JP2012055814A - Functional solubilizing agent - Google Patents

Functional solubilizing agent Download PDF

Info

Publication number
JP2012055814A
JP2012055814A JP2010200397A JP2010200397A JP2012055814A JP 2012055814 A JP2012055814 A JP 2012055814A JP 2010200397 A JP2010200397 A JP 2010200397A JP 2010200397 A JP2010200397 A JP 2010200397A JP 2012055814 A JP2012055814 A JP 2012055814A
Authority
JP
Japan
Prior art keywords
nanocarbon material
solubilizing agent
singlet oxygen
water
solubilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200397A
Other languages
Japanese (ja)
Other versions
JP5888636B2 (en
Inventor
Shigeru Takahara
茂 高原
Atsushi Kondo
篤 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2010200397A priority Critical patent/JP5888636B2/en
Publication of JP2012055814A publication Critical patent/JP2012055814A/en
Application granted granted Critical
Publication of JP5888636B2 publication Critical patent/JP5888636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a functional solubilizing agent which not only solubilizes but also has a function of carrier of singlet oxygen or the like to effectively utilize the function in which a carbon nanotube generates oxygen, and in which the solubilization capacity of a nanocarbon material can be controlled, since although there is a solubilizing agent which solubilizes hardly soluble nature materials such as a nanocarbon material, there is little what in which a polymer and a surfactant are used and has an optical functionality, although the objective of solubilization is attained when they are a simple polymer and surfactant, a solubilizing agent remains, it finally becomes a material mixed with the nanocarbon material, and the original physical properties of the nanocarbon material may be spoiled.SOLUTION: A derivative which has a substituent of a sulfo group or the like having solubility in an anthracene skeleton having high affinity with the nanocarbon material by a π-π interaction or the like is synthesized, thereby the solvent solubilization of the nanocarbon material is carried out. Further, the reactivity of the addition and elimination of the singlet oxygen which originates in the anthracene skeleton solves the subject.

Description

本発明は、機能性可溶化剤に関し、より詳細には、ナノカーボン材料等の難溶性材料を可溶化するものに関する。   The present invention relates to a functional solubilizer, and more particularly to a solubilizer for a hardly soluble material such as a nanocarbon material.

ナノカーボン材料の一つであるカーボンナノチューブは、銅の100倍以上の高電流密度耐性と10倍以上の高熱伝導特性を有し、その構造により伝導体にも半導体にもなる(例えば下記非特許文献1参照)。また、ナノカーボン材料にはこのほかにもフラーレンやその誘導体、ナノグラファンなどに分類される材料があり、同様に量子細線などへの応用などが期待されている。   Carbon nanotubes, which are one of the nanocarbon materials, have 100 times higher current density resistance and 10 times higher heat conduction characteristics than copper, and can be used as a conductor or a semiconductor due to their structure (for example, the following non-patents) Reference 1). In addition, nanocarbon materials include other materials classified into fullerenes, derivatives thereof, nanographanes, and the like, which are also expected to be applied to quantum wires.

しかしながら、一般にナノカーボン材料は高い分子間力を持つため難溶性である。例えば、カーボンナノチューブは水にも有機溶媒にも溶けない。これらは凝集し溶媒への可溶化・分散化が非常に困難であるため精製や加工が困難である。これが実用化の上での大きな課題となっている。   However, nanocarbon materials are generally poorly soluble because of high intermolecular forces. For example, carbon nanotubes are insoluble in water and organic solvents. These are agglomerated and are very difficult to solubilize and disperse in a solvent, so that purification and processing are difficult. This is a big problem in practical use.

そこで、界面活性剤や親水性のポリマーなどを用いたさまざまな可溶化剤が提案されている。緑茶成分がカーボンナノチューブを水に分散できるとの報告もある(例えば下記非特許文献2参照)。またカーボンナノチューブとのπ−π相互作用を利用して、水溶性ポリマーの側鎖にアントラセン骨格などを修飾した水への可溶化剤(例えば下記非特許文献3参照)や、長鎖アルキル基を側鎖にもつ共役高分子による有機溶媒への可溶化(例えば下記非特許文献4参照)などがある。   Therefore, various solubilizers using surfactants or hydrophilic polymers have been proposed. There is also a report that the green tea component can disperse carbon nanotubes in water (see, for example, Non-Patent Document 2 below). Further, by utilizing the π-π interaction with the carbon nanotube, a water-solubilizing agent in which the side chain of the water-soluble polymer is modified with an anthracene skeleton or the like (for example, see Non-Patent Document 3 below) or a long-chain alkyl group is added. There is solubilization in an organic solvent by a conjugated polymer having a side chain (for example, see Non-Patent Document 4 below).

さらに、これらの可溶化剤に機能性を付与することが試みられている。例えば、ポリエチレングリコール残基をもつマラカイトグリーン誘導体によりカーボンナノチューブを水に分散し、このマラカイトグリーン誘導体の光反応によってカチオン化することを利用した機能性可溶化剤が報告されている(例えば下記非特許文献5参照)。この報告によればカーボンナノチューブの分散液に紫外線を照射することによって会合状態を変化させることができ、黒色の堆積物が得られたとしている。   Furthermore, attempts have been made to impart functionality to these solubilizers. For example, a functional solubilizer utilizing the dispersion of carbon nanotubes in water with a malachite green derivative having a polyethylene glycol residue and cationization by the photoreaction of this malachite green derivative has been reported (for example, the following non-patents) Reference 5). According to this report, the association state can be changed by irradiating the dispersion of carbon nanotubes with ultraviolet rays, and a black deposit is obtained.

一方、アントラセン誘導体の一重項酸素の付加、脱離の反応性は古くから知られている。フォトクロミック反応のひとつとして古くから知られている(例えば下記非特許文献6参照)。また、再現よく一重項酸素の付加、脱離が起こるアントラセン誘導体は可逆的フォトクロミック反応のひとつとして報告されている(例えば下記非特許文献7参照)。さらに、水溶性にしたアントラセン誘導体は一重項酸素のキャリアーとしても注目されている(例えば下記非特許文献8参照)。   On the other hand, the reactivity of addition and elimination of singlet oxygen of anthracene derivatives has been known for a long time. It has been known for a long time as one of photochromic reactions (for example, see Non-Patent Document 6 below). In addition, anthracene derivatives in which addition and elimination of singlet oxygen are reproducibly reported have been reported as one of reversible photochromic reactions (for example, see Non-Patent Document 7 below). Furthermore, water-soluble anthracene derivatives have attracted attention as singlet oxygen carriers (see, for example, Non-Patent Document 8 below).

粟野ら、 応用物理、 73 (2004) 1212; 応用物理、 76 (2007) 1112.Kanno et al., Applied physics, 73 (2004) 1212; Applied physics, 76 (2007) 1112. N.Nakashima、K.Narimitsu、Y.Niidome、N.Nakashima、Chem.Lett.、36(2007)1140-1141.N. Nakashima, K .; Narimitsu, Y. et al. Niidome, N.I. Nakashima, Chem. Lett. 36 (2007) 1140-1141. K.Narimatsu、J.Nishioka、H.Murakami、N.Nakashima、Chem.Lett.、35(2006)892-893.K. Narimatsu, J. et al. Nishioka, H .; Murakami, N .; Nakashima, Chem. Lett. , 35 (2006) 892-893. T.Umeyama、N.Kadota、N.Tezuka、Y.Matano、H.Imahori、Chem.Phys.Lett.、444(2007)263-367.T.A. Umeyama, N .; Kadota, N .; Tezuka, Y. et al. Matano, H.M. Imahori, Chem. Phys. Lett. 444 (2007) 263-367. S.Chen、Y.Jiang、Z.Wang、X.Zhang、L.Dai、M.Smet、Langmuir、24(2008)9233-9236.S. Chen, Y. et al. Jiang, Z. Wang, X. et al. Zhang, L.M. Dai, M.C. Smet, Langmuir, 24 (2008) 9233-9236. R.Schmidt、K.Schaffner、W.Trost、H.−D.Brauer、J.Phys.Chem、88(1984)956-958.R. Schmidt, K.M. Schaffner, W.M. Trost, H.C. -D. Brauer, J.M. Phys. Chem, 88 (1984) 956-958. K.Schaffner、R.Schmidt、H.−D.Brauer、Mol.Cryst.Liq.Cryst.、246(1994)119-125.K. Schaffner, R.A. Schmidt, H.C. -D. Brauer, Mol. Cryst. Liq. Cryst. 246 (1994) 119-125. L.Alavetinska、J.Mosinger、P.Kubat、J.Photochem.Photobio.A:Chem.、195(2008)1-9.L. Alavetinska, J. et al. Mosinger, P.M. Kubat, J. et al. Photochem. Photobio. A: Chem. 195 (2008) 1-9.

一般に、ナノカーボン材料などの難溶性材料を可溶化する可溶化剤は存在するが、高分子や界面活性剤が用いられ、光機能性をもつものは少ない。単純な高分子や界面活性剤である場合には可溶化の目的は達せられるが、可溶化剤は残留し、最終的にナノカーボン材料と混合した材料となってしまい、ナノカーボン材料本来の物性を損なうことがある。   In general, there are solubilizing agents that solubilize poorly soluble materials such as nanocarbon materials, but polymers and surfactants are used, and few have optical functionality. In the case of a simple polymer or surfactant, the purpose of solubilization can be achieved, but the solubilizer remains and eventually becomes a material mixed with the nanocarbon material, which is the original physical property of the nanocarbon material. May be damaged.

また、上述のように、マラカイトグリーン誘導体の光反応によってカチオン化することを利用した機能性可溶化剤が報告されている(上記非特許文献5)が、これも高分子である。   In addition, as described above, a functional solubilizer that utilizes cationization by the photoreaction of a malachite green derivative has been reported (Non-patent Document 5), which is also a polymer.

ところで、カーボンナノチューブは一重項酸素を生成することが報告されている(N.Gandra、P.L.Chiu、W.Li、Y.R.Anderson、S.Mitra、H.He、R.Gao、P.Kubat、J.Phys.Chem.C.、113(2009)5182−5185.)。この機能を有効に利用するには可溶化するだけでなく一重項酸素のキャリアーの機能があると応用が広がる。   By the way, carbon nanotubes have been reported to generate singlet oxygen (N. Gandra, P.L. Chiu, W. Li, Y. R. Anderson, S. Mitra, H. He, R. Gao, P. Kubat, J. Phys. Chem. C., 113 (2009) 5182-5185.). In order to use this function effectively, not only solubilization but also a singlet oxygen carrier function can be used.

すなわち、機能性の高い可溶化剤が求められている。本発明は、かかる事情に鑑みなされたものであって、これらの課題を解決する機能性可溶化剤を提供することにある。   That is, a highly functional solubilizer is required. This invention is made | formed in view of this situation, Comprising: It is providing the functional solubilizer which solves these subjects.

本発明者らは、アントラセン誘導体の可逆的フォトクロミック反応と会合性について鋭意研究してきたところ、上記課題を解決するために以下の点に着目して、本発明を創出するに至った。   The present inventors have intensively studied the reversible photochromic reaction and the associability of anthracene derivatives. As a result, in order to solve the above-mentioned problems, the present inventors have created the present invention by paying attention to the following points.

(着目点)
アントラセン誘導体はナノカーボン材料とのπ−π相互作用などの親和性が高く、報告されている可溶化剤の構造の一部に用いられているが、その光反応性を用いたものはなかった。また光反応性を用いた可溶化剤は知られているが可逆性がなく、一重項酸素の付加、脱離の反応性を用いたものは知られていなかった。そこでアントラセン骨格にスルホ基をつけただけの基本となる化合物を合成し、ナノカーボン材料を水に分散させたところ、水にまったく溶けないナノカーボン材料がよく分散することを見出し、この課題の解決に結びついた。
(Points of interest)
Anthracene derivatives have high affinity such as π-π interaction with nanocarbon materials and are used in some of the reported solubilizer structures, but none have used photoreactivity. . In addition, solubilizers using photoreactivity are known but not reversible, and those using singlet oxygen addition / desorption reactivity have not been known. To solve this problem, we synthesized a basic compound by simply attaching a sulfo group to the anthracene skeleton and dispersed the nanocarbon material in water, and found that the nanocarbon material that was completely insoluble in water was well dispersed. Tied to

即ち、本発明の一観点にかかる可溶化剤は、アントラセン骨格に水溶性または疎水性の置換基を有する。   That is, the solubilizer according to one aspect of the present invention has a water-soluble or hydrophobic substituent on the anthracene skeleton.

この場合において、限定されるわけではないが、可溶化剤は、一重項酸素の付加、脱離の反応性を有することが好ましい。   In this case, the solubilizing agent preferably has reactivity for addition and elimination of singlet oxygen, although not limited thereto.

またこの場合において、可溶化剤は、アントラセン−2−スルホン酸ナトリウム誘導体を含むことが好ましい。   In this case, the solubilizer preferably contains a sodium anthracene-2-sulfonate derivative.

上記のように構成された本発明は、以下のように、上記課題を解決することができる。
(1)ナノカーボン材料の可溶化の実現
高分子中にアントラセン骨格を修飾するのではなく、アントラセン骨格に水溶性または疎水性の置換基を組み込んだ分子を設計、合成し、この化合物によりナノカーボン材料が可溶化できることを見出した。
The present invention configured as described above can solve the above-described problems as follows.
(1) Realization of solubilization of nanocarbon materials Instead of modifying the anthracene skeleton in the polymer, a molecule that incorporates a water-soluble or hydrophobic substituent in the anthracene skeleton is designed and synthesized. We have found that the material can be solubilized.

(2)一重項酸素の付加、脱離の実現
アントラセン骨格に水溶性または疎水性の置換基を組み込んだ分子が、一重項酸素の付加、脱離の反応性をもち、ナノカーボン材料の凝集状態の変化をもたらすことを見いだした。
(2) Realization of addition and desorption of singlet oxygen A molecule in which an anthracene skeleton incorporates a water-soluble or hydrophobic substituent has reactivity of addition and desorption of singlet oxygen, and the aggregation state of nanocarbon materials Found to bring about changes.

ANSによりカーボンナノチューブが分散された実施例1とカーボンナノチューブのみの比較例1を比較した写真図である。It is the photograph which compared Example 1 in which the carbon nanotube was disperse | distributed by ANS, and the comparative example 1 of only a carbon nanotube. 実施例1および比較例2の光吸収スペクトルを示す図である。1 ANSによりカーボンナノチューブが分散された水中の試料の光吸収スペクトルを示す図である。2 比較例2におけるANSのみが水に溶解した光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of Example 1 and Comparative Example 2. 1 is a diagram showing a light absorption spectrum of a sample in water in which carbon nanotubes are dispersed by ANS. 2 is a diagram showing a light absorption spectrum in which only ANS in Comparative Example 2 is dissolved in water. 比較例3の写真を示す図である。It is a figure which shows the photograph of the comparative example 3. FIG. 比較例3の光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of the comparative example 3. 実施例2の光吸収スペクトルを示す図である。FIG. 6 is a diagram showing a light absorption spectrum of Example 2. 比較例2の光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of the comparative example 2.

以下、本発明の実施の形態について説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に狭く限定されるものではない。   Embodiments of the present invention will be described below. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.

本実施形態に係る可溶化剤は、アントラセン骨格に水溶性または疎水性の置換基を有する。アントラセン骨格には、アントラセンそのものを含むのはもちろんであるが、アントラセンの水素が置換基に置換されたものも含む。ここで水溶性又は疎水性の置換基としては、限定されるわけではないが、例えばスルホ基を例示することができ、この場合アントラセンスルホン酸となる。   The solubilizer according to the present embodiment has a water-soluble or hydrophobic substituent on the anthracene skeleton. The anthracene skeleton of course includes anthracene itself, but also includes those in which anthracene hydrogen is substituted with a substituent. Here, the water-soluble or hydrophobic substituent is not limited, and examples thereof include a sulfo group. In this case, anthracenesulfonic acid is obtained.

また本実施形態において、アントラセンスルホン酸の場合、スルホン酸塩であることは好ましい一形態であり、例えばこのナトリウム塩、カリウム塩等を例示することができる。なおアントラセンスルホン酸塩の誘導体は、アントラセンスルホン酸塩そのものを含むことはもちろんであるが、上記の通りアントラセン骨格の水素が他の置換基に置換されたものを含む。   Moreover, in this embodiment, in the case of anthracene sulfonic acid, it is a preferable form that it is a sulfonate, For example, this sodium salt, potassium salt, etc. can be illustrated. The anthracene sulfonate derivative naturally includes anthracene sulfonate itself, but includes anthracene skeleton hydrogen substituted with other substituents as described above.

また本実施形態において、可溶化剤は、一重項酸素の付加又は脱離の反応性を有することが好ましい。この反応性を有することで、例えばカーボンナノチューブが生成する一重項酸素のキャリアー機能を有することができ、より有用となる。   In the present embodiment, the solubilizer preferably has singlet oxygen addition or elimination reactivity. By having this reactivity, for example, it can have a carrier function of singlet oxygen generated by carbon nanotubes, and is more useful.

以下、上記実施形態に係る機能性可溶化剤の効果について、具体的な化合物を用いてその効果を確認した。以下説明する。   Hereinafter, the effect of the functional solubilizer according to the above embodiment was confirmed using a specific compound. This will be described below.

(実施例1)
(1)アントラセン‐2‐スルホン酸ナトリウム ANS の合成
アントラセン骨格に水溶性の置換基を組み込んだ分子であるアントラセン−2−スルホン酸ナトリウム(anthracene−2−sulfonic acid、sodium salt(以下「ANS」という。))を、以下の手順に従い合成した。
Example 1
(1) Synthesis of sodium anthracene-2-sulfonate ANS Anthracene-2-sulphonic acid, sodium salt (hereinafter referred to as “ANS”), which is a molecule incorporating a water-soluble substituent in the anthracene skeleton .)) Was synthesized according to the following procedure.

まず、anthraquinone−2−sulfonic acid、sodium salt0.8gにZn powder1.2gとともに20%NHOH150mlで6時間還流した後、活性炭で不純物を除去し、水で再結晶した。この場合において収率は60%であった。下記に、ANSの化学構造式を示しておく。
First, anthraquinone-2-sulfonic acid and sodium salt 0.8 g were refluxed with 150 g of 20% NH 4 OH together with 1.2 g of Zn powder for 6 hours, and then impurities were removed with activated carbon and recrystallized with water. In this case, the yield was 60%. The chemical structural formula of ANS is shown below.

(2)可溶化剤ANSによるカーボンナノチューブの水への分散
ANSとカーボンナノチューブを水中で超音波後静置し観察した。図1に写真を示す。また上澄み液のUV−Vis吸収スペクトルの測定をした。これを図2に示す。ANSの濃度は4.14×10-4mol/l、カーボンナノチューブはアルドリッチ社から購入した1.2−1.5nm×2−5μmのものを使用した。
(2) Dispersion of carbon nanotubes in water by solubilizing agent ANS ANS and carbon nanotubes were placed in water after ultrasonication and observed. A photograph is shown in FIG. Moreover, the UV-Vis absorption spectrum of the supernatant was measured. This is shown in FIG. The concentration of ANS was 4.14 × 10 −4 mol / l, and the carbon nanotubes purchased from Aldrich were 1.2-1.5 nm × 2-5 μm.

(比較例1)
実施例1(2)と同じ条件で可溶化剤ANSを入れない場合には水には全く分散しなかった。この写真を図1中に示しておく。
(Comparative Example 1)
When the solubilizer ANS was not added under the same conditions as in Example 1 (2), it was not dispersed in water at all. This photograph is shown in FIG.

(比較例2)
実施例1(2)と同じ条件で可溶化剤ANSのみの場合の光吸収スペクトルを図2に示す。実施例1と比較して、可視域全体に光吸収が見られカーボンナノチューブが可溶化したことを示す。
(Comparative Example 2)
FIG. 2 shows a light absorption spectrum when only the solubilizer ANS is used under the same conditions as in Example 1 (2). Compared to Example 1, light absorption was observed in the entire visible range, indicating that the carbon nanotubes were solubilized.

(比較例3)
界面活性剤sodium dodecylbenzenesulfonate(以下「SDBS」という。)4.50×10-3 mol/l水溶液に実施例1と同じカーボンナノチューブを混合し、これを水中で超音波照射後、静置し観察し、上澄み液のUV−Vis吸収スペクトルの測定をおこなった。図3にこの試料の写真を、図4にこの吸収スペクトルの測定結果をそれぞれ示す。比較例3との比較により実施例1において可溶化剤ANSがSDBSと同じようにカーボンナノチューブを水に分散できることが確認できる。
(Comparative Example 3)
Surfactant sodium dodecylbenzensulfonate (hereinafter referred to as “SDBS”) 4.50 × 10 −3 mol / l aqueous solution was mixed with the same carbon nanotubes as in Example 1, and this was left to stand after observation in water. The UV-Vis absorption spectrum of the supernatant was measured. FIG. 3 shows a photograph of this sample, and FIG. 4 shows the measurement results of the absorption spectrum. Comparison with Comparative Example 3 confirms that the solubilizer ANS in Example 1 can disperse the carbon nanotubes in water in the same manner as SDBS.

(実施例2)
可溶化剤ANSを1.46×10-3 mol/lの濃度で溶解した水溶液に実施例1と同じカーボンナノチューブを分散し、酸素雰囲気下で1mmセルに水フィルタを通したキセノンアークランプを照射すると、図5に示すようにANSの減少が見られた。これは光反応によって可溶化剤ANSが消失していることを示している。
(Example 2)
The same carbon nanotubes as in Example 1 are dispersed in an aqueous solution in which the solubilizing agent ANS is dissolved at a concentration of 1.46 × 10 −3 mol / l, and irradiated with a xenon arc lamp through a water filter through a 1 mm cell in an oxygen atmosphere. Then, as shown in FIG. 5, a decrease in ANS was observed. This indicates that the solubilizer ANS has disappeared by the photoreaction.

(比較例4)
可溶化剤ANSを2.61×10-4 mol/l、Rose Bengalを2.00×10-5 mol/lの濃度で溶解した水溶液に酸素雰囲気下で1cmセルにY42フィルタと水フィルタを通したキセノンアークランプからの光を照射した場合の吸収スペクトル変化を図6に示す。Rose Bengalは典型的な一重項酸素発生剤である。この例ではRose Bengalのみに光吸収が起こる。すなわち、Rose Bengalによって生成された一重項酸素によって可溶化剤ANSが消失していることが示される。
(Comparative Example 4)
The Y42 filter and water filter were passed through a 1 cm cell in an oxygen solution in an aqueous solution in which the solubilizer ANS was dissolved at 2.61 × 10 −4 mol / l and Rose Bengal at a concentration of 2.00 × 10 −5 mol / l. FIG. 6 shows a change in absorption spectrum when irradiated with light from the xenon arc lamp. Rose Bengal is a typical singlet oxygen generator. In this example, light absorption occurs only in Rose Bengal. That is, it is shown that the solubilizing agent ANS disappears due to singlet oxygen generated by Rose Bengal.

(効果についてのまとめ)
以上説明したように、本発明は、アントラセン骨格に水溶性または疎水性の置換基を組み込んだ可溶化剤を設計、合成し、この化合物がナノカーボン材料を可溶化することを見出したものである。さらにこの可溶化剤はアントラセン骨格に由来して一重項酸素の付加、脱離の反応性をもつ機能性可溶化剤となることを見出した。
(Summary of effects)
As described above, the present invention has designed and synthesized a solubilizer incorporating a water-soluble or hydrophobic substituent in an anthracene skeleton, and has found that this compound solubilizes nanocarbon materials. . Furthermore, it has been found that this solubilizer is derived from an anthracene skeleton and becomes a functional solubilizer having addition and elimination reactivity of singlet oxygen.

カーボンナノチューブなどのナノカーボン材料は、その卓越した電気特性および熱特性から電子機器の飛躍的能力向上が期待される。また機械特性にも優れる。さらに資源枯渇に無縁であり、次世代の有力な工業材料として期待されている。本発明により加工法が拡大すれば産業上の利用可能性が格段に拡大するものと考えられる。本発明は、優れた導電性、熱伝導性、機械的強度、光学特性金属や半導体の特性が期待されるナノカーボン材料などの難溶性材料を可溶化することができこの点において産業上の利用可能性がある。なおこれらは一般的な材料分野に広く応用されるが、例えば、ナノカーボン材料などの難溶性材料の加工による材料の改質などの機械分野、導電性や半導体としての加工によるプリント基板や半導体回路の電子材料分野に応用することができる。   Nanocarbon materials such as carbon nanotubes are expected to dramatically improve electronic devices due to their excellent electrical and thermal properties. It also has excellent mechanical properties. In addition, it is unrelated to resource depletion and is expected as a powerful next-generation industrial material. If the processing method is expanded according to the present invention, it is considered that the industrial applicability is greatly expanded. The present invention can solubilize poorly soluble materials such as nanocarbon materials that are expected to have excellent electrical conductivity, thermal conductivity, mechanical strength, optical properties, and properties of metals and semiconductors. there is a possibility. These are widely applied to general material fields. For example, mechanical fields such as material modification by processing of hardly soluble materials such as nanocarbon materials, printed circuit boards and semiconductor circuits by processing as conductivity and semiconductors. It can be applied to the field of electronic materials.

Claims (3)

アントラセン骨格に水溶性または疎水性の置換基を有する可溶化剤。   A solubilizer having a water-soluble or hydrophobic substituent on the anthracene skeleton. 一重項酸素の付加又は脱離の反応性を有する請求項1記載の可溶化剤。   The solubilizer according to claim 1, which has reactivity for addition or elimination of singlet oxygen. アントラセン−2−スルホン酸ナトリウム誘導体を有する請求項1記載の可溶化剤。
The solubilizer according to claim 1, which has a sodium anthracene-2-sulfonate derivative.
JP2010200397A 2010-09-07 2010-09-07 Functional solubilizer Expired - Fee Related JP5888636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200397A JP5888636B2 (en) 2010-09-07 2010-09-07 Functional solubilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200397A JP5888636B2 (en) 2010-09-07 2010-09-07 Functional solubilizer

Publications (2)

Publication Number Publication Date
JP2012055814A true JP2012055814A (en) 2012-03-22
JP5888636B2 JP5888636B2 (en) 2016-03-22

Family

ID=46053571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200397A Expired - Fee Related JP5888636B2 (en) 2010-09-07 2010-09-07 Functional solubilizer

Country Status (1)

Country Link
JP (1) JP5888636B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051951A (en) * 2013-09-06 2015-03-19 国立大学法人 千葉大学 Solubilizer and method of forming carbon nano material layer using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163631A (en) * 1984-09-03 1986-04-01 Kanegafuchi Chem Ind Co Ltd Amphoteric compound
JPS6416758A (en) * 1987-07-08 1989-01-20 Nippon Kayaku Kk Anthracene compound and photo-setting epoxy polymer catalyst composed thereof
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
WO2007052739A1 (en) * 2005-11-04 2007-05-10 Kyushu University, National University Corporation Solubilization of carbon nanotube using aromatic polyimide
JP2008201747A (en) * 2007-02-21 2008-09-04 Nagoya Industrial Science Research Inst Method for producing carbonyl compound
WO2009099253A1 (en) * 2008-02-07 2009-08-13 Riken Visible light-curable adhesive
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
JP2010006712A (en) * 2008-06-24 2010-01-14 National Institute Of Advanced Industrial & Technology Anthracene derivative, its dimer, optical information-recording material using them, and method for recording optical information

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163631A (en) * 1984-09-03 1986-04-01 Kanegafuchi Chem Ind Co Ltd Amphoteric compound
JPS6416758A (en) * 1987-07-08 1989-01-20 Nippon Kayaku Kk Anthracene compound and photo-setting epoxy polymer catalyst composed thereof
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
WO2007052739A1 (en) * 2005-11-04 2007-05-10 Kyushu University, National University Corporation Solubilization of carbon nanotube using aromatic polyimide
JP2008201747A (en) * 2007-02-21 2008-09-04 Nagoya Industrial Science Research Inst Method for producing carbonyl compound
WO2009099253A1 (en) * 2008-02-07 2009-08-13 Riken Visible light-curable adhesive
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
JP2010006712A (en) * 2008-06-24 2010-01-14 National Institute Of Advanced Industrial & Technology Anthracene derivative, its dimer, optical information-recording material using them, and method for recording optical information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051951A (en) * 2013-09-06 2015-03-19 国立大学法人 千葉大学 Solubilizer and method of forming carbon nano material layer using the same

Also Published As

Publication number Publication date
JP5888636B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Liu et al. Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance
Suryawanshi et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions
Chuang et al. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices
Cao et al. Carbon‐nanotube‐templated assembly of rare‐earth phthalocyanine nanowires
EP3163639B1 (en) Use of a dopant composition for changing a seeback coefficient of a nanomaterial
Choi et al. Green synthesis of the reduced graphene oxide–CuI quasi-shell–core nanocomposite: a highly efficient and stable solar-light-induced catalyst for organic dye degradation in water
Ong et al. Facile synthesis of copper nanoparticles in glycerol at room temperature: Formation mechanism
EP3163640B1 (en) Method for producing nanomaterial-dopant composition composite and nanomaterial-dopant composition composite
Bat‐Erdene et al. Efficiency enhancement of single‐walled carbon nanotube‐silicon heterojunction solar cells using microwave‐exfoliated few‐layer black phosphorus
CN105103317A (en) Method for manufacturing thermoelectric conversion element and method for producing dispersion for thermoelectric conversion layers
Vempati et al. Fluorescence from graphene oxide and the influence of ionic, π–π interactions and heterointerfaces: electron or energy transfer dynamics
JP6704577B2 (en) Method for producing carbon nanotube-dopant composition composite and carbon nanotube-dopant composition composite
Ibrahim et al. The sonochemical functionalization of MoS 2 by zinc phthalocyanine and its visible light-induced photocatalytic activity
Gui et al. Multidentate polymers stabilized water-dispersed copper nanoclusters: facile photoreduction synthesis and selective fluorescence turn-on response
Ghosh et al. Light harvesting and photocurrent generation in a conjugated polymer nanoparticle–reduced graphene oxide composite
Wang et al. A new chemosensor for Ga 3+ detection by fluorescent nitrogen-doped graphitic carbon dots
JPWO2018147126A1 (en) N-type conductive material and method for producing the same
KR20170046063A (en) N-doped nano carbon materials and method for manufacturing the same
JP5881019B2 (en) Carbon nanotube dispersant, method for producing the same, carbon nanotube dispersion, and method for producing the same
Li et al. Tetrapropyl-substituted palladium phthalocyanine used as an efficient hole transport material in perovskite solar cells
Roth et al. Low-dimensional carbon allotropes: Ground-and excited-state charge transfer with NIR-absorbing heptamethine cyanine
JP5888636B2 (en) Functional solubilizer
Shi et al. Well‐Aligned Quaternary Cu2CoSnS4 Single‐Crystalline Nanowires as a Potential Low‐Cost Solar Cell Material
Koo et al. Improved charge transport via WSe2-mediated hole transporting layer toward efficient organic solar cells
Zhu et al. A fluorescence quenching sensor for Fe3+ detection using (C6H5NH3) 2Pb3I8· 2H2O hybrid perovskite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R150 Certificate of patent or registration of utility model

Ref document number: 5888636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees