されるものではない。こ のような極性置換基を式 [I]のポリイミドは、極性溶媒 (例えば、へキサン、ベンゼン、ト ルェン、ジェチルエーテル、クロ口ホルムなど)に溶解性である。  [0014] The aromatic polyimide represented by the formula [I] as an object of the present invention may have a nonpolar substituent as Z. Preferable examples of the nonpolar substituent include a force including a long-chain alkyl group having 8 to 18 carbon atoms (which may be branched), but is not limited thereto. Polyimides of formula [I] with such polar substituents are soluble in polar solvents (eg, hexane, benzene, toluene, jetyl ether, black mouth form, etc.).
力べして、本発明のカーボンナノチューブ可溶化剤を構成する好ましいポリイミドとし て、下記の式 [Pl]、 [P2]、 [P3]、または [P4]で表わされる繰り返し単位を有するもの [ d]In addition, as a preferable polyimide constituting the carbon nanotube solubilizer of the present invention, a polyimide having a repeating unit represented by the following formula [Pl], [P2], [P3], or [P4] [d]
Figure imgf000007_0001
Figure imgf000007_0001
[8100]
Figure imgf000007_0002
[8100]
Figure imgf000007_0002
剛 [ ΐΟΟ]
Figure imgf000007_0003
Tsuyoshi [ΐΟΟ]
Figure imgf000007_0003
剛 [9Ϊ00]  Tsuyoshi [9Ϊ00]
Figure imgf000007_0004
Figure imgf000007_0004
[STOO] g [STOO] g
e/900Zdf/X3d なお、式 [Pl]、 [P2]、 [P3]、および [P4]において、 Etはェチル基を表す。 e / 900Zdf / X3d In the formulas [Pl], [P2], [P3], and [P4], Et represents an ethyl group.
[0019] 式 [I]で表わされる繰り返し単位力 成る芳香族ポリイミドは、各種の反応を工夫する ことによって合成することができる。図 1には、上記式 [Pl]、 [P2]、 [P3]、および [P4] で表される繰り返し単位カゝら成る芳香族ポリイミドの合成スキームを示している。同図 に示されるように、一般に、 m—タレゾールを溶媒とし、原料である、酸二無水物とジ アミンを、トリェチルァミンおよび安息香酸存在下において、 80°Cで 4時間、 180°Cで 2 0時間加熱し、アセトン中で再沈殿を行って回収することにより、所望の芳香族ポリイミ ドが得られる (非特許文献 7参照)。なお、このようにして得られ本発明において用い られる芳香族ポリイミドの分子量は、一般に、約 15000〜50000である。 [0019] The aromatic polyimide having a repeating unit force represented by the formula [I] can be synthesized by devising various reactions. FIG. 1 shows a synthesis scheme of an aromatic polyimide composed of repeating units represented by the above formulas [Pl], [P2], [P3], and [P4]. As shown in the figure, in general, m-taresol is used as a solvent, and the starting materials, acid dianhydride and diamine, are added in the presence of triethylamine and benzoic acid at 80 ° C for 4 hours and at 180 ° C for 2 hours. The desired aromatic polyimide is obtained by heating for 0 hour and re-precipitation in acetone for recovery (see Non-Patent Document 7). The molecular weight of the aromatic polyimide thus obtained and used in the present invention is generally about 15000 to 50000.
非特許文献 7 : J. Fang他、 Macromolecules, 35, 9022(2002)  Non-Patent Document 7: J. Fang et al., Macromolecules, 35, 9022 (2002)
[0020] 式 [I]の芳香族ポリイミドは、各種の溶媒に室温にお!、て溶解性を有し、この特性を 利用して、次のようにしてカーボンナノチューブを可溶ィ匕することができる:先ず、芳 香族ポリイミドを上述したような極性または非極性溶媒に溶解させる。次に、このよう にして得られた芳香族ポリイミドの溶媒溶液にカーボンナノチューブを添加する。更 に、得られた芳香族ポリイミドとカーボンナノチューブの溶媒溶液に超音波照射を行 う。必要に応じて、超音波照射後の溶液を遠心分離に供し、これによつてバンドルイ匕 しているカーボンナノチューブが確実に除去される。なお、式 [I]で表わされるような繰 り返し単位を有する芳香族ポリイミドであっても、 Zに相当する部位が水素原子である ようなポリイミドは、 V、ずれの有機溶媒にお!ヽても溶解しな!、。 [0020] The aromatic polyimide of the formula [I] is soluble in various solvents at room temperature! By using this property, the carbon nanotubes can be dissolved as follows. First, the aromatic polyimide is dissolved in a polar or nonpolar solvent as described above. Next, carbon nanotubes are added to the solvent solution of the aromatic polyimide thus obtained. Furthermore, the obtained aromatic polyimide and carbon nanotube solvent solution is irradiated with ultrasonic waves. If necessary, the solution after ultrasonic irradiation is subjected to centrifugal separation, whereby the bundled carbon nanotubes are reliably removed. Note that even if the aromatic polyimide has a repeating unit represented by the formula [I], a polyimide having a hydrogen atom at the site corresponding to Z is suitable for V, a misaligned organic solvent! But it wo n’t dissolve!
[0021] 本発明に従 、芳香族ポリイミドを用いて如上の CNT可溶ィ匕を行うと、 CNTの広 ヽ 濃度範囲にわたって、個々のカーボンナノチューブが独立して (孤立して)溶解して V、ることが可視 -近赤外吸収スペクトルの測定などによって確認されて!、る。すなわ ち、 CNTの濃度が増大するにしたがい溶液は次第に粘度を増し最終的にはゲルを 形成するが、低濃度溶液から粘稠溶液、更にはゲルを形成するいずれの領域にお いても、バンドル構造がほどけた状態を維持していることが認められる(後述の実施 例 2, 3参照)。 [0021] According to the present invention, when the above CNT solubility is performed using aromatic polyimide, individual carbon nanotubes dissolve independently (isolated) over a wide concentration range of CNT. It has been confirmed by measurements of near-infrared absorption spectra! In other words, as the concentration of CNT increases, the solution gradually increases in viscosity and eventually forms a gel, but in any region where a low-concentration solution forms a viscous solution or even a gel. It can be seen that the bundle structure is maintained in a loose state (see Examples 2 and 3 below).
[0022] 芳香族部位を有する芳香族ポリイミドを用いる本発明の可溶ィ匕方法の別の特徴は 、特定のカイラルベクトルを持つ幾つかの構造のナノチューブを選択的に可溶ィ匕し 得ることである。例えば、既述の式 [P2]で表わされる繰り返し単位を有する芳香族ポ リイミドを用いた場合、通常の界面活性剤を用いた場合と異なり、 (8, 6)のカイラル指 標をもつ単層カーボンナノチューブを特に可溶ィヒすることができる(後述の実施例 4 参照)。これは、界面活性剤を用いミセル水溶液を形成させる可溶化方式 (非特許文 献 5)における場合とは可溶ィ匕のメカニズムが異なるためと推測される。 [0022] Another feature of the soluble method according to the present invention using an aromatic polyimide having an aromatic moiety is to selectively dissolve nanotubes of several structures having a specific chiral vector. Is to get. For example, when an aromatic polyimide having a repeating unit represented by the above-mentioned formula [P2] is used, a single layer having a chiral index of (8, 6) is different from the case of using a normal surfactant. Carbon nanotubes can be particularly soluble (see Example 4 below). This is presumably because the mechanism of solubilization differs from that in the solubilization method (Non-Patent Document 5) in which a micelle aqueous solution is formed using a surfactant.
[0023] 本発明に従えば、以上のような可溶ィ匕方法を実施することにより、芳香族ポリイミドと カーボンナノチューブとから構成される溶液 (溶媒溶液)またはゲルが得られる。この ような溶液やゲルは、そのまま、製膜工程や押出し成形工程などに供することができ る。 [0023] According to the present invention, a solution (solvent solution) or gel composed of aromatic polyimide and carbon nanotubes can be obtained by performing the above-described soluble method. Such a solution or gel can be directly used for a film forming process or an extrusion molding process.
[0024] 更に、如上の可溶ィ匕操作によりー且、 CNTが可溶ィ匕されて得られた芳香族ポリイミ ド ZCNT溶液は、他の溶媒、特に、水、エタノール、ァセトニトリルのような極性溶媒 と混合されることができ、それらの溶媒で稀釈されても個々の CNTは独立して溶解さ れた状態を保持したままである (後述の実施例 5参照)。したがって、この特性を利用 して、例えば、それらの溶媒に溶解性の成分を加えた複合系を調製することも可能で ある。  [0024] Further, the aromatic polyimide ZCNT solution obtained by the above-described soluble liquefaction operation and CNT is soluble can be obtained by using other solvents such as water, ethanol, and acetonitrile. It can be mixed with polar solvents and individual CNTs remain dissolved independently when diluted with those solvents (see Example 5 below). Therefore, it is possible to prepare a composite system in which, for example, a soluble component is added to these solvents, using this property.
[0025] なお、よく知られているように、カーボンナノチューブには単層カーボンナノチュー ブ(SWCNTまたは SWNTと略記される)と多層ナノチューブ(MWCNTまたは MW NTと略記される)とがある。本発明の原理は、多層ナノチューブにも適用され得るが 、特に単層カーボンナノチューブに好適に用いられる。本発明に関連して用いている 「カーボンナノチューブ」または「CNT」とは、主として単層カーボンナノチューブにつ Vヽて言及して 、るものとする。  [0025] As is well known, carbon nanotubes include single-walled carbon nanotubes (abbreviated as SWCNT or SWNT) and multi-walled nanotubes (abbreviated as MWCNT or MWNT). The principle of the present invention can be applied to multi-walled nanotubes, but is particularly suitable for single-walled carbon nanotubes. “Carbon nanotubes” or “CNTs” as used in connection with the present invention shall refer primarily to single-walled carbon nanotubes.
[0026] 以下に本発明の特徴を更に具体的に示すために実施例を記す力 本発明はこれ らの実施例によって制限されるものではない。  [0026] In the following, the ability to describe examples in order to more specifically illustrate the characteristics of the present invention. The present invention is not limited by these examples.
なお、実施例において用いた材料、測定装置は下記のとおりである。  The materials and measuring devices used in the examples are as follows.
カーボンナノチューブ:精製 SWNT(HiPco) Carbon Nanotechnologies Co.から購入 紫外 可視 近赤外吸収スペクトルの測定:分光光度計 JASCO, V-570。  Carbon nanotubes: Purified SWNT (HiPco) Purchased from Carbon Nanotechnologies Co. Ultraviolet Visible Near-infrared absorption spectrum measurement: Spectrophotometer JASCO, V-570.
近赤外蛍光スペクトルの測定:蛍光分光計 Horiba Spex Fluorolog:NIR0 Measurement of near infrared fluorescence spectrum: Horiba Spex Fluorolog: NIR 0
分子間力顕微鏡: Nanoscope Ilia  Intermolecular force microscope: Nanoscope Ilia
(Veeco Instruments社製)。  (Veeco Instruments).
実施例 1  Example 1
[0027] 全 ^ポリイミドの^^ [0027] All ^ Polyimide ^^
図 1に示す (A)、 (B)、 (C)および (D)の反応スキームに従って、既述の式 [Pl]、 [P 2]、 [P3]、および [P4]の繰り返し単位を有する芳香族ポリイミド〔以下、 Pl、 P2、 P3、 P4の(芳香族)ポリイミド、または、単に Pl、 P2、 P3、 P4のように表記する〕を合成し た。生成物の同定は1 H— NMRおよび FT— IR測定により行った。 According to the reaction scheme of (A), (B), (C) and (D) shown in FIG. 1, it has repeating units of the aforementioned formulas [Pl], [P 2], [P3], and [P4] Aromatic polyimides (hereinafter referred to as Pl, P2, P3, P4 (aromatic) polyimides or simply expressed as Pl, P2, P3, P4) were synthesized. The product was identified by 1 H-NMR and FT-IR measurements.
同定データとして、図 6aに P1の FT— IR、図 6bに PIの1 H— NMR、図 7aに P2の F T— IR、図 7bに Ρ2の1 Η— NMR、図 8に P3の FT— IR、図 9aに P4の FT— IR、図 9 bに P4の1 H - NMRの測定結果をそれぞれ示す。 As identification data, Figure 6a to the P1 FT- IR, 1 H- NMR of the PI in 6b, the Figure 7a of P2 FT- IR, 1 Η- NMR of Ρ2 Figure 7b, FT-IR of Figure 8 P3 Fig. 9a shows the FT-IR of P4, and Fig. 9b shows the 1 H-NMR measurement result of P4.
実施例 2  Example 2
[0028] 可溶化試験  [0028] Solubilization test
実施例 1で合成した芳香族ポリイミドを用いてカーボンナノチューブの可溶ィ匕試験 を行った。各芳香族ポリイミドを DMSOに溶解させて、それぞれの芳香族ポリイミドの 濃度が lmg/mLの DMSO溶液を調製した。この DMSO溶液に精製 SWNTを加えて 15分間超音波処理して、 目視観察するとともに吸収スペクトルの測定を行った後、 S WNTの濃度を増加させて同様の操作を行うことを繰り返した。 SWNTの濃度は 0.1 〜約 3mg/mL (対ポリイミド重量比 0.1〜3)の範囲とした。  Using the aromatic polyimide synthesized in Example 1, a solubility test of carbon nanotubes was performed. Each aromatic polyimide was dissolved in DMSO to prepare a DMSO solution having a concentration of 1 mg / mL of each aromatic polyimide. Purified SWNT was added to this DMSO solution and subjected to ultrasonic treatment for 15 minutes. After visual observation and measurement of the absorption spectrum, the same operation was repeated by increasing the concentration of SWNT. The concentration of SWNT was in the range of 0.1 to about 3 mg / mL (to polyimide weight ratio 0.1 to 3).
[0029] いずれの場合においても、 SWNTの濃度が増大するのにしたがって溶液は次第に 粘度を増し、ある濃度を超えるとゲルを形成することが認められた。すなわち、 P1の ポリイミドでは SWCN濃度が対ポリイミド重量比が 0.98近傍力 溶液が粘稠になり始 め、同比が約 1.7を超えるとゲル形成が認められた。また、 P2のポリイミドを用いた場 合では、対ポリイミド重量比が約 1.4から溶液に粘度が出始め、約 1.8を超えるとゲル が形成した。同様に、 P3のポリイミドを使用した場合は、対ポリイミド重量比が 1.7付近 力も粘度が出始め、約 2.5を超えるとゲルの形成が認められ、また、 P4のポリイミドを 使用した場合には、対ポリイミド重量比が約 1から溶液に粘度が出始め、約 2を超える とゲルが形成した。 [0029] In any case, it was observed that the solution gradually increased in viscosity as the concentration of SWNT increased and a gel was formed above a certain concentration. In other words, in the P1 polyimide, the SWCN concentration to the polyimide weight ratio of 0.98 force solution started to become viscous, and gel formation was observed when the ratio exceeded about 1.7. In addition, when P2 polyimide was used, the solution started to show viscosity when the weight ratio to polyimide was about 1.4, and a gel was formed when it exceeded about 1.8. Similarly, when P3 polyimide is used, the viscosity starts at about 1.7% of the weight ratio to the polyimide, and when about 2.5 is exceeded, gel formation is observed, and when P4 polyimide is used, Viscosity starts to appear at a polyimide weight ratio of about 1 and exceeds about 2 And a gel formed.
[0030] 如上の可溶ィ匕試験中に行った可視 近赤外吸収スペクトルの測定から、いずれの 場合にお 、ても、バンドル構造がほどけた状態が保持されて ヽることが確認された。 代表例として、 P2のポリイミドを用いて行った可溶ィ匕試験中に測定した可視 近赤 外吸収スぺクトルを図 2に示す。  [0030] From the measurement of visible and near-infrared absorption spectra performed during the above-mentioned solubility test, it was confirmed that the bundle structure was kept unraveled in any case. . As a representative example, Fig. 2 shows the visible and near-infrared absorption spectrum measured during the solubility test conducted using P2 polyimide.
[0031] 近赤外吸収スペクトルの測定は、溶液または分散系においてバンドル構造がほど けて個々に溶解しているカーボンナノチューブが存在することを示す手段の一つで ある (非特許文献 8)。図 2に示されるように、本発明に従う全芳香族ポリイミドを用い てカーボンナノチューブの可溶化を行うと、 SWNTの広い濃度範囲にわたって、 SW NTが個々に溶解していることに因る特徴的なスペクトルが近赤外領域において認め られる。すなわち、粘稠な溶液(図 2のスペクトル b)およびゲル(図 2のスペクトル c)に っ 、て測定されたスペクトルの波形およびピーク位置は、 SWNTの濃度が低 、溶液 (図 2のスペクトル a)、および当該 DMSO溶液を遠心分離(10000g)に供して得られ たサンプル(図 2のスペクトル d)について測定されたものと実質的に同じである。この ことは、 SWNTの粘稠溶液およびゲルは、個々に溶解された SWNT力 形成された ものであり、粘稠溶液やゲルにぉ 、てもバンドル構造がほどけた状態が保持されて ヽ ることを裏付けている。同様のことは、例えば、 P4のポリイミドの DMSO溶液に SWN Tをカ卩えて得られた溶液の可視 近赤外吸収スペクトル(図 10参照)についてもあて はまる。  [0031] Measurement of the near-infrared absorption spectrum is one of means for indicating the presence of carbon nanotubes in which a bundle structure is unwound and dissolved individually in a solution or dispersion system (Non-patent Document 8). As shown in Fig. 2, the solubilization of carbon nanotubes using the wholly aromatic polyimide according to the present invention is characterized by the individual dissolution of SWNTs over a wide concentration range of SWNTs. The spectrum is observed in the near infrared region. That is, for the viscous solution (spectrum b in Fig. 2) and gel (spectrum c in Fig. 2), the waveform and peak position of the spectrum measured by the solution with the low concentration of SWNT (spectrum a in Fig. 2) ) And the sample obtained by subjecting the DMSO solution to centrifugation (10000 g) (spectrum d in Fig. 2). This means that SWNT viscous solutions and gels are formed by individually dissolved SWNT forces, and the bundle structure remains undissolved in the viscous solutions and gels. Is backed up. The same applies to, for example, the visible and near infrared absorption spectrum of a solution obtained by adding SWNT to a DMSO solution of P4 polyimide (see Fig. 10).
さらに、本発明の芳香族ポリイミドを用いれば、水中においてもバンドル構造のほど けた SWNTの溶液がゲルを得ることができ、このことは、例えば、 P4のポリイミド ZS WNT水溶液の可視—近赤外吸収スペクトル(図 11)カゝら明らかである。  Furthermore, if the aromatic polyimide of the present invention is used, a SWNT solution with a bundle structure can be obtained in water even in water, and this is, for example, the visible-near infrared absorption of P4 polyimide ZS WNT aqueous solution. The spectrum (Fig. 11) is obvious.
非特許文献 8 : R. E. Smalley他、 Science 297, 593(2002)  Non-Patent Document 8: R. E. Smalley et al., Science 297, 593 (2002)
実施例 3  Example 3
[0032] AFM観察 [0032] AFM observation
実施例 2で得られた SWNTZ芳香族ポリイミド複合体の DMSO溶液の AFM (原子 間力顕微鏡)観察を行った。サンプルの調製は、当該溶液中にマイ力基質を浸潰し た後、洗浄、次いで真空乾燥することにより行った。 図 3に代表例として、 P2の芳香族ポリイミドを用いた場合の AFM像を示す。 SWN Tの 95%以上の直径が 0.7〜2.0nmの範囲にあり、大部分の SWNTが個々に溶解した 状態で存在していることが示されており、実施例 2の近赤外吸収スペクトルによる結果 と一致している。 AFM (atomic force microscope) observation of the DMSO solution of the SWNTZ aromatic polyimide composite obtained in Example 2 was performed. The sample was prepared by immersing the My strength substrate in the solution, washing, and then vacuum drying. As a representative example, Fig. 3 shows an AFM image when P2 aromatic polyimide is used. The SWNT has a diameter of 95% or more in the range of 0.7 to 2.0 nm, and it is shown that most SWNTs exist in the dissolved state. According to the near-infrared absorption spectrum of Example 2. It agrees with the result.
実施例 4  Example 4
[0033] 沂赤外フォトルミネッセンス 2次 マッピング  [0033] 沂 Infrared photoluminescence secondary mapping
溶液中でバンドル構造がほどけて個々の SWNTが溶解していることは近赤外領域 で蛍光を発することによつても確認でき、そして、発光スペクトルの波長に対して励起 スペクトルの波長をマッピングすることにより SWNTのカイラルベクトルを決定できるこ とが知られて!/、る (非特許文献 8)。  The fact that the bundle structure is unwound in the solution and individual SWNTs are dissolved can also be confirmed by emitting fluorescence in the near-infrared region, and mapping the wavelength of the excitation spectrum to the wavelength of the emission spectrum It is known that the SWNT chiral vector can be determined!
[0034] そこで、実施例 2で得られた SWNTZ芳香族ポリイミドの DMSO溶液について近 赤外フォトルミネッセンス 2次元マッピングを求めた。例として、図 4に P2の芳香族ポリ イミドを用いた場合、また、図 12に P4の芳香族ポリイミドを用いた場合の結果を示す 。サンプルは当該溶液を 3時間、 10000gの遠心分離に供することにより調製した。  [0034] Thus, a near-infrared photoluminescence two-dimensional mapping was determined for the DMSO solution of SWNTZ aromatic polyimide obtained in Example 2. As an example, Fig. 4 shows the results when P2 aromatic polyimide is used, and Fig. 12 shows the results when P4 aromatic polyimide is used. Samples were prepared by subjecting the solution to centrifugation at 10000 g for 3 hours.
[0035] 図 4に示されるように、 (8, 6)、 (9, 5)、 (12, 1) (14, 0)および(14, 9) SWNTの 存在が認められ、 (8, 6) SWNTの強度が特に大きい。また、図 11からは、 P4のポリ イミドが、 (7, 6)、 (9, 4)、 (8, 6)、 (8, 7)、 (9, 5)および(10, 5)のカイラリティをも つ SWNTを孤立溶解させていることが理解される。これらは、界面活性剤 SDS (ドデ シル硫酸ナトリウム)を用いた場合にミセル水溶液中に存在する SWNT (非特許文献 5)とは異なっており、本発明によるカーボンナノチューブは特異なメカニズムで進む ものと推測される。  [0035] As shown in FIG. 4, the presence of (8, 6), (9, 5), (12, 1) (14, 0) and (14, 9) SWNTs was observed, (8, 6 ) SWNT is particularly strong. Also, from Fig. 11, P4's polyimide has (7, 6), (9, 4), (8, 6), (8, 7), (9, 5) and (10, 5) chirality. It is understood that SWNTs with sol are dissolved in isolation. These are different from SWNT (Non-Patent Document 5), which is present in micellar aqueous solution when the surfactant SDS (sodium dodecyl sulfate) is used, and the carbon nanotubes according to the present invention proceed by a unique mechanism. It is guessed.
実施例 5  Example 5
[0036] 他の溶^^の混合試験  [0036] Mixing test of other molten ^^
実施例 2の操作で得られた SWNTZ芳香族ポリイミドの DMSO溶液に水、ァセトニ トリルまたはエタノールを混合した。代表例として、図 5に、 P1の芳香族ポリイミドを用 いた SWNTZポリイミドの DMSO溶液に水を混合した場合の吸収スペクトル測定の 結果を示す。図中、(a)は、混ぜる前の原液、(b)は水: DMSO溶液 = 1 : 1、また、(c )は水: DMSO溶液 = 9 : 1の場合である。いずれの場合においても、吸収スペクトル の実質的な変化は認められず、水で可溶ィ匕溶液を稀釈しても SWNTが個々に溶解 された状態にあることが確認された。 目視観察によっても均一に SWNTが可溶ィ匕し たままであった。ァセトニトリルまたはエタノールで稀釈した場合においても同様の結 果が得られた。 Water, acetonitrile, or ethanol was mixed with the DMSO solution of SWNTZ aromatic polyimide obtained by the operation of Example 2. As a representative example, Fig. 5 shows the results of an absorption spectrum measurement when water is mixed in a DMSO solution of SWNTZ polyimide using P1 aromatic polyimide. In the figure, (a) is the stock solution before mixing, (b) is the case of water: DMSO solution = 1: 1, and (c) is the case of water: DMSO solution = 9: 1. In either case, the absorption spectrum No substantial change was observed, and it was confirmed that even when the soluble solution was diluted with water, SWNTs were dissolved individually. By visual observation, the SWNTs remained soluble evenly. Similar results were obtained when diluted with acetonitrile or ethanol.
実施例 6 Example 6
ポリイミドのプロトン化 Protonation of polyimide
実施例 1で合成した芳香族ポリイミドをプロトンィ匕してトリェチルァミン塩部分をスル ホン酸基に転換した。プロトンィ匕は、熱したメタノール中で洗浄した P1および P2の膜 を、 1規定の塩酸中に 8〜12時間浸漬し、超純水で洗浄し、乾燥することにより行つ た。  The aromatic polyimide synthesized in Example 1 was protonated to convert the triethylamine salt moiety into a sulfonic acid group. Protony was performed by immersing P1 and P2 membranes washed in hot methanol in 1N hydrochloric acid for 8-12 hours, washing with ultrapure water, and drying.
このように P1および P2をプロトン化して得られたポリイミドは、依然として DMSOに 対する溶解性を保っていた。そこで、プロトンィ匕した P1及び P2の DMSO溶液で、実 施例 2と同様の手法に従い SWNTの可溶化試験を行い、可視 近赤外吸収スぺク トルを測定した。プロトンィ匕したポリイミドを用いた場合でも、 P1および P2を用いた場 合と同様に SWNTを可溶ィ匕することができ、実質的に同じ吸収スペクトルが得られ、 P1および P2のトリエチルァミン塩構造は可溶ィ匕に影響しないことが理解された。  Thus, the polyimide obtained by protonating P1 and P2 still maintained solubility in DMSO. Therefore, a solubilization test of SWNT was performed using protonated P1 and P2 DMSO solutions according to the same method as in Example 2, and a visible and near infrared absorption spectrum was measured. Even when using a protonated polyimide, SWNTs can be solubilized in the same manner as with P1 and P2, and substantially the same absorption spectrum can be obtained, and triethylamine salts of P1 and P2 can be obtained. It was understood that the structure did not affect the solubility.

Claims

請求の範囲 下記の一般式 [I]で表わされる繰り返し単位を有する芳香族ポリイミドから成ることを 特徴とするカーボンナノチューブ可溶化剤。 A carbon nanotube solubilizer comprising an aromatic polyimide having a repeating unit represented by the following general formula [I]:
[化 1]  [Chemical 1]
Figure imgf000014_0001
Figure imgf000014_0001
(式 [I]中、 ARはフエ-ル基または縮合多環芳香族基を表し、 Xは存在しない場合 もあり存在する場合は酸素原子または硫黄原子を表し、 Zは溶媒可溶性を高めるた めの極性置換基または非極性置換基を表す。 ) (In the formula [I], AR represents a phenol group or a condensed polycyclic aromatic group, X may or may not exist, represents an oxygen atom or a sulfur atom, and Z represents a solvent-soluble compound. Represents a polar substituent or a non-polar substituent.
[2] 前記極性置換基が、スルホン酸基、リン酸基、もしくは硫酸基、またはそれらのトリア ルキルアミン塩 (該アルキルの炭素数は 1から 18)である、請求項 1に記載のカーボン ナノチューブ可溶化剤。 [2] The carbon nanotube according to claim 1, wherein the polar substituent is a sulfonic acid group, a phosphoric acid group, or a sulfuric acid group, or a trialkylamine salt thereof (the alkyl has 1 to 18 carbon atoms). Solubilizer.
[3] 前記非極性置換基が長鎖アルキル基 (該アルキル基の炭素数は 8から 18)である、 請求項 1に記載のカーボンナノチューブ可溶化剤。 [3] The carbon nanotube solubilizer according to claim 1, wherein the nonpolar substituent is a long-chain alkyl group (the alkyl group has 8 to 18 carbon atoms).
[4] 下記の式 [Pl]、 [P2]、 [P3]、または [P4]で表される繰り返し単位を有する芳香族ポ リイミドから成る、請求項 1に記載のカーボンナノチューブ可溶化剤。 [4] The carbon nanotube solubilizer according to claim 1, comprising an aromatic polyimide having a repeating unit represented by the following formula [Pl], [P2], [P3], or [P4].
[化 2]  [Chemical 2]
Figure imgf000014_0002
[化 3]
Figure imgf000014_0002
[Chemical 3]
Figure imgf000015_0001
Figure imgf000015_0001
[化 5] [Chemical 5]
Figure imgf000015_0002
Figure imgf000015_0002
(式 [Pl]、 [P2]、 [P3]、および [P4]において、 Etはェチル基を表す。) (In the formulas [Pl], [P2], [P3], and [P4], Et represents an ethyl group.)
[5] 請求項 1の芳香族ポリイミドから成る可溶化剤を用いてカーボンナノチューブを可溶 化する方法であって、前記芳香族ポリイミドを極性または非極性溶媒に溶解させるェ 程、得られた芳香族ポリイミドの前記溶媒溶液にカーボンナノチューブを添加するェ 程、ならびに、得られた芳香族ポリイミドとカーボンナノチューブの前記溶媒溶液に超 音波照射を行う工程を含むことを特徴とする方法。 [5] A method for solubilizing carbon nanotubes using the solubilizing agent comprising an aromatic polyimide according to claim 1, wherein the aromatic polyimide is dissolved in a polar or nonpolar solvent. A step of adding carbon nanotubes to the solvent solution of the aromatic polyimide, and a step of irradiating the solvent solution of the obtained aromatic polyimide and carbon nanotubes with ultrasonic waves.
[6] 超音波照射後の溶液を遠心分離に供する工程を更に含む、請求項 5に記載の力 一ボンナノチューブ可溶化方法。 [6] The method for solubilizing force-bonded nanotubes according to claim 5, further comprising a step of subjecting the solution after ultrasonic irradiation to centrifugation.
[7] 請求項 5の方法によって得られ、芳香族ポリイミドとカーボンナノチューブとから構成 されることを特徴とする溶液またはゲル。 [7] Obtained by the method of claim 5 and composed of aromatic polyimide and carbon nanotubes A solution or gel characterized in that
PCT/JP2006/321962 2005-11-04 2006-11-02 Solubilization of carbon nanotube using aromatic polyimide WO2007052739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542800A JP5119443B2 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotubes using aromatic polyimide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005320578 2005-11-04
JP2005-320578 2005-11-04

Publications (1)

Publication Number Publication Date
WO2007052739A1 true WO2007052739A1 (en) 2007-05-10

Family

ID=38005892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321962 WO2007052739A1 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotube using aromatic polyimide

Country Status (2)

Country Link
JP (1) JP5119443B2 (en)
WO (1) WO2007052739A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131421A1 (en) * 2009-05-11 2010-11-18 東洋紡績株式会社 Process for producing polybenzoxazole film
WO2011055776A1 (en) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 Process for production of gel containing nano-carbon material
JP2012055814A (en) * 2010-09-07 2012-03-22 Chiba Univ Functional solubilizing agent
JP2013177295A (en) * 2012-01-31 2013-09-09 Shibaura Institute Of Technology Method for producing nano-carbon material-containing gel
WO2016080327A1 (en) * 2014-11-17 2016-05-26 ニッタ株式会社 Carbon nanotube dispersion, functional film, and composite material
WO2021033482A1 (en) * 2019-08-19 2021-02-25 Jsr株式会社 Dispersion composition, dispersant, anisotropic film and method for producing same, and apparatus for forming anisotropic film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029656A1 (en) * 2013-08-29 2015-03-05 住友理工株式会社 Flexible conductive material and transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060798A1 (en) * 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. Nanocarbon solubilizer, method for purifying same, and method for producing high-purity nanocarbon
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060798A1 (en) * 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. Nanocarbon solubilizer, method for purifying same, and method for producing high-purity nanocarbon
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG J. ET AL.: "Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid", MACROMOLECULES, vol. 35, 2002, pages 9022 - 9028, XP003012529 *
JIANG X. ET AL.: "Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization", POLYMER, vol. 46, August 2005 (2005-08-01), pages 7418 - 7424, XP005009203 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421825A (en) * 2009-05-11 2012-04-18 东洋纺织株式会社 Process for producing polybenzoxazole film
WO2010131421A1 (en) * 2009-05-11 2010-11-18 東洋紡績株式会社 Process for producing polybenzoxazole film
JP5707320B2 (en) * 2009-05-11 2015-04-30 東洋紡株式会社 Method for producing polybenzoxazole film
JP5747354B2 (en) * 2009-11-06 2015-07-15 学校法人 芝浦工業大学 Method for producing nanocarbon material-containing gel
WO2011055776A1 (en) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 Process for production of gel containing nano-carbon material
US9419235B2 (en) 2009-11-06 2016-08-16 Shibaura Institute Of Technology Method for producing gel containing nano-carbon material
JP2012055814A (en) * 2010-09-07 2012-03-22 Chiba Univ Functional solubilizing agent
JP2013177295A (en) * 2012-01-31 2013-09-09 Shibaura Institute Of Technology Method for producing nano-carbon material-containing gel
WO2016080327A1 (en) * 2014-11-17 2016-05-26 ニッタ株式会社 Carbon nanotube dispersion, functional film, and composite material
JP2016094323A (en) * 2014-11-17 2016-05-26 ニッタ株式会社 Carbon nanotube dispersion, functional film and composite raw material
WO2021033482A1 (en) * 2019-08-19 2021-02-25 Jsr株式会社 Dispersion composition, dispersant, anisotropic film and method for producing same, and apparatus for forming anisotropic film
CN114026178A (en) * 2019-08-19 2022-02-08 Jsr株式会社 Dispersion composition, dispersant, anisotropic film and method for producing same, and anisotropic film forming apparatus
CN114026178B (en) * 2019-08-19 2024-01-30 Jsr株式会社 Dispersing composition, dispersing agent, anisotropic film, method for producing the same, and anisotropic film forming apparatus

Also Published As

Publication number Publication date
JP5119443B2 (en) 2013-01-16
JPWO2007052739A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5119443B2 (en) Solubilization of carbon nanotubes using aromatic polyimide
Hasan et al. Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP)
Parra-Vasquez et al. Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes
Qu et al. Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films
JP5213025B2 (en) Nanocarbon material dispersion and method for producing the same, nanocarbon material composition
Muñoz et al. Highly conducting carbon nanotube/polyethyleneimine composite fibers
Yi et al. Wrapping of single-walled carbon nanotubes by a π-conjugated polymer: the role of polymer conformation-controlled size selectivity
US8246928B1 (en) Methods and compositions for the separation of single-walled carbon nanotubes
CN101351914B (en) Catalyst for fuel cell electrode, process for producing catalyst for fuel cell electrode, film-electrode assembly, and fuel cell
Rice et al. Effect of induction on the dispersion of semiconducting and metallic single-walled carbon nanotubes using conjugated polymers
JP2014527010A (en) Highly soluble carbon nanotubes with improved conductivity
Yamamoto et al. A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects
Sun et al. Tailorable aqueous dispersion of single-walled carbon nanotubes using tetrachloroperylene-based bolaamphiphiles via noncovalent modification
Fong et al. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes
JP2012111680A (en) Nanocarbon water-dispersion, method for manufacturing the same, and nanocarbon-containing structure
Gao et al. The preparation of cation-functionalized multi-wall carbon nanotube/sulfonated polyurethane composites
Barrejón et al. Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides
Rai et al. Dispersions of functionalized single-walled carbon nanotubes in strong acids: Solubility and rheology
JP4647384B2 (en) Composite fiber composed of wholly aromatic polyamide and thin-walled carbon nanotubes
US20070110658A1 (en) Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications
JP5475645B2 (en) Carbon nanotube solubilizer composed of aroylbiphenyl-based hyperbranched polymer
JP2007217669A (en) Copolymerization of aromatic polymer and carbon nano tube and copolymer, and article produced therefrom
Chen et al. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite
JP4383913B2 (en) Single-walled carbon nanotube dispersion and method for producing the same
Yook et al. Inclusion and exclusion of self-assembled molecules inside graphene scrolls and control of their inner-tube diameter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822880

Country of ref document: EP

Kind code of ref document: A1