WO2007034783A1 - 半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置 - Google Patents

半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置 Download PDF

Info

Publication number
WO2007034783A1
WO2007034783A1 PCT/JP2006/318510 JP2006318510W WO2007034783A1 WO 2007034783 A1 WO2007034783 A1 WO 2007034783A1 JP 2006318510 W JP2006318510 W JP 2006318510W WO 2007034783 A1 WO2007034783 A1 WO 2007034783A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
frequency
temperature
optical
current
Prior art date
Application number
PCT/JP2006/318510
Other languages
English (en)
French (fr)
Inventor
Hiroaki Yoshida
Hideki Hayashi
Tomotada Kamei
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/997,330 priority Critical patent/US20100103805A1/en
Priority to JP2007536490A priority patent/JPWO2007034783A1/ja
Publication of WO2007034783A1 publication Critical patent/WO2007034783A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06817Noise reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Definitions

  • the present invention relates to a semiconductor laser driving device that controls the emission power of a semiconductor laser (laser diode: LD), an optical head device including the same, and an optical information processing device using the optical head device.
  • a semiconductor laser driving device that controls the emission power of a semiconductor laser (laser diode: LD), an optical head device including the same, and an optical information processing device using the optical head device.
  • Data recorded on an optical disc is reproduced by irradiating a rotating optical disc with a relatively weak light beam of a constant light quantity and detecting reflected light modulated by the optical disc.
  • a read-only optical disc information by pits is recorded in a spiral shape in advance at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording and reproducing data Z is formed on the surface of a substrate on which tracks having spiral lands or groups are formed by a method such as vapor deposition. It is deposited.
  • the optical disc is irradiated with a light beam whose amount of light is modulated according to the data to be recorded, thereby changing the characteristics of the recording material film locally.
  • the depth of the pits, the depth of the track, and the thickness of the recording material film are smaller than the thickness of the optical disk substrate.
  • the portion of the optical disc where data is recorded constitutes a two-dimensional surface and may be referred to as an “information recording surface”.
  • the phrase “information layer” Will be used.
  • An optical disk has at least one such information layer. It should be noted that one information layer may actually include a plurality of layers such as a phase change material layer and a reflective layer.
  • the light beam When data is recorded on a recordable optical disk or when data recorded on the optical disk is reproduced, the light beam must always be in a predetermined aggregate state on the target track in the information layer.
  • focus control controls the position of the objective lens in the normal direction of the information recording surface (hereinafter referred to as “the depth direction of the substrate”) so that the focal position of the light beam is always located on the information layer. It is to be.
  • the tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is positioned on a predetermined track.
  • optical disks such as DVD (Digital Versatile Disc) ROM, DVD-RAM, DVD-RW, DVD-R, DVD + RW, and DVD + R have been put to practical use as high-density and large-capacity optical disks. It was. CD (Compact Disc) is still popular. At present, the development and commercialization of next-generation optical discs such as Blu-ray Disc (BD) with higher density and larger capacity than these optical discs are being promoted.
  • DVD Digital Versatile Disc
  • DVD-RAM Digital Versatile Disc
  • DVD-RW DVD-R
  • DVD + RW DVD + R
  • An optical head device using a semiconductor laser (laser diode: LD) as a light source is used to record data on such an optical disc or to read data recorded on the optical disc. Is done.
  • the semiconductor laser is driven by a device (semiconductor laser driving device) that supplies a current necessary for laser oscillation to the semiconductor laser.
  • the semiconductor laser driving device includes an APC (Automatic Power Control) circuit for controlling the light emission output of the semiconductor laser to be constant. Part of the light emitted by the semiconductor laser is incident on a photodetector such as a photodiode, and the APC circuit controls the drive current of the semiconductor laser based on the output signal of the photodetector.
  • APC Automatic Power Control
  • FIG. 1 is a graph schematically showing the relationship between the drive current I of the semiconductor laser and the optical output P (current-optical output characteristic: LZI curve).
  • the optical output P increases approximately in proportion to the increase in the dynamic current I. However, when the drive current I is DC, the optical output P is constant. In the example of Fig. 1, when the drive current is a direct current of magnitude I, the optical output is P
  • f is a frequency and t is time.
  • I the frequency f of the high-frequency current I
  • P is the high frequency component of the optical output P
  • P is the amplitude of the high frequency component P
  • Return light noise is a phenomenon that occurs because the oscillation mode of the semiconductor laser is a single mode.
  • the oscillation state is disturbed in the semiconductor laser, Mode hopping or the like occurs, causing noise.
  • the oscillation mode changes to single mode force and multimode, so that it is affected by the return light.
  • the amplitude I and frequency f of the high-frequency current I are necessary to suppress the return light noise.
  • Patent Document 1 describes the high-frequency component P in the optical output that changes due to temperature changes and aging of the semiconductor laser.
  • a technique for controlling 1 is disclosed.
  • Patent Document 2 describes the high-frequency current I so that the superposition of the high-frequency current does not cause reproduction light deterioration.
  • a technique for adjusting 1 is disclosed.
  • Patent Document 3 describes the high-frequency current I when the ambient temperature of the semiconductor laser driving device changes.
  • a technique for variably controlling the frequency f is disclosed.
  • Patent Document 1 JP 2002-350441 A
  • Patent Document 2 International Publication WO2004 / 038711 Pamphlet
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-352124
  • RIN Relative Intensity Noise
  • RIN 10-log ⁇ ( ⁇ ⁇ / ⁇ ) 2 / ⁇ ⁇ ⁇ ⁇ [dB / Hz]
  • emission power There is a tendency to decrease as the laser light output (hereinafter referred to as emission power) increases.
  • RIN in the low output power region is dominated by quantum noise (inherent noise) due to the influence of natural light, but RIN in the high output power region is mode hop noise (spectrum) caused by temperature changes and output changes of the semiconductor laser. Hops) is dominant.
  • FIG. 2 is a graph showing an example of the RIN emission power dependency (noise profile) when a high-frequency current is superimposed on the drive current of the semiconductor laser.
  • the noise profile has a tendency to decrease as the output power increases as a whole.
  • the noise profile is a specific one. It is known that RIN increases and maximizes. In the example shown in Fig. 2, the maximum RIN is observed when the optical output is around 2.7 mW.
  • the output power that causes a local increase in RIN a new oscillation mode is generated due to the superposition of high-frequency current, and intrinsic noise is generated. Such intrinsic noise occurs mainly due to relaxation oscillation of the semiconductor laser.
  • the semiconductor laser in the optical head device is preferably designed so as to operate with an emission power at which the RIN is relatively low. That is, when performing high-frequency superposition, it is preferable to set the output power so as to avoid the above-described region where RIN increases locally.
  • the semiconductor laser power is also controlled so as to keep the laser beam power (emitted power) actually emitted within a predetermined range. Control is performed to maintain the intensity (reproduction power) of the laser beam on the information layer of the optical disc at a predetermined value. This reproduction power does not match the power of the laser beam that is actually emitted (emitted power). Therefore, the same level of reproduction power is realized on the information layer of the optical disc. Even in this case, the output power differs depending on the light utilization efficiency (transmission efficiency) of the optical head device. Hereinafter, the reason will be described.
  • optical head device laser light emitted from the semiconductor laser passes through optical components such as a beam splitter, a collimating lens, and an objective lens, and is then collected on the information layer of the optical disc.
  • the “transmission efficiency” in such an optical head device changes depending on the spread angle of the laser light emitted from the semiconductor laser, the light capture rate and transmittance of each optical component included in the optical head device, and the like. Become. Therefore, even between optical head devices of the same design, due to misalignment of optical components that occur during the manufacturing process, variations in transmission efficiency, for example, about 14 to 22% occur.
  • the semiconductor laser Even when the reproduction power of the optical head device is controlled to a constant value (for example, 0.25 mW), due to the variation in transmission efficiency in each optical head device, the semiconductor laser The output power varies greatly within the range of, for example, 1. lmW to l.8 mW. As a result, even if the same semiconductor laser is used, RIN varies from one optical head device to another.
  • Figure 3 is a graph showing the noise profile at temperatures of 25 ° C and 70 ° C.
  • the output power that minimizes RIN is about 2.0 W at 25 ° C, but is shifted to about 2.5 W at 70 ° C.
  • the output power is 2.0 W, if the temperature rises from 25 ° C to 70 ° C, RIN will rise more than 3dB.
  • the reproduction characteristics such as jitter are deteriorated.
  • the present invention has been made to solve such problems, and provides a semiconductor laser driving device capable of maintaining RIN at a sufficiently low level even when the temperature of the semiconductor laser changes. There is to do.
  • Another object of the present invention is to provide an optical head device and an optical information recording / reproducing device provided with the semiconductor laser driving device.
  • the semiconductor laser driving device of the present invention includes a high-frequency superimposing circuit that superimposes a high-frequency current on the driving current of the semiconductor laser included in the optical head device, and controls the frequency of the high-frequency current according to the temperature of the semiconductor laser.
  • High-frequency superposition control means are provided.
  • the high-frequency superposition control means increases or decreases the frequency of the high-frequency current so as to reduce the relative noise intensity of the semiconductor laser.
  • the embodiment further includes a temperature sensor that detects the temperature of the semiconductor laser, and a memory that stores the temperature detected by the temperature sensor and data related to the frequency of the high-frequency current.
  • the high frequency superposition control means controls the high frequency superposition circuit based on data stored in the memory and a temperature detected by the temperature sensor.
  • the data defines the relationship between the temperature of the semiconductor laser and the frequency of the high-frequency current that minimizes the relative intensity noise of the semiconductor laser at the temperature. Contains information.
  • An optical head device of the present invention includes a semiconductor laser that emits a light beam, an objective lens that focuses the light beam on an information layer of an optical disk, and a semiconductor laser driving device that drives the semiconductor laser.
  • the semiconductor laser driving device controls a frequency of the high-frequency current according to a temperature of the semiconductor laser, and a high-frequency superimposing circuit that superimposes a high-frequency current on a driving current of the semiconductor laser.
  • High-frequency superposition control means means.
  • the optical information recording / reproducing apparatus of the present invention includes a motor that rotates an optical disk, a semiconductor laser that emits a light beam, and a light beam emitted from the semiconductor laser is focused on an information layer of the optical disk.
  • An optical head device having an objective lens for driving, a semiconductor laser driving device for driving the semiconductor laser, and the optical device via the optical head device.
  • An optical information recording / reproducing apparatus comprising a recording / reproducing circuit for transmitting / receiving data to / from a laser, a high-frequency superimposing circuit for superimposing a high-frequency current on a driving current of the semiconductor laser, High-frequency superposition control means for controlling the temperature according to the temperature of the semiconductor laser.
  • a semiconductor laser driving method is a semiconductor laser driving method provided in an optical head device, which generates a direct current supplied to the semiconductor laser and superimposes a high frequency current on the direct current. And controlling the frequency of the high-frequency current according to the temperature of the semiconductor laser so as to reduce the relative noise intensity of the semiconductor laser.
  • the semiconductor laser driving device of the present invention it is possible to suppress an increase in noise by changing the frequency of the high-frequency current in accordance with the temperature change of the semiconductor laser.
  • FIG. 1 is a graph showing optical output current characteristics (L / I Curve).
  • FIG. 2 is a graph showing a noise profile when the temperature of the semiconductor laser is 25 ° C.
  • FIG. 3 is a graph showing the noise profile when the temperature of the semiconductor laser is 25 ° C and 70 ° C.
  • FIG. 4 is a graph showing the dependency of noise profile on superimposed frequency.
  • FIG. 5 is a graph showing the temperature dependence of the noise profile.
  • FIG. 6 is a graph showing that RIN increases with increasing temperature.
  • FIG. 7 is a graph showing that RIN decreases as the superposition frequency decreases.
  • FIG. 8 A graph showing the effect of the output power on the top and bottom of RIN due to the change in the superposition frequency.
  • FIG. 9A is a diagram showing an example of the relationship between the temperature of a semiconductor laser and the superimposed frequency in the present invention.
  • FIG. 9B shows another example of the relationship between the temperature of the semiconductor laser and the superimposed frequency in the present invention.
  • FIG. 9C is a diagram showing still another example of the relationship between the temperature of the semiconductor laser and the superimposed frequency in the present invention.
  • FIG. 10 is a block circuit diagram showing an embodiment of a semiconductor laser driving device according to the present invention.
  • FIG. 11 is a block diagram showing a configuration example of a high frequency superposition circuit.
  • FIG. 12 is a diagram showing an embodiment of an optical head device according to the present invention.
  • FIG. 13 is a diagram showing an embodiment of an optical information processing apparatus according to the present invention.
  • the present inventor has found that the noise profile of RIN is changed by changing the frequency of high frequency superposition, and has completed the present invention.
  • the relationship between the frequency of a high-frequency current and a noise profile will be described.
  • FIG. 4 is a graph schematically showing a noise profile in each of the cases where the superposition frequency is “low”, “medium”, and “high”. As the superposition frequency increases, the noise profile shifts to the right in the graph!
  • FIG. 5 is a graph schematically showing the noise profile in each of the cases where the temperature power of the semiconductor laser is low, medium, and high with the superposition frequency fixed. As the temperature rises, the noise profile shifts to the right in the graph.
  • FIG. 6 shows a noise profile when the output power (output power) is around 2.5 mW when the frequency power of the high-frequency current is 00 MHz.
  • the dashed curve 61 is the noise profile at a semiconductor laser temperature of 25 ° C
  • the solid curve 62 is the noise profile at a semiconductor laser temperature of 60 ° C.
  • RIN at an output power of 2.5mW is –127dBm.
  • RIN increases to 123dBm.
  • FIG. 7 shows a noise profile when the superposition frequency is changed to 400 MHz, 350 MHz, and 300 MHz when the temperature of the semiconductor laser is 60 ° C.
  • a solid curve 63, a dashed curve 64, and a dashed-dotted curve 65 are noise profiles when the superposition frequencies are 400 MHz, 350 MHz, and 300 MHz, respectively.
  • FIG. 6 and FIG. 7 show only a region where the output power force S is relatively small in the noise profiles of FIG. 4 and FIG. In this region, as described above, it is possible to prevent the increase in RIN caused by the temperature rise by reducing the superposition frequency, but depending on the magnitude of the emission power of the semiconductor laser, the frequency of the high-frequency current can be reduced. RIN may increase RIN instead. Hereinafter, this point will be described.
  • FIG. 8 shows a graph obtained by extracting and enlarging curves of the superimposed frequency force ⁇ medium ”and“ low ”from the noise profile shown in FIG.
  • the force that reduces RIN by lowering the superposition frequency In the ⁇ reverse region R '' region, lowering the superposition frequency will increase RIN .
  • 6 and 7 show the noise profile in the region where the output power is smaller than the “reversed region R” in FIG. would have been.
  • the reproduction power of the optical head device is measured by a light detection element, and is automatically controlled to a desired size based on the measured value (APC) force
  • APC measured value
  • the output power of the semiconductor laser which varies with time, is not directly measured. Therefore, even if the playback power is controlled to the same level, the output power of the semiconductor laser may be different for each optical head device, and the output power of each semiconductor laser is shown in FIG. Whether it is included in “Region R” is also unknown. As a result, the power to increase or decrease the frequency of high frequency with increasing temperature is completely different for each optical head device, and it cannot be simply concluded.
  • RIN is measured by changing the frequency of the high-frequency current applied to the semiconductor laser, and the frequency dependence of RIN Seeking sex.
  • the force is also measured at different temperatures (eg 25 ° C, 50 ° C, 75 ° C) to determine the frequency at which RIN is lowest at each of these temperatures.
  • the superposed frequency to be reduced can be obtained.
  • the superposition frequencies that minimize RIN at temperatures of 20 ° C, 50 ° C, and 75 ° C are 400 MHz, 370 MHz, and 340 MHz, for example.
  • the superposition frequency is set to 400 MHz when the temperature of the semiconductor laser is 25 ° C. based on the above measurement data.
  • the superposition frequency can be changed to 370MHz, and when it reaches 75 ° C, the superposition frequency can be changed to 340MHz.
  • Such superposition frequency control based on temperature change can be executed in various forms as shown in FIGS. 9A, 9B, and 9C, for example.
  • the superposition frequency is monotonously decreased as the temperature rises, but depending on the size of the output power, the superposition frequency is monotonously increased as the temperature rises. It may be necessary to switch the increase or decrease at a specific temperature. How to change the superposition frequency is determined based on the data in Table 1.
  • the measurement for obtaining the data in Table 1 is performed in a state where the semiconductor laser is actually included in the optical head device. For this reason, data according to the characteristics of the semiconductor laser and the transmission efficiency indicated by the optical system in the optical head device can be obtained, and the optimum frequency suitable for each optical head device can be determined.
  • the frequency at which RIN is minimized at temperature T is shown in Table 1.
  • the force can also be obtained by calculation.
  • the mode of temperature change shown in Fig. 9B and Fig. 9C can be easily implemented by creating complementary data by calculation based on the measured data at 25 ° C, 50 ° C, and 75 ° C in Table 1. .
  • the data in Table 1 was obtained when a specific reproduction power was realized on the information layer of the optical disc. If the reproduction power is different, the data is reproduced accordingly. Since the power also changes, data different from Table 1 can be obtained. In order to support a plurality of types of optical discs with different playback parameters, the data shown in Table 1 may be obtained in advance for each of a plurality of different playback parameters and stored in the memory.
  • FIG. 10 is a diagram showing a configuration of an embodiment of a semiconductor laser driving device according to the present invention.
  • the semiconductor laser driving device of this embodiment includes a semiconductor laser 1, a light detection element 2 that detects a part of the laser light emitted from the semiconductor laser 1, and a direct current of a laser driving current 6 to the semiconductor laser 1.
  • the high-frequency superposition circuit 3 for superimposing the high-frequency current on the DC component of the laser drive current 6, the high-frequency superposition control circuit 5 for controlling the operation of the high-frequency superposition circuit 3, and the semiconductor laser 1
  • the semiconductor laser 1 It includes a temperature sensor 9 that detects temperature, a noise detection circuit 7 that detects noise (RIN) of the semiconductor laser 1, and a storage device 8 that stores various data such as the table in Table 1 described above. .
  • the main part 10 of this semiconductor laser driving device is composed of the components surrounded by the broken line frame in FIG. 10, and is mounted in the optical head device. Some of the constituent elements of the semiconductor laser driving device are provided on the circuit board of the optical information recording / reproducing device located outside the optical head device. Also good.
  • the high-frequency superimposing control circuit 5 is typically formed on an integrated circuit (IC) mounted on a circuit board of an optical information recording / reproducing device, but is incorporated on a laser driving IC in the optical head device. May be.
  • the laser drive circuit 4 is typically incorporated on a laser drive IC in the optical head device.
  • the optical head device includes an objective lens that focuses the laser light emitted from the semiconductor laser 1 and a photodetector that detects the light reflected by the optical disk. These configurations are known. The illustration is omitted.
  • the semiconductor laser 1 is, for example, a single mode laser with an oscillation wavelength of 405 nm, and emits laser light with a power corresponding to the laser drive current 6 output from the laser drive circuit 4.
  • a part of the laser light emitted from the semiconductor laser 1 enters the light detection element 2 and is converted into an electric signal corresponding to the incident light intensity by photoelectric conversion. This electric signal is fed back to the laser drive circuit 4 to control the reproduction power to a predetermined value, so that the output of the light detection element 2 is controlled to be constant.
  • a part of the laser beam measured to adjust the emission power of the semiconductor laser 1 is generally called “front light”, and the light detecting element 2 for detecting the front light is called “front light monitor”. Is done.
  • the laser light emitted from the semiconductor laser 1 is guided to the optical disc via an objective lens (not shown) for recording or reproduction, and irradiates the information layer.
  • the light reflected by the information layer of the optical disk enters a photodetector (not shown), and various signals are generated by photoelectric conversion.
  • the direct current drive current output from the laser drive circuit 4 is controlled so that the temporal average value (ie, direct current component) of the electrical signal output from the light detection element 2 is constant.
  • the average value of the output power of the laser 1 is kept substantially constant.
  • FIG. 11 is a diagram illustrating a configuration example of the high-frequency superimposing circuit 3.
  • the high-frequency superimposing circuit 3 includes an oscillation frequency variable circuit (multivibrator) 302, a DZA converter 304, and a current generation circuit (op-amp) 306.
  • the multivibrator 302 is an oscillation circuit that oscillates variably at a high frequency of about 200 to 600 MHz, for example.
  • the DZA converter 304 converts the frequency control signal sent from the high frequency superposition control circuit 5 into a digital signal force To the operational amplifier 306.
  • the operational amplifier 306 generates a current ⁇ having a magnitude corresponding to the frequency control signal and supplies it to the multivibrator 302. As the magnitude of the current ⁇ changes, the voltage across the resistor provided in the multivibrator 302 changes, so the oscillation frequency (superimposition frequency) changes.
  • the high-frequency current output from the high-frequency superposing circuit 3 is superposed on the laser driving current 6 by AC coupling.
  • the laser driving current 6 on which the high-frequency current is superimposed is injected into the semiconductor laser 1 to emit light by making the single mode laser into multimode. Therefore, noise can be reduced by reducing the influence of the recording medium such as an optical disk on the return light.
  • the amount of light is increased compared to that during reproduction, and for example, recording is performed by giving a phase change to the information layer of the optical disc that also has phase change material power.
  • the laser drive circuit 4 increases the laser drive current 6 to increase the amount of light.
  • the storage device 8 is composed of, for example, a semiconductor memory, and the information regarding the frequency of the high-frequency current when the temperature of the semiconductor laser 1 changes is a table in which the superposition frequency is associated with the temperature as described above. Stored in the format.
  • the temperature sensor 9 measures the temperature of the semiconductor laser 1 and outputs an electrical signal according to the measured temperature.
  • the high frequency superposition control circuit 5 controls the frequency of the high frequency output from the high frequency superposition circuit 3 according to the information stored in the storage device 8 with respect to the temperature of the semiconductor laser 1 detected by the temperature sensor 9. Suppresses noise increase in semiconductor laser 1.
  • the reproduction power varies depending on the optical disk to be reproduced. For example, if the playback power for a single-layer BD disc is 0.25 mW @ degree, the playback power for a dual-layer BD disc is about 0.50 mW. As described above, when the necessary reproduction power changes depending on the optical disc, the emission power of the semiconductor laser also changes accordingly.
  • the frequency of the high-frequency current is adjusted in order to control the emission power of the semiconductor laser within a range where RIN is sufficiently small by the above-described method. It was obtained under the conditions for realizing the reproduction power. the same Even with an optical head device, the output power will be different if the reproduction power is different.
  • the emission power of the semiconductor laser is not changed.
  • the optimum frequency for each temperature is obtained in the case of the reproduction power (0.5 mW) required for the two-layer BD.
  • a light quantity control element for adjusting the intensity of the laser light emitted from the semiconductor laser is inserted in the optical path, and the reproducing power is reduced to about 0.25 mW. Decrease. Since the change in the reproduction power is executed by the light amount control element, the emission power of the semiconductor laser can be kept substantially constant even when the reproduction power is changed. In this way, it is possible to select an optimum frequency based on data acquired for a specific reproduction power, and to realize reproduction power corresponding to various optical disks with low RIN.
  • FIG. 12 constituent members having the same functions as those in FIG.
  • a characteristic point of the optical head device of the present embodiment is that the semiconductor laser driving device of the first embodiment is provided.
  • the laser light 22 having a wavelength of 405 nm emitted from the semiconductor laser 1 is converted into substantially parallel light by the condenser lens 23, and then the objective is operated by the rising mirror 24. Enter the lens 25.
  • the objective lens 25 focuses the laser beam 22 on the information layer of the optical disc 26.
  • the light reflected by the information layer of the optical disk 26 returns in the reverse order of the forward path in the order of the objective lens 25, the rising mirror 24, and the condenser lens 23.
  • the reflected light is reflected by the beam splitter 27, enters the photodetector 28, and is converted into an electric signal by photoelectric conversion of the photodetector 28.
  • This electrical signal is used to form an RF signal or servo signal from a pit row on the optical disk 26.
  • a part of the laser light 22 emitted from the semiconductor laser 1 is separated by the front light monitor beam splitter 21 and enters the light detection element 2.
  • the electrical signal output from the light detection element 2 is converted into an electrical signal corresponding to the incident light intensity by photoelectric conversion. This electric signal is fed back to the laser driving circuit 4 of the semiconductor laser driving device shown in FIG. 10 and used for controlling the laser light emission intensity (emitted power) of the semiconductor laser 1.
  • the operation during data recording and the operation during data reproduction are basically the same force.
  • the amount of light emitted from the semiconductor laser 1 during data recording is relatively large.
  • the optical properties of the information layer of the optical disk 26 are changed. By doing so, data recording is performed.
  • the optical head device includes the semiconductor laser driving device according to the first embodiment. Therefore, the frequency of the high-frequency current is appropriately adjusted according to the temperature change of the semiconductor laser 1.
  • the optical information processing apparatus of the present embodiment is an optical disk apparatus capable of recording data on an optical disk and reproducing optical disk force data.
  • the optical head device according to the second embodiment is provided.
  • the optical information recording / reproducing apparatus of this embodiment supplies power to the optical head device 31 of Embodiment 2, the motor 32 for rotating the optical disk 26, and the optical head device 31 and the motor 32. And a circuit board 33 connected thereto.
  • the circuit board is provided with a circuit for controlling the operation of the optical head device 31 and a circuit for performing signal processing necessary for data recording / reproduction with respect to the optical disk 26. These circuits are realized in the form of an integrated circuit device and are mounted on the circuit board 33.
  • the optical head device 31 sends a signal corresponding to the positional relationship with the optical disk 26 to the circuit board 33. Based on this signal, the circuit board 33 outputs a servo signal for driving the optical head device 31 and the objective lens 25 in the optical head device.
  • the optical head device 31 and the objective lens 25 perform information reading, writing, or erasing operations on the optical disc 26 while receiving control of focus servo and tracking servo by a drive mechanism (not shown). From power supply 34. Electric power is supplied to the circuit board 33, the driving mechanism of the optical head device 31, the motor 32, and the objective lens driving device.
  • the optical information recording / reproducing apparatus of the present embodiment includes the optical head device 31 of the second embodiment, the frequency of the high-frequency current is appropriately set according to the temperature change of the semiconductor laser 1 in the optical head device 31. To increase the RIN. For this reason, according to the optical information recording / reproducing apparatus of this embodiment, even if the temperature of the semiconductor laser rises, the generation of noise is suppressed, and stable recording and Z or reproduction can be performed.
  • the semiconductor laser driving device of the present invention can suppress an increase in noise of the semiconductor laser due to a temperature change, it can be widely applied to devices including a semiconductor laser that requires low noise operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明の半導体レーザ駆動装置は、光ヘッド装置が備える半導体レーザ1のレーザ駆動電流6に高周波電流を重畳する高周波重畳回路3と、高周波電流の周波数を半導体レーザ1の温度に応じて制御する高周波重畳制御回路5とを備えている。

Description

明 細 書
半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置 技術分野
[0001] 本発明は、半導体レーザ (レーザダイオード: LD)の出射パワーを制御する半導体 レーザ駆動装置、これを備える光ヘッド装置、及び当該光ヘッド装置を用いた光情 報処理装置に関する。
背景技術
[0002] 光ディスクに記録されているデータは、比較的弱い一定の光量の光ビームを回転 する光ディスクに照射し、光ディスクによって変調された反射光を検出することによつ て再生される。
[0003] 再生専用の光ディスクには、光ディスクの製造段階でピットによる情報が予めスパイ ラル状に記録されている。これに対して、書き換え可能な光ディスクでは、スパイラル 状のランドまたはグループを有するトラックが形成された基材表面に、光学的にデー タの記録 Z再生が可能な記録材料膜が蒸着等の方法によって堆積されて 、る。書き 換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光量 を変調した光ビームを光ディスクに照射し、それによつて記録材料膜の特性を局所的 に変化させることによってデータの書き込みを行う。
[0004] なお、ピットの深さ、トラックの深さ、および記録材料膜の厚さは、光ディスク基材の 厚さに比べて小さい。このため、光ディスクにおいてデータが記録されている部分は 、 2次元的な面を構成しており、「情報記録面」と称される場合がある。本明細書では 、このような情報記録面が深さ方向にも物理的な大きさを有していることを考慮し、「 情報記録面」の語句を用いる代わりに、「情報層」の語句を用いることとする。光デイス クは、このような情報層を少なくとも 1つ有している。なお、 1つの情報層が、現実には 、相変化材料層や反射層などの複数の層を含んで 、てもよ 、。
[0005] 記録可能な光ディスクにデータを記録するとき、または、光ディスクに記録されてい るデータを再生するとき、光ビームが情報層における目標トラック上で常に所定の集 束状態となる必要がある。このためには、「フォーカス制御」および「トラッキング制御」 が必要となる。「フォーカス制御」は、光ビームの焦点の位置が常に情報層上に位置 するように対物レンズの位置を情報記録面の法線方向(以下、「基板の深さ方向」と 称する。 )に制御することである。一方、トラッキング制御とは、光ビームのスポットが所 定のトラック上に位置するように対物レンズの位置を光ディスクの半径方向(以下、「 ディスク径方向」と称する。 )に制御することである。
[0006] 従来、高密度 ·大容量の光ディスクとして、 DVD (Digital Versatile Disc) RO M, DVD-RAM, DVD-RW, DVD-R, DVD+RW, DVD+R等の光ディスク が実用化されてきた。また、 CD (Compact Disc)は今も普及している。現在は、こ れらの光ディスクよりもさらに高密度化 '大容量ィ匕されたブルーレイディスク (Blu-ray Disc ; BD)などの次世代光ディスクの開発 ·実用化が進められつつある。
[0007] このような光ディスクに対してデータを記録し、あるいは光ディスクに記録されている データを読み出すため、半導体レーザ (レーザダイオード: LD)を光源とする光学式 ヘッド装置 (光ヘッド装置)が使用される。半導体レーザは、レーザ発振に必要な電 流を半導体レーザに供給する装置 (半導体レーザ駆動装置)によって駆動される。
[0008] 半導体レーザ駆動装置は、半導体レーザの発光出力を一定に制御するための AP C (Automatic Power Control)回路を備えている。半導体レーザが発する光の 一部は、フォトダイオード等の光検出器に入射し、 APC回路は、この光検出器の出 力信号に基づいて半導体レーザの駆動電流を制御する。
[0009] 現在、半導体レーザを駆動するため、直流電流に高周波電流を重畳する技術が採 用されている。このような高周波重畳は、光ディスクから反射されたレーザ光が半導 体レーザに戻ることによって半導体レーザで発生する戻り光ノイズを抑制するために 行われている。
[0010] 図 1は、半導体レーザの駆動電流 Iと光出力 Pとの関係(電流一光出力特性: LZI Curve)を模式的に示すグラフである。駆動電流 Iが閾値 I を超えて大きくなると、駆
TH
動電流 Iの増加に略比例して光出力 Pが増加するが、駆動電流 Iが直流の場合、光出 力 Pは一定となる。図 1の例では、駆動電流が大きさ Iの直流電流のとき、光出力は P
0
である。このような直流電流 Iに高周波電流 I =1 · sin (2 π ft)を重畳すると、半導体
0 0 H 1
レーザに供給される駆動電流の大きさ Iは、全体として、以下の式 1で示される。 [0011] 1 = 1 + 1 = 1 + 1 ' sin (2 ft) · · · (式 1)
0 H 0 1
[0012] ここで、 fは周波数、 tは時間である。なお、本明細書では、高周波電流 Iの周波数 f
H
を「重畳周波数」と称する場合がある。式 1で駆動電流 Iが表現されるとき、光出力 Pは 、以下の式 2で表されることになる。
[0013] P = P +P =P +P ' sin (2 ft) · · · (式 2)
0 H 0 1
[0014] ここで、 Pは光出力 Pの高周波成分、 Pは高周波成分 Pの振幅である。
H 1 H
[0015] 戻り光ノイズは、半導体レーザの発振モードがシングルモードであるために生じる現 象であり、光ディスクで反射された光が半導体レーザに戻ってくると、半導体レーザ 内で発振状態が乱れ、モードホッピングなどが生じ、ノイズの原因となる。シングルモ ードで発振する半導体レーザの駆動電流に上述の高周波重畳を行うと、発振モード がシングルモード力もマルチモードに変化するため、戻り光の影響を受けに《なる。
[0016] 従来、高周波電流 Iの振幅 I及び周波数 fは、戻り光ノイズを抑制するために必要
H 1
な大きさに設定されていた。この振幅 I
1及び周波数 fを調整する技術は下記の文献に 開示されて ヽるが、周波数 fを調整することは行われて ヽなかった。
[0017] 特許文献 1は、半導体レーザの温度変化や経時変化によって変化する光出力にお ける高周波成分 Pの
H 振幅 P
1を抽出し、基準値と比較することにより、高周波電流 Iの
H
振幅 I
1を制御する技術を開示している。
[0018] 特許文献 2は、高周波電流の重畳が再生光劣化を引き起こさないように高周波電 流 Iの
H 振幅 I
1を調整する技術を開示している。
[0019] 特許文献 3は、半導体レーザ駆動装置の環境温度が変化した場合に高周波電流 I の
H 周波数 fが設定値力 シフトする問題を解決するため、高周波電流 Iの
H 周波数 fを 可変に制御する技術を開示して 、る。
特許文献 1 :特開 2002— 335041号公報
特許文献 2:国際公開 WO2004/038711号パンフレット
特許文献 3:特開 2001 - 352124号公報
発明の開示
発明が解決しょうとする課題
[0020] 後述するように、半導体レーザの駆動電流に高周波電流を重畳した場合、半導体 レーザの温度が変化すると、 RIN (Relative Intensity Noise :相対強度雑音)が増 加するという問題のあることがわ力つた。 RINは、レーザ光の時間的なゆらぎを表す パラメータであり、直流駆動の半導体レーザの平均光出力を P、光出力のゆらぎを δ
0
Ρ、測定帯域幅を Δ ίとすると、以下の式で表される。
[0021] RIN = 10 - log { ( δ Ρ/Ρ ) 2/ Δ ί} · · · [dB/Hz]
ο
[0022] 一般に半導体レーザの RINは、平均光出力 Pが大きくなるほど、すなわち、半導体
0
レーザの光出力(以下、出射パワーと称する。)が高くなるほど、低下する傾向がある
。低出射パワー領域における RINは、自然光の影響による量子ノイズ(固有雑音)が 支配的であるが、高出射パワー領域における RINは、半導体レーザの温度変化や出 力変化に起因するモードホップノイズ (スペクトルのホップ)が支配的である。
[0023] 図 2は、半導体レーザの駆動電流に高周波電流を重畳した場合における RINの出 射パワー依存性 (ノイズプロファイル)の一例を示すグラフである。上述したように、ノ ィズプロファイルは、全体として出射パワーの増加に伴って低下する傾向を示してい る力 半導体レーザの駆動電流に高周波電流を重畳した場合は、ある特定の出射パ ヮ一で RINが増加し、極大化することが知られている。図 2の例では、光出力が 2. 7 mW付近で RINの極大化が観察される。 RINの局所的な増加が生じる出射パワーで は、高周波電流の重畳により新たな発振モードが発生し、固有雑音が生成されてい ると考えられる。このような固有雑音は、半導体レーザの緩和振動が主たる要因とし て発生する。
[0024] 光ヘッド装置内の半導体レーザは、その RINが相対的に低くなる出射パワーで動 作するように設計されることが好ましい。すなわち、高周波重畳を行う場合は、 RINが 局所的に増大する上記の領域を避けるように出射パワーを設定することが好ましい。 しかしながら、光情報記録再生装置などの光情報記録再生装置に用いられる光へッ ド装置では、半導体レーザ力も実際に出射されるレーザ光のパワー(出射パワー)を 所定範囲に保持するような制御は行われておらず、光ディスクの情報層上におけるレ 一ザ光の強度 (再生パワー)を所定値に維持する制御が行われる。この再生パワー は、半導体レーザ力 実際に出射されるレーザ光のパワー(出射パワー)とは一致し ていない。したがって、光ディスクの情報層上で同一レベルの再生パワーが実現され ている場合であっても、光ヘッド装置の光利用効率 (伝送効率)に応じて出射パワー は異なるものとなる。以下、この理由を説明する。
[0025] 光ヘッド装置内では、半導体レーザから出射したレーザ光は、ビームスプリッタ、コリ メートレンズ、対物レンズなどの光学部品を透過してから、光ディスクの情報層上に集 束される。このような光ヘッド装置における「伝送効率」は、半導体レーザから出射さ れるレーザ光の広がり角、光ヘッド装置が備える各光学部品の光取込率及び透過率 などに依存して変化することになる。したがって、同一設計の光ヘッド装置間でも、製 造工程時に生じる光学部品の位置合わせズレなどに起因して、「伝送効率」に例え ば 14〜22%程度のばらつきが発生する。光ディスクの情報層上で 0. 25mWの再生 パワーを実現する場合、伝送効率が 14%であるとすると、 0. 25/0. 14= 1. 8mW の出射パワーが必要になる。一方、伝送効率が 22%の場合は、 0. 25/0. 22= 1. lmWの出射パワーで 0. 25mWの再生パワーを実現できる。
[0026] このように、光ヘッド装置の再生パワーが一定値(例えば 0. 25mW)に制御されて いる場合であっても、個々の光ヘッド装置における伝送効率のバラツキにより、半導 体レーザの出射パワーは例えば 1. lmW〜l. 8mWの範囲で大きく変動する。その 結果、同一の半導体レーザを用いていても、光ヘッド装置ごとに RINがばらつくこと になる。
[0027] 一方、半導体レーザの温度が変化すると、ノイズプロファイルがシフトすることもわか つている。図 3は、温度 25°C及び 70°Cにおけるノイズプロファイルを示すグラフであ る。出射パワーが 1. 5〜3. 0Wの範囲において、 RINを最小化する出射パワーは、 25°Cでは約 2. 0Wであるが、 70°Cでは約 2. 5Wにシフトしている。出射パワーが 2. 0Wのとき、温度が 25°Cから 70°Cに上昇すると、 RINは 3dB以上も上昇してしまうこと になる。このように、光ヘッド装置における半導体レーザの RINが大きくなると、ジッタ 一等の再生特性が劣化してしまう。
[0028] 以上の説明からわ力るように、光ヘッド装置内の半導体レーザや光学系が室温に ぉ ヽて RINを最小化するように設計'調整されて!、る場合であっても、動作時の温度 変化により、 RINが著しく増加する場合があり、光情報記録再生装置の信頼性を低 下させる問題が生じる。 [0029] 本発明は、このような問題を解決するためになされたものであり、半導体レーザの温 度が変化しても RINを充分に低いレベルに維持することのできる半導体レーザ駆動 装置を提供することにある。また、本発明の他の目的は、当該半導体レーザ駆動装 置を備える光ヘッド装置及び光情報記録再生装置を提供することにある。
課題を解決するための手段
[0030] 本発明の半導体レーザ駆動装置は、光ヘッド装置が備える半導体レーザの駆動電 流に高周波電流を重畳する高周波重畳回路と、前記高周波電流の周波数を前記半 導体レーザの温度に応じて制御する高周波重畳制御手段とを備える。
[0031] 好ましい実施形態において、前記高周波重畳制御手段は、前記半導体レーザの 相対雑音強度を低下させるように前記高周波電流の周波数を増減する。
[0032] 好ま 、実施形態にぉ 、て、前記半導体レーザの温度を検出する温度センサと、 前記温度センサが検出した温度と前記高周波電流の周波数に関するデータとを格 納するメモリとをさらに備え、前記高周波重畳制御手段は、前記メモリに格納されて いるデータと前記温度センサが検出した温度とに基づいて前記高周波重畳回路を 制御する。
[0033] 好ま 、実施形態にお!、て、前記データは、前記半導体レーザの温度と、前記温 度で前記半導体レーザの相対強度雑音を最小化する前記高周波電流の周波数との 関係を規定する情報を含んで 、る。
[0034] 本発明の光ヘッド装置は、光ビームを出射する半導体レーザと、前記光ビームを光 ディスクの情報層に集束するための対物レンズと、前記半導体レーザを駆動する半 導体レーザ駆動装置とを備える光ヘッド装置であって、前記半導体レーザ駆動装置 は、前記半導体レーザの駆動電流に高周波電流を重畳する高周波重畳回路と、前 記高周波電流の周波数を前記半導体レーザの温度に応じて制御する高周波重畳 制御手段とを備える。
[0035] 本発明の光情報記録再生装置は、光ディスクを回転させるモータと、光ビームを出 射する半導体レーザ、及び、前記半導体レーザから出射された光ビームを前記光デ イスクの情報層に集束するための対物レンズを有する光ヘッド装置と、前記半導体レ 一ザを駆動する半導体レーザ駆動装置と、前記光ヘッド装置を介して前記光デイス クとの間でデータの授受を行う記録再生回路とを備える光情報記録再生装置であつ て、前記半導体レーザの駆動電流に高周波電流を重畳する高周波重畳回路と、前 記高周波電流の周波数を前記半導体レーザの温度に応じて制御する高周波重畳 制御手段とを備える。
[0036] 本発明による半導体レーザの駆動方法は、光ヘッド装置が備える半導体レーザの 駆動方法であって、前記半導体レーザに供給する直流電流を生成することと、前記 直流電流に高周波電流を重畳することと、前記半導体レーザの相対雑音強度を低 下させるように前記高周波電流の周波数を前記半導体レーザの温度に応じて制御 することを行う。
発明の効果
[0037] 本発明の半導体レーザ駆動装置によれば、半導体レーザの温度変化に応じて高 周波電流の周波数を変化させることにより、ノイズの増加を抑制することが可能である 図面の簡単な説明
[0038] [図 1]光出力 電流特性 (L/I Curve)を示すグラフである。
[図 2]半導体レーザの温度が 25°Cの場合におけるノイズプロファイルを示すグラフで ある。
[図 3]半導体レーザの温度が 25°C及び 70°Cときのノイズプロファイルを示すグラフで ある。
[図 4]ノイズプロファイルの重畳周波数依存性を示すグラフである。
[図 5]ノイズプロファイルの温度依存性を示すグラフである。
[図 6]温度上昇によって RINが増加することを示すグラフである。
[図 7]重畳周波数の低下によって RINが減少することを示すグラフである。
[図 8]重畳周波数の変化による RINの上下に出射パワーが及ぼす影響を示すグラフ である。
[図 9A]本発明における半導体レーザの温度と重畳周波数との関係の一例を示す図 である。
[図 9B]本発明における半導体レーザの温度と重畳周波数との関係の他の例を示す 図である。
[図 9C]本発明における半導体レーザの温度と重畳周波数との関係の更に他の例を 示す図である。
圆 10]本発明による半導体レーザ駆動装置の実施形態を示すブロック回路図である
[図 11]高周波重畳回路の構成例を示すブロック図である。
[図 12]本発明による光ヘッド装置の実施形態を示す図である。
[図 13]本発明による光情報処理装置の一実施形態を示す図である。
符号の説明
1 半導体レーザ
2 光検出素子
3 高周波重畳回路
4 レーザ駆動回路
5 高周波重畳制御回路
6 レーザ駆動電流
7 ノイズ検出回路
8 記憶装置
9 温度センサ
302 発振周波数可変回路(マルチバイブレータ)
304 DZA変
306 電流発生回路 (オペアンプ)
発明を実施するための最良の形態
[0040] 本発明者は、高周波重畳の周波数を変化させることによって RINのノイズプロフアイ ルが変化することを見出し、本発明を完成した。以下、本発明の好ましい実施形態を 説明する前に、高周波電流の周波数とノイズプロファイルとの関係を説明する。
[0041] 図 4は、重畳周波数が「低」、「中」、「高」の場合のそれぞれにおけるノイズプロファ ィルを模式的に示すグラフである。重畳周波数が上昇するに伴ってノイズプロフアイ ノレはグラフ中で右にシフトして!/ヽる。 [0042] 一方、図 5は、重畳周波数を固定した状態で半導体レーザの温度力 ^低」、「中」、「 高」の場合のそれぞれにおけるノイズプロファイルを模式的に示すグラフである。温度 が上昇するに伴ってノイズプロファイルはグラフ中で右にシフトしている。
[0043] 図 6は、高周波電流の周波数力 00MHzの場合において、出射パワー(出射パヮ 一)が 2. 5mW付近におけるノイズプロファイルを示している。破線の曲線 61は、半 導体レーザの温度が 25°Cにおけるノイズプロファイルであり、実線の曲線 62は、半 導体レーザの温度が 60°Cにおけるノイズプロファイルである。温度が 25°Cの場合、 出射パワー 2. 5mWでの RINは— 127dBmである力 温度が 60°Cに上昇すると、 RI Nは 123dBmに上昇している。
[0044] 一方、図 7は、半導体レーザの温度が 60°Cの場合において、重畳周波数を 400M Hz、 350MHz, 300MHzと変化させたときのノイズプロファイルを示している。実線 の曲線 63、破線の曲線 64、及び一点鎖線の曲線 65は、それぞれ、重畳周波数が 4 00MHz、 350MHz,及び 300MHzの場合のノイズプロファイルである。
[0045] 半導体レーザの温度が 60°Cの場合、重畳周波数力 00MHzのままであると、前述 したように、 RINは一 123dBmに上昇している力 重畳周波数を 300MHzに低下さ せると、 RINは— 127dBmに低下する。このように、ある範囲の出射パワーにおいて 、重畳周波数を低下させることにより、温度上昇に伴う半導体レーザのノイズ増加を 抑制することが可能になる。
[0046] 図 6及び図 7は、図 4及び図 5のノイズプロファイルにおいて、相対的に出射パワー 力 S小さな領域のみを示している。この領域では、上述したように、温度上昇によって引 き起こされる RINの増加を、重畳周波数の低下によって防止することが可能であるが 、半導体レーザの出射パワーの大きさによっては、高周波電流の周波数低下によつ て却って RINを増加させてしまう可能性がある。以下、この点を説明する。
[0047] 図 4に示すノイズプロファイルのうち、重畳周波数力 ^中」及び「低」の曲線を抽出し て拡大したグラフを図 8に示す。図 8に示す「逆転領域 R」以外の領域では、重畳周 波数を低下させることによって RINが低下する力 「逆転領域 R」域では、重畳周波数 を低下させると、かえって RINが増加することになる。なお、図 6及び図 7は、図 8の「 逆転領域 R」に比べて出射パワーが小さ 、領域におけるノイズプロファイルを示して いたことになる。
[0048] このように、高周波電流の周波数に依存して RINがどのように変化するかは、半導 体レーザの出射パワーに依存しており、この出射パワーは、前述したように個々の光 ヘッド装置の伝送効率によって異なって 、る。
[0049] なお、光ヘッド装置の再生パワーは、光検出素子によって測定され、その測定値に 基づいて、所望の大きさに自動制御される (APC)力 個々のピックアップ装置の伝 送効率に応じて変化する半導体レーザの出射パワーは、直接には測定されない。し たがって、同一レベルの再生パワーに制御されている場合でも、光ヘッド装置ごとに 半導体レーザの出射パワーは異なっている可能性があり、個々の半導体レーザの出 射パワーが図 8の「逆転領域 R」に含まれるか否力も不明である。その結果、温度の 増加によって高周波の周波数を高めるべき力 それとも低くするべきかは、光ヘッド 装置ごとに全く異なったものとなり、単純には結論付けられない。
[0050] 本発明の好ましい実施形態においては、半導体レーザを実際に組み込んだ光へッ ド装置を作製した後、半導体レーザに与える高周波電流の周波数を変化させて RIN を測定し、 RINの周波数依存性を求める。し力も、この測定を異なる温度 (例えば 25 。C、 50°C、 75°C)で実行し、これらの各温度において最も RINを低くすることのできる 周波数を決定する。
[0051] このような測定によって得られた RINに関するデータは、例えば、以下の表 1に示 すテーブルとしてメモリ内に格納される。
[0052] [表 1]
重畳周波数
25°Cでの RIN 50°Cでの RIN 75°C
(MHz) での RIN
[dB/Hz] [dBm]
330 -124.5 -123.0 -124.5
340 - 124.0 -123.5 -125.0
350 - 123.5 -124.0 -124.5
360 -123.0 -124.5 -124.0
370 -123.5 -125.0 -123.5
380 -124.0 -124.5 -123.0
390 -124.5 -124.0 -122.5
400 -125.0 -123.5 -122.0
410 -124.5 -123.0 -121.5
420 -124.0 -122.5 -121.0
430 -123.5 -122.0 -120.5
[0053] 上記の測定を行うことにより、温度が 25°C 50°C 75°Cの場合において、 RINを最
CD
小化する重畳周波数を求めることができる。こうして、 20°C 50°C、および 75°Cのそ れぞれの温度で RINを最小化する重畳周波数が例えば 400MHz 370MHz、およ び 340MHzであることがわかったとする。このような光ヘッド装置を用いて光情報記 録再生装置を実際に動作させる場合、上記の測定データに基づき、半導体レーザの 温度が 25°Cのときは重畳周波数を 400MHzに設定し、半導体レーザの温度が上昇 して 50°Cに達したときは、重畳周波数を 370MHzに変化させ、更に 75°Cに達したと きは、重畳周波数を 340MHzに変化させればよい。
[0054] このような温度変化に基づく重畳周波数の制御は、例えば図 9A、図 9B、図 9Cに 示すように種々の形態で実行することができる。なお、図 9A〜図 9Cに示す例では、 温度の上昇に伴って重畳周波数を単調に低下させているが、出射パワーの大きさに よっては、温度の上昇に伴って重畳周波数を単調に増加させるべき場合や、特定の 温度で増減を切り換えるべき場合もあり得る。どのように重畳周波数を変化させるか については、表 1のデータに基づいて決定される。
[0055] 表 1のデータを得るための測定は、実際に半導体レーザを光ヘッド装置内に み 込んだ状態で実行する。このため、半導体レーザの特性や光ヘッド装置内の光学系 が示す伝送効率に応じたデータが得られ、個々の光ヘッド装置に合った最適な周波 数を決定することができる。
[0056] なお、実際の測定は 25°Cでのみ実行し、他の温度におけるデータは、 25°Cにおけ るデータを補正することによって作成してもよい。前述したように、同一の半導体レー ザを備えていても、光の伝送効率のばらつきによって出射パワーにばらつきが生じる 力 特定温度 (例えば 25°C)での実測により、その温度で RINを極小化する周波数 が求まれば、他の温度において RINを極小化する周波数は、半導体レーザの特性 に基づ!/、て推定可能である。
[0057] また、実使用時における半導体レーザの実際の温度 Tが 25°C、 50°C、 75°Cに一 致していない場合は、温度 Tで RINを最小化する周波数を表 1のデータ力も演算に よって求めることも可能である。図 9Bや図 9Cに示す温度変化の態様は、表 1の 25°C 、 50°C、 75°Cの測定データに基づいて、演算によって補完データを作成すれば、容 易に実行可能である。
[0058] なお、表 1のデータは、光ディスクの情報層上において或る特定の再生パワーを実 現しているときに得られたものであり、再生パワーが異なる場合には、それに応じて出 射パワーも変化するため、表 1とは異なる数値のデータが得られることになる。再生パ ヮ一の異なる複数種類の光ディスクに対応させるため、前もって複数の異なる再生パ ヮー毎に表 1のデータを取得し、メモリ内に格納しておいても良い。
[0059] 以下、本発明の半導体レーザ駆動装置の好ましい実施形態を説明する。
[0060] (実施形態 1)
図 10は、本発明による半導体レーザ駆動装置の実施形態の構成を示す図である。
[0061] 本実施形態の半導体レーザ駆動装置は、半導体レーザ 1と、半導体レーザ 1から出 射されるレーザ光の一部を検出する光検出素子 2と、半導体レーザ 1にレーザ駆動 電流 6の直流成分を供給するレーザ駆動回路 4と、レーザ駆動電流 6の直流成分に 高周波電流を重畳する高周波重畳回路 3と、高周波重畳回路 3の動作を制御する高 周波重畳制御回路 5と、半導体レーザ 1の温度を検知する温度センサ 9と、半導体レ 一ザ 1のノイズ (RIN)を検出するノイズ検出回路 7と、上述した表 1のテーブルなどの 各種データを格納した記憶装置 8とを備えて 、る。
[0062] この半導体レーザ駆動装置の主要部 10は、図 10の破線枠で囲まれた構成要素か らなり、光ヘッド装置内に搭載される。半導体レーザ駆動装置の構成要素の一部は、 光ヘッド装置の外部に位置する光情報記録再生装置の回路基板に設けられていて も良い。例えば、高周波重畳制御回路 5は、典型的には光情報記録再生装置の回 路基板に搭載される集積回路 (IC)上に形成されるが、光ヘッド装置内のレーザ駆動 IC上に組み込まれていても良い。一方、レーザ駆動回路 4は、典型的には光ヘッド 装置内のレーザ駆動 IC上に組み込まれている。
[0063] 光ヘッド装置は、半導体レーザ 1から出射されたレーザ光を集束する対物レンズや 、光ディスクで反射された光を検出する光検出器などを備えているが、これらの構成 は公知であり、図示を省略している。
[0064] 半導体レーザ 1は、例えば発振波長 405nmのシングルモードレーザであり、レーザ 駆動回路 4から出力されるレーザ駆動電流 6に応じたパワーでレーザ光を出射する。 半導体レーザ 1から出射されたレーザ光の一部は、光検出素子 2に入射し、光電変 換により入射光強度に応じた電気信号に変換される。この電気信号は、レーザ駆動 回路 4に帰還され、再生パワーを所定値に制御するため、光検出素子 2の出力を一 定に保つ制御が行われる。なお、半導体レーザ 1の出射パワーを調整するために測 定されるレーザ光の一部は、一般に「前光」と称され、前光を検出する光検出素子 2 は「前光モニター」と称される。
[0065] 半導体レーザ 1から出射されたレーザ光の大部分は、記録または再生のために図 示しない対物レンズなどを介して光ディスクに導かれ、その情報層を照射する。光デ イスクの情報層で反射された光は、不図示の光検出器に入射し、光電変換により各 種信号が生成される。
[0066] レーザ駆動回路 4が出力する直流の駆動電流は、光検出素子 2から出力された電 気信号の時間的平均値 (すなわち直流成分)が一定となるように制御されるため、半 導体レーザ 1の出射パワーの平均値は略一定に保たれる。
[0067] レーザ駆動電流 6の直流成分には、高周波重畳回路 3により、高周波の信号が重 畳される。図 11は、高周波重畳回路 3の構成例を示す図である。高周波重畳回路 3 は、発振周波数可変回路(マルチバイブレータ) 302と、 DZA変換器 304、電流発 生回路(オペアンプ) 306を内蔵している。マルチバイブレータ 302は、例えば 200〜 600MHz程度の高周波で可変に発振する発振回路である。 DZA変換器 304は、 高周波重畳制御回路 5から送られてきた周波数制御信号をデジタル信号力 アナ口 グ信号に変換し、オペアンプ 306に与える。オペアンプ 306は、周波数制御信号に 応じた大きさの電流 Δ Ιを生成し、マルチバイブレータ 302に供給する。電流 Δ Ιの大 きさが変化することにより、マルチバイブレータ 302内に設けられている抵抗の両端 電圧が変化するため、発振周波数 (重畳周波数)が変化する。
[0068] 高周波重畳回路 3が出力する高周波電流は、 ACカップリングによってレーザ駆動 電流 6に重畳される。高周波電流が重畳されたレーザ駆動電流 6は、半導体レーザ 1 に注入され、シングルモードレーザをマルチモード化して発光させる。そのため、光 ディスク等の記録媒体力もの戻り光に対する影響を減らしノイズを低減できる。
[0069] なお、光ディスクへの記録時には再生時よりも光量を増加させて、例えば相変化材 料力もなる光ディスクの情報層に相変化を与えて記録する。記録モードでは、レーザ 駆動回路 4の働きにより、レーザ駆動電流 6を増加させて光量を増カロさせる。
[0070] 記憶装置 8には、例えば半導体メモリから構成されており、半導体レーザ 1の温度が 変化した時の高周波電流の周波数に関する情報が、前述したように温度に重畳周波 数を対応付けたテーブル形式等で格納されている。
[0071] 温度センサ 9は、半導体レーザ 1の温度を測定し、測定した温度に応じて電気信号 を出力する。高周波重畳制御回路 5は、温度センサ 9で検出した半導体レーザ 1の温 度に対し、記憶装置 8に格納されている情報に応じて高周波重畳回路 3が出力する 高周波の周波数を制御することで、半導体レーザ 1のノイズ増加を抑制する。
[0072] 半導体レーザ 1の温度上昇により RINが増加する力 温度センサ 9によって検出し た温度に基づき、半導体レーザ 1に重畳される高周波の周波数を調整することにより 、 RINの増加を抑制することが可能となる。
[0073] なお、再生パワーは、再生すべき光ディスクによっても変化する。例えば単層 BDデ イスクのための再生パワーは 0. 25mW@度である場合、 2層 BDディスクのための再 生パワーは 0. 50mW程度になる。このように、光ディスクによって必要な再生パワー が変化すると、それに応じて半導体レーザの出射パワーも変化することになる。
[0074] 本実施形態では、上述した方法により、半導体レーザの出射パワーを RINが充分 に小さくなる範囲に制御するため、高周波電流の周波数を調整するが、このときに用 いるデータは、所定の再生パワーを実現する条件のもとで得られたものである。同じ 光ヘッド装置であっても、再生パワーが異なると、出射パワーが異なることになるため
、各温度にぉ 、て RINを最小化する周波数も変化してしまう。
[0075] このような問題は、例えば、以下の 2つの方法で解決可能である。
[0076] (1) 再生予定の光ディスクに対応した各再生パワーについて、表 1に示すデータ を作成し、メモリ内に格納しておく。光情報記録再生装置に装填された光ディスクに 応じて再生パワーが設定された後、その再生パワーに応じたデータを読み出し、周 波数の最適化を実行する。
[0077] (2) 光ディスクに応じて再生パワーが変化したときでも、半導体レーザの出射パヮ 一を変化させないようにする。例えば、上述の例では、 2層 BDに対して必要な再生 パワー(0. 5mW)の場合に温度別の最適周波数を求めておく。そして、光情報記録 再生装置に単層 BDが装填された場合は、半導体レーザから出射されたレーザ光の 強度を調整する光量制御素子を光路中に挿入し、再生パワーを 0. 25mW程度に低 減する。再生パワーの変化は、光量制御素子によって実行するため、再生パワーを 変化させる場合であっても半導体レーザの出射パワーを略一定に保持することがで きる。このようにすれば、特定の再生パワーについて取得したデータに基づいて最適 な周波数を選択し、種々の光ディスクに対応した再生パワーを低い RINで実現する ことができる。
[0078] 一般に、 BD以外の光ディスクでも、単層ディスクの場合、必要な再生パワーは 2層 ディスクに比べて低ぐ光ヘッド装置の伝送効率を低下させても問題は生じない。そ こで、単層ディスクの再生時には、透過率が例えば 50%のフィルター (調光フィルタ 一)を光路上に挿入することにより、意図的に光ヘッド装置の伝送効率を半分にする ことが行われている。このため、再生パワーを低下させる必要がある場合でも、半導 体レーザの出射パワーを高めに維持できるため、 RINを低くすることができる。
[0079] (実施形態 2)
次に、図 12を参照して、本発明による光ヘッド装置の実施形態を説明する。図 12 において、図 10と同じ機能を有する構成部材については同じ符号を付与する。
[0080] 本実施形態の光ヘッド装置に特徴的な点は、実施形態 1の半導体レーザ駆動装置 を備えている点にある。 [0081] 本実施形態の光ヘッド装置では、半導体レーザ 1から出射された波長 405nmのレ 一ザ光 22を集光レンズ 23によって略平行光に変換した後、立ち上げミラー 24によつ て対物レンズ 25に入射させる。対物レンズ 25は、レーザ光 22を光ディスク 26の情報 層に集束する。光ディスク 26の情報層によって反射された光は、対物レンズ 25、立 ち上げミラー 24、及び集光レンズ 23の順に往路とは逆に戻る。この反射光は、ビー ムスプリッタ 27で反射された後、光検出器 28に入射し、光検出器 28の光電変換によ つて電気信号に変換される。この電気信号は、光ディスク 26上のピット列からの RF信 号やサーボ信号を形成するために用いられる。
[0082] 半導体レーザ 1から出射されたレーザ光 22の一部は、前光モニター用ビームスプリ ッタ 21で分離され、光検出素子 2に入射する。光検出素子 2が出力する電気信号は 、実施形態 1について説明したように、光電変換により入射光強度に応じた電気信号 に変換される。この電気信号は、図 10に示す半導体レーザ駆動装置のレーザ駆動 回路 4に帰還され、半導体レーザ 1のレーザ光発光強度(出射パワー)の制御に用い られる。
[0083] データ記録時の動作及びデータ再生時の動作は基本的に同じである力 データ記 録時に半導体レーザ 1から出射する光量は相対的に大きぐ光ディスク 26の情報層 の光学的性質を変化させることよって、データの記録が行われる。
[0084] 本実施形態の光ヘッド装置は、実施形態 1の半導体レーザ駆動装置を備えて 、る ため、半導体レーザ 1の温度変化に応じて高周波電流の周波数が適切に調節される
。その結果、ノイズの発生が抑制され、安定した記録及び Zまたは再生を行うことが できる。
[0085] (実施形態 3)
次に、図 13を参照して、本発明による光情報処理装置の実施形態を説明する。
[0086] 本実施形態の光情報処理装置は、光ディスクに対してデータを記録し、ある 、は光 ディスク力 データを再生することのできる光ディスク装置であり、その特徴的な点は
、実施形態 2の光ヘッド装置を備えている点にある。
[0087] 本実施形態の光情報記録再生装置は、実施形態 2の光ヘッド装置 31と、光デイス ク 26を回転させるためのモータ 32と、光ヘッド装置 31及びモータ 32に電力を供給 する電源装置 34と、これらに接続された回路基板 33とを備えている。回路基板には 、光ヘッド装置 31の動作を制御するための回路や、光ディスク 26に対するデータの 記録再生に必要な信号処理を行う回路が設けられている。これらの回路は、集積回 路装置の形態で実現されており、回路基板 33上に搭載されている。
[0088] 光ヘッド装置 31は、光ディスク 26との位置関係に対応する信号を回路基板 33へ送 る。回路基板 33は、この信号に基づいて光ヘッド装置 31及び光ヘッド装置内の対物 レンズ 25を駆動するためのサーボ信号などを出力する。光ヘッド装置 31および対物 レンズ 25は、図示しない駆動機構によってフォーカスサーボ及びトラッキングサーボ の制御を受けつつ、光ディスク 26に対して情報の読み出し、書き込み、または消去 の動作を実行する。電源装置 34からは。回路基板 33、光ヘッド装置 31の駆動機構 、モータ 32及び対物レンズ駆動装置へ電力が供給される。
[0089] 本実施形態の光情報記録再生装置は、実施形態 2の光ヘッド装置 31を備えている ため、光ヘッド装置 31内の半導体レーザ 1の温度変化に応じて高周波電流の周波 数を適切に変化させ、 RINの上昇を抑制することができる。このため、本実施形態の 光情報記録再生装置によれば、半導体レーザの温度が上昇しても、ノイズの発生が 抑制され、安定した記録及び Zまたは再生を行うことができる。
産業上の利用可能性
[0090] 本発明の半導体レーザ駆動装置は、温度変化による半導体レーザのノイズ増加を 抑制できるため、低ノイズの動作が求められる半導体レーザを備える装置に広く適用 することができる。

Claims

請求の範囲
[1] 光ヘッド装置が備える半導体レーザの駆動電流に高周波電流を重畳する高周波 重畳回路と、
前記高周波電流の周波数を前記半導体レーザの温度に応じて制御する高周波重 畳制御手段と、
を備える半導体レーザ駆動装置。
[2] 前記高周波重畳制御手段は、前記半導体レーザの相対雑音強度を低下させるよう に前記高周波電流の周波数を増減する請求項 1に記載の半導体レーザ駆動装置。
[3] 前記半導体レーザの温度を検出する温度センサと、
前記温度センサが検出した温度と前記高周波電流の周波数に関するデータとを格 納するメモリと、
をさらに備え、
前記高周波重畳制御手段は、前記メモリに格納されて 、るデータと前記温度セン サが検出した温度とに基づいて前記高周波重畳回路を制御する請求項 1に記載の 半導体レーザ駆動装置。
[4] 前記データは、前記半導体レーザの温度と、前記温度で前記半導体レーザの相対 強度雑音を最小化する前記高周波電流の周波数との関係を規定する情報を含んで いる、請求項 3に記載の半導体レーザ駆動装置。
[5] 光ビームを出射する半導体レーザと、
前記光ビームを光ディスクの情報層に集束するための対物レンズと、
前記半導体レーザを駆動する半導体レーザ駆動装置と、
を備える光ヘッド装置であって、
前記半導体レーザ駆動装置は
前記半導体レーザの駆動電流に高周波電流を重畳する高周波重畳回路と、 前記高周波電流の周波数を前記半導体レーザの温度に応じて制御する高周波重 畳制御手段と、
を備える光ヘッド装置。
[6] 光ディスクを回転させるモータと、 光ビームを出射する半導体レーザ、及び、前記半導体レーザから出射された光ビ ームを前記光ディスクの情報層に集束するための対物レンズを有する光ヘッド装置と 前記半導体レーザを駆動する半導体レーザ駆動装置と、
前記光ヘッド装置を介して前記光ディスクとの間でデータの授受を行う記録再生回 路と、
を備える光情報記録再生装置であって、
前記半導体レーザの駆動電流に高周波電流を重畳する高周波重畳回路と、 前記高周波電流の周波数を前記半導体レーザの温度に応じて制御する高周波重 畳制御手段と、
を備える、光情報記録再生装置。
光ヘッド装置が備える半導体レーザの駆動方法であって、
前記半導体レーザに供給する直流電流を生成することと、
前記直流電流に高周波電流を重畳することと、
前記半導体レーザの相対雑音強度を低下させるように前記高周波電流の周波数を 前記半導体レーザの温度に応じて制御すること、
を行う半導体レーザの駆動方法。
PCT/JP2006/318510 2005-09-22 2006-09-19 半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置 WO2007034783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/997,330 US20100103805A1 (en) 2005-09-22 2006-09-19 Semiconductor laser driving device, optical head device and optical information recording/reproducing device
JP2007536490A JPWO2007034783A1 (ja) 2005-09-22 2006-09-19 半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-275699 2005-09-22
JP2005275699 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034783A1 true WO2007034783A1 (ja) 2007-03-29

Family

ID=37888826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318510 WO2007034783A1 (ja) 2005-09-22 2006-09-19 半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置

Country Status (4)

Country Link
US (1) US20100103805A1 (ja)
JP (1) JPWO2007034783A1 (ja)
CN (1) CN100472620C (ja)
WO (1) WO2007034783A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112658A1 (en) * 2008-04-22 2009-10-28 Canon Kabushiki Kaisha Optical disk apparatus
JP2015514332A (ja) * 2012-04-17 2015-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh レーザーダイオード駆動制御信号を生成する回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056953A (ja) * 1999-08-10 2001-02-27 Fujitsu Ltd 情報記憶装置
JP2001352124A (ja) * 2000-06-07 2001-12-21 Toshiba Corp レーザー素子駆動回路、光ヘッド及び、光ディスク装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113736A (ja) * 1989-09-22 1991-05-15 Olympus Optical Co Ltd 半導体レーザの駆動装置
JP2653259B2 (ja) * 1991-03-19 1997-09-17 松下電器産業株式会社 記録レーザ強度設定方法及びレーザ記録装置
JP3780650B2 (ja) * 1997-08-05 2006-05-31 ソニー株式会社 半導体レーザの平均光出力の設定方法および半導体レーザの高周波電流の重畳条件の設定方法
JP3519618B2 (ja) * 1998-10-29 2004-04-19 パイオニア株式会社 収差補償装置、光ピックアップ、情報再生装置及び情報記録装置
JP2002335041A (ja) * 2001-05-07 2002-11-22 Sony Corp レーザ駆動装置及びレーザ駆動方法
JP3834485B2 (ja) * 2001-05-28 2006-10-18 株式会社日立製作所 レーザ駆動装置とそれを用いた光ディスク装置、及びそのレーザ制御方法
JP3740413B2 (ja) * 2001-12-20 2006-02-01 株式会社日立製作所 高周波重畳方法およびこれを用いた光ディスク装置
JP2003289171A (ja) * 2002-01-23 2003-10-10 Sony Corp 半導体レーザ駆動回路及びその方法
US7406012B2 (en) * 2002-10-28 2008-07-29 Matsushita Electric Industrial Co., Ltd. Semiconductor laser driving device, optical head device, optical information processing device, and optical recording medium
JP2004253032A (ja) * 2003-02-19 2004-09-09 Sony Corp レーザ駆動装置、光学式ヘッド装置及び情報処理装置
JP2005284169A (ja) * 2004-03-30 2005-10-13 Konica Minolta Opto Inc 駆動装置及び光学機器
US20060092642A1 (en) * 2004-10-29 2006-05-04 Hideki Nakata Light emitting module, optical head, and optical disc recording and reproducing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056953A (ja) * 1999-08-10 2001-02-27 Fujitsu Ltd 情報記憶装置
JP2001352124A (ja) * 2000-06-07 2001-12-21 Toshiba Corp レーザー素子駆動回路、光ヘッド及び、光ディスク装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112658A1 (en) * 2008-04-22 2009-10-28 Canon Kabushiki Kaisha Optical disk apparatus
US7924689B2 (en) 2008-04-22 2011-04-12 Canon Kabushiki Kaisha Optical disk apparatus
JP2015514332A (ja) * 2012-04-17 2015-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh レーザーダイオード駆動制御信号を生成する回路
US9755400B2 (en) 2012-04-17 2017-09-05 Robert Bosch Gmbh Circuit for producing a laser diode control signal

Also Published As

Publication number Publication date
JPWO2007034783A1 (ja) 2009-03-26
CN101080772A (zh) 2007-11-28
CN100472620C (zh) 2009-03-25
US20100103805A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
US8111603B2 (en) Optical disk apparatus and its reproducing method
KR101318529B1 (ko) 광데이터 기록매체용 판독장치 및 판독방법
JP5338234B2 (ja) 短パルス光源、レーザ光出射方法、光学装置、光ディスク装置及び光ピックアップ
JP5332462B2 (ja) 短パルス光源、レーザ光出射方法、光学装置、光ディスク装置及び光ピックアップ
JP4309939B2 (ja) 半導体レーザ駆動装置,光ヘッド,および光ディスク装置
JP2009110565A (ja) レーザー駆動装置およびそれを用いた情報記録再生装置
JP4717925B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
WO2007034783A1 (ja) 半導体レーザ駆動装置、光ヘッド装置および光情報記録再生装置
JP5207559B2 (ja) 光情報記録再生装置
JPWO2006051688A1 (ja) 光情報記録再生装置
JP2007172770A (ja) 光ディスク装置
JP3752496B2 (ja) 信号補正方法、ウォブル信号補正回路及び光ディスク装置
US20090262615A1 (en) Optical disc drive and method of controlling the same
JP2004199818A (ja) 光ピックアップ装置及び光ディスク装置
JP4493723B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP4983971B2 (ja) 光ディスク装置および光ディスクの再生方法
JP4692684B2 (ja) 光ディスク装置および光ディスクの再生方法
JP2009283048A (ja) 光再生装置およびその方法
JP2005038470A (ja) 駆動信号生成方法、光源駆動装置及び光ディスク装置
JPWO2007148387A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
US20120294132A1 (en) Optical disc recording device and optical disc recording method
JP2013218763A (ja) レーザ駆動装置、高周波重畳量制御方法、プログラム、光記録媒体駆動装置
WO2007148386A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
WO2007148671A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP2012053965A (ja) 光学的情報再生装置および光学的情報記録媒体再生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007536490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680001420.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810252

Country of ref document: EP

Kind code of ref document: A1