JP2004197310A - Block for pavement - Google Patents

Block for pavement Download PDF

Info

Publication number
JP2004197310A
JP2004197310A JP2002363414A JP2002363414A JP2004197310A JP 2004197310 A JP2004197310 A JP 2004197310A JP 2002363414 A JP2002363414 A JP 2002363414A JP 2002363414 A JP2002363414 A JP 2002363414A JP 2004197310 A JP2004197310 A JP 2004197310A
Authority
JP
Japan
Prior art keywords
mass
water
block
powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002363414A
Other languages
Japanese (ja)
Inventor
Katsunori Takahashi
克則 高橋
Masato Takagi
正人 高木
Kazuhiro Hasegawa
和広 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002363414A priority Critical patent/JP2004197310A/en
Publication of JP2004197310A publication Critical patent/JP2004197310A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a block for pavement, which can exert a great effect of cooling heat of vaporization by virtue of water retentivity, while adequately having an effect of preventing splashes of water by virtue of water permeability. <P>SOLUTION: In this block for pavement which is constituted in such a manner that aggregate and a binder are mixed with water, dried and molded, the binder includes a 30-80 mass% blast-furnace-slag impalpable powder and a 20-70 mass% inorganic powder containing amorphous SiO<SB>2</SB>of 50 mass% or more, and a 3-49 pts.mass alkali irritant is added with respect to the blast-furnace-slag impalpable powder and inorganic powder of 100 pts.mass in total. In this case, preferably, the average grain size of the inorganic powder is 100 μm or less, or the inorganic powder of less than 50% is substituted with a silty powder. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、舗装用ブロックに係わり、特に、都市部に著しい所謂「ヒートアイランド現象」を抑制し、雨水を地下に戻すことの可能な保水性と透水性とを兼ね備えた舗装用ブロックに関する。
【0002】
【従来の技術】
歩道や公園の遊歩道等の舗装には、コンクリートブロック、インターロッキングブロック等が広く利用されているが、一般的な舗装用ブロックは、雨水をその施工体の下方へ浸透させない構造となっている。これに対して、最近は、雨水を意識的に地下へ浸透させる透水性ブロックによる舗装が増加しつつある。この透水性のブロックは、上面側から下面側へ速やかに水を透過させる連続した空隙を、高い体積比率で内包しているので、舗装上の水溜りを減らし、車両等の水跳ねを抑制でき、また、水を地下へ浸透させて、排水・下水の負荷低減、都市河川の氾濫防止等ができるからである。
【0003】
一方、このような生活環境に密着した課題だけでなく、近年は、社会環境全体への配慮が必要で、その1つとして、ヒートアイランド現象の抑制が検討されている。つまり、一般的なコンクリート、アスファルト、れんが、ブロック等での舗装は、蓄熱し易いため、特に夏季において表面温度の著しい上昇や冷却が進まないことによる熱帯夜の常態化という現象を起こす。この現象は、舗装比率の高い都市部に突出して起きるため、「ヒートアイランド現象」と呼ばれている。このヒートアイランド現象は、さらにエアコン等のエネルギー使用の増加、廃熱の増加と結びついて、環境を一層悪化させることになる。
【0004】
ところで、このヒートアイランド現象は、本来土や緑で覆われていた地面等がコンクリート、アスファルト、れんがに置き換わったことに起因する。地面が土壌の場合は、雨が降ると水分をその空間部に溜め、その水分が晴天時に蒸発することで気化熱を奪い、表面温度を低下させるが、コンクリート、アスファルト等の場合は、ほとんど雨水が浸み込まずに排水溝等へ流れてしまい、晴天になっても気化熱冷却が起きないためである。
【0005】
これは、透水性の舗装用ブロックを適用しても、解決しない。一般的な透水性ブロックは、上面側から供給される雨水がほとんど下面側へ抜けてしまう。そのため、内部に内包される水は少なく、気化熱冷却はほとんど起きないからである。透水性ブロックの一部に、保水性があると言及されているものも存在する。例えば、骨材の粒子径を制御して、透水性と保水性とを最適化させたブロックがある(特許文献1参照)。しかしながら、このブロックでは、骨材の隙間に残った水分が気化する程度であり、土壌のような本質的に保水能力があるものに比べると、気化熱による冷却効果は極めて小さい。
【0006】
一方、保水能力を意識的に付与させた舗装ブロックとして、保水性セラミックスブロックと呼ばれる材料が既に存在している。例えば、骨格粒子と珪酸塩質組成物とを焼結することで、透水性と保水性とを兼備する焼結体が開示されている(特許文献2参照)。この保水性セラミックスブロックを適用すると、内部に水を多量に内包できるので、気化熱冷却の効果は著しく改善される。また、亜リン酸カルシウムとゼオライトとを原料とした焼結体も開示されている(特許文献3参照)。これら特許文献2及び3に記載のブロックは、確かに高い保水性と、通常の煉瓦に比べて高い透水性を持つており、その高い保水性から気化熱による冷却効果が期待できる。しかしながら、その透水率は、通常のれんが類の10-5cm/secに比べて、10-4cm/sec程度であり、所謂透水性ブロックのように速やかに水が抜ける10-2cm/sec以上とは大きく差がある。つまり、特許文献2及び3に記載のブロックによる舗装では、比較的強い雨や、小雨でも長く続くと、水溜りが容易に形成され、透水性については満足できない。
【0007】
以上のように、透水性と保水性とを兼ね備える舗装用ブロックの必要性は認識されながらも、いずれか一方に偏ったものしか実在しないのが現状である。
【0008】
【特許文献1】
特開平10−59756号公報(3頁30行目〜4頁5行目)
【特許文献2】
特開平8−319179号公報(3頁41行目〜5頁13行目)
【特許文献3】
特開平8−198661号公報(2頁18行目〜3頁23行目)
【0009】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、透水性による水跳ね防止効果を十分に持ちながら、保水性による高い気化熱冷却効果をも発揮可能な舗装用ブロックを提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、透水性と保水性とを同時に発揮する舗装用ブロックを、今までに開示されている技術と別の技術で製造できないか鋭意研究した。その結果、従来には考えられなかった、ブロック構成物質のうちの結合材に保水性を持たせることで、透水性と保水性との兼備が可能になるとの考えに至り、本発明を完成させた。
【0011】
すなわち、本発明は、骨材及び結合材を水で混練し、乾燥、成形してなる舗装用ブロックにおいて、前記結合材が、高炉スラグ微粉末を30〜80質量%と、非晶質SiO2を50質量%以上含有している無機粉末20〜70質量%とを含むと共に、該高炉スラグ微粉末と無機粉末との合計100質量部に対して、アルカリ刺激剤を3〜49質量部添加してなることを特徴とする舗装用ブロックである。この場合、前記無機粉末の平均粒径が100μm以下であったり、あるいは前記無機粉末の50%未満を、シルト系粉未で置換するのが良い。また、前記結合材100質量部に、骨材を350〜500質量部配合し、該骨材全体の80質量%以上が粒径2.5〜13mmのものであったり、前記骨材が、高炉水砕スラグ又はゴミ溶融水砕スラグであったり、あるいは前記骨材が、単位容積質量で1.5kg/リットル以上の高炉水砕スラグであることが好ましい。
【0012】
本発明によれば、透水性ばかりでなく、保水性も備え、車両等による水跳ね防止や高い気化熱冷却が可能な舗装用ブロックが得られる。その結果、生活環境が従来より一層快適になる。
【0013】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0014】
まず、発明者は、舗装用ブロックの透水性や保水性を改良するのに現在までに公知になっている手法を整理し、下記の2つにまとめた。
1.透水性のあるブロックをベースにして、その内部に形成されている空隙を細くしていくと、骨材間に溜まる水分が増加する
2.ブロックを多孔質の焼結体で形成すると、保水性が向上するが、透水性を付与するには、その内部の空隙の直径を大きくする
このうち、1の手法は、セメントによる結合を基本にしているので、(2)に比べて経済的であるという利点を持つ。ただし、あくまでも透水性の確保を主体にしているので、保水性には限界があり、また空隙を小さくしていくため、長期間にわたる使用で空隙の目詰まりが起こり易くなるという問題点がある。特に、この手法では、透水して内部に入った水を保水するので、目詰まりが起きると、透水性が低下するだけでなく、保水量を十分に確保できず、保水性能までも低下する。一方、2の手法は、素材を焼結してブロックを製造するため、経済性がやや低く、またCO2の発生量が増加するという環境上のデメリットもあるが、保水能力については、焼結によって制御された細かい空隙に毛細管力によって水が保持されるので、1の手法に比べると明確に高い効果が期待できる。しかしながら、空隙は毛細管力で水が保持できるサイズのものがほとんどであるため、透水性能は、実際にはあまり期待できないという欠点がある。従って、いずれの手法においても、透水性と保水性を有効に発揮させているとは言い難い。
【0015】
そこで、発明者は、透水性と保水性とを共に効果的に働かせるには、1の透水性ブロックのように、比較的大きい透水経路を確保すると同時に、毛細管力で水を保持できるような層をも形成すれば良いと考えた。そして、そのような内部構造を具現化することについて種々の研究を重ねた。その結果、素材のうちの結合材部分に毛細管力で水を保持できるような機能を付与させ、そこで保水性を確保し、従来から存在する骨材同士の空隙を透水性の確保に利用するようにすれば、保水性及び透水性の両方が満足できる舗装用ブロックになるとの結論に至った。
【0016】
舗装用ブロックの結合材は、通常セメントが利用されているが、セメントの場合には、水和して硬化したものが比較的緻密になってしまう。そのため、雨が降った際にはほとんど内部に浸み込まず、表面に水溜りが形成されてしまう。そこで、発明者らは、骨材間をつなぎあわせる結合材としての機能を有すると同時に毛細管現象も起こす材料の発見に鋭意努力した。その結果、以下に述べるような材料を見出し、本発明を完成させたのである。
【0017】
すなわち、その材料とは、高炉スラグ微粉末を30〜80質量%及び非晶質SiO2が50質量%以上を含有する無機粉末を20〜70質量%で構成され、且つ、該無機粉末と高炉スラグ微粉末との合計100重量部に対してアルカリ刺激剤を3〜49質量部添加したものである。これは、発明者らがいくつかの高強度材料を鋭意検討し、スラグ微粉末へ非晶質SiO2系助材を混合し、アルカリ刺激をするという手法が透水力と保水力とを両立するのに最適であることを見出したことに基づいている。スラグとアルカリの組み合わせは、急硬性、高強度等を発現することで知られているが、それに非晶質SiO2系の助材を組み合わせると微構造的にポーラスになり易いことがわかったのである。骨材を同一種類として結合材の種類を変えると、結合材がセメント系の場合、固化物全体の含水率はl0質量%程度となるが、スラグ−非晶質SiO2系助材―アルカリ系の場合には、20質量%以上になる。このように含水率が変わる機構について検討したところ、スラグ―アルカリ系の反応固化物は、セメント系のCaO−SiO2−H2Oゲルと同等のものもあるが、同時に、CaO−SiO2−Al23−H2Oゲルが含まれることがわかった。これは、スラグ中に10質量%以上含まれるAl23成分が寄与したものと考えられる。CaO−SiO2−Al23−H2O化合物は、天然鉱物の沸石に代表されるように、鉱物的に水分を取り込む余地のある物質である。したがって、スラグ−SiO2−アルカリ系は、結合材の部分に保水能力を備え易くなる。
【0018】
しかしながら、そのような反応生成物だけでは、結合材表面側の保水能力を向上させても、内部への水の浸透が遅くなる可能性があり、全体で保水量を大きくすることは難しい。そこで、対策として、発明者は、構造的に毛細管力が機能するサイズの空隙を多量に導入することが出来れば、大幅に保水力を大きくできると考えた。
【0019】
通常、高い空隙率を確保しようとすると、強度が著しく低下する。これは、軽量コンクリート等、セメントを結合材とする固化物全般に言われていることである。それに対して、本発明では、非晶質SiO2を50%以上含む無機粉末を使用することで、この粉体に空隙を確保させる役割を担わせつつ、且つその表面側ではスラグ微粉末類と積極的に反応させて、固化物の強度改善を図った。その結果、非晶質度が高い材料であれば、固化反応が進行することがわかった。その時の最適条件は、非晶質SiO2が50質量%以上含有する材料を用いれば、表面側からの反応が期待されることも明らかになった。
【0020】
加えて、SiO2系の助材は、表面側は反応する一方で、固化反応の速度は比較的遅いため、内部にSiO2が未反応で残存する。その残ったSiO2は、微細な骨材のような構造的作用をするため、結合材部の緻密化を妨げる効果が働く。
これによって、結合材としては比較的大きな毛細管空隙が安定して保持できるようになる。
【0021】
SiO2系無機物粉末は、粒度と非晶質SiO2量が上記範囲を満足するものであれば、その材質は限定しない。なお、非晶質SiO2の含有量は、一般的なX線回折による結晶化度の計測と化学分析による定量とを組み合わせて測定できる。つまり、SiO2の含有量は,化学分析によって簡単に測定され、X線回折で結晶化度の測定を行ない、全体が非晶質であれば、化学分析で得られた全量が非晶質SiO2である。また、X線回折で結晶相が現れた場合には、あらかじめ非晶質と結晶質とを所定の割合で混合した標準試料を用いて検量線を引いておき、その検量線を基に結晶質SiO2量を検定すれば、非晶質として残存するSiO2量を評価できる。
【0022】
無機粉体の粒度は、あまり粒度が粗すぎると気孔の径が毛細管力が有効に作用する大きさよりも大きくなるため望ましくなく、実際の使用を考えると、300μm以下が望ましく、高い保水能力、自由な成形性や混練時の流動性等を考慮すると、100μm未満であることがより望ましい。下限は特にないが、平均粒径が20μm以下の場合には、空隙が小さくなり過ぎて水の浸透速度が遅くなるため、平均粒度が20μm以上あるのが望ましい。
【0023】
なお、上記したような反応がほとんど期待できないシルト系粉末も、一部混和することは可能である。しかしながら、それによって固化体の強度が低下するので、本発明では、その最大混和量は、非晶質SiO2粉末の50質量%未満とする。
【0024】
高炉スラグ微粉末は、JIS A 6206にコンクリート用の高炉スラグ微粉末として規定されている程度のものを使用する。JIS A 6206には、3種類の高炉スラグ微粉末(すなわち、高炉スラグ微粉末4000、高炉スラグ微粉末6000、高炉スラグ微粉末8000)が規定されており、これらの3種類の1種程度のものを単独で使用しても良いし、2種以上を混合して使用しても良い。
【0025】
SiO2系無機物粉末と高炉スラグ微粉末とを混合した粉粒体中の高炉スラグ微粉末の含有量は、高炉スラグ微粉末の含有量が30質量%未満では、若い材令時の強度発現には少ないため、結合力が低下して、目標とする高い圧縮強度が得られない。一方、80質量%を超えると、微細骨材として作用するSiO2系無機物粉末が少なくなってしまうため、形状の安定性低下や部分的な緻密化が進行する。したがって、本発明では、SiO2系無機物粉末と高炉スラグ微粉末とからなる粉粒体中の高炉スラグ微粉末の含有量は30〜80質量%とする。
【0026】
結合力を増加させるために添加するアルカリ刺激剤は、高炉スラグ微粉末及び無機物粉末に含有される非晶質SiO2の一部を溶解してゲル状態にし、結合を促進させる効果がある。そのアルカリ刺激剤の量は、固化体の強度に作用し始める量として3質量部以上が必要である。また、保水硬化体の機能を確保するためには、全量の49質量%以下であることが望ましい。アルカリ刺激剤としては、非晶質材料を溶解するものを使用すれば良いので、その材質は限定しない。ただし、水酸化ナトリウム、水酸化カルシウムに代表されるアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等に代表されるアルカリ土類金属水酸化物、ポルトランドセメント、アルミナセメント、急結セメントに代表されるセメント類を用いると、容易にSiO2類を溶解できるので好ましい。
【0027】
上記のような結合材を用いれば、それにより従来にない保水能力を付与させることが可能となるため、これを透水性ブロック製造用の結合材として骨材と混合して使用すれば、透水性ブロックが従来もっていたミリメートルオーダーの連続空隙による透水性と、結合材部に付与した毛細管力レベルのμmオーダーの空隙による保水性とがともに発現することとなるのである。
【0028】
骨材と結合材の比率は、通常の透水性ブロックと同様の体積比率であれば良く、典型的には、水と結合材を合わせた体積が、ブロックの体積の18〜30%未満であれば良い。18容量%を下回ると、結合力が不十分となり、30容量%を超えると結合材が骨材間を埋めてしまい、透水性能が低下してしまうからである。
【0029】
また、骨材としては、一般的な山砂、川砂、ガラスカレット、溶融スラグ等が利用できる。とりわけ、高炉水砕スラグは、スラグが数質量%の吸水率をもつため、保水能力をより高める効果が期待できる。また、単位容積質量が1.5kg/リットルようなものであれば、とくに強度も高くなるため、より望ましい。その際、単位容積質量の測定はJIS A 1104(骨材の単位容積質量試験方法)に従って行う。
【0030】
以上述べた本発明に係る舗装用ブロックは、コンクリートブロックやインターロッキングブロックを製造するプロセスであれば、どのような方法でも製造可能である。つまり、素材の流し込み成形、加圧成形、高振動成形、高振動加圧成形等のいずれも適用可能である。セメントと骨材を型枠に入れた後、本発明に係る結合材を注入する方法、セメント、骨材、該結合材を同時に型枠に注入する方法も適用できる。この舗装用ブロックの用途としては、歩道、公園の遊歩道等の道路舗装への適用が基本となるが、本発明に係るブロックの内部構造に対する考え方は、住宅用ブロック、床材、屋根材、ビルの屋上材等にも適用できる。
【0031】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明は、これら実施例に限定されるものではない。
【0032】
天然骨材を1750kg使用し、これに結合材400kg、水400kgを混合し、これを加圧振動成形により、ブロック状とした。そして、得られたブロックについて、その圧縮強さ及び冷却能を調査した。冷却能は、水中に12時間浸漬してから大気中に取り出して10分放置した後に、300Wハロゲンライトで2時間照射し、2時問後の表面温度をアスファルトでの結果と比較して評価した。また、圧縮強さは、JIS R 5201に規定された「圧縮強さ試験方法」に準拠して測定した。
【0033】
結合材の配合、圧縮強さ及び冷却能を表1に一括して示す。表1より、本発明に相当する舗装用ブロックは、必要強度を持ちつつ、且つ冷却能も発現していることが明らかである。一方、本発明の配合から外れたブロックは、強度が高くても冷却能がなかったり、あるいは冷却能があっても強度が不十分であった。
【0034】
【表1】

Figure 2004197310
【0035】
次に、上記した実施例3の配合と同じ結合材で、結合材の量を種々変更して製造したブロックの成績を表2に一括して示す。表2より、冷却能については、結合材の量による影響はさほど見られないが、結合材が少ない場合には、強度が不足していることがわかる。一方、結合材が多くなると、透水性が低下し、本発明で限定した配合範囲が透水性と保水性とを兼備するには最適であることも明らかである。
【0036】
【表2】
Figure 2004197310
【0037】
次に、実施例2と同様に、実施例3の配合で、骨材を高炉水砕スラグに変更してブロックを製造した。その結果を表3に示す。高炉水砕スラグを使用することによって、冷却能がさらに大きくなって、より高い効果が発現している。
【0038】
【表3】
Figure 2004197310
【0039】
【発明の効果】
以上述べたように、本発明により、今まで透水性と保水性のどちらかに偏った特性のものしか存在していなかった舗装用ブロックを、高い透水性と高い保水性を併せ持つものに改良できる。その結果、都市部で著しい「ヒートアイランド現象」の抑制や、省エネルギーばかりでなく、車両等による水跳ねの抑制等、生活環境の改善、排水負荷の低減等も達成できる。これらによって、居住者に密着した生活環境が、従来より一層良好になる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pavement block, and more particularly to a pavement block having both water retention and water permeability, which can suppress so-called "heat island phenomenon" remarkable in an urban area and return rainwater to the underground.
[0002]
[Prior art]
Concrete blocks, interlocking blocks, and the like are widely used for pavement such as sidewalks and promenades in parks, but general pavement blocks have a structure that does not allow rainwater to penetrate below the construction body. On the other hand, recently, pavement using a permeable block that allows rainwater to penetrate underground consciously is increasing. Since this water-permeable block contains a continuous void that allows water to permeate quickly from the upper surface side to the lower surface side at a high volume ratio, water puddles on the pavement can be reduced and water splashing of vehicles etc. can be suppressed. In addition, by infiltrating water into the underground, drainage and sewage loads can be reduced, and urban rivers can be prevented from flooding.
[0003]
On the other hand, in addition to such issues closely related to the living environment, in recent years, consideration must be given to the entire social environment, and as one of them, suppression of the heat island phenomenon has been studied. That is, general pavement with concrete, asphalt, brick, block, or the like easily accumulates heat, and causes a phenomenon of normalization of tropical nights due to a remarkable rise in surface temperature and a lack of cooling especially in summer. This phenomenon is called the "heat island phenomenon" because it occurs in urban areas where the pavement ratio is high. This heat island phenomenon is further associated with an increase in energy use of an air conditioner or the like and an increase in waste heat, and further degrades the environment.
[0004]
By the way, this heat island phenomenon is caused by the fact that the ground or the like originally covered with soil or green is replaced with concrete, asphalt, or brick. When the ground is soil, water is accumulated in the space when it rains, and the water evaporates in fine weather to take away heat of vaporization and lower the surface temperature.However, in the case of concrete, asphalt, etc., almost no rainwater Does not penetrate and flows into drains and the like, so that evaporative heat cooling does not occur even in clear weather.
[0005]
This is not solved by applying a permeable paving block. In a general water-permeable block, rainwater supplied from the upper surface side almost drops to the lower surface side. Therefore, the amount of water contained therein is small, and almost no evaporative heat cooling occurs. Some of the water-permeable blocks are said to have water retention. For example, there is a block in which the particle diameter of an aggregate is controlled to optimize water permeability and water retention (see Patent Document 1). However, in this block, the moisture remaining in the gaps between the aggregates is only vaporized, and the cooling effect by the heat of vaporization is extremely small as compared with that of a block such as soil which has an inherent water retention capacity.
[0006]
On the other hand, a material called a water-retaining ceramic block already exists as a pavement block to which the water-retaining ability is consciously imparted. For example, a sintered body that has both water permeability and water retention by sintering skeleton particles and a silicate composition has been disclosed (see Patent Document 2). When this water-retaining ceramic block is applied, a large amount of water can be contained therein, so that the effect of evaporative heat cooling is remarkably improved. Also, a sintered body using calcium phosphite and zeolite as raw materials is disclosed (see Patent Document 3). The blocks described in Patent Literatures 2 and 3 certainly have high water retention and higher water permeability than ordinary bricks, and a cooling effect by heat of vaporization can be expected from the high water retention. However, its water permeability is about 10 −4 cm / sec compared to 10 −5 cm / sec of ordinary bricks, and 10 −2 cm / sec at which water quickly escapes as in a so-called water-permeable block. There is a big difference from the above. That is, in the pavement using the blocks described in Patent Literatures 2 and 3, when relatively heavy rain or light rain continues for a long time, a puddle is easily formed, and the water permeability cannot be satisfied.
[0007]
As described above, although the necessity of a pavement block having both water permeability and water retention is recognized, at present, only one of them is biased toward one of them.
[0008]
[Patent Document 1]
JP-A-10-59756 (page 3, line 30 to page 4, line 5)
[Patent Document 2]
JP-A-8-319179 (page 3, line 41 to page 5, line 13)
[Patent Document 3]
JP-A-8-198661 (page 2, line 18 to page 3, line 23)
[0009]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a pavement block capable of sufficiently exhibiting a water splash preventing effect due to water permeability and exhibiting a high vaporization heat cooling effect due to water retention.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have made intensive studies whether a pavement block exhibiting both water permeability and water retention can be manufactured by a technique different from the techniques disclosed so far. As a result, it was thought that it was possible to combine the water permeability and the water retention by giving the binder of the block constituents water retention, which was not conventionally thought, and completed the present invention. Was.
[0011]
That is, the present invention relates to a pavement block obtained by kneading an aggregate and a binder with water, drying and molding, wherein the binder comprises 30 to 80% by mass of blast furnace slag fine powder and amorphous SiO 2. Of blast furnace slag fine powder and inorganic powder in an amount of 3 to 49 parts by mass with respect to a total of 100 parts by mass of the inorganic blasting slag fine powder and the inorganic powder. It is a block for pavement characterized by becoming. In this case, it is preferable that the average particle size of the inorganic powder is 100 μm or less, or less than 50% of the inorganic powder is replaced with the silt-based powder. In addition, 350 to 500 parts by mass of an aggregate is blended with 100 parts by mass of the binder, and 80% by mass or more of the entire aggregate has a particle size of 2.5 to 13 mm, or the aggregate is a blast furnace. It is preferable that the granulated slag is a granulated slag or a refuse-melted granulated slag, or the aggregate is a granulated blast furnace slag having a unit volume mass of 1.5 kg / liter or more.
[0012]
According to the present invention, it is possible to obtain a pavement block that has not only water permeability but also water retention, and is capable of preventing splashing of water by a vehicle or the like and capable of high vaporization heat cooling. As a result, the living environment becomes more comfortable than before.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, taking into account the circumstances that led to the invention.
[0014]
First, the inventor has arranged the methods known to date for improving the water permeability and water retention of a pavement block, and have summarized the following two methods.
1. When the gap formed inside the block is made narrower based on a water-permeable block, the amount of water accumulated between the aggregates increases. When the block is formed of a porous sintered body, the water retention is improved, but in order to impart water permeability, the diameter of the pores inside the block must be increased. Therefore, there is an advantage that it is more economical than (2). However, there is a problem that water retention is limited since the main purpose is to ensure water permeability, and clogging of the voids is liable to occur during long-term use because the voids are reduced. In particular, in this method, since water that has permeated and enters the inside is retained, when clogging occurs, not only the water permeability is reduced, but also the water retention amount cannot be sufficiently secured, and the water retention performance also decreases. On the other hand, second approach is to prepare block by sintering the material, economic efficiency is slightly lower, also the occurrence of CO 2 is also a disadvantage on environment of increased, for water retention capacity, sintered The water is held by the capillary force in the fine void controlled by the method, so that a clearly higher effect can be expected as compared with the first method. However, most of the voids have a size that can hold water by capillary force, so that there is a disadvantage that the water permeability cannot be expected much in practice. Therefore, it is hard to say that any of the techniques effectively exhibits water permeability and water retention.
[0015]
Therefore, the inventor of the present invention has proposed a layer capable of retaining a relatively large water permeation path and retaining water by capillary force at the same time as one water permeation block in order to effectively work both water permeability and water retention. We thought that it was good to form also. Then, various studies were carried out on realizing such an internal structure. As a result, the function of retaining water by the capillary force is imparted to the binder portion of the material, so that water retention is ensured there, and the existing gap between aggregates is used to ensure water permeability. Therefore, it was concluded that the pavement block would have both satisfactory water retention and water permeability.
[0016]
Cement is usually used as a binder for the pavement block, but in the case of cement, a hydrated and hardened material becomes relatively dense. Therefore, when it rains, it hardly penetrates into the inside, and a puddle is formed on the surface. Therefore, the inventors have made an intensive effort to find a material having a function as a binder for joining the aggregates and also causing a capillary phenomenon. As a result, the following materials were found, and the present invention was completed.
[0017]
That, and the material thereof, 30 to 80% by mass of blast furnace slag and amorphous SiO 2 is composed of 20 to 70 wt% of an inorganic powder containing more than 50 wt%, and, inorganic powder and blast furnace The alkali stimulant is added in an amount of 3 to 49 parts by mass based on a total of 100 parts by weight of the slag fine powder. This is because the inventors have studied several high-strength materials, mixed amorphous SiO 2 -based auxiliaries with slag fine powder, and stimulated with alkali to achieve both water permeability and water retention. Based on what we found to be the best. The combination of slag and alkali is known to exhibit rapid hardening, high strength, etc., but when combined with an amorphous SiO 2 -based auxiliary material, it was found that microstructure tends to be porous. is there. When the type of binder is changed with the same type of aggregate, when the binder is cement-based, the water content of the entire solidified product becomes about 10% by mass, but the slag-amorphous SiO 2 -based auxiliary-alkali-based In this case, the content is 20% by mass or more. Was examined in this way the mechanism of water content changes, slag - the reaction solid of alkali is also equivalent to the CaO-SiO 2 -H 2 O Gel cementitious, simultaneously, CaO-SiO 2 - it was found that includes al 2 O 3 -H 2 O gel. This is considered to be due to the Al 2 O 3 component contained in the slag of 10% by mass or more. The CaO—SiO 2 —Al 2 O 3 —H 2 O compound is a substance that has room for taking in moisture mineralically, as represented by zeolite as a natural mineral. Therefore, the slag-SiO 2 -alkali system easily has a water retaining capacity in the portion of the binder.
[0018]
However, with such a reaction product alone, there is a possibility that the penetration of water into the interior may be delayed even if the water retention capacity on the binder surface side is improved, and it is difficult to increase the total water retention. Therefore, as a countermeasure, the inventor thought that if a large amount of voids having a size capable of functioning capillary force could be introduced structurally, the water retention capacity could be greatly increased.
[0019]
Usually, when trying to ensure a high porosity, the strength is significantly reduced. This is said to be generally applied to solidified products using cement as a binder, such as lightweight concrete. On the other hand, in the present invention, by using an inorganic powder containing 50% or more of amorphous SiO 2 , the powder has a role of ensuring voids, and the surface of the powder is mixed with slag fine powder. By positively reacting, the strength of the solidified product was improved. As a result, it was found that the solidification reaction proceeds with a material having a high degree of amorphousness. The optimum conditions at that time also revealed that a reaction from the surface side was expected if a material containing 50% by mass or more of amorphous SiO 2 was used.
[0020]
In addition, the SiO 2 -based auxiliary reacts on the surface side, but has a relatively slow solidification reaction, so that SiO 2 remains unreacted inside. The remaining SiO 2 acts as a fine aggregate, and thus has an effect of preventing densification of the binder.
As a result, a relatively large capillary space can be stably held as a binder.
[0021]
The material of the SiO 2 -based inorganic powder is not limited as long as the particle size and the amount of amorphous SiO 2 satisfy the above ranges. The content of amorphous SiO 2 can be measured by combining measurement of crystallinity by general X-ray diffraction and quantitative determination by chemical analysis. In other words, the content of SiO 2 is easily measured by chemical analysis, the crystallinity is measured by X-ray diffraction, and if the whole is amorphous, the total amount obtained by the chemical analysis is amorphous SiO 2. 2 When a crystal phase appears by X-ray diffraction, a calibration curve is drawn using a standard sample in which amorphous and crystalline are mixed at a predetermined ratio in advance, and a crystalline curve is formed based on the calibration curve. if assayed amount of SiO 2 can be evaluated amount of SiO 2 remaining as an amorphous.
[0022]
If the particle size of the inorganic powder is too coarse, the diameter of the pores is not desirable because the diameter of the pores becomes larger than the size at which the capillary force effectively acts. Considering actual use, the particle size is preferably 300 μm or less, and high water retention capacity and free In consideration of the moldability, the fluidity during kneading, and the like, the thickness is more preferably less than 100 μm. Although there is no particular lower limit, when the average particle diameter is 20 μm or less, the voids become too small and the water permeation rate becomes slow, so that the average particle diameter is desirably 20 μm or more.
[0023]
In addition, it is possible to partially mix silt-based powders, for which little reaction can be expected as described above. However, since the strength of the solidified body is reduced by this, in the present invention, the maximum mixing amount is set to less than 50% by mass of the amorphous SiO 2 powder.
[0024]
As the blast furnace slag fine powder, one having a degree specified as blast furnace slag fine powder for concrete in JIS A 6206 is used. JIS A 6206 specifies three types of blast furnace slag fine powder (namely, blast furnace slag fine powder 4000, blast furnace slag fine powder 6000, and blast furnace slag fine powder 8000), and one of these three types is used. May be used alone or as a mixture of two or more.
[0025]
The content of the blast furnace slag fine powder in the granules obtained by mixing the SiO 2 -based inorganic powder and the blast furnace slag fine powder, when the content of the blast furnace slag fine powder is less than 30% by mass, the strength is exhibited at the young material age. , The bonding strength is reduced, and the target high compressive strength cannot be obtained. On the other hand, if it exceeds 80% by mass, the amount of the SiO 2 -based inorganic powder acting as the fine aggregate is reduced, so that the shape stability is reduced and the partial densification is advanced. Therefore, in the present invention, the content of the blast furnace slag fine powder in the granules composed of the SiO 2 inorganic powder and the blast furnace slag fine powder is set to 30 to 80% by mass.
[0026]
The alkali stimulant added to increase the bonding force has an effect of dissolving a part of the amorphous SiO 2 contained in the blast furnace slag fine powder and the inorganic powder to form a gel state, thereby promoting the bonding. The amount of the alkali stimulant needs to be 3 parts by mass or more as an amount to start acting on the strength of the solidified body. In addition, in order to ensure the function of the water-retaining cured product, the content is desirably 49% by mass or less. As the alkali stimulant, one that dissolves an amorphous material may be used, and the material is not limited. However, alkali metal hydroxides such as sodium hydroxide and calcium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, Portland cement, alumina cement and quick setting cement It is preferable to use cements which can easily dissolve SiO 2 .
[0027]
By using the above-mentioned binder, it is possible to impart an unprecedented water retention capacity. The water permeability due to the continuous voids in the millimeter order, which the block has conventionally had, and the water retention due to the voids in the order of μm of the capillary force level applied to the binder are exhibited.
[0028]
The ratio of the aggregate and the binder may be any volume ratio similar to that of a normal water-permeable block, and typically, the combined volume of water and the binder is less than 18 to 30% of the volume of the block. Good. If the content is less than 18% by volume, the bonding strength becomes insufficient, and if the content exceeds 30% by volume, the binder fills the space between the aggregates, and the water permeability deteriorates.
[0029]
As the aggregate, general mountain sand, river sand, glass cullet, molten slag and the like can be used. In particular, the granulated blast furnace slag can be expected to have an effect of further increasing the water holding capacity since the slag has a water absorption of several mass%. Further, when the unit volume mass is about 1.5 kg / liter, the strength is particularly high, so that it is more preferable. At that time, the measurement of the unit volume mass is performed according to JIS A 1104 (Aggregate unit volume mass test method).
[0030]
The pavement block according to the present invention described above can be manufactured by any method as long as it is a process for manufacturing a concrete block or an interlocking block. That is, any of cast molding, pressure molding, high vibration molding, and high vibration pressure molding of a material can be applied. After the cement and the aggregate are put in the mold, the method of injecting the binder according to the present invention and the method of simultaneously injecting the cement, the aggregate, and the binder into the mold are also applicable. The application of the pavement block is basically applied to a pavement such as a sidewalk or a park promenade, but the concept of the internal structure of the block according to the present invention is as follows. It can also be applied to rooftop materials.
[0031]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0032]
1750 kg of natural aggregate was used, and 400 kg of a binder and 400 kg of water were mixed with the mixture, and the mixture was formed into a block by pressure vibration molding. And about the obtained block, the compressive strength and the cooling capacity were investigated. The cooling capacity was evaluated by immersing in water for 12 hours, taking it out into the air and leaving it for 10 minutes, irradiating with a 300 W halogen light for 2 hours, and comparing the surface temperature after 2 hours with the result of asphalt. . In addition, the compressive strength was measured according to “Compression strength test method” specified in JIS R5201.
[0033]
Table 1 shows the composition of the binder, the compressive strength and the cooling capacity. From Table 1, it is clear that the pavement block corresponding to the present invention has the required strength and also exhibits the cooling ability. On the other hand, the block deviated from the composition of the present invention had no cooling ability even if the strength was high, or the strength was insufficient even if the cooling ability was present.
[0034]
[Table 1]
Figure 2004197310
[0035]
Next, the results of blocks manufactured using the same binder as in Example 3 described above with various amounts of binder are shown in Table 2. Table 2 shows that the cooling ability is not significantly affected by the amount of the binder, but the strength is insufficient when the amount of the binder is small. On the other hand, when the amount of the binder increases, the water permeability decreases, and it is apparent that the blending range limited in the present invention is optimal to combine water permeability and water retention.
[0036]
[Table 2]
Figure 2004197310
[0037]
Next, in the same manner as in Example 2, with the composition of Example 3, the aggregate was changed to granulated blast furnace slag to produce a block. Table 3 shows the results. By using the granulated blast furnace slag, the cooling capacity is further increased, and a higher effect is exhibited.
[0038]
[Table 3]
Figure 2004197310
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to improve a pavement block, which had been present only in one of the properties biased to either water permeability or water retention, to one having both high water permeability and high water retention. . As a result, not only the suppression of the "heat island phenomenon" remarkably in urban areas and the saving of energy, but also the improvement of the living environment, the reduction of the drainage load, etc., such as the suppression of water splashing by vehicles and the like, can be achieved. As a result, the living environment in close contact with the resident becomes better than before.

Claims (6)

骨材及び結合材を水で混練し、乾燥、成形してなる舗装用ブロックにおいて、
前記結合材が、高炉スラグ微粉末を30〜80質量%と、非晶質SiO2を50質量%以上含有している無機粉末20〜70質量%とを含むと共に、該高炉スラグ微粉末と無機粉末との合計100質量部に対して、アルカリ刺激剤を3〜49質量部添加してなることを特徴とする舗装用ブロック。
Aggregate and binder are kneaded with water, dried and molded in a pavement block,
The binder contains 30 to 80% by mass of the blast furnace slag fine powder and 20 to 70% by mass of the inorganic powder containing 50% by mass or more of amorphous SiO 2 , and the blast furnace slag fine powder and the inorganic A pavement block comprising an alkali stimulant added in an amount of 3 to 49 parts by mass with respect to a total of 100 parts by mass of the powder.
前記無機粉末の平均粒径が100μm以下であることを特徴とする請求項1記載の舗装用ブロック。The pavement block according to claim 1, wherein the average particle size of the inorganic powder is 100 µm or less. 前記無機粉末の50%未満を、シルト系粉未で置換したことを特徴とする請求項1又は2記載の舗装用ブロック。The pavement block according to claim 1 or 2, wherein less than 50% of the inorganic powder is replaced with a silt-based powder. 前記結合材100質量部に、骨材を350〜500質量部配合し、該骨材全体の80質量%以上が粒径2.5〜13mmのものであることを特徴とする請求項1〜3のいずれかに記載の舗装用ブロック。350 to 500 parts by mass of an aggregate is mixed with 100 parts by mass of the binder, and 80% by mass or more of the entire aggregate has a particle size of 2.5 to 13 mm. The pavement block according to any one of the above. 前記骨材が、高炉水砕スラグ又はゴミ溶融水砕スラグであることを特徴とする請求項1〜4のいずれかに記載の舗装用ブロック。The pavement block according to any one of claims 1 to 4, wherein the aggregate is granulated blast furnace slag or granulated refuse granulated slag. 前記骨材が、単位容積質量で1.5kg/リットル以上の高炉水砕スラグであることを特徴とする請求項1〜5のいずれかに記載の舗装用ブロック。The pavement block according to any one of claims 1 to 5, wherein the aggregate is granulated blast furnace slag having a unit volume mass of 1.5 kg / liter or more.
JP2002363414A 2002-12-16 2002-12-16 Block for pavement Withdrawn JP2004197310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363414A JP2004197310A (en) 2002-12-16 2002-12-16 Block for pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363414A JP2004197310A (en) 2002-12-16 2002-12-16 Block for pavement

Publications (1)

Publication Number Publication Date
JP2004197310A true JP2004197310A (en) 2004-07-15

Family

ID=32761562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363414A Withdrawn JP2004197310A (en) 2002-12-16 2002-12-16 Block for pavement

Country Status (1)

Country Link
JP (1) JP2004197310A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193367A (en) * 2005-01-13 2006-07-27 Denki Kagaku Kogyo Kk Hydraulic material
WO2007023570A1 (en) * 2005-08-24 2007-03-01 Jfe Steel Corporation Water retaining material composition for paving and method for applying water retaining paving
JP2008008040A (en) * 2006-06-29 2008-01-17 Jfe Steel Kk Water retentive block and method of producing the same
JP2009091207A (en) * 2007-10-10 2009-04-30 Machida Corporation Kk Manufacturing method of concrete block
JP2009091872A (en) * 2007-10-12 2009-04-30 Yoshikazu Fuji Composition for road surface pavement and road surface paving method
KR101084789B1 (en) 2011-06-14 2011-11-21 주식회사 건축사사무소건원엔지니어링 Concrete binder composition for reinfored laitance
WO2011152559A1 (en) * 2010-06-03 2011-12-08 Jfeスチール株式会社 Artificial stone and method for producing same
JP2013173630A (en) * 2012-02-23 2013-09-05 Ube Industries Ltd Instantly demolded lightweight block and method for manufacturing the same
JP2017057609A (en) * 2015-09-16 2017-03-23 太平洋マテリアル株式会社 Road surface repair method and road surface repair kit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193367A (en) * 2005-01-13 2006-07-27 Denki Kagaku Kogyo Kk Hydraulic material
JP4567473B2 (en) * 2005-01-13 2010-10-20 電気化学工業株式会社 Hydraulic material
WO2007023570A1 (en) * 2005-08-24 2007-03-01 Jfe Steel Corporation Water retaining material composition for paving and method for applying water retaining paving
JP2008008040A (en) * 2006-06-29 2008-01-17 Jfe Steel Kk Water retentive block and method of producing the same
JP2009091207A (en) * 2007-10-10 2009-04-30 Machida Corporation Kk Manufacturing method of concrete block
JP2009091872A (en) * 2007-10-12 2009-04-30 Yoshikazu Fuji Composition for road surface pavement and road surface paving method
WO2011152559A1 (en) * 2010-06-03 2011-12-08 Jfeスチール株式会社 Artificial stone and method for producing same
JP2012012287A (en) * 2010-06-03 2012-01-19 Jfe Steel Corp Artificial stone and method for producing the same
KR101379085B1 (en) 2010-06-03 2014-03-28 제이에프이 스틸 가부시키가이샤 Artificial stone and method for producing the same
KR101084789B1 (en) 2011-06-14 2011-11-21 주식회사 건축사사무소건원엔지니어링 Concrete binder composition for reinfored laitance
JP2013173630A (en) * 2012-02-23 2013-09-05 Ube Industries Ltd Instantly demolded lightweight block and method for manufacturing the same
JP2017057609A (en) * 2015-09-16 2017-03-23 太平洋マテリアル株式会社 Road surface repair method and road surface repair kit

Similar Documents

Publication Publication Date Title
JP5169007B2 (en) Injection material for pavement and pavement method using the same
KR101066194B1 (en) A water-retentive bottom ash block and its process of manufacture
JP2004197310A (en) Block for pavement
JP2007145669A (en) Water-retainable block and its production method
JP4235019B2 (en) Water-retaining porous concrete molded body and method for producing the same
JP2008075270A (en) Water-retentive block
JP2003252673A (en) Water-retentive block
JP2005048403A (en) Pavement body having water retaining function
JP4255802B2 (en) Pavement
JP3723178B2 (en) Water-retaining cured body
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP2003201705A (en) Paving body and its building method
JP5308967B2 (en) Pavement structure and pavement construction method
JP2009173466A (en) Cement composition for pavement having freeze inhibiting function and paved article using same
JP2002128574A (en) Lightweight concrete
JP2002180410A (en) Paving material and method of manufacturing its mold
JP3852290B2 (en) Road pavement structure and road pavement method
JP5004013B2 (en) Water retention block and method for producing the same
JP2007112713A (en) Hydraulic material for water holding solidified article and water holding solidified article
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement
JP2007270464A (en) Cement composition, cement milk, water holding pavement, and method of constructing water holding pavement
WO2007023570A1 (en) Water retaining material composition for paving and method for applying water retaining paving
JP6513419B2 (en) Process for producing a molded article formed by molding a composition for concrete having improved scaling resistance using blast furnace slag
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP3828916B1 (en) Water-retaining cured body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307