WO2007023570A1 - Water retaining material composition for paving and method for applying water retaining paving - Google Patents

Water retaining material composition for paving and method for applying water retaining paving Download PDF

Info

Publication number
WO2007023570A1
WO2007023570A1 PCT/JP2005/015826 JP2005015826W WO2007023570A1 WO 2007023570 A1 WO2007023570 A1 WO 2007023570A1 JP 2005015826 W JP2005015826 W JP 2005015826W WO 2007023570 A1 WO2007023570 A1 WO 2007023570A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
water
paving
material composition
parts
Prior art date
Application number
PCT/JP2005/015826
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Hasegawa
Fumio Kogiku
Masato Takagi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to PCT/JP2005/015826 priority Critical patent/WO2007023570A1/en
Publication of WO2007023570A1 publication Critical patent/WO2007023570A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/224Surface drainage of streets
    • E01C11/225Paving specially adapted for through-the-surfacing drainage, e.g. perforated, porous; Preformed paving elements comprising, or adapted to form, passageways for carrying off drainage
    • E01C11/226Coherent pavings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a pavement water-retaining material composition and a water-retaining pavement construction method, and provides a new pavement water-retaining material composition with excellent water absorption, which is used to suppress the so-called “heat island phenomenon” in urban areas.
  • the present invention relates to a technology that is effectively used for the construction of effective water retention pavement. Background art
  • asphalt pavement In urban areas, asphalt pavement is adopted from the viewpoint of easy construction, early opening of traffic (beginning of traffic after low cost), and low price, and buildings are made of concrete as the height increases. There are many. Asphalt and concrete are easy to store heat during the day and release the stored heat at night, so a special artificial climate appears in urban areas with many roads covered with high-rise buildings. In other words, in the summer, the road surface rises until it exceeds 60, tropical nights become normal, and torrential rains occur.This is called the ⁇ heat island phenomenon, '' and when the isotherm is drawn in descending order of temperature, A phenomenon occurs in which the center can be seen as a high temperature island.
  • This phenomenon tends to be further promoted by increased energy use by air conditioners, etc., and increased waste heat due to excessive traffic concentration in urban areas.
  • One reason for this heat island phenomenon is that the ground, which was originally covered with soil, has been replaced with asphalt and concrete. In other words, when the ground is soil, when it rains, water accumulates in the interior space, which evaporates in clear weather and takes heat of vaporization, lowering the atmospheric temperature, and increasing the temperature of the ground itself. In order to retain moisture in the inside, it is heated only to about 50 at most, so the above phenomenon is unlikely to occur.
  • the surface layer is asphalt or concrete
  • the rainwater hardly penetrates into the surface layer and flows into the drainage ditch etc., and evaporative heat cooling can be expected only by rainwater partially accumulated on the pavement surface. It lasts only for the next 2-3 hours.
  • a large amount of rainwater flows into the sewer, and some of it overflows into the river, so there is a new problem of urban flooding.
  • asphalt, concrete pavement (hereinafter referred to as “fasalt pavement”) It may be possible to return to the soil or increase the greening area.
  • many of the conveniences such as “walking comfort”, “automobile driving comfort”, and “preventing lifting of sand dust” that are obtained by using asphalt pavement are lost.
  • the increase in the area of greening has advantages such as “reduction of carbon dioxide emissions to the atmosphere” and “improvement of landscape”, but not only there are restrictions on the site area that can be greened, but also a new management of plants. It cannot be easily adopted in urban areas where complicated work is required.
  • a technique for injecting a fluid holding material into the gap is disclosed.
  • a porous surface layer such as a water-permeable asphalt mixture having a porosity of 15 to 35% and a water-permeable cement concrete is filled with a silt-based filler (for example, see Reference 1).
  • Silt is silt, which is finer than sand but coarser than clay. In that case, 20 to 60% of powder with a particle size of 5 to ⁇ , silt content of ⁇ m of 50% by weight or more, 20 to 60% of cement-based solidified material, 5 to 50%, water However, silt-type fillers mixed with 25 to 50% are used, and water retention materials with a maximum strength of 20 MPa after 7 days of curing are obtained.
  • a 5 0-7 0 weight 0/0 of granulated blast furnace slag, a 3 0-5 0 weight 0/0 of the inorganic powder containing 5 0% by weight or more of amorphous S i 0 2, the high furnace slag There is also disclosed a hydraulic material for water-retaining solids containing 3 parts by weight or more of a strength stimulant with respect to a total of 100 parts by weight of fine powder and inorganic powder (see Patent Document 2).
  • Patent Document 3 A pavement filled with 80 to 160 kg of silica sand per 1 m 3 of asphalt pavement and its formation method is disclosed (Patent Document 3). See).
  • Patent Document 4 A pavement that suppresses an increase in road surface temperature is also disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-4 6 5 1 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 2-2 4 1 1 5 1
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2 0 0 3- 1 4 7 7 1 7
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2 0203-2 0 1 7 0 5 Disclosure of Invention
  • Patent Document 1 has a large water retention effect and can be relatively easily constructed on an actual road. However, it takes time to adjust the particle size of the silt that can be used as a raw material, and there remains a problem in the procurement of raw materials for large-area construction.
  • the water retention material described in Patent Document 2 has the advantage of having a high water retention capacity and a certain strength. However, when this was actually applied to the road surface, it was found that there was a slight problem with the water absorption speed.
  • roads are provided with a gradient of about 1 to 1.5% of the horizontal so that rainwater does not stay on the road surface for a long time during rainfall, and drainage can be drained to drainage in a short time. ing.
  • a material with a low water absorption rate cannot absorb enough water during rainy weather, so the amount of water that can evaporate during fine weather is small, and therefore the road surface cooling performance is low.
  • This problem is the same when watering properly with a water truck.
  • it is necessary to install a weir around the water-retaining pavement and soak the water-retaining pavement for a long time.
  • the construction cost is disadvantageous in terms of maintenance cost.
  • the present invention can be manufactured without using a special manufacturing apparatus, and even when a pavement construction is performed for one year or more, the performance hardly deteriorates. And the water retention of the pavement with the road surface cooling ability that can efficiently absorb rainwater even in a short period of intensive rain and suppress the heat island phenomenon.
  • the purpose is to provide a construction method for pavement.
  • the present invention has a particle size distribution in which powder having a particle size of 4 25 / X m or less is 60% by mass or more, and either or both of S i 0 2 and C a C 0 3 100 parts by mass of a mixture of 70 to 99.95% by mass of inorganic powder containing 50% by mass or more of total and 0.05 to 30% by mass of granulated blast furnace slag
  • it is a water-retaining material composition for pavements characterized by adding 1 to 35 parts by mass of cement.
  • the present invention provides an inorganic powder having a particle size distribution in which powder having a particle size of 4 25 / zm or less is 60 mass% or more, and containing 50% by mass or more of amorphous Si 0 2 70 to 99.95% by mass and high; ⁇ Granulated slag is mixed with 0.05 to 30% by mass of 100 parts by mass of alkali stimulant and / or cement. It is a water-retaining material composition for pavements characterized in that 1 to 35 parts by mass are added.
  • the inorganic powder may be a silt powder having a particle size of 5 to 75 ⁇ m.
  • the P funnel flow time is 8 to 20 seconds by adding 50 to 350 parts by weight of water to 100 parts by weight of any one of the above-described water retaining material compositions.
  • This is a water-retaining pavement construction method characterized by injecting a water slurry adjusted to 1 into the open grained wax pavement.
  • the P funnel flow time is the flow time of the water slurry measured by the so-called “P funnel test” in which the time for the liquid to flow through the pore mouth is measured. This is an index for evaluating the degree of penetration of the liquid flowing down through the pores of the porous material.
  • Fig. 1 is a graph showing the change over time in the surface temperature of a typical specimen.
  • a particle size of 4 25 ⁇ or less has a particle size of 60% by mass or more, and the sum of one or both of S i 0 2 and C a C 0 3 It is important to solidify a mixture of 70 to 99.95% by mass of inorganic powder containing 50% by mass or more and 0.05 to 30% by mass of granulated blast furnace slag. is there.
  • Patent Document 1 the inventor reviewed the technique described in Patent Document 1 and focused on a water retaining material to be injected into the gaps of the above-mentioned opening degree asphalt represented by drainage pavement.
  • the water retaining material when the water retaining material is manufactured, the raw materials undergo a slag alkali reaction, but the pores formed by such a chemical reaction are mainly small ones of 0.1 m or less. This is because the retained water is gradually released over time, which is effective in maintaining water retention. Therefore, the inventor examined this water retention effect in more detail, and used the water retention material as a blast furnace granulated slag and a particle size distribution in which powder with a particle size of 4 25 m or less was 60% by mass or more.
  • the present invention has been completed.
  • blast furnace granulated slag granulated blast furnace slag that has been granulated to less than a predetermined particle size after granulation
  • blast furnace slag fine powder with a predetermined amount of plaster added to it, and collected as dust collection powder in the granulated slag magnetic separation process
  • slag powder etc. it is not limited to these.
  • the content of the granulated blast furnace slag needs to be 0.05 to 30% by mass, and a more preferable range is 0.05 to 1.5% by mass, and a more preferable range is 0. 5 to 10% by mass. If the granulated blast furnace slag exceeds 30% by mass, the solidification reaction will proceed too much and the average pore size will be easily reduced.
  • the inorganic powder needs to be in a range of 70 to 99.95% by mass, and a more preferable range is 85 to 99.95% by mass, and a more preferable range. Is 90-99.95 mass%. If the inorganic powder is less than 70% by mass, the amount of granulated blast furnace slag becomes relatively large, and the solidification reaction proceeds with time, leading to a decrease in average pore diameter. If it exceeds 99.95 mass%, the fine pores and reaction formation pores using granulated blast furnace slag are lost, which is not preferable.
  • Inorganic powder used in the present invention amorphous S i 0 2 5 0 inorganic powder and Z young properly containing mass% or more S i 0 2 5 0 inorganic powder containing mass% or more and Z or C a C 0 3 Is preferably an inorganic powder containing 50% by mass or more.
  • Inorganic powders comprising amorphous S i 0 2 5 0 mass% or more, the reaction between C a- S i-H by adding Al force re stimulants ⁇ Pi or solidifying material progresses, the increase in the fine pores Contribute.
  • An inorganic powder containing 50% by mass or more of S i 0 2 itself does not contribute to the reaction, but exhibits a water retention effect because it forms voids that retain water between the particles.
  • Inorganic powder containing C a C 0 3 5 0 wt% or more in the same manner the its own reactivity can not be expected, in order to form a gap for holding the water between the particles, exhibits a water retention effect.
  • Inorganic powder including amorphous S i 0 2 5 0 mass% or more, the inorganic powder containing inorganic powder and C a C 0 3 containing S i 0 2 5 0 wt% to 5 0 mass% or more, 4 2
  • the part of 5 ⁇ m or less needs to be 60% by mass or more.
  • the amount exceeding 4 25 m is 40% by mass or more, separation of the material is likely to occur when water is added to the water retention material composition for pavement of the present invention to form a slurry, and the so-called “open particle size falset” This is because clogging occurs when injecting from the surface or the like, making it difficult to inject.
  • Blast furnace granulated slag is fine powder at the time of manufacture and can be used as it is.
  • blast furnace slag fine powder obtained by pulverizing blast furnace granulated slag used for blast furnace cement and the like has an average particle size of about 10 m or less, and can be suitably used.
  • Cement and alkali stimulants react when water is added and the particle size changes, but cement is generally a fine powder with an average particle size of about 5 ⁇ m, and is also used as an Al force stimulant. Most of them are water-soluble, and industrial slaked lime and magnesium hydroxide have a maximum particle size of 100 ⁇ m or less and an average particle size of 5 m or less. There are no problems such as clogging during injection.
  • Examples of the inorganic powder containing 50% by mass or more of amorphous S i 0 2 used in the present invention include clinker ash and the like, as long as it has amorphous S i 0 2 characteristics. It can be used without any problem and is not limited to the above example.
  • Examples of inorganic powders containing 50% by mass or more of S i 0 2 include silica sand, silica sand powder, silica stone powder, and silica fume, but they can be used as long as they have properties as Sio 2 Yes, it is not limited to the above example.
  • examples of the inorganic powder containing 50% by mass or more of C a C 0 3 include calcium carbonate, lime powder, limestone stone powder, etc., but there is no problem as long as it has C a C 0 3 properties. It can be used and is not limited to the above example.
  • the inorganic powder containing 50% by mass or more of S i 0 2 and the inorganic powder containing 50% by mass or more of C a C 0 3 may be, for example, sand, clay, etc. as long as they satisfy a predetermined particle size. It may contain inorganic components such as coal ash.
  • these inorganic powders of amorphous S i 0 2 containing 5 0% by mass, S i 0 inorganic powder containing 2 to 5 0 mass% or more, inorganic containing C a C 0 3 5 0 mass% or more can be mixed in any proportion. In other words, it may be a mixture of all three inorganic powders described above, or only one of them may be used. The ratio is arbitrary and can be chosen freely. '
  • the alkali stimulant and / or cement used in the present invention needs to be in the range of 1 to 35 parts by mass with respect to 100 parts by mass of the total amount of blast furnace granulated slag and inorganic powder.
  • Alkali metal hydroxides as typified, alkaline earth metals and magnesium or cement as typified by magnesium hydroxide can be used.
  • This alkali stimulator mainly dissolves Si 0 2 or S 1 0 2 and 8 1 2 0 3 in inorganic powder containing 50% by mass or more of granulated blast furnace slag and amorphous S i 0 2 by to promote pozzolanic reaction, but is intended to promote the self-curing, the other in water-granulated blast furnace slag or amorphous S i 0 2 5 0 mass% or more containing inorganic powder if a small content of the It has a function of improving fluidity when slurryed by adding water.
  • the content of the inorganic powder containing a high furnace slag and amorphous S i 0 2 5 0 mass% or more is small, it may be added an alkali stimulant.
  • the content of the alkali stimulant requires a range of 1 to 35 parts by weight, more preferably from 1 to 1 5 It is the range of mass parts. If it is less than 1 part by mass, it is not preferable because the above-described Al force re-stimulation reaction is difficult to occur, and if it exceeds 35 parts by mass, the water retention function is deteriorated.
  • part or all of the alkali stimulant may be replaced with cement, and the amount of the alkali stimulant and cement may be 1 to 35 parts by mass. Since cement also exhibits alkalinity in water, amorphous Si 0 2 can be dissolved to cause a reaction. Cement itself functions as a solidifying material. Also in this case, if the total amount of alkali stimulant and cement or the amount of cement alone is 1 part by mass, the alkali stimuli reaction hardly occurs, and if it exceeds 35 parts by mass, the water retention function is deteriorated.
  • cement as a solidifying material.
  • normal Portland cement early-strength Portland cement, fast-curing cement, super-hard-hardening cement, blast furnace cement, and the like can be used, and a mixture thereof can be used.
  • the amount of cement used is required to be 1 to 35 parts by mass, more preferably 5 to 30 parts by mass, and still more preferably 10 to 25 parts by mass. If less than 1 part by mass, the strength of the water-retaining material obtained when water is added to the water-retaining material composition and hardened is hardly expressed. 3 If it exceeds 5 parts by mass, the amount of cement is too high and blast furnace water It is not preferable because the void formed by the crushed slag or inorganic powder is blocked.
  • the water-retaining material composition for pavement comprises blast furnace granulated slag, inorganic powder containing amorphous S i 0 2 in an amount of 50% by mass or more and / or S i 0 2 in a mass of 50%. % or more containing inorganic powders parallel Pini or C a C 0 3 5 0 mass% or more including inorganic powder and 7 0-9 9.9 but the 5 mass% and the component, by construction site, silt If you want to use soil or soil.
  • the inorganic powder containing 50% by mass or more of amorphous S i 0 2 and the inorganic powder containing 50% by mass or more of Z or S i 0 2 and / or 50% by mass or more of C a C 0 3 Silt or soil may be used instead of the inorganic powder.
  • the entire amount of silt or soil may be used in place of the entire inorganic powder, or a part thereof may be replaced with silt or soil.
  • the particle size of the silt and soil used should be 60 mass% or more in the portion of 4 25 zm or less in order to ensure the ease of injecting the water retention slurry into the open-graded asphalt pavement etc. is necessary.
  • the water-retaining material composition for pavement according to the present invention is excellent in water absorption and its performance degradation is small after construction of water-retaining pavement. A deterrent effect can be expected.
  • the invention has been made on the method of using the water-retaining material composition for pavement, it will be described below.
  • the water flow rate of the P funnel was adjusted to 8 to 20 seconds. This is a method of constructing a water-retaining pavement that is injected into an open grained face pavement.
  • Water is added to 50 parts by mass or more with respect to 100 parts by mass of the pavement water-retaining material composition. If the amount of water is less than 50 parts by mass, most of the water is used in the alkaline reaction. This is because an increase in porosity cannot be expected.
  • the upper limit of the water to be added is determined by the particle size of the raw material, so it is difficult to determine uniquely. However, the smaller the particle size of the inorganic powder used, the larger the amount of water must be. . In other words, when using a raw material with a particle size of about 5 to 4 25 m, the upper limit of the amount of water is enough to be 150 parts by mass. May occur.
  • the amount of water that can be kneaded is 3500 parts by mass.
  • addition of water exceeding 3500 parts by mass is not preferable because water floating phenomenon is likely to occur.
  • the amount of water added may be appropriately selected within the range of 50 to 3500 parts by mass according to the particle size of the water-holding material composition for paving used. In this case, it is necessary to adjust the soot funnel flow time within the range of 8 to 20 seconds. More preferably, it is in the range of 8 seconds to 15 seconds.
  • a water slurry of more than 20 seconds is not preferred because the viscosity of the slurry is high, and the time required for pouring into open-graded asphalt becomes long.
  • ⁇ funnel flow time is a method specified by the Japan Society of Civil Engineers and described in JSCE — 1 9 8 6. Using a aluminum funnel with an outflow pipe with an inner diameter of 13 mm and a length of 38 mm at the lower end of a 2 mm funnel, the outflow time of a 1 7 25 cc sample is measured.
  • Blast furnace slag fine powder as granulated blast furnace slag, amorphous Si 0 2 50 weight.
  • fast-curing cement is added at an appropriate ratio and mixed, and water is added at an appropriate ratio to these powders and kneaded for 4 minutes. Then, the diameter is 10 cm and the height is 10 cm. It was poured into a mold and sealed for 3 days in a room maintained at a constant temperature and humidity of 20 ° C. and 50% RH (humidity) to obtain a cylindrical solid body according to the present invention.
  • the raw material composition is shown in Table 1-11.
  • These solidified bodies were removed from the frame, and further steam-cured at 60 ° C for 7 days in a thermo-hygrostat. Then, after drying at 60 ° C for 1 day, the water absorption height and weight reduction rate were determined to confirm the water absorption performance and water retention performance of these solidified bodies. In order to obtain the water absorption height and the weight reduction rate, a water absorption test was performed, and the maximum water absorption mass and the water absorption mass for 1 hour were measured.
  • the one-hour water absorption mass means that after measuring the mass of the solidified body, a portion corresponding to 5 mm from the lower end of the solidified body was immersed in running water, and after 1 hour, the mass was measured and the initial mass was subtracted.
  • the maximum water absorption mass is the value obtained by subtracting the mass before water absorption from the mass after water absorption by absorbing the solidified body whose water absorption mass was measured for 1 hour above, by further immersing the whole solid in water for 24 hours. It is.
  • the water absorption height is obtained by the following formula.
  • Water absorption height (cm) solidified body height X (1 hour water absorption Z maximum water absorption)
  • the height of the solidified body this time is 10 cm. Further, the solidified body for which the maximum water absorption mass was determined was kept at 40 ° C. and dried for 24 hours, the mass after drying was measured, the mass before the water absorption test of the solidified body was subtracted, and the water absorption after drying Find the amount. Using this water absorption after drying and the maximum water absorption, the weight reduction rate is obtained by the following formula.
  • Mass reduction rate (%) (Maximum water absorption vs. water absorption after drying) Z Maximum water absorption X 1 0 0
  • a solidified body was prepared by the same method as in Fig. 4, and the water absorption height and weight reduction rate were determined. Table 1-12 shows the raw material composition. Table 1 1-2 Examples
  • a solidified body was prepared by the same method as in Examples 1 to 4, using slaked lime as the Al-stimulating agent and fast-hardening cement as the solidifying material, and the water absorption height and the weight reduction rate were determined.
  • Table 1-13 shows the raw material composition. Table 1-13 Examples
  • slaked lime as a stimulant and fast-hardening cement as a solidifying material
  • Table 14 shows the raw material composition.
  • the blast furnace slag as blast furnace slag, amorphous S i 0 Fly ash 2 as no machine powder containing 5 0% by weight or more (4 2 5 ⁇ ⁇ below 1 0 0 mass 0/0), S Silica sand powder (4 25 m or less is 60% by mass) as an inorganic powder containing 50% by weight or more of i 0 2 is used as a mixture, slaked lime is used as an alkali stimulant, and fast-hardening cement is used as a solidifying material.
  • Examples 1 to 4 The solidified body was prepared by the same method as above, and the water absorption height and the weight reduction rate were determined. Table 1-15 shows the raw material composition.
  • Blast furnace slag as blast furnace slag, amorphous S i 0 Fly ash 2 as inorganic powder containing 5 0% by weight or more (4 2 5 ju m or less 1 0 0 mass 0/0), Ji & Rei_0 3
  • solidified bodies were prepared by the methods of Examples 1 to 4, and the water absorption height and the weight reduction rate were determined.
  • Table 1-16 shows the raw material composition. Table 1-16 Examples
  • inorganic powder consisting of slaked lime as an alkali stimulant and fast-hardening cement was prepared by the same method as in Examples 1 to 4, and the water absorption height and weight reduction rate were adjusted. Asked.
  • Table 1-17 shows the raw material composition. Table 1-17 Examples
  • Table 2-1 and Table 2-2 show the raw material composition of the solidified material used in the comparative examples.
  • blast furnace slag powder and fly ash (425 m or less 1 ⁇ 0 mass 0/0)
  • quartz sand powder (425 / im hereinafter is 60 mass%)
  • calcium carbonate (425 less 60 wt%)
  • the mixture was mixed as shown in the table to obtain a mixture.
  • the water absorption test was performed in the same manner as in Examples 1 to 4.
  • Table 2-1 Comparative example (unit: outer coating%, water ratio only weight% (body ratio))
  • Tables 3 and 4 show the water absorption height and weight loss i of each solidified body obtained by the above Examples and Comparative Examples, respectively.
  • the solidified body obtained in each example had a water absorption height of 5 cm or more in the water absorption test, whereas the solidified body obtained in each comparative example had a low water absorption height and a water absorption speed. Compared to the example I found it small. In addition, the solidified bodies obtained in the examples also have a large weight loss rate, and it is clear that the absorbed water is effectively released.
  • Example 10 Water slurry made with water retention material of the composition of 0 and Comparative Example 1 was poured into 30 cm x 30 cm x 10 cm open-graded asphalt (porosity 20%), water retentive pavement specimen The surface temperature was measured by heating with a halogen light (1 3 0 W). In all cases, the injection rate of the water retention material was 75 o / o of the effective voids of the open-graded asphalt, and after removing the water retention material adhering to the surface, the surface temperature was measured with a thermocouple. For comparison, a pavement test piece of asphalt having a granularity without injection of water slurry was prepared by injecting the same amount of water as used in Example 10. Figure 1 shows the changes in the surface temperature of each specimen over time.
  • a water-retaining material composition for pavement that is used as a part of a pavement material and hardly deteriorates in performance even after one year or more after pavement construction can be used without using a special manufacturing apparatus.
  • roads and the like mixed with the water-retaining material composition for pavement can efficiently absorb rainwater even in a short period of intensive rain and enhance the road surface cooling effect. In other words, it is effective in suppressing the occurrence of the heat fly phenomenon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

This invention provides a water retaining material composition for paving, which can be produced without the need to use any special production apparatus and does not substantially cause a deterioration in properties even after the elapse of one year or longer after use in the application of paving, and a method for applying water retaining paving that uses the water retaining material composition for paving, can efficiently absorb rain water even in the case of short-time severe rainfall, and has a road surface cooling capability high enough to prevent a heat island phenomenon. The water retaining material composition for paving is characterized by comprising 100 parts by mass of a mixture and 1 to 35 parts by mass of cement, the mixture comprising 70 to 99.95% by mass of an inorganic powder having such a particle size distribution that not less than 60% by mass of the powder is accounted for by particles having a diameter of not more than 425 μm, and containing not less than 50% by mass of any one of SiO2 and CaCO3 or not less than 50% by mass in total of SiO2 and CaCO3, and 0.05 to 30% by mass of a granulated blastfurnace slag. The inorganic powder may be a silt-based powder.

Description

明細書  Specification
舗装用保水材組成物及び保水性舗装の施工方法 技術分野 Pavement water-retaining material composition and water-retaining pavement construction method
本発明は、 舗装用保水材組成物及び保水性舗装の施工方法に係わり、 吸水性に優れた 新規な舗装用保水材組成物を提供し、 それを都市部の所謂 「ヒートアイランド現象」 の 抑制に効果的な保水性舗装の施工に有効利用する技術に関する。 背景技術  The present invention relates to a pavement water-retaining material composition and a water-retaining pavement construction method, and provides a new pavement water-retaining material composition with excellent water absorption, which is used to suppress the so-called “heat island phenomenon” in urban areas. The present invention relates to a technology that is effectively used for the construction of effective water retention pavement. Background art
都市部では、 道路は、 易施工性、 早期交通開放 (裨ェ後の通行開始) 、 低価格 の観 点から、 アスファルト舗装が採用され、 建物は、 その高層化に伴って、 コンクリートで 構成されていることが多い。 アスファルトやコンクリートは、 昼間に蓄熱し易く、 夜間 に蓄熱した熱を放出するので、 高層ビルゃァスフアルトに覆われた道路が多い都市部で は、 特殊な人工的気候が出現する。 つまり、 夏季には、 道路表面が 6 0でを超えるまで 上昇し、 熱帯夜が常態化し、 集中豪雨が発生するので、 「ヒートアイランド現象」 と称 し、 気温の高い順に等温線を引くと、 都市の中心部が一つの高温島のようにみなせる現 象が起きる。 この現象は、 エアコン等によるエネルギー使用の増大や、 都市部への過度 の交通集中等による廃熱の増加で、 一層促進される傾向にある。 このようなヒートアイ ランド現象の一因は、 本来は土で覆われていた地面等が、 アスファルトやコンクリート 等に置き換わったことが挙られる。 すなわち、 地面等が土の場合には、 雨が降るとその 内部空間に水分を溜め、 それが晴天時に蒸発して気化熱を奪い、 大気温度を低下させる し、 また、 地面自体の温度上昇も、 その内部に水分を保持するため、 高々 5 0で程度に しか加熱されないので、 前記現象は起き難い。 一方、 表層がアスファルトやコンクリー トの場合には、 雨水がほとんど表層に浸透せずに排水溝等に流れ、 気化熱冷却が舗装表 面に部分的に溜まつた雨水によってしか期待できず、 降雨直後の 2〜 3時間しか持続し ないのである。 また、 大量の降雨があっても、 下水道へ大量の雨水が流れ込み、 その一 部は河川へ越流するため、 新たに、 都市型洪水という問題も発生しつつある。  In urban areas, asphalt pavement is adopted from the viewpoint of easy construction, early opening of traffic (beginning of traffic after low cost), and low price, and buildings are made of concrete as the height increases. There are many. Asphalt and concrete are easy to store heat during the day and release the stored heat at night, so a special artificial climate appears in urban areas with many roads covered with high-rise buildings. In other words, in the summer, the road surface rises until it exceeds 60, tropical nights become normal, and torrential rains occur.This is called the `` heat island phenomenon, '' and when the isotherm is drawn in descending order of temperature, A phenomenon occurs in which the center can be seen as a high temperature island. This phenomenon tends to be further promoted by increased energy use by air conditioners, etc., and increased waste heat due to excessive traffic concentration in urban areas. One reason for this heat island phenomenon is that the ground, which was originally covered with soil, has been replaced with asphalt and concrete. In other words, when the ground is soil, when it rains, water accumulates in the interior space, which evaporates in clear weather and takes heat of vaporization, lowering the atmospheric temperature, and increasing the temperature of the ground itself. In order to retain moisture in the inside, it is heated only to about 50 at most, so the above phenomenon is unlikely to occur. On the other hand, when the surface layer is asphalt or concrete, the rainwater hardly penetrates into the surface layer and flows into the drainage ditch etc., and evaporative heat cooling can be expected only by rainwater partially accumulated on the pavement surface. It lasts only for the next 2-3 hours. In addition, even if there is a large amount of rainfall, a large amount of rainwater flows into the sewer, and some of it overflows into the river, so there is a new problem of urban flooding.
上記ヒートアイランド等の問題を解決するには、 日射や反射を抑制し、 蓄熱量を小さ くするのが有効であり、 具体的には、 アスファルトやコンクリート舗装等 (以下、 ァス フアルト舗装等) を土に戻したり、 緑化面積を増大することが考えられる。 ところが、 舗装を土に戻すと、 アスファルト舗装等の採用で得られる 「歩行の快適性」 、 「自動車 走行の快適性」 、 「砂塵等の卷上げ防止性」 等、 多くの利便性が失われる。 また、 緑化 面積の増大は、 「大気への二酸化炭素放出量の削減」 や 「景観の向上」 等の利点もある が、 緑化可能な敷地面積に制約があるばかりでなく、 植物の管理という新たな作業が必 要となる都市部には、 容易に採用できない。 In order to solve the above-mentioned problems such as heat island, it is effective to reduce solar radiation and reflection, and to reduce the amount of heat storage. Specifically, asphalt, concrete pavement (hereinafter referred to as “fasalt pavement”) It may be possible to return to the soil or increase the greening area. However, When the pavement is returned to the soil, many of the conveniences such as “walking comfort”, “automobile driving comfort”, and “preventing lifting of sand dust” that are obtained by using asphalt pavement are lost. In addition, the increase in the area of greening has advantages such as “reduction of carbon dioxide emissions to the atmosphere” and “improvement of landscape”, but not only there are restrictions on the site area that can be greened, but also a new management of plants. It cannot be easily adopted in urban areas where complicated work is required.
そこで、 最近、 内部に水を保持できる性質を有する新しい土木建築材料が提案され、 アスファルト舗装等に置き換えることが試みられている。 その材料は、 保水機構の観点 から大きく二つに大別される。 1つは、 吸水樹脂のような有機系材料をセメント等の無 機材料中に混ぜるもので、 他の一つは、 固化体中に微細気孔を形成させ毛管現象で保水 させるものである。 前者は、 後者に比べて製造方法は簡単であるが、 有機樹脂の価格が 高いこと、 リサイクル時に有機樹脂を分離することが難しいこと等の問題が未解決で残 されている。 後者は、 全て無機材料からなり、 原材料の粒径を調整した後、 特定の温度 で焼成して製造でき、 比較的コストが安いので、,いくつかの道路に適用されている。 ところで、 そのような保水材を利用した舗装としては、 排水性舗装に代表される開粒 度アスファルト (骨材の粒度を、 その粒度分布の中間領域を除くように調整し、 空隙を 多くした舗装) の空隙に、 流動性を有する保水材料を注入する技術が開示されている。 例えば、 1 5及至 3 5 %の空隙を有する透水性アスファルト混合物、 透水性セメントコ ンクリート等の有孔表層に、 シルト系充填材を充填するものである (例えば、 文献 1参照) 。  Therefore, new civil engineering and building materials that have the property of retaining water inside have been recently proposed and attempted to replace them with asphalt pavement. The materials are roughly divided into two from the viewpoint of the water retention mechanism. One is to mix an organic material such as water-absorbing resin into an inorganic material such as cement, and the other is to form fine pores in the solidified body and retain water by capillary action. The former has a simpler manufacturing method than the latter, but problems such as the high price of organic resins and difficulty in separating organic resins during recycling remain unresolved. The latter are all made of inorganic materials, and can be manufactured by firing at a specific temperature after adjusting the particle size of the raw materials, and are relatively inexpensive, so they are applied to several roads. By the way, as a pavement using such a water retaining material, asphalt with a degree of openness represented by drainage pavement (pavement with adjusted void size to remove the intermediate region of the particle size distribution and increased voids) ), A technique for injecting a fluid holding material into the gap is disclosed. For example, a porous surface layer such as a water-permeable asphalt mixture having a porosity of 15 to 35% and a water-permeable cement concrete is filled with a silt-based filler (for example, see Reference 1).
なお、 シルトとは、 沈泥 -、とで、 砂より細かいが粘土より粗い沈積土のことである。 また、 その場合、 粒径が 5及至 Ί、 μ mのシルト分の含有量が 5 0重量%以上の粉末を 2 0及至 6 0 %を用い、 セメント系固化材を 5及至 5 0 %、 水が、 2 5及至 5 0 %とを混 合したシルト系充填材が用いられ、 7日養生後強度が最大で 2 0 M P aの保水材を得て いる。 また、 5 0〜7 0重量0 /0の高炉水砕スラグと、 5 0重量%以上の非晶質 S i 02 を含む 3 0〜5 0重量0 /0の無機粉末と、 該高炉スラグ微粉末及ぴ該無機粉末の合計 1 0 0重量部に対して 3重量部以上のアル力リ刺激剤を含有させた保水性固化体用水硬材も 開示されている (特許文献 2参照) 。 さらに、 1 5〜 2 5 %の空隙を有するァスフアル ト混合物を用いた多孔質表層において、 充填状態で保水性を有すると共に透水性 ·揚水 性を有する平均粒径 8 0〜2 0 0 mの微粒珪砂をアスファルト舗装体の体積 1 m3に つき 8 0〜1 6 0 k g充填した舗装体及ぴその形成方法が開示されている (特許文献 3 参照) 。 加えて、 開粒度アスファルト混合物等の多孔質硬化体を形成した後、 多孔質硬 化体の連続空隙内に、 セメント、 粘土系微粉末、 水等を含むスラリー状の充填材を充填 して、 路面温度の上昇を抑制する舗装体も開示されている (特許文献 4参照) 。 特許文献 1 : 特開平 1 0— 4 6 5 1 3号公報 Silt is silt, which is finer than sand but coarser than clay. In that case, 20 to 60% of powder with a particle size of 5 to Ί, silt content of μm of 50% by weight or more, 20 to 60% of cement-based solidified material, 5 to 50%, water However, silt-type fillers mixed with 25 to 50% are used, and water retention materials with a maximum strength of 20 MPa after 7 days of curing are obtained. Further, a 5 0-7 0 weight 0/0 of granulated blast furnace slag, a 3 0-5 0 weight 0/0 of the inorganic powder containing 5 0% by weight or more of amorphous S i 0 2, the high furnace slag There is also disclosed a hydraulic material for water-retaining solids containing 3 parts by weight or more of a strength stimulant with respect to a total of 100 parts by weight of fine powder and inorganic powder (see Patent Document 2). Furthermore, in a porous surface layer using a asphalt mixture having 15 to 25% voids, fine particles having an average particle diameter of 80 to 200 m having water retention in a filled state and water permeability and pumping property A pavement filled with 80 to 160 kg of silica sand per 1 m 3 of asphalt pavement and its formation method is disclosed (Patent Document 3). See). In addition, after forming a porous hardened body such as an open particle size asphalt mixture, a slurry-like filler containing cement, clay-based fine powder, water, etc. is filled into the continuous voids of the porous hardened body, A pavement that suppresses an increase in road surface temperature is also disclosed (see Patent Document 4). Patent Document 1: Japanese Patent Application Laid-Open No. 10-4 6 5 1 3
特許文献 2 : 特開 2 0 0 2— 2 4 1 1 5 1号公報  Patent Document 2: Japanese Patent Laid-Open No. 2 0 2-2 4 1 1 5 1
特許文献 3 : 特開 2 0 0 3— 1 4 7 7 1 7号公報  Patent Document 3: Japanese Laid-Open Patent Publication No. 2 0 0 3- 1 4 7 7 1 7
特許文献 4 : 特開 2 0 0 3—2 0 1 7 0 5号公報 発明の開示  Patent Document 4: Japanese Patent Application Laid-Open No. 2 0203-2 0 1 7 0 5 Disclosure of Invention
前記特許文献 1で開示された技術は、 保水効果が大きく実道路での施工も比較的容易 に行える。 しかしながら、 原料として使用可能なシルトの粒度調整を行うのに手間がか かり、 大面積の施工をする原料の調達に課題が残る。 また、 特許文献 2記載の保水材は、 高い保水力と一定の強度を有する利点がある。 しかしながら、 これを実際に路面に適用 したところ、 吸水速度に若干問題があることが判った。 すなわち、 一般に、 道路には、 降雨時に雨水が路面に長時間滞留しないように、 水平に対して 1〜1 . 5 %程度の勾配 が設けられ、 短時間で排水渠に排水される構造となっている。 吸水速度の小さい材料は、 雨天時に十分に吸水できないため、 晴天時に蒸発可能な水量が少なく、 従って路面冷却 性能が小さくなる。 この問題は、 散水車で適宜散水する場合にも同様である。 この問題 を解決するには、 例えば保水性舗装も周囲に堰等を設け、 保水性舗装を長時間にわたつ て水浸させる必要がある。 該特許文献 2の技術で施工された保水性舗装等を長時間にわ たって水浸させることは可能であるが、 施工コストゃメンテナンスコストの面で不利で ある。  The technique disclosed in Patent Document 1 has a large water retention effect and can be relatively easily constructed on an actual road. However, it takes time to adjust the particle size of the silt that can be used as a raw material, and there remains a problem in the procurement of raw materials for large-area construction. In addition, the water retention material described in Patent Document 2 has the advantage of having a high water retention capacity and a certain strength. However, when this was actually applied to the road surface, it was found that there was a slight problem with the water absorption speed. In other words, in general, roads are provided with a gradient of about 1 to 1.5% of the horizontal so that rainwater does not stay on the road surface for a long time during rainfall, and drainage can be drained to drainage in a short time. ing. A material with a low water absorption rate cannot absorb enough water during rainy weather, so the amount of water that can evaporate during fine weather is small, and therefore the road surface cooling performance is low. This problem is the same when watering properly with a water truck. In order to solve this problem, for example, it is necessary to install a weir around the water-retaining pavement and soak the water-retaining pavement for a long time. Although it is possible to immerse the water-retaining pavement and the like constructed by the technique of Patent Document 2 for a long time, the construction cost is disadvantageous in terms of maintenance cost.
特許文献 3に記載の鉱物質微粒体を充填する技術では、 透水性が大きく、 しかも雨水 等を保持できる舗装が得られるので、 路面温度の低減に効果的である。 しかしながら、 舗装体中に保水材を均一に充填するには、 舗装表面に少量ずつ散布した後、 振動プレー ト等で舗装体内に入れるという操作を何度も繰り返さなければならず、 作業性に問題が ある。 また、 近年都市部で頻発している集中豪雨によって、 表層の鉱物質粉粒体が流出 するため、 路面温度の低減効果が消失したり、 降雨後に鉱物質微粒体を再充填する必要 が生じるという欠点を有していた。 この欠点を改良するために、 結合材として樹脂等の 添加併用が考えられるが、 空隙が当初想定した量に達しないことが多い。 特許文献 4記 載の技術では、 粘土系微粉末とセメントとを含む充填材を使用するので、 粘土鉱物 (特 に、 モンモリロナイトが好ましい) が長期にわたって徐々に水分を放出するようになり、 路面温度の低減効果を長時間にわたって維持できる。 しかしながら、 粘土系微粉末自体 の構造に由来する保水性は、 それを開粒度アスファルト等に均一に分散させて始めて機 能するものであり、 その均一性の確保に問題があった。 The technique of filling mineral fine particles described in Patent Document 3 is effective in reducing road surface temperature because it provides a pavement that has high water permeability and can retain rainwater. However, in order to uniformly fill the pavement with the water retaining material, it is necessary to repeat the operation of spraying a small amount on the pavement surface and then putting it in the pavement using a vibration plate, etc. There is. Also, due to frequent heavy rains that have frequently occurred in urban areas in recent years, surface mineral powders flow out, and the effect of reducing road surface temperature disappears, or it is necessary to refill mineral fine particles after rainfall Had drawbacks. In order to improve this defect, resin, etc. Addition and concomitant use can be considered, but the voids often do not reach the initially assumed amount. In the technique described in Patent Document 4, since a filler containing clay-based fine powder and cement is used, clay minerals (especially montmorillonite is preferable) gradually release moisture over a long period of time, and the road surface temperature Can be maintained over a long period of time. However, water retention derived from the structure of the clay-based fine powder itself functions only after it is uniformly dispersed in open-graded asphalt or the like, and there is a problem in ensuring its uniformity.
本発明は、 かかる事情に鑑み、 特別な製造装置を用いずに製造でき、 舗装の施工に利 用して 1年以上経過しても、 性能低下がほとんど起きなレ、舗装用保水材組成物を提供す ると共に、 該舗装用保水材組成物を用い、 短時間の集中的な降雨でも効率的に雨水を吸 収でき、 ヒートアイランド現象をも抑止可能な路面冷却能を備えた舗装となす保水性舗 装の施工方法を提供することを目的としている。  In view of such circumstances, the present invention can be manufactured without using a special manufacturing apparatus, and even when a pavement construction is performed for one year or more, the performance hardly deteriorates. And the water retention of the pavement with the road surface cooling ability that can efficiently absorb rainwater even in a short period of intensive rain and suppress the heat island phenomenon. The purpose is to provide a construction method for pavement.
発明者は、 上記目的を達成するため鋭意研究を重ね、 その成果を本発明に具現化した。 すなわち、 本発明は、 4 2 5 /X m以下の粒径の粉が 6 0質量%以上となる粒径分布を 有し、 S i 02と C a C 03のいずれか一方又は両方の合計を 5 0質量%以上含む無機粉 末が 7 0〜9 9 . 9 5質量%と、 高炉水砕スラグが 0 . 0 5〜3 0質量%とからなる混 合物の 1 0 0質量部に対して、 セメントが 1〜3 5質量部添加されてなることを特徴と する舗装用保水材組成物である。 また、 本発明は、 4 2 5 /z m以下の粒径の粉が 6 0質 量%以上となる粒径分布を有し、 非晶質 S i 02を 5 0質量%以上含む無機粉末が 7 0 〜9 9 . 9 5質量%と、 高;^水砕スラグが 0 . 0 5 ~ 3 0質量%とからなる混合物の 1 0 0質量部に対して、 アルカリ刺激剤及ぴ 又はセメントが 1〜3 5質量部添加されて なることを特徴とする舗装用保水材組成物である。 前記無機粉末は、 粒径が 5〜7 5 μ mのシルト系粉末であっても良い。 The inventor conducted intensive studies to achieve the above object, and the results were embodied in the present invention. That is, the present invention has a particle size distribution in which powder having a particle size of 4 25 / X m or less is 60% by mass or more, and either or both of S i 0 2 and C a C 0 3 100 parts by mass of a mixture of 70 to 99.95% by mass of inorganic powder containing 50% by mass or more of total and 0.05 to 30% by mass of granulated blast furnace slag On the other hand, it is a water-retaining material composition for pavements characterized by adding 1 to 35 parts by mass of cement. Further, the present invention provides an inorganic powder having a particle size distribution in which powder having a particle size of 4 25 / zm or less is 60 mass% or more, and containing 50% by mass or more of amorphous Si 0 2 70 to 99.95% by mass and high; ^ Granulated slag is mixed with 0.05 to 30% by mass of 100 parts by mass of alkali stimulant and / or cement. It is a water-retaining material composition for pavements characterized in that 1 to 35 parts by mass are added. The inorganic powder may be a silt powder having a particle size of 5 to 75 μm.
さらに、 本発明は、 上記したいずれかの保水材組成物 1 0 0質量部に対して、 水を 5 0 - 3 5 0質量部加えて、 Pロート流下時間が 8〜2 0秒となるように調整した水スラ リ一を、 開粒度ァスフアルト舗装内に注入することを特徴とする保水性舗装の施工方法 である。  Further, according to the present invention, the P funnel flow time is 8 to 20 seconds by adding 50 to 350 parts by weight of water to 100 parts by weight of any one of the above-described water retaining material compositions. This is a water-retaining pavement construction method characterized by injecting a water slurry adjusted to 1 into the open grained wax pavement.
ここで、 Pロート流下時間とは、 細孔の口一トを用いて、 その中を液体が流下する時 間を測定する所謂 「Pロート試験」 で測定した水スラリーの流下時間のことであり、 多 孔物質の細孔内を流下する液体の浸透程度を評価する指数である。 図面の簡単な説明 Here, the P funnel flow time is the flow time of the water slurry measured by the so-called “P funnel test” in which the time for the liquid to flow through the pore mouth is measured. This is an index for evaluating the degree of penetration of the liquid flowing down through the pores of the porous material. Brief Description of Drawings
図 1は、 代表的な試験体の表面温度の経時変化を示す図である。 発明を実施するための最良の形態 Fig. 1 is a graph showing the change over time in the surface temperature of a typical specimen. BEST MODE FOR CARRYING OUT THE INVENTION
本願発明を達成するためには、 4 2 5 μ ΐη以下の粒径が 6 0質量%以上となる粒径を 有し、 S i 02と C a C 03のいずれか一方又は両方の合計を 5 0質量%以上含む無機粉 末が 7 0〜9 9 . 9 5質量%と、 高炉水砕スラグが 0 . 0 5〜3 0質量%とからなる混 合物を固化させることが重要である。 In order to achieve the present invention, a particle size of 4 25 μΐη or less has a particle size of 60% by mass or more, and the sum of one or both of S i 0 2 and C a C 0 3 It is important to solidify a mixture of 70 to 99.95% by mass of inorganic powder containing 50% by mass or more and 0.05 to 30% by mass of granulated blast furnace slag. is there.
まず、 発明者は、 特許文献 1記載の技術を見直し、 排水性舗装に代表される前記開粒 度アスファルトの空隙に注入する保水材に着目した。 つまり、 その保水材の製造時に、 原材料同士がスラグアルカリ反応を起こしているが、 このような化学反応によって形成 される気孔は、 0 . 1 m以下の小さなものが中心であり、 その気孔中に保持された水 は時間をかけて徐々に放出されるため、 保水持続性に効果があるからである。 そこで、 発明者は、 この保水持続効果をさらに詳しく検証し、 保水材の原材料を、 高炉水砕スラ グと、 4 2 5 m以下の粒径の粉が 6 0質量%以上となる粒径分布を有し、 S i 02と C a C 03のいずれか一方又は両方の合計を 5 0質量%以上含む無機粉末と、 水との混 合物とすると共に、 該無機粉末が 7 0〜9 9 . 9 5質量%と、 高炉水碎スラグが 0 . 0 5〜3 0質量%とすることで、 従来より吸水速度が一層大きく、 固化して得た保水材の 性能低下が起こり難いことを見出し、 本発明を完成させたのである。 First, the inventor reviewed the technique described in Patent Document 1 and focused on a water retaining material to be injected into the gaps of the above-mentioned opening degree asphalt represented by drainage pavement. In other words, when the water retaining material is manufactured, the raw materials undergo a slag alkali reaction, but the pores formed by such a chemical reaction are mainly small ones of 0.1 m or less. This is because the retained water is gradually released over time, which is effective in maintaining water retention. Therefore, the inventor examined this water retention effect in more detail, and used the water retention material as a blast furnace granulated slag and a particle size distribution in which powder with a particle size of 4 25 m or less was 60% by mass or more. A mixture of inorganic powder containing 50% by mass or more of one or both of S i 0 2 and C a C 0 3 and water, and the inorganic powder is 70 to 9 9.9 5% by mass and blast furnace water slag of 0.05 to 30% by mass, the water absorption rate is higher than before and the performance of the water retention material obtained by solidification is unlikely to occur. The present invention has been completed.
'なお、 高炉水砕スラグとしては、 水砕後所定の粒径以下に粉砕したものや、 それに石 膏を所定量加えた高炉スラグ微粉末、 水砕スラグ磁選工程で集塵粉として集められたス ラグ粉末等が用いられるが、 これらに限定されることはない。 また、 該高炉水砕スラグ の含有量は、 0 . 0 5〜3 0質量%であることが必要であり、 より好適な範囲は 0 . 0 5〜1 .5質量%、 さらに好適な範囲は 0 . 0 5〜1 0質量%でぁる。 高炉水砕スラグが 3 0質量%を超えると、 固化反応が進行し過ぎて平均気孔径の低下を招き易くなり、 1 時間程度の短時間に大量の降雨があった場合でも、 降雨の大部分は吸収されずに排水渠 等を通じて河川等に放流されてしまうからである。 長時間の降雨によりある程度の吸水 量が確保できた場合でも、 微細気孔に吸収された水は、 加熱されても短時間で放出され ず舗装面冷却効果が小さくなる。 従って、 短時間で吸放水可能な気孔径を有する保水材 組成物からなる固化体を製造するには、 高炉水砕スラグ量が上記範囲でなければならな い。 さらに、 高炉水砕スラグを全く含まない場合には、 前記固化体が C a O— S i 02 一 A 1 203- H20の構造にならず、 微細気孔の形成が不十分になるので、 好ましくない。 また、 本発明では、 無機粉末は、 7 0〜9 9 . 9 5質量%の範囲であることが必要で あり、 より好適な範囲は 8 5〜9 9 . 9 5質量%、 さらに好適な範囲は 9 0〜9 9 . 9 5質量%である。 無機粉末が 7 0質量%未満であると、 高炉水砕スラグ量が相対的に多 くなり、 時間の経過と共に固化反応が進行して平均気孔径の低下を招く。 9 9 . 9 5質 量%を超えると、 高炉水砕スラグを用いた微細気孔及び反応形成気孔をなくしてしまう ので、 好ましくない。 'As blast furnace granulated slag, granulated blast furnace slag that has been granulated to less than a predetermined particle size after granulation, blast furnace slag fine powder with a predetermined amount of plaster added to it, and collected as dust collection powder in the granulated slag magnetic separation process Although slag powder etc. are used, it is not limited to these. Further, the content of the granulated blast furnace slag needs to be 0.05 to 30% by mass, and a more preferable range is 0.05 to 1.5% by mass, and a more preferable range is 0. 5 to 10% by mass. If the granulated blast furnace slag exceeds 30% by mass, the solidification reaction will proceed too much and the average pore size will be easily reduced. Even if there is a large amount of rainfall in a short time of about 1 hour, This is because they are not absorbed and discharged into rivers through drainage. Even if a certain amount of water absorption can be secured due to long-term rainfall, the water absorbed in the fine pores will not be released in a short time even if heated and the pavement surface cooling effect will be reduced. Therefore, in order to produce a solidified body composed of a water retention material composition having a pore size capable of absorbing and releasing water in a short time, the amount of granulated blast furnace slag must be within the above range. Yes. Further, when no granulated blast furnace slag is contained, the solidified body does not have a structure of C a O—S i 0 2 and A 1 2 0 3 -H 2 0, and the formation of fine pores is insufficient. Therefore, it is not preferable. In the present invention, the inorganic powder needs to be in a range of 70 to 99.95% by mass, and a more preferable range is 85 to 99.95% by mass, and a more preferable range. Is 90-99.95 mass%. If the inorganic powder is less than 70% by mass, the amount of granulated blast furnace slag becomes relatively large, and the solidification reaction proceeds with time, leading to a decrease in average pore diameter. If it exceeds 99.95 mass%, the fine pores and reaction formation pores using granulated blast furnace slag are lost, which is not preferable.
本発明で用いる無機粉末は、 非晶質 S i 02を 5 0質量%以上含む無機粉末及び Z若 しくは S i 02を 5 0質量%以上含む無機粉末並びに Z又は C a C 03を 5 0質量%以上 含む無機粉末が好ましい。 非晶質 S i 02を 5 0質量%以上含む無機質粉末は、 アル力 リ刺激剤及ぴ 又は固化材を加えることで C a— S i—H間の反応が進み、 微細気孔の 増大に寄与する。 S i 02を 5 0質量%以上含む無機粉末は、 それ自身は該反応に寄与 しないが、 水を保持する空隙を粒子間に形成するため、 保水効果を発現する。 同様に C a C 03を 5 0重量%以上含む無機粉末は、 それ自身の反応性は期待できないが、 水を 保持する空隙を粒子間に形成するため、 保水効果を発揮する。 非晶質 S i 02を 5 0質 量%以上含む無機粉末、 S i 02を 5 0質量%以上含む無機粉末及び C a C 03を 5 0質 量%以上含む無機粉末は、 4 2 5 μ m以下の部分が 6 0質量%以上であることが必要で ある。 4 2 5 mを超えるものが 4 0質量%以上あると、 本発明の舗装用保水材組成物 に水を加えてスラリーにした際に材料の分離が起こり易く、 また所謂 「開粒度ァスファ ルト」 等に表面から注入する際に目詰まりを起こして注入し難くなるためである。 Inorganic powder used in the present invention, amorphous S i 0 2 5 0 inorganic powder and Z young properly containing mass% or more S i 0 2 5 0 inorganic powder containing mass% or more and Z or C a C 0 3 Is preferably an inorganic powder containing 50% by mass or more. Inorganic powders comprising amorphous S i 0 2 5 0 mass% or more, the reaction between C a- S i-H by adding Al force re stimulants及Pi or solidifying material progresses, the increase in the fine pores Contribute. An inorganic powder containing 50% by mass or more of S i 0 2 itself does not contribute to the reaction, but exhibits a water retention effect because it forms voids that retain water between the particles. Inorganic powder containing C a C 0 3 5 0 wt% or more in the same manner, the its own reactivity can not be expected, in order to form a gap for holding the water between the particles, exhibits a water retention effect. Inorganic powder including amorphous S i 0 2 5 0 mass% or more, the inorganic powder containing inorganic powder and C a C 0 3 containing S i 0 2 5 0 wt% to 5 0 mass% or more, 4 2 The part of 5 μm or less needs to be 60% by mass or more. When the amount exceeding 4 25 m is 40% by mass or more, separation of the material is likely to occur when water is added to the water retention material composition for pavement of the present invention to form a slurry, and the so-called “open particle size falset” This is because clogging occurs when injecting from the surface or the like, making it difficult to inject.
高炉水砕スラグは、 製造時に微粉となっているため、 そのまま使用して良い。 特に、 高炉セメント等に用いられる高炉水砕スラグを粉砕した高炉スラグ微粉末の場合は、 平 均粒径 1 0 m以下程度になっているので、 好適に使用できる。 セメントやアルカリ刺 激剤は、 水を加えると反応が進み、 粒径が変化するが、 セメントは、 一般に平均粒径 5 μ m程度の微粉であり、 またアル力リ刺激剤として使用される物の多くは水溶性であり、 工業用の消石灰や水酸ィヒマグネシウムも最大粒径 1 0 0 μ m以下、 平均粒径 5 m以下 であるため、 そのまま使用しても、 開粒度アスファルト等へ注入する際に目詰まり等の 問題はない。 本発明で利用する非晶.質 S i 02を 5 0質量%以上含む無機粉末としては、 例えば、 クリンカーアッシュ等が挙げられるが、 非晶質 S i 02の特性を有するものであれば問 題なく使用でき、 前記例には限定されない。 また、 S i 02を 5 0質量%以上含む無機 粉末としては、 例えば珪砂、 珪砂粉、 珪石粉、 シリカヒューム等が挙げられるが、 S i o2としての性状を有するものであれば問題なぐ使用でき、 前記例には限定されない。 さらに、 C a C 03を 5 0質量%以上含む無機粉末としては、 例えば炭酸カルシウム、 石灰粉、 石灰石の石粉等が挙げられるが、 C a C 03の性状を有するものであれば問題 なく使用可能であり、 前記例には限定されない。 S i 02を 5 0質量%以上を含む無機 粉末及ぴ C a C 03を 5 0質量%以上含む無機粉末には、 所定の粒径を満足するもので あれば、 例えば砂、 粘土、 石炭灰等の無機成分を含んでいても良い。 本発明では、 これ らの非晶質 S i 02を 5 0質量%含む無機粉末、 S i 02を 5 0質量%以上含む無機粉末、 C a C 03を 5 0質量%以上含む無機粉末は、 任意の割合で混合することができる。 す なわち、 前述の 3つの無機粉末を全て混合したものであっても良いし、 どれか 1種類だ けを使用してもよい。 その割合は任意であり、 自由に選択できる。 ' Blast furnace granulated slag is fine powder at the time of manufacture and can be used as it is. In particular, blast furnace slag fine powder obtained by pulverizing blast furnace granulated slag used for blast furnace cement and the like has an average particle size of about 10 m or less, and can be suitably used. Cement and alkali stimulants react when water is added and the particle size changes, but cement is generally a fine powder with an average particle size of about 5 μm, and is also used as an Al force stimulant. Most of them are water-soluble, and industrial slaked lime and magnesium hydroxide have a maximum particle size of 100 μm or less and an average particle size of 5 m or less. There are no problems such as clogging during injection. Examples of the inorganic powder containing 50% by mass or more of amorphous S i 0 2 used in the present invention include clinker ash and the like, as long as it has amorphous S i 0 2 characteristics. It can be used without any problem and is not limited to the above example. Examples of inorganic powders containing 50% by mass or more of S i 0 2 include silica sand, silica sand powder, silica stone powder, and silica fume, but they can be used as long as they have properties as Sio 2 Yes, it is not limited to the above example. Further, examples of the inorganic powder containing 50% by mass or more of C a C 0 3 include calcium carbonate, lime powder, limestone stone powder, etc., but there is no problem as long as it has C a C 0 3 properties. It can be used and is not limited to the above example. The inorganic powder containing 50% by mass or more of S i 0 2 and the inorganic powder containing 50% by mass or more of C a C 0 3 may be, for example, sand, clay, etc. as long as they satisfy a predetermined particle size. It may contain inorganic components such as coal ash. In the present invention, these inorganic powders of amorphous S i 0 2 containing 5 0% by mass, S i 0 inorganic powder containing 2 to 5 0 mass% or more, inorganic containing C a C 0 3 5 0 mass% or more The powder can be mixed in any proportion. In other words, it may be a mixture of all three inorganic powders described above, or only one of them may be used. The ratio is arbitrary and can be chosen freely. '
本発明で用いるアルカリ刺激剤及び 又はセメントは、 高炉水砕スラグと無機粉末の 合計量 1 0 0質量部に対して、 1〜3 5質量部の範囲であることが必要である。 アル力 リ刺激剤は、 非晶質 S i 02を溶解して反応せしめる機能を有するものであれば特に材 , 質を限定しないが、 経済性や入手容易性から考えて、 水酸化ナトリウムに代表されるァ ルカリ金属の水酸化物、 水酸化マグネシウムに代表されるアル力リ土類金属及びノ又は セメントを用いることができる。 このアルカリ刺激剤は、 主として高炉水砕スラグ及ぴ 非晶質 S i 02を 5 0質量%以上含む無機粉末に対し、 S i 02又は S 1 02と八 1 203と を溶解させてポゾラン反応を促進させ、 自己硬化を促進させるものであるが、 それ以外 に高炉水砕スラグや非晶質 S i 02を 5 0質量%以上含む無機粉末の含有量が少ない場 合でも、 水を加えてスラリー化した時に流動性を向上させる機能を有する。 従って、 高 炉水砕スラグ及び非晶質 S i 02を 5 0質量%以上含む無機粉末の含有量が少ない場合 でも、 アルカリ刺激剤を添加しても良い。 非晶質 S i 02を 5 0質量%以上含む無機粉 末を使用する場合、 アルカリ刺激剤の含有量は、 1 ~ 3 5質量部の範囲が必要であり、 より好ましくは 1 ~ 1 5質量部の範囲である。 1質量部未満では、 前述のアル力リ刺激 反応が起こり難くなるので好ましくなく、 3 5質量部を超えでは、 保水機能の低下が起 こるため好ましくない。 この場合、 アルカリ刺激剤の一部若しくは全部をセメントと置き換え、 アルカリ刺激 剤とセメントの量を 1〜3 5質量部としても良い。 セメントも水中でアルカリ性を発揮 するため、 非晶質 S i 02を溶解して反応を生じさせることができる。 また、 セメント は、 それ自体固化材として機能する。 この場合もアルカリ刺激剤とセメントの合計ある いはセメント単味の量が 1質量部では、 アルカリ刺激反応が起こり難く、 3 5質量部を 超えると、 保水機能の低下が起こるため、 好ましくない。 The alkali stimulant and / or cement used in the present invention needs to be in the range of 1 to 35 parts by mass with respect to 100 parts by mass of the total amount of blast furnace granulated slag and inorganic powder. Al force Li stimulants, especially wood as long as it has a function of reacting by dissolving amorphous S i 0 2, but not limited to quality, given the economy and availability, sodium hydroxide Alkali metal hydroxides as typified, alkaline earth metals and magnesium or cement as typified by magnesium hydroxide can be used. This alkali stimulator mainly dissolves Si 0 2 or S 1 0 2 and 8 1 2 0 3 in inorganic powder containing 50% by mass or more of granulated blast furnace slag and amorphous S i 0 2 by to promote pozzolanic reaction, but is intended to promote the self-curing, the other in water-granulated blast furnace slag or amorphous S i 0 2 5 0 mass% or more containing inorganic powder if a small content of the It has a function of improving fluidity when slurryed by adding water. Therefore, even when the content of the inorganic powder containing a high furnace slag and amorphous S i 0 2 5 0 mass% or more is small, it may be added an alkali stimulant. When using inorganic powders powder containing amorphous S i 0 2 5 0 mass% or more, the content of the alkali stimulant, requires a range of 1 to 35 parts by weight, more preferably from 1 to 1 5 It is the range of mass parts. If it is less than 1 part by mass, it is not preferable because the above-described Al force re-stimulation reaction is difficult to occur, and if it exceeds 35 parts by mass, the water retention function is deteriorated. In this case, part or all of the alkali stimulant may be replaced with cement, and the amount of the alkali stimulant and cement may be 1 to 35 parts by mass. Since cement also exhibits alkalinity in water, amorphous Si 0 2 can be dissolved to cause a reaction. Cement itself functions as a solidifying material. Also in this case, if the total amount of alkali stimulant and cement or the amount of cement alone is 1 part by mass, the alkali stimuli reaction hardly occurs, and if it exceeds 35 parts by mass, the water retention function is deteriorated.
また、 高炉水砕スラグ含有量や非晶質 S i 02を 5 0質量%以上含む無機粉末の含有 量が少ない場合、 アル力リ刺激剤を使用してもポゾラン反応による自己硬化がほとんど 期待できないため、 固化材としてセメントを使用する必要がある。 このセメントは、 普 通ポルトランドセメント、 早強ポルトランドセメント、 速硬セメント、 超速硬セメント、 高炉セメント等が使用でき、 それらを混合したものを用いることができる。 上記した本 発明に係る舗装用保水材を開粒度アスファルト等で施した実際の道路に適用する際には、 施工後にできるだけ早く通行開始を求められる場合が多いので、 速硬セメントゃ超速硬 セメントを使用することが多い。 セメント使用量は、 1〜3 5質量部が必要であり、 よ り好ましくは 5〜3 0質量部、 さらに好ましくは 1 0〜 2 5質量部の範囲である。 1質 量部未満では、 保水材組成物に水を加えて硬化させた時に得られる保水材の強度がほと んど発現せず、 3 5質量部超では、 セメント量が多すぎて高炉水砕スラグや無機粉末に よって形成される空隙を閉塞させてしまうため好ましくない。 Also, if a small amount of inorganic powder comprising granulated blast furnace slag content and amorphous S i 0 2 5 0 mass% or more, most expected self-curing by pozzolanic reactions using Al force Li stimulants It is not possible to use cement as a solidifying material. As this cement, normal Portland cement, early-strength Portland cement, fast-curing cement, super-hard-hardening cement, blast furnace cement, and the like can be used, and a mixture thereof can be used. When applying the above-mentioned water retention material for pavement according to the present invention to an actual road made with open grain asphalt or the like, it is often required to start passing as soon as possible after construction. Often used. The amount of cement used is required to be 1 to 35 parts by mass, more preferably 5 to 30 parts by mass, and still more preferably 10 to 25 parts by mass. If less than 1 part by mass, the strength of the water-retaining material obtained when water is added to the water-retaining material composition and hardened is hardly expressed. 3 If it exceeds 5 parts by mass, the amount of cement is too high and blast furnace water It is not preferable because the void formed by the crushed slag or inorganic powder is blocked.
本発明に係る舗装用保水材組成物は、 前記したように、 高炉水砕スラグと、 非晶質 S i 02を 5 0質量%以上含む無機粉末及び/若しくは S i 02を 5 0質量%以上含む無機 粉末並ぴに 又は C a C 03を 5 0質量%以上含む無機粉末とが 7 0〜9 9 . 9 5質 量%とを構成成分とするが、 施工場所によっては、 シルトや土を使用したい場合も発生 する。 そのような場合、 非晶質 S i 02を 5 0質量%以上含む無機粉末及び Z若しくは S i 02を 5 0質量%以上含む無機粉末並びに 又は C a C 03を 5 0質量%以上含む無 機粉末の代わりに、 シルトや土を使用しても良い。 その場合、 上記無機粉末の全体に代 えてシルトや土を全量使用しても良く、 一部をシルトや土に代えるだけでも良い。 しか しながら、 使用するシルトや土の粒径は、 開粒度アスファルト舗装等への保水スラリー の注入し易さを確保するため、 4 2 5 z m以下の部分が 6 0質量%以上であることが必 要である。 以上述ぺたように、 本発明に係る舗装用保水材組成物は、 吸水性に優れ、 しかも保水 性舗装の施工後にその性能低下が小さいため、 長期にわたって路面温度の抑制効果が、 つまりヒートアイランド現象の抑止効果が期待できるものである。 As described above, the water-retaining material composition for pavement according to the present invention comprises blast furnace granulated slag, inorganic powder containing amorphous S i 0 2 in an amount of 50% by mass or more and / or S i 0 2 in a mass of 50%. % or more containing inorganic powders parallel Pini or C a C 0 3 5 0 mass% or more including inorganic powder and 7 0-9 9.9 but the 5 mass% and the component, by construction site, silt If you want to use soil or soil. In such a case, the inorganic powder containing 50% by mass or more of amorphous S i 0 2 and the inorganic powder containing 50% by mass or more of Z or S i 0 2 and / or 50% by mass or more of C a C 0 3 Silt or soil may be used instead of the inorganic powder. In that case, the entire amount of silt or soil may be used in place of the entire inorganic powder, or a part thereof may be replaced with silt or soil. However, the particle size of the silt and soil used should be 60 mass% or more in the portion of 4 25 zm or less in order to ensure the ease of injecting the water retention slurry into the open-graded asphalt pavement etc. is necessary. As described above, the water-retaining material composition for pavement according to the present invention is excellent in water absorption and its performance degradation is small after construction of water-retaining pavement. A deterrent effect can be expected.
次に、 上記舗装用保水材組成物の利用方法についても発明を行ったので、 以下に説明 する。 それは、 前記輔装用保水材組成物の 1 0 0質量部に対して水を 5 0〜 3 5 0質量 部加えて、 Pロート流下時間を 8秒〜 2 0秒に調整した水スラリーにした後、 開粒度ァ スフアルト舗装内に注入するという保水性舗装体の施工方法である。  Next, since the invention has been made on the method of using the water-retaining material composition for pavement, it will be described below. After adding 50 to 3500 parts by mass of water to 100 parts by mass of the water-retaining material composition for fitting, the water flow rate of the P funnel was adjusted to 8 to 20 seconds. This is a method of constructing a water-retaining pavement that is injected into an open grained face pavement.
舗装用保水材組成物 1 0 0質量部に対し、 水を 5 0質量部以上加えるのは、 水が 5 0 質量部未満では、 前記アルカリ反応にその多くが使用されるため、 水の蒸散による空隙 率の増加は見込めないからである。 また、 添加する水の上限は、 原料の粒径によって規 定されるため、 一義的に決めることは困難であるが、 使用する無機粉末の粒径が小さく なる程、 水量を多くする必要がある。 すなわち、 粒径が 5〜4 2 5 m程度の原料を用 いる場合は、 水量の上限は 1 5 0質量部で十分であり、 それ以上多くても、 施工時に水 分が分離する水浮き現象が生じる可能性がある。 5 μ πι以下の粒子が 5 0質量部以上含 まれている場合には、 混練が可能な水量は 3 5 0質量部となる。 ただし、 3 5 0質量部 を超えて水を添加しても、 水浮き現象が生じ易くなるため、 好ましくない。 従って、 水 の添加量は、 使用する舗装用保水材組成物の粒径に応じて、 5 0 ~ 3 5 0質量部の範囲 で適宜選択すれば良い。 なお、 この場合、 Ρロート流下時間は、 8秒〜 2 0秒の範囲に 調整する必要がある。 より好ましくは 8秒〜 1 5秒の範囲である。 2 0秒を超える水ス ラリーでは、 スラリーの粘度が高いため、 開粒度アスファルト等へ注入するための時間 が長くなり、 好ましくない。 また、 8秒未満では、 注入は容易であるが、 硬化時間が長 くなり、 道路開放までに要する時間が長くなり過ぎる恐れがあり、 好ましくない。 この Ρロート流下時間の測定は、 土木学会で規定され、 J S C E— 1 9 8 6に記載された方 法であり、 上端内径 1 7 8 mm, 下端内径 1 3 mm、 ロート部の高さ 1 9 2 mmのロー トの下端に、 内径 1 3 mm、 長さ 3 8 mmの流出管を有する铸アルミニウム製ロートを 用いて、 1 7 2 5 c cの試料の流出時間を測定するものである。 実施例  Water is added to 50 parts by mass or more with respect to 100 parts by mass of the pavement water-retaining material composition. If the amount of water is less than 50 parts by mass, most of the water is used in the alkaline reaction. This is because an increase in porosity cannot be expected. In addition, the upper limit of the water to be added is determined by the particle size of the raw material, so it is difficult to determine uniquely. However, the smaller the particle size of the inorganic powder used, the larger the amount of water must be. . In other words, when using a raw material with a particle size of about 5 to 4 25 m, the upper limit of the amount of water is enough to be 150 parts by mass. May occur. When particles of 5 μπι or less are contained in an amount of 50 parts by mass or more, the amount of water that can be kneaded is 3500 parts by mass. However, addition of water exceeding 3500 parts by mass is not preferable because water floating phenomenon is likely to occur. Accordingly, the amount of water added may be appropriately selected within the range of 50 to 3500 parts by mass according to the particle size of the water-holding material composition for paving used. In this case, it is necessary to adjust the soot funnel flow time within the range of 8 to 20 seconds. More preferably, it is in the range of 8 seconds to 15 seconds. A water slurry of more than 20 seconds is not preferred because the viscosity of the slurry is high, and the time required for pouring into open-graded asphalt becomes long. Also, if it is less than 8 seconds, the injection is easy, but the curing time becomes long and the time required to open the road may become too long, which is not preferable. The measurement of Ρ funnel flow time is a method specified by the Japan Society of Civil Engineers and described in JSCE — 1 9 8 6. Using a aluminum funnel with an outflow pipe with an inner diameter of 13 mm and a length of 38 mm at the lower end of a 2 mm funnel, the outflow time of a 1 7 25 cc sample is measured. Example
(実施例:!〜 4 ) 高炉水砕スラグとして高炉スラグ微粉末を、 非晶質 S i 02を 5 0重量。 /0以上含む無 機粉末としてフライアッシュ (4 2 5 μ πι以下が 1 0 0質量%) を用い、 これらをあわ せた混合物 1 0 0質量部に、 アル力リ刺激剤として消石灰を、 固化材として速硬セメン トを適宜割合で加えて混合し、 さらにこれらの粉体全体に対して、 水を適宜割合で加え て 4分間混練して後に、 直径 1 0 c m、 高さ 1 0 c mの型枠に流し込み、 2 0 °C、 5 0 % R H (湿度) の恒温恒湿状態に保持した室内で 3日間封絨養生して、 本発明に係る 円筒形の固化体を得た。 原料配合を表 1 一 1に示す。 (Example:! ~ 4) Blast furnace slag fine powder as granulated blast furnace slag, amorphous Si 0 2 50 weight. / Use fly ash (4 25 μ μπι or less is 100% by mass) as an inorganic powder containing more than 0, and mix 100 parts by mass with slaked lime as an Al force stimulant. As a material, fast-curing cement is added at an appropriate ratio and mixed, and water is added at an appropriate ratio to these powders and kneaded for 4 minutes. Then, the diameter is 10 cm and the height is 10 cm. It was poured into a mold and sealed for 3 days in a room maintained at a constant temperature and humidity of 20 ° C. and 50% RH (humidity) to obtain a cylindrical solid body according to the present invention. The raw material composition is shown in Table 1-11.
表 1一 1 実施例 Table 1-1 1 Example
Figure imgf000012_0001
これらの固化体を脱枠後、 さらに恒温恒湿槽内において 6 0 °Cで 7日間蒸気養生した。 その後 6 0 °Cで 1 日乾燥した後、 これら固化体の吸水性能と保水性能を確認するために、 吸水高さと重量減少率を求めた。 この吸水高さと重量減少率を求めるには、 吸水試験を 行って、 最大吸水質量と 1時間吸水質量を測定した。 ここで、 1時間吸水質量とは、 上 記固化体の質量測定後に、 固化体の下端から 5 mmに相当する部分を流水中に浸し、 1 時間後に質量を測定して初期の質量を差し引いた値であり、 1時間の間に固化体が吸収 した水量に相当する。 最大吸水質量とは、 上記 1時間吸水質量を測定した固化体を、 さ らに 2 4時間水中に全体を浸漬保持して吸水させ、 吸水後の質量から吸水前の質量を差 し引いた値である。
Figure imgf000012_0001
These solidified bodies were removed from the frame, and further steam-cured at 60 ° C for 7 days in a thermo-hygrostat. Then, after drying at 60 ° C for 1 day, the water absorption height and weight reduction rate were determined to confirm the water absorption performance and water retention performance of these solidified bodies. In order to obtain the water absorption height and the weight reduction rate, a water absorption test was performed, and the maximum water absorption mass and the water absorption mass for 1 hour were measured. Here, the one-hour water absorption mass means that after measuring the mass of the solidified body, a portion corresponding to 5 mm from the lower end of the solidified body was immersed in running water, and after 1 hour, the mass was measured and the initial mass was subtracted. This value is equivalent to the amount of water absorbed by the solidified product during one hour. The maximum water absorption mass is the value obtained by subtracting the mass before water absorption from the mass after water absorption by absorbing the solidified body whose water absorption mass was measured for 1 hour above, by further immersing the whole solid in water for 24 hours. It is.
これらの値を用いて、 吸水高さは、 下記式により求まる。  Using these values, the water absorption height is obtained by the following formula.
吸水高さ (c m) =固化体高さ X ( 1時間吸水質量 Z最大吸水質量)  Water absorption height (cm) = solidified body height X (1 hour water absorption Z maximum water absorption)
今回の固化体高さは 1 0 c mである。 また、 この最大吸水質量を求めた固化体を 4 0 °Cに保持して 2 4時間乾燥させ、 乾燥 後の質量を測定して前記固化体の吸水試験実施前の質量を差し引き、 乾燥後吸水量を求 める。 この乾燥後吸水量と前記最大吸水量とを用いて、 重量減少率を下記式により求め る。 The height of the solidified body this time is 10 cm. Further, the solidified body for which the maximum water absorption mass was determined was kept at 40 ° C. and dried for 24 hours, the mass after drying was measured, the mass before the water absorption test of the solidified body was subtracted, and the water absorption after drying Find the amount. Using this water absorption after drying and the maximum water absorption, the weight reduction rate is obtained by the following formula.
質量減少率 (%) = (最大吸水量一乾燥後吸水量) Z最大吸水量 X 1 0 0  Mass reduction rate (%) = (Maximum water absorption vs. water absorption after drying) Z Maximum water absorption X 1 0 0
(実施例 5〜8 )  (Examples 5 to 8)
高炉水砕スラグとして高炉スラグ微粉末を、 S i 02を 5 0重量。 /0以上含む無機粉末 として珪砂粉 (4 2 5 μ πι以下が 6 0質量%) を用いて混合物とし、 アルカリ刺激剤と して消石灰を、 固化材として速硬セメントを用い、 実施例 1〜4と同じ方法で固化体を 作製し、 吸水高さ及び重量減少率を求めた。 原料配合を表 1一 2に示す。 表 1一 2 実施例 Blast furnace slag fine powder as granulated blast furnace slag, 50 weight of S i 0 2 . / Silica sand powder (4 25 5 μπι or less is 60% by mass) as an inorganic powder containing 0 or more is used as a mixture, slaked lime is used as an alkali stimulant, and fast-hardening cement is used as a solidifying material. A solidified body was prepared by the same method as in Fig. 4, and the water absorption height and weight reduction rate were determined. Table 1-12 shows the raw material composition. Table 1 1-2 Examples
Figure imgf000013_0001
Figure imgf000013_0001
0 0 3 6 0 0 3 6
高炉水碎スラグとして高炉スラグ微粉末を、 C a C 03を 5 0重量%以上含む無機粉 末として炭酸カルシウム (4 2 5 μ ιη以下が 7 0質量。 /0) を用いて混合物とし、 アル力 リ刺激剤として消石灰を、 固化材として速硬セメントを用い、 実施例 1〜4と同じ方法 で固化体を作製し、 吸水高さ及び重量減少率を求めた。 原料配合を表 1一 3に示す。 表 1一 3 実施例 Blast furnace slag fine powder as blast furnace water tank slag, calcium carbonate (4 25 μιηη or less is 70 mass. / 0 ) as inorganic powder containing 50% by weight or more of C a C 0 3 A solidified body was prepared by the same method as in Examples 1 to 4, using slaked lime as the Al-stimulating agent and fast-hardening cement as the solidifying material, and the water absorption height and the weight reduction rate were determined. Table 1-13 shows the raw material composition. Table 1-13 Examples
Figure imgf000014_0001
Figure imgf000014_0001
(実施例 1 3〜: 1 6 ) (Examples 13-: 1 6)
高炉水砕スラグとして高炉スラグ微粉末を、 S i 02を 5 0重量%以上含む無機粉末 としてシリカフユ一ム (4 2 5 m以下が 1 0 0質量0 /0) を用いて混合物とし、 アル力 リ刺激剤として消石灰を、 固化材として速硬セメントを用い、 実施例 1〜4と同じ方法 で固化体を作製し、 吸水高さ及び重量減少率を求めた。 原料配合を表 1 4に示す。 The blast furnace slag as blast furnace slag, and S i 0 2 5 0 Shirikafuyu Ichimu inorganic powder containing by weight% or more (4 2 5 m or less 1 0 0 mass 0/0) mixture with Al Strength Using slaked lime as a stimulant and fast-hardening cement as a solidifying material, a solidified body was prepared in the same manner as in Examples 1 to 4, and the water absorption height and weight reduction rate were determined. Table 14 shows the raw material composition.
表 1一 4 実施例 Table 1-14 Examples
Figure imgf000014_0002
Figure imgf000014_0002
(実施例 1 7〜 2 0 ) (Example 1 7-20)
高炉水砕スラグとして高炉スラグ微粉末を、 非晶質 S i 02を 5 0重量%以上含む無 機粉末としてフライアッシュ (4 2 5 μ πι以下が 1 0 0質量0 /0) を、 S i 02を 5 0重 量%以上含む無機粉末として珪砂粉 (4 2 5 m以下が 6 0質量%) を用いて混合物と し、 アルカリ刺激剤として消石灰を、 固化材として速硬セメントを用い、 実施例 1〜4 と同じ方法で固化体を作製し、 吸水高さ及び重量減少率を求めた。 原料配合を表 1一 5 に示す。 The blast furnace slag as blast furnace slag, amorphous S i 0 Fly ash 2 as no machine powder containing 5 0% by weight or more (4 2 5 μ πι below 1 0 0 mass 0/0), S Silica sand powder (4 25 m or less is 60% by mass) as an inorganic powder containing 50% by weight or more of i 0 2 is used as a mixture, slaked lime is used as an alkali stimulant, and fast-hardening cement is used as a solidifying material. Examples 1 to 4 The solidified body was prepared by the same method as above, and the water absorption height and the weight reduction rate were determined. Table 1-15 shows the raw material composition.
表 1一 5 実施例 Table 1-15 Examples
Figure imgf000015_0001
Figure imgf000015_0001
(実施例 2 1〜 2 4 ) (Examples 2 1 to 2 4)
高炉水砕スラグとして高炉スラグ微粉末、 非晶質 S i 02を 5 0重量%以上含む無機 粉末としてフライアッシュ (4 2 5 ju m以下が 1 0 0質量0 /0) 、 じ &〇03 5 0重量% 以上含む無機粉末として炭酸カルシウム (4 2 5 μ πι以下が 7 0質量%) を用いて混合 物とし、 アルカリ刺激剤として消石灰を、 固化材として速硬セメン卜からなる無機粉末 を混合した後、 実施例 1〜4の方法で固化体を作製し、 吸水高さ及び重量減少率を求め た。 原料配合を表 1一 6に示す。 表 1一 6 実施例 Blast furnace slag as blast furnace slag, amorphous S i 0 Fly ash 2 as inorganic powder containing 5 0% by weight or more (4 2 5 ju m or less 1 0 0 mass 0/0), Ji & Rei_0 3 Inorganic powder composed of calcium carbonate (4 25 μπι or less is 70 mass%) as an inorganic powder containing 50% by weight or more, slaked lime as an alkaline stimulant, and fast-hardening cementum as a solidifying material After mixing, solidified bodies were prepared by the methods of Examples 1 to 4, and the water absorption height and the weight reduction rate were determined. Table 1-16 shows the raw material composition. Table 1-16 Examples
Figure imgf000015_0002
(実施例 25〜 28 )
Figure imgf000015_0002
(Examples 25 to 28)
高炉水砕スラグとして高炉スラグ微粉末、 非晶質 S i 02を 50重量%以上含む無機 粉末としてフライアッシュ (4'25 //in以下が 100質量0 /0) 、 5 102を50重量% 以上含む無機粉末として珪砂粉 ( 425 m以下が 60質量0 /0) 、 C a C03を 50重 量%以上含む無機粉末として炭酸カルシウム (425 <um以下が 60質量0 /0) を用いて 混合物とし、 これにアルカリ刺激剤として消石灰、 固化材として速硬セメントからなる 無機粉末を混合した後、 実施例 1〜4と同じ方法で固化体を作製し、 吸水高さ及び重量 減少率を求めた。 原料配合を表 1一 7に示す。 表 1一 7 実施例 Granulated blast furnace slag as blast furnace slag, amorphous S i 0 2 fly ash as an inorganic powder containing 50 wt% or more (4'25 // in less 100 weight 0/0), 5 10 2 50 weight quartz sand powder as the inorganic powder containing% or more (425 m or less 60 mass 0/0), using a C a C0 3 calcium carbonate as an inorganic powder containing 50 by weight% or more (425 <60 mass 0/0 less um) After mixing inorganic powder consisting of slaked lime as an alkali stimulant and fast-hardening cement as a solidifying material, a solidified body was prepared by the same method as in Examples 1 to 4, and the water absorption height and weight reduction rate were adjusted. Asked. Table 1-17 shows the raw material composition. Table 1-17 Examples
Figure imgf000016_0001
Figure imgf000016_0001
(比較例 1〜 7 ) (Comparative Examples 1-7)
表 2— 1、 表 2— 2に比較例で用いた固化体の原料配合を示す。 ここでは、 高炉スラ グ微粉末とフライアッシュ (425 m以下が 1◦ 0質量0 /0) 、 珪砂粉 (425 /im以 下が 60質量%) 、 炭酸カルシウム (425 以下が 60質量%) を表に示した通り の配合で混合して混合物とした。 吸水試験は、 実施例 1〜 4と同様の方法で行った。 表 2— 1 比較例 (単位;外掛%, 水比のみ重量% (觸体比) ) Table 2-1 and Table 2-2 show the raw material composition of the solidified material used in the comparative examples. Here, blast furnace slag powder and fly ash (425 m or less 1◦ 0 mass 0/0), quartz sand powder (425 / im hereinafter is 60 mass%), calcium carbonate (425 less 60 wt%) The mixture was mixed as shown in the table to obtain a mixture. The water absorption test was performed in the same manner as in Examples 1 to 4. Table 2-1 Comparative example (unit: outer coating%, water ratio only weight% (body ratio))
Figure imgf000017_0001
Figure imgf000017_0001
比較例 (単位;外掛%、 水比のみ重量% (対粉体比) ) Comparative example (unit: outer coating%, water ratio only weight% (to powder ratio))
Figure imgf000017_0002
Figure imgf000017_0002
上記実施例、 比較例により求めたそれぞれの固化体の吸水高さ及び重量減少^ iをそれ ぞれ表 3及び表 4に示す。 Tables 3 and 4 show the water absorption height and weight loss i of each solidified body obtained by the above Examples and Comparative Examples, respectively.
表 3Table 3
Figure imgf000018_0001
Figure imgf000018_0001
表 4 Table 4
Figure imgf000018_0002
Figure imgf000018_0002
各実施例で得られた固化体は、 吸水試験において吸水高さが全て 5 c m以上であった のに対し、 各比較例で得られた固化体は、 吸水高さが小さく、 吸水速度が実施例に比べ て小さいことがわかった。 また、 実施例で得られた固化体は、 重量減少率も大きく、 吸 水した水が効果的に放出されることが明らかである。 The solidified body obtained in each example had a water absorption height of 5 cm or more in the water absorption test, whereas the solidified body obtained in each comparative example had a low water absorption height and a water absorption speed. Compared to the example I found it small. In addition, the solidified bodies obtained in the examples also have a large weight loss rate, and it is clear that the absorbed water is effectively released.
実施例 1 0及び比較例 1の配合の保水材で作った水スラリーを 3 0 c m X 3 0 c m X 1 0 c mの開粒度アスファルト (空隙率 2 0 %) へ注入して保水性舗装試験体を作成し、 ハロゲンライト (1 3 0 W) で加熱して表面温度測定を行った。 いずれの場合も、 保水 材の注入率は開粒度アスファルトの有効空隙の 7 5 o/oとし、 表面に付着した保水材は除 去した後に表面温度を熱電対で測定した。 比較のために、 水スラリーを注入しない開粒 度アスファルトそのものの舗装試験体に実施例 1 0に使用したと同量の水を注入したも のを作成した。 図 1に、 各試験体の表面温度の経時変化を示す。 施工後湿度 6 0 %R H の室内に保持し、 3時間経過した時点でハロゲンライトの照射を行い、 その後照射を止 めた条件での温度推移を示している。 図 1より、 開粒度アスファルトのみの試験体に比 ベて、 保水材を注入した実施例 1 0、 比較例 1の試験体はピーク温度も低く、 ハロゲン ライトの照射停止後の温度も低くなつていて、 舗装体試験体の温度低下効果が大きい。 かつ、 実施例 1 0の試験体は、 比較例 1の試験体に比べてもピーク温度がさらに低くな つており、 舗装表面温度の低下効果が非常に良好である。 産業上の利用可能性  Example 10 Water slurry made with water retention material of the composition of 0 and Comparative Example 1 was poured into 30 cm x 30 cm x 10 cm open-graded asphalt (porosity 20%), water retentive pavement specimen The surface temperature was measured by heating with a halogen light (1 3 0 W). In all cases, the injection rate of the water retention material was 75 o / o of the effective voids of the open-graded asphalt, and after removing the water retention material adhering to the surface, the surface temperature was measured with a thermocouple. For comparison, a pavement test piece of asphalt having a granularity without injection of water slurry was prepared by injecting the same amount of water as used in Example 10. Figure 1 shows the changes in the surface temperature of each specimen over time. It shows the temperature transition under the condition that after the construction, it is kept in a room with a humidity of 60% R H and after 3 hours, the halogen light is irradiated and then the irradiation is stopped. From Fig. 1, it can be seen that the specimens of Example 10 and Comparative Example 1 in which the water retention material was injected had a lower peak temperature than the specimen with only open-graded asphalt, and the temperature after stopping the halogen light irradiation was also lower. The temperature reduction effect of the pavement specimen is great. In addition, the specimen of Example 10 has an even lower peak temperature than the specimen of Comparative Example 1, and the effect of lowering the pavement surface temperature is very good. Industrial applicability
本発明によれば、 舗装用材料の一部に利用され、 舗装の施工後 1年以上経過しても性 能低下がほとんど起こらない舗装用保水材組成物を、 特別な製造装置を用いずに提供で きる。 その結果、 この舗装用保水材組成物を混在させた道路等は、 短時間の集中的な降 雨でも効率的に雨水を吸収し、 路面冷却効果を高めることができる。 つまり、 ヒートァ イランド現象の発生抑止に有効である。  According to the present invention, a water-retaining material composition for pavement that is used as a part of a pavement material and hardly deteriorates in performance even after one year or more after pavement construction can be used without using a special manufacturing apparatus. Can be provided. As a result, roads and the like mixed with the water-retaining material composition for pavement can efficiently absorb rainwater even in a short period of intensive rain and enhance the road surface cooling effect. In other words, it is effective in suppressing the occurrence of the heat fly phenomenon.

Claims

請求の範囲 The scope of the claims
1 . 4 2 5 μ πι以下の粒径の粉が 6 0質量%以上となる粒径分布を有し、 S i〇2と C a C 03のいずれか一方又は両方の合計を 5 0質量%以上含む無機粉末が 7 0〜 9 9 . 9 5質量%と、 高炉水砕スラグが 0 . 0 5 ~ 3 0質量%とからなる混合物の 1 0 0質量 部に対して、 セメントが 1〜3 5質量部添加されてなることを特徴とする舗装用保水材 組成物。 1. 4 2 5 μ πι has a particle size distribution the particle diameter of powder of 6 0% by weight or more, S I_〇 2 and C a C 0 3 either or both total 5 0 mass % Of the mixture of 70 to 99.95% by mass of inorganic powder and 0.05 to 30% by mass of granulated blast furnace slag with respect to 100 parts by mass of cement. 3 A water-retaining material composition for paving, characterized by being added by 5 parts by mass.
2 . 4 2 5 m以下の粒径の粉が 6 0質量%以上となる粒径分布を有し、 非晶質 S i 02を 5 0質量%以上含む無機粉末が 7 0〜 9 9 . 9 5質量%と、 高炉水砕スラグが 0 . 0 5〜3 0質量%とからなる混合物の 1 0 0質量部に対して、 アルカリ刺激剤及ぴ Z又 はセメントが 1〜 3 5質量部添加されてなることを特徴とする舗装用保水材組成物。 2.4 25 5 m or less powder having a particle size distribution of 60% by mass or more, and inorganic powder containing 50% by mass or more of amorphous Si 0 2 is 70 to 99. 9 to 100 parts by mass of the mixture consisting of 5% by mass and 0.5 to 30% by mass of granulated blast furnace slag, 1 to 35 parts by mass of alkali stimulant and Z or cement A water-retaining material composition for paving, which is added.
3 . 前記無機粉末がシルト系粉末であることを特徴とする請求項 1又は 2に記載の舗 装用保水材組成物。 3. The water-retaining material composition for paving according to claim 1 or 2, wherein the inorganic powder is a silt powder.
4 . 請求項 1〜3のいずれか記載の舗装用保水材組成物 1 0 0質量部に対して、 水を 5 0〜3 5 0質量部加えて、 Pロート流下時間が 8〜2 0秒となるように調整した水ス ラリ一を、 開粒度ァスフアルト舗装内に注入することを特徴とする保水性舗装の施工方 法。 4. The water retention material composition for paving according to any one of claims 1 to 3, with respect to 100 parts by mass, adding 50 to 35 parts by mass of water, and P funnel flow time is 8 to 20 seconds. A water-retaining pavement construction method characterized by injecting a water slurry adjusted so as to be into an open-graded black-faced pavement.
PCT/JP2005/015826 2005-08-24 2005-08-24 Water retaining material composition for paving and method for applying water retaining paving WO2007023570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015826 WO2007023570A1 (en) 2005-08-24 2005-08-24 Water retaining material composition for paving and method for applying water retaining paving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015826 WO2007023570A1 (en) 2005-08-24 2005-08-24 Water retaining material composition for paving and method for applying water retaining paving

Publications (1)

Publication Number Publication Date
WO2007023570A1 true WO2007023570A1 (en) 2007-03-01

Family

ID=37771328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015826 WO2007023570A1 (en) 2005-08-24 2005-08-24 Water retaining material composition for paving and method for applying water retaining paving

Country Status (1)

Country Link
WO (1) WO2007023570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010894A (en) * 2017-04-10 2017-08-04 燕山大学 A kind of high-hydroscopicity Behavior of Hardened Cement Paste and preparation method thereof
CN110342868A (en) * 2019-06-19 2019-10-18 山东省交通科学研究院 A kind of slity soil pavement material semi-flexible and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129407A (en) * 2001-10-23 2003-05-08 Kawasaki Steel Corp Pavement and paving method
JP2004197310A (en) * 2002-12-16 2004-07-15 Jfe Steel Kk Block for pavement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129407A (en) * 2001-10-23 2003-05-08 Kawasaki Steel Corp Pavement and paving method
JP2004197310A (en) * 2002-12-16 2004-07-15 Jfe Steel Kk Block for pavement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010894A (en) * 2017-04-10 2017-08-04 燕山大学 A kind of high-hydroscopicity Behavior of Hardened Cement Paste and preparation method thereof
CN110342868A (en) * 2019-06-19 2019-10-18 山东省交通科学研究院 A kind of slity soil pavement material semi-flexible and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101343994B1 (en) Porous polymer block having improved rainwater drain function and manufacturing method thereof
WO2007023570A1 (en) Water retaining material composition for paving and method for applying water retaining paving
KR101103727B1 (en) Pouring material for porous asphalt pavement and pavement structure using the same
JP2004197310A (en) Block for pavement
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement
JP4255802B2 (en) Pavement
CN107986742B (en) Water-permeable and water-retaining material and preparation method thereof
JP4246940B2 (en) Paving method
JP2003201705A (en) Paving body and its building method
JP5308967B2 (en) Pavement structure and pavement construction method
JP2012162413A (en) High-strength porous concrete composition, and high-strength porous concrete hardened body
KR101185626B1 (en) Environmentally-friendly construction method for mountain reservoir using solidified material
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
JP4217133B2 (en) Water retention pavement structure
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP3852290B2 (en) Road pavement structure and road pavement method
JP2003147716A (en) Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2001164502A (en) Precast-concrete pavement slab
JP2007112713A (en) Hydraulic material for water holding solidified article and water holding solidified article
JP2002180410A (en) Paving material and method of manufacturing its mold
JP2003160906A (en) Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JP2008008041A (en) Building or civil-engineering constructed object
JP4867501B2 (en) Water retention block and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05781432

Country of ref document: EP

Kind code of ref document: A1