WO2007015445A1 - プラズマ発生装置およびこれを用いた成膜方法 - Google Patents

プラズマ発生装置およびこれを用いた成膜方法 Download PDF

Info

Publication number
WO2007015445A1
WO2007015445A1 PCT/JP2006/315109 JP2006315109W WO2007015445A1 WO 2007015445 A1 WO2007015445 A1 WO 2007015445A1 JP 2006315109 W JP2006315109 W JP 2006315109W WO 2007015445 A1 WO2007015445 A1 WO 2007015445A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical electrode
plasma
film
plasma generator
gas
Prior art date
Application number
PCT/JP2006/315109
Other languages
English (en)
French (fr)
Inventor
Nan Jiang
Hong-Xing Wang
Akio Hiraki
Masanori Haba
Original Assignee
Dialight Japan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co., Ltd. filed Critical Dialight Japan Co., Ltd.
Priority to US11/997,697 priority Critical patent/US20090266703A1/en
Priority to JP2007529248A priority patent/JP5420835B2/ja
Priority to EP06781987A priority patent/EP1912483B1/en
Priority to CN2006800282726A priority patent/CN101233792B/zh
Priority to KR1020087005210A priority patent/KR101364655B1/ko
Publication of WO2007015445A1 publication Critical patent/WO2007015445A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32596Hollow cathodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources

Definitions

  • the present invention relates to a plasma generating apparatus that generates a plasma by applying a voltage to an electrode disposed inside a vacuum of the apparatus, and a film forming method using the same.
  • Plasma can be used for thin film formation in the manufacture of semiconductors, display devices, magnetic recording devices, wear resistant devices and the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-216246
  • Patent Document 2 Patent No. 2980058
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-203896
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-190082
  • the problem to be solved by the present invention is to provide a plasma generating apparatus capable of forming a film easily and inexpensively even on a long film formation target, and at the same time being used for film formation of different types. And providing a film forming method using the same.
  • a cylindrical electrode is disposed inside the vacuum of the device.
  • a gas is introduced into the inside of the cylindrical electrode, and a DC negative voltage is applied to the cylindrical electrode as a plasma generation voltage.
  • the cylindrical electrode has at least one of a coil shape, a mesh shape, a fence shape, and a bowl shape.
  • a circumferential wall having one shape
  • the cylindrical electrode is formed in a shape which is open at both ends and extends straight in the both end directions and in which the plate-like or wire-like film formation target can be disposed. preferable.
  • the cylindrical electrode is preferably made of metal!
  • the cylindrical electrode is preferably made of solid carbon!
  • the cylindrical electrode is preferably circular in cross section.
  • the cylindrical electrode has a polygonal cross section.
  • the cylindrical electrode since the cylindrical electrode is used, when the film forming target is long, for example, plate-like or wire-like, the cylindrical electrode is long according to the film forming target. It is possible to form a film by placing a film formation target in a cylindrical shape.
  • the cylindrical electrode when a long plasma is required for film formation to be formed, the cylindrical electrode can be elongated to generate the long plasma. In this case, since it is only necessary to elongate the shape of the cylindrical electrode in order to elongate the plasma, it is possible to suppress the cost required to elongate the plasma.
  • the cylindrical electrode is open at both ends, and the film-forming target is inserted into the cylindrical electrode.
  • the plasma generating apparatus of the present invention can perform a plurality of film forming operations such as PVD, reactive PVD, and CVD by controlling pressure and selecting the type of gas with one unit.
  • the tubular electrode may be open or closed at one end or both ends.
  • the shape of the above film formation target is not particularly limited.
  • the shape of the film formation target may be plate-like or wire-like.
  • the shape of the cross section of the film formation target is not particularly limited.
  • the shape of the film formation target may be, for example, a circle, a semicircle, an ellipse, or a polygon.
  • the shape of the cylindrical electrode is not particularly limited! When the circumferential wall of the cylindrical electrode is coiled or meshed, the helical diameter and helical pitch can be adjusted to generate plasma of a desired density, and the cylindrical electrode at the time of plasma generation can be generated. The thermal expansion can be absorbed efficiently, the stress due to the thermal expansion can be relieved, and the life of the cylindrical electrode can be extended.
  • peripheral wall of the cylindrical electrode When the peripheral wall of the cylindrical electrode is formed into a fence shape or a bowl shape, plasma can be generated uniformly and at a high density between the cylindrical electrode and a wire or plate-like film formation target.
  • a first step of arranging a film formation target inside the cylindrical electrode using the plasma generating apparatus according to (1) above, and the cylindrical electrode A second step of controlling the pressure in the interior, a third step of introducing a gas into the cylindrical electrode, and a fourth step of applying a DC negative voltage to the cylindrical electrode.
  • a fifth step of applying a bias voltage for film formation rate control to the film formation target is included.
  • a sixth step of applying a bias voltage for film quality control to the film formation target is included.
  • a long plasma can be generated easily and inexpensively.
  • FIG. 1 is a view showing an example of a plasma generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing the appearance of a plasma generator.
  • FIG. 3A is a photograph showing the state of plasma generation by the plasma generator.
  • FIG. 3B is a photograph showing the state of plasma generation by the plasma generator.
  • FIG. 4 is a view showing a modification of a cylindrical electrode.
  • FIG. 5 is a view showing another modification of the cylindrical electrode.
  • FIG. 6 is a view showing a further modified example of a cylindrical electrode.
  • FIG. 7 is a side view of a wire-like cathode on which a carbon film is formed.
  • FIG. 8 is a cross-sectional view of a field emission lamp provided with the wire cathode of FIG.
  • FIG. 9 is a view showing another example of a plasma generation apparatus.
  • FIG. 10 is a view showing still another example of the plasma generation apparatus.
  • FIG. 11 is a SEM photograph showing film formation by a plasma generator.
  • FIG. 12 is a cross-sectional view showing a film formation structure by a plasma generator.
  • FIG. 13 is a view showing the cross-sectional shape of the needle-like carbon film of FIG.
  • FIG. 14 is a view showing still another example of the plasma generation apparatus.
  • FIG. 15 is a view showing still another example of the plasma generation apparatus.
  • FIG. 16 is a view showing still another example of the plasma generation apparatus.
  • FIG. 17 is a view showing still another example of the plasma generation apparatus.
  • FIG. 18 is a diagram in which the voltage of the bias power supply is taken along the horizontal axis and the deposition rate on the surface of the conductive wire is taken along the vertical axis in the plasma generator of FIG.
  • FIG. 19 is a diagram in which the voltage of the bias power supply is taken along the horizontal axis and the film quality of the film on the surface of the conductive wire is taken along the vertical axis in the plasma generator of FIG.
  • Fig. 1 shows the configuration of the plasma generator
  • Fig. 2 shows the appearance of the plasma generator.
  • the plasma generator 10 comprises a cylindrical chamber 12.
  • the chamber 12 is conductive or insulative.
  • the chamber 12 includes a gas inlet 14 and a gas outlet 16.
  • Chamber 12 has a viewing window 18.
  • a gas introduction device 9 is connected to the gas introduction unit 14.
  • the gas introduction device 9 selects a gas corresponding to the type of film forming method from the gas cylinder 8, adjusts the pressure and flow rate thereof, and introduces the gas into the gas introduction unit 14.
  • Gas cylinder 8 can also be included in the gas introduction system.
  • a pressure control device 13 is in contact with the gas exhaust unit 16 via an exhaust control valve (vacuum valve) 11. It will be continued.
  • the inside of the vacuum chamber 2 can be controlled to a pressure in the range of lOPa to lOOOOPa under the opening control of the exhaust control valve 11 by the pressure control device 13.
  • the plasma generating gas is, for example, a non-reactive gas such as argon or helium when the plasma generating apparatus 10 according to the embodiment is used as a PVD apparatus.
  • the gas for plasma generation is, for example, a reactive gas such as oxygen.
  • a CVD device for example, it is a carbon-based gas.
  • the pressure in the chamber 12 is set appropriately in the range of lOPa to lOOOOPa.
  • the plasma generator 10 of the embodiment is, for example, lOOPa or less, and as a CVD apparatus In the case of using, it is 500 Pa or more, for example.
  • a cylindrical electrode 20 is disposed inside the chamber 12!
  • the cylindrical electrode 20 is configured in a coil shape.
  • a conductive wire 22 to be deposited is disposed in the internal space of the cylindrical electrode 20, in the internal space of the cylindrical electrode 20, a conductive wire 22 to be deposited is disposed.
  • the cylindrical electrode 20 extends straight in one direction, and the internal space of the cylindrical electrode 20 defines a cylindrical plasma generating space extending in one direction.
  • the conductive wire 22 is disposed in this internal space and has an elongated structure.
  • the inner circumferential surface of the cylindrical electrode 20 and the outer circumferential surface of the conductive wire 22 are opposed to each other with a predetermined space in the extending direction.
  • One end of the cylindrical electrode 20 is connected to the negative electrode of the voltage variable DC power supply 24 and a DC negative voltage is applied.
  • the inside of the chamber 12 is depressurized by the vacuum evacuation system 13 and a gas for plasma generation is introduced from the gas introduction unit 14, and the negative voltage of the DC power supply 24 is When applied to 20, plasma 26 is generated in the internal space of the cylindrical electrode 20
  • FIG. 3 is a photograph showing how plasma 26 is generated in the internal space of cylindrical electrode 20 in the present plasma generator 10. This picture is a picture taken of the interior of chamber 12 through the viewing window 18 of chamber 12.
  • the photograph in Fig. 3A is for 700 V voltage of DC power supply 24, methane Z hydrogen gas as introduced gas, 80 Pa pressure
  • the photograph in Fig. 3B is for 700 V voltage for DC power supply 24, methane Z hydrogen gas, 170 Pa pressure. It is.
  • Material of cylindrical electrode 20 The material is SUS, and the material of the conductive wire 22 is nickel. I can not get a code in the photo
  • the cylindrical electrode 20 and the wire 2 in the chamber 12 from outside the chamber 12 through the observation window 18 thereof.
  • Wire 22 may be heated by connecting both ends of wire 22 to AC power supply 23.
  • Gas inlet 14 Introduce hydrogen gas and methane gas.
  • a conductive wire 22 as a film formation target is disposed in the internal space of the cylindrical electrode 20, and a carbon film could be formed on the surface of the conductive wire 22.
  • the cylindrical electrode 20 is a cylindrical electrode 20 having a closed cylindrical peripheral wall structure without an opening as shown in FIG. 4, and a plurality of independent openings as shown in FIG.
  • the tubular electrode 20 may have a fence-like peripheral wall structure. In this case, it can be replaced with a fence shape to make it reticulated.
  • the conductive wire 22 on which a carbon film is formed can be used as a cold cathode electron source.
  • the cold cathode electron source can be incorporated into a field emission lamp.
  • a cold cathode electron source electron is emitted by applying an electric field between the cold cathode electron source and the anode. The emitted electrons collide with the phosphor to excite and emit the phosphor.
  • Examples of the carbon film on the surface of the wire 22 include carbon nanotubes, carbon nanowall films and needle-like carbon films.
  • the cylindrical electrode 20 is bent, and the conductive wire 22 is also bent and disposed corresponding to the bending of the cylindrical electrode 20 inside the cylindrical electrode 20.
  • a carbon film can be formed on the surface of the conductive wire 22.
  • the cylindrical electrode 20 is, for example, about 2 m long, and a long conductive wire 22 extending for, for example, 2 m is disposed inside the cylindrical electrode 20,
  • a long plasma 26 can be generated in the internal space of the cylindrical electrode 20 along the shape of the internal space of the cylindrical electrode 20 to form a carbon film on the surface of the conductive wire 22. From the above, it is possible to perform film forming operations such as PVD, reactive PVD, and CVD by controlling the pressure and selecting the type of gas with one unit of the above-described plasma generator.
  • the pressure is controlled to a low pressure, for example, lOOPa or less by the pressure control means, non-reactive gas such as argon or helium is introduced by the gas introduction means, and voltage application means Apply a DC negative voltage to the cylindrical electrode.
  • a low pressure for example, lOOPa or less
  • non-reactive gas such as argon or helium
  • voltage application means Apply a DC negative voltage to the cylindrical electrode.
  • the above-mentioned gas is plasmatized by the internal high electric field inside the cylindrical electrode, and ions of gas molecules are generated.
  • the ions are drawn to the negative potential of the cylindrical electrode and collide with the cylindrical electrode to sputter atoms from the cylindrical electrode.
  • a film is formed on the surface to be film-formed by the ejected atoms. That is, the plasma generation apparatus of the present invention can be used as a PVD apparatus.
  • the pressure is controlled to a low pressure, for example, 100 Pa or less by the pressure control means, a reactive gas such as oxygen is introduced by the gas introduction means, and a DC negative voltage is applied to the cylindrical electrode by the voltage application means. Do. By doing so, plasma is generated inside the cylindrical electrode.
  • the generated plasma sputters a material such as iron or nickel, which constitutes the cylindrical electrode.
  • an oxide such as iron or nickel is formed on the surface of the film formation target disposed inside the cylindrical electrode. That is, in the present plasma generation apparatus, it can be used as a reactive PVD apparatus.
  • the pressure is controlled to a high pressure, for example, 500 Pa or more by the pressure control means, a mixed gas of hydrogen gas and methane gas is introduced by the gas introduction means, and a DC negative voltage is applied to the cylindrical electrode by the voltage application means. Apply. By doing so, plasma is generated inside the cylindrical electrode. A carbon film is formed on the surface of the film formation target disposed inside the cylindrical electrode by the generated plasma. That is, the present plasma generation device can be used as a plasma CVD device.
  • a carbon compound gas is introduced into the inside of the cylindrical electrode to form a carbon film on the surface of a long wire, a substrate or the like.
  • the tubular electrode can be extended according to the length of the film forming object, and the film forming object can be formed simply by arranging the film forming object inside the cylindrical electrode, and the film forming cost can be reduced.
  • the present plasma generator is used to manufacture a cold cathode electron source of a field emission type lamp. It can apply.
  • the cold cathode electron source is a conductive wire on the surface of which a carbon film having many fine projections is formed.
  • the introduction of the carbon-based gas makes it possible to provide a direct current plasma CVD apparatus for forming a carbon film on the surface to be formed.
  • a DC plasma etching apparatus can be obtained by the introduction of the etching gas.
  • a direct current plasma plating apparatus can be obtained by introducing a gas for plating.
  • At least three plasmas for film formation can be generated with one plasma generation apparatus by providing the gas cylinder with one for each of CVD, etching, and plating.
  • the cylindrical electrode 20 can be made of solid carbon.
  • the cylindrical electrode 20 is not limited to the configuration in which all the electrode portions are made of solid carbon.
  • the plasma generator 10 of the present embodiment when hydrogen gas is used as the introduced gas, hydrogen plasma is generated.
  • the hydrogen ions in this plasma collide at high speed to the cylindrical electrode 20 which is a solid carbon source to which a direct current negative voltage is applied.
  • the collision energy causes carbon to fly out of the cylindrical electrode 20.
  • the ejected target particles, carbon, chemically bond (CHx) with hydrogen ions in the plasma to form a hydrocarbon compound and collide with a film forming object, for example, a conductive wire 22 disposed inside the cylindrical electrode 20.
  • Hydrogen escapes from the hydrocarbon compound that collides with the conductive wire 22, and carbon stops on the surface of the conductive wire 22 and deposits. As a result, a carbon film is formed on the surface of the conductive wire 22.
  • a carbon film can be formed on the surface of the conductive wire 22 without introducing a gas.
  • a carbon film can be formed by plasma PVD on the surface of the conductive wire 22 using, for example, argon gas as the introduced gas.
  • FIG. 8 shows a cross-sectional configuration of a field emission lamp provided with a wire 22 having a carbon film 28 formed on the surface shown in FIG. 7 as a wire cathode 30. As shown in FIG.
  • this field emission lamp has a tube diameter of 2 to 25 mm and a tube length of 6 cm.
  • a wire cathode 30 is provided inside the 2 m lamp tube 34 with a diameter of about 12 mm and a diameter of about 6 cm to 2 m.
  • an anode 32 with phosphor is provided on the inner surface of the lamp tube 34.
  • the phosphor-coated anode 32 is composed of an anode 32a and a phosphor 32b.
  • photoluminescing a gas which is excited by electron collision to generate ultraviolet light is sealed in the inside of the lamp tube 34, and the ultraviolet light is converted to visible light on the inner surface of the lamp tube 34.
  • the type which provides a fluorescent substance can be included.
  • a pair of rectangular electrodes are disposed opposite to each other in the chamber, and a conductive wire is placed on one of the electrodes, and hydrogen gas and the like are contained in the chamber.
  • a plasma can be generated to form a carbon film on the surface of the conductive wire.
  • the conductive wire 22 may be heated by an AC power supply 23.
  • the wire diameter of the coil constituting the cylindrical electrode 20 is, for example, 2 mm to 25 mm.
  • the line spacing of this coil is, for example, 2 mm to 20 mm.
  • FIG. 10 shows a plasma generator 10 according to still another embodiment of the present invention.
  • a high frequency voltage is applied to both ends of the cylindrical electrode 20 from a high frequency power supply 25.
  • the power frequency of the high frequency power supply 25 is, for example, 13.56 MHz, 4 MHz, 27.12 MHz, 40.68 MHz or the like.
  • a voltage (superimposed voltage) in which a high frequency voltage is superimposed on a negative DC voltage is applied to the cylindrical electrode 20.
  • the positive electrode of the DC power supply 24 is grounded.
  • interval between lines are not especially limited.
  • the pressure in the chamber 12 is reduced and methane gas and hydrogen gas are introduced from the gas introduction unit 14 as the introduction gas, and the above-mentioned superimposed voltage is applied to the cylindrical electrode 20.
  • plasma 26 is generated inside the cylindrical electrode 20.
  • a carbon film is formed on the surface of the conductive wire 22 disposed inside the cylindrical electrode 20 by the plasma 26.
  • FIG. 11 shows SEM photographs 1 and 2 of a carbon film formed under the conditions described below.
  • SEM picture 2 is a magnified picture of SEM picture 1.
  • the SEM photograph 1 shows an applied voltage of 3. O kV between the anode and the cathode at a magnification of 1000 times.
  • the SEM photograph 2 has a magnification of 4,300.
  • FIG. 12 is a schematic view of the structure of the carbon film shown by the above-mentioned SEM photograph. Film forming conditions are as follows: flow rate of methane gas 5 ccm, flow rate of hydrogen gas 300 ccm, DC power 3000 W, high frequency power 500 W, temperature 750 of conductive wire 22.
  • C pressure of 2000 Pa at chamber 12, NOS-12 OV, deposition time 10 minutes.
  • the carbon film includes a reticulated carbon film F 1, one or more needle carbon films F 2 surrounded by the mesh carbon film F 1, and a film lower portion of the needle carbon film F 2. And a wall-like carbon film F3 deposited in a final form.
  • the needle-like carbon film F2 has a shape in which the radius decreases toward the tip of an arbitrary position force.
  • the needle carbon film F2 has the electric field concentration coefficient ⁇ in the formula of the Fraura Nordheim, a radius 3 ⁇ 4 ⁇ at an arbitrary position, its position force, and the height to the tip is h, by the equation of hZr It is represented and has a shape whose radius decreases toward any position force tip.
  • the reticulated carbon film F1 is continuously formed on the substrate S, and when viewed from the planar direction, the whole becomes substantially reticulated.
  • the height (H) of the mesh-like carbon film F1 is about 10 nm or less, and the width (W) of the mesh-like carbon film F1 is about 4 nm or less.
  • the needle-like carbon film F2 extends in the shape of a needle on the region on the substrate 2 surrounded by the reticulated carbon film F1, and the tip thereof becomes an electron emission point at which the electric field is concentrated to emit electrons. Since the needle-like carbon film F2 is surrounded by the reticulated carbon film F1, the mutual spacing is restricted or defined as an electron emission point.
  • the needle-like carbon film F2 is formed to have a height (h) higher than the height (H) of the reticulated carbon film F1, for example, about 60 m.
  • the wall-like carbon film F3 has a generally flared shape when viewed from the side. This shape is, for example, conical. However, it does not mean geometrically perfect cone shape, but it is described as an easy-to-understand expression, and in actuality, it has various shapes such as horizontal force S and spiral state. In any case, when the wall-like carbon film F3 contacts the substrate S with a wide bottom area, the needle-like carbon film F2 can be mechanically strongly supported on the substrate S, and The electrical contact of the needle-like carbon film F2 can be sufficiently secured.
  • the needle-like carbon film F2 is a carbon nano
  • the film form of a wall-like carbon film F3 having a large aspect ratio like a tube is formed in a needle-like carbon film F2 so as to form a wall-like form extending to the middle of the film under the film.
  • the lamp is mechanically strongly supported on the substrate S and does not fall down on the substrate, so that the stability of the illumination lamp as the electron emission source is improved and the diameter of the needle-like carbon film F2 is thin.
  • the wall-like carbon film F3 can make an electrical contact with the substrate for current flow, it is possible to obtain the electron emission characteristics required as the electron emission source of the illumination lamp.
  • the potential surface around the tip of the needle-like carbon film F 2 changes rapidly, and the electric field is strongly concentrated. Also, no electric field concentration occurs in the reticulated carbon film F1.
  • the needle-like carbon films F2 are mutually separated by a reticulated carbon film F1 at an appropriate distance (D), for example, about 100 m so as not to inhibit the electric field concentration action of each other.
  • D an appropriate distance
  • the degree of aggregation of the acicular carbon film F2 has a very small influence on the electric field concentration of the acicular carbon film F2 for each reticulated carbon film F1 in a dense state such as a conventional carbon nanotube.
  • the electric field tends to be concentrated on the needle-like carbon film F2. Then, as the needle-like carbon film F2 is surrounded by the reticulated carbon film F1 formed on the substrate S and the arrangement interval is restricted, it is restricted that many needle-like carbon films F2 are densely packed. As a result, the electric field concentration performance of each needle-like carbon film F2 can be exhibited, and excellent electron emission characteristics can be provided.
  • the needle-like carbon film F 2 has a very stable posture on the substrate S by the wall-like carbon film F 3, can stably emit electrons, and a plurality of needle-like films The respective film forming directions can be easily aligned, and the electron emission amount from each of the plurality of needle-like carbon films F2 can be made uniform over the entire substrate also from this surface.
  • the needle-like carbon film F2 is used as a cold cathode electron source in a field emission type illumination lamp, the phosphor in the lamp can be emitted with uniform brightness.
  • the needle-like carbon film F2 is mechanically strongly supported on the substrate S by the wall-like carbon film F3, and falls onto the substrate S. As a result, the stability of the illumination lamp as an electron emission source is improved.
  • the acicular carbon film F2 can be in electrical contact with the substrate for current flow by the wall-like film F3 by the wall-like carbon film F3. Ru.
  • the needle carbon film F2 is expressed by the equation of hZr, where the electric field concentration coefficient ⁇ is a radius at an arbitrary position :, and the height from the position to the tip is h, and It has a needle shape whose radius decreases toward the tip. Therefore, the needle-like carbon film F2 becomes a carbon film which is difficult to saturate electric field radiation.
  • Fig. 14 shows another example of the plasma generator.
  • This plasma generator is incorporated into a film forming apparatus.
  • a gas for plasma generation is supplied from the gas cylinder 8 to the inside of the chamber 12 with its pressure and flow rate adjusted by the gas pressure Z flow control circuit 9 and introduced into the chamber 12 through the introduction portion 14 thereof. It is possible to
  • a vacuum exhaust system 13 is connected to the exhaust portion 14 of the chamber 12 via an exhaust control valve 11 to adjust the internal pressure of the chamber 12.
  • the inside of the chamber 12 is pressure-controlled by the vacuum exhaust system 13 under the opening control of the exhaust control valve 11.
  • each of the plurality of cylindrical electrodes 20 is formed by forming a metal mesh (mesh) into a substantially cylindrical shape.
  • a conductor wire 22 which is an example of a film formation object is disposed inside the cylindrical electrode 20 !.
  • a potential on the negative electrode side of a DC power supply for plasma excitation is applied to the cylindrical electrode 20.
  • the positive electrode side of the DC power supply 24 is grounded.
  • Chamber 12 is grounded.
  • the DC power supply 24 can be variably adjusted, for example, to a voltage of 100 to 2000V.
  • the internal pressure of the chamber 12 is reduced within the above pressure range, a gas is introduced from the gas introducing unit 14, and the negative potential of the DC power supply 24 is applied to the cylindrical electrode 20. Then, plasma is generated inside each cylindrical electrode 20, and the gas is decomposed. As a result, a film is formed on the surface of the conductor wire 22.
  • the plasma can be confined at a uniform density and a high density without leaking plasma inside each cylindrical electrode. it can.
  • the plurality of cylindrical electrodes 20 in FIG. 14 are independently connected to each other and the insides thereof communicate with each other, and are arranged side by side. However, as shown in FIG. The units may be juxtaposed in communication with each other.
  • the cylindrical electrodes may be circular in cross section, polygonal in cross section, oval in cross section, and other cross sectional shapes, and a large number of them may be disposed in the chamber.
  • the conductive wire 22 is disposed in each of the cylindrical electrodes 20, and plasma is generated in each of the cylindrical electrodes 20 and the gas is introduced into the inside of the cylindrical electrodes 20.
  • a high quality film can be formed on the entire surface of the conductive wire 22 with a uniform film thickness. As a result, it can contribute to mass production of products using the conductive wire 22.
  • FIG. 17 shows still another example of the plasma generator 10 provided with a bias power supply 40.
  • the bias power supply 40 has a negative electrode connected to the conductive wire 22 to be formed, and a positive electrode connected to the chamber 12 and grounded.
  • FIG. 18 shows the voltage of bias power supply 40 on the horizontal axis and the deposition rate on the surface of conductive wire 22 on the vertical axis. As shown in FIG. 18, the voltage of bias power supply 40 is increased. Accordingly, the deposition rate on the surface of the conductive wire 22 can be increased.
  • FIG. 19 shows the voltage of bias power supply 40 on the horizontal axis and the film quality of the film on the surface of conductive wire 22 on the vertical axis, and as shown in FIG.
  • the above film quality can be improved by adjusting to the range of 200V.
  • the plasma generator according to the present invention can generate a long plasma with respect to a long film formation target, and different types of film formation can be performed by pressure control and gas type selection. It can be carried out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】長尺なプラズマを簡単かつ安価に発生可能とすること共に、1台の装置で、複数の成膜法を実施可能とすること。 【解決手段】本プラズマ発生装置は、当該装置の真空内部に、一部に開孔を備えかつガス導入と共に直流負電圧が印加されて内部にプラズマを発生する筒状電極を備える。                                                                

Description

明 細 書
プラズマ発生装置およびこれを用いた成膜方法
技術分野
[0001] 本発明は、装置の真空内部に配置した電極に電圧を印加してプラズマを発生する プラズマ発生装置およびこれを用いた成膜方法に関する。
背景技術
[0002] プラズマは、半導体、表示素子、磁気記録素子、耐磨耗素子などの製造にぉ 、て 薄膜形成に利用することができる。
[0003] 上記成膜の対象が例えばワイヤ等の一方向に長 、基板の表面に成膜する場合、 長尺なプラズマを発生するプラズマ発生装置が必要である。
[0004] プラズマを用いた成膜には PVD (Physical Vapor Deposition)や CVD (Che mical Vapor Deposition)がある。このような成膜は個別の成膜装置が必要であ る。
特許文献 1 :特開 2004— 216246号公報
特許文献 2:特許第 2980058号公報
特許文献 3:特開平 10— 203896号公報
特許文献 4:特開 2004 - 190082号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明が解決する課題は、長尺な成膜対象に対しても簡単かつ安価に成膜するこ とができると同時に種類が異なる成膜にも使用することが可能なプラズマ発生装置お よびこれを用いた成膜方法を提供することである。
課題を解決するための手段
[0006] (1)本発明に係るプラズマ発生装置は、装置の真空内部に、筒状電極が配置され
、該筒状電極の内部にガスを導入し、かつ、該筒状電極に直流負電圧をプラズマ発 生電圧として印加する構成を備える。
[0007] 上記筒状電極は、コイル状、網目状、柵状および籠状のうちの少なくともいずれ力 1 つの形状を有する周壁を備えることが好ま 、。
[0008] 上記筒状電極は、両端が開口しかつ当該両端方向にストレートに延びかつその内 部に板状またはワイヤ状の成膜対象を配置することが可能な形状に形成されている ことが好ましい。
[0009] 上記筒状電極は金属で構成されて!ヽることが好ま ヽ。
[0010] 上記筒状電極は固体炭素で構成されて!ヽることが好ま 、。
[0011] 上記筒状電極は断面円形であることが好ましい。
[0012] 上記筒状電極は断面多角形であることが好ましい。
[0013] 本発明のプラズマ発生装置によると、筒状電極を用いたから、成膜対象が例えば 板状やワイヤ状等の長尺である場合、筒状電極をその成膜対象に合わせて長尺な 筒状にしてその内部に成膜対象を配置して成膜することができる。
[0014] 以上により、本発明では、成膜対象の成膜に長尺なプラズマが必要な場合、筒状 電極を長尺化してその長尺なプラズマを発生することができる。この場合、プラズマの 長尺化は筒状電極を形状的に長尺化するだけでよいから、プラズマの長尺化に要す る費用を抑制し、することができる。
[0015] また、本発明では、成膜対象がワイヤ状に長尺な場合では、筒状電極を両端開口 とし、その筒状電極に成膜対象を挿入し、筒状電極と成膜対象とを相対移動すること により、プラズマを長尺化しなくても、長尺な成膜対象に安価に成膜をすることができ る。
[0016] 本発明のプラズマ発生装置は、 1台でもって、圧力の制御とガスの種類の選択とに より、 PVD、反応性 PVD、 CVD等の複数の成膜操作ができる。
[0017] 上記筒状電極は、一端または両端が開口していても、閉じていてもよい。
[0018] 上記成膜対象の形状は特に限定されな!、。
[0019] 上記成膜対象の形状は、板状、ワイヤ状を例示することができる。
[0020] 上記成膜対象の断面の形状は特に限定されな!、。
[0021] 上記成膜対象の形状は、円形、半円形、楕円形、多角形、等を例示することができ る。
[0022] 上記筒状電極の形状は特に限定されな!、。 [0023] 上記筒状電極の周壁をコイル状や網目状とした場合、その螺旋径、螺旋ピッチを 調整して所望密度のプラズマを発生させることができ、また、プラズマ発生時の筒状 電極の熱膨張を効率的に吸収し、熱膨張による応力を緩和して筒状電極の寿命を 伸ばすことができる。
[0024] 上記筒状電極の周壁を柵状や籠状にした場合、筒状電極とワイヤ状や板状の成膜 対象との間にプラズマを均等かつ高密度に発生させることができる。
[0025] (2)本発明のプラズマ発生方法は、上記(1)に記載のプラズマ発生装置を用いて、 上記筒状電極の内部に成膜対象を配置する第 1ステップと、上記筒状電極内部を減 圧制御する第 2ステップと、上記筒状電極内部にガスを導入する第 3ステップと、上記 筒状電極に直流負電圧を印加する第 4ステップと、を備える。
[0026] 好ましくは、上記成膜対象に成膜速度制御用のバイアス電圧を印加する第 5ステツ プを含む。
[0027] 好ましくは、上記成膜対象に膜質制御用のバイアス電圧を印加する第 6ステップ含 む。
発明の効果
[0028] 本発明によれば、長尺なプラズマを簡単かつ安価に発生することができる。同時に 本発明によれば、 1台の装置でもって、圧力の制御とガスの種類の選択とにより、複 数種類の成膜操作を行うできる。
図面の簡単な説明
[0029] [図 1]本発明の実施の形態においてプラズマ発生装置の一例を示す図である。
[図 2]プラズマ発生装置の外観を示す図である。
[図 3A]プラズマ発生装置によるプラズマの発生状態を示す写真である。
[図 3B]プラズマ発生装置によるプラズマの発生状態を示す写真である。
[図 4]筒状電極の変形例を示す図である。
[図 5]筒状電極の他の変形例を示す図である。
[図 6]筒状電極のさらなる変形例を示す図である。
[図 7]炭素膜が形成されたワイヤ状陰極の側面図である。
[図 8]図 8のワイヤ状陰極を備えるフィールドェミッションランプの断面図である。 [図 9]プラズマ発生装置の他の例を示す図である。
[図 10]プラズマ発生装置のさらに他の例を示す図である。
[図 11]プラズマ発生装置による成膜を示す SEM写真である。
[図 12]プラズマ発生装置による成膜構造を示す断面図である。
[図 13]図 12の針状炭素膜の断面形状を示す図である。
[図 14]プラズマ発生装置のさらに他の例を示す図である。
[図 15]プラズマ発生装置のさらに他の例を示す図である。
[図 16]プラズマ発生装置のさらに他の例を示す図である。
[図 17]プラズマ発生装置のさらに他の例を示す図である。
[図 18]図 17のプラズマ発生装置にお 、てノ ィァス電源の電圧を横軸に導電性ワイヤ の表面への成膜速度を縦軸にとる図である。
[図 19]図 17のプラズマ発生装置にお 、てノ ィァス電源の電圧を横軸に導電性ワイヤ の表面への膜の膜質を縦軸にとる図である。
符号の説明
[0030] 10 プラズマ発生装置
20 筒状電極
22 導電性ワイヤ (成膜対象)
発明を実施するための最良の形態
[0031] 以下、添付した図面を参照して、本発明の実施の形態に係るプラズマ発生装置を 説明する。
(プラズマ発生装置の一例)
図 1にプラズマ発生装置の構成、図 2にプラズマ発生装置の外観を示す。プラズマ 発生装置 10は、円筒形のチャンバ 12を備える。チャンバ 12は導電性または絶縁性 を有する。チャンバ 12はガス導入部 14とガス排出部 16とを備える。チャンバ 12は覼 き窓 18を有する。ガス導入部 14にガス導入装置 9が接続される。このガス導入装置 9 はガスボンベ 8から成膜法の種類に対応したガスを選択しその圧力や流量を調節し てガス導入部 14にガスを導入する。ガスボンベ 8もガス導入装置に含めることができ る。ガス排気部 16には排気制御弁 (真空バルブ) 11を介して圧力制御装置 13が接 続される。真空チャンバ 2内は、圧力制御装置 13により排気制御弁 11の開度制御の 下で lOPaから lOOOOPaの範囲の圧力に制御することができる。
[0032] プラズマ発生用ガスは、実施の形態のプラズマ発生装置 10が PVD装置として用い る場合では例えばアルゴンやヘリウム等の非反応性ガスである。反応性 PVD装置と して用いる場合ではプラズマ発生用ガスとして例えば酸素等の反応性ガスである。 C VD装置として用いる場合では例えば炭素系のガスである。
[0033] チャンバ 12内の圧力は lOPaから lOOOOPaの範囲で適宜に設定される力 実施の 形態のプラズマ発生装置 10が PVD装置や反応性 PVD装置として用いる場合では 例えば lOOPa以下であり、 CVD装置として用いる場合では例えば 500Pa以上であ る。
[0034] チャンバ 12の内部には筒状電極 20が配置されて!、る。
[0035] 筒状電極 20は、コイル状に構成されている。
[0036] 筒状電極 20の内部空間には成膜対象である導電性ワイヤ 22が配置されている。
筒状電極 20は一方向にストレートに延びており、筒状電極 20の内部空間は一方向 に長く延びる円筒形のプラズマ発生用の空間をなしている。導電性ワイヤ 22はこの 内部空間に配置されて細長に延びた構造になっている。
[0037] 筒状電極 20の内周面と導電性ワイヤ 22の外周面とはその延設方向に所要の空間 を隔てて相対向している。筒状電極 20の一端側は電圧可変型の直流電源 24の負 極に接続されて直流負電圧が印加されて ヽる。
[0038] 以上の構成を備えたプラズマ発生装置 10において、真空排気系 13でチャンバ 12 内を減圧しかつガス導入部 14からプラズマ発生用ガスを導入し、直流電源 24の負 電圧を筒状電極 20に印加すると、筒状電極 20の内部空間にプラズマ 26が発生する
[0039] 図 3は、本プラズマ発生装置 10において筒状電極 20の内部空間にプラズマ 26が 発生して!/、る様子を示す写真である。この写真はチャンバ 12の覼き窓 18を通してチ ヤンバ 12内部を撮影した写真である。図 3Aの写真は、直流電源 24の電圧 700V、 導入ガスとしてメタン Z水素ガス、圧力 80Paのものであり、図 3Bの写真は、直流電 源 24の電圧 700V、メタン Z水素ガス、圧力 170Paのものである。筒状電極 20の材 料は SUS、導電性ワイヤ 22の材料はニッケルである。写真内には符号をとれないが
、チャンバ 12外からはその覼き窓 18を通してチャンバ 12内の筒状電極 20とワイヤ 2
2とプラズマ 26とが明瞭に撮影されている。
[0040] このプラズマ発生装置 10を用いてワイヤに成膜する方法を説明すると、筒状電極 2
0の内部に導電性のワイヤ 22を配置する。ワイヤ 22の両端を交流電源 23に接続し、 ワイヤ 22を加熱してもよ ヽ。ガス導入部 14カゝら水素ガスとメタンガスとを導入する。
[0041] チャンバ 12の内圧を減圧し、直流電源 24の負電位を筒状電極 20に印加したとき、 筒状電極 20の内部空間にプラズマ 26が発生し、これにより、メタンガスが分解され、 ワイヤ 22の表面に炭素膜が成膜される。
[0042] 図 3の写真では筒状電極 20の内部空間に成膜対象としての導電性ワイヤ 22が配 置されており、この導電性ワイヤ 22の表面に炭素膜を成膜することができた。
[0043] 筒状電極 20は図 4で示すような開孔が無い閉じた筒状の周壁構造を有する筒状電 極 20でも、図 5で示すような複数の独立した開孔を円周方向に有する柵状とされた 周壁構造を有する筒状電極 20でもよい。この場合、柵状に代えて網目状とすること ができる。
[0044] 炭素膜を成膜した上記導電性ワイヤ 22は冷陰極電子源に用いることができる。冷 陰極電子源はフィールドェミッションランプに組み込むことができる。フィールドェミツ シヨンランプでは、冷陰極電子源と陽極との間の電界印加により冷陰極電子源力 電 子を放出する。この放出した電子は蛍光体に衝突して該蛍光体を励起発光させる。
[0045] ワイヤ 22の表面の炭素膜にはカーボンナノチューブやカーボンナノウォール膜や 針状炭素膜を例示することができる。
[0046] 本実施形態では図 6で示すように筒状電極 20を曲げ、この筒状電極 20の内部に 該筒状電極 20の曲げに対応して導電性ワイヤ 22も曲げて配置しても、導電性ワイヤ 22の表面に炭素膜を成膜することができる。
[0047] 以上のようにこの実施の形態では、筒状電極 20を例えば 2m程度の長尺にし、この 筒状電極 20の内部に例えば 2mにもわたる長尺の導電性ワイヤ 22を配置し、筒状電 極 20の内部空間に該筒状電極 20の内部空間の形状に沿って長尺のプラズマ 26を 発生させて、導電性ワイヤ 22の表面に炭素膜を成膜することができる。 [0048] 以上により、上記プラズマ発生装置は、 1台でもって、圧力の制御とガスの種類の選 択とにより、 PVD、反応性 PVD、 CVD等の成膜操作ができる。すなわち、本プラズ マ発生装置は、第 1に、圧力制御手段で圧力を低圧例えば lOOPa以下に真空引き 制御し、ガス導入手段で例えばアルゴンやヘリウム等の非反応性ガスを導入し、電圧 印加手段で筒状電極に直流負電圧を印加する。そうすることにより、筒状電極内部 に上記ガスを内部の高電界によりプラズマ化しガス分子のイオンが発生する。そのィ オンは筒状電極の負電位に引かれて該筒状電極に衝突して該筒状電極から原子を 叩き出す (スパッタリングする)。この叩き出された原子により成膜対象の表面に膜が 形成される。すなわち、本発明のプラズマ発生装置では、 PVD装置として用いること ができる。
[0049] 第 2に、圧力制御手段で圧力を低圧例えば lOOPa以下に制御し、ガス導入手段で 例えば酸素等の反応性ガスを導入し、電圧印加手段で筒状電極に直流負電圧を印 加する。そうすることにより、筒状電極内部にプラズマが発生する。この発生したブラ ズマは、筒状電極を構成する例えば鉄やニッケル等の材料をスパッタリングする。こ れにより筒状電極内部に配置した成膜対象の表面に鉄やニッケル等の酸化物が成 膜される。すなわち、本プラズマ発生装置では、反応性 PVD装置として用いることが できる。
[0050] 第 3に、圧力制御手段で圧力を高圧例えば 500Pa以上に制御し、ガス導入手段で 例えば水素ガスとメタンガスとの混合ガス等を導入し、電圧印加手段で筒状電極に 直流負電圧を印加する。そうすることにより、筒状電極内部にプラズマが発生する。こ の発生したプラズマにより筒状電極内部に配置した成膜対象の表面に炭素膜が成 膜される。すなわち、本プラズマ発生装置では、プラズマ CVD装置として用いること ができる。
[0051] 本プラズマ発生装置においては、例えば、筒状電極の内部に例えば炭素化合物 系のガスを導入して長尺のワイヤゃ基材等の成膜対象の表面に炭素膜を成膜する 場合、筒状電極をその成膜対象の長さに合わせて延長し、その筒状電極の内部に 成膜対象を配置するだけで成膜することができ、成膜費用を低減することができる。
[0052] 本プラズマ発生装置は、フィールドェミッション型ランプの冷陰極電子源の製造に 適用することができる。この冷陰極電子源は、導電性ワイヤの表面に多数の微細突 起を有する炭素膜を形成した物である。
[0053] 本プラズマ発生装置では、炭素系ガスの導入より、成膜対象の表面に炭素膜を成 膜する直流プラズマ CVD装置とすることができる。
[0054] 本プラズマ発生装置では、エッチング用ガスの導入より、直流プラズマエッチング装 置とすることができる。本発明のプラズマ発生装置で、プレーティング用ガスの導入に より、直流プラズマプレーティング装置とすることができる。
[0055] 本プラズマ発生装置では、ガスボンベとして CVD用、エッチング用、プレーティング 用それぞれを備えることにより 1台のプラズマ発生装置で少なくとも 3つの成膜用のプ ラズマを発生することがでさる。
[0056] (プラズマ発生装置の他の例)
本実施の形態のプラズマ発生装置 10は、筒状電極 20を固体炭素で構成すること ができる。この場合、筒状電極 20はそのすベての電極部分を固体炭素で構成するこ とに限定されない。
[0057] 本実施の形態のプラズマ発生装置 10では、導入ガスとして水素ガスを用いた場合 、水素プラズマが発生する。このプラズマ中の水素イオンは直流負電圧が印加されて いる固体炭素源である筒状電極 20に高速衝突する。この衝突エネルギーにより筒状 電極 20から炭素が飛び出す。この飛び出したターゲット粒子である炭素はプラズマ 中の水素イオンと化学結合 (CHx)して炭化水素化合物となって筒状電極 20の内部 に配置した成膜対象例えば導電性ワイヤ 22に衝突する。導電性ワイヤ 22と衝突した 炭化水素化合物から水素が飛び出し、導電性ワイヤ 22の表面に炭素が止まり堆積 する。この結果、導電性ワイヤ 22の表面に炭素膜が成膜される。
[0058] プラズマ発生装置 10では、ガスを導入することなぐ導電性ワイヤ 22の表面に炭素 膜を成膜することができる。導入ガスを例えばアルゴンガスとして導電性ワイヤ 22の 表面にプラズマ PVDによる炭素膜を成膜することができる。
[0059] 図 8に、図 7に示す表面に炭素膜 28が形成されたワイヤ 22をワイヤ状陰極 30とし て備えたフィールドェミッションランプの断面構成を示す。
[0060] 図 8で示すように、このフィールドェミッションランプは、管径 2— 25mmで管長 6cm 2mのランプ管 34内部に直径 1 2mm程度で 6cm— 2m程度にワイヤ状陰極 30 を備える。このランプ管 34内面には蛍光体付き陽極 32が設けられている。蛍光体付 き陽極 32は、陽極 32aと蛍光体 32bと力 構成されている。図 8に示すフィールドエミ ッシヨンランプには、ランプ管 34の内部に電子衝突により励起されて紫外光を発生す るガスを封入し、ランプ管 34の内面に紫外光を可視光に変換するフォトルミネセンス 蛍光体を設けるタイプを含むことができる。
[0061] 本実施の形態では上記以外に、図示はしないが、チャンバ内部に一対の長方形の 電極を対向配置し、一方の電極上に導電性ワイヤを載置し、チャンバ内部に水素ガ スと炭素系ガスとを導入し、これら両電極間に直流負電圧を印加することにより、ブラ ズマを発生させて、導電性ワイヤの表面に炭素膜を成膜することができる。
[0062] 本実施の形態では、図 9に示すように導電性ワイヤ 22を交流電源 23で加熱しても よい。筒状電極 20を構成するコイルの線径は例えば 2mmから 25mmである。このコ ィルの線間間隔に例えば 2mmから 20mmである。
[0063] (プラズマ発生装置のさらに他の例)
図 10に本発明のさらに他の実施の形態に係るプラズマ発生装置 10を示す。この実 施の形態では筒状電極 20の両端に高周波電源 25から高周波電圧が印加されてい る。高周波電源 25の電力周波数は、例えば、 13. 56MHz, 4MHz、 27. 12MHz、 40. 68MHzなどである。筒状電極 20には負の直流電圧に高周波電圧が重畳され た電圧 (重畳電圧)が印加されている。直流電源 24の正極は接地されている。筒状 電極 20を構成するコイルの線径、線間間隔には特に限定されな!、。
[0064] 以上の構成を備えたプラズマ発生装置 10において、チャンバ 12内を減圧しかつガ ス導入部 14から導入ガスとしてメタンガスと水素ガスとが導入され、筒状電極 20に上 記重畳電圧が印加されると、筒状電極 20の内部にプラズマ 26が発生する。このブラ ズマ 26により、筒状電極 20の内部に配置された導電性のワイヤ 22の表面に炭素膜 が成膜される。
[0065] 図 11は、以下に述べる条件で成膜した炭素膜の SEM写真 1, 2である。 SEM写真 2は SEM写真 1の拡大写真である。 SEM写真 1は、陽極と陰極との間の印加電圧 3 . OkV、倍率 1000倍である。 SEM写真 2は、倍率 4300倍である。 [0066] 図 12は、上記 SEM写真で示される炭素膜の構造の模式図である。成膜条件は、メ タンガスの流量 5ccm、水素ガスの流量は 300ccm、直流電力 3000W、高周波電力 500W、導電性ワイヤ 22の温度 750。C、チャンバ 12の圧力 2000Pa、ノ ィァス— 12 OV、成膜時間 10分である。
[0067] この炭素膜は、網目状炭素膜 F1と、この網目状炭素膜 F1に囲まれた 1つまたは複 数の針状炭素膜 F2と、針状炭素膜 F2の膜下部力 膜中途に至りまとわる形態で成 膜された壁状炭素膜 F3とを有する。ここで、針状炭素膜 F2は、その半径が任意の位 置力 先端に向かうにつれて小さくなる形状を有する。
[0068] 詳しくは、針状炭素膜 F2は、フアウラノルドハイムの式における電界集中係数 βが 、任意の位置での半径 ¾τ、その位置力 先端までの高さを hとして、 hZrの式で表さ れ、かつ、その半径が任意の位置力 先端に向かうにつれて小さくなる形状を備えて いる。
[0069] 網目状炭素膜 F1は基板 S上に連続的に成膜され、平面方向から見た場合、全体 がほぼ網目状になって ヽる。この網目状炭素膜 F1の高さ(H)はほぼ lOnm以下の 程度であり、この網目状炭素膜 F1の幅 (W)は 4nmな!、し 8nm程度である。この網目 状炭素膜 F1で囲まれた基板 2上の領域に針状炭素膜 F2は、針状に伸びその先端 が電界集中して電子を放出する電子放出点となる。針状炭素膜 F2は、網目状炭素 膜 F1で囲まれていることにより、電子放出点として相互の間隔を制約ないしは規定さ れている。
[0070] 針状炭素膜 F2は、網目状炭素膜 F1の高さ (H)よりも高い高さ (h)、例えば、 60 m程度に成膜される。壁状炭素膜 F3は、側面から見た形状は概ね裾広がりの形状を なしている。この形状は、例えば、円錐形状になっている。ただし、幾何学的に完全 な円錐形を意味するものではなぐ理解し易い表現として説明していて、実際は横広 力 Sり状態、螺旋状態、等の各種の形状となっている。いずれにしても、壁状炭素膜 F3 は、基板 Sに対して広い底面積で接触することにより、針状炭素膜 F2を基板 Sに機械 的に強固に支持することができるとともに、基板 Sに対する針状炭素膜 F2の電気的コ ンタクトを十分に確保することができる。
[0071] 以上の構造を有する実施の形態の炭素膜では、針状炭素膜 F2は、カーボンナノ チューブのようにアスペクト比が大きいのである力 壁状炭素膜 F3の膜形態が、針状 炭素膜 F2にその膜下部力 膜中途に至りまとわる形態で壁状に広がる形態をなして 成膜されているので、基板 S上に機械的に強固に支持され、基板上に倒れ込みにく くなる結果、照明ランプの電子放出源としての安定性が向上するとともに、針状炭素 膜 F2の直径が細くても、電流を流し込むための基板との電気的コンタクトを壁状炭素 膜 F3によりとることができるので、照明ランプの電子放出源として必要な電子放出特 '性を得ることができる。
[0072] また、この炭素膜では、針状炭素膜 F2の先端の周りの電位面が急激に変化して、 電界が強く集中するようになっている。また、網目状炭素膜 F1には電界集中が起こら ない。また、針状炭素膜 F2は網目状炭素膜 F1により相互の間隔を互いの電界集中 作用を阻害しないように適宜の間隔 (D)、例えば、 100 m程度隔てられている。こ の針状炭素膜 F2の集合程度は、従来のカーボンナノチューブのような密集状態で はなぐ網目状炭素膜 F1毎の針状炭素膜 F2の電界集中に対する影響は極めて小 さいものである。
[0073] 以上のように実施の形態の炭素膜構造においては、針状炭素膜 F2に電界集中し やすい。そして、この針状炭素膜 F2が基板 S上に成膜された網目状炭素膜 F1により 囲まれてその配置間隔が制約される結果、針状炭素膜 F2が多数密集することを制 約することができ、それぞれの針状炭素膜 F2の電界集中性能を発揮させることが可 能となって優れた電子放出特性を提供することができる。
[0074] この針状炭素膜 F2は、壁状炭素膜 F3により、基板 S上での姿勢が極めて安定ィ匕し 、電子を安定して放出することができ、かつ、複数の針状の膜それぞれの成膜方向 が揃い易くなり、この面からも複数の針状炭素膜 F2それぞれからの電子放出量が基 板全体にわたり均一にすることができる。その結果、針状炭素膜 F2は、冷陰極電子 源として電界放射型の照明ランプに用いると、ランプ内の蛍光体を均一な輝度で発 光させることができる。また、針状炭素膜 F2は、壁状炭素膜 F3により、基板 S上に機 械的に強固に支持され、基板 S上に倒れ込みに《なる。この結果、照明ランプの電 子放出源としての安定性が向上する。また、針状炭素膜 F2は、壁状炭素膜 F3により 、電流を流し込むための基板との電気的コンタクトを壁状の膜 F3によりとることができ る。
[0075] 針状炭素膜 F2は、その電界集中係数 βが、任意の位置での半径を!:、その位置か ら先端までの高さを h、として、 hZrの式で表され、かつ、先端に向けて半径が小さく なる針形状を有する。そのため、針状炭素膜 F2は、電界放射が飽和しにくい炭素膜 となる。
[0076] (プラズマ発生装置のさらに他の例)
図 14にプラズマ発生装置のさらに他の例を示す。このプラズマ発生装置は、成膜 装置に組み込まれている。この成膜装置は、チャンバ 12の内部にガスボンベ 8からプ ラズマ発生用のガスがガス圧力 Z流量調節回路 9により圧力と流量とを調節されてそ の導入部 14を通じてチャンバ 12内に導入することができるようになって 、る。
[0077] チャンバ 12の排気部 14には排気制御弁 11を介して真空排気系 13が接続されて おり、チャンバ 12の内部圧力が調節される。チャンバ 12内は、真空排気系 13により 排気制御弁 11の開度制御の下で圧力制御される。
[0078] チャンバ 12内部には、筒状電極 20が互いの外周面が電気的に接触する状態で並 設されて!/ヽる。これら複数の筒状電極 20は金属製網 (メッシュ)をほぼ円筒形に卷 ヽ て構成したものである。これら筒状電極 20の内部には成膜対象物の一例である導体 ワイヤ 22が配置されて!、る。
[0079] 筒状電極 20にはプラズマ励起用の直流電源の負極側の電位が印加される。直流 電源 24の正極側は接地されている。チャンバ 12は接地されている。直流電源 24は 例えば電圧 100ないし 2000Vに可変調整することができる。
[0080] 以上の構成を備えた成膜装置において、チャンバ 12の内圧を上記圧力範囲で減 圧しかつガス導入部 14からガスを導入し、直流電源 24の負電位を筒状電極 20に印 加すると、各筒状電極 20の内部にプラズマが発生してガスが分解される。この結果、 導体ワイヤ 22表面に膜が成膜される。
[0081] 以上のように本プラズマ発生装置は、筒状電極を複数個並設したので、それぞれ の筒状電極の内部にプラズマを漏洩させることなく均等な密度でかつ高密度に閉じ 込めることができる。
[0082] 複数の筒状電極 20は、図 15で示すように相互に分離していても、直流電源 24から 同一の負電圧が印加させることにより、それぞれの筒状電極 20内部にプラズマを発 生させることができる。
[0083] 図 14の複数の筒状電極 20はそれぞれ独立して互 、の内部は連通して ヽな 、状態 で並設されて ヽるが、図 16で示すように複数の筒状電極 20は互いに内部で連通し た状態で並設されてもよい。
[0084] 筒状電極は断面円形、断面多角形、断面楕円形、その他の断面形状となしチャン バ内に多数配置してもよい。
[0085] 以上のプラズマ発生装置では、各筒状電極 20内部それぞれに例えば導電性ワイ ャ 22を配置し、各筒状電極 20内にプラズマを発生させるとともにその内部にガスを 導入することにより導電性ワイヤ 22の表面全体に均等な膜厚で高品質な膜を成膜さ せることができる。その結果、導電性ワイヤ 22を用いる製品の量産化に寄与すること ができる。
[0086] (プラズマ発生装置のさらに他の例)
図 17にさらにバイアス電源 40を備えたプラズマ発生装置 10のさらに他の例を示す
。このバイアス電源 40は成膜対象である導電性ワイヤ 22に負極が接続され、正極が チャンバ 12に接続されて接地されて!ヽる。
[0087] 図 18にバイアス電源 40の電圧を横軸に導電性ワイヤ 22の表面への成膜速度を縦 軸にとる図であり、図 18で示すようにバイアス電源 40の電圧を大きくするに伴い、導 電性ワイヤ 22表面への成膜速度を上昇させることができる。
[0088] 図 19にバイアス電源 40の電圧を横軸に導電性ワイヤ 22の表面への膜の膜質を縦 軸にとる図であり、図 19で示すようにバイアス電源 40の電圧を例えば 100— 200Vの 範囲に調整することにより上記膜質を改善することができる。
産業上の利用可能性
[0089] 本発明に力かるプラズマ発生装置は、長尺な成膜対象に対して長尺なプラズマを 発生することが可能で、圧力制御とガス種類の選定とにより、種類が異なる成膜を行 うことができる。

Claims

請求の範囲
[I] 装置の真空内部に、筒状電極が配置され、該筒状電極の内部にガスを導入し、か つ、該筒状電極に直流負電圧をプラズマ発生電圧として印加する構成を備えた、プ ラズマ発生装置。
[2] 上記筒状電極の内部に成膜の種類に対応したガスを選択して導入することができ るガス導入装置と、
上記筒状電極の内圧を成膜の種類に対応して制御することができる圧力制御装置 と、
を備える、請求項 1に記載のプラズマ発生装置。
[3] 上記筒状電極は、コイル状、網目状、柵状および籠状のうちの少なくともいずれ力 1 つの形状を有する周壁を備える、請求項 1または 2に記載のプラズマ発生装置。
[4] 上記筒状電極は、両端が開口し成膜対象に対応して当該両端方向に延びた形状 を有する、請求項 1に記載のプラズマ発生装置。
[5] 上記筒状電極が金属で構成されて ヽる、請求項 1な 、し 4の 、ずれか〖こ記載のブラ ズマ発生装置。
[6] 上記筒状電極が固体炭素で構成されている、請求項 1ないし 4のいずれか〖こ記載 のプラズマ発生装置。
[7] 上記筒状電極が断面円形である、請求項 4に記載のプラズマ発生装置。
[8] 上記筒状電極が断面多角形である、請求項 4に記載のプラズマ発生装置。
[9] 上記筒状電極に、直流負電圧と高周波電圧とを重畳した電圧を印加する構成を備 える請求項 1に記載のプラズマ発生装置。
[10] 上記筒状電極が複数並設されて!/、る、請求項 1に記載のプラズマ発生装置。
[II] 上記筒状電極内部に配置される成膜対象にバイアス電圧を印加する構成を備えた 請求項 1に記載のプラズマ発生装置。
[12] 請求項 1に記載のプラズマ発生装置を用いて、
上記筒状電極の内部に成膜対象を配置する第 1ステップと、
上記筒状電極内部を減圧制御する第 2ステップと、
上記筒状電極内部にガスを導入する第 3ステップと、 上記筒状電極に直流負電圧を印加する第 4ステップと、
を備える、成膜方法。
[13] 上記成膜対象に成膜速度制御用のバイアス電圧を印加する第 5ステップを含む、 請求項 12に記載の成膜方法。
[14] 上記成膜対象に膜質制御用のバイアス電圧を印加する第 6ステップ含む、請求項
12に記載の成膜方法。
[15] 上記第 1ステップでは上記直流負電圧に高周波電圧を重畳する、請求項 12に記 載の成膜方法。
[16] 上記筒状電極の内部に成膜対象を配置し、該成膜対象を交流電源で加熱するス テツプを含む、請求項 12に記載の成膜方法。
PCT/JP2006/315109 2005-08-02 2006-07-31 プラズマ発生装置およびこれを用いた成膜方法 WO2007015445A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/997,697 US20090266703A1 (en) 2005-08-02 2006-07-31 Plasma generating device and film deposition method in which the plasma generating device is used
JP2007529248A JP5420835B2 (ja) 2005-08-02 2006-07-31 プラズマ発生装置およびこれを用いた成膜方法
EP06781987A EP1912483B1 (en) 2005-08-02 2006-07-31 Plasma generator and film forming method employing same
CN2006800282726A CN101233792B (zh) 2005-08-02 2006-07-31 等离子体发生装置和使用等离子体发生装置的膜沉积方法
KR1020087005210A KR101364655B1 (ko) 2005-08-02 2006-07-31 플라즈마 발생 장치 및 이것을 이용한 성막방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005224357 2005-08-02
JP2005-224356 2005-08-02
JP2005-224355 2005-08-02
JP2005-224357 2005-08-02
JP2005224355 2005-08-02
JP2005224356 2005-08-02
JP2005313867 2005-10-28
JP2005-313867 2005-10-28

Publications (1)

Publication Number Publication Date
WO2007015445A1 true WO2007015445A1 (ja) 2007-02-08

Family

ID=37708725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315109 WO2007015445A1 (ja) 2005-08-02 2006-07-31 プラズマ発生装置およびこれを用いた成膜方法

Country Status (6)

Country Link
US (1) US20090266703A1 (ja)
EP (1) EP1912483B1 (ja)
JP (1) JP5420835B2 (ja)
KR (1) KR101364655B1 (ja)
CN (1) CN101233792B (ja)
WO (1) WO2007015445A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007798A (ja) * 2006-06-27 2008-01-17 Dialight Japan Co Ltd プラズマ発生装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039365B4 (de) * 2010-08-16 2016-03-24 Forschungsverbund Berlin E.V. Plasma-Prozesse bei Atmosphärendruck
US20140110245A1 (en) * 2012-10-18 2014-04-24 Primestar Solar, Inc. Non-bonded rotatable targets and their methods of sputtering
CN103101902B (zh) * 2013-01-28 2014-10-29 深圳青铜剑电力电子科技有限公司 一种纳米材料的制备设备
JP6800009B2 (ja) * 2015-12-28 2020-12-16 芝浦メカトロニクス株式会社 プラズマ処理装置
CN108231690A (zh) * 2016-12-22 2018-06-29 联华电子股份有限公司 动态随机存取存储器元件的形成方法
KR102067407B1 (ko) * 2019-02-11 2020-01-17 (주)티앤제이티 플라즈마 발생기
KR20230144653A (ko) * 2019-03-14 2023-10-16 램 리써치 코포레이션 고 종횡비 에칭을 위한 플라즈마 에칭 툴

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136572A (ja) 1985-12-10 1987-06-19 Stanley Electric Co Ltd プラズマcvd法による薄膜形成法
US5300951A (en) 1985-11-28 1994-04-05 Kabushiki Kaisha Toshiba Member coated with ceramic material and method of manufacturing the same
US5711814A (en) 1995-08-08 1998-01-27 Sanyo Electric Co., Ltd. Method of and apparatus for forming film with rotary electrode
JP2001043997A (ja) * 1999-07-28 2001-02-16 Canon Inc プラズマ処理装置
WO2002019379A1 (en) 2000-08-28 2002-03-07 Institute For Plasma Research Device and process for producing dc glow discharge
JP2004281232A (ja) * 2003-03-14 2004-10-07 Ebara Corp ビーム源及びビーム処理装置
JP2005026063A (ja) * 2003-07-02 2005-01-27 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2005129323A (ja) * 2003-10-23 2005-05-19 Shibaura Mechatronics Corp プラズマ発生装置及びプラズマ処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105627A (en) * 1980-01-28 1981-08-22 Fuji Photo Film Co Ltd Manufacture of amorphous semiconductor
DE3402971A1 (de) * 1984-01-28 1985-08-01 Philips Patentverwaltung Gmbh, 2000 Hamburg Vorrichtung zur beschichtung eines substrates mittels plasma-chemical vapour deposition oder hochfrequenz-kathodenzerstaeubung
JPS6415375A (en) * 1987-07-07 1989-01-19 Idemitsu Petrochemical Co Device for forming thin diamond-like carbon film
US4842704A (en) * 1987-07-29 1989-06-27 Collins George J Magnetron deposition of ceramic oxide-superconductor thin films
US5178743A (en) * 1989-06-15 1993-01-12 Microelectronics And Computer Technology Corporation Cylindrical magnetron sputtering system
JPH0565019U (ja) * 1992-02-07 1993-08-27 古河電気工業株式会社 プラズマ重合法による電気絶縁性膜形成装置
JP2642849B2 (ja) * 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
JP3236493B2 (ja) * 1996-01-29 2001-12-10 矢崎総業株式会社 複合被覆電線の製造方法
JP3751012B2 (ja) * 1997-08-12 2006-03-01 東京エレクトロン株式会社 半導体プラズマ装置における圧力系の制御方法及びその装置
DE69929271T2 (de) * 1998-10-26 2006-09-21 Matsushita Electric Works, Ltd., Kadoma Apparat und Verfahren zur Plasmabehandlung
EP1073091A3 (en) * 1999-07-27 2004-10-06 Matsushita Electric Works, Ltd. Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
KR101001743B1 (ko) * 2003-11-17 2010-12-15 삼성전자주식회사 헬리컬 자기-공진 코일을 이용한 이온화 물리적 기상 증착장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300951A (en) 1985-11-28 1994-04-05 Kabushiki Kaisha Toshiba Member coated with ceramic material and method of manufacturing the same
JPS62136572A (ja) 1985-12-10 1987-06-19 Stanley Electric Co Ltd プラズマcvd法による薄膜形成法
US5711814A (en) 1995-08-08 1998-01-27 Sanyo Electric Co., Ltd. Method of and apparatus for forming film with rotary electrode
JP2001043997A (ja) * 1999-07-28 2001-02-16 Canon Inc プラズマ処理装置
WO2002019379A1 (en) 2000-08-28 2002-03-07 Institute For Plasma Research Device and process for producing dc glow discharge
JP2004281232A (ja) * 2003-03-14 2004-10-07 Ebara Corp ビーム源及びビーム処理装置
JP2005026063A (ja) * 2003-07-02 2005-01-27 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2005129323A (ja) * 2003-10-23 2005-05-19 Shibaura Mechatronics Corp プラズマ発生装置及びプラズマ処理装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARDOS L.: "Radio Frequency Hollow Cathodes for The Plasma Processing Technology", SURFACE AND COATINGS TECHNOLOGY, vol. 86-87, 1 December 1996 (1996-12-01), pages 648 - 656, XP003003296 *
BARDOS L.: "Radio Frequency Hollow Cathodes for the Plasma Processing Technology", SURFACE AND COATINGS TECHNOLOGY, vol. 86-87, 1 December 1996 (1996-12-01), pages 648 - 656, XP003003296, DOI: doi:10.1016/S0257-8972(96)03056-3
LIU B. ET AL.: "Inner Surface Coating of TiN by The Grid-Enhanced Plasma Source Ion Implantation Technique", J. VAC. SCI. TECHNOL. A, vol. 19, no. 6, November 2001 (2001-11-01), pages 2958 - 2962, XP012005901 *
See also references of EP1912483A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007798A (ja) * 2006-06-27 2008-01-17 Dialight Japan Co Ltd プラズマ発生装置

Also Published As

Publication number Publication date
CN101233792B (zh) 2011-07-27
EP1912483B1 (en) 2012-09-05
JPWO2007015445A1 (ja) 2009-02-19
US20090266703A1 (en) 2009-10-29
KR101364655B1 (ko) 2014-02-19
EP1912483A1 (en) 2008-04-16
EP1912483A4 (en) 2010-02-03
KR20080033493A (ko) 2008-04-16
JP5420835B2 (ja) 2014-02-19
CN101233792A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
WO2007015445A1 (ja) プラズマ発生装置およびこれを用いた成膜方法
JP3962420B2 (ja) カーボンナノウォールの製造方法、カーボンナノウォールおよび製造装置
KR20070114327A (ko) 플라스마 cvd를 이용한 탄소 막 생성 장치 및 방법과,탄소 막
KR20070018730A (ko) 전계 방출에 적합한 형상을 가진 탄소 필름
JP4762945B2 (ja) カーボンナノウォール構造体
JP4243693B2 (ja) 照明装置およびこれを用いたバックライト装置
JP2005307352A (ja) 炭素膜の製造装置およびその製造方法
JP4834818B2 (ja) カーボンナノチューブ集合体の製造方法
JP4872042B2 (ja) 高密度カーボンナノチューブ集合体及びその製造方法
JP4975289B2 (ja) カーボンナノウォールを用いた電子素子
JP2007070140A (ja) 炭素膜および電界放射型の電子放出源
TWI466595B (zh) A plasma generating device and a film forming method using the same
JP2008044828A (ja) カーボンナノチューブ形成装置、カーボンナノチューブ形成方法
JP4578350B2 (ja) 炭素膜、電子放出源およびフィールドエミッション型の照明ランプ
JP3854295B2 (ja) 電界電子エミッター及びディスプレー装置
JP5116999B2 (ja) プラズマ発生装置
KR100746586B1 (ko) 헬리콘 플라즈마를 이용한 카본 나노튜브 표면에 철을 코팅 및 임플란트하는 방법
JP5005995B2 (ja) 電子エミッタの製造方法
JP5148124B2 (ja) 電子エミッタ用基材の製造方法および電子エミッタの製造方法
JP4965373B2 (ja) カーボンナノチューブの作製方法
JP2008144249A (ja) 成膜装置および該成膜装置に用いる筒状陰極での異常放電発生防止方法
JP2005015870A (ja) カーボンナノチューブ膜作製装置及びカーボンナノチューブ膜作製方法
JP4608692B2 (ja) 大気中電子放出特性を有する電子放出素子とその製造方法、および、この素子を使用した電子放出方法
JP5063002B2 (ja) 電子エミッタ
KR100671822B1 (ko) 다중 전극에 의한 탄소나노튜브의 생성 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028272.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007529248

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11997697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087005210

Country of ref document: KR