WO2006137343A1 - Production method of color filter, and color filter and display unit - Google Patents

Production method of color filter, and color filter and display unit Download PDF

Info

Publication number
WO2006137343A1
WO2006137343A1 PCT/JP2006/312138 JP2006312138W WO2006137343A1 WO 2006137343 A1 WO2006137343 A1 WO 2006137343A1 JP 2006312138 W JP2006312138 W JP 2006312138W WO 2006137343 A1 WO2006137343 A1 WO 2006137343A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
color filter
pigment
pixel
photosensitive layer
Prior art date
Application number
PCT/JP2006/312138
Other languages
French (fr)
Japanese (ja)
Inventor
Morimasa Sato
Katsuto Sumi
Kazuteru Kowada
Issei Suzuki
Takayuki Uemura
Mitsutoshi Tanaka
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006137343A1 publication Critical patent/WO2006137343A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the present invention relates to a method for producing a color filter suitable for a liquid crystal display device (LCD) such as a portable terminal, a portable game machine, a notebook computer, and a television monitor, PALC (plasma address liquid crystal), a plasma display, and the like.
  • LCD liquid crystal display device
  • PALC plasma address liquid crystal
  • the present invention relates to a color filter manufactured by a manufacturing method and a display device using the color filter.
  • a color filter is an indispensable component for a liquid crystal display (hereinafter also referred to as “LCD” or “liquid crystal display device”).
  • LCD liquid crystal display
  • This liquid crystal display is very compact and is equivalent to or better than previous CRT displays in terms of performance, and is replacing CRT displays.
  • the light passing through the color filter is colored as it is into the colors of the pixels constituting the power filter, and the light of those colors is synthesized to form a color pixel.
  • color pixels are formed with RGB three-color pixels.
  • LCDs liquid crystal displays
  • the direction of cost reduction is not limited to cost reduction of materials, but simplification of the process is in progress.
  • the elimination of a photomask for exposure is being studied.
  • high resolution is being studied to increase the number of pixels per inch.
  • the black matrix formed so as to define the pixels between the three colors of RGB regulates the apparent pixel width.
  • it tends to cause display unevenness such as moire and periodic unevenness.
  • a method capable of forming a fine pattern of a black image forming black matrix with high definition there is a demand for a method capable of forming a fine pattern of a black image forming black matrix with high definition.
  • a photolithography method is generally known in which a fine pattern is formed by exposing and developing a photosensitive composition.
  • a laser beam such as a semiconductor laser or a gas laser without using a photomask is directly scanned on the photosensitive composition based on digital data such as a pattern.
  • An exposure apparatus using a patterning laser direct imaging system (hereinafter sometimes referred to as “LDI”) has been studied (for example, see Non-Patent Document 1 and Patent Document 1).
  • the exposure head of the exposure apparatus depending on the configuration of the light source array, such as when using a digital 'micromirror device (DMD) of a generally available size as the spatial light modulator, It is difficult to cover a sufficiently large exposure area with a single exposure head. Therefore, an exposure apparatus has been proposed in which a plurality of the exposure heads are used in parallel, and the exposure heads are inclined with respect to the running direction.
  • DMD digital 'micromirror device
  • Patent Document 2 a plurality of exposure heads each having a DMD in which micromirrors are arranged in a rectangular lattice shape are inclined with respect to the scanning direction, and the triangular shapes on both sides of the inclined DMD are formed.
  • the exposure apparatus to which each exposure head is attached is described in such a manner that these portions complement each other between DMDs adjacent in the direction orthogonal to the scanning direction.
  • Patent Document 3 a plurality of exposure heads having a rectangular grid DMD are not tilted with respect to the scanning direction or tilted by a small angle, and exposure by a DMD adjacent to the direction orthogonal to the scanning direction is performed.
  • Each exposure head is attached so that the areas overlap each other by a predetermined width, and the number of micromirrors to be driven is gradually decreased or reduced at a certain rate at the position corresponding to the overlap between the exposure areas of each DMD.
  • An exposure apparatus is described in which the exposure area by each DMD is gradually increased to a parallelogram shape.
  • Patent Document 4 discloses that a plurality of micromirrors (pixel units) are used to improve the resolution of a two-dimensional pattern formed on an exposure surface and to express a pattern including a slanting force and a slanting line. ) Is a two-dimensional rectangular DMD that is tilted with respect to the strike direction, and an exposure apparatus that allows exposure spots from adjacent micromirrors to partially overlap on the exposure surface. It is listed.
  • Patent Document 5 by using a rectangular DMD inclined with respect to the running direction, the total illumination chromaticity is changed by overlapping the exposure spots on the exposure surface.
  • An exposure apparatus that can suppress image error due to factors such as image expression and microlens defects is described.
  • the exposure head mounting angle deviates from an ideal setting inclination angle, so that an exposure spot of the exposure layer is exposed at a position on the exposed surface of the photosensitive layer.
  • the density and arrangement differ from those of other parts, resulting in unevenness in the resolution and density of the image formed on the pattern forming material, and the problem that the edge roughness increases in the formed pattern. is there.
  • Pattern distortion also causes unevenness in the resolution and density of the pattern formed on the exposed surface of the photosensitive layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-1244
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-9595
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-195512
  • Patent Document 4 U.S. Patent No. 6493867
  • Patent Document 5 Special Table 2001-500628
  • Non-Patent Document 1 Akihito Ishikawa Development shortening and mass production application by maskless exposure "," ELECTROTO-TASS mounting technology ", Technical Research Co., Ltd., Vol.18, No.6, 2002, p.74- 79
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention relates to deviations in the mounting position and mounting angle of the exposure head without using a photomask, various aberrations of the optical system between the image element and the exposed surface of the photosensitive layer, and Leveling the influence of exposure variation due to pattern distortion caused by distortion of the picture element itself, etc., and reducing variations in resolution and density unevenness of the pattern formed on the exposed light surface of the photosensitive layer In particular, it is possible to form black images with high definition with very little line width variation, low cost, excellent display characteristics, and liquid crystal display devices (LCDs) such as portable terminals, portable game machines, notebook computers, and TV monitors.
  • LCDs liquid crystal display devices
  • PALC plasma addressed liquid crystal
  • a method for producing a color filter suitably used for a plasma display and the display characteristics produced by the method for producing the color filter. It is an object of the present invention to provide an excellent color filter and a display device using the color filter.
  • Means for solving the problem Means for solving the problems are as follows. That is,
  • An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle ⁇ with respect to a scanning direction of the exposure head.
  • the exposure head by using a usable pixel part designating unit, among the usable pixel parts, the pixel part to be used for N double exposure (where N is a natural number of 2 or more) is designated, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and An exposure step of performing exposure by relatively moving the exposure head in the scanning direction; and
  • the exposure head is subjected to N multiple exposures (where N is a natural number of 2 or more) of the usable pixel parts by means of the used pixel parts specifying means.
  • the pixel part to be used in (1) is specified, and the pixel part control unit controls the pixel part so that only the pixel part specified by the used pixel part specifying unit is involved in exposure.
  • the By performing exposure by moving the exposure head relative to the photosensitive layer in the strike direction the exposure head is exposed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and density unevenness of the pattern to be formed are leveled. As a result, the photosensitive layer is exposed to high definition, and then the photosensitive layer is developed to form a high definition pattern.
  • the exposure is performed by a plurality of exposure heads, and the used picture element specifying means is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the method for producing a color filter according to ⁇ 1> wherein among the picture element parts involved in the exposure of the area, the picture element part used for realizing N double exposure in the inter-head connection area is designated. .
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads.
  • the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, whereby the exposure head Variations in the resolution and density unevenness of the pattern formed in the connection area between the heads on the exposed surface of the photosensitive layer due to a shift in the mounting position and mounting angle are leveled.
  • the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high definition pattern.
  • Exposure is performed by a plurality of exposure heads, and the used picture element designation means is used for exposures other than the head-to-head connection region, which is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads.
  • the exposure is performed. Variations in resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to a deviation in the mounting position and mounting angle of the head are equalized. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high definition pattern.
  • the above ⁇ 1> is set so as to satisfy the relationship of ⁇ ⁇
  • ⁇ 5> The method for producing a color filter according to any one of ⁇ 1>, ⁇ 4>, wherein N in N-exposure is a natural number of 3 or more.
  • N in N-exposure is a natural number of 3 or more.
  • multiple drawing is performed by N force S of N double exposure, a natural number of 3 or more.
  • a light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface
  • a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure
  • the method for producing a color filter according to any one of ⁇ 1> to ⁇ 5> comprising:
  • the used pixel part specifying means specifies the used pixel part to be used for realizing the N double exposure in units of rows. It is a manufacturing method.
  • a light spot position detection unit based on at least two light spot positions detected, a light spot column direction on the surface to be exposed and a scanning direction of the exposure head when the exposure head is tilted From the above ⁇ 6>, the actual pixel tilt angle ⁇ 'is identified, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual tilt angle ⁇ ' and the set tilt angle ⁇ .
  • the actual inclination angle ⁇ ' is the average or median value of a plurality of actual inclination angles formed by the row direction of the light spots on the exposed surface and the scanning direction of the exposure head when the exposure head is inclined.
  • the (T + 1) line power of the m-th line is specified as an unused pixel section.
  • ⁇ 12> In an area including at least a multiple exposure area on an exposed surface formed by a plurality of pixel part rows,
  • connection area between the heads which is the overlapping exposure area on the exposed surface formed by a plurality of exposure heads
  • ⁇ 14> The method for manufacturing a color filter according to ⁇ 13>, wherein the unused pixel parts are specified in units of lines.
  • N N (N-1) pixel part columns for every N exposures.
  • N of N double exposures is used in order to designate the used pixel part in the used pixel part specifying means, among the usable picture element parts.
  • N N of N double exposures is used in order to designate the used pixel part in the used pixel part specifying means, among the usable picture element parts.
  • N N-1) Configure the pixel part sequence for each column.
  • the reference exposure is performed using only the pixel part, and a simple pattern of substantially single drawing can be obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
  • ⁇ 16> In order to specify the used pixel part in the used pixel part specifying means, out of the usable pixel parts, for each N of N exposures, configure 1 / N line pixel part line
  • the manufacturing method of the color filter described in 16> it can be used to specify the used pixel part in the used pixel part specifying means.
  • reference exposure is performed using only the pixel parts constituting the pixel part column for each 1 / N row, and the simple single drawing simple A unique pattern
  • the picture element portion in the head-to-head connection region is easily specified.
  • ⁇ 18> The method for producing a color filter according to any one of ⁇ 1> preferably 17, wherein N in N-exposure is a natural number of 3 or more and 7 or less.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs light emitted from the light irradiation unit.
  • Light modulation means force The method for producing a color filter according to any one of ⁇ 1> to ⁇ 20>, which is a spatial light modulation element.
  • ⁇ 22> The method for producing a color filter according to ⁇ 21>, wherein the spatial light modulator is a digital micromirror device (DMD).
  • DMD digital micromirror device
  • ⁇ 23> The method for producing a color filter according to any one of the above ⁇ 21>, ⁇ 22>, wherein the pixel part is a micromirror.
  • ⁇ 24> The method for producing a color filter according to ⁇ 1> to ⁇ 2 3>, wherein the light irradiation means force can synthesize and irradiate two or more lights.
  • the exposure can be performed with exposure light having a deep focal depth. Done.
  • the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
  • the light irradiating means collects and converges a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers to the incident end face of the multimode optical fiber.
  • the light irradiating means condenses the laser beams irradiated by the plurality of laser forces by the collective optical system, and enters the multimode optical fiber.
  • exposure is performed with exposure light having a deep focal depth.
  • the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
  • ⁇ 26> The method for producing a color filter according to any one of ⁇ 1> to 25, wherein the photosensitive layer is formed by applying a photosensitive composition to a surface of a substrate and drying the coating. .
  • ⁇ 29> Using a photosensitive composition colored in at least three primary colors of red (R), green (G), and blue (B), R, G and The color filter manufacturing method according to any one of ⁇ 1> to ⁇ 28>, wherein the color filter is formed by sequentially repeating the photosensitive layer forming step, the exposure step, and the developing step for each color of B. .
  • ⁇ 32> A color filter manufactured by the method for manufacturing a color filter according to any one of ⁇ 1> to ⁇ 31>.
  • ⁇ 33> A display device using the color filter according to ⁇ 32>.
  • the conventional problems can be solved, and the exposure head mounting position and mounting angle shift without using a photomask, and the exposure of the picture element portion and the pattern forming material can be performed.
  • the pattern formed on the exposed surface of the photosensitive layer by leveling out the effects of variations in the exposure dose due to various aberrations of the optical system between the surface and pattern distortion caused by the distortion of the picture element itself.
  • Color filter suitably used for liquid crystal display devices (LCD) such as personal computers and television monitors, PALC (plasma addressed liquid crystal), plasma display, and the like It is possible to provide a color filter excellent in display characteristics manufactured by the method for manufacturing a color filter, and a display device using the color filter. Further, according to the present invention, unevenness (coating unevenness and display unevenness) observed after development can be reduced.
  • LCD liquid crystal display devices
  • PALC plasma addressed liquid crystal
  • plasma display plasma display
  • FIG. 1 is a perspective view showing an appearance of an example of an exposure apparatus.
  • FIG. 2 is a perspective view showing an example of the configuration of a scanner of the exposure apparatus.
  • FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
  • FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
  • FIG. 5A is a top view showing an example of a detailed configuration of the exposure head.
  • FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
  • FIG. 6 is a partially enlarged view showing an example of a DMD of the exposure apparatus in FIG.
  • FIG. 7A is a perspective view for explaining the operation of the DMD.
  • FIG. 7B is a perspective view for explaining the operation of the DMD.
  • FIG. 8 is an explanatory diagram showing an example of unevenness that occurs in the pattern on the exposed surface when there is an attachment head angle error and pattern distortion.
  • FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
  • FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
  • FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
  • FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in the pattern on the exposed surface when there is a relative position shift between adjacent exposure heads.
  • FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
  • FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
  • FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved and unevenness in the pattern on the exposed surface is improved.
  • FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
  • FIG. 17 is an explanatory diagram showing exposure using only the used pixel part selected in the example of FIG.
  • FIG. 18A is an explanatory view showing an example of magnification distortion.
  • FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
  • FIG. 19A is an explanatory diagram showing a first example of reference exposure using a single exposure head. is there.
  • FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
  • FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
  • FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
  • FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
  • FIG. 23 is an explanatory view showing an example of unevenness generated in the pattern on the exposed surface due to “angle distortion” in which the inclination angle of each pixel column is not uniform in Comparative Example 1.
  • the method for producing a color filter of the present invention includes at least a photosensitive layer forming step, an exposure step, and a development step, and further includes other steps appropriately selected as necessary.
  • the color filter of the present invention is manufactured by the method for manufacturing a color filter of the present invention.
  • the display device of the present invention uses the color filter of the present invention, and further includes other means as necessary.
  • the photosensitive layer forming step is a step of forming at least the photosensitive layer on the surface of the substrate using the photosensitive composition containing a binder, a polymerizable compound, a colorant, and a photopolymerization initiator. Further, it is a step of forming other layers appropriately selected. [0029]
  • the method of forming the photosensitive layer and other layers can be appropriately selected according to the purpose without any particular limitation. For example, the method of forming by coating, applying pressure to each sheet-like layer A method of forming by laminating by performing at least any force of heating, a combination thereof, and the like can be mentioned.
  • Preferred examples of the photosensitive layer forming step include the photosensitive layer forming step of the first aspect and the photosensitive layer forming step of the second aspect shown below.
  • At least a photosensitive layer is formed on the surface of the substrate by applying the photosensitive composition to the surface of the substrate and drying, and further, Examples include a step of forming other layers appropriately selected.
  • a photosensitive transfer material obtained by forming a photosensitive transfer layer comprising the photosensitive composition into a film is used, and the photosensitive transfer layer is formed on a substrate.
  • a step of forming at least a photosensitive layer on the surface of the base material by laminating under at least one of heating and pressurization so as to contact with each other, and further forming other appropriately selected layers. It is done.
  • the method of applying and drying the photosensitive composition is not particularly limited and may be appropriately selected depending on the purpose. Examples include a method of preparing a photosensitive composition solution by dissolving, emulsifying or dispersing the photosensitive composition in water or a solvent on the surface, and directly laminating the solution and drying.
  • the solvent of the photosensitive composition solution is not particularly limited, and can be appropriately selected according to the purpose.
  • the coating method is not particularly limited, and can be appropriately selected according to the purpose.
  • a spin coater, a slit spin coater, a ronor coater, a die coater, or a force ten coater can be used.
  • coating directly to the said base material is mentioned.
  • it is preferably performed by a coating apparatus (slit coater) using a slit-shaped nozzle having a slit-shaped hole in a portion from which the liquid is discharged.
  • JP-A-2004-89851, JP-A-2004-17043, JP-A-2003-170098, JP-A-2003-164787, JP-A-2003-10767, JP-A-2002- 79163, JP 2 Slit nozzles and slit coaters described in, for example, 001-310147 are suitably used.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • Other layers formed in the photosensitive layer forming step of the first aspect can be appropriately selected according to the purpose without any particular limitation.
  • the oxygen blocking layer, the release layer, the adhesive layer, the light An absorption layer, a surface protective layer, etc. are mentioned.
  • the method for forming the other layer is not particularly limited, and can be appropriately selected according to the purpose. For example, a method of coating on the photosensitive layer, or laminating other layers formed in a sheet shape. The method etc. are mentioned.
  • the photosensitive transfer material (photosensitive film) having a holder, a photosensitive layer formed by laminating a photosensitive composition on the support, and other layers appropriately selected as necessary, is heated and Examples include a method of laminating while performing at least one of pressurization, and specifically, a photosensitive transfer layer (hereinafter simply referred to as “photosensitive layer”) made of the photosensitive composition on the support.
  • the photosensitive transfer material is laminated so that the photosensitive transfer layer (photosensitive layer) is on the surface side of the substrate, and then the support is placed on the photosensitive transfer layer (photosensitive layer). A method of peeling force is preferable.
  • the protective film is peeled off and laminated so that the photosensitive layer overlaps the base material.
  • the heating temperature is not particularly limited, and can be appropriately selected according to the purpose.
  • the heating temperature is 70 to 130 ° C, and 80 to 110 ° C.
  • the pressure of the pressurization is not particularly limited, and can be appropriately selected according to the purpose.
  • the ⁇ ⁇ ⁇ ⁇ column is preferably from 0.01 to 1. 1. OMPa, more preferably from 0.05 to 1. OMPa. I like it.
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation.
  • a heat press, a heat roll laminator for example, Hitachi Industries, Ltd.
  • Suitable examples include Lise Co., Ltd., Lamic II type), vacuum laminator (for example, MVLP500 manufactured by Meiki Seisakusho).
  • the support is not particularly limited and may be appropriately selected depending on the purpose, but it is preferable that the photosensitive layer can be peeled off and has good light transmittance. It is more preferable that the smoothness of the surface is good.
  • the thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. Exclusion is preferably 4 to 300 ⁇ , preferably 5 to: 175 zm force S, more preferably 10 to : 100 ⁇ m is particularly preferable.
  • the shape of the support is not particularly limited and can be appropriately selected according to the purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include those having a length of 10 m to 20, OOOm.
  • the support is preferably made of a synthetic resin and transparent.
  • a synthetic resin for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) Acrylic acid alkyl ester, poly (meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinyl chloride-vinylidene copolymer, polyamide, polyimide, chloride vinyl '
  • plastic films such as vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulosic film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
  • the support for example, the support described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, etc. is used. You can also.
  • Formation of the photosensitive layer in the photosensitive transfer material may be performed by the same method as application of the photosensitive composition solution to the substrate and drying (the photosensitive layer forming method of the first aspect). it can.
  • the protective film is a film having a function of preventing and protecting the photosensitive layer from being stained and damaged.
  • the thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. If it is arranged, 5 to: 100 zm force S is preferable, 8 to 50 mm 111 is preferable, 10 to 40 mm is preferable. 111 is particularly preferred.
  • the portion provided in the photosensitive transfer material of the protective film is not particularly limited and can be appropriately selected according to the purpose, but is usually provided on the photosensitive layer.
  • the relationship between the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film is as follows: Adhesive force A> Adhesive force B It is preferable to be.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to: 1.4 force S, and more preferably 0.5 to 1.2.
  • the protective film is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include those used for the support, silicone paper, polyethylene, polypropylene, S-laminated paper, polyolefin or Polytetrafluoroethylene sheet and the like are listed, and among these, polyethylene film and polypropylene film are particularly preferable.
  • support Z protective film examples include, for example, the combination described in paragraph No. 0151 of JP-A-2005-70767 and the combination of polyethylene terephthalate Z polyethylene terephthalate and the like. .
  • the protective film preferably has a surface treatment for adjusting the adhesion between the protective film and the photosensitive layer in order to satisfy the above-described adhesive force relationship.
  • Examples of the method include the method described in paragraph No. 0151 of JP-A-2005-70767.
  • the other layers are not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a thermoplastic resin layer and an intermediate layer.
  • the thermoplastic resin layer (hereinafter also referred to as “cushion layer”) enables alkali development, and the transferred material is contaminated by the alkali-soluble thermoplastic resin layer protruding during transfer.
  • the photosensitive transfer material is alkali-soluble from the viewpoint of preventing the occurrence of transfer defects when transferring the photosensitive transfer material onto the transfer target.
  • the photosensitive transfer material which preferably has a function as a cushioning material to prevent effectively, has unevenness present on the transferred body when the photosensitive transfer material is heated and adhered onto the transferred body. More preferably, it is deformable.
  • the material used for the thermoplastic resin layer is, for example, the Vicat Vicat method (specifically, American Material Testing Method AEST), which is preferably an organic polymer described in JP-A-5-72724. It is particularly preferred that the polymer is selected from organic polymer substances having a soft spot according to ASTM D1235 (method for measuring the softening point of polymer by ASTM D1235) of about 80 ° C or less. Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers such as ethylene and vinyl acetate or saponified products thereof, ethylene and acrylic acid esters or saponified products thereof, polychlorinated butyl, chlorinated chloride and vinyl acetate or conjugated thereof.
  • ASTM D1235 method for measuring the softening point of polymer by ASTM D1235
  • Vinyl chloride copolymer such as saponified product, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer such as styrene and (meth) acrylic acid ester or saponified product thereof, polybutyltoluene, vinyltoluene And vinyl toluene copolymers such as (meth) acrylic acid esters or saponified products thereof, poly (meth) acrylic acid esters, (meth) acrylic acid ester copolymers such as butyl (meth) acrylate and vinyl acetate, Vinyl acetate copolymer nylon, copolymer nylon, N-alkoxymethyl Nylon, and organic polymers such as such made of Polyamide resins N- Jimechiruamino of nylon.
  • the dry thickness of the thermoplastic resin layer is preferably 2 to 30 zm, more preferably 5 to 20 xm, and 7 to 16 xm, particularly preferably.
  • the intermediate layer is provided on the photosensitive layer, and the photosensitive transfer material is alkali-soluble.
  • the photosensitive transfer material is alkali-soluble.
  • it has a thermoplastic resin layer, it is provided between the photosensitive layer and the alkali-soluble thermoplastic resin layer.
  • an organic solvent is used in the formation of the photosensitive layer and the alkali-soluble thermoplastic resin layer. Therefore, when the intermediate layer is located between them, the layers can be prevented from being mixed with each other.
  • the intermediate layer is preferably dispersed or dissolved in water or an aqueous alkali solution.
  • known materials can be used, and examples thereof include polybutyl ether / maleic anhydride polymers, carboxy compounds described in JP-A-46-2121 and JP-B-56-40824.
  • hydrophilic polymers may be used alone or in combination of two or more.
  • hydrophilic polymers it is particularly preferable to use polybulol alcohol and polybylpyrrolidone, which are preferably at least polyvinyl alcohol, among the hydrophilic polymers that are preferably used.
  • the polyvinyl alcohol is not particularly limited and can be appropriately selected according to the purpose.
  • the hatching rate is preferably 80% or more.
  • the content is preferably:! To 75% by volume, more preferably 10 to 50% by volume, and more preferably 10 to 50% by volume, based on the solid content of the intermediate layer. Especially preferred.
  • the content is less than 1% by volume, sufficient adhesion to the photosensitive layer may not be obtained, whereas if it exceeds 75% by volume, the oxygen blocking ability may be reduced. It is not preferable.
  • the intermediate layer preferably has a low oxygen permeability.
  • the thickness of the intermediate layer is not particularly limited and may be appropriately selected depending on the purpose, and is preferably about 0.:! To about 5 / im, more preferably about 0.5 to 2 / im. preferable.
  • the oxygen permeability may be too high, and if it exceeds 5 ⁇ m, it takes a long time for development or removal of the intermediate layer, which is not preferable.
  • the structure of the photosensitive transfer material is not particularly limited, and can be appropriately selected according to the purpose.
  • the support on the temporary support, on the thermoplastic resin layer, Examples include an intermediate layer and a photosensitive layer in this order.
  • the photosensitive layer may be a single layer or a plurality of layers.
  • the photosensitive transfer material is wound around a cylindrical core and wound into a long roll to be stored.
  • the length of the long photosensitive transfer material is not particularly limited, and can be appropriately selected from a range of 10 to 20,000 m, for example.
  • slitting may be performed to make it easy for the user to use, and a long body in the range of 100 to 1,000 m may be rolled.
  • the support is scraped off so as to be the outermost side. Further, it may be slit into the roll-shaped photosensitive transfer material sheet.
  • a separator especially moisture-proof, with desiccant
  • the photosensitive transfer material can be widely used for pattern formation of display members such as color filters, pillar materials, rib materials, spacers, partition walls, and the like. It can use suitably for the manufacturing method of this color filter.
  • the exposure method for the laminate having the photosensitive layer formed by the photosensitive layer forming method of the second aspect is not particularly limited and can be appropriately selected according to the purpose.
  • the intermediate layer oxygen
  • the cushion layer are also peeled off. It is preferable to expose the photosensitive layer through a blocking layer.
  • the photosensitive layer (color resist layer) formed in the photosensitive layer forming step includes at least a binder, a colorant, a polymerizable compound, and a photopolymerization initiator, and further suitable as necessary. It is formed using the photosensitive composition containing the other component selected suitably.
  • the binder is more preferably soluble in an alkaline aqueous solution, preferably swellable in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferable. .
  • binder having a carboxyl group examples include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, a modified epoxy resin, and the like.
  • solubility in a coating solvent, and alkaline developer From the standpoints of solubility, synthesis suitability and ease of preparation of film properties, a bur copolymer having a carboxyl group is preferred.
  • the bull copolymer having a carboxyl group can be obtained by copolymerizing at least (1) a vinyl monomer having a carboxyl group and (2) a monomer copolymerizable therewith.
  • a vinyl monomer having a carboxyl group and (2) a monomer copolymerizable therewith.
  • Specific examples of these monomers include compounds described in paragraph numbers 0164 to 0174 and paragraph numbers 0196 to 0205 in JP-A-2005-258431.
  • the solid content of the binder in the solid content of the photosensitive composition is not particularly limited, and can be appropriately selected according to the purpose. For example, 5 to 80% by mass is preferable. -70 mass% is more preferred 15-50 mass% is particularly preferred.
  • the content When the content is less than 5% by mass, the alkali developability may be lowered, and when it exceeds 80% by mass, the stability with respect to the development time may be lowered.
  • the content may be the total content of the binder and the polymer binder used in combination as necessary.
  • the acid value of the binder is not particularly limited, and can be appropriately selected depending on the purpose. For example, 70 to 250 mgK 0 H / g force S is preferable, and 90 to 200 mg K 0 H / g is more preferable. Shigu 100-: 180 mgK o H / g is particularly preferred.
  • the acid value is less than 70 mgKH / g, the developability may be insufficient or the resolution may be inferior, and the pattern may not be obtained with high definition. If the acid value exceeds 250 mgKOH / g, the At least one of the developer resistance and adhesion of the film deteriorates, and the pattern cannot be obtained with high definition.
  • the polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, but has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure.
  • at least one selected from monomers having a (meth) acryl group is preferable.
  • the monomer having the (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane diatalylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate,
  • esters Atari rate like; etc. multifunctional Atari rate and Metatarireto of Epoki Shiatarireto and the like is the reaction product of an epoxy resin and (meth) acrylic acid.
  • (Meth) acrylate is particularly preferred. These may be used alone or in combination of two or more.
  • the solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and particularly preferably 20 to 40% by mass. preferable. If the solid content is less than 10% by mass, problems such as deteriorated developability and reduction in exposure sensitivity may occur. If it exceeds 60% by mass, the adhesiveness of the photosensitive layer becomes too strong. This is not preferable.
  • polymerizable compound Z binder 0. 5 to 1.5, preferably 0.6 to: 1.2, more preferably S, 0.65 to: 1.
  • the photopolymerization initiator may be appropriately selected from known photopolymerization initiators that are not particularly limited as long as they have the ability to initiate polymerization of the polymerizable compound.
  • the photopolymerization initiator is visible from the ultraviolet region. Those that have photosensitivity to the light of the light may be an activator that generates some kind of action with the photo-excited sensitizer, and generates an active radical. Cationic polymerization starts depending on the type of monomer. It may be an initiator.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a wavelength range of about 300 to 800 nm. The wavelength 3 ⁇ 4; preferably from 330 to 500 nm.
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), phosphine oxide, hexarylbiimidazole, oxime derivatives, organic Peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers and the like.
  • Specific examples of the photopolymerization initiator other than the oxime derivative and hexarylbiimidazole include, for example, paragraphs 0290 to 0299 and paragraph 0 of JP-A-2005-258431. Examples thereof include compounds described in 305 to 0308.
  • examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxyiminobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxyiminobutane 1_on, 2-acetooxy 1-one, 2-acetoximino 1-one, 2-vinylpropanone 1-one, 2_benzoyloxymino 1_phenolinopropan 1_one, 3_ (4 toluenesulfonyloxy ) Iminobutane 1_one and 2-ethoxycarbonyloxymino 1_phenylpropane 1-one.
  • Examples of the hexarylbiimidazole compound include 2, 2, _bis (o-chlorophenyl) 1,4,5,4,5, monotetraphenyl_1,2'_bisimidazole, 2 , 2, _bis (2-chlorophenyl) 1, 4, 4 ', 5, 5'-tetrakis (4-ethoxycarbophenyl) biimidazole, 2, 2' bis (2-clonal phenyl) 1,4,4 ', 5,5,1 tetrakis (4 phenoxycarbonylphenyl) biimidazole, 2,2'-bis (2,4 dichlorophenyl) 1,4,4', 5,5 'tetrakis (4 Ethoxycarboferfenore) biimidazole, 2,2,1bis (2,4-dichlorophenyl) -1,4,4 ', 5,5'-tetrakis (4-phenoxycarboferfe) , 2, 2, -hi, su
  • the content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, based on the total solid components in the photosensitive composition:! To 20 Mass% is particularly preferred.
  • the content of the photopolymerization initiator is expressed by a mass ratio with the polymerizable compound, photopolymerization is performed.
  • Initiator / polymerizable compound 0.01 to 0.2 force S preferred, 0.02 to 0.1 is more preferred 0.0 3 to 0.08 is particularly preferred. If this range is exceeded, there will be problems such as development residues and precipitation failures, and if it is less than this range, sufficient sensitivity may not be obtained.
  • the sensitizer can be appropriately selected depending on visible light, ultraviolet light, or visible light laser as a light irradiation means to be described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
  • substances for example, radical generator, acid generator, etc.
  • energy transfer, electron transfer, etc. for example, energy transfer, electron transfer, etc.
  • the sensitizer is a force that can be appropriately selected according to the purpose from known sensitizers that are not particularly limited. For example, paragraphs 0313 to 0314 of JP-A-2005-254831 And the like.
  • the content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0 to 20% by mass, based on the total solid content in the photosensitive composition. 0.2 to 10% by mass is particularly preferable. If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take time, and productivity may be reduced. When present, the sensitizer may precipitate from the photosensitive layer.
  • the photopolymerization initiators may be used alone or in combination of two or more.
  • the photopolymerization initiator include halogenated carbonization having the phosphine oxides, the ⁇ -aminoalkyl ketones, and the triazine skeleton, which can be applied to laser light having a wavelength of 405 nm in the later-described exposure.
  • examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer are combined, a hexaarylbiimidazole compound, or titanocene.
  • the colorant is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include organic pigments, inorganic pigments, and dyes.
  • a dendritic branch in which metal ions are coordinated as a colorant separately or in combination with these colorants It is also possible to contain any dendritic branched molecule selected from cage-like branched molecules containing at least one metal particle of metal particles and alloy particles.
  • Examples of the colorant include a yellow pigment, an orange pigment, a red pigment, a violet pigment, a blue pigment, a green pigment, a brown pigment, and a black pigment.
  • the photosensitive agent is used. Since a plurality of colored compositions colored in three primary colors (B, G, R) and black (K) are used as the active composition, blue pigment, green pigment, red pigment, black pigment, etc. These pigments are preferably used.
  • Examples of the pigment include the coloring material described in paragraph Nos. 0038 to 004 0 of JP-A-2005-17716, and the pigment described in paragraph No. 0068 power of JP-A-2005-361447, et al. And colorants described in paragraph numbers 0080 to 0088 of JP-A-2005-17521 are preferred.
  • the colorant may be used alone or in combination of two or more.
  • the device for effectively realizing good display characteristics (darker color) in both the transmission mode and the reflection mode in a device such as a portable terminal or a portable game machine for the combination of colorants, (i) the pigment CI Pigment Red 254 is used in the photosensitive composition of R, and (ii) Pigment CI Pigment Green 36 and Pigment CI Pigment are used in the photosensitive composition of G. It is preferable to use pigment CI pigment blue 15: 6 in the photosensitive composition of (iii) B in combination with Yellow 139.
  • the content of CI pigment red 254 in the above (i) is 0.274-0.335 g / m when the photosensitive composition is applied at a dry film thickness of 1 to 3 / im. preferably 2, from 0.280 to 0. more preferably it force S is 329 g / m 2, 0. from 290 to 0. it is particularly preferable that 320 g / m 2.
  • the content of CI pigment green 36 in (ii) is preferably 0.355-0.437 gZm 2 when the photosensitive composition is applied in a dry film thickness of 1 to 3 ⁇ m. , 0.364 to 0. more preferably it force S is 428 g / m 2, particularly preferably 0. 376 ⁇ 0. 412g / m 2.
  • the content of CI pigment yellow 139 in (ii) is from 0.052 to 0.078 g / m.
  • a force S of 2 is preferable, 0.060 to 0.070 g / m 2 is more preferable than a force S, and 0.02 to 0.068 g / m 2 is particularly preferable.
  • CI Pigment Green 36 / CI Pigment Yellow 139_tt rate is 5.4 to 6.7. S is preferable, 5.6 to 6.6 is more preferable, 5.8 to 6.4 is particularly preferred.
  • the content of CI pigment blue 15: 6 in (iii) is preferably 0.28 to 0.38 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. It is more preferably a force of 0.29 to 0.36 g / m 2 , and particularly preferably a force of 0.30 to 0.34 g / m 2 .
  • the color filter of the present invention realizes high display characteristics (wide color reproduction range and high color temperature) when used in large-screen liquid crystal display devices such as notebook personal computer displays and TV monitors.
  • red (R) photosensitive composition uses at least one of pigment CI pigment red 254 and CI pigment red 177, and (II) green (G
  • the pigment CI pigment green 36 and the pigment CI pigment yellow 150 are used together in the photosensitive composition of (III), and the pigment CI pigment blue 15: 6 and CI pigment blue in the photosensitive composition of (III) blue (B). It is preferable to use Oletto 23 together.
  • the content of CI pigment red 254 in the above (I) is 0.6 to 1.
  • the content of CI pigment red 177 in (I) is preferably from 0.10 to 0.30 g / m 2 when the photosensitive composition is applied in a dry film thickness of 1 to 3 ⁇ .
  • Mashigu 0.20 to 0. more preferably it forces a 24 g / m 2, it mosquitoes particularly preferably 0. 21 ⁇ 0. 23g / m 2.
  • the content of CI Pigment Green 36 in (ii) is preferably 0.80 to 1.45 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 ⁇ m. It is more preferably 0.90 to: 1. 34 g / m 2 , more preferably 0.95 to 1. 29 g / m 2 .
  • the content of CI Pigment Yellow 150 in (II) is, 0 ⁇ 30 ⁇ 0 ⁇ 65g / m 2 it is preferred an instrument 0. 38-0. More preferably les to be 58 g / m 2 ,.
  • CI pixel green 36 / CI pixel, “ment yellow 150” the ratio is preferably 0.40 to 0.50.
  • the content of CI pigment blue 15: 6 in (ii) is 0.50 to 0.75 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. preferably rather, from 0.59 to 0. more preferably it force S is 67g / m 2, 0. 60 ⁇ 0. it forces S particularly preferably 66 g / m 2.
  • the content of CI pigment violet 23 in (ii) is preferably 0.03 to 0.1 gOmZm 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. ⁇ 0. more preferably it forces a 08g / m 2, 0. 066 ⁇ 0. it is particularly preferred is a 074g / m 2 les.
  • the CI Pigment Blue 15: 6 / CI Pigment Violet 23 ratio is preferably 12-50.
  • the particle diameter of the pigment or dye is preferably an average particle diameter lnm to: 10 4 nm, more preferably 10 to 80 nm, and more preferably 20 nm to It is particularly preferred that the thickness is 70 nm. Most preferred is 30 nm to 60 nm. Since the photosensitive layer is a thin layer, if the particle size of the pigment is not within the above range, it cannot be uniformly dispersed in the resin layer, and it is difficult to produce a high-quality color filter. It is not preferable because
  • the photosensitive composition may contain other components such as a plasticizer, a surfactant, an ultraviolet absorber, and a thermal polymerization inhibitor.
  • the plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
  • plasticizer examples include compounds described in paragraph No. 0318 of JP-A-2005-258431.
  • the content of the plasticizer is preferably 0.:! To 50 mass%, more preferably 0.5 to 40 mass%, based on all components of the photosensitive layer:! To 30 mass. % Is particularly preferred.
  • the surfactant is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. Force Can be selected as appropriate.
  • Fluorosurfactants represented by the formula are preferred.
  • R 1 and R 2 are each a hydrogen atom or a carbon atoms: Represents an alkyl group ⁇ 4, eta represents an integer of 2 to 30.
  • R 1 examples include a methyl group, an ethyl group, and an isopropyl group, and preferred examples of the R 1 include a hydrogen atom.
  • the ⁇ is preferably 10 to 25 force S, more preferably 10 to 20 force S.
  • surfactants represented by the following formulas (2) to (5), and JP-A are represented by the following formulas (2) to (5), and JP-A
  • R 1 and R 2 are carbon atoms:! To 18, preferably carbon numbers:! To 1
  • an alkyl group having 1 to 4 carbon atoms 0, more preferably an alkyl group having 1 to 4 carbon atoms.
  • alkyl group examples include a saturated alkyl group and an unsaturated alkyl group.
  • structure of the alkyl group include those having a linear structure and a branched structure, and among these, those having a branched structure are preferred.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, a hexyl group, an octyl group, a nonino group, a decyl group, a dodecyl group, a tridecyl group, a tetradecinole group, a hexadecinole group, Ottadecinole group, eicosanyl group, docosanyl group Group, 2-chloroethyl group, 2-promoethyl group, 2-cyanoethyl group, 2-methoxycarbonylethyl group, 2-methoxyethyl group, 3-promopropyl group and the like.
  • alkyl groups are substituted with a halogen atom, an acyl group, an amino group, an alkyl group, an alkoxy group, an alkyl group, an alkyl group, an aryl group, an amide group, etc.
  • a halogen atom an acyl group, an amino group, an alkyl group, an alkoxy group, an alkyl group, an alkyl group, an aryl group, an amide group, etc.
  • Rfl and Rf2 each independently represent a perfluoro group having carbon number:! To 18, preferably 2 to: 12, more preferably 4 to 10.
  • Examples of the perfluoro group include a saturated perfluoro group and an unsaturated perfluoro group.
  • Examples of the structure of the perfluoro group include those having a linear structure and a branched structure, and among these, those having a branched structure are preferably exemplified, and at least any of the above Rfl and Rf 2 can be branched. What has a structure is mentioned more suitably.
  • perfluoro group examples include perfluorononenyl, perfluoromethyl, perfluoropropylene, perfluorononell, perfluorobenzoic acid, perfluoropropylene, perfluoropropyl, perfluoro (9-methyloctyl), Perfluoromethyloctyl, perfluorobutyl, perfluoro-3-methylbutyl, perfluorohexyl, perfluorooctyl, perfluorooctyl, perfluoroethyl, perfluorodecyl, perfluorodecyl, perfluoro Examples include butyl.
  • perfluoro groups may be substituted with a halogen atom, an acyl group, an amino group, a cyano group, an alkyl group, an alkoxy group, an alkyl group or an haloalkyl group, an aryl group, an amide group, or the like. Good.
  • Rfl and Rf2 may be the same or different from each other.
  • n represents an integer of 1 to 40, preferably an integer of 4 to 25.
  • m represents an integer of 0 to 40, preferably an integer of 0 to 25.
  • —X— is — (CH 2) — (1 is :! to 10, preferably 1 to 5
  • the content of the surfactant is preferably 0.001 to 10 mass% with respect to the solid content of the photosensitive composition.
  • the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be lowered.
  • the photosensitive composition contains the surfactant
  • the fluidity as a coating liquid is improved, and the liquid in a nozzle, piping, or container of a spin coater or slit coater used in the coating process.
  • the adhesion of the ink is improved and the residue remaining as dirt in the nozzle can be effectively reduced
  • the amount of cleaning liquid and work time required for cleaning when changing the coating liquid can be reduced, and the productivity of the color filter can be reduced.
  • the thermal polymerization inhibitor is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include compounds described in paragraph No. 0316 of JP-A-2005-258431. It is done.
  • the content of the thermal polymerization inhibitor is preferably from 0.0001 to 10% by mass, more preferably from 0.005 to 5% by mass, based on all components of the photosensitive composition. Mass% is particularly preferred.
  • ultraviolet absorber examples include salicylate-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based, nickel chelate-based, hindered amine-based compounds and the like in addition to the compounds described in JP-A-5-72724.
  • phenyl salicylate 4 t-butylphenyl salicylate, 2, 4 di_t-butinolephenylol 3 ', 5'-di-t_4'-hydroxybenzoate, 4_t-butylphenyl salicylate, 2, 4 _Dihydroxybenzophenone, 2-hydroxy _4-Methoxybenzophenone, 2-Hydroxy-4-N-Otoxybenzophenone, 2- (2,1, Hydroxy-5'-methylphenyl) benzotriazole , 2— (2′—Hydroxy-3′_t—Butyl-5′-Methylphenyl) _5_Cloguchibenzotriazole, Echinore 1_Siano_3, 3-Diphenylenotalylate 2, 2,1-hydroxy-1,4-methoxybenzophenone, nickel dibutyldithiocarbamate, bis (2,2,6,6-tetramethol_4_pyridine) Bactoate, 4
  • the photosensitive composition for forming the photosensitive layer can be prepared using a solvent.
  • the solvent is not particularly limited and can be appropriately selected according to the purpose.
  • examples thereof include methanol, ethanol, ⁇ -propanol, isopropanol, ⁇ butanol, sec-butanol, n_hexanol, and other alcohols; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, namyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate , And esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1,1-trichloroethan
  • the amount of the solvent added during the preparation of the photosensitive composition can be appropriately selected according to the purpose without any particular limitation, but the total solid concentration of the photosensitive composition is 5 to 5%. It is preferable to be added so as to be 80% by mass. It is more preferable to be added so as to be 10-60% by mass S, and it is particularly preferable that it is added so as to be 15-50% by mass.
  • the thickness of the photosensitive layer is preferably 0.3 to 10 ⁇ m, more preferably 0.75 to 6 ⁇ m.
  • the layer thickness is less than 0.3 zm, pinholes may occur when applying the coating solution for the photosensitive layer, and the suitability for production may be reduced. If the layer thickness exceeds 10 zm, unexposed areas are removed during development. It may take a long time.
  • the base material used in the photosensitive layer forming step is appropriately selected according to the purpose from known materials having no limitation to those having high surface smoothness to those having a surface with irregularities.
  • a plate-like substrate substrate
  • a glass plate eg, a soda glass plate, a glass plate sputtered with silicon oxide, an alkali-free glass plate, a quartz glass plate, etc.
  • Examples thereof include synthetic resin films, paper, and metal plates.
  • the base material can be used by forming a laminate obtained by laminating the base material so that the photosensitive layer in the photosensitive layer overlaps the base material. That is, by exposing the photosensitive layer of the laminate to the photosensitive layer, the exposed region can be cured, and a pattern can be formed by a development process described later.
  • the exposure step is an exposure head provided with a light irradiation means and a light modulation means for the photosensitive layer, wherein the column direction of the picture element portions has a predetermined set inclination with respect to the scanning direction of the exposure head.
  • the exposure head arranged so as to form an angle ⁇ , the exposure head is subjected to N-fold exposure (where N is a natural number of 2 or more) of the usable pixel parts by the use pixel part specifying means.
  • N is a natural number of 2 or more
  • the pixel part to be used for the exposure is specified, and for the exposure head, the pixel part specified by the used pixel part specifying unit is involved in the exposure by the pixel part control unit. And performing exposure by moving the exposure head relative to the photosensitive layer relative to the photosensitive layer.
  • N double exposure refers to a straight line parallel to the strike direction of the exposure head in almost all of the exposure area on the exposed surface of the photosensitive layer. Up This refers to exposure with a setting that intersects N light spot rows (pixel rows) irradiated on the.
  • the “light spot array (pixel array)” means that the angle formed with the scanning direction of the exposure head in the array of light spots (pixels) as pixel units generated by the pixel unit is smaller. It shall refer to a sequence of directions.
  • the arrangement of the picture element portions does not necessarily have to be a rectangular lattice, and may be an arrangement of parallelograms, for example.
  • substantially all areas of the exposure area is described as being parallel to the striking direction of the exposure head by tilting the pixel part rows at both side edges of each pixel part. This reduces the number of picture element rows in the use picture element section that intersect with a straight line, so that even if it is used to connect multiple exposure heads in such a case, the mounting angle and arrangement of the exposure head, etc.
  • the error may slightly increase or decrease the number of pixel parts in the used pixel part that intersect the straight line parallel to the scanning direction, the resolution of the connection between the pixel parts in each used pixel part In a very small part, the pitch of the pixel part along the direction orthogonal to the scanning direction is exactly the same as the pitch of the pixel part of the other part due to errors such as the mounting angle and pixel part placement.
  • N multiple drawing is used as a term corresponding to “N double exposure” and “multiple exposure” for the embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method.
  • “And” multiple drawing “shall be used.
  • the N in the N-exposure is a natural number of 2 or more, and is not particularly limited. A force that can be appropriately selected according to the purpose. A natural number of 3 or more is preferred. A natural number of 3 or more and 7 or less. .
  • the exposure is preferably performed in an oxygen-poor atmosphere, for example, in an inert gas atmosphere or in a state where an oxygen blocking layer is provided.
  • the exposure method in an oxygen-poor atmosphere can be appropriately selected according to the purpose without any particular limitation.
  • a method of spraying an inert gas directly on the surface of the photosensitive layer, or one side of the frame-shaped frame is opened.
  • the sample on which the photosensitive layer to be exposed is placed in the exposure space in the sample stage where the inert gas introduction hole is formed on at least one remaining side, and the inert gas introduction hole is placed from the inert gas introduction hole.
  • Introducing an inert gas, covering the surface of the photosensitive layer with an inert gas In addition, a method of performing exposure is exemplified.
  • the exposure space can be a sealed space, and an inert gas can be introduced into the sealed space under reduced pressure.
  • the inert gas is not particularly limited as long as it can prevent the polymerization reaction of the photosensitive layer from being inhibited by the influence of oxygen, and can be appropriately selected according to the purpose.
  • nitrogen, helium, argon, etc. Is mentioned.
  • a flat bed type exposure apparatus when the substrate is a glass substrate or the like, a flat bed type exposure apparatus is preferably exemplified.
  • the base material when the base material is a flexible substrate or the like, it may be an outer drum type exposure device, an inner drum type exposure device, or the like.
  • a flat bed type exposure apparatus will be described.
  • a flat plate-like structure that adsorbs and holds a laminate (hereinafter referred to as “photosensitive material 12” or “photosensitive layer 12”) in which the photosensitive layers are laminated.
  • the moving stage 14 is provided.
  • Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16.
  • the stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable.
  • the exposure apparatus 10 is provided with a stage driving device (not shown) that drives the stage 14 along the guide 20.
  • a U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18.
  • a scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side.
  • the scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14.
  • the scanner 24 and the sensor 26 are connected to a controller (not shown) that controls them.
  • the edge of the upstream side of the stage 14 in the scanning direction (hereinafter simply referred to as “upstream side”) is formed in a “ ⁇ ” shape that opens in the direction of the X-axis.
  • Ten slits 28 are formed at regular intervals. Each slit 28 is separated from the slit 28a located on the upstream side and the slit 28b located on the downstream side.
  • the slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of ⁇ 45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
  • the position of the slit 28 is substantially coincident with the center of the exposure head 30. Further, the size of each slit 28 is set so as to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
  • each slit 28 in the stage 14 a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later.
  • a photodetector (not shown) is incorporated. Further, each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later.
  • the operation mode of the exposure apparatus at the time of exposure may be a mode in which exposure is continuously performed while constantly moving the exposure head, or each movement while the exposure head is moved stepwise. Even if the exposure operation is performed with the exposure head stationary at the previous position,
  • Each exposure head 30 is connected to a scanner 24 so that the direction of each pixel portion (micromirror) of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle ⁇ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the running direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in Fig. 2 and Fig. 3B, there are 10 exposure heads arranged in a matrix of 2 rows and 5 columns. The scanner 24 is equipped.
  • the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
  • each of the terminals 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
  • the part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
  • each of the exposure heads 30 is a light modulation unit that modulates incident light for each pixel part in accordance with image data (spatial light modulated for each pixel part).
  • DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a modulation element.
  • the DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part.
  • the data processing unit of the controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
  • a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32.
  • a fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36
  • the mirrors 42 to be used are arranged in this order.
  • the lens system 40 is schematically shown.
  • the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38, and a light quantity distribution of the collimated laser light.
  • a pair of combination lenses 46 that correct the light intensity to be uniform, and the light intensity distribution has been corrected.
  • a condensing lens 48 that condenses the laser light on the DMD 36 is formed.
  • a lens system 50 that images the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed.
  • the lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
  • the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light of each micromirror force on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 ⁇ m.
  • the light modulation means includes n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts, and the pattern information ("pixel As long as the pixel portion can be controlled according to data ”, it can be appropriately selected according to the purpose without any limitation. For example, a spatial light modulator is preferable.
  • Examples of the spatial light modulation element include a digital 'micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM; Space Light Modulator), and transmission by an electro-optic effect.
  • Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
  • the light modulation means includes pattern signal generation means for generating a control signal based on pattern information (pixel data) to be formed.
  • the light modulation means modulates light according to the control signal generated by the pattern signal generation means.
  • the control signal is not particularly limited and can be appropriately selected according to the purpose. For example, a digital signal is preferable.
  • the DMD 36 is a mirror device in which a large number of micromirrors 58 are arranged in a lattice pattern on a SRAM cell (memory cell) 56 as a pixel portion constituting each pixel (pixel). It is.
  • the force to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, it is driven by a controller connected to DMD36.
  • the only possible or usable micromirror 58 is 1024 columns by 256 rows.
  • the data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases.
  • Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectivity of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13. in both the vertical direction and the horizontal direction.
  • the SRAM senore 56 is a silicon gate CMOO manufactured on a normal semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
  • each micromirror 58 supported by the column is diagonally converted. It tilts to ⁇ ⁇ degrees (eg ⁇ 10 °) with respect to the substrate side where DMD 36 is placed as the center.
  • FIG. 7A shows a state in which the micromirror 58 is tilted to + ⁇ degrees when the micromirror 58 is in an on state
  • FIG. 7B shows a state in which the micromirror 58 is in an off state—tilt to ⁇ degrees.
  • FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 58 is performed by the controller connected to the DM D36.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
  • the light irradiation means is not particularly limited and can be appropriately selected according to the purpose.
  • (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, an LED, a known light source such as a semiconductor laser, or a means that can synthesize and irradiate two or more lights.
  • a means that can synthesize and irradiate two or more lights is preferable. .
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when light irradiation is performed after the support is peeled off, the same light can be used.
  • the wavelength of ultraviolet to visible light is preferably 300-1, 500 nm, more preferably 320-800 nm force S, and more preferably 330-650 nm force S.
  • the wavelength of the laser light, I Retsue if ', 200 to 1, 500 nm mosquito preferably, preferably from 300 ⁇ 800N m force S, more preferably 330 ⁇ 500nm force S, 400 to 450 nm force S particularly preferably les, 0
  • a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers are condensed and coupled to the multimode optical fiber.
  • Means having a collecting optical system to be used is preferable.
  • examples of means (fiber array light source) capable of irradiating the combined laser include means described in paragraphs 0109 to 0146 of JP-A-2005-258431.
  • the used pixel part specifying means includes: a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface; and a detection result by the light spot position detecting means. It is preferable to include at least a pixel part selection means for selecting a pixel part to be used for realizing the double exposure.
  • the exposure apparatus 10 when the exposure apparatus 10 performs double exposure on the photosensitive material 12, the variation in resolution and the density unevenness caused by the mounting angle error of each exposure head 30 are reduced.
  • the set tilt angle ⁇ in the column direction of the image area (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle ⁇ , which is exactly double exposure using a 1024 column x 256 row pixel part
  • the ideal also uses a slightly larger angle.
  • This angle ⁇ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
  • the angle ⁇ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle ⁇ is, for example, 0.5 ideal
  • An angle of about 0 degrees should be adopted. It is assumed that the exposure apparatus 10 is initially adjusted within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle ⁇ .
  • FIG. 8 shows an example of unevenness in the pattern on the exposed surface due to the influence of the mounting angle error of one exposure head 30 and pattern distortion in the exposure apparatus 10 initially adjusted as described above. It is explanatory drawing shown.
  • the light spot in the m-th row is denoted by r (the light spot as a pixel unit generated by each pixel part (micromirror) and constituting the exposure area on the exposed surface.
  • r the light spot as a pixel unit generated by each pixel part (micromirror) and constituting the exposure area on the exposed surface.
  • c the light spot in the n-th column
  • P the light spot in the m-th row and the n-th column
  • FIG. 8 shows the pattern of the light spot group from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears and shows the state of the exposure pattern formed on the exposed surface when the stage 14 is moved and the continuous exposure is performed. It is a thing.
  • FIG. 8 for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
  • the set inclination angle ⁇ is slightly larger than the above angle ⁇ .
  • the actual mounting angle and the above-mentioned set inclination angle ⁇ have an error. Also in FIG. Specifically, it is ideal in the overlapping exposure area on the exposed surface, which is formed by a plurality of pixel part rows in both the exposure pattern by the odd-numbered micromirrors and the exposure pattern by the even-numbered micromirrors. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
  • FIG. 8 is an example of pattern distortion appearing on the exposed surface, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the exposed surface is not uniform.
  • the Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
  • the angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure.
  • the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
  • the slit 28 and the photodetector are used as the light spot position detecting means.
  • the actual inclination angle ⁇ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle ⁇ ′.
  • a process of selecting a micromirror to be used for actual exposure is performed.
  • the actual inclination angle ⁇ ′ is based on at least two light spot positions detected by the light spot position detecting means, and the light spot column direction on the exposure surface and the exposure head when the exposure head is tilted. It is specified by the angle between the running direction of
  • the specification of the actual inclination angle ⁇ ′ and the used pixel selection process will be described with reference to FIGS.
  • FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28.
  • the size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
  • the angle formed by the light spot ⁇ IJ in the 512th column located substantially at the center of the exposure area 32 and the running direction of the exposure head 30 is defined as the actual inclination angle ⁇ ′. taking measurement. Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and P (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle ⁇ '.
  • FIG. 10 is a top view illustrating a method for detecting the position of the light spot P (256, 512).
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is
  • the slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0).
  • the value of this coordinate (XO, Y0) is determined and recorded from the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by the two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (X0, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot, P (256, 512).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by the two-dot chain line in FIG. 10, the light at the light spot P (25 6, 512) passes through the right slit 28a and is detected by the photodetector. Stop 14 The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b are recorded as the position of the light spot P (256, 512).
  • the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle.
  • ⁇ ' the coordinates indicating the position of P (l, 512)
  • the natural number T closest to the value t that satisfies the above relationship is derived, and the micromirrors in the first to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure.
  • a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
  • the smallest natural number equal to or greater than the value t may be derived.
  • a micromirror that minimizes the area of the overexposed area and does not produce an underexposed area with respect to the ideal double exposure It can be selected as a micromirror for actual use.
  • a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure It can be selected as a micromirror to be actually used.
  • FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
  • T 253 is derived as the natural number T and that the first row force and the micromirror on the 253rd row are selected.
  • the pixel part control means sends a signal for setting the angle to the always-off state. Not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
  • the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion.
  • the angle of inclination of the light beam in the area near) is smaller. Therefore, in the exposure using only the micromirrors selected based on the actual inclination angle ⁇ ⁇ measured with c (512) as a reference, the ideal exposure pattern for each of the even-numbered columns and the odd-numbered columns is 2 An area that is underexposed with respect to the double exposure is slightly generated.
  • the inclination angle of the light beam on the exposed light surface is near the center (c ( It is larger than the angle of inclination of the ray train in the area near 512). Therefore, in the exposure with the micromirror selected based on the actual tilt angle ⁇ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the regions that are overexposed are complemented with each other, and the density unevenness due to the angular distortion is eliminated. , Minimizing power by the effect of offset by double exposure.
  • the actual inclination angle ⁇ ′ of the 512th ray array is measured, and the actual inclination angle ⁇ ′ is used to obtain the above equation (4).
  • the micromirror 58 to be used was selected based on the derived T.
  • a method for specifying the actual inclination angle ⁇ ′ a plurality of methods can be used. A plurality of actual inclination angles formed by the column direction (light spot sequence) of the pixel part and the scanning direction of the exposure head are measured, and any one of the average value, median value, maximum value, and minimum value is measured. May be specified as the actual inclination angle ⁇ ′, and the micromirror to be actually used at the time of actual exposure may be selected according to the above equation 4 or the like.
  • the average value or the median value is set to the actual inclination angle ⁇ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure.
  • the total area of overexposed areas and underexposed areas is minimized, and overexposed areas are the number of pixel units (number of light spots) and underexposed areas. It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels, and if the maximum value is the actual tilt angle ⁇ ' It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
  • the minimum value is the actual inclination angle ⁇ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
  • the identification of the actual inclination angle ⁇ ′ is not limited to a method based on the positions of at least two light spots in the same pixel part row (light spot ⁇ IJ).
  • the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n) You can specify it as the actual inclination angle ⁇ '.
  • one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on a straight line and in the vicinity along the strike direction of the exposure head are detected. From this position information, the force S can be obtained to determine the actual inclination angle ⁇ '. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. You can also identify it as the actual tilt angle ⁇ '.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle ⁇ of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle ⁇ that is exactly double exposure.
  • This angle ⁇ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
  • FIG. 12 shows the relative position of the two exposure heads (for example, exposure heads 30 and 30 as an example) in the X-axis direction in the exposure apparatus 10 initially adjusted as described above.
  • FIG. 6 is an explanatory diagram showing an example of density unevenness that occurs in a pattern on an exposed surface due to the influence of the deviation of the image. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
  • the upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
  • FIG. 6 is a diagram showing a pattern of a light spot group of force.
  • the lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing.
  • FIG. 12 for convenience of explanation, the exposure of every other row of usable micromirrors 58 is shown.
  • the light pattern is divided into the exposure pattern by pixel array group A and the exposure pattern by pixel array group B, but the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns. is there.
  • the area is overexposed compared to the ideal double exposure state.
  • the light spot position detection is performed.
  • the position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
  • FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
  • the size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
  • Figure 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32.
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream.
  • the slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (X0, Y0).
  • the value of this coordinate (X0, Y0) is determined from the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28. Defined and recorded.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
  • Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
  • each light spot on the light spot line r (256) of the 256th line of 21 is detected in the order of ⁇ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
  • the corresponding micromirror is specified as a micromirror (unused pixel part) that is not used during the main exposure.
  • the light spot P (256, 1020) in the exposure area 32 is the light spot P (256, 1020) in the exposure area 32
  • the light spot P (256, 1) is larger than the light spot P (256, 1), indicating the X coordinate.
  • the micromirrors that are not used during the main exposure described above are used.
  • the positions of the light spots that make up the rightmost column 1020 are the P (l, 1020), P (2, 1020) ⁇ , light spot P (m, 1020) indicating X coordinate larger than light spot P (256, 2) in exposure area 32
  • the X coordinate of the light spot P (m, 1020) in the exposure area 32 is compared with the exposure area 3
  • the micromirror corresponding to the force P (m_l, 1020) is identified as the micromirror that is not used during the main exposure.
  • the X coordinate of the light spot P (m-1, 1020) in the exposure area 32 is the light in the exposure area 32.
  • Micromirror force corresponding to 1020) Specified as a micromirror that is not used for this exposure.
  • the micromirror force corresponding to the light spot that forms the shaded area 72 in FIG. 15 is added as a micromirror that is not used during actual exposure.
  • These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
  • exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
  • the X coordinate of the light spot P (256, 2) in the exposure area 32 and the exposure area are determined when specifying the light spot that forms the shaded area 72 in FIG. 32 of
  • micromirror May be specified as a micromirror that is not used during the main exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the overexposed area with respect to the ideal double exposure and does not generate an underexposed area is actually used. It can be selected as a micromirror.
  • a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
  • the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
  • the resolution caused by the relative position shift in the X-axis direction of the plurality of exposure heads is possible to reduce non-uniformity and density unevenness and achieve ideal N double exposure.
  • the exposure apparatus 10 when the exposure apparatus 10 performs double exposure on the photosensitive material 12, this is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30.
  • Two exposure heads for example, exposure heads 30 and 30
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error or the like of the exposure head 30.
  • the degree shall be adopted.
  • This angle ⁇ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
  • the exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle ⁇ within an adjustable range.
  • FIG. 16 shows two exposure heads (for example, exposure heads 30 and 30) in the exposure apparatus 10 in which the mounting angle of each exposure head 30, that is, each DMD 36 is initially adjusted as described above.
  • FIG. 5 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a position shift.
  • phase of the exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
  • a region 74 in which the amount of exposure is excessive compared to the ideal double exposure state is generated in the overlapping exposure regions on the orthogonal coordinate axes, and this causes density unevenness.
  • the exposure area overlapping on the coordinate axis perpendicular to the strike direction of the exposure head on the exposed surface are formed by a plurality of pixel part rows in both the exposure patterns of every other light spot group (pixel array groups A and B).
  • pixel array groups A and B Excessive exposure in the connecting region between element rows than in the ideal double exposure state The resulting region 76 is causing further concentration unevenness.
  • Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle ⁇ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
  • processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
  • the actual inclination angle ⁇ ′ is specified by the light spot P (l,
  • the arithmetic unit connected to the photodetector using the actual inclination angle ⁇ thus identified is similar to the arithmetic unit in the above-described embodiment (1), as shown in the following equation 4
  • the (T + 1) line force on the DMD 36 is identified as the micro mirror that is not used for the main exposure.
  • the micromirrors corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 are identified as micromirrors not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
  • the total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
  • the smallest natural number equal to or greater than the value t may be derived.
  • the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient It can be made so that the area which becomes.
  • exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
  • the area of the underexposed area should be minimized and no overexposed areas should be created for each area other than the connecting area between the heads.
  • Power S can be.
  • the number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads It is also possible to identify micromirrors that are not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots).
  • micromirror corresponding to the light spots other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17 this is the same as the embodiment (3) described with reference to FIGS.
  • the micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and added as micromirrors that are not used during the main exposure. Is done.
  • the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
  • the relative position shifts in the X-axis direction of the plurality of exposure heads and each exposure It is possible to realize ideal N double exposure by reducing the variation in resolution and density unevenness due to the mounting angle error of the head and the relative mounting angle error between the exposure heads.
  • the force using a combination of the slit 28 and the single-cell type photodetector is not limited to this.
  • a two-dimensional detector or the like may be used.
  • the actual inclination angle ⁇ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained.
  • a micromirror to be used is selected based on ⁇ ⁇
  • a usable micromirror may be selected without going through the derivation of the actual inclination angle ⁇ ′.
  • the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
  • magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36.
  • beam diameter distortion there is a form of beam diameter distortion in which the light from each micromirror 58 on the DMD 36 reaches the exposure area 32 on the exposed surface with a different beam diameter.
  • this light distortion is due to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lenses 52 and 54 in FIG. 5) and the DMD 36 itself. This is caused by unevenness in the amount of light.
  • These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
  • the residual elements of these forms of pattern distortion are also the above-described angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head. [0185] ⁇ Reference exposure>>
  • (N-1) micromirrors every 1 column or 1 / N rows of all light spot rows The reference exposure is performed using only the micromirror group constituting the adjacent row, and the micromirror used for the reference exposure is not used in the actual exposure so that uniform exposure can be realized. You can also specify the mouth mirror.
  • the result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle.
  • the analysis of the result of the reference exposure may be an operator's visual analysis.
  • FIG. 19 is an explanatory diagram showing an example of a mode in which reference exposure is performed using only (N-1) -row micromirrors using a single exposure head.
  • reference exposure is performed using only micromirrors corresponding to the odd-numbered light spot arrays shown by the solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle.
  • a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done.
  • a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
  • FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed by using a plurality of exposure heads and only micromirrors in every (N-1) row.
  • Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Thus, the micromirror to be used at the time of the main exposure can be designated.
  • reference exposure may be separately performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for the odd-numbered pixel lines may be applied. Good.
  • the two exposure heads form the surface to be exposed.
  • a state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
  • FIG. 21 is an explanatory diagram showing an example of a mode in which a single exposure head is used and reference exposure is performed using only micromirror groups that form adjacent rows corresponding to 1 / N rows of the total number of light spots. It is.
  • microphone mouth mirrors other than the micromirrors corresponding to the light spot group shown by hatching in FIG. 21B are actually used during the main exposure in the first to 128th micromirrors.
  • the same pattern as the pattern for the micromirrors in the first to 128th rows may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
  • Fig. 22 shows the use of multiple exposure heads, and the two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30) correspond to 1 / N rows of the total number of light spots.
  • FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
  • the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads.
  • the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro mirrors in the first to 128th rows. Designated as actually used at the time.
  • a separate reference exposure may be performed in the same manner, and the micromirrors used for the main exposure may be designated, or the first to 128th lines may be designated. The same pattern as that for the micromirror may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
  • the present invention is not limited to this. It may be light. In particular, high resolution is ensured by setting from 3 to 7 exposures. It is possible to realize exposure with reduced variations in resolution and uneven density.
  • the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
  • the developing step includes a step of developing by exposing the photosensitive layer by the exposing step and removing an unexposed portion.
  • the method for removing the uncured region is not particularly limited, and can be appropriately selected according to the purpose. Examples thereof include a method of removing using a developer.
  • the developer is not particularly limited and can be appropriately selected depending on the purpose.
  • examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, and the like.
  • a weakly alkaline aqueous solution is used.
  • the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium phosphate.
  • the pH of the weakly alkaline aqueous solution is, for example, preferably about 8 to 12 force S, more preferably about 9 to 11 force.
  • Examples of the weak alkaline aqueous solution include 0.:! To 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution, 0.01% to 0.1% by mass of potassium hydroxide aqueous solution, and the like.
  • the temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
  • the developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, monoreforin, triethanolamine, etc.)
  • Organic solvents for example, alcohols, ketones, esters, ethers, amides, latatones to accelerate development Etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
  • the development method is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include paddle development, shower development, shower & spin development, and dip development.
  • the uncured portion can be removed by spraying a developer onto the exposed photosensitive resin layer by shower.
  • the curing treatment step is not particularly limited and can be appropriately selected depending on the purpose. For example, a full exposure process, a full heat treatment, and the like are preferable.
  • Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the pattern is formed after the development step. By the entire surface exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the formed pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation.
  • a UV exposure machine such as an ultra-high pressure mercury lamp is preferably used.
  • Examples of the whole surface heat treatment method include a method of heating the entire surface of the laminate on which the pattern is formed after the developing step. By heating the entire surface, The film strength on the surface of the turn is increased.
  • the heating temperature in the entire surface heating is preferably 120 to 250 ° C force S, more preferably 120 to 200 ° C force.
  • the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment.
  • the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
  • the heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the method for producing a color filter of the present invention can form a pattern with high definition and efficiency by suppressing distortion of an image formed on the exposed surface of the photosensitive layer. It can be suitably used for the formation of various patterns that require special exposure, and can be particularly suitably used for the formation of high-definition color filter patterns.
  • pixels of the three primary colors of RGB are arranged in a mosaic or stripe pattern on a transparent substrate such as a glass substrate by the pattern forming method of the present invention. can do.
  • each pixel is not particularly limited and can be appropriately selected according to the purpose. For example, 40 to 200/1111 can be appropriately selected. For stripes, a width of 40-20 O / im is usually used.
  • the color filter for example, using a photosensitive layer colored in black on a transparent substrate, exposure and development are performed to form a black matrix, and then the color filter is colored in one of the three primary colors of RGB.
  • the three primary colors of RGB were arranged in a mosaic or stripe pattern on the transparent substrate by repeating exposure and development sequentially for each color in a predetermined arrangement with respect to the black matrix.
  • a method for forming a color filter is mentioned.
  • the color filter of the present invention is manufactured by the method for manufacturing the color filter of the present invention. It is.
  • the color filters are pigment CI pigment red 254 for red (R) coloring, pigment CI pigment green 36 and pigment CI pigment yellow 139 for green (G) coloring, and pigment CI pigment for blue (B) coloring.
  • R red
  • G green
  • B blue
  • the chromaticity of all single colors of red (R), green (G), and blue (B) by the D65 light source is, for example, the value shown in Table 1 below. Become. If it is within this range, the colors of the reflection mode and the transmission mode are balanced.
  • the chromaticity is measured by a microspectroscopy hardness meter (manufactured by Olympus Optical Co., Ltd., OSP100 or 200), calculated as a result of a D65 light source field of view of 2 degrees, and expressed as an xy Y value in the xyz color system. .
  • the difference from the target chromaticity is expressed by the A Eab value of the La * b * color system.
  • the color filter has at least one of pigment CI pigment red 254 and CI pigment red 177 for red (R) coloring, pigment CI pigment green 36 and pigment CI pigment yellow 150 for green (G) coloring,
  • pigment CI pigment blue 15: 6 and CI pigment violet 23 for the coloring of blue (B) when manufactured using CI pigment blue 15: 6 and CI pigment violet 23 for the coloring of blue (B), the total of red (R), green (G) and blue (B) by F10 light source
  • the chromaticities of all the single colors are the values shown in Table 2 below, for example. Within this range, it is preferable as a color filter for TV with a wide color reproduction range and a high color temperature.
  • the chromaticity is measured with a microspectroscopy hardness meter (manufactured by Olympus Optical Co., Ltd., OSP100 or 200) and calculated as a result of F10 light source field of view of 2 degrees. Expressed by value. The difference from the target chromaticity is expressed by the A Eab value of the La * b * color system.
  • a display device includes the color filter according to the present invention, wherein liquid crystal is sealed between a pair of substrates disposed to face each other, and further includes other members as necessary. Become.
  • the color filter of the present invention is not limited to the one formed on the counter substrate of the liquid crystal display device (the substrate on the side where there is no active element such as TFT), the COA method formed on the TFT substrate side, and the black filter on the TFT substrate side.
  • the BOA method which forms only the substrate, or the HA method, which has a high aperture structure on the TFT substrate, can also be targeted.
  • the liquid crystal display system is ECB (Electrically Controlled Birefringence), TN, 1'wisted Nematic), OCB (Optically Compensatory Bend). , VA (Vertically Aligned), HAN (Hybri d Aligned Nematic), STN (Supper Twisted Nematic), IPS (In-Plane Switching), GH (Guest Host), FLC (ferroelectric liquid crystal), AFLC (antiferroelectric) Liquid crystal) and PDL C (polymer dispersed liquid crystal).
  • ECB Electrically Controlled Birefringence
  • TN 1'wisted Nematic
  • OCB Optically Compensatory Bend
  • VA Very Aligned
  • HAN Hybri d Aligned Nematic
  • STN Supper Twisted Nematic
  • IPS In-Plane Switching
  • GH Guest Host
  • FLC ferroelectric liquid crystal
  • AFLC antiferroelectric Liquid crystal
  • the basic configuration of the display device includes: (1) a driving-side substrate in which driving elements such as thin film transistors (hereinafter referred to as "TFTs") and pixel electrodes (conductive layers) are arranged; , A color filter and a substrate with a color filter and a counter electrode (conductive layer), with a spacer And (2) a color filter body type drive substrate in which a color filter is directly formed on the drive side substrate, and a counter electrode (conductive layer). And a counter substrate provided with a spacer interposed therebetween and enclosing a liquid crystal material in the gap.
  • TFTs thin film transistors
  • pixel electrodes conductive layers
  • the display device of the present invention can display a clear color in both the transmissive mode and the reflective mode by using the color filter of the present invention having good chromaticity in the D65 light source field of view of 2 degrees. Therefore, it can be suitably used for devices such as portable terminals and portable game machines that use both the transmission mode and the reflection mode.
  • the display device of the present invention can achieve high color purity and color temperature by using the color filter of the present invention having good chromaticity in the F10 light source field of view of 2 degrees.
  • a notebook personal computer, a TV monitor, etc. The liquid crystal display device can be suitably used.
  • parts represent “parts by mass”, “mass%”, and “weight average molecular weight”, respectively.
  • the alkali-free glass substrate was cleaned with a UV cleaning device, brushed with a cleaning agent, and then ultrasonically cleaned with ultrapure water.
  • the substrate was heat-treated at 120 ° C. for 3 minutes to stabilize the surface state.
  • the glass substrate coater manufactured by FS Asia Co., Ltd., product name: MH-1600
  • a photosensitive composition K1 having the composition described above was applied.
  • VCD vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • K pigment dispersion 1, propylene glycol monomethyl ether as shown in Table 3 below
  • the setrate was weighed, mixed at a temperature of 24 ° C ( ⁇ 2 ° C), and stirred at 150 rpm for 10 minutes.
  • the composition of DPHA solution is dipentaerythritol hexaatalylate (containing polymerization inhibitor MEHQ 500ppm, Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA) 76®fi%, and propylene glycol monomethyl ether acetate 24 mass 0 / 0 power.
  • composition of Surfactant 1 consists of 30% by mass of the following structure 1 and 70% by mass of methyl ethyl ketone (MEK).
  • the photosensitive layer K1 on the base material was exposed to a black matrix pattern of 20 mjZcm 2 with a laser beam having a wavelength of 405 nm by an exposure apparatus and an exposure method described below.
  • DM DMD36 controlled to drive only 1024 x 256 6 rows out of 768 pairs arranged in the sub-running direction, and an optical system that focuses the light shown in Fig. 5 on the photosensitive layer
  • each exposure head 30, ie each DMD 36 is slightly larger than the angle ⁇ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
  • This angle ⁇ is the number of N exposures N, the available micromirrors
  • the constant inclination angle ⁇ for example, 0.50 degrees was adopted.
  • the pattern of light spots from the usable micromirror 58 of DMD36 with 12 21 is shown.
  • the exposure formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part.
  • the pattern status is shown for exposure areas 32 and 32.
  • every other exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on pixel array group A and an exposure pattern based on pixel array group B, but the actual exposure pattern on the exposed surface is These two exposure patterns are superimposed.
  • the light spot position detecting means a set of a slit 28 and a photodetector is used, and an exposure head 30 is used.
  • the angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
  • micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
  • the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Control was performed so as not to be involved in exposure.
  • the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32 are formed by a plurality of the exposure heads in the exposure areas 32 and 32.
  • the surface of the photosensitive layer K1 is sprayed with pure water using a shower nozzle and uniformly moistened, and then a KOH developer (containing KOH, nonionic surfactant, product name: CD K_ l, Fuji Film Electronics Materials Co., Ltd.) 100-fold diluted with pure water, shower-developed at 23 ° C for 80 seconds at flat nozzle pressure 0, 04 MPa, then ultrapure water Using a high pressure cleaning nozzle, the residue was removed by spraying at a pressure of 9.8 MPa to obtain a black matrix pattern. Thereafter, heat treatment was performed at 220 ° C. for 30 minutes.
  • a KOH developer containing KOH, nonionic surfactant, product name: CD K_ l, Fuji Film Electronics Materials Co., Ltd.
  • the following photosensitive composition R1 having the composition shown in Table 4 was used, and heat-treated R pixels were formed by the same process as the formation of the black matrix.
  • the R1 photosensitive layer thickness was 1.5 111, and the coating amount of the pigment (O.I. Pigment Red 254) was 0.274 g / m 2 .
  • N phenylmercaptobenzimidazole, and phenothiazine were removed by force, added in this order at a temperature of 24 ° C ( ⁇ 2 ° C), and stirred at 150 rpm for 30 minutes.
  • the indicated amount of Surfactant 1 was weighed out, added at a temperature of 24 ° C ( ⁇ 2 ° C), stirred at 30 rpm for 5 minutes, and filtered through nylon mesh # 200.
  • Product R1 was prepared.
  • the photosensitive layer R1 on the substrate was exposed in the same manner as the photosensitive layer K1. Exposure amount is 20m j / cm 2 .
  • the photosensitive layer R1 is also formed on a substrate on which a black matrix is not formed, and a color filter pattern, a resolution evaluation pattern (a pattern in which a large number of holes having different diameters are formed), and The same processing was performed using a step-to-edge pattern. Then, it developed similarly to the black matrix and heat-processed.
  • the formed red (R) color filter pattern (pixel) was evaluated for exposure sensitivity, resolution, and unevenness by the following methods. The results are shown in Table 10 below.
  • the thickness of the cured region of the remaining photosensitive layer was measured.
  • a sensitivity curve is obtained by plotting the relationship between the irradiation amount of the laser beam and the thickness of the cured layer. From the sensitivity curve thus obtained, the thickness of the cured region on the substrate was 1. The amount of light energy when the surface of the cured region was a glossy surface was determined as the amount of light energy required to cure the photosensitive layer.
  • the surface of the obtained red (R) resolution evaluation pattern-formed substrate was observed with an optical microscope, and the minimum hole diameter with no residual film in the hole portion of the cured layer pattern was measured and resolved. Degree. The smaller the numerical value, the better the resolution.
  • the following photosensitive composition G1 having the composition shown in Table 5 below is used on the substrate on which the black matrix and red (R) pixels are formed, and the heat-treated green is formed by the same process as the formation of the black matrix.
  • G A pixel was formed.
  • the G1 photosensitive layer thickness is 1.4 ⁇
  • the coating amount of the pigment (CI Pigment Green 36) is 0.355 g / m 2
  • the coating amount of the pigment (CI Pigment Yellow 139) is 0.052 gZm 2. Met. It was exposed, imaged and heat treated in the same way as the black matrix. Exposure amount was 40MjZcm 2 equivalent.
  • G pigment dispersion 1, Y pigment dispersion 1, and propylene glycol monomethyl ether acetate in the amounts shown in Table 5 below is concentrated at a temperature of 24.
  • the mixture was mixed at C ( ⁇ 2. C) and stirred at 150 rpm for 10 minutes.
  • methyl ethyl ketone, binder 1, D in the amounts shown in Table 5 below PHA solution, B—CIM (Hodogaya Chemical Co., Ltd.), NBCA (Kurokin Kasei Co., Ltd.), N-phenyl mercaptobenzimidazole, and phenothiazine are removed, and the temperature is 24 ° C ( ⁇ 2 ° C) Then, the mixture was added in this order and stirred at 150 rpm for 30 minutes. Further, the amount of Surfactant 1 described in Table 5 below was weighed out, added at a temperature of 24 ° C ( ⁇ 2 ° C), stirred at 30 rpm for 5 minutes, and filtered through a nylon mesh # 200. .
  • the photosensitive composition G1 was prepared as described above.
  • the substrate having the black matrix, red (R) pixel, and green (G) pixel formed thereon is coated with the following photosensitive composition B1 having the composition shown in Table 6 below, and the same as the formation of the black matrix.
  • photosensitive composition B1 having the composition shown in Table 6 below, and the same as the formation of the black matrix.
  • the film thickness of the B1 photosensitive layer was 1.4 xm, and the coating amount of the pigment (CI Pigment Blue 15: 6) was 0.29 g / m 2 . Exposure, development, and heat treatment were performed in the same manner as the K photosensitive layer. The exposure was 50 mj / cm 2 .
  • B pigment dispersion 1 and propylene glycol monomethyl ether acetate in the amounts shown in Table 6 below were weighed out, mixed at a temperature of 24 ° C. ( ⁇ 2 ° C.), and stirred at 150 rpm for 10 minutes.
  • the benzimidazole and phenothiazine were removed by force, added in this order at a temperature of 25 ° C ( ⁇ 2 ° C), and stirred at a temperature of 40 ° C ( ⁇ 2 ° C) at 150 i "pm for 30 minutes.
  • the amount of Surfactant 1 listed in Table 6 below was weighed out, added at a temperature of 24 ° C ( ⁇ 2 ° C), stirred at 30 RPM for 5 minutes, and filtered through nylon mesh # 200.
  • Sex composition B1 was prepared.
  • Photosensitive composition B 1 part by mass
  • thermoplastic resin layer having the following formulation HI On a 75 ⁇ m-thick polyethylene terephthalate (PET) film temporary support, a coating solution for a thermoplastic resin layer having the following formulation HI was applied and dried using a slit-shaped nozzle. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Furthermore, the colored photosensitive resin composition K1 is applied and dried, and a thermoplastic resin layer having a dry film thickness of 14.6 / m on the temporary support and an intermediate film having a dry film thickness of 1.6 / m A layer and a photosensitive resin layer having a dry film thickness of 2 / m were provided, and a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded. As described above, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black (K) feel. A photosensitive resin transfer material Kl having a solid body with the photosensitive resin layer was produced.
  • P1 polyethylene terephthalate
  • thermoplastic resin layer comprising 9.1 parts by mass of 2,2-bis [4 (methacryloxypolyethoxy) phenyl] propane, manufactured by Kogyo Co., Ltd., and 0.54 parts by mass of the surfactant 1 is prepared. did.
  • the photosensitive composition K1 used in the production of the photosensitive transfer material K1 was changed to the following photosensitive compositions R101, G101 and B101 having the compositions shown in Tables 7 to 9 below. Except for the above, photosensitive transfer materials R101, G101 and B101 were produced in the same manner as described above.
  • the method for preparing photosensitive compositions R101, G101, and B101 is in accordance with the method for preparing photosensitive compositions Rl, G1, and B1, respectively.
  • Y pigment dispersion 1 (C.I.P.Y.139) 1.6 Propylene glycol monomethyl ether acetate 40.3 Methyl ethyl ketone 26 Binder 1 12.7
  • the alkali-free glass substrate was cleaned with a rotating brush with nylon bristles while spraying a glass detergent solution adjusted to 25 ° C for 20 seconds with a shower.
  • the silane coupling solution N- ⁇ (amino Ethyl) ⁇ -aminopropyltrimethoxysilane 0.3 mass% aqueous solution, trade name: ⁇ 603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • This substrate was heated at 100 ° C. for 2 minutes with a substrate preheating device and sent to the next laminator.
  • a laminator (Lamic II type, manufactured by Hitachi Industries, Ltd.) is used to heat the substrate to 100 ° C and a rubber roller at a temperature of 130 ° C and linear pressure. Lamination was performed at 100 N / cm and a conveyance speed of 2 m / min.
  • Example 1 After peeling off the protective film, the exposure apparatus of Example 1 was used to expose the laser beam having a wavelength of 405 nm by irradiating the same step-to-edge pattern, stripe shape, and dot shape as in Example 1, and performing the exposure. Some areas of the layer were cured. In the same manner as in Example 1, in addition to the color filter pattern, a color filter pattern, a sensitivity evaluation pattern, and a resolution evaluation pattern were also formed on a substrate on which no black matrix was formed. The exposure amount was 80 mjZcm 2 and was performed in an air atmosphere. [0249] Development process
  • triethanol ⁇ Min containing triethanol amine developing solution (2-5 wt 0/0, Nonio emissions surfactant-containing, containing polypropylene-based defoaming agent, trade name: T PD1, Fuji Photo Fi Lum Inc.
  • T PD1 Nonio emissions surfactant-containing, containing polypropylene-based defoaming agent, trade name: T PD1, Fuji Photo Fi Lum Inc.
  • the product was shower-developed with a solution diluted 12 times with pure water at 30 ° C for 50 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin layer and the intermediate layer.
  • sodium carbonate developer (0.06 mol / l sodium bicarbonate, sodium carbonate of the same concentration, 1% sodium dibutylnaphthalenesulfonate, anionic surfactant, antifoaming agent, stabilizer, product name: T1 CD1, manufactured by Fuji Photo Film Co., Ltd.
  • the film was developed for 35 seconds at C with a cone type nozzle pressure of 0.15 MPa, and a photosensitive resin layer was obtained as a development-retarded pixel.
  • the film thickness of the K1 photosensitive layer was 2 ⁇ ⁇ , and the coating amount of the pigment (CI Pigment Red 254) was 0.3 ⁇ 14 g / m 2 .
  • the substrate on which this black matrix pattern was formed was again cleaned with a brush as described above, and after pure water shower cleaning, the silane coupling solution was not used and was sent to a substrate preheating device.
  • the film thickness of the R101 photosensitive layer was 2. O xm, and the coating amount of the pigment (CI Pigment Red 254) was 0.314 g / m 2 .
  • the substrate on which the black matrix pattern and red (R) pixels were formed was again cleaned with a brush as described above, and after pure water shower cleaning, the silane coupling liquid was not used and the substrate was sent to a substrate preheating device. .
  • the photosensitive layer thickness of G101 is 2.0 xm
  • the coating amount of pigment (CI pigment green 36) is 0.396 g / m 2
  • the coating amount of pigment (CI pigment yellow 139) is 0.0648 gZm 2 . It was.
  • the substrate on which this black matrix pattern and red (R) and green (G) pixels are formed is again cleaned with a brush as described above, and after pure water shower cleaning, without using a silane coupling liquid, Sent to preheater.
  • heat-treated blue (B) pixels were produced in the same process as the photosensitive transfer material R101.
  • the exposure dose was 50 mj / cm 2 .
  • the thickness of the B 101 photosensitive layer was 2. ⁇ , and the coating amount of pigment (CI pigment blue 15: 6) was 0 ⁇ 32 g / m 2 .
  • the substrate immediately after the formation of only the red (R) photosensitive layer was irradiated obliquely with a Na lamp in a dark room and visually observed to determine the occurrence of unevenness.
  • a substrate with pixels that have finished patterning (only the red (R) photosensitive layer was formed for evaluation) was irradiated obliquely with a Na lamp in a dark room and visually observed to check for unevenness. It was judged.
  • Example 2 Using the color filters of Examples 1 and 2, a reflective / transmissive liquid crystal display device having an LED backlight was produced. Example: It was confirmed that the liquid crystal display device using the color filters of 2 to 2 showed good display characteristics.
  • a black matrix was formed in the same manner as in Example 1.
  • a photosensitive composition R2 having the composition described in Table 11 below was prepared in the same manner as in Example 1.
  • the coating thickness was 1.
  • a photosensitive composition G2 having the composition described in Table 12 below was prepared in the same manner as in Example 1.
  • the coating thickness was 1.6 / im.
  • Photosensitive composition G2 parts by mass
  • Surfactant 1 0.07 Of the compositions shown in Table 12, Y Pigment Dispersion 2 was manufactured by Gokoku Color Co., Ltd., trade name: CF Yellow EX3393.
  • a photosensitive composition B2 having the composition described in Table 13 below was prepared in the same manner as in Example 1.
  • the coating thickness was 1.
  • Photosensitive composition B 2 parts by mass
  • Binder 3 is (benzyl methacrylate / methacrylic acid / methyl methacrylate)
  • a black matrix was formed in the same manner as in Example 2. However, the formation order was black (black matrix) first, and the black matrix and the peripheral frame portion were formed.
  • a photosensitive composition R102 having the composition described in Table 14 below was prepared in the same manner as in Example 2.
  • the coating thickness was 2. O zm.
  • Surfactant 1 0.06 Of the compositions shown in Table 14, the phosphate ester-based special activator 1 was manufactured by Enomoto Kasei Co., Ltd. and trade name: HIPLAAD ED152.
  • a photosensitive composition G102 having the composition described in Table 15 below was prepared in the same manner as in Example 2.
  • the coating film thickness was 2.0 / im.
  • Photosensitive resin composition G 102 parts by mass
  • B pigment dispersion 3 (C.I.P.B. 15: 6, C.I.P.V.23) 14.0
  • Fig. 23 shows an example of the state of exposure of the exposed surface in Comparative Example 1.
  • the pattern of light spots was shown.
  • the exposure The state of the exposure pattern formed on the optical surface is assigned to one exposure area (for example, 32).
  • angular distortion occurs in which the inclination angle of each pixel column projected on the exposure surface is not uniform.
  • the angular distortion appearing in the example of FIG. 23 is a distortion in which the tilt angle with respect to the scanning direction is larger in the left column of the figure and smaller in the right column of the figure.
  • an overexposed region appears on the exposed surface shown on the left side of the figure, and an underexposed region appears on the exposed surface shown on the right side of the figure.
  • the black matrix of Example 3 is a highly precise black matrix with small edge roughness due to correction of dispersion in resolution and uneven exposure in double exposure. It was found that a pattern could be formed.
  • the color filter manufactured by the method for manufacturing a color filter of the present invention has good display characteristics in both the transmission mode and the reflection mode, and is suitable for liquid crystal display devices (LCD) such as portable terminals and portable game machines. In addition, it is also suitably used for liquid crystal display devices (LCD) such as notebook computers and TV monitors, PALC (plasma address liquid crystal), and plasma displays. Further, in addition to the color filter exemplified here, it is also possible to form a spacer by overlapping at least one of the RGB colors described in Japanese Patent Publication No. 11-248921 and Japanese Patent No. 3255107. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

A production method of a color filter capable of forming, especially, a black image with very little variations in line width and vary finely without using a photomask, and being low in costs and excellent in display characteristics, a color filter, and a display unit. The production method of a color filter comprises the photosensitive layer forming step of forming at least a photosensitive layer on the surface of a substrate, the exposure step of specifying a drawing element used for N-fold exposure out of usable drawing elements by using a exposure head disposed so as to form a specified set inclined angle θ with respect to the photosensitive layer, controlling the drawing elements so that the specified drawing element only involves in exposure, and moving the exposure head in the scanning direction relatively with the photosensitive layer to carry out exposure, and the developing step of developing the exposed photosensitive layer; a color filter produced by the production method; and a display unit using the color filter.

Description

明 細 書  Specification
カラーフィルタの製造方法、及びカラーフィルタ並びに表示装置 技術分野  Manufacturing method of color filter, and color filter and display device
[0001] 本発明は、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示 装置 (LCD)用、 PALC (プラズマアドレス液晶)、プラズマディスプレイなどに好適な カラーフィルタの製造方法、及び該製造方法により製造されたカラーフィルタ並びに 該カラーフィルタを用いた表示装置に関する。  [0001] The present invention relates to a method for producing a color filter suitable for a liquid crystal display device (LCD) such as a portable terminal, a portable game machine, a notebook computer, and a television monitor, PALC (plasma address liquid crystal), a plasma display, and the like. The present invention relates to a color filter manufactured by a manufacturing method and a display device using the color filter.
背景技術  Background art
[0002] カラーフィルタは、液晶ディスプレイ(以下、「LCD」、「液晶表示装置」と称すること もある)に不可欠な構成部品である。この液晶ディスプレイは非常にコンパクトであり、 性能面でもこれまでの CRTディスプレイと同等以上であり、 CRTディスプレイから置 き換わりつつある。  A color filter is an indispensable component for a liquid crystal display (hereinafter also referred to as “LCD” or “liquid crystal display device”). This liquid crystal display is very compact and is equivalent to or better than previous CRT displays in terms of performance, and is replacing CRT displays.
液晶ディスプレイのカラー画素の形成は、カラーフィルタを通過した光がそのまま力 ラーフィルタを構成する各画素の色に着色されて、それらの色の光が合成されてカラ 一画素を形成する。そして、現在は RGBの三色の画素でカラー画素を形成している  In the formation of the color pixels of the liquid crystal display, the light passing through the color filter is colored as it is into the colors of the pixels constituting the power filter, and the light of those colors is synthesized to form a color pixel. Currently, color pixels are formed with RGB three-color pixels.
[0003] 近年では、液晶ディスプレイ (LCD)の大画面化及び高精細化の技術開発が進み 、その用途はノートパソコン用ディスプレイからデスクトップパソコン用モニター、更に はテレビモニター(以下、「TV」と称することもある)まで拡大されてきている。このよう な背景の下で、 LCDにはコストダウンと表示特性向上が強く要求されるようになって きている。 [0003] In recent years, the development of technology for increasing the screen size and definition of liquid crystal displays (LCDs) has progressed, and their applications range from notebook computer displays to desktop personal computer monitors, and even television monitors (hereinafter referred to as “TV”). It has been expanded to a certain extent). Against this background, LCDs are strongly required to reduce costs and improve display characteristics.
このコストダウンの方向としては、単に材料のコストダウンにとどまらず、工程の簡素 化が進行中であり、特に、露光のためのフォトマスクをなくすことが検討されている。 一方、表示特性向上の方向としては、 1インチあたりの画素数を増やしていく高精 細化などが検討されている。  The direction of cost reduction is not limited to cost reduction of materials, but simplification of the process is in progress. In particular, the elimination of a photomask for exposure is being studied. On the other hand, as a direction to improve display characteristics, high resolution is being studied to increase the number of pixels per inch.
特に、 RGBの三色の各画素間を規定するように形成されるブラックマトリクスは、み かけの画素幅を規定しているため、該ブラックマトリクスの線幅のばらつきは、その周 期性によって、モアレや、周期ムラなどの表示ムラとなりやすい。このため、ブラックマ トリタスを形成するブラック画像の微細パターンを高精細に形成可能な方法が求めら れている。 In particular, the black matrix formed so as to define the pixels between the three colors of RGB regulates the apparent pixel width. Depending on the period, it tends to cause display unevenness such as moire and periodic unevenness. For this reason, there is a demand for a method capable of forming a fine pattern of a black image forming black matrix with high definition.
[0004] このようなカラーフィルタの形成方法としては、一般に、感光性組成物を露光、現像 することにより微細パターンを形成する、フォトリソグラフィ一法が知られている。  [0004] As a method for forming such a color filter, a photolithography method is generally known in which a fine pattern is formed by exposing and developing a photosensitive composition.
前記フォトリソグラフィ一法を行う露光装置として、フォトマスクを用いることなぐ半導 体レーザ、ガスレーザ等のレーザ光を、パターン等のデジタルデータに基づいて、感 光性組成物上に直接スキャンして、パターユングを行うレーザダイレクトイメージング システム(以下、「LDI」と称することがある)による露光装置が研究されている(例えば 、非特許文献 1及び特許文献 1参照)。  As an exposure apparatus for performing the photolithography method, a laser beam such as a semiconductor laser or a gas laser without using a photomask is directly scanned on the photosensitive composition based on digital data such as a pattern. An exposure apparatus using a patterning laser direct imaging system (hereinafter sometimes referred to as “LDI”) has been studied (for example, see Non-Patent Document 1 and Patent Document 1).
[0005] 前記露光装置の前記露光ヘッドにおいて、空間光変調素子として、一般的に入手 可能な大きさのデジタル 'マイクロミラー ·デバイス(DMD)を用いる場合等、光源ァレ ィの構成等によっては、単一の露光ヘッドで十分な大きさの露光面積をカバーするこ とが困難である。そのため、複数の前記露光ヘッドを並列使用し、該露光ヘッドを走 查方向に対して傾斜させて用いる形態の露光装置が提案されてレ、る。  [0005] In the exposure head of the exposure apparatus, depending on the configuration of the light source array, such as when using a digital 'micromirror device (DMD) of a generally available size as the spatial light modulator, It is difficult to cover a sufficiently large exposure area with a single exposure head. Therefore, an exposure apparatus has been proposed in which a plurality of the exposure heads are used in parallel, and the exposure heads are inclined with respect to the running direction.
[0006] 例えば、特許文献 2には、マイクロミラーが矩形格子状に配された DMDを有する複 数の露光ヘッドが走査方向に対して傾斜させられ、傾斜している DMDの両側部の 三角形状の部分が、走査方向と直行する方向に隣接する DMD間で互いに補完し 合うような設定で、各露光ヘッドが取り付けられた露光装置が記載されてレ、る。  [0006] For example, in Patent Document 2, a plurality of exposure heads each having a DMD in which micromirrors are arranged in a rectangular lattice shape are inclined with respect to the scanning direction, and the triangular shapes on both sides of the inclined DMD are formed. The exposure apparatus to which each exposure head is attached is described in such a manner that these portions complement each other between DMDs adjacent in the direction orthogonal to the scanning direction.
また、特許文献 3には、矩形格子状の DMDを有する複数の露光ヘッドが走査方向 に対して傾斜させられずに又は微小角だけ傾斜させられ、走査方向と直行する方向 に隣接する DMDによる露光領域が所定幅だけ重なり合うような設定で、各露光へッ ドが取り付けられ、各 DMDの露光領域間の重なり合い部分に相当する個所におい て、駆動すべきマイクロミラーの数を一定の割合で漸減又は漸増させ、各 DMDによ る露光領域を平行四辺形状とした露光装置が記載されている。  In Patent Document 3, a plurality of exposure heads having a rectangular grid DMD are not tilted with respect to the scanning direction or tilted by a small angle, and exposure by a DMD adjacent to the direction orthogonal to the scanning direction is performed. Each exposure head is attached so that the areas overlap each other by a predetermined width, and the number of micromirrors to be driven is gradually decreased or reduced at a certain rate at the position corresponding to the overlap between the exposure areas of each DMD. An exposure apparatus is described in which the exposure area by each DMD is gradually increased to a parallelogram shape.
[0007] しかしながら、前記露光ヘッドを複数用いて、走查方向に対して傾斜させて露光を 行う場合、前記露光ヘッド間の相対位置や相対取付角度の微調整は一般に難しぐ 理想の相対位置及び相対取付角度からわずかにずれるという問題がある。 [0008] 一方、解像度の向上等のため、前記露光ヘッドを、一の描素部からの光線の走査 線が、別の描素部からの光線の走査線と一致するようにして用い、前記感光層の被 露光面上の各点を実質的に複数回重ねて露光する多重露光形式の露光装置が提 案されている。 [0007] However, when exposure is performed using a plurality of the exposure heads and tilted with respect to the running direction, it is generally difficult to finely adjust the relative position and the relative mounting angle between the exposure heads. There is a problem that it is slightly shifted from the relative mounting angle. [0008] On the other hand, in order to improve resolution, the exposure head is used such that the scanning line of the light beam from one picture element unit coincides with the scanning line of the light beam from another picture element unit, There has been proposed an exposure apparatus of a multiple exposure type in which each point on the exposed surface of the photosensitive layer is exposed by overlapping substantially a plurality of times.
たとえば、特許文献 4には、露光面上に形成される 2次元パターンの解像度を向上 させ、滑ら力、な斜め線を含むパターンの表現を可能にするため、複数のマイクロミラ 一(描素部)が 2次元状に配された矩形の DMDを、走查方向に対して傾斜させて用 レ、、近接するマイクロミラーからの露光スポットが露光面上で一部重なり合うようになし た露光装置が記載されてレ、る。  For example, Patent Document 4 discloses that a plurality of micromirrors (pixel units) are used to improve the resolution of a two-dimensional pattern formed on an exposure surface and to express a pattern including a slanting force and a slanting line. ) Is a two-dimensional rectangular DMD that is tilted with respect to the strike direction, and an exposure apparatus that allows exposure spots from adjacent micromirrors to partially overlap on the exposure surface. It is listed.
また、特許文献 5には、やはり矩形の DMDを走查方向に対して傾斜させて用いる ことによって、露光面上で露光スポットを重ね合わせて合計の照明色度を変化させる ことによるカラ一^ fメージの表現や、マイクロレンズの一部欠陥等の要因によるィメー ジングェラーの抑制を可能とした露光装置が記載されている。  Also, in Patent Document 5, by using a rectangular DMD inclined with respect to the running direction, the total illumination chromaticity is changed by overlapping the exposure spots on the exposure surface. An exposure apparatus that can suppress image error due to factors such as image expression and microlens defects is described.
[0009] しかしながら、前記多重露光を行う場合においても、前記露光ヘッドの取付角度が 理想の設定傾斜角度からずれることにより、露光される前記感光層の被露光面上の 個所においては、露光スポットの密度や配列が、他の部分とは異なったものとなり、前 記パターン形成材料上に結像させる像の解像度や濃度にむらが生じ、さらに、形成 したパターンにおいて、エッジラフネスが大きくなるという問題がある。  However, even in the case of performing the multiple exposure, the exposure head mounting angle deviates from an ideal setting inclination angle, so that an exposure spot of the exposure layer is exposed at a position on the exposed surface of the photosensitive layer. The density and arrangement differ from those of other parts, resulting in unevenness in the resolution and density of the image formed on the pattern forming material, and the problem that the edge roughness increases in the formed pattern. is there.
さらに、前記露光ヘッドの取付位置や取付角度のずれのみならず、前記描素部と 前記感光層の被露光面との間の光学系の各種収差や、前記描素部自体の歪み等 によって生じるパターン歪みも、前記感光層の被露光面上に形成される前記パター ンの解像度や濃度にむらを生じさせる原因となる。  Furthermore, it is caused not only by a shift in the mounting position and mounting angle of the exposure head, but also by various aberrations of the optical system between the image element and the exposed surface of the photosensitive layer, distortion of the image element itself, and the like. Pattern distortion also causes unevenness in the resolution and density of the pattern formed on the exposed surface of the photosensitive layer.
[0010] これらの問題に対し、前記露光ヘッドの取付位置や取付角度の調整精度、及び光 学系の調整精度等を向上させる方法が考えられるが、精度の向上を追求すると、製 造コストが非常に高くなつてしまうという問題がある。同様の問題は、前記露光装置の みならず、インクジェットプリンタ一等の各種描画装置において生じうるものである。  [0010] For these problems, a method of improving the adjustment accuracy of the mounting position and mounting angle of the exposure head, the adjustment accuracy of the optical system, and the like can be considered. However, if improvement of accuracy is pursued, the manufacturing cost is reduced. There is a problem that it becomes very expensive. Similar problems can occur not only in the exposure apparatus but also in various drawing apparatuses such as an ink jet printer.
[0011] よって、前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記 感光層の露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起 因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面 上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより 、特に、ブラック画像の線幅ばらつきを極めて少なぐ高精細に形成可能なカラーフィ ルタの製造方法、及び該カラーフィルタの製造方法により製造される表示特性に優 れたカラーフィルタ、並びに該カラーフィルタを用いた表示装置カラーフィルタの形成 方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。 [0011] Therefore, a shift in the mounting position and mounting angle of the exposure head, various aberrations of the optical system between the image element portion and the exposure surface of the photosensitive layer, distortion of the image element portion itself, and the like. In particular, the effect of variations in exposure due to pattern distortion caused by the pattern distortion is reduced, and variations in the resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer are reduced. For producing a color filter capable of forming a high-definition color image with extremely small amounts, a color filter excellent in display characteristics produced by the method for producing the color filter, and a method for forming a color filter for a display device using the color filter Has not been provided yet, and further improvements and development are desired.
[0012] 特許文献 1 :特開 2004— 1244号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-1244
特許文献 2:特開 2004— 9595号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-9595
特許文献 3 :特開 2003— 195512号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2003-195512
特許文献 4 :米国特許第 6493867号明細書  Patent Document 4: U.S. Patent No. 6493867
特許文献 5:特表 2001— 500628号公報  Patent Document 5: Special Table 2001-500628
非特許文献 1 :石川明人〃マスクレス露光による開発短縮と量産適用化"、「エレクロト 二タス実装技術」、株式会社技術調査会、 Vol.18, No.6、 2002年、 p.74-79  Non-Patent Document 1: Akihito Ishikawa Development shortening and mass production application by maskless exposure "," ELECTROTO-TASS mounting technology ", Technical Research Co., Ltd., Vol.18, No.6, 2002, p.74- 79
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、フォトマスクを用い ることなぐ前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前 記感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等 に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露 光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減すること により、特にブラック画像の線幅ばらつきを極めて少なぐ高精細に形成可能であり、 低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機、ノートパソコン、テレビモ 二ター等の液晶表示装置 (LCD)用、 PALC (プラズマアドレス液晶)、プラズマデイス プレイなどに好適に用いられるカラーフィルタの製造方法、及び該カラーフィルタの 製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィノレ タを用いた表示装置を提供することを目的とする。 [0013] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention relates to deviations in the mounting position and mounting angle of the exposure head without using a photomask, various aberrations of the optical system between the image element and the exposed surface of the photosensitive layer, and Leveling the influence of exposure variation due to pattern distortion caused by distortion of the picture element itself, etc., and reducing variations in resolution and density unevenness of the pattern formed on the exposed light surface of the photosensitive layer In particular, it is possible to form black images with high definition with very little line width variation, low cost, excellent display characteristics, and liquid crystal display devices (LCDs) such as portable terminals, portable game machines, notebook computers, and TV monitors. ), PALC (plasma addressed liquid crystal), a method for producing a color filter suitably used for a plasma display, and the display characteristics produced by the method for producing the color filter. It is an object of the present invention to provide an excellent color filter and a display device using the color filter.
課題を解決するための手段 前記課題を解決するための手段としては、以下の通りである。即ち、 Means for solving the problem Means for solving the problems are as follows. That is,
< 1 > ノインダー、重合性化合物、着色剤、及び光重合開始剤を含む感光性組 成物を用いて、基材の表面に、少なくとも感光層を形成する感光層形成工程と、 該感光層に対し、  <1> a photosensitive layer forming step of forming at least a photosensitive layer on the surface of a substrate using a photosensitive composition containing a noinder, a polymerizable compound, a colorant, and a photopolymerization initiator; and In contrast,
光照射手段、及び前記光照射手段からの光を受光し出射する n個(ただし、 nは 2 以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記 描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査 方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置され た露光ヘッドを用い、  A light irradiating means, and n (where n is a natural number of 2 or more) picture element portions arranged to receive and emit light from the light irradiating means, and according to pattern information An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to a scanning direction of the exposure head. Using the head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光(ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う 露光工程と、  With respect to the exposure head, by using a usable pixel part designating unit, among the usable pixel parts, the pixel part to be used for N double exposure (where N is a natural number of 2 or more) is designated, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and An exposure step of performing exposure by relatively moving the exposure head in the scanning direction; and
前記露光工程により露光された前記感光層を現像する現像工程と、を含むことを特 徴とするカラーフィルタの製造方法である。該 < 1 >に記載のカラーフィルタの製造 方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用可能 な前記描素部のうち、 N重露光(ただし、 Nは 2以上の自然数)に使用する前記描素 部が指定され、描素部制御手段により、前記使用描素部指定手段により指定された 前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光へッ ドを、前記感光層に対し走查方向に相対的に移動させて露光が行われることにより、 前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形 成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記 感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高 精細なパターンが形成される。  And a developing step of developing the photosensitive layer exposed in the exposure step. In the method for producing a color filter described in <1>, the exposure head is subjected to N multiple exposures (where N is a natural number of 2 or more) of the usable pixel parts by means of the used pixel parts specifying means. The pixel part to be used in (1) is specified, and the pixel part control unit controls the pixel part so that only the pixel part specified by the used pixel part specifying unit is involved in exposure. The By performing exposure by moving the exposure head relative to the photosensitive layer in the strike direction, the exposure head is exposed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and density unevenness of the pattern to be formed are leveled. As a result, the photosensitive layer is exposed to high definition, and then the photosensitive layer is developed to form a high definition pattern.
< 2 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前 記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領 域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実 現するために使用する前記描素部を指定する前記 < 1 >に記載のカラーフィルタの 製造方法である。該 < 2 >に記載のカラーフィルタの製造方法においては、露光が 複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドに より形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与 する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現するために使 用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度 のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パタ ーンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光 が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが 形成される。 <2> The exposure is performed by a plurality of exposure heads, and the used picture element specifying means is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The method for producing a color filter according to <1>, wherein among the picture element parts involved in the exposure of the area, the picture element part used for realizing N double exposure in the inter-head connection area is designated. . In the method for producing a color filter according to <2>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads. Of the picture element parts involved in the exposure of the head-to-head joint area, the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, whereby the exposure head Variations in the resolution and density unevenness of the pattern formed in the connection area between the heads on the exposed surface of the photosensitive layer due to a shift in the mounting position and mounting angle are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high definition pattern.
< 3 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前 記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領 域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけ る N重露光を実現するために使用する前記描素部を指定する前記 < 2 >に記載の力 ラーフィルタの製造方法である。該 < 3 >に記載のカラーフィルタの製造方法におい ては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記 露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域 以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外における N重露 光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの 取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域 以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この 結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像すること により、高精細なパターンが形成される。  <3> Exposure is performed by a plurality of exposure heads, and the used picture element designation means is used for exposures other than the head-to-head connection region, which is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads. In the method for producing a power color filter according to <2>, wherein the pixel part used for realizing N double exposure in an area other than the head-to-head connection area among the pixel parts involved is specified. is there. In the method for producing a color filter according to <3>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit performs overlapping exposure on the exposed surface formed by the plurality of exposure heads. By specifying the pixel part used to realize N double exposure in areas other than the head-to-head connection area among the pixel parts related to exposure other than the head-to-head connection area, the exposure is performed. Variations in resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to a deviation in the mounting position and mounting angle of the head are equalized. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high definition pattern.
< 4 > 設定傾斜角度 θ N重露光数の N、描素部の列方向の個数 s、前記描素 部の列方向の間隔 p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走 查方向と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin Θ idea <4> Set tilt angle θ N N of the number of multiple exposures, the number s of pixel portions in the column direction, the interval p in the column direction of the pixel portions, and the exposure head running in a state where the exposure head is tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the direction, the following expression: spsin Θ idea
≥Ν δを満たす Θ に対し、 θ≥ Θ の関係を満たすように設定される前記 < 1 > 力ら < 3 >のレ、ずれかに記載のカラーフィルタの製造方法である。 For Θ satisfying ≥Ν δ, the above <1> is set so as to satisfy the relationship of θ≥ Θ This is a method for manufacturing a color filter according to the item <3>.
< 5 > N重露光の Nが、 3以上の自然数である前記く 1 >力らく 4 >のいずれか に記載のカラーフィルタの製造方法である。該 < 5 >に記載のカラーフィルタの製造 方法においては、 N重露光の N力 S、 3以上の自然数であることにより、多重描画が行 われる。この結果、坦め合わせの効果により、前記露光ヘッドの取付位置や取付角 度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のば らつきや濃度のむらが、より精密に均される。  <5> The method for producing a color filter according to any one of <1>, <4>, wherein N in N-exposure is a natural number of 3 or more. In the method for producing a color filter described in <5>, multiple drawing is performed by N force S of N double exposure, a natural number of 3 or more. As a result, due to the effect of the alignment, the variation in resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to the deviation of the mounting position and mounting angle of the exposure head are more precise. To be leveled.
[0015] < 6 > 使用描素部指定手段が、 [0015] <6> Use pixel part specification means
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と  Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure;
を備える前記 < 1 >から < 5 >のいずれかに記載のカラーフィルタの製造方法である  The method for producing a color filter according to any one of <1> to <5>, comprising:
< 7 > 使用描素部指定手段が、 N重露光を実現するために使用する使用描素部 を、行単位で指定する前記 < 1 >から < 6 >のいずれかに記載のカラーフィルタの製 造方法である。 <7> The used pixel part specifying means specifies the used pixel part to be used for realizing the N double exposure in units of rows. It is a manufacturing method.
[0016] < 8 > 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光 ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走 查方向とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ ' と設定傾斜角度 Θとの誤差を吸収するように使用描素部を選択する前記 < 6 >から < 7 >のレ、ずれかに記載のカラーフィルタの製造方法である。  [0016] <8> A light spot position detection unit, based on at least two light spot positions detected, a light spot column direction on the surface to be exposed and a scanning direction of the exposure head when the exposure head is tilted From the above <6>, the actual pixel tilt angle Θ 'is identified, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual tilt angle Θ' and the set tilt angle Θ. The method for producing a color filter according to <7>.
< 9 > 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の光 点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中 央値、最大値、及び最小値のいずれかである前記 < 8 >に記載のカラーフィルタの 製造方法である。  <9> The actual inclination angle Θ 'is the average or median value of a plurality of actual inclination angles formed by the row direction of the light spots on the exposed surface and the scanning direction of the exposure head when the exposure head is inclined. The method for producing a color filter according to <8>, wherein the color filter is any one of a maximum value and a minimum value.
く 10 > 描素部選択手段が、実傾斜角度 Θ 'に基づき、 ttan Θ ' =N (ただし、 Nは N重露光数の Nを表す)の関係を満たす tに近レ、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における 1行目から前記 T行目の前記 描素部を、使用描素部として選択する前記 < 8 >から < 9 >のレ、ずれかに記載の力 ラーフィルタの製造方法である。 10> The pixel part selection means derives the natural number T near t, which satisfies the relationship of ttan Θ '= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ' And m lines (however, m (Represents a natural number of 2 or more) In the arrayed pixel part, select the pixel part from the first line to the T line as the used pixel part. The manufacturing method of the force filter described in 1.
< 11 > 描素部選択手段が、実傾斜角度 Θ 'に基づき、 ttan Θ ' =N (ただし、 Nは N重露光数の Nを表す)の関係を満たす tに近レ、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における、(T+ 1)行目力 m行目の前 記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、 使用描素部として選択する前記 < 8 >から < 9 >のレ、ずれかに記載のカラーフィルタ の製造方法である。  <11> The pixel part selection means derives the natural number T near t, which satisfies the relationship of ttan Θ '= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ' In the m-th line (where m represents a natural number greater than or equal to 2), the (T + 1) line power of the m-th line is specified as an unused pixel section. The method for producing a color filter according to <8> to <9>, wherein the pixel parts excluding the unused pixel parts are selected as used pixel parts.
< 12 > 描素部選択手段が、複数の描素部列により形成される被露光面上の重 複露光領域を少なくとも含む領域において、  <12> In an area including at least a multiple exposure area on an exposed surface formed by a plurality of pixel part rows,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、  (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure.
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、  (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur for the ideal N double exposure.
のレ、ずれかである前記 < 6 >からく 11 >に記載のカラーフィルタの製造方法である The method for producing a color filter according to <6> Karaku 11>, wherein
< 13 > 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重 複露光領域であるヘッド間つなぎ領域において、 <13> In the connection area between the heads, which is the overlapping exposure area on the exposed surface formed by a plurality of exposure heads,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、 (2) Compared to the ideal N double exposure, the number of pixel units in the overexposed area and underexposure The pixel part excluding the unused pixel part, specifying an unused pixel part from the pixel part involved in the exposure of the inter-head connecting region so that the number of pixel units in the region is equal Means to select as the use pixel part,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、  (3) For the ideal N-double exposure, the area of the overexposed area is minimized, and the pixel part involved in the exposure of the connecting area between the heads is used so that the underexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、  (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
のレ、ずれかである前記 < 6 >からく 12 >のレ、ずれかに記載のカラーフィルタの製造 方法である。 This is a method for producing a color filter according to <6> Karaku 12>, which is a misregistration.
< 14 > 不使用描素部が、行単位で特定される前記く 13 >に記載のカラーフィル タの製造方法である。  <14> The method for manufacturing a color filter according to <13>, wherein the unused pixel parts are specified in units of lines.
< 15 > 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前 記描素部のみを使用して参照露光を行う前記 < 5 >から < 14 >のいずれかに記載 のカラーフィルタの製造方法である。該く 15 >に記載のカラーフィルタの製造方法 においては、使用描素部指定手段において使用描素部を指定するために、使用可 能な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する 前記描素部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得ら れる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  <15> In order to specify the used pixel part in the used pixel part specifying means, among the pixel parts that can be used, N (N-1) pixel part columns for every N exposures. The method for producing a color filter according to any one of <5> to <14>, wherein the reference exposure is performed using only the drawing element part constituting the above. In the method for producing a color filter described in 15>, in order to designate the used pixel part in the used pixel part specifying means, among the usable picture element parts, N of N double exposures is used. , (N-1) Configure the pixel part sequence for each column. The reference exposure is performed using only the pixel part, and a simple pattern of substantially single drawing can be obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
< 16 > 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1/N行毎の描素部行を構成する前記 描素部のみを使用して参照露光を行う前記 < 5 >から < 14 >のいずれかに記載の カラーフィルタの製造方法である。該く 16 >に記載のカラーフィルタの製造方法に おいては、使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1/N行毎の描素部列を構成する前記 描素部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる<16> In order to specify the used pixel part in the used pixel part specifying means, out of the usable pixel parts, for each N of N exposures, configure 1 / N line pixel part line The color filter manufacturing method according to any one of <5> to <14>, wherein the reference exposure is performed using only the pixel part. In the manufacturing method of the color filter described in 16>, it can be used to specify the used pixel part in the used pixel part specifying means. Of these pixel parts, for N double exposure N, reference exposure is performed using only the pixel parts constituting the pixel part column for each 1 / N row, and the simple single drawing simple A unique pattern
。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。 . As a result, the picture element portion in the head-to-head connection region is easily specified.
[0019] <17> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器<17> Use picture element part specifying means as light spot position detecting means slit and photodetector
、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記And an arithmetic unit connected to the photodetector as a pixel part selection means
< 1 >力、らく 16 >のいずれかに記載のカラーフィルタの製造方法である。 <1> A force, a method for producing a color filter according to any one of 16 above.
<18> N重露光の Nが、 3以上 7以下の自然数である前記 <1>力 く 17>の いずれかに記載のカラーフィルタの製造方法である。  <18> The method for producing a color filter according to any one of <1> preferably 17, wherein N in N-exposure is a natural number of 3 or more and 7 or less.
[0020] <19> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 1 >から < 18>の いずれかに記載のカラーフィルタの製造方法である。 <19> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs light emitted from the light irradiation unit. The method for producing a color filter according to any one of <1> to <18>, wherein modulation is performed according to a generated control signal.
<20> ノ ターン情報が表すパターンの所定部分の寸法が、指定された使用描素 部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する 変換手段を有する前記 <1>からく 19>のレ、ずれかに記載のカラーフィルタの製造 方法である。  <20> From the above <1>, which has conversion means for converting the pattern information so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the designated used pixel part. <19> A method for producing a color filter as described in the above.
[0021] <21> 光変調手段力 空間光変調素子である前記 <1>から <20>のいずれ かに記載のカラーフィルタの製造方法である。  [0021] <21> Light modulation means force The method for producing a color filter according to any one of <1> to <20>, which is a spatial light modulation element.
<22> 空間光変調素子が、デジタル.マイクロミラー.デバイス(DMD)である前 記 < 21 >に記載のカラーフィルタの製造方法である。  <22> The method for producing a color filter according to <21>, wherein the spatial light modulator is a digital micromirror device (DMD).
<23> 描素部が、マイクロミラーである前記く 21>力もく 22>のいずれかに記 載のカラーフィルタの製造方法である。  <23> The method for producing a color filter according to any one of the above <21>, <22>, wherein the pixel part is a micromirror.
[0022] <24> 光照射手段力 2以上の光を合成して照射可能である前記 <1>から < 2 3 >のレ、ずれかに記載のカラーフィルタの製造方法である。該く 24 >に記載のカラ 一フィルタの製造方法にぉレ、ては、前記光照射手段が 2以上の光を合成して照射可 能であることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光 層への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像するこ とにより、極めて高精細なパターンが形成される。 < 25 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバ の入射端面に収束させる集合光学系とを有する前記 < 1 >から < 24 >のいずれか に記載のカラーフィルタの製造方法である。該く 25 >に記載のカラーフィルタの製 造方法においては、前記光照射手段が、前記複数のレーザ力 それぞれ照射され たレーザビームが前記集合光学系により集光し、前記マルチモード光ファイバの入 射端面に収束させることにより、露光が焦点深度の深い露光光で行われる。この結果 、前記感光層への露光が極めて高精細に行われる。例えば、その後、前記感光層を 現像することにより、極めて高精細なパターンが形成される。 <24> The method for producing a color filter according to <1> to <2 3>, wherein the light irradiation means force can synthesize and irradiate two or more lights. In addition, according to the color filter manufacturing method described in 24> above, since the light irradiation means can synthesize and irradiate two or more lights, the exposure can be performed with exposure light having a deep focal depth. Done. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern. <25> Collective optics in which the light irradiating means collects and converges a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers to the incident end face of the multimode optical fiber. The method for producing a color filter according to any one of <1> to <24>, comprising: In the method for producing a color filter described in 25>, the light irradiating means condenses the laser beams irradiated by the plurality of laser forces by the collective optical system, and enters the multimode optical fiber. By converging on the emitting end surface, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
ぐ 26 > 感光層が、感光性組成物を基材の表面に塗布し、乾燥することにより形 成される前記 < 1 >力 く 25 >のいずれかに記載のカラーフィルタの製造方法であ る。  <26> The method for producing a color filter according to any one of <1> to 25, wherein the photosensitive layer is formed by applying a photosensitive composition to a surface of a substrate and drying the coating. .
< 27 > 感光層が、支持体上に感光性組成物が積層されてなる感光性転写材料 、該支持体とは反対側の面と基材とが当接するように該基材上に積層し、次いで、支 持体を剥離することにより形成される前記 < 1 >からく 25 >のいずれかに記載のカラ 一フィルタの製造方法である。  <27> A photosensitive transfer material in which a photosensitive composition is laminated on a support, and the photosensitive layer is laminated on the substrate so that the surface opposite to the support is in contact with the substrate. Then, the method for producing a color filter according to any one of <1> to 25, which is formed by peeling off the support.
< 28 > 感光性組成物が、少なくとも、黒色(K)に着色されている前記 < 1 >から < 27 >のレ、ずれかに記載のカラーフィルタの製造方法である。  <28> The method for producing a color filter according to <1> to <27>, wherein the photosensitive composition is colored at least black (K).
< 29 > 少なくとも、赤色(R)、緑色(G)、及び青色(B)の 3原色に着色された感 光性組成物を用いて、基材の表面に所定の配置で、 R、 G及び Bの各色毎に、順次、 感光層形成工程、露光工程、及び現像工程を繰り返してカラーフィルタを形成する 前記 < 1 >から < 28 >のレ、ずれかに記載のカラーフィルタの製造方法である。  <29> Using a photosensitive composition colored in at least three primary colors of red (R), green (G), and blue (B), R, G and The color filter manufacturing method according to any one of <1> to <28>, wherein the color filter is formed by sequentially repeating the photosensitive layer forming step, the exposure step, and the developing step for each color of B. .
< 30 > 赤色 (R)着色に少なくとも顔料 C. I.ピグメントレッド 254を、緑色(G)着 色に顔料 C. I.ビグメントグリーン 36及び顔料 C. I.ビグメントイエロー 139の少なくと もいずれかの顔料を、並びに、青色(B)着色に少なくとも顔料 C. I.ビグメントブルー 15: 6を用いる前記く 29 >に記載のカラーフィルタの製造方法である。  <30> Red (R) coloring at least Pigment CI Pigment Red 254, Green (G) coloring at least Pigment CI Pigment Green 36 and Pigment CI Pigment Yellow 139, and blue (B) The method for producing a color filter according to the above item 29, wherein at least a pigment CI pigment blue 15: 6 is used for coloring.
< 31 > 赤色(R)着色に顔料 C. I.ビグメントレッド 254及び顔料 C. I.ピグメントレ ッド 177の少なくともいずれかの顔料を、緑色(G)着色に顔料 C. I.ピグメントグリー ン 36及び顔料 C. I.ビグメントイエロー 150の少なくともいずれかの顔料を、並びに、 青色(B)着色に顔料 C. I.ビグメントブルー 15 : 6及び顔料 C. I.ビグメントバイオレツ ト 23の少なくともレ、ずれかの顔料を用いる前記 < 29 >に記載のカラーフィルタの製 造方法である。 <31> Pigment CI Pigment Red 254 and Pigment CI Pigment Red 177 for red (R) coloring, Pigment CI Pigment Green for green (G) coloring 36 and pigment CI pigment yellow 150 and at least one pigment CI pigment blue 15: 6 and pigment CI pigment violet 23. The method for producing a color filter as described in <29> above, wherein
[0024] < 32 > 前記 < 1 >から < 31 >のいずれかに記載のカラーフィルタの製造方法に より製造されたことを特徴とするカラーフィルタである。  <32> A color filter manufactured by the method for manufacturing a color filter according to any one of <1> to <31>.
< 33 > 前記く 32 >に記載のカラーフィルタを用いたことを特徴とする表示装置 である。  <33> A display device using the color filter according to <32>.
発明の効果  The invention's effect
[0025] 本発明によると、従来における問題を解決することができ、フォトマスクを用いること なぐ前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記パタ ーン形成材料の露光面との間の光学系の各種収差、及び前記描素部自体の歪み 等に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被 露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減するこ とにより、特にブラック画像の線幅ばらつきを極めて少なぐ高精細に形成可能であり 、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機、ノートパソコン、テレビ モニター等の液晶表示装置 (LCD)用、 PALC (プラズマアドレス液晶)、プラズマデ イスプレイなどに好適に用いられるカラーフィルタの製造方法、及び該カラーフィルタ の製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィ ルタを用いた表示装置を提供することができる。また、本発明によると、現像後に観察 されるムラ(塗布ムラ及び表示ムラ)が軽減できる。  [0025] According to the present invention, the conventional problems can be solved, and the exposure head mounting position and mounting angle shift without using a photomask, and the exposure of the picture element portion and the pattern forming material can be performed. The pattern formed on the exposed surface of the photosensitive layer by leveling out the effects of variations in the exposure dose due to various aberrations of the optical system between the surface and pattern distortion caused by the distortion of the picture element itself. By reducing variation in resolution and density unevenness, it is possible to form high-definition images with extremely low line width variation, especially at low cost, with excellent display characteristics, and for portable terminals, portable game machines, and notebooks. Manufacturing method of color filter suitably used for liquid crystal display devices (LCD) such as personal computers and television monitors, PALC (plasma addressed liquid crystal), plasma display, and the like It is possible to provide a color filter excellent in display characteristics manufactured by the method for manufacturing a color filter, and a display device using the color filter. Further, according to the present invention, unevenness (coating unevenness and display unevenness) observed after development can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]図 1は、露光装置の一例の外観を示す斜視図である。  FIG. 1 is a perspective view showing an appearance of an example of an exposure apparatus.
[図 2]図 2は、露光装置のスキャナの構成の一例を示す斜視図である。  FIG. 2 is a perspective view showing an example of the configuration of a scanner of the exposure apparatus.
[図 3A]図 3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図で ある。  FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
[図 3B]図 3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。  FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
[図 4]図 4は、露光ヘッドの概略構成の一例を示す斜視図である。 園 5A]図 5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。 FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head. FIG. 5A is a top view showing an example of a detailed configuration of the exposure head.
[図 5B]図 5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。  FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
[図 6]図 6は、図 1の露光装置の DMDの一例を示す部分拡大図である。  6 is a partially enlarged view showing an example of a DMD of the exposure apparatus in FIG.
[図 7A]図 7Aは、 DMDの動作を説明するための斜視図である。  FIG. 7A is a perspective view for explaining the operation of the DMD.
[図 7B]図 7Bは、 DMDの動作を説明するための斜視図である。  FIG. 7B is a perspective view for explaining the operation of the DMD.
園 8]図 8は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上 のパターンに生じるむらの例を示した説明図である。 8] FIG. 8 is an explanatory diagram showing an example of unevenness that occurs in the pattern on the exposed surface when there is an attachment head angle error and pattern distortion.
[図 9]図 9は、 1つの DMDによる露光エリアと、対応するスリットとの位置関係を示した 上面図である。  FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
[図 10]図 10は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
[図 11]図 11は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上 のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 11] FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
園 12]図 12は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上の パターンに生じるむらの例を示した説明図である。 12] FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in the pattern on the exposed surface when there is a relative position shift between adjacent exposure heads.
園 13]図 13は、隣接する 2つの露光ヘッドによる露光エリアと、対応するスリットとの位 置関係を示した上面図である。 13] FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
[図 14]図 14は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
園 15]図 15は、図 12の例において選択された使用画素のみが実動され、被露光面 上のパターンに生じるむらが改善された状態を示す説明図である。 15] FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved and unevenness in the pattern on the exposed surface is improved.
[図 16]図 16は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある 際に、被露光面上のパターンに生じるむらの例を示した説明図である。  FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
園 17]図 17は、図 16の例において選択された使用描素部のみを用いた露光を示す 説明図である。 17] FIG. 17 is an explanatory diagram showing exposure using only the used pixel part selected in the example of FIG.
[図 18A]図 18Aは、倍率歪みの例を示した説明図である。  FIG. 18A is an explanatory view showing an example of magnification distortion.
[図 18B]図 18Bは、ビーム径歪みの例を示した説明図である。 FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
園 19A]図 19Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。 19A] FIG. 19A is an explanatory diagram showing a first example of reference exposure using a single exposure head. is there.
[図 19B]図 19Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 20]図 20は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である  FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
[図 21A]図 21Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。 FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
[図 21B]図 21Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。  FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
[図 22]図 22は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である  FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
[図 23]図 23は、比較例 1において、各画素列の傾斜角度が均一ではなくなる「角度 歪み」により、被露光面上のパターンに生じたむらの例を示した説明図である。 発明を実施するための最良の形態 FIG. 23 is an explanatory view showing an example of unevenness generated in the pattern on the exposed surface due to “angle distortion” in which the inclination angle of each pixel column is not uniform in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
[0027] (カラーフィルタの製造方法) [0027] (Method for manufacturing color filter)
本発明のカラーフィルタの製造方法は、感光層形成工程と、露光工程と、現像工程 とを少なくとも含んでなり、更に必要に応じて適宜選択されたその他の工程を含んで なる。  The method for producing a color filter of the present invention includes at least a photosensitive layer forming step, an exposure step, and a development step, and further includes other steps appropriately selected as necessary.
本発明のカラーフィルタは、本発明の前記カラーフィルタの製造方法により製造さ れる。  The color filter of the present invention is manufactured by the method for manufacturing a color filter of the present invention.
本発明の表示装置は、本発明の前記カラーフィルタを用いてなり、更に必要に応じ てその他の手段を有してなる。  The display device of the present invention uses the color filter of the present invention, and further includes other means as necessary.
以下、本発明のカラーフィルタの製造方法の説明を通じて、本発明のカラーフィル タ及び表示装置の詳細につレ、ても明らかにする。  Hereinafter, the details of the color filter and display device of the present invention will be clarified through the description of the method of manufacturing the color filter of the present invention.
[0028] [感光層形成工程] [Photosensitive layer forming step]
前記感光層形成工程は、バインダー、重合性化合物、着色剤、及び光重合開始剤 を含む前記感光性組成物を用いて、前記基材の表面に、少なくとも前記感光層を形 成する工程であり、更に適宜選択されたその他の層を形成する工程である。 [0029] 前記感光層、及びその他の層を形成する方法としては、特に制限はなぐ 目的に応 じて適宜選択することができ、例えば、塗布により形成する方法、シート状の各層を加 圧及び加熱の少なくともいずれ力を行うことで、ラミネートすることにより形成する方法 、それらの併用などが挙げられる。 The photosensitive layer forming step is a step of forming at least the photosensitive layer on the surface of the substrate using the photosensitive composition containing a binder, a polymerizable compound, a colorant, and a photopolymerization initiator. Further, it is a step of forming other layers appropriately selected. [0029] The method of forming the photosensitive layer and other layers can be appropriately selected according to the purpose without any particular limitation. For example, the method of forming by coating, applying pressure to each sheet-like layer A method of forming by laminating by performing at least any force of heating, a combination thereof, and the like can be mentioned.
前記感光層形成工程としては、以下に示す第 1の態様の感光層形成工程及び第 2 の態様の感光層形成工程が好適に挙げられる。  Preferred examples of the photosensitive layer forming step include the photosensitive layer forming step of the first aspect and the photosensitive layer forming step of the second aspect shown below.
[0030] 第 1の態様の感光層形成工程としては、前記感光性組成物を基材の表面に塗布し 、乾燥することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択さ れたその他の層を形成する工程が挙げられる。  [0030] In the photosensitive layer forming step of the first aspect, at least a photosensitive layer is formed on the surface of the substrate by applying the photosensitive composition to the surface of the substrate and drying, and further, Examples include a step of forming other layers appropriately selected.
[0031] 第 2の態様の感光層形成工程としては、前記感光性組成物をからなる感光性転写 層をフィルム状に成形した感光性転写材料を用いて、該感光性転写層を、基材とが 当接するように加熱及び加圧の少なくともいずれかの下において積層することにより 、前記基材の表面に少なくとも感光層を形成し、更に、適宜選択されたその他の層を 形成する工程が挙げられる。  [0031] In the photosensitive layer forming step of the second aspect, a photosensitive transfer material obtained by forming a photosensitive transfer layer comprising the photosensitive composition into a film is used, and the photosensitive transfer layer is formed on a substrate. And a step of forming at least a photosensitive layer on the surface of the base material by laminating under at least one of heating and pressurization so as to contact with each other, and further forming other appropriately selected layers. It is done.
[0032] 第 1の態様の感光層形成工程において、前記感光性組成物の塗布及び乾燥の方 法としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、前記基 材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光 性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が 挙げられる。  [0032] In the photosensitive layer forming step of the first aspect, the method of applying and drying the photosensitive composition is not particularly limited and may be appropriately selected depending on the purpose. Examples include a method of preparing a photosensitive composition solution by dissolving, emulsifying or dispersing the photosensitive composition in water or a solvent on the surface, and directly laminating the solution and drying.
[0033] 前記感光性組成物溶液の溶剤としては、特に制限はなぐ 目的に応じて適宜選択 すること力 Sできる。  [0033] The solvent of the photosensitive composition solution is not particularly limited, and can be appropriately selected according to the purpose.
[0034] 前記塗布の方法としては、特に制限はなぐ 目的に応じて適宜選択することができ 、 ί列えば、スピンコーター、スリットスピンコーター、ローノレコーター、ダイコーター、力 一テンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。本発明 においては、液が吐出する部分にスリット状の穴を有するスリット状ノズノレを用いた塗 布装置 (スリットコータ)によって行うことが好ましい。具体的には、特開 2004— 8985 1号公報、特開 2004— 17043号公報、特開 2003— 170098号公報、特開 2003— 164787号公報、特開 2003— 10767号公報、特開 2002— 79163号公報、特開 2 001— 310147号公報等に記載のスリット状ノズル、及びスリットコーターが好適に用 いられる。 [0034] The coating method is not particularly limited, and can be appropriately selected according to the purpose. For example, a spin coater, a slit spin coater, a ronor coater, a die coater, or a force ten coater can be used. The method of apply | coating directly to the said base material is mentioned. In the present invention, it is preferably performed by a coating apparatus (slit coater) using a slit-shaped nozzle having a slit-shaped hole in a portion from which the liquid is discharged. Specifically, JP-A-2004-89851, JP-A-2004-17043, JP-A-2003-170098, JP-A-2003-164787, JP-A-2003-10767, JP-A-2002- 79163, JP 2 Slit nozzles and slit coaters described in, for example, 001-310147 are suitably used.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。  The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0035] 第 1の態様の感光層形成工程において形成されるその他の層としては、特に制限 はなぐ 目的に応じて適宜選択することができ、例えば、酸素遮断層、剥離層、接着 層、光吸収層、表面保護層などが挙げられる。 [0035] Other layers formed in the photosensitive layer forming step of the first aspect can be appropriately selected according to the purpose without any particular limitation. For example, the oxygen blocking layer, the release layer, the adhesive layer, the light An absorption layer, a surface protective layer, etc. are mentioned.
前記その他の層の形成方法としては、特に制限はなぐ 目的に応じて適宜選択す ること力 Sでき、例えば、前記感光層上に塗布する方法、シート状に形成されたその他 の層を積層する方法などが挙げられる。  The method for forming the other layer is not particularly limited, and can be appropriately selected according to the purpose. For example, a method of coating on the photosensitive layer, or laminating other layers formed in a sheet shape. The method etc. are mentioned.
[0036] 前記第 2の態様の感光層形成工程において、基材の表面に感光層、及び必要に 応じて適宜選択されるその他の層を形成する方法としては、前記基材の表面に、支 持体と該支持体上に感光性組成物が積層されてなる感光層と、必要に応じて適宜選 択されるその他の層とを有する前記感光性転写材料 (感光性フィルム)を、加熱及び 加圧の少なくともいずれかを行いながら積層する方法が挙げられ、具体的には、前 記支持体上に前記感光性組成物からなる感光性転写層(以下、単に「感光層」と表 すことがある)を有する前記感光性転写材料を、前記感光性転写層(感光層)が基材 の表面側となるように積層し、次いで、前記支持体を前記感光性転写層(感光層)上 力 剥離する方法が好適に挙げられる。  [0036] In the photosensitive layer forming step of the second aspect, as a method of forming the photosensitive layer on the surface of the substrate and other layers appropriately selected as necessary, the surface of the substrate is supported. The photosensitive transfer material (photosensitive film) having a holder, a photosensitive layer formed by laminating a photosensitive composition on the support, and other layers appropriately selected as necessary, is heated and Examples include a method of laminating while performing at least one of pressurization, and specifically, a photosensitive transfer layer (hereinafter simply referred to as “photosensitive layer”) made of the photosensitive composition on the support. The photosensitive transfer material is laminated so that the photosensitive transfer layer (photosensitive layer) is on the surface side of the substrate, and then the support is placed on the photosensitive transfer layer (photosensitive layer). A method of peeling force is preferable.
前記支持体を剥離することにより、前記支持体による光の散乱や屈折の等影響で 前記感光層上に結像させる像にボケ像が生じることが防止され、所定のパターンが 高解像度で得られる。  By peeling off the support, it is possible to prevent a blurred image from being generated on the image formed on the photosensitive layer due to light scattering or refraction by the support, and a predetermined pattern can be obtained with high resolution. .
なお、前記感光性転写材料が、後述する保護フィルムを有する場合には、該保護 フィルムを剥離し、前記基材に前記感光層が重なるようにして積層する。  When the photosensitive transfer material has a protective film to be described later, the protective film is peeled off and laminated so that the photosensitive layer overlaps the base material.
[0037] 前記加熱温度は、特に制限はなぐ 目的に応じて適宜選択することができるが、例 免 ίΐ、 70〜: 130oC力好ましく、 80〜: 110oC力 Sより好ましレヽ。 [0037] The heating temperature is not particularly limited, and can be appropriately selected according to the purpose. For example, it is preferable that the heating temperature is 70 to 130 ° C, and 80 to 110 ° C.
前記加圧の圧力は、特に制限はなぐ 目的に応じて適宜選択することができるが、 ί列免は、、 0. 01〜: 1. OMPaカ好ましく、 0. 05〜: 1. OMPaカより好ましレヽ。 [0038] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター( 例えば、(株)日立インダストリィズ社、 LamicII型)、真空ラミネーター(例えば、名機 製作所製、 MVLP500)などが好適に挙げられる。 The pressure of the pressurization is not particularly limited, and can be appropriately selected according to the purpose. However, the 好 ま し く column is preferably from 0.01 to 1. 1. OMPa, more preferably from 0.05 to 1. OMPa. I like it. [0038] The apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation. For example, a heat press, a heat roll laminator (for example, Hitachi Industries, Ltd.) Suitable examples include Lise Co., Ltd., Lamic II type), vacuum laminator (for example, MVLP500 manufactured by Meiki Seisakusho).
[0039] 前記支持体としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましぐ更に表 面の平滑性が良好であるのがより好ましい。 [0039] The support is not particularly limited and may be appropriately selected depending on the purpose, but it is preferable that the photosensitive layer can be peeled off and has good light transmittance. It is more preferable that the smoothness of the surface is good.
[0040] 前記支持体の厚みは、特に制限はなぐ 目的に応じて適宜選択することができ、例 免は、、 4〜300 μ πιカ好ましく、 5〜: 175 z m力 Sより好ましく、 10〜: 100 μ mカ特に好 ましい。 [0040] The thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. Exclusion is preferably 4 to 300 μπι, preferably 5 to: 175 zm force S, more preferably 10 to : 100 μm is particularly preferable.
[0041] 前記支持体の形状は、特に制限はなぐ 目的に応じて適宜選択することができるが 、長尺状が好ましい。前記長尺状の支持体の長さは、特に制限はなぐ例えば、 10m 〜20, OOOmの長さのものが挙げられる。  [0041] The shape of the support is not particularly limited and can be appropriately selected according to the purpose, but is preferably long. The length of the long support is not particularly limited, and examples thereof include those having a length of 10 m to 20, OOOm.
[0042] 前記支持体は、合成樹脂製であり、かつ透明であるものが好ましぐ例えば、ポリエ チレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢 酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ) アクリル酸エステル共重合体、ポリ塩化ビエル、ポリビニルアルコール、ポリカーボネ ート、ポリスチレン、セロファン、ポリ塩ィ匕ビ二リデン共重合体、ポリアミド、ポリイミド、塩 化ビエル'酢酸ビエル共重合体、ポリテトラフルォロエチレン、ポリトリフルォロェチレ ン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げら れ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、 1種単独 で使用してもよぐ 2種以上を併用してもよい。  [0042] The support is preferably made of a synthetic resin and transparent. For example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) Acrylic acid alkyl ester, poly (meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinyl chloride-vinylidene copolymer, polyamide, polyimide, chloride vinyl ' Various plastic films such as vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulosic film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
なお、前記支持体としては、例えば、特開平 4一 208940号公報、特開平 5— 8050 3号公報、特開平 5— 173320号公報、特開平 5— 72724号公報などに記載の支持 体を用レ、ることもできる。  As the support, for example, the support described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, etc. is used. You can also.
[0043] 前記感光性転写材料における感光層の形成は、前記基材への前記感光性組成物 溶液の塗布及び乾燥 (前記第 1の態様の感光層形成方法)と同様な方法で行うこと ができる。 [0044] 前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する フィルムである。 [0043] Formation of the photosensitive layer in the photosensitive transfer material may be performed by the same method as application of the photosensitive composition solution to the substrate and drying (the photosensitive layer forming method of the first aspect). it can. [0044] The protective film is a film having a function of preventing and protecting the photosensitive layer from being stained and damaged.
前記保護フィルムの厚みは、特に制限はなぐ 目的に応じて適宜選択することがで き、 ί列えば、 5〜: 100 z m力 S好ましく、 8〜50〃111カょり好ましく、 10〜40〃111カ特に 好ましい。  The thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. If it is arranged, 5 to: 100 zm force S is preferable, 8 to 50 mm 111 is preferable, 10 to 40 mm is preferable. 111 is particularly preferred.
[0045] 前記保護フィルムの前記感光性転写材料において設けられる箇所としては、特に 制限はなぐ 目的に応じて適宜選択することができるが、通常、前記感光層上に設け られる。  [0045] The portion provided in the photosensitive transfer material of the protective film is not particularly limited and can be appropriately selected according to the purpose, but is usually provided on the photosensitive layer.
[0046] 前記保護フィルムを用レ、る場合、前記感光層及び前記支持体の接着力 Aと、前記 感光層及び保護フィルムの接着力 Bとの関係としては、接着力 A>接着力 Bであるこ とが好適である。  When the protective film is used, the relationship between the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film is as follows: Adhesive force A> Adhesive force B It is preferable to be.
[0047] 前記支持体と前記保護フィルムとの静摩擦係数は、 0. 3〜: 1. 4力 S好ましく、 0. 5〜 1. 2がより好ましい。  [0047] The coefficient of static friction between the support and the protective film is preferably 0.3 to: 1.4 force S, and more preferably 0.5 to 1.2.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に卷くことが困難となるこ とがある。  If the coefficient of static friction is less than 0.3, slipping may occur excessively, so that deviation may occur when the roll is formed.If it exceeds 1.4, it is difficult to form a good roll. There is a thing.
[0048] 前記保護フィルムとしては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレン 力 Sラミネートされた紙、ポリオレフイン又はポリテトラフルォロエチレンシート、などが挙 げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムなどが特に好 ましいものとして挙げられる。  [0048] The protective film is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include those used for the support, silicone paper, polyethylene, polypropylene, S-laminated paper, polyolefin or Polytetrafluoroethylene sheet and the like are listed, and among these, polyethylene film and polypropylene film are particularly preferable.
前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 特開 2005— 70767号公報の段落番号 0151に記載の組合せや、ポリエチレンテレ フタレート Zポリエチレンテレフタレート等の組合せが挙げられる。  Examples of the combination of the support and the protective film (support Z protective film) include, for example, the combination described in paragraph No. 0151 of JP-A-2005-70767 and the combination of polyethylene terephthalate Z polyethylene terephthalate and the like. .
[0049] 前記保護フィルムとしては、上述の接着力の関係を満たすために、前記保護フィル ムと前記感光層との接着性を調製するために表面処理することが好ましぐ例えば、 該表面処理の方法としては、特開 2005— 70767号公報の段落番号 0151に記載の 方法等が挙げられる。 [0050] 前記その他の層としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、熱可塑性樹脂層、及び中間層などが挙げられる。 [0049] The protective film preferably has a surface treatment for adjusting the adhesion between the protective film and the photosensitive layer in order to satisfy the above-described adhesive force relationship. Examples of the method include the method described in paragraph No. 0151 of JP-A-2005-70767. [0050] The other layers are not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a thermoplastic resin layer and an intermediate layer.
[0051] 熱可塑性樹脂層  [0051] Thermoplastic resin layer
前記熱可塑性樹脂層(以下、「クッション層」と称することもある)は、アルカリ現像を 可能とし、また、転写時にはみ出した該アルカリ可溶な熱可塑性樹脂層により被転写 体が汚染されるのを防止可能とする観点からアルカリ可溶性であることが好ましぐ前 記感光性転写材料を被転写体上に転写させる際、該被転写体上に存在する凹凸に 起因して発生する転写不良を効果的に防止するクッション材としての機能を有してい ることが好ましぐ該感光性転写材料を前記被転写体上に加熱密着させた際に該被 転写体上に存在する凹凸に応じて変形可能であるのがより好ましい。  The thermoplastic resin layer (hereinafter also referred to as “cushion layer”) enables alkali development, and the transferred material is contaminated by the alkali-soluble thermoplastic resin layer protruding during transfer. It is preferable that the photosensitive transfer material is alkali-soluble from the viewpoint of preventing the occurrence of transfer defects when transferring the photosensitive transfer material onto the transfer target. It is preferable that the photosensitive transfer material, which preferably has a function as a cushioning material to prevent effectively, has unevenness present on the transferred body when the photosensitive transfer material is heated and adhered onto the transferred body. More preferably, it is deformable.
[0052] 前記熱可塑性樹脂層に用いる材料としては、例えば、特開平 5— 72724号公報に 記載されている有機高分子物質が好ましぐヴィカー Vicat法(具体的には、アメリカ 材料試験法エーエステ一エムデ一 ASTMD1235によるポリマー軟化点測定法)に よる軟ィ匕点が約 80°C以下の有機高分子物質より選択されることが特に好ましい。具 体的には、ポリエチレン、ポリプロピレンなどのポリオレフイン、エチレンと酢酸ビニル 又はそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル又はその ケン化物、ポリ塩化ビュル、塩化ビュルと酢酸ビニル又はそのケン化物の様な塩化ビ ニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレ ンと(メタ)アクリル酸エステル又はそのケン化物の様なスチレン共重合体、ポリビュル トルエン、ビエルトルエンと(メタ)アクリル酸エステル又はそのケン化物の様なビニルト ルェン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニ ル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナ ィロン、 N—アルコキシメチル化ナイロン、 N—ジメチルァミノ化ナイロンの様なポリアミ ド樹脂等の有機高分子などが挙げられる。  [0052] The material used for the thermoplastic resin layer is, for example, the Vicat Vicat method (specifically, American Material Testing Method AEST), which is preferably an organic polymer described in JP-A-5-72724. It is particularly preferred that the polymer is selected from organic polymer substances having a soft spot according to ASTM D1235 (method for measuring the softening point of polymer by ASTM D1235) of about 80 ° C or less. Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers such as ethylene and vinyl acetate or saponified products thereof, ethylene and acrylic acid esters or saponified products thereof, polychlorinated butyl, chlorinated chloride and vinyl acetate or conjugated thereof. Vinyl chloride copolymer such as saponified product, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer such as styrene and (meth) acrylic acid ester or saponified product thereof, polybutyltoluene, vinyltoluene And vinyl toluene copolymers such as (meth) acrylic acid esters or saponified products thereof, poly (meth) acrylic acid esters, (meth) acrylic acid ester copolymers such as butyl (meth) acrylate and vinyl acetate, Vinyl acetate copolymer nylon, copolymer nylon, N-alkoxymethyl Nylon, and organic polymers such as such made of Polyamide resins N- Jimechiruamino of nylon.
前記熱可塑性樹脂層の乾燥厚さは、 2〜30 z mが好ましぐ 5〜20 x mがより好ま しく、 7〜: 16 x mカ特に好ましレヽ。  The dry thickness of the thermoplastic resin layer is preferably 2 to 30 zm, more preferably 5 to 20 xm, and 7 to 16 xm, particularly preferably.
[0053] 一中間層一  [0053] One middle layer
前記中間層は、前記感光層上に設けられ、前記感光性転写材料がアルカリ可溶な 熱可塑性樹脂層を有する場合には該感光層と該アルカリ可溶な熱可塑性樹脂層と の間に設けられる。該感光層と該アルカリ可溶な熱可塑性樹脂層との形成において は有機溶剤を用いるため、該中間層がその間に位置すると、両層が互いに混ざり合 うのを防止することができる。 The intermediate layer is provided on the photosensitive layer, and the photosensitive transfer material is alkali-soluble. When it has a thermoplastic resin layer, it is provided between the photosensitive layer and the alkali-soluble thermoplastic resin layer. In the formation of the photosensitive layer and the alkali-soluble thermoplastic resin layer, an organic solvent is used. Therefore, when the intermediate layer is located between them, the layers can be prevented from being mixed with each other.
[0054] 前記中間層としては、水又はアルカリ水溶液に分散乃至溶解するものが好ましい。  [0054] The intermediate layer is preferably dispersed or dissolved in water or an aqueous alkali solution.
前記中間層の材料としては、公知のものを使用することができ、例えば、特開昭 46 — 2121号公報及び特公昭 56— 40824号公報に記載のポリビュルエーテル/無水 マレイン酸重合体、カルボキシアルキルセルロースの水溶性塩、水溶性セルロースェ 一テル類、カルボキシアルキル澱粉の水溶性塩、ポリビュルアルコール、ポリビュル ピロリドン、ポリアクリルアミド類、水溶性ポリアミド、ポリアクリル酸の水溶性塩、ゼラチ ン、エチレンオキサイド重合体、各種澱粉及びその類似物からなる群の水溶性塩、ス チレン/マレイン酸の共重合体、マレイネート樹脂、などが挙げられる。  As the material of the intermediate layer, known materials can be used, and examples thereof include polybutyl ether / maleic anhydride polymers, carboxy compounds described in JP-A-46-2121 and JP-B-56-40824. Water-soluble salts of alkyl cellulose, water-soluble cellulose ethers, water-soluble salts of carboxyalkyl starch, polybulal alcohol, polybulur pyrrolidone, polyacrylamides, water-soluble polyamides, water-soluble salts of polyacrylic acid, gelatin, ethylene Examples include oxide polymers, water-soluble salts of the group consisting of various starches and the like, styrene / maleic acid copolymers, and maleate resins.
これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。これらの中でも親 水性高分子を使用するのが好ましぐ該親水性高分子の中でも、少なくともポリビニ ノレアルコールを使用するのが好ましぐポリビュルアルコールとポリビュルピロリドンと の併用が特に好ましい。  These may be used alone or in combination of two or more. Among these hydrophilic polymers, it is particularly preferable to use polybulol alcohol and polybylpyrrolidone, which are preferably at least polyvinyl alcohol, among the hydrophilic polymers that are preferably used.
[0055] 前記ポリビニルアルコールとしては、特に制限はなぐ 目的に応じて適宜選択するこ とができる力 その鹼化率は 80%以上が好ましい。 [0055] The polyvinyl alcohol is not particularly limited and can be appropriately selected according to the purpose. The hatching rate is preferably 80% or more.
前記ポリビニルピロリドンを使用する場合、その含有量は、該中間層の固形分に対 し、:!〜 75体積%が好ましぐ:!〜 60体積%がより好ましぐ 10〜50体積%が特に好 ましい。  When the polyvinylpyrrolidone is used, the content is preferably:! To 75% by volume, more preferably 10 to 50% by volume, and more preferably 10 to 50% by volume, based on the solid content of the intermediate layer. Especially preferred.
前記含有量が、 1体積%未満であると、前記感光層との十分な密着性が得られな レ、ことがあり、一方、 75体積%を超えると、酸素遮断能が低下することがあり、好ましく ない。  If the content is less than 1% by volume, sufficient adhesion to the photosensitive layer may not be obtained, whereas if it exceeds 75% by volume, the oxygen blocking ability may be reduced. It is not preferable.
[0056] 前記中間層は、酸素透過率が小さいことが好ましい。前記中間層の酸素透過率が 大きく酸素遮断能が低い場合には、前記感光層に対する露光時における光量をアツ プする必要を生じたり、露光時間を長くする必要が生ずることがあり、解像度も低下し てしまうことがある。 [0057] 前記中間層の厚みは、特に制限はなぐ 目的に応じて適宜選択することができ、 0. :!〜 5 /i m程度であるのが好ましぐ 0. 5〜2 /i mがより好ましい。 [0056] The intermediate layer preferably has a low oxygen permeability. When the oxygen permeability of the intermediate layer is large and the oxygen blocking ability is low, it may be necessary to increase the amount of light during exposure to the photosensitive layer, or it may be necessary to lengthen the exposure time, and the resolution also decreases. It may happen. [0057] The thickness of the intermediate layer is not particularly limited and may be appropriately selected depending on the purpose, and is preferably about 0.:! To about 5 / im, more preferably about 0.5 to 2 / im. preferable.
前記厚みが、 0. 1 / m未満であると、酸素透過性が高過ぎてしまうことがあり、 5 μ mを超えると、現像時や中間層除去時に長時間を要し、好ましくない。  If the thickness is less than 0.1 / m, the oxygen permeability may be too high, and if it exceeds 5 μm, it takes a long time for development or removal of the intermediate layer, which is not preferable.
[0058] 前記感光性転写材料の構造としては、特に制限はなぐ 目的に応じて適宜選択す ること力 Sでき、例えば、前記支持体上に、仮支持体上に、熱可塑性樹脂層と、中間層 と、感光層とを、この順に有してなる形態などが挙げられる。なお、前記感光層は、単 層であってもよいし、複数層であってもよい。  [0058] The structure of the photosensitive transfer material is not particularly limited, and can be appropriately selected according to the purpose. For example, on the support, on the temporary support, on the thermoplastic resin layer, Examples include an intermediate layer and a photosensitive layer in this order. The photosensitive layer may be a single layer or a plurality of layers.
[0059] 前記感光性転写材料は、例えば、円筒状の卷芯に巻き取って、長尺状でロール状 に卷かれて保管されるのが好ましい。前記長尺状の感光性転写材料の長さは、特に 制限はなぐ例えば、 10- 20, 000mの範囲から適宜選択することができる。また、 ユーザーが使いやすいようにスリット加工し、 100〜1 , 000mの範囲の長尺体をロー ル状にしてもよい。なお、この場合には、前記支持体が一番外側になるように卷き取 られるのが好ましい。また、前記ロール状の感光性転写材料シート状にスリットしても よい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセ パレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましぐまた梱 包も透湿性の低レ、素材を用いるのが好ましレ、。  [0059] It is preferable that the photosensitive transfer material is wound around a cylindrical core and wound into a long roll to be stored. The length of the long photosensitive transfer material is not particularly limited, and can be appropriately selected from a range of 10 to 20,000 m, for example. In addition, slitting may be performed to make it easy for the user to use, and a long body in the range of 100 to 1,000 m may be rolled. In this case, it is preferable that the support is scraped off so as to be the outermost side. Further, it may be slit into the roll-shaped photosensitive transfer material sheet. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof, with desiccant) on the end face, and the package is also low in moisture permeability. I prefer to use materials.
[0060] 前記感光性転写材料は、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などの ディスプレイ用部材などのパターン形成用として広く用いることができ、これらの中で も、本発明のカラーフィルタの製造方法に好適に用いることができる。  [0060] The photosensitive transfer material can be widely used for pattern formation of display members such as color filters, pillar materials, rib materials, spacers, partition walls, and the like. It can use suitably for the manufacturing method of this color filter.
[0061] なお、前記第 2の態様の感光層形成方法により形成された感光層を有する積層体 への露光方法としては、特に制限はなぐ 目的に応じて適宜選択することができ、例 えば、前記感光層が支持体上にクッション層を介して存在するフィルム状の感光性転 写材料を積層した場合は、前記支持体、必要に応じてクッション層も剥離した後、前 記中間層(酸素遮断層)を介して前記感光層を露光することが好ましい。 [0061] The exposure method for the laminate having the photosensitive layer formed by the photosensitive layer forming method of the second aspect is not particularly limited and can be appropriately selected according to the purpose. In the case where a film-like photosensitive transfer material in which the photosensitive layer is present on a support via a cushion layer is laminated, the intermediate layer (oxygen) is removed after the support and, if necessary, the cushion layer are also peeled off. It is preferable to expose the photosensitive layer through a blocking layer.
[0062] <感光層> [0062] <Photosensitive layer>
前記感光層形成工程で形成される感光層(カラーレジスト層)としては、少なくともバ インダー、着色剤、重合性化合物、及び光重合開始剤を含み、更に必要に応じて適 宜選択されるその他の成分を含む感光性組成物を用いて形成されてなる。 The photosensitive layer (color resist layer) formed in the photosensitive layer forming step includes at least a binder, a colorant, a polymerizable compound, and a photopolymerization initiator, and further suitable as necessary. It is formed using the photosensitive composition containing the other component selected suitably.
[0063] 《バインダー》  [0063] << Binder >>
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好 ましぐアルカリ性水溶液に対して可溶性であるのがより好ましレ、。  The binder is more preferably soluble in an alkaline aqueous solution, preferably swellable in an alkaline aqueous solution.
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。  As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.
[0064] 前記酸性基としては、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボ キシル基が好ましい。 [0064] The acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferable. .
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニ ル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ 、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜 物性の調製の容易さ等の観点からカルボキシル基を有するビュル共重合体が好まし レ、。  Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, a modified epoxy resin, and the like. Among these, solubility in a coating solvent, and alkaline developer. From the standpoints of solubility, synthesis suitability and ease of preparation of film properties, a bur copolymer having a carboxyl group is preferred.
[0065] 前記カルボキシル基を有するビュル共重合体は、少なくとも(1)カルボキシル基を 有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得る こと力 Sできる。これらのモノマーとしては、具体的には、例えば、特開 2005— 25843 1号公報の段落番号 0164〜0174及び段落番号 0196〜0205に記載されている化 合物などが挙げられる。  [0065] The bull copolymer having a carboxyl group can be obtained by copolymerizing at least (1) a vinyl monomer having a carboxyl group and (2) a monomer copolymerizable therewith. Specific examples of these monomers include compounds described in paragraph numbers 0164 to 0174 and paragraph numbers 0196 to 0205 in JP-A-2005-258431.
[0066] 前記バインダーの前記感光性組成物固形分中の固形分含有量は、特に制限はな く、 目的に応じて適宜選択することができる力 例えば、 5〜80質量%が好ましぐ 10 〜70質量%がより好ましぐ 15〜50質量%が特に好ましい。  [0066] The solid content of the binder in the solid content of the photosensitive composition is not particularly limited, and can be appropriately selected according to the purpose. For example, 5 to 80% by mass is preferable. -70 mass% is more preferred 15-50 mass% is particularly preferred.
前記含有量が 5質量%未満であると、アルカリ現像性が低下することがあり、 80質 量%を超えると、現像時間に対する安定性が低下することがある。なお、前記含有量 は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であ つてもよい。  When the content is less than 5% by mass, the alkali developability may be lowered, and when it exceeds 80% by mass, the stability with respect to the development time may be lowered. The content may be the total content of the binder and the polymer binder used in combination as necessary.
[0067] 前記バインダーの酸価は、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、 70〜250mgK〇H/g力 S好ましく、 90〜200mgK〇H/gがより好ま しぐ 100〜: 180mgK〇H/gが特に好ましい。 [0067] The acid value of the binder is not particularly limited, and can be appropriately selected depending on the purpose. For example, 70 to 250 mgK 0 H / g force S is preferable, and 90 to 200 mg K 0 H / g is more preferable. Shigu 100-: 180 mgK o H / g is particularly preferred.
前記酸価が、 70mgK〇H/g未満であると、現像性が不足したり、解像性が劣り、 パターンを高精細に得ることができないことがあり、 250mgKOH/gを超えると、パタ 一ンの耐現像液性及び密着性の少なくともいずれかが悪化し、パターンを高精細に 得ることができなレ、こと力ある。  If the acid value is less than 70 mgKH / g, the developability may be insufficient or the resolution may be inferior, and the pattern may not be obtained with high definition. If the acid value exceeds 250 mgKOH / g, the At least one of the developer resistance and adhesion of the film deteriorates, and the pattern cannot be obtained with high definition.
[0068] < <重合性化合物 > > [0068] << Polymerizable compound >>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、分子中に少なくとも 1個の付加重合可能な基を有し、沸点が常圧で 100°C以 上である化合物が好ましぐ例えば、(メタ)アクリル基を有するモノマーから選択され る少なくとも 1種が好適に挙げられる。  The polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, but has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure. For example, at least one selected from monomers having a (meth) acryl group is preferable.
[0069] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル(メタ)アタリレート等の単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ(メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ(メタ)アタリレート、ペンタエリトリトールテトラ(メタ)アタリレート、ペンタ エリトリトールトリ(メタ)アタリレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジ ペンタエリトリトールペンタ(メタ)アタリレート、へキサンジオールジ(メタ)アタリレート、 トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイルォ キシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリン トリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノール等の多官能 アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ) アタリレートイ匕したもの、特公昭 48— 41708号、特公昭 50— 6034号、特開昭 51— 37193号等の各公報に記載されているウレタンアタリレート類;特開昭 48— 64183 号、特公昭 49-43191号、特公昭 52— 30490号等の各公報に記載されているポリ エステルアタリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるェポキ シアタリレート類等の多官能アタリレートやメタタリレートなどが挙げられる。これらの中 でも、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリトリトールテトラ(メタ)ァク リレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジペンタエリトリトールペンタ[0069] The monomer having the (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane diatalylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (atallylooxypropyl) ether, tri (atallylooxychetyl) isocyanurate, tri ( Ataliloyloxychetyl) cyanurate, glycerin tri (meth) talylate, trimethylolpropane, glycerin, bisphenol, etc., after addition reaction of ethylene oxide or propylene oxide (meth) Urethane acrylates described in JP-B-48-41708, JP-B-50-6034, JP-A-51-37193, etc .; JP-A-48-64183, JP-B-49- No. 43191, JP-B 52-30490, etc. Esters Atari rate like; etc. multifunctional Atari rate and Metatarireto of Epoki Shiatarireto and the like is the reaction product of an epoxy resin and (meth) acrylic acid. Among these However, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta
(メタ)アタリレートが特に好ましい。これらは、 1種単独で使用してもよいし、 2種以上 を併用してもよい。 (Meth) acrylate is particularly preferred. These may be used alone or in combination of two or more.
[0070] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、 10〜60質 量%が好ましぐ 15〜50質量%がより好ましぐ 20〜40質量%が特に好ましい。該 固形分含有量が 10質量%未満であると、現像性の悪化、露光感度の低下などの問 題を生ずることがあり、 60質量%を超えると、感光層の粘着性が強くなりすぎることが あり、好ましくない。  [0070] The solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and particularly preferably 20 to 40% by mass. preferable. If the solid content is less than 10% by mass, problems such as deteriorated developability and reduction in exposure sensitivity may occur. If it exceeds 60% by mass, the adhesiveness of the photosensitive layer becomes too strong. This is not preferable.
前記重合性化合物と前記バインダーの比率は、質量比で、重合性化合物 Zバイン ダー =0. 5~1. 5カ好ましく、 0. 6〜: 1. 2力 Sより好ましく、 0. 65〜: 1. 1カ特に好まし レ、。この範囲を超えると、現像時に残渣が生じるなどの問題が生じることがあり、この 範囲未満では、完成したカラーフィルタの耐性が低下することがある。  The ratio of the polymerizable compound to the binder is, by mass ratio, polymerizable compound Z binder = 0. 5 to 1.5, preferably 0.6 to: 1.2, more preferably S, 0.65 to: 1. One especially preferred. Exceeding this range may cause problems such as the formation of residues during development. Below this range, the durability of the finished color filter may be reduced.
[0071] < <光重合開始剤 > >  [0071] << Photoinitiator >>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができる力 例 えば、紫外線領域から可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、波長約 300〜800nmの範囲内に少なくとも約 50の 分子吸光係数を有する成分を少なくとも 1種含有していることが好ましい。前記波長 ¾;330〜500nmカより好ましレヽ。  The photopolymerization initiator may be appropriately selected from known photopolymerization initiators that are not particularly limited as long as they have the ability to initiate polymerization of the polymerizable compound. For example, the photopolymerization initiator is visible from the ultraviolet region. Those that have photosensitivity to the light of the light may be an activator that generates some kind of action with the photo-excited sensitizer, and generates an active radical. Cationic polymerization starts depending on the type of monomer. It may be an initiator. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a wavelength range of about 300 to 800 nm. The wavelength ¾; preferably from 330 to 500 nm.
[0072] 前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、ホスフィンオキサイド、 へキサァリールビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトン 化合物、芳香族ォニゥム塩、ケトォキシムエーテルなどが挙げられる。前記ォキシム 誘導体及びへキサァリールビイミダゾール以外の光重合開始剤としては、具体的に は、例えば、特開 2005— 258431号公報の段落番号 0290〜0299及び段落番号 0 305〜0308に記載されている化合物などが挙げられる。 [0072] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), phosphine oxide, hexarylbiimidazole, oxime derivatives, organic Peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers and the like. Specific examples of the photopolymerization initiator other than the oxime derivative and hexarylbiimidazole include, for example, paragraphs 0290 to 0299 and paragraph 0 of JP-A-2005-258431. Examples thereof include compounds described in 305 to 0308.
[0073] また、本発明で好適に用いられるォキシム誘導体としては、例えば、 3 ベンゾイロ キシイミノブタン 2 オン、 3 ァセトキシィミノブタンー2 オン、 3 プロピオニル ォキシイミノブタン一 2 _オン、 2—ァセトキシィミノペンタン一 3 _オン、 2—ァセトキシ ィミノ一 1―フエ二ノレプロパン一 1—オン、 2 _ベンゾイロキシィミノ一 1 _フエ二ノレプロ パン一 1 _オン、 3 _ (4 トルエンスルホニルォキシ)イミノブタン一 2_オン、及び 2 —エトキシカルボニルォキシィミノ一 1 _フエニルプロパン一 1—オンなどが挙げられ る。 [0073] Further, examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxyiminobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxyiminobutane 1_on, 2-acetooxy 1-one, 2-acetoximino 1-one, 2-vinylpropanone 1-one, 2_benzoyloxymino 1_phenolinopropan 1_one, 3_ (4 toluenesulfonyloxy ) Iminobutane 1_one and 2-ethoxycarbonyloxymino 1_phenylpropane 1-one.
[0074] 前記へキサァリールビイミダゾール化合物としては、 2, 2, _ビス(o—クロロフヱ二 ノレ)一 4, 5, 4,, 5,一テトラフェニル _ 1, 2' _ビスイミダゾール、 2, 2, _ビス(2—ク ロロフエ二ル)一 4, 4', 5, 5'—テトラキス(4—エトキシカルボユルフェニル)ビイミダ ゾール、 2, 2' _ビス(2 クロ口フエ二ル)一 4, 4', 5, 5,一テトラキス(4 フエノキシ カルボニルフエ二ノレ)ビイミダゾール、 2, 2'—ビス(2, 4 ジクロロフエ二ル)一 4, 4' , 5, 5 ' テトラキス(4 エトキシカルボエルフェ二ノレ)ビイミダゾール、 2, 2,一ビス( 2, 4—ジクロロフエ二ル)一 4, 4' , 5, 5 '—テトラキス(4—フエノキシカルボエルフェ 二ノレ)ビ'イミダゾーノレ、 2, 2,ーヒ、、ス(2, 4, 6 トリクロ口フエ二ノレ) 4, 4,, 5, 5 '—テ トラキス(4 エトキシカルボニルフエ二ノレ)ビイミダゾール、 2, 2 '—ビス(2, 4, 6 トリ クロ口フエ二ル)一 4, 4' , 5, 5 '—テトラキス(4—フエノキシカルボニルフエ二ノレ)ビィ ミダゾール、 2, 2,一ビス(2 シァノフエニル)一 4, 4' , 5. 5,ーテトラキス(4ーェトキ シカルボニルフエニル)ビイミダゾール、 2, 2,一ビス(2 シァノフエ二ル)一 4, 4,, 5 , 5,一テトラキス(4—フエノキシカルボニルフエニル)ビイミダゾール、 2, 2,一ビス(2 —メチルフエ二ル)一 4, 4' , 5, 5 '—テトラキス(4—メトキシカルボユルフェニル)ビィ ミダゾール、 2, 2, _ビス(2 メチルフエ二ル)一 4, 4', 5, 5,一テトラキス(4—ェトキ シカルボユルフェニル)ビイミダゾール、 2, 2, _ビス(2 メチルフエ二ル)一 4, 4,, 5 , 5,一テトラキス(4 フエノキシカルボユルフェニル)ビイミダゾール、 2, 2,_ビス(2 —ェチルフエ二ル)一 4, 4', 5, 5,一テトラキス(4—メトキシカルボユルフェニル)ビィ ミダゾール、 2, 2, _ビス(2 ェチルフエ二ル)一 4, 4,, 5, 5 '—テトラキス(4 エト キシカルボユルフェニル)ビイミダゾール、 2, 2, _ビス(2 ェチルフエ二ル)一 4, 4, , 5, 5 ' テトラキス(4 フエノキシカルボニルフエ二ノレ)ビイミダゾール、 2, 2'—ビス (2 フエエルフェ二ル)一 4, 4,, 5, 5 ' テトラキス(4—メトキシカルボニルフエニル )ビイミダゾール、 2, 2' ビス(2 フエエルフェ二ル)一 4, 4,, 5, 5 '—テトラキス(4 —エトキシカルボユルフェニル)ビイミダゾール、 2, 2' _ビス(2—フエユルフェニル) -4, 4' , 5, 5 '—テトラキス(4 フエノキシカルボユルフェニル)ビイミダゾール、 2, 2 ,一ビス(2 クロ口フエ二ル)一 4, 4,, 5, 5,一テトラフエ二ルビイミダゾール、 2, 2, —ビス(2, 4 ジクロロフエ二ル)一 4, 4', 5, 5,一テトラフエ二ルビイミダゾール、 2, 2,一ビス(2, 4, 6 トリクロ口フエ二ル)一 4, 4,, 5, 5 ' テトラフエ二ルビイミダゾー ノレ、 2, 2' _ビス(2 ブロモフエ二ル)一 4, 4,, 5, 5,一テトラフエ二ルビイミダゾール 、 2, 2,_ビス(2, 4_ジブロモフエ二ル)一 4, 4,, 5, 5 '—テトラフエ二ルビイミダゾ ール、 2, 2' _ビス(2, 4, 6 _トリブロモフエ二ル)一 4, 4,, 5, 5 '—テトラフエ二ルビ イミダゾール、 2, 2,一ビス(2 シァノフエ二ル)一 4, 4,, 5, 5,一テトラフエ二ルビィ ミダゾール、 2, 2'—ビス(2, 4 ジシァノフエ二ル)一 4, 4' , 5, 5'—テトラフエ二ノレ ビイミダゾール、 2, 2'—ビス(2, 4, 6 トリシアノフエ二ル)一 4, 4,, 5, 5 '—テトラフ ェニルビイミダゾール、 2, 2,一ビス(2—メチルフエ二ル)一 4, 4,, 5, 5 '—テトラフエ 二ルビイミダゾール、 2, 2 '—ビス(2, 4 ジメチルフエニル) 4, 4' , 5, 5 '—テトラ フエ二ルビイミダゾール、 2, 2,一ビス(2, 4, 6 トリメチルフエ二ル)一 4, 4,, 5, 5, —テトラフエ二ルビイミダゾール、 2, 2,一ビス(2 ェチルフエ二ル)一 4, 4,, 5, 5 ' —テトラフエ二ルビイミダゾール、 2, 2'—ビス(2, 4 ジェチルフエ二ル)一 4, 4' , 5 , 5,一テトラフエ二ルビイミダゾール、 2, 2'—ビス(2, 4, 6 トリェチルフエ二ル)一 4 , 4,, 5, 5 '—テトラフエ二ルビイミダゾール、 2, 2,一ビス(2—フエニルフエ二ル)一 4 , 4,, 5, 5 ' テトラフエ二ルビイミダゾール、 2, 2,一ビス(2, 4 ジフエユルフェニル ) _4, 4,, 5, 5, _テ卜ラフエニノレビ、イミダゾーノレ、 2, 2,一ビ、ス(2, 4, 6 _卜リフエ二ノレ フエ二ル)一 4, 4,, 5, 5 '—テトラフエ二ルビイミダゾールなどが挙げられる。 [0074] Examples of the hexarylbiimidazole compound include 2, 2, _bis (o-chlorophenyl) 1,4,5,4,5, monotetraphenyl_1,2'_bisimidazole, 2 , 2, _bis (2-chlorophenyl) 1, 4, 4 ', 5, 5'-tetrakis (4-ethoxycarbophenyl) biimidazole, 2, 2' bis (2-clonal phenyl) 1,4,4 ', 5,5,1 tetrakis (4 phenoxycarbonylphenyl) biimidazole, 2,2'-bis (2,4 dichlorophenyl) 1,4,4', 5,5 'tetrakis (4 Ethoxycarboferfenore) biimidazole, 2,2,1bis (2,4-dichlorophenyl) -1,4,4 ', 5,5'-tetrakis (4-phenoxycarboferfe) , 2, 2, -hi, su (2, 4, 6 trichrome mouth fenore) 4, 4 ,, 5, 5 '-tetrakis (4 ethoxycarbo Rufeninore) biimidazole, 2,2'-bis (2,4,6 triclonal phenyl) 1,4,4 ', 5,5'-tetrakis (4-phenoxycarbonylphenenole) bi Midazol, 2, 2, 1-bis (2 cyanophenyl) 1, 4, 4 ', 5.5, -tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2, 2, 1-bis (2 cyanophenyl) 1, 4, 4 ,, 5,5,1-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2,1bis (2-methylphenyl) -1,4 ', 5,5'-tetrakis (4-methoxy) Carbonylphenyl) bimidazole, 2, 2, _bis (2 methylphenyl) 1, 4, 4 ', 5, 5, monotetrakis (4-ethoxycarbonylphenyl) biimidazole, 2, 2, _bis ( 2 methylphenyl) 1,4,4,5,5,1 tetrakis (4 phenoxycarboxylphenyl) Imidazole, 2, 2, _bis (2-ethylpropyl) 1, 4, 4 ', 5, 5, monotetrakis (4-methoxycarbophenyl) bimidazole, 2, 2, _bis (2 ethylphenyl) 1, 4, 4, 5, 5, 5'-tetrakis (4 ethoxycarbonylphenyl) biimidazole, 2, 2, _bis (2 ethylphenyl) 1, 4, 4, , 5, 5 'tetrakis (4 phenoxycarbonylphenyl) biimidazole, 2, 2'-bis (2 phenphenyl) 1, 4, 4, 5, 5, 5' tetrakis (4-methoxycarbonylphenyl) Biimidazole, 2, 2 'bis (2 fuelphenyl) 1, 4, 4, 5, 5, 5'-tetrakis (4-ethoxyethoxyphenyl) biimidazole, 2, 2' bis (2-phenol phenyl) -4, 4 ', 5, 5' -tetrakis (4 phenoxycarbolphenyl) biimidazole, 2, 2, 1bis (2 clonal phenyl) 1, 4, 4, 5, 5, 5 Dirubiimidazole, 2, 2, —bis (2,4 dichlorophenyl) 1, 4, 4 ', 5, 5, monotetraphenyl biimidazole, 2, 2, 1 bis (2, 4, 6 1) 4, 4, 5, 5, 5 'tetraphenylimidazole, 2, 2'_bis (2 bromophenyl) 1, 4, 4 ,, 5, 5, 1 tetraphenylbiimidazole, 2, 2, _bis (2, 4_dibromophenyl) 1, 4, 4, 5, 5, 5'-tetraphenyl imidazole, 2, 2 'bis (2, 4, 6_tribromophenyl) 1, 4, 4, 5, 5'-tetraphenyl imidazole, 2, 2, 1bis (2 cyanophenyl) 1, 4, 4, 5, 5, 1 Tetraphenylbimidazole, 2,2'-bis (2,4 dicyanophenyl) -1,4,4 ', 5,5'-tetraphenylenoimidazole, 2,2'-bis (2,4,6 tricyanophenol 1) 4, 4 ,, 5, 5'-tetraphenylbiimidazole, 2, 2, 1bis (2-methylphenyl) 1, 4, 4, 5, 5, 5'-tetraphenylbiimidazole, 2, 2 '—Bis (2,4 dimethylphenyl) 4, 4', 5, 5 '—tetraphenylbiimidazole, 2, 2, 1bis (2, 4, 6 trimethylphenyl) 1, 4, 4, 5, 5,-Tet 1,2,2,1-bis (2-ethylphenyl) -1,4,4,5,5'-tetraphenylbiimidazole, 2,2'-bis (2,4jetylphenyl) -1,4 4 ', 5,5,1 tetraphenylbiimidazole, 2,2'-bis (2,4,6 triethylphenyl) 1,4,4,5,5'-tetraphenylbiimidazole, 2,2,1 Bis (2-phenylphenyl) -1,4,4,5,5 'tetraphenylbiimidazole, 2,2,1bis (2,4 diphenylphenyl) _4, 4 ,, 5, 5, _ Rafuenino Levi, Imidazonole, 2, 2, Ibi, Su (2, 4, 6 _ 卜 二 レ 一), 4, 4, 5, 5, 5'-tetraphenyl imidazole.
前記光重合開始剤の含有量は、前記感光性組成物中の全固形成分に対し、 0. 1 〜50質量%が好ましぐ 0. 5〜30質量%がより好ましぐ:!〜 20質量%が特に好まし レ、。  The content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, based on the total solid components in the photosensitive composition:! To 20 Mass% is particularly preferred.
前記光重合開始剤の含有量は、前記重合性化合物との質量比で表すと、光重合 開始剤/重合性化合物 = 0. 01〜0. 2力 S好ましく、 0. 02-0. 1がより好ましぐ 0. 0 3〜0. 08が特に好ましい。この範囲を超えると、現像残渣が生じたり、析出故障が生 じるという問題があり、この範囲未満であると、十分な感度が得られないことがある。 When the content of the photopolymerization initiator is expressed by a mass ratio with the polymerizable compound, photopolymerization is performed. Initiator / polymerizable compound = 0.01 to 0.2 force S preferred, 0.02 to 0.1 is more preferred 0.0 3 to 0.08 is particularly preferred. If this range is exceeded, there will be problems such as development residues and precipitation failures, and if it is less than this range, sufficient sensitivity may not be obtained.
[0076] また、後述する前記感光層への露光における露光感度や感光波長を調製する目 的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。  [0076] In addition to the photopolymerization initiator, it is possible to add a sensitizer for the purpose of adjusting exposure sensitivity and photosensitive wavelength in exposure to the photosensitive layer described later.
前記増感剤は、後述する光照射手段としての可視光線や紫外光'可視光レーザな どにより適宜選択することができる。  The sensitizer can be appropriately selected depending on visible light, ultraviolet light, or visible light laser as a light irradiation means to be described later.
前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)するこ とにより、ラジカルや酸等の有用基を発生することが可能である。  The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
[0077] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から目的に応じて適宜 選択することができる力 例えば、特開 2005— 254831号公報の段落番号 0313〜 0314に記載されている化合物などが挙げられる。  [0077] The sensitizer is a force that can be appropriately selected according to the purpose from known sensitizers that are not particularly limited. For example, paragraphs 0313 to 0314 of JP-A-2005-254831 And the like.
[0078] 前記増感剤の含有量は、前記感光性組成物中の全固形分に対し、 0. 05〜30質 量%が好ましぐ 0.:!〜 20質量%がより好ましぐ 0. 2〜: 10質量%が特に好ましい。 該含有量が、 0. 05質量%未満であると、活性エネルギー線への感度が低下し、露 光プロセスに時間がかかり、生産性が低下することがあり、 30質量%を超えると、保 存時に前記感光層から前記増感剤が析出することがある。  [0078] The content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0 to 20% by mass, based on the total solid content in the photosensitive composition. 0.2 to 10% by mass is particularly preferable. If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take time, and productivity may be reduced. When present, the sensitizer may precipitate from the photosensitive layer.
[0079] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  [0079] The photopolymerization initiators may be used alone or in combination of two or more.
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α—アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲン化炭化水素化合物と増感剤と してのァミン化合物とを組合せた複合光開始剤、へキサァリールビイミダゾールイ匕合 物、あるいは、チタノセンなどが挙げられる。  Particularly preferable examples of the photopolymerization initiator include halogenated carbonization having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton, which can be applied to laser light having a wavelength of 405 nm in the later-described exposure. Examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer are combined, a hexaarylbiimidazole compound, or titanocene.
[0080] < <着色剤 > >  [0080] <<Colorant>>
前記着色剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、有機顔料、無機顔料、染料などが挙げられる。  The colorant is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include organic pigments, inorganic pigments, and dyes.
これら着色剤と別に又は併用して、着色剤として金属イオンを配位した樹状分岐分 子、並びに金属粒子及び合金粒子の少なくともいずれかの金属系粒子を含有する 榭状分岐分子から選ばれるいずれかの樹状分岐分子を含有することも可能である。 A dendritic branch in which metal ions are coordinated as a colorant separately or in combination with these colorants It is also possible to contain any dendritic branched molecule selected from cage-like branched molecules containing at least one metal particle of metal particles and alloy particles.
[0081] 前記着色剤としては、黄色顔料、オレンジ顔料、赤色顔料、バイオレット顔料、青色 顔料、緑色顔料、ブラウン顔料、黒色顔料などが挙げられるが、カラーフィルタを形 成する場合には、前記感光性組成物として、 3原色(B、 G、 R)及び黒色 (K)にそれ ぞれ着色された複数の着色組成物を用いることから、青色顔料、緑色顔料、赤色顔 料、及び黒色顔料等の顔料が好適に用いられる。  [0081] Examples of the colorant include a yellow pigment, an orange pigment, a red pigment, a violet pigment, a blue pigment, a green pigment, a brown pigment, and a black pigment. When a color filter is formed, the photosensitive agent is used. Since a plurality of colored compositions colored in three primary colors (B, G, R) and black (K) are used as the active composition, blue pigment, green pigment, red pigment, black pigment, etc. These pigments are preferably used.
[0082] 前記顔料としては、例えば、特開 2005— 17716号公報の段落番号 0038から 004 0に記載の色材、特開 2005— 361447号公幸艮の段落番号 0068力、ら 0072に記載の 顔料、及び特開 2005— 17521号公報の段落番号 0080から 0088に記載の着色剤 などが好適に挙げられる。  [0082] Examples of the pigment include the coloring material described in paragraph Nos. 0038 to 004 0 of JP-A-2005-17716, and the pigment described in paragraph No. 0068 power of JP-A-2005-361447, et al. And colorants described in paragraph numbers 0080 to 0088 of JP-A-2005-17521 are preferred.
[0083] なお、前記着色剤は 1種を単独で用いてもよぐ又は 2種以上を組み合わせて用い ることちでさる。  [0083] The colorant may be used alone or in combination of two or more.
[0084] 本発明のカラーフィルタにおいて、携帯端末や携帯ゲーム機等の機器で透過モー ド、及び反射モードのいずれにおいても良好な表示特性 (より色が濃い)を効果的に 実現するための前記着色剤の組合せとしては、(i) Rの感光性組成物においては顔 料 C. I.ビグメントレッド 254を用い、(ii) Gの感光性組成物においては顔料 C. I.ピ グメントグリーン 36及び顔料 C. I.ビグメントイエロー 139を併用して用レ、、 (iii) Bの感 光性組成物においては顔料 C. I.ビグメントブルー 15 : 6を用いることが好ましい。  [0084] In the color filter of the present invention, the device for effectively realizing good display characteristics (darker color) in both the transmission mode and the reflection mode in a device such as a portable terminal or a portable game machine. For the combination of colorants, (i) the pigment CI Pigment Red 254 is used in the photosensitive composition of R, and (ii) Pigment CI Pigment Green 36 and Pigment CI Pigment are used in the photosensitive composition of G. It is preferable to use pigment CI pigment blue 15: 6 in the photosensitive composition of (iii) B in combination with Yellow 139.
[0085] ここで、前記(i)における C. I.ビグメントレッド 254の含有量は、感光性組成物を 1 〜3 /i mの乾燥膜厚で塗布した場合において、 0. 274-0. 335g/m2であることが 好ましく、 0. 280〜0. 329g/m2であること力 Sより好ましく、 0. 290〜0. 320g/m2 であることが特に好ましい。 Here, the content of CI pigment red 254 in the above (i) is 0.274-0.335 g / m when the photosensitive composition is applied at a dry film thickness of 1 to 3 / im. preferably 2, from 0.280 to 0. more preferably it force S is 329 g / m 2, 0. from 290 to 0. it is particularly preferable that 320 g / m 2.
前記(Π)における C. I.ビグメントグリーン 36の含有量は、感光性組成物を 1〜3 μ mの乾燥膜厚で塗布した場合において、 0. 355-0. 437gZm2であることが好まし く、 0. 364〜0. 428g/m2であること力 Sより好ましく、 0. 376〜0. 412g/m2である ことが特に好ましい。 The content of CI pigment green 36 in (ii) is preferably 0.355-0.437 gZm 2 when the photosensitive composition is applied in a dry film thickness of 1 to 3 μm. , 0.364 to 0. more preferably it force S is 428 g / m 2, particularly preferably 0. 376~0. 412g / m 2.
前記(ii)における C. I.ビグメントイエロー 139の含有量は、 0. 052〜0. 078g/m 2であること力 S好ましく、 0. 060〜0. 070g/m2であること力 Sより好ましく、 0. 062〜0 . 068g/m2であることが特に好ましい。なお、(ii)において、 C. I.ビグメントグリーン 36/C. I.ビグメントイエロー 139_tt率は、 5. 4〜6· 7であること力 S好ましく、 5· 6〜6 . 6がより好ましく、 5. 8〜6. 4が特に好ましい。 The content of CI pigment yellow 139 in (ii) is from 0.052 to 0.078 g / m. A force S of 2 is preferable, 0.060 to 0.070 g / m 2 is more preferable than a force S, and 0.02 to 0.068 g / m 2 is particularly preferable. In (ii), CI Pigment Green 36 / CI Pigment Yellow 139_tt rate is 5.4 to 6.7. S is preferable, 5.6 to 6.6 is more preferable, 5.8 to 6.4 is particularly preferred.
前記(iii)における C. I.ビグメントブルー 15 : 6の含有量は、感光性組成物を 1〜3 z mの乾燥膜厚で塗布した場合において、 0. 28-0. 38g/m2あることが好ましぐ 0. 29〜0. 36g/m2であること力より好ましく、 0. 30〜0. 34g/m2であること力特 に好ましい。 The content of CI pigment blue 15: 6 in (iii) is preferably 0.28 to 0.38 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. It is more preferably a force of 0.29 to 0.36 g / m 2 , and particularly preferably a force of 0.30 to 0.34 g / m 2 .
[0086] また、本発明のカラーフィルタにおいて、ノートパソコン用ディスプレイやテレビモニ ター等の大画面の液晶表示装置等に用いた場合に高い表示特性 (色再現域が広く 、色温度が高い)を実現するための前記着色剤の組合せとしては、(I)赤色 (R)の感 光性組成物においては顔料 C. I.ピグメントレッド 254及び C. I.ビグメントレッド 177 の少なくともいずれかを用い、(II)緑色(G)の感光性組成物においては顔料 C. I.ピ グメントグリーン 36及び顔料 C. I.ビグメントイエロー 150を併用し、(III)青色(B)の 感光性組成物においては顔料 C. I.ビグメントブルー 15 : 6及び C. I.ビグメントバイ ォレット 23を併用することが好ましレ、。  [0086] The color filter of the present invention realizes high display characteristics (wide color reproduction range and high color temperature) when used in large-screen liquid crystal display devices such as notebook personal computer displays and TV monitors. As a combination of the above-mentioned colorants, (I) red (R) photosensitive composition uses at least one of pigment CI pigment red 254 and CI pigment red 177, and (II) green (G The pigment CI pigment green 36 and the pigment CI pigment yellow 150 are used together in the photosensitive composition of (III), and the pigment CI pigment blue 15: 6 and CI pigment blue in the photosensitive composition of (III) blue (B). It is preferable to use Oletto 23 together.
[0087] ここで、前記(I)における C. I.ビグメントレッド 254の含有量は、感光性組成物を 1 〜3 / mの乾燥膜厚で塗布した場合において、 0. 6〜: 1. lg/m2であることが好まし く、 0. 80〜0. 96g/m2であること力 Sより好ましく、 0. 82〜0. 94g/m2であること力 S 特に好ましい。 Here, the content of CI pigment red 254 in the above (I) is 0.6 to 1. lg / when the photosensitive composition is applied with a dry film thickness of 1 to 3 / m. it is rather preferred is m 2, 0. 80~0. more preferably it force S is 96g / m 2, 0. 82~0. it forces S particularly preferably 94 g / m 2.
前記(I)における C. I.ビグメントレッド 177の含有量は、感光性組成物を 1〜3 μ ΐη の乾燥膜厚で塗布した場合において、 0. 10-0. 30g/m2であることが好ましぐ 0 . 20〜0. 24g/m2であること力より好ましく、 0. 21〜0. 23g/m2であることカ特に 好ましい。 The content of CI pigment red 177 in (I) is preferably from 0.10 to 0.30 g / m 2 when the photosensitive composition is applied in a dry film thickness of 1 to 3 μΐη. Mashigu 0.20 to 0. more preferably it forces a 24 g / m 2, it mosquitoes particularly preferably 0. 21~0. 23g / m 2.
前記(Π)における C. I.ピグメントグリーン 36の含有量は、感光性組成物を 1〜3 μ mの乾燥膜厚で塗布した場合において、 0. 80〜: 1. 45g/m2であることが好ましぐ 0. 90〜: 1. 34g/m2であること力より好ましく、 0. 95〜: 1. 29g/m2であること力特 に好ましい。 前記(II)における C. I.ビグメントイエロー 150の含有量は、 0· 30〜0· 65g/m2で あることが好ましぐ 0. 38-0. 58g/m2であることがより好ましレ、。なお、(Π)におい て、 C. I.ピク'メントグリーン 36/C. I. ピク、 'メントイエロー 150];匕率 ίま、 0. 40〜0. 50 であることが好ましい。 The content of CI Pigment Green 36 in (ii) is preferably 0.80 to 1.45 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 μm. It is more preferably 0.90 to: 1. 34 g / m 2 , more preferably 0.95 to 1. 29 g / m 2 . The content of CI Pigment Yellow 150 in (II) is, 0 · 30~0 · 65g / m 2 it is preferred an instrument 0. 38-0. More preferably les to be 58 g / m 2 ,. In (Π), CI pixel green 36 / CI pixel, “ment yellow 150”; the ratio is preferably 0.40 to 0.50.
前記(ΠΙ)における C. I.ビグメントブルー 15 : 6の含有量は、感光性組成物を 1〜3 z mの乾燥膜厚で塗布した場合において、 0. 50〜0. 75g/m2であることが好まし く、 0. 59〜0. 67g/m2であること力 Sより好ましく、 0. 60〜0. 66g/m2であること力 S 特に好ましい。 The content of CI pigment blue 15: 6 in (ii) is 0.50 to 0.75 g / m 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. preferably rather, from 0.59 to 0. more preferably it force S is 67g / m 2, 0. 60~0. it forces S particularly preferably 66 g / m 2.
前記(ΠΙ)における C. I.ビグメントバイオレット 23の含有量は、感光性組成物を 1〜 3 z mの乾燥膜厚で塗布した場合において、 0. 03〜0. lOgZm2あることが好ましく 、 0. 06〜0. 08g/m2であること力より好ましく、 0. 066〜0. 074g/m2であること が特に好ましレ、。なお、(ΠΙ)において、 C. I.ピグメントブルー 15 : 6/C. I.ビグメント バイオレット 23比率は、 12〜50であることが好ましレ、。 The content of CI pigment violet 23 in (ii) is preferably 0.03 to 0.1 gOmZm 2 when the photosensitive composition is applied with a dry film thickness of 1 to 3 zm. ~ 0. more preferably it forces a 08g / m 2, 0. 066~0. it is particularly preferred is a 074g / m 2 les. In (ΠΙ), the CI Pigment Blue 15: 6 / CI Pigment Violet 23 ratio is preferably 12-50.
[0088] 上記のような着色剤を用いる場合、顔料又は染料の粒径は、平均粒径 lnm〜: 104 nmであることが好ましぐ 10〜80nmであることがより好ましぐ 20nm〜70nmである ことが特に好ましぐ 30nm〜60nmであることが最も好ましい。感光層は薄膜な層で あるため、顔料等の粒径が上記の範囲にない場合には、樹脂層中に均一に分散す ることができず、高品質なカラーフィルタを製造することが困難となるため好ましくない [0088] When the colorant as described above is used, the particle diameter of the pigment or dye is preferably an average particle diameter lnm to: 10 4 nm, more preferably 10 to 80 nm, and more preferably 20 nm to It is particularly preferred that the thickness is 70 nm. Most preferred is 30 nm to 60 nm. Since the photosensitive layer is a thin layer, if the particle size of the pigment is not within the above range, it cannot be uniformly dispersed in the resin layer, and it is difficult to produce a high-quality color filter. It is not preferable because
[0089] < <その他の成分 > > [0089] <<Other ingredients>>
前記感光性組成物には、その他の成分として、例えば、可塑剤、界面活性剤、紫 外線吸収剤、熱重合禁止剤等の成分を含有してもよい。  The photosensitive composition may contain other components such as a plasticizer, a surfactant, an ultraviolet absorber, and a thermal polymerization inhibitor.
[0090] 前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加して あよい。 [0090] The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
前記可塑剤としては、例えば、特開 2005— 258431号公報の段落番号 0318に記 載されている化合物などが挙げられる。  Examples of the plasticizer include compounds described in paragraph No. 0318 of JP-A-2005-258431.
[0091] 前記可塑剤の含有量は、前記感光層の全成分に対して 0.:!〜 50質量%が好まし く、 0. 5〜40質量%がより好ましぐ:!〜 30質量%が特に好ましい。 [0092] 前記界面活性剤としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、ァニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、 両性界面活性剤など力 適宜選択できる。 [0091] The content of the plasticizer is preferably 0.:! To 50 mass%, more preferably 0.5 to 40 mass%, based on all components of the photosensitive layer:! To 30 mass. % Is particularly preferred. [0092] The surfactant is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. Force Can be selected as appropriate.
更に、前記界面活性剤としては、次式(1)  Further, as the surfactant, the following formula (1)
C F SO N (R1) CH CH〇 (CH CH O R2) · · · (1) CF SO N (R 1 ) CH CH 0 (CH CH OR 2 ) (1)
8 17 2 2 2 2 2 η  8 17 2 2 2 2 2 η
で表されるフッ素系界面活性剤が好適に挙げられる。  Fluorosurfactants represented by the formula are preferred.
但し、前記式中、 R1及び R2は、各々水素原子又は炭素数:!〜 4のアルキル基を表 し、 ηは 2〜30の整数を表す。 However, in the formula, R 1 and R 2 are each a hydrogen atom or a carbon atoms: Represents an alkyl group ~ 4, eta represents an integer of 2 to 30.
前記 R1としては、メチル基、ェチル基、イソプロピル基が好適に挙げられ、前記 と しては、水素原子が好適に挙げられる。 Preferred examples of R 1 include a methyl group, an ethyl group, and an isopropyl group, and preferred examples of the R 1 include a hydrogen atom.
前記 ηとしては、 10〜25力 S好ましく、 10〜20力 Sより好ましレヽ。  The η is preferably 10 to 25 force S, more preferably 10 to 20 force S.
前記式で表される界面活性剤の具体例としては、メガファック F— 141 (n = 5)、 F_ 142 (n= 10)、 F= 143 (n= 15)、 F— 144 (n= 20) (いずれも商品名:大日本イン キ化学工業 (株)製)が挙げられる。  Specific examples of the surfactant represented by the above formula include Megafac F—141 (n = 5), F_142 (n = 10), F = 143 (n = 15), F—144 (n = 20) (All trade names: Dainippon Ink & Chemicals, Inc.).
[0093] 更に、前記界面活性剤としては、次式 (2)〜(5)で表される界面活性剤、及び特開 [0093] Further, as the surfactant, surfactants represented by the following formulas (2) to (5), and JP-A
2003— 337424号公報に記載の化合物も好適に挙げられる。  The compounds described in 2003-337424 are also preferred.
Rfl -X- (CH CH O) R1 · · · (2) Rfl -X- (CH CH O) R 1
2 2 n  2 2 n
Rfl -X- (CH CH O) R2' · · (3) Rfl -X- (CH CH O) R 2 '(3)
2 2 n  2 2 n
Rfl— X—(CH CH〇) (CH CH CH O) R1 - - - (4) Rfl— X— (CH CH CH) (CH CH CH O) R 1 ---(4)
2 2 n 2 2 2 m  2 2 n 2 2 2 m
Rfl— X—(CH CH〇) (CH CH CH O) Rf2 - - - (5)  Rfl— X— (CH CH〇) (CH CH CH O) Rf2---(5)
2 2 n 2 2 2 m  2 2 n 2 2 2 m
[0094] 前記式(2)〜(5)において、 R1及び R2は、炭素素:!〜 18、好ましくは、炭素数:!〜 1In the above formulas (2) to (5), R 1 and R 2 are carbon atoms:! To 18, preferably carbon numbers:! To 1
0、より好ましくは、炭素数 1〜4のアルキル基を表す。 0, more preferably an alkyl group having 1 to 4 carbon atoms.
前記アルキル基としては、飽和アルキル基、不飽和アルキル基が挙げられる。 前記アルキル基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、こ れらの中でも分岐構造を有するものが好適に挙げられる。  Examples of the alkyl group include a saturated alkyl group and an unsaturated alkyl group. Examples of the structure of the alkyl group include those having a linear structure and a branched structure, and among these, those having a branched structure are preferred.
前記アルキル基の具体例としては、メチル基、ェチル基、プロピル基、ブチル基、 ヘプチル基、へキシル基、ォクチル基、ノニノレ基、デシル基、ドデシル基、トリデシル 基、テトラデシノレ基、へキサデシノレ基、ォタタデシノレ基、エイコサニル基、ドコサニル 基、 2—クロ口ェチル基、 2—プロモェチル基、 2—シァノエチル基、 2—メトキシカル ボニルェチル基、 2—メトキシェチル基、 3—プロモプロピル基等が挙げられる。また、 これらのアルキル基は、ハロゲン原子、ァシル基、アミノ基、シァノ基、アルキル基、ァ ルコキシ基、アルキル若しくはハロアルキルで置換されていてもよいァリール基、アミ ド基等で置換されてレ、てもよレ、。 Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, a hexyl group, an octyl group, a nonino group, a decyl group, a dodecyl group, a tridecyl group, a tetradecinole group, a hexadecinole group, Ottadecinole group, eicosanyl group, docosanyl group Group, 2-chloroethyl group, 2-promoethyl group, 2-cyanoethyl group, 2-methoxycarbonylethyl group, 2-methoxyethyl group, 3-promopropyl group and the like. In addition, these alkyl groups are substituted with a halogen atom, an acyl group, an amino group, an alkyl group, an alkoxy group, an alkyl group, an alkyl group, an aryl group, an amide group, etc. Anyway.
前記式(2)〜(5)において、 Rfl及び Rf2は、それぞれ独立して、炭素数:!〜 18、 好ましく 2〜: 12、より好ましくは 4〜10のパーフルォロ基を表す。  In the above formulas (2) to (5), Rfl and Rf2 each independently represent a perfluoro group having carbon number:! To 18, preferably 2 to: 12, more preferably 4 to 10.
前記パーフルォロ基としては、飽和パーフルォロ基、不飽和パーフルォロ基が挙げ られる。  Examples of the perfluoro group include a saturated perfluoro group and an unsaturated perfluoro group.
前記パーフルォロ基の構造としては、直鎖構造、分岐構造を有するものが挙げられ 、これらの中でも分岐構造を有するものが好適に挙げられ、前記 Rfl及び Rf 2の少な くともいずれ力、が、分岐構造を有するものがより好適に挙げられる。  Examples of the structure of the perfluoro group include those having a linear structure and a branched structure, and among these, those having a branched structure are preferably exemplified, and at least any of the above Rfl and Rf 2 can be branched. What has a structure is mentioned more suitably.
前記パーフルォロ基としては、例えば、パーフルォロノネニル、パーフルォロメチル 、パーフルォロプロピレン、パーフルォロノ二ネル、パーフルォロ安息香酸、パーフル ォロプロピレン、パーフルォロプロピル、パーフルォロ(9ーメチルォクチル)、パーフ ルォロメチルォクチル、パーフルォロブチル、パーフルォロ 3—メチルブチル、パーフ ルォ口へキシル、パーフルォロクチル、パーフルォロ 7—ォクチルェチル、フルォ口へ プチル、パーフルォロデシル、パーフルォロブチルなどが挙げられる。また、これらの パーフルォロ基は、ハロゲン原子、ァシル基、アミノ基、シァノ基、アルキル基、アルコ キシ基、アルキル若しくはハロアルキルで置換されていてもよぐァリール基、アミド基 等で置換されていてもよい。  Examples of the perfluoro group include perfluorononenyl, perfluoromethyl, perfluoropropylene, perfluorononell, perfluorobenzoic acid, perfluoropropylene, perfluoropropyl, perfluoro (9-methyloctyl), Perfluoromethyloctyl, perfluorobutyl, perfluoro-3-methylbutyl, perfluorohexyl, perfluorooctyl, perfluorooctyl, perfluoroethyl, perfluorodecyl, perfluorodecyl, perfluoro Examples include butyl. These perfluoro groups may be substituted with a halogen atom, an acyl group, an amino group, a cyano group, an alkyl group, an alkoxy group, an alkyl group or an haloalkyl group, an aryl group, an amide group, or the like. Good.
前記 Rfl及び Rf 2は互い同じであってもよぐ異なってレ、てもよレ、。  Rfl and Rf2 may be the same or different from each other.
前記式(2)〜(5)において、 nは、 1〜40の整数、好ましくは 4〜25の整数を表す。 前記式(2)〜(5)において、 mは、 0〜40の整数、好ましくは 0〜25の整数を表す。 前記式(2)〜(5)において、— X—は、— (CH ) — (1は:!〜 10、好ましくは、 1〜5  In the formulas (2) to (5), n represents an integer of 1 to 40, preferably an integer of 4 to 25. In the formulas (2) to (5), m represents an integer of 0 to 40, preferably an integer of 0 to 25. In the above formulas (2) to (5), —X— is — (CH 2) — (1 is :! to 10, preferably 1 to 5
2 1  twenty one
の整数を表す)、一 C〇一 Ο—、 一〇一、一 NHCO—、 一 NHCOO—のいずれかを 表す。 Represents one of the following: 1) C001 〇—, 101, 1 NHCO—, 1 NHCOO—.
前記式(2)〜(5)で表される界面活性剤、及び特開 2003— 337424号公報に記 載の化合物は、 1種単独又は 2種以上の組合せで用いることができる。 Surfactants represented by the above formulas (2) to (5) and described in JP-A-2003-337424 The listed compounds can be used singly or in combination of two or more.
[0095] 前記界面活性剤の含有量は、感光性組成物の固形分に対し、 0. 001〜: 10質量 %が好ましい。 [0095] The content of the surfactant is preferably 0.001 to 10 mass% with respect to the solid content of the photosensitive composition.
前記含有量が、 0. 001質量%未満になると、面状改良の効果が得られなくことがあ り、 10質量%を超えると、密着性が低下することがある。  When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be lowered.
[0096] 前記感光性組成物が前記界面活性剤を含有することにより、塗布液としての流動 性が良好となり、塗布工程で使用されるスピンコーターやスリットコーターのノズルや 配管、容器中での液の付着性が改善され、前記ノズル内に汚れとして残る残渣を効 果的に減少させることができるので、塗布液の切り替え時に洗浄に要する洗浄液の 量や作業時間を軽減でき、カラーフィルタの生産性を向上させることができる。また、 前記カラーレジスト層を形成する際に発生する面状ムラ等を改善することができる。  [0096] When the photosensitive composition contains the surfactant, the fluidity as a coating liquid is improved, and the liquid in a nozzle, piping, or container of a spin coater or slit coater used in the coating process. As the adhesion of the ink is improved and the residue remaining as dirt in the nozzle can be effectively reduced, the amount of cleaning liquid and work time required for cleaning when changing the coating liquid can be reduced, and the productivity of the color filter can be reduced. Can be improved. In addition, it is possible to improve surface unevenness that occurs when the color resist layer is formed.
[0097] 前記熱重合禁止剤としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、特開 2005— 258431号公報の段落番号 0316に記載されている化合 物などが挙げられる。  [0097] The thermal polymerization inhibitor is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include compounds described in paragraph No. 0316 of JP-A-2005-258431. It is done.
前記熱重合禁止剤の含有量は、感光性組成物の全成分に対し、 0. 0001〜: 10質 量%が好ましぐ 0. 0005〜5質量%がより好ましぐ 0. 001〜1質量%が特に好まし レ、。  The content of the thermal polymerization inhibitor is preferably from 0.0001 to 10% by mass, more preferably from 0.005 to 5% by mass, based on all components of the photosensitive composition. Mass% is particularly preferred.
[0098] 前記紫外線吸収剤としては、特開平 5— 72724号公報記載の化合物のほか、サリ シレート系、ベンゾフエノン系、ベンゾトリアゾール系、シァノアクリレート系、ニッケル キレート系、ヒンダードアミン系などが挙げられる。  Examples of the ultraviolet absorber include salicylate-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based, nickel chelate-based, hindered amine-based compounds and the like in addition to the compounds described in JP-A-5-72724.
具体的には、フエニルサリシレート、 4 t ブチルフエニルサリシレート、 2, 4 ジ _t—ブチノレフエ二ノレ一3 ', 5 '—ジ一 t_4 '—ヒドロキシベンゾエート、 4_t—ブチ ルフエニルサリシレート、 2, 4 _ジ一ヒドロキシベンゾフエノン、 2—ヒドロキシ _4—メト キシベンゾフエノン、 2—ヒドロキシ一 4— n—オタトキシベンゾフエノン、 2— (2,一ヒド ロキシ一5 '—メチルフエニル)ベンゾトリァゾール、 2— (2 '—ヒドロキシ一3 ' _t—ブ チル一5 '—メチルフエ二ル) _ 5 _クロ口べンゾトリァゾール、ェチノレ一 2 _シァノ _ 3 , 3—ジ一フエニノレアタリレート、 2, 2,一ヒドロキシ一 4—メトキシベンゾフエノン、ニッ ケルジブチルジチォカーバメート、ビス(2, 2, 6, 6—テトラメトル _4 _ピリジン)一セ バケート、 4 t ブチルフエニルサリシレート、サルチル酸フエニル、 4ーヒドロキシー 2, 2, 6, 6 テトラメチルピペリジン縮合物、コハク酸一ビス(2, 2, 6, 6 テトラメチ ルー 4—ピペリデニル)一エステル、 2— [2 ヒドロキシ一 3, 5 ビス(α , α—ジメチ ノレベンジル)フエ二ル]— 2Η—ベンゾトリアゾール、 7 _ { [4 _クロロ_ 6 _ (ジェチル ァミノ) _ 5 _トリァジン _ 2 _ィル]アミノ} - 3—フヱユルクマリン等が挙げられる。 なお、感光性組成物の全固形分に対する紫外線吸収剤の含有量は、 0. 5〜: 15質 量%が好ましぐ 1〜: 12質量%がより好ましぐ 1. 2〜: 10質量%が特に好ましい。 Specifically, phenyl salicylate, 4 t-butylphenyl salicylate, 2, 4 di_t-butinolephenylol 3 ', 5'-di-t_4'-hydroxybenzoate, 4_t-butylphenyl salicylate, 2, 4 _Dihydroxybenzophenone, 2-hydroxy _4-Methoxybenzophenone, 2-Hydroxy-4-N-Otoxybenzophenone, 2- (2,1, Hydroxy-5'-methylphenyl) benzotriazole , 2— (2′—Hydroxy-3′_t—Butyl-5′-Methylphenyl) _5_Cloguchibenzotriazole, Echinore 1_Siano_3, 3-Diphenylenotalylate 2, 2,1-hydroxy-1,4-methoxybenzophenone, nickel dibutyldithiocarbamate, bis (2,2,6,6-tetramethol_4_pyridine) Bactoate, 4 t butylphenyl salicylate, phenyl salicylate, 4-hydroxy-2,2,6,6 tetramethylpiperidine condensate, bis (2,2,6,6 tetramethyl 4-piperidenyl) monoester, 2 — [2 Hydroxy 1,3 bis (α, α-Dimethylenobenzyl) phenyl] — 2Η-Benzotriazole, 7 _ {[4 _ Chloro_ 6 _ (Jetyl amino) _ 5 _ Triazine _ 2 _yl ] Amino} -3-Furukumarin and the like. In addition, content of the ultraviolet absorber with respect to the total solid content of the photosensitive composition is preferably 0.5 to 15% by mass, more preferably 1 to 12% by mass, and 1.2 to 10% by mass. % Is particularly preferred.
[0099] 前記感光層を形成する感光性組成物は、溶剤を用いて調製することができる。  [0099] The photosensitive composition for forming the photosensitive layer can be prepared using a solvent.
前記溶剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、メタノーノレ、エタノール、 η—プロパノール、イソプロパノール、 η ブタノール、 sec —ブタノール、 n_へキサノール等のアルコール類;アセトン、メチルェチルケトン、メ チルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなどのケトン類;酢酸ェチ ノレ、酢酸ブチル、酢酸 n ァミル、硫酸メチル、プロピオン酸ェチル、フタル酸ジメ チル、安息香酸ェチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、 キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロ 口エチレン、クロロホノレム、 1 , 1 , 1—トリクロロェタン、塩化メチレン、モノクロ口べンゼ ンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチルエーテル、エチレンダリ コールモノメチルエーテル、エチレングリコールモノェチルエーテル、 1ーメトキシー 2 プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルァセトアミド、ジメチ ルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよ く、 2種以上を併用してもよレ、。これらの中でも、 3 エトキシプロピオン酸メチル、 3— エトキシプロピオン酸ェチル、ェチルセ口ソルブアセテート、乳酸ェチル、ジエチレン グリコールジメチルエーテル、酢酸ブチル、 3—メトキシプロピオン酸メチル、 2—ヘプ タノン、シクロへキサン、ェチルカルビトールアセテート、ブチルカルビトールァセテ一 ト、プロピレングリコールメチルエーテルアセテートなどが好適に挙げられる。これらの 溶剤は、単独又 2種以上の組合せで用いることができる。  The solvent is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include methanol, ethanol, η-propanol, isopropanol, η butanol, sec-butanol, n_hexanol, and other alcohols; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, namyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate , And esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1,1-trichloroethane, methylene chloride, monochrome Halogenated hydrocarbons such as benzene ; Tetrahydrofuran, Jefferies chill ether, Echirendari glycol monomethyl ether, ethylene glycol monobutyl E chill ether, 1 ethers such as Metokishi 2-propanol; dimethylformamide, dimethyl § Seth amides, dimethicone Le sulfoxide, and sulfolane. These can be used alone or in combination of two or more. Among these, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate sorb acetate, ethyl acetate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexane, ethyl Preferred examples include carbitol acetate, butyl carbitol acetate, and propylene glycol methyl ether acetate. These solvents can be used alone or in combination of two or more.
[0100] 前記感光性組成物の調製時における前記溶剤の添加量は、特に制限はなぐ 目 的に応じて適宜選択することができるが、前記感光性組成物の全固形分濃度が 5〜 80質量%となるように添加されることが好ましぐ 10〜60質量%となるように添加され ること力 Sより好ましく、 15〜50質量%となるように添加されることが特に好ましい。 [0100] The amount of the solvent added during the preparation of the photosensitive composition can be appropriately selected according to the purpose without any particular limitation, but the total solid concentration of the photosensitive composition is 5 to 5%. It is preferable to be added so as to be 80% by mass. It is more preferable to be added so as to be 10-60% by mass S, and it is particularly preferable that it is added so as to be 15-50% by mass.
[0101] 前記感光層の層厚は、 0. 3〜10 μ mが好ましぐ 0. 75〜6 μ mがより好まぐ 1. 0[0101] The thickness of the photosensitive layer is preferably 0.3 to 10 μm, more preferably 0.75 to 6 μm. 1.0
〜3 z mが特に好ましい。 ˜3 zm is particularly preferred.
前記層厚が 0. 3 z m未満であると、感光層用塗布液の塗布時にピンホールが発生 しゃすぐ製造適性が低下することがあり、 10 z mを超えると、現像時に未露光部を 除去するのに長時間を要することがある。  If the layer thickness is less than 0.3 zm, pinholes may occur when applying the coating solution for the photosensitive layer, and the suitability for production may be reduced. If the layer thickness exceeds 10 zm, unexposed areas are removed during development. It may take a long time.
[0102] <基材> [0102] <Base material>
前記感光層形成工程で用いられる前記基材としては、特に制限はなぐ公知の材 料の中から表面平滑性の高いものから凸凹のある表面を有するものまで、 目的に応 じて適宜選択することができるが、板状の基材 (基板)が好ましぐ具体的には、ガラス 板 (例えば、ソーダガラス板、酸化ケィ素をスパッタしたガラス板、無アルカリガラス板 、石英ガラス板等)、合成樹脂性のフィルム、紙、及び金属板などが挙げられる。  The base material used in the photosensitive layer forming step is appropriately selected according to the purpose from known materials having no limitation to those having high surface smoothness to those having a surface with irregularities. Specifically, a plate-like substrate (substrate) is preferable. Specifically, a glass plate (eg, a soda glass plate, a glass plate sputtered with silicon oxide, an alkali-free glass plate, a quartz glass plate, etc.), Examples thereof include synthetic resin films, paper, and metal plates.
[0103] 前記基材は、該基材上に前記感光層における感光層が重なるようにして積層して なる積層体を形成して用いることができる。即ち、前記積層体における感光層の前記 感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程に よりパターンを形成することができる。 [0103] The base material can be used by forming a laminate obtained by laminating the base material so that the photosensitive layer in the photosensitive layer overlaps the base material. That is, by exposing the photosensitive layer of the laminate to the photosensitive layer, the exposed region can be cured, and a pattern can be formed by a development process described later.
[0104] [露光工程]  [0104] [Exposure process]
前記露光工程は、前記感光層に対し、光照射手段、及び光変調手段を備えた露 光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の 設定傾斜角度 Θをなすように配置された露光ヘッドを用い、前記露光ヘッドについて 、使用描素部指定手段により、使用可能な前記描素部のうち、 N重露光 (ただし、 N は 2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、描 素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが 露光に関与するように、前記描素部の制御を行い、前記感光層に対し、前記露光へ ッドを走查方向に相対的に移動させて露光を行う工程である。  The exposure step is an exposure head provided with a light irradiation means and a light modulation means for the photosensitive layer, wherein the column direction of the picture element portions has a predetermined set inclination with respect to the scanning direction of the exposure head. Using the exposure head arranged so as to form an angle Θ, the exposure head is subjected to N-fold exposure (where N is a natural number of 2 or more) of the usable pixel parts by the use pixel part specifying means. The pixel part to be used for the exposure is specified, and for the exposure head, the pixel part specified by the used pixel part specifying unit is involved in the exposure by the pixel part control unit. And performing exposure by moving the exposure head relative to the photosensitive layer relative to the photosensitive layer.
[0105] 本発明において「N重露光」とは、前記感光層の被露光面上の露光領域の略すベ ての領域において、前記露光ヘッドの走查方向に平行な直線が、前記被露光面上 に照射された N本の光点列(画素列)と交わるような設定による露光を指す。ここで、「 光点列(画素列)」とは、前記描素部により生成された描素単位としての光点(画素) の並びのうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指す ものとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよぐたとえ ば平行四辺形状の配置等であってもよい。 ここで、露光領域の「略すベての領域」 と述べたのは、各描素部の両側縁部では、描素部列を傾斜させたことにより、前記露 光ヘッドの走查方向に平行な直線と交わる使用描素部の描素部列の数が減るため、 力、かる場合に複数の露光ヘッドをつなぎ合わせるように使用したとしても、該露光へ ッドの取付角度や配置等の誤差により、走査方向に平行な直線と交わる使用描素部 の描素部列の数がわずかに増減することがあるため、また、各使用描素部の描素部 列間のつなぎの、解像度分以下のごくわずかな部分では、取付角度や描素部配置 等の誤差により、走査方向と直交する方向に沿った描素部のピッチが他の部分の描 素部のピッチと厳密に一致せず、走査方向に平行な直線と交わる使用描素部の描 素部列の数が ± 1の範囲で増減することがあるためである。なお、以下の説明では、 Nが 2以上の自然数である N重露光を総称して「多重露光」という。さらに、以下の説 明では、本発明の露光装置又は露光方法を、描画装置又は描画方法として実施し た形態について、「N重露光」及び「多重露光」に対応する用語として、「N重描画」及 び「多重描画」という用語を用いるものとする。 In the present invention, “N double exposure” refers to a straight line parallel to the strike direction of the exposure head in almost all of the exposure area on the exposed surface of the photosensitive layer. Up This refers to exposure with a setting that intersects N light spot rows (pixel rows) irradiated on the. Here, the “light spot array (pixel array)” means that the angle formed with the scanning direction of the exposure head in the array of light spots (pixels) as pixel units generated by the pixel unit is smaller. It shall refer to a sequence of directions. The arrangement of the picture element portions does not necessarily have to be a rectangular lattice, and may be an arrangement of parallelograms, for example. Here, “substantially all areas” of the exposure area is described as being parallel to the striking direction of the exposure head by tilting the pixel part rows at both side edges of each pixel part. This reduces the number of picture element rows in the use picture element section that intersect with a straight line, so that even if it is used to connect multiple exposure heads in such a case, the mounting angle and arrangement of the exposure head, etc. Because the error may slightly increase or decrease the number of pixel parts in the used pixel part that intersect the straight line parallel to the scanning direction, the resolution of the connection between the pixel parts in each used pixel part In a very small part, the pitch of the pixel part along the direction orthogonal to the scanning direction is exactly the same as the pitch of the pixel part of the other part due to errors such as the mounting angle and pixel part placement. First, increase or decrease the number of pixel parts in the used pixel part that intersects the straight line parallel to the scanning direction within the range of ± 1. It is because there is. In the following description, N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”. Furthermore, in the following description, “N multiple drawing” is used as a term corresponding to “N double exposure” and “multiple exposure” for the embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method. "And" multiple drawing "shall be used.
前記 N重露光の Nとしては、 2以上の自然数であれば、特に制限はなぐ 目的に応 じて適宜選択することができる力 3以上の自然数が好ましぐ 3以上 7以下の自然数 力はり好ましい。  The N in the N-exposure is a natural number of 2 or more, and is not particularly limited. A force that can be appropriately selected according to the purpose. A natural number of 3 or more is preferred. A natural number of 3 or more and 7 or less. .
前記露光工程において、露光は、貧酸素雰囲気下行うことが好ましぐ例えば、不 活性ガス雰囲気下や酸素遮断層を設けた状態で行うことが好ましい。  In the exposure step, the exposure is preferably performed in an oxygen-poor atmosphere, for example, in an inert gas atmosphere or in a state where an oxygen blocking layer is provided.
貧酸素雰囲気下で露光する方法としては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、不活性ガスを前記感光層表面に直接吹きかける方法、枠 状フレームの一辺が開放され、不活性ガスの導入孔が少なくとも残りの 1辺に形成さ れた試料台中の露光空間に、露光対象である感光層が形成された試料を載置し、前 記不活性ガスの導入孔から不活性ガスを導入して、感光層表面を不活性ガスで覆レ、 つつ、露光を行う方法などが挙げられる。 The exposure method in an oxygen-poor atmosphere can be appropriately selected according to the purpose without any particular limitation. For example, a method of spraying an inert gas directly on the surface of the photosensitive layer, or one side of the frame-shaped frame is opened. Then, the sample on which the photosensitive layer to be exposed is placed in the exposure space in the sample stage where the inert gas introduction hole is formed on at least one remaining side, and the inert gas introduction hole is placed from the inert gas introduction hole. Introducing an inert gas, covering the surface of the photosensitive layer with an inert gas, In addition, a method of performing exposure is exemplified.
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導 入することも可能である。  Further, the exposure space can be a sealed space, and an inert gas can be introduced into the sealed space under reduced pressure.
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されるこ とを防止できれば、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、 窒素、ヘリウム、アルゴンなどが挙げられる。  The inert gas is not particularly limited as long as it can prevent the polymerization reaction of the photosensitive layer from being inhibited by the influence of oxygen, and can be appropriately selected according to the purpose. For example, nitrogen, helium, argon, etc. Is mentioned.
[0107] 以下、本発明のカラーフィルタの製造方法の態様、及び該カラーフィルタの製造方 法に好適に用いられる露光装置を、図面を参照しながら説明する。  Hereinafter, an embodiment of a method for producing a color filter of the present invention and an exposure apparatus suitably used for the method for producing the color filter will be described with reference to the drawings.
前記露光装置としては、前記基材がガラス基板等である場合には、フラットベッドタ イブの露光装置が好適に挙げられる。前記基材がフレキシブル基板等である場合に は、アウタードラムタイプの露光装置及びインナードラムタイプの露光装置等であって もよレ、。以下、フラットベッドタイプの露光装置について説明する。  As the exposure apparatus, when the substrate is a glass substrate or the like, a flat bed type exposure apparatus is preferably exemplified. When the base material is a flexible substrate or the like, it may be an outer drum type exposure device, an inner drum type exposure device, or the like. Hereinafter, a flat bed type exposure apparatus will be described.
[0108] <露光装置 >  [0108] <Exposure equipment>
前記露光装置としては、図 1に示すように、前記感光層が積層されてなる積層体( 以下、「感光材料 12」、又は「感光層 12」という)を表面に吸着して保持する平板状の 移動ステージ 14を備えている。 4本の脚部 16に支持された厚い板状の設置台 18の 上面には、ステージ移動方向に沿って延びた 2本のガイド 20が設置されている。ステ ージ 14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド 2 0によって往復移動可能に支持されている。なお、この露光装置 10には、ステージ 1 4をガイド 20に沿って駆動するステージ駆動装置(図示せず)が設けられている。  As the exposure apparatus, as shown in FIG. 1, a flat plate-like structure that adsorbs and holds a laminate (hereinafter referred to as “photosensitive material 12” or “photosensitive layer 12”) in which the photosensitive layers are laminated. The moving stage 14 is provided. Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The exposure apparatus 10 is provided with a stage driving device (not shown) that drives the stage 14 along the guide 20.
[0109] 設置台 18の中央部には、ステージ 14の移動経路を跨ぐようにコの字状のゲート 22 が設けられている。コの字状のゲート 22の端部の各々は、設置台 18の両側面に固 定されている。このゲート 22を挟んで一方の側にはスキャナ 24が設けられ、他方の 側には感光材料 12の先端及び後端を検知する複数 (たとえば 2個)のセンサ 26が設 けられている。スキャナ 24及びセンサ 26はゲート 22に各々取り付けられて、ステージ 14の移動経路の上方に固定配置されている。なお、スキャナ 24及びセンサ 26は、こ れらを制御する図示しないコントローラに接続されている。  A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side. The scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 are connected to a controller (not shown) that controls them.
[0110] ここで、説明のため、ステージ 14の表面と平行な平面内に、図 1に示すように、互い に直交する X軸及び Y軸を規定する。 [0110] Here, for explanation, in a plane parallel to the surface of the stage 14, as shown in FIG. Specifies the X axis and Y axis perpendicular to.
[0111] ステージ 14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の 端縁部には、 X軸の方向に向かって開く「く」の字型に形成されたスリット 28が、等間 隔で 10本形成されている。各スリット 28は、上流側に位置するスリット 28aと下流側に 位置するスリット 28bと力、らなってレヽる。スリット 28aとスリット 28bとは互レヽに直交すると ともに、 X軸に対してスリット 28aは— 45度、スリット 28bは + 45度の角度を有している [0111] The edge of the upstream side of the stage 14 in the scanning direction (hereinafter simply referred to as “upstream side”) is formed in a “<” shape that opens in the direction of the X-axis. Ten slits 28 are formed at regular intervals. Each slit 28 is separated from the slit 28a located on the upstream side and the slit 28b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
[0112] スリット 28の位置は、前記露光ヘッド 30の中心と略一致させられている。また、各ス リット 28の大きさは、対応する露光ヘッド 30による露光エリア 32の幅を十分覆う大きさ とされてレ、る。また、スリット 28の位置としては、隣接する露光済み領域 34間の重複 部分の中心位置と略一致させてもよい。この場合、各スリット 28の大きさは、露光済み 領域 34間の重複部分の幅を十分覆う大きさとする。 [0112] The position of the slit 28 is substantially coincident with the center of the exposure head 30. Further, the size of each slit 28 is set so as to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
[0113] ステージ 14内部の各スリット 28の下方の位置には、それぞれ、後述する使用描素 部指定処理において、描素単位としての光点を検出する光点位置検出手段としての 単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述 する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段とし ての演算装置(図示せず)に接続されている。  [0113] At the position below each slit 28 in the stage 14, a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later. A photodetector (not shown) is incorporated. Further, each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later.
[0114] 露光時における前記露光装置の動作形態はとしては、露光ヘッドを常に移動させ ながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させな がら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよレ、  [0114] The operation mode of the exposure apparatus at the time of exposure may be a mode in which exposure is continuously performed while constantly moving the exposure head, or each movement while the exposure head is moved stepwise. Even if the exposure operation is performed with the exposure head stationary at the previous position,
[0115] < <露光ヘッド > > [0115] <<Exposure head>>
各露光ヘッド 30は、後述する内部のデジタル 'マイクロミラ一'デバイス(DMD) 36 の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度 Θをなすよ うに、スキャナ 24に取り付けられている。このため、各露光ヘッド 30による露光エリア 32は、走查方向に対して傾斜した矩形状のエリアとなる。ステージ 14の移動に伴い 、感光層 12には露光ヘッド 30ごとに帯状の露光済み領域 34が形成される。図 2及 び図 3Bに示す例では、 2行 5列の略マトリックス状に配列された 10個の露光ヘッドが 、スキャナ 24に備えられている。 Each exposure head 30 is connected to a scanner 24 so that the direction of each pixel portion (micromirror) of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle Θ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the running direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in Fig. 2 and Fig. 3B, there are 10 exposure heads arranged in a matrix of 2 rows and 5 columns. The scanner 24 is equipped.
なお、以下において、 m行目の n列目に配列された個々の露光ヘッドを示す場合は 、露光ヘッド 30 と表記し、 m行目の n列目に配列された個々の露光ヘッドによる露 mn  In the following, when the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
光エリアを示す場合は、露光エリア 32 と表記する。  When the light area is indicated, it is expressed as exposure area 32.
mn  mn
[0116] また、図 3A及び図 3Bに示すように、帯状の露光済み領域 34のそれぞれが、隣接 する露光済み領域 34と部分的に重なるように、ライン状に配列された各行の露光へ ッド 30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施 形態では 2倍)ずらして配置されている。このため、 1行目の露光エリア 32 と露光ェ  Further, as shown in FIGS. 3A and 3B, the exposure exposure of each row arranged in a line so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34 is performed. Each of the terminals 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
11 リア 32 との間の露光できない部分は、 2行目の露光エリア 32 により露光することが 11 The part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
12 21 12 21
できる。  it can.
[0117] 露光ヘッド 30の各々は、図 4及び図 5に示すように、入射された光を画像データに 応じて描素部ごとに変調する光変調手段 (描素部ごとに変調する空間光変調素子) として、 DMD36 (米国テキサス 'インスツルメンッ社製)を備えている。この DMD36 は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコントロー ラに接続されている。このコントローラのデータ処理部では、入力された画像データに 基づいて、露光ヘッド 30ごとに、 DMD36上の使用領域内の各マイクロミラーを駆動 制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処理部で 生成した制御信号に基づいて、露光ヘッド 30ごとに、 DMD36の各マイクロミラーの 反射面の角度を制御する。  As shown in FIGS. 4 and 5, each of the exposure heads 30 is a light modulation unit that modulates incident light for each pixel part in accordance with image data (spatial light modulated for each pixel part). DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a modulation element. The DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part. The data processing unit of the controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
[0118] 図 4に示すように、 DMD36の光入射側には、光ファイバの出射端部(発光点)が露 光エリア 32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を 備えたファイバアレイ光源 38、ファイバアレイ光源 38から出射されたレーザ光を補正 して DMD上に集光させるレンズ系 40、このレンズ系 40を透過したレーザ光を DMD 36に向けて反射するミラー 42がこの順に配置されている。なお図 4では、レンズ系 4 0を概略的に示してある。  [0118] As shown in FIG. 4, on the light incident side of the DMD 36, a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. A fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36 The mirrors 42 to be used are arranged in this order. In FIG. 4, the lens system 40 is schematically shown.
[0119] 上記レンズ系 40は、図 5に詳しく示すように、ファイバアレイ光源 38から出射された レーザ光を平行光化する 1対の組合せレンズ 44、平行光化されたレーザ光の光量分 布が均一になるように補正する 1対の組合せレンズ 46、及び光量分布が補正された レーザ光を DMD36上に集光する集光レンズ 48で構成されている。 [0119] As shown in detail in FIG. 5, the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38, and a light quantity distribution of the collimated laser light. A pair of combination lenses 46 that correct the light intensity to be uniform, and the light intensity distribution has been corrected. A condensing lens 48 that condenses the laser light on the DMD 36 is formed.
[0120] また、 DMD36の光反射側には、 DMD36で反射されたレーザ光を感光層 12の被 露光面上に結像するレンズ系 50が配置されている。レンズ系 50は、 DMD36と感光 層 12の被露光面とが共役な関係となるように配置された、 2枚のレンズ 52及び 54か らなる。 Further, on the light reflection side of the DMD 36, a lens system 50 that images the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed. The lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
[0121] 本実施形態では、ファイバアレイ光源 38から出射されたレーザ光は、実質的に 5倍 に拡大された後、 DMD36上の各マイクロミラー力 の光線が上記のレンズ系 50によ つて約 5 μ mに絞られるように設定されてレ、る。  [0121] In the present embodiment, the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light of each micromirror force on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 μm.
[0122] -光変調手段- 前記光変調手段としては、 n個(ただし、 nは 2以上の自然数)の 2次元状に配列さ れた前記描素部を有し、前記パターン情報(「画素データ」ともいう)に応じて前記描 素部を制御可能なものであれば、特に制限はなぐ 目的に応じて適宜選択することが でき、例えば、空間光変調素子が好ましい。  [0122] -Light modulation means- The light modulation means includes n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts, and the pattern information ("pixel As long as the pixel portion can be controlled according to data ”, it can be appropriately selected according to the purpose without any limitation. For example, a spatial light modulator is preferable.
[0123] 前記空間光変調素子としては、例えば、デジタル 'マイクロミラー ·デバイス(DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Space Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。  [0123] Examples of the spatial light modulation element include a digital 'micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM; Space Light Modulator), and transmission by an electro-optic effect. Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
[0124] また、前記光変調手段は、形成するパターン情報 (画素データ)に基づいて制御信 号を生成するパターン信号生成手段を有することが好ましい。この場合、前記光変調 手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。 前記制御信号としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  [0124] Preferably, the light modulation means includes pattern signal generation means for generating a control signal based on pattern information (pixel data) to be formed. In this case, the light modulation means modulates light according to the control signal generated by the pattern signal generation means. The control signal is not particularly limited and can be appropriately selected according to the purpose. For example, a digital signal is preferable.
[0125] 以下、前記光変調手段の一例について図面を参照しながら説明する。  Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD36は図 6に示すように、 SRAMセル(メモリセル) 56上に、各々描素(ピクセ ノレ)を構成する描素部として、多数のマイクロミラー 58が格子状に配列されてなるミラ 一デバイスである。本実施形態では、 1024列 X 768行のマイクロミラー 58が配され てなる DMD36を使用する力 このうち DMD36に接続されたコントローラにより駆動 可能すなわち使用可能なマイクロミラー 58は、 1024列 X 256行のみであるとする。 As shown in FIG. 6, the DMD 36 is a mirror device in which a large number of micromirrors 58 are arranged in a lattice pattern on a SRAM cell (memory cell) 56 as a pixel portion constituting each pixel (pixel). It is. In this embodiment, the force to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, it is driven by a controller connected to DMD36. The only possible or usable micromirror 58 is 1024 columns by 256 rows.
DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して 1 ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用 することにより 1ライン当りの変調速度が速くなる。各マイクロミラー 58は支柱に支えら れており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお 、本実施形態では、各マイクロミラー 58の反射率は 90%以上であり、その配列ピッチ は縦方向、横方向ともに 13. である。 SRAMセノレ 56は、ヒンジ及びヨークを含 む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CM〇 Sのものであり、全体はモノリシック(一体型)に構成されている。  The data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectivity of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13. in both the vertical direction and the horizontal direction. The SRAM senore 56 is a silicon gate CMOO manufactured on a normal semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
[0126] DMD36の SRAMセノレ(メモリセノレ) 56に、所望の 2次元パターンを構成する各点 の濃度を 2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー 58力 対角線を中心として DMD36が配置された基板側に対して ± ひ度(たとえば ± 10度)のいずれかに傾く。図 7Aは、マイクロミラー 58がオン状態である + α度に 傾いた状態を示し、図 7Βは、マイクロミラー 58がオフ状態である— α度に傾いた状 態を示す。このように、画像信号に応じて、 DMD36の各ピクセルにおけるマイクロミ ラー 58の傾きを、図 6に示すように制御することによって、 DMD36に入射したレーザ 光 Βはそれぞれのマイクロミラー 58の傾き方向へ反射される。  [0126] When an image signal representing the density of each point constituting the desired two-dimensional pattern in binary is written in the SRAM senore (memory senore) 56 of the DMD 36, each micromirror 58 supported by the column is diagonally converted. It tilts to ± ± degrees (eg ± 10 °) with respect to the substrate side where DMD 36 is placed as the center. FIG. 7A shows a state in which the micromirror 58 is tilted to + α degrees when the micromirror 58 is in an on state, and FIG. 7B shows a state in which the micromirror 58 is in an off state—tilt to α degrees. In this way, by controlling the inclination of the micromirror 58 in each pixel of the DMD 36 according to the image signal as shown in FIG. 6, the laser beam incident on the DMD 36 is moved in the inclination direction of each micromirror 58. Reflected.
[0127] 図 6には、 DMD36の一部を拡大し、各マイクロミラー 58が + α度又は α度に制御 されている状態の一例を示す。それぞれのマイクロミラー 58のオンオフ制御は、 DM D36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミ ラー 58で反射したレーザ光 Bが進行する方向には、光吸収体(図示せず)が配置さ れている。  FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + α degrees or α degrees. The on / off control of each micromirror 58 is performed by the controller connected to the DM D36. In addition, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
[0128] -光照射手段- 前記光照射手段としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED、半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。 前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の 光を用いることができる。 [0128] -Light irradiation means- The light irradiation means is not particularly limited and can be appropriately selected according to the purpose. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, an LED, a known light source such as a semiconductor laser, or a means that can synthesize and irradiate two or more lights. Among these, a means that can synthesize and irradiate two or more lights is preferable. . The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when light irradiation is performed after the support is peeled off, the same light can be used.
[0129] 前記紫外から可視光線の波長としては、例えば、 300-1 , 500nmが好ましぐ 32 0〜800nm力 Sより好ましく、 330〜650nm力 S特に好ましレヽ。  [0129] The wavelength of ultraviolet to visible light is preferably 300-1, 500 nm, more preferably 320-800 nm force S, and more preferably 330-650 nm force S.
前記レーザ光の波長としては、 ί列えば'、 200〜1 , 500nmカ好ましく、 300〜800n m力 Sより好ましく、 330〜500nm力 S更に好ましく、 400〜450nm力 S特に好ましレ、0 The wavelength of the laser light, I Retsue if ', 200 to 1, 500 nm mosquito preferably, preferably from 300~800N m force S, more preferably 330~500nm force S, 400 to 450 nm force S particularly preferably les, 0
[0130] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記 マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。 [0130] As means capable of irradiating the combined laser, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers are condensed and coupled to the multimode optical fiber. Means having a collecting optical system to be used is preferable.
[0131] 以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)としては、例えば、 特開 2005— 258431号公報の段落番号 0109〜0146に記載の手段が挙げられる  Hereinafter, examples of means (fiber array light source) capable of irradiating the combined laser include means described in paragraphs 0109 to 0146 of JP-A-2005-258431.
[0132] < <使用描素部指定手段 > > [0132] <<Used pixel part specification method>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上に おいて検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基 づき、 N重露光を実現するために使用する描素部を選択する描素部選択手段とを少 なくとも備えることが好ましい。  The used pixel part specifying means includes: a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface; and a detection result by the light spot position detecting means. It is preferable to include at least a pixel part selection means for selecting a pixel part to be used for realizing the double exposure.
以下、前記使用描素部指定手段による、 N重露光に使用する描素部の指定方法 の例について説明する。  Hereinafter, an example of a method for designating a pixel part to be used for N double exposure by the used pixel part designation unit will be described.
[0133] (1)単一露光ヘッド内における使用描素部の指定方法 [0133] (1) Method of designating used pixel part in single exposure head
本実施形態(1)では、露光装置 10により、感光材料 12に対して 2重露光を行う場 合であって、各露光ヘッド 30の取付角度誤差に起因する解像度のばらつきと濃度む らとを軽減し、理想的な 2重露光を実現するための使用描素部の指定方法を説明す る。 [0134] 露光ヘッド 30の走査方向に対する描素部(マイクロミラー 58)の列方向の設定傾斜 角度 Θとしては、露光ヘッド 30の取付角度誤差等がない理想的な状態であれば、使 用可能な 1024列 X 256行の描素部を使用してちょうど 2重露光となる角度 Θ より In the present embodiment (1), when the exposure apparatus 10 performs double exposure on the photosensitive material 12, the variation in resolution and the density unevenness caused by the mounting angle error of each exposure head 30 are reduced. Explain how to specify the pixel parts to be used in order to reduce and realize ideal double exposure. [0134] The set tilt angle Θ in the column direction of the image area (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle Θ, which is exactly double exposure using a 1024 column x 256 row pixel part
ideal も、若干大きい角度を採用するものとする。  The ideal also uses a slightly larger angle.
この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラー 58の列方向の個数 s  This angle Θ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
ideal  ideal
、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光ヘッド 30を傾斜させた状 態においてマイクロミラーによって形成される走査線のピッチ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1)  The following formula 1, spsin θ ≥ Ν δ (formula), with respect to the column spacing p of the usable micromirrors 58 and the pitch δ of the scanning lines formed by the micromirrors with the exposure head 30 inclined. 1)
ideal  ideal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan 0 =N (式 3)  stan 0 = N (Equation 3)
ideal  ideal
となる。本実施形態(1)では、上記のとおり s = 256、 N = 2であるので、前記式 3より、 角度 Θ は約 0. 45度である。したがって、設定傾斜角度 Θとしては、たとえば 0. 5 ideal  It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle Θ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle Θ is, for example, 0.5 ideal
0度程度の角度を採用するとよい。露光装置 10は、調整可能な範囲内で、各露光へ ッド 30すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となるよう に、初期調整されているものとする。  An angle of about 0 degrees should be adopted. It is assumed that the exposure apparatus 10 is initially adjusted within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle Θ.
[0135] 図 8は、上記のように初期調整された露光装置 10において、 1つの露光ヘッド 30の 取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに生じるむ らの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロ ミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点に ついて、第 m行目の光点を r (m)、第 n列目の光点を c (n)、第 m行第 n列の光点を P ( m, n)とそれぞれ表記するものとする。  FIG. 8 shows an example of unevenness in the pattern on the exposed surface due to the influence of the mounting angle error of one exposure head 30 and pattern distortion in the exposure apparatus 10 initially adjusted as described above. It is explanatory drawing shown. In the following drawings and description, the light spot in the m-th row is denoted by r (the light spot as a pixel unit generated by each pixel part (micromirror) and constituting the exposure area on the exposed surface. m), the light spot in the n-th column is denoted as c (n), and the light spot in the m-th row and the n-th column is denoted as P (m, n).
[0136] 図 8の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、使用可能なマイクロミラー 58からの光点群のパターンを示し、下段部分 は、上段部分に示したような光点群のパターンが現れてレ、る状態でステージ 14を移 動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示 したものである。 [0136] The upper part of FIG. 8 shows the pattern of the light spot group from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears and shows the state of the exposure pattern formed on the exposed surface when the stage 14 is moved and the continuous exposure is performed. It is a thing.
なお、図 8では、説明の便宜のため、使用可能なマイクロミラー 58の奇数列による 露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  In FIG. 8, for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
[0137] 図 8の例では、設定傾斜角度 Θを上記の角度 Θ よりも若干大きい角度を採用し [0137] In the example of Fig. 8, the set inclination angle Θ is slightly larger than the above angle Θ.
ideal  ideal
た結果として、また露光ヘッド 30の取付角度の微調整が困難であるために、実際の 取付角度と上記の設定傾斜角度 Θとが誤差を有する結果として、被露光面上のいず れの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーに よる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の 描素部列により形成された、被露光面上の重複露光領域において、理想的な 2重露 光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。  As a result of this, and because it is difficult to finely adjust the mounting angle of the exposure head 30, the actual mounting angle and the above-mentioned set inclination angle Θ have an error. Also in FIG. Specifically, it is ideal in the overlapping exposure area on the exposed surface, which is formed by a plurality of pixel part rows in both the exposure pattern by the odd-numbered micromirrors and the exposure pattern by the even-numbered micromirrors. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
[0138] さらに、図 8の例では、被露光面上に現れるパターン歪みの一例であって、被露光 面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じてい る。このような角度歪みが生じる原因としては、 DMD36と被露光面間の光学系の各 種収差やアラインメントずれ、及び DMD36自体の歪みやマイクロミラーの配置誤差 等が挙げられる。 Further, the example of FIG. 8 is an example of pattern distortion appearing on the exposed surface, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the exposed surface is not uniform. The Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
図 8の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列 ほど小さく、図の右方の列ほど大きくなつている形態の歪みである。この角度歪みの 結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく 、図の右方に示した被露光面上ほど大きくなつている。  The angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
[0139] 上記したような、複数の描素部列により形成された、被露光面上の重複露光領域に おける濃度むらを軽減するために、前記光点位置検出手段としてスリット 28及び光 検出器の組を用い、露光ヘッド 30ごとに実傾斜角度 Θ 'を特定し、該実傾斜角度 Θ ' に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を 用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 実傾斜角度 Θ 'は、光点位置検出手段が検出した少なくとも 2つの光点位置に基づ き、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光へ ッドの走查方向とがなす角度により特定される。 以下、図 9及び 10を用いて、前記実傾斜角度 Θ 'の特定、及び使用画素選択処理 について説明する。 [0139] In order to reduce density unevenness in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows as described above, the slit 28 and the photodetector are used as the light spot position detecting means. The actual inclination angle Θ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle Θ ′. A process of selecting a micromirror to be used for actual exposure is performed. The actual inclination angle Θ ′ is based on at least two light spot positions detected by the light spot position detecting means, and the light spot column direction on the exposure surface and the exposure head when the exposure head is tilted. It is specified by the angle between the running direction of Hereinafter, the specification of the actual inclination angle Θ ′ and the used pixel selection process will be described with reference to FIGS.
[0140] 一実傾斜角度 の特定 [0140] Specifying the actual inclination angle
図 9は、 1つの DMD36による露光エリア 32と、対応するスリット 28との位置関係を 示した上面図である。スリット 28の大きさは、露光エリア 32の幅を十分覆う大きさとさ れている。  FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
本実施形態(1)の例では、露光エリア 32の略中心に位置する第 512列目の光点 歹 IJと露光ヘッド 30の走查方向とがなす角度を、上記の実傾斜角度 Θ 'として測定す る。具体的には、 DMD36上の第 1行目第 512列目のマイクロミラー 58、及び第 256 行目第 512列目のマイクロミラー 58をオン状態とし、それぞれに対応する被露光面 上の光点 P (l, 512)及び P (256, 512)の位置を検出し、それらを結ぶ直線と露光 ヘッドの走査方向とがなす角度を実傾斜角度 Θ 'として特定する。  In the example of the present embodiment (1), the angle formed by the light spot 歹 IJ in the 512th column located substantially at the center of the exposure area 32 and the running direction of the exposure head 30 is defined as the actual inclination angle Θ ′. taking measurement. Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and P (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle Θ '.
[0141] 図 10は、光点 P (256, 512)の位置の検出手法を説明した上面図である。 FIG. 10 is a top view illustrating a method for detecting the position of the light spot P (256, 512).
まず、第 256行目第 512列目のマイクロミラー 58を点灯させた状態で、ステージ 14 をゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 512 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このとさのスリット 28aとスリット 28bとの交点、の座標を(XO, Y0)と する。この座標(XO, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置から決 定され、記録される。  First, with the micromirror 58 in the 256th row and the 512th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is The slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b. The coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0). The value of this coordinate (XO, Y0) is determined and recorded from the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28. The
[0142] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 10における右方に相対 移動させる。そして、図 10において二点鎖線で示すように、光点 P (256, 512)の光 が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止さ せる。このときのスリット 28aとスリット 28bとの交点、の座標(X0, Y1)を、光点、 P (256, 512)の位置として記録する。  Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by the two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (X0, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot, P (256, 512).
[0143] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 10におけ る左方に相対移動させる。そして、図 10において二点鎖線で示すように、光点 P (25 6, 512)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このとさのスリット 28aとスリット 28bとの交点、の座標(XO, Y2)を 光点 P (256, 512)の位置として記録する。 [0143] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by the two-dot chain line in FIG. 10, the light at the light spot P (25 6, 512) passes through the right slit 28a and is detected by the photodetector. Stop 14 The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b are recorded as the position of the light spot P (256, 512).
[0144] 以上の測定結果から、光点 P (256, 512)の被露光面上における位置を示す座標 [0144] From the above measurement results, coordinates indicating the position of the light spot P (256, 512) on the exposed surface
(X, Y)を、 Χ=Χ0+ (Υ1 _Υ2) /2、 Υ= (Υ1 +Υ2) /2の計算により決定する。同 様の測定により、 P (l , 512)の位置を示す座標も決定し、それぞれの座標を結ぶ直 線と、露光ヘッド 30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度 Θ 'と して特定する。  (X, Y) is determined by calculating Χ = Χ0 + (Υ1 _Υ2) / 2, Υ = (Υ1 + Υ2) / 2. By the same measurement, the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. Specify as Θ '.
[0145] -使用描素部の選択- このようにして特定された実傾斜角度 Θ 'を用い、前記光検出器に接続された前記 演算装置は、下記式 4 [0145] -Selection of used pixel part- Using the actual inclination angle Θ 'specified in this way, the arithmetic unit connected to the photodetector is represented by the following equation 4
ttan θ ' =Ν (式 4)  ttan θ '= Ν (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを導出し、 DMD36上の 1行目から T行目の マイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行 う。これにより、第 512列目付近の露光領域において、理想的な 2重露光に対して、 露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロ ミラーを、実際に使用するマイクロミラーとして選択することができる。  The natural number T closest to the value t that satisfies the above relationship is derived, and the micromirrors in the first to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure. As a result, in the exposure area near the 512th column, a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
[0146] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、第 512列目付近の露光領域において、 理想的な 2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不 足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして 選択すること力できる。  [0146] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the overexposed area and does not produce an underexposed area with respect to the ideal double exposure. It can be selected as a micromirror for actual use.
また、値 t以下の最大の自然数を導出することとしてもよい。その場合、第 512列目 付近の露光領域において、理想的な 2重露光に対して、露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  It is also possible to derive the maximum natural number less than the value t. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure. It can be selected as a micromirror to be actually used.
[0147] 図 11は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミ ラーが生成した光点のみを用いて行った露光において、図 8に示した被露光面上の むらがどのように改善されるかを示した説明図である。 この例では、上記の自然数 Tとして T= 253が導出され、第 1行目力 第 253行目 のマイクロミラーが選択されたものとする。選択されなかった第 254行目から第 256行 目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に 設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図 1 1に示すとおり、第 512列目付近の露光領域では、露光過多及び露光不足は、ほぼ 完全に解消され、理想的な 2重露光に極めて近い均一な露光が実現される。 FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved. In this example, it is assumed that T = 253 is derived as the natural number T and that the first row force and the micromirror on the 253rd row are selected. For the micromirrors in the 254th to 256th lines that are not selected, the pixel part control means sends a signal for setting the angle to the always-off state. Not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
[0148] 一方、図 11の左方の領域(図中の c (l)付近)では、前記角度歪みにより、被露光 面上における光点列の傾斜角度が中央付近(図中の c (512)付近)の領域における 光線列の傾斜角度よりも小さくなつている。したがって、 c (512)を基準として測定さ れた実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーのみによる露光では、偶数 列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的 な 2重露光に対して露光不足となる領域がわずかに生じてしまう。 On the other hand, in the left region of FIG. 11 (near c (l) in the figure), the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. The angle of inclination of the light beam in the area near) is smaller. Therefore, in the exposure using only the micromirrors selected based on the actual inclination angle θ 測定 measured with c (512) as a reference, the ideal exposure pattern for each of the even-numbered columns and the odd-numbered columns is 2 An area that is underexposed with respect to the double exposure is slightly generated.
し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補 完され、前記角度歪みによる露光むらを、 2重露光による埋め合わせの効果で最小と すること力 Sできる。  However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the areas where the exposure amount is insufficient are compensated for each other, and the uneven exposure due to the angular distortion is performed. Can be minimized by the effect of offset by double exposure.
[0149] また、図 11の右方の領域(図中の c (1024)付近)では、前記角度歪みにより、被露 光面上における光線列の傾斜角度が、中央付近(図中の c (512)付近)の領域にお ける光線列の傾斜角度よりも大きくなつている。したがって、 c (512)を基準として測 定された実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーによる露光では、図に 示すように、理想的な 2重露光に対して露光過多となる領域がわずかに生じてしまう。 し力、しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完 され、前記角度歪による濃度むらを、 2重露光による埋め合わせの効果で最小とする こと力 Sできる。  [0149] In addition, in the region on the right side of Fig. 11 (near c (1024) in the figure), the inclination angle of the light beam on the exposed light surface is near the center (c ( It is larger than the angle of inclination of the ray train in the area near 512). Therefore, in the exposure with the micromirror selected based on the actual tilt angle θ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the regions that are overexposed are complemented with each other, and the density unevenness due to the angular distortion is eliminated. , Minimizing power by the effect of offset by double exposure.
[0150] 本実施形態(1)では、上述のとおり、第 512列目の光線列の実傾斜角度 Θ 'が測 定され、該実傾斜角度 Θ 'を用レ、、前記式 (4)により導出された Tに基づいて使用す るマイクロミラー 58を選択したが、前記実傾斜角度 Θ 'の特定方法としては、複数の 描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角 度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを 実傾斜角度 Θ 'として特定し、前記式 4等によって実際の露光時に実際に使用する マイクロミラーを選択する形態としてもよい。 In the present embodiment (1), as described above, the actual inclination angle Θ ′ of the 512th ray array is measured, and the actual inclination angle Θ ′ is used to obtain the above equation (4). The micromirror 58 to be used was selected based on the derived T. As a method for specifying the actual inclination angle Θ ′, a plurality of methods can be used. A plurality of actual inclination angles formed by the column direction (light spot sequence) of the pixel part and the scanning direction of the exposure head are measured, and any one of the average value, median value, maximum value, and minimum value is measured. May be specified as the actual inclination angle Θ ′, and the micromirror to be actually used at the time of actual exposure may be selected according to the above equation 4 or the like.
前記平均値又は前記中央値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対し て露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現すること ができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最 小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足とな る領域の描素単位数 (光点数)とが等しくなるような露光を実現することが可能である また、前記最大値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光過 多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足 となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を 実現することが可能である。  When the average value or the median value is set to the actual inclination angle Θ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and overexposed areas are the number of pixel units (number of light spots) and underexposed areas. It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels, and if the maximum value is the actual tilt angle Θ ' It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
さらに、前記最小値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光不 足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多 となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を 実現することが可能である。  Furthermore, if the minimum value is the actual inclination angle Θ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
[0151] 一方、前記実傾斜角度 Θ 'の特定は、同一の描素部の列(光点歹 IJ)中の少なくとも 2 つの光点の位置に基づく方法に限定されなレ、。例えば、同一描素部列 c (n)中の 1 つ又は複数の光点の位置と、該 c (n)近傍の列中の 1つ又は複数の光点の位置とか ら求めた角度を、実傾斜角度 Θ 'として特定してもよレ、。  On the other hand, the identification of the actual inclination angle Θ ′ is not limited to a method based on the positions of at least two light spots in the same pixel part row (light spot 歹 IJ). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n), You can specify it as the actual inclination angle Θ '.
具体的には、 c (n)中の 1つの光点位置と、露光ヘッドの走查方向に沿って直線上 かつ近傍の光点列に含まれる 1つ又は複数の光点位置とを検出し、これらの位置情 報から、実傾斜角度 Θ 'を求めること力 Sできる。さらに、 c (n)列近傍の光点列中の少 なくとも 2つの光点(たとえば、 c (n)を跨ぐように配置された 2つの光点)の位置に基 づいて求めた角度を、実傾斜角度 Θ 'として特定してもよレ、。  Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on a straight line and in the vicinity along the strike direction of the exposure head are detected. From this position information, the force S can be obtained to determine the actual inclination angle Θ '. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. You can also identify it as the actual tilt angle Θ '.
[0152] 以上のように、露光装置 10を用いた本実施形態(1)の使用描素部の指定方法によ れば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつき や濃度のむらを軽減し、理想的な N重露光を実現することができる。 [0152] As described above, according to the designation method of the used pixel portion of the present embodiment (1) using the exposure apparatus 10. In this way, it is possible to reduce the variation in resolution and density unevenness due to the effects of the mounting angle error and pattern distortion of each exposure head, and realize ideal N double exposure.
[0153] (2)複数露光ヘッド間における使用描素部の指定方法 < 1 > [0153] (2) Specification method of used pixel part between multiple exposure heads <1>
本実施形態(2)では、露光装置 10により、感光材料 12に対して 2重露光を行う場 合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光領域であ るヘッド間つなぎ領域において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30  In the present embodiment (2), when the exposure apparatus 10 performs double exposure on the photosensitive material 12, this is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. Two exposure heads (for example, exposure heads 30 and 30
12 21 12 21
)の X軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のば らつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指定 方法を説明する。 ) Specify the pixel part to be used to realize ideal double exposure by reducing the variation in resolution and density unevenness due to the deviation of the relative position in the X-axis direction from the ideal state. A method will be described.
[0154] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度 Θとしては、露光ヘッド 30の 取付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描 素部マイクロミラー 58を使用してちょうど 2重露光となる角度 Θ を採用するものとす  [0154] The set tilt angle Θ of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle Θ that is exactly double exposure.
iaeal  iaeal
る。  The
この角度 Θ は、上記の実施形態(1)と同様にして前記式 1〜3から求められる。  This angle Θ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
ideal  ideal
本実施形態(2)において、露光装置 10は、各露光ヘッド 30すなわち各 DMD36の 取付角度がこの角度 Θ となるように、初期調整されているものとする。  In this embodiment (2), it is assumed that the exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36, becomes this angle Θ.
ideal  ideal
[0155] 図 12は、上記のように初期調整された露光装置 10において、 2つの露光ヘッド(一 例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な状態から  [0155] FIG. 12 shows the relative position of the two exposure heads (for example, exposure heads 30 and 30 as an example) in the X-axis direction in the exposure apparatus 10 initially adjusted as described above.
12 21  12 21
のずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図 である。各露光ヘッドの X軸方向に関する相対位置のずれは、露光ヘッド間の相対 位置の微調整が困難であるために生じ得るものである。  FIG. 6 is an explanatory diagram showing an example of density unevenness that occurs in a pattern on an exposed surface due to the influence of the deviation of the image. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
[0156] 図 12の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58 The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
12 21  12 21
力 の光点群のパターンを示した図である。図 12の下段部分は、上段部分に示した ような光点群のパターンが現れている状態でステージ 14を移動させて連続露光を行 つた際に、被露光面上に形成される露光パターンの状態を、露光エリア 32 と 32  FIG. 6 is a diagram showing a pattern of a light spot group of force. The lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing. The state of exposure areas 32 and 32
12 21 について示したものである。  12 21 is shown.
なお、図 12では、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露 光パターンを、画素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに 分けて示してあるが、実際の被露光面上における露光パターンは、これら 2つの露光 パターンを重ね合わせたものである。 In FIG. 12, for convenience of explanation, the exposure of every other row of usable micromirrors 58 is shown. The light pattern is divided into the exposure pattern by pixel array group A and the exposure pattern by pixel array group B, but the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns. is there.
[0157] 図 12の例では、上記した X軸方向に関する露光ヘッド 30 と 30 との間の相対位 [0157] In the example of FIG. 12, the relative position between the exposure heads 30 and 30 in the X-axis direction described above.
12 21  12 21
置の、理想的な状態からのずれの結果として、画素列群 Aによる露光パターンと画素 列群 Bによる露光パターンとの双方で、露光エリア 32 と 32 の前記ヘッド間つなぎ  As a result of the deviation from the ideal state, the connection between the heads of the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B is performed.
12 21  12 21
領域にぉレ、て、理想的な 2重露光の状態よりも露光量過多な部分が生じてしまって いる。  The area is overexposed compared to the ideal double exposure state.
[0158] 上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド 間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点 位置検出手段としてスリット 28及び光検出器の組を用レ、、露光ヘッド 30 と 30 から  [0158] In order to reduce the density unevenness appearing in the head-to-head connection region formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), the light spot position detection is performed. As a means, use a combination of slit 28 and photodetector, from exposure heads 30 and 30
12 21 の光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点 のいくつかについて、その位置 (座標)を検出する。該位置 (座標)に基づいて、前記 描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光 に使用するマイクロミラーを選択する処理を行うものとする。  The position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
[0159] 一位置 (座標)の検出 [0159] Detection of one position (coordinate)
図 13は、図 12と同様の露光エリア 32 及び 32 と、対応するスリット 28との位置関  FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
12 21  12 21
係を示した上面図である。スリット 28の大きさは、露光ヘッド 30 と 30 による露光済  It is the top view which showed engagement. The size of the slit 28 is already exposed by the exposure heads 30 and 30.
12 21  12 21
み領域 34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド 30 と 30 に  Large enough to cover the width of the overlap between areas 34, i.e. exposure heads 30 and 30
12 21 より被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。  The size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
[0160] 図 14は、一例として露光エリア 32 の光点 P (256, 1024)の位置を検出する際の [0160] Figure 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32.
21  twenty one
検出手法を説明した上面図である。  It is a top view explaining the detection method.
まず、第 256行目第 1024列目のマイクロミラーを点灯させた状態で、ステージ 14を ゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 1024 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このとさのスリット 28aとスリット 28bとの交点、の座標を(X0, Y0)と する。この座標(X0, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置から決 定され、記録される。 First, with the micromirror in the 256th row and the 1024th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side. The coordinates of the intersection of the slit 28a and the slit 28b are (X0, Y0). The value of this coordinate (X0, Y0) is determined from the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28. Defined and recorded.
[0161] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 14における右方に相対 移動させる。そして、図 14において二点鎖線で示すように、光点 P (256, 1024)の 光が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止 させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256 , 1024)の位置として記録する。  Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
[0162] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 14におけ る左方に相対移動させる。そして、図 14において二点鎖線で示すように、光点 P (25 6, 1024)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を、 光点 P (256, 1024)として記録する。  [0162] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
[0163] 以上の測定結果から、光点 P (256, 1024)の被露光面における位置を示す座標( X, Y)を、 X=X0+ (Yl—Y2) /2、 Υ= (Yl +Y2) /2の計算により決定する。  [0163] From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 1024) on the exposed surface are X = X0 + (Yl—Y2) / 2, Υ = (Yl + Y2 ) Determined by calculating / 2.
[0164] 不使用描素部の特定  [0164] Identification of unused pixel parts
図 12の例では、まず、露光エリア 32 の光点 Ρ (256, 1)の位置を、上記の光点位  In the example of Fig. 12, first, the position of light spot Ρ (256, 1) in exposure area 32 is
12  12
置検出手段としてスリット 28と光検出器の組により検出する。続いて、露光エリア 32  Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
21 の第 256行目の光点行 r (256)上の各光点の位置を、 Ρ (256, 1024)、 P (256, 10 23) · · ·と順番に検出していき、露光エリア 32 の光点 P (256, 1)よりも大きい X座標  The position of each light spot on the light spot line r (256) of the 256th line of 21 is detected in the order of Ρ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
12  12
を示す露光エリア 32 の光点 P (256, n)が検出されたところで、検出動作を終了す  When the light spot P (256, n) in the exposure area 32 is detected, the detection operation ends.
21  twenty one
る。そして、露光エリア 32 の光点光点列 c (n+ l)から c (1024)を構成する光点に  The Then, from the light spot light spot sequence c (n + l) to c (1024) in the exposure area 32
21  twenty one
対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)とし て特定する。  The corresponding micromirror is specified as a micromirror (unused pixel part) that is not used during the main exposure.
例えば、図 12において、露光エリア 32 の光点 P (256, 1020)が、露光エリア 32  For example, in FIG. 12, the light spot P (256, 1020) in the exposure area 32
21 1 の光点 P (256, 1)よりも大きレ、 X座標を示し、その露光エリア 32 の光点 P (256, 1 21 The light spot P (256, 1) is larger than the light spot P (256, 1), indicating the X coordinate.
2 21 2 21
020)が検出されたところで検出動作が終了したとすると、図 15において斜線で覆わ れた部分 70に相当する露光エリア 32 の第 1021行から第 1024行を構成する光点  020) is detected and the detection operation is completed, the light spots constituting the 1021st to 1024th lines of the exposure area 32 corresponding to the shaded portion 70 in FIG.
21  twenty one
に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。  Is identified as a micromirror that is not used during the main exposure.
[0165] 次に、 N重露光の数 Nに対して、露光エリア 32 の光点 P (256, N)の位置が検出 される。本実施形態(2)では、 N = 2であるので、光点 P (256, 2)の位置が検出され る。 [0165] Next, the position of the light spot P (256, N) in the exposure area 32 is detected with respect to the number N of N exposures. Is done. In this embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
続いて、露光エリア 32 の光点列のうち、上記で本露光時に使用しないマイクロミラ  Next, among the light spot sequences in the exposure area 32, the micromirrors that are not used during the main exposure described above are used.
21  twenty one
一に対応する光点列として特定されたものを除き、最も右側の第 1020列を構成する 光点の位置を、 P (l, 1020)力 順番に P (l, 1020)、 P (2, 1020) · · ·と検出して いき、露光エリア 32 の光点 P (256, 2)よりも大きレ、 X座標を示す光点 P (m, 1020)  Except for the one specified as the light spot sequence corresponding to one, the positions of the light spots that make up the rightmost column 1020 are the P (l, 1020), P (2, 1020) ······················, light spot P (m, 1020) indicating X coordinate larger than light spot P (256, 2) in exposure area 32
12  12
が検出されたところで、検出動作を終了する。  When is detected, the detection operation is terminated.
その後、前記光検出器に接続された演算装置において、露光エリア 32 の光点 P (  Thereafter, in the arithmetic unit connected to the photodetector, the light spot P (
12  12
256, 2)の X座標と、露光エリア 32 の光点 P (m, 1020)及び P (m— 1, 1020)の X  256, 2) and X of the light spots P (m, 1020) and P (m—1, 1020) in the exposure area 32
21  twenty one
座標とが比較され、露光エリア 32 の光点 P (m, 1020)の X座標の方が露光エリア 3  The X coordinate of the light spot P (m, 1020) in the exposure area 32 is compared with the exposure area 3
21  twenty one
2 の光点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020) If the X coordinate of light spot P (256, 2) of 2 is close, light spot P (l, 1020) of exposure area 32
12 21 12 21
力 P (m_ l , 1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラ 一として特定される。  The micromirror corresponding to the force P (m_l, 1020) is identified as the micromirror that is not used during the main exposure.
また、露光エリア 32 の光点 P (m—1 , 1020)の X座標の方が露光エリア 32 の光  In addition, the X coordinate of the light spot P (m-1, 1020) in the exposure area 32 is the light in the exposure area 32.
21 12 点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020)力ら P (m  21 When the X coordinate of 12 point P (256, 2) is close, the light spot P (l, 1020) force of exposure area 32 P (m
21  twenty one
—2, 1020)に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特 定される。  —2, 1020) Micromirror force corresponding to 1020) Specified as a micromirror that is not used for this exposure.
さらに、露光エリア 32 の光点 P (256, N— 1)すなわち光点 P (256, 1)の位置と、  Furthermore, the position of the light spot P (256, N-1) in the exposure area 32, that is, the light spot P (256, 1),
12  12
露光エリア 32 の次列である第 1019列を構成する各光点の位置についても、同様  The same applies to the position of each light spot that constitutes column 1019, which is the next column of exposure area 32.
21  twenty one
の検出処理及び使用しないマイクロミラーの特定が行われる。  Detection processing and micromirrors that are not used are identified.
[0166] その結果、たとえば、図 15において網掛けで覆われた領域 72を構成する光点に対 応するマイクロミラー力 実際の露光時に使用しないマイクロミラーとして追加される。 これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設 定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。  As a result, for example, the micromirror force corresponding to the light spot that forms the shaded area 72 in FIG. 15 is added as a micromirror that is not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
[0167] このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイク 口ミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択すること により、露光エリア 32 と 32 の前記ヘッド間つなぎ領域において、理想的な 2重露  Thus, by identifying micromirrors that are not used during actual exposure and selecting those that are not used as microphone mirrors during actual exposure, exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
12 21  12 21
光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とする ことができ、図 15の下段に示すように、理想的な 2重露光に極めて近い均一な露光 を実現すること力 Sできる。 Minimize the total area of areas that are overexposed and underexposed to light As shown in the lower part of Fig. 15, it is possible to achieve uniform exposure very close to the ideal double exposure.
[0168] なお、上記の例においては、図 15において網掛けで覆われた領域 72を構成する 光点の特定に際し、露光エリア 32 の光点 P (256, 2)の X座標と、露光エリア 32 の [0168] In the above example, the X coordinate of the light spot P (256, 2) in the exposure area 32 and the exposure area are determined when specifying the light spot that forms the shaded area 72 in FIG. 32 of
12 21 光点 P (m, 1020)及び P (m— 1, 1020)の X座標との比較を行わずに、ただちに、 露光エリア 32 の光点 P (l, 1020)力、ら P (m— 2, 1020)に対応するマイクロミラー  12 21 Immediately without comparing with the X coordinate of the light spots P (m, 1020) and P (m—1, 1020), the light spot P (l, 1020) force in the exposure area 32, P (m — Micromirror corresponding to 2, 1020)
21  twenty one
を、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド 間つなぎ領域において、理想的な 2重露光に対して露光過多となる領域の面積が最 小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用す るマイクロミラーとして選択することができる。  May be specified as a micromirror that is not used during the main exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the overexposed area with respect to the ideal double exposure and does not generate an underexposed area is actually used. It can be selected as a micromirror.
また、露光エリア 32 の光点 P (l, 1020)から P (m_ l , 1020)に対応するマイクロ  In addition, the light spots P (l, 1020) to P (m_l, 1020) in the exposure area 32
21  twenty one
ミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記へ ッド間つなぎ領域において、理想的な 2重露光に対して露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  You may identify a mirror as a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
さらに、前記ヘッド間つなぎ領域において、理想的な 2重描画に対して露光過多と なる領域の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)と が等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。  Further, in the connecting area between the heads, the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
[0169] 以上のように、露光装置 10を用いた本実施形態(2)の使用描素部の指定方法によ れば、複数の露光ヘッドの X軸方向に関する相対位置のずれに起因する解像度の ばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0169] As described above, according to the method for designating the used picture element portion of the present embodiment (2) using the exposure apparatus 10, the resolution caused by the relative position shift in the X-axis direction of the plurality of exposure heads. It is possible to reduce non-uniformity and density unevenness and achieve ideal N double exposure.
[0170] (3)複数露光ヘッド間における使用描素部の指定方法 < 2 >  [0170] (3) Specification method of used pixel part between multiple exposure heads <2>
本実施形態(3)では、露光装置 10により、感光材料 12に対して 2重露光を行う場 合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光領域であ るヘッド間つなぎ領域において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30  In the present embodiment (3), when the exposure apparatus 10 performs double exposure on the photosensitive material 12, this is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. Two exposure heads (for example, exposure heads 30 and 30
12 21 12 21
)の X軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの 取付角度誤差、及び 2つの露光ヘッド間の相対取付角度誤差に起因する解像度の ばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指 定方法を説明する。 ) From the ideal position of the relative position in the X-axis direction, the mounting angle error of each exposure head, and the variation in resolution and density unevenness due to the relative mounting angle error between the two exposure heads. The finger of the pixel part used to realize ideal double exposure The determination method will be described.
[0171] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、露光ヘッド 30の取 付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描素 部(マイクロミラー 58)を使用してちょうど 2重露光となる角度 Θ よりも若干大きい角  [0171] The set tilt angle of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error or the like of the exposure head 30. Angle slightly larger than angle Θ, which is exactly double exposure using mirror 58)
ideal  ideal
度を採用するものとする。  The degree shall be adopted.
この角度 Θ は、前記式 1〜3を用いて上記(1)の実施形態と同様にして求められ  This angle Θ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
ideal  ideal
る値であり、本実施形態では、上記のとおり s = 256、 N = 2であるので、角度 Θ は  In this embodiment, since s = 256 and N = 2 as described above, the angle Θ is
ideal 約 0. 45度である。したがって、設定傾斜角度 Θとしては、たとえば 0. 50度程度の角 度を採用するとよい。露光装置 10は、調整可能な範囲内で、各露光ヘッド 30すなわ ち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となるように、初期調整 されているものとする。  ideal About 0.45 degrees. Therefore, for example, an angle of about 0.50 degrees may be adopted as the set inclination angle Θ. The exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle Θ within an adjustable range.
[0172] 図 16は、上記のように各露光ヘッド 30すなわち各 DMD36の取付角度が初期調 整された露光装置 10において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30 )  FIG. 16 shows two exposure heads (for example, exposure heads 30 and 30) in the exposure apparatus 10 in which the mounting angle of each exposure head 30, that is, each DMD 36 is initially adjusted as described above.
12 21 の取付角度誤差、並びに各露光ヘッド 30 と 30 間の相対取付角度誤差及び相対  12 21 mounting angle error and relative mounting angle error between each exposure head 30 and 30 and relative
12 21  12 21
位置のずれの影響により、被露光面上のパターンに生じるむらの例を示した説明図 である。  FIG. 5 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a position shift.
[0173] 図 16の例では、図 12の例と同様の、 X軸方向に関する露光ヘッド 30 と 30 の相  In the example of FIG. 16, the phase of the exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
12 21 対位置のずれの結果として、一列おきの光点群(画素列群 A及び B)による露光パタ ーンの双方で、露光エリア 32 と 32 の被露光面上の前記露光ヘッドの走査方向と  12 21 As a result of the misalignment of the position, the scanning direction of the exposure head on the exposed areas in the exposure areas 32 and 32 in both exposure patterns with every other light spot group (pixel array group A and B). When
12 21  12 21
直交する座標軸上で重複する露光領域にぉレ、て、理想的な 2重露光の状態よりも露 光量過多な領域 74が生じ、これが濃度むらを引き起こしている。  A region 74 in which the amount of exposure is excessive compared to the ideal double exposure state is generated in the overlapping exposure regions on the orthogonal coordinate axes, and this causes density unevenness.
さらに、図 16の例では、各露光ヘッドの設定傾斜角度 Θを前記式(1)を満たす角 度 Θ よりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整 ideal  Further, in the example of FIG. 16, the result of setting the tilt angle Θ of each exposure head slightly larger than the angle Θ satisfying the above equation (1) and fine adjustment of the mounting angle of each exposure head ideal
が困難であるために、実際の取付角度が上記の設定傾斜角度 Θ力 ずれてしまった ことの結果として、被露光面上の前記露光ヘッドの走查方向と直交する座標軸上で 重複する露光領域以外の領域でも、一列おきの光点群 (画素列群 A及び B)による露 光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領 域である描素部列間つなぎ領域において、理想的な 2重露光の状態よりも露光過多 となる領域 76が生じ、これがさらなる濃度むらを引き起こしている。 As a result of the fact that the actual mounting angle has deviated from the above set inclination angle Θ force due to the difficulty of the exposure, the exposure area overlapping on the coordinate axis perpendicular to the strike direction of the exposure head on the exposed surface In other areas, the overlapping exposure areas on the exposed surface are formed by a plurality of pixel part rows in both the exposure patterns of every other light spot group (pixel array groups A and B). Excessive exposure in the connecting region between element rows than in the ideal double exposure state The resulting region 76 is causing further concentration unevenness.
[0174] 本実施形態(3)では、まず、各露光ヘッド 30 と 30 の取付角度誤差及び相対取 [0174] In this embodiment (3), first, the mounting angle error of each of the exposure heads 30 and 30 and the relative position are adjusted.
12 21  12 21
付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。 具体的には、前記光点位置検出手段としてスリット 28及び光検出器の組を用い、 露光ヘッド 30 と 30 のそれぞれについて、実傾斜角度 Θ 'を特定し、該実傾斜角  Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle Θ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
12 21  12 21
度 θ Ίこ基づき、前記描素部選択手段として光検出器に接続された演算装置を用い て、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。  Based on the angle θ, processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
[0175] 一実傾斜角度 の特定一 [0175] One specific inclination angle
実傾斜角度 Θ 'の特定は、露光ヘッド 30 ついては露光エリア 32 内の光点 P (l,  The actual inclination angle Θ ′ is specified by the light spot P (l,
12 12  12 12
1)と Ρ (256, 1)の位置を、露光ヘッド 30 については露光エリア 32 内の光点 P (l  The positions of 1) and Ρ (256, 1) and the light spot P (l
21 21  21 21
, 1024)と Ρ (256, 1024)の位置を、それぞれ上述した実施形態(2)で用いたスリツ ト 28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走 查方向とがなす角度を測定することにより行われる。  , 1024) and Ρ (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), respectively, and the inclination angle of the straight line connecting them and the exposure head This is done by measuring the angle between the running direction.
[0176] 不使用描素部の特定 [0176] Identification of unused pixel parts
そのようにして特定された実傾斜角度 θ を用いて、光検出器に接続された演算装 置は、上述した実施形態(1)における演算装置と同様、下記式 4  The arithmetic unit connected to the photodetector using the actual inclination angle θ thus identified is similar to the arithmetic unit in the above-described embodiment (1), as shown in the following equation 4
ttan e ' =Ν (式 4)  ttan e '= Ν (Equation 4)
の関係を満たす値 tに最も近い自然数 Τを、露光ヘッド 30 と 30 のそれぞれについ  The natural number 近 い that is closest to the value t that satisfies the relationship
12 21  12 21
て導出し、 DMD36上の第 (T+ 1)行目力 第 256行目のマイクロミラーを、本露光 に使用しないマイクロミラーとして特定する処理を行う。  The (T + 1) line force on the DMD 36 is identified as the micro mirror that is not used for the main exposure.
例えば、露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 255  For example, T = 254 for exposure head 30 and Τ = 255 for exposure head 30
12 21  12 21
が導出されたとすると、図 17において斜線で覆われた部分 78及び 80を構成する光 点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。 これにより、露光エリア 32 と 32 のうちヘッド間つなぎ領域以外の各領域において  Is derived, the micromirrors corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 are identified as micromirrors not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
12 21  12 21
、理想的な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計 面積を最小とすることができる。  The total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
[0177] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、露光エリア 32 と 32 の、複数の露光へ ッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の 各領域において、理想的な 2重露光に対して露光量過多となる面積が最小になり、 かつ露光量不足となる面積が生じないようになすことができる。 [0177] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32 In each area other than the head-to-head connection area, which is the overlapping exposure area on the exposed surface formed by the head, the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient It can be made so that the area which becomes.
あるいは、値 t以下の最大の自然数を導出することとしてもよい。その場合、露光ェ リア 32 と 32 の、複数の露光ヘッドにより形成された被露光面上の重複露光領域 Or it is good also as deriving the maximum natural number below value t. In that case, exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
12 21 12 21
であるヘッド間つなぎ領域以外の各領域にぉレ、て、理想的な 2重露光に対して露光 不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになす こと力 Sできる。  The area of the underexposed area should be minimized and no overexposed areas should be created for each area other than the connecting area between the heads. Power S can be.
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つ なぎ領域以外の各領域において、理想的な 2重露光に対して、露光過多となる領域 の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)とが等しくな るように、本露光時に使用しないマイクロミラーを特定することとしてもよい。  The number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads ( It is also possible to identify micromirrors that are not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots).
[0178] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、図 12から 15を用いて説明した本実施形態(3) と同様の処理がなされ、図 17において斜線で覆われた領域 82及び網掛けで覆われ た領域 84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用し なレ、マイクロミラーとして追加される。  [0178] Thereafter, regarding the micromirror corresponding to the light spots other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17, this is the same as the embodiment (3) described with reference to FIGS. The micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and added as micromirrors that are not used during the main exposure. Is done.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しない。  With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
[0179] 以上のように、露光装置 10を用いた本実施形態(3)の使用描素部の指定方法によ れば、複数の露光ヘッドの X軸方向に関する相対位置のずれ、並びに各露光ヘッド の取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばら つきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0179] As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the exposure apparatus 10, the relative position shifts in the X-axis direction of the plurality of exposure heads and each exposure It is possible to realize ideal N double exposure by reducing the variation in resolution and density unevenness due to the mounting angle error of the head and the relative mounting angle error between the exposure heads.
[0180] 以上、露光装置 10による使用描素部指定方法ついて詳細に説明したが、上記実 施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が 可能である。  [0180] Although the method of specifying the used pixel part by the exposure apparatus 10 has been described in detail above, the above embodiments (1) to (3) are merely examples, and various methods can be used without departing from the scope of the present invention. It can be changed.
[0181] また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するため の手段として、スリット 28と単一セル型の光検出器の組を用いた力 これに限られず レ、かなる形態のものを用いてもよぐたとえば 2次元検出器等を用いてもよい。 [0181] In the above embodiments (1) to (3), in order to detect the position of the light spot on the surface to be exposed. As a means for this, the force using a combination of the slit 28 and the single-cell type photodetector is not limited to this. For example, a two-dimensional detector or the like may be used.
[0182] さらに、上記の実施形態(1)〜(3)では、スリット 28と光検出器の組による被露光面 上の光点の位置検出結果から実傾斜角度 Θ 'を求め、その実傾斜角度 θ Ίこ基づい て使用するマイクロミラーを選択したが、実傾斜角度 Θ 'の導出を介さずに使用可能 なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能 なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃 度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も 、本発明の範囲に含まれるものである。  Furthermore, in the above embodiments (1) to (3), the actual inclination angle Θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained. Although a micromirror to be used is selected based on θ Ί, a usable micromirror may be selected without going through the derivation of the actual inclination angle Θ ′. In addition, for example, the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
[0183] なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの 他にも、種々の形態が存在する。  Note that there are various forms of pattern distortion that can occur on the exposed surface, in addition to the angular distortion described in the above example.
一例としては、図 18Aに示すように、 DMD36上の各マイクロミラー 58からの光線 力 異なる倍率で露光面上の露光エリア 32に到達してしまう倍率歪みの形態がある また、別の例として、図 18Bに示すように、 DMD36上の各マイクロミラー 58からの 光線が、異なるビーム径で被露光面上の露光エリア 32に到達してしまうビーム径歪 みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、 DMD36と被露 光面間の光学系の各種収差やアラインメントずれに起因して生じる。  As an example, as shown in FIG. 18A, there is a form of magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36. As shown in FIG. 18B, there is a form of beam diameter distortion in which the light from each micromirror 58 on the DMD 36 reaches the exposure area 32 on the exposed surface with a different beam diameter. These magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposed light surface.
さらに別の例として、 DMD36上の各マイクロミラー 58からの光線力 異なる光量で 被露光面上の露光エリア 32に到達してしまう光量歪みの形態もある。この光量歪み は、各種収差やアラインメントずれのほか、 DMD36と被露光面間の光学要素(たと えば 1枚レンズである図 5のレンズ 52及び 54)の透過率の位置依存性や、 DMD36 自体による光量むらに起因して生じる。これらの形態のパターン歪みも、被露光面上 に形成されるパターンに解像度や濃度のむらを生じさせる。  As another example, there is a form of light amount distortion that reaches the exposure area 32 on the surface to be exposed with a different light amount from each micromirror 58 on the DMD 36. In addition to various aberrations and misalignment, this light distortion is due to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lenses 52 and 54 in FIG. 5) and the DMD 36 itself. This is caused by unevenness in the amount of light. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
[0184] 上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選 択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要 素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむ らを、各露光ヘッドの露光領域全体にわたって軽減することができる。 [0185] < <参照露光 > > [0184] According to the above-described embodiments (1) to (3), after selecting the micromirrors actually used for the main exposure, the residual elements of these forms of pattern distortion are also the above-described angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head. [0185] <<Reference exposure>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N— 1)列おきのマイクロミラー歹 1J、又は全光点行のうち 1/N行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行レ、、均一な露光を実現できる ように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマ イク口ミラーを特定することとしてもよレ、。  As an example of modification of the above embodiments (1) to (3), among the available micromirrors, (N-1) micromirrors every 1 column or 1 / N rows of all light spot rows The reference exposure is performed using only the micromirror group constituting the adjacent row, and the micromirror used for the reference exposure is not used in the actual exposure so that uniform exposure can be realized. You can also specify the mouth mirror.
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露 光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するな どの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であって あよい。  The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle. The analysis of the result of the reference exposure may be an operator's visual analysis.
[0186] 図 19は、単一露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して参 照露光を行う形態の一例を示した説明図である。  FIG. 19 is an explanatory diagram showing an example of a mode in which reference exposure is performed using only (N-1) -row micromirrors using a single exposure head.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 19Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照 露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光 結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定し たりすることで、本露光時において使用するマイクロミラーを指定することができる。 例えば、図 19Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイク 口ミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使 用されるものとして指定される。偶数列の光点列については、別途同様に参照露光 を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列 に対するパターンと同一のパターンを適用してもよい。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only micromirrors corresponding to the odd-numbered light spot arrays shown by the solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle. For example, a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び 偶数列双方のマイクロミラーを使用した本露光においては、理想的な 2重露光に近い 状態が実現できる。  By specifying the micromirrors used during the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using both the odd-numbered and even-numbered micromirrors.
[0187] 図 20は、複数の露光ヘッドを用レ、、 (N—1)列おきのマイクロミラーのみを使用して 参照露光を行う形態の一例を示した説明図である。  FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed by using a plurality of exposure heads and only micromirrors in every (N-1) row.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 20に実線で示した、 X軸方向に関して隣接する 2つの露光ヘッド(一例として露光へ ッド 30 と 30 )の奇数列の光点列に対応するマイクロミラーのみを使用して、参照In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, figure Reference is made using only the micromirrors corresponding to the odd-numbered light spot rows of two adjacent exposure heads (as an example, exposure heads 30 and 30) shown by the solid line in FIG.
12 21 12 21
露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に 基づき、 2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の 領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したり することで、本露光時において使用するマイクロミラーを指定することができる。 Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Thus, the micromirror to be used at the time of the main exposure can be designated.
例えば、図 20に斜線で覆って示す領域 86及び網掛けで示す領域 88内の光点列 に対応するマイクロミラー以外のマイクロミラー力 奇数列の光点を構成するマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点 列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを 指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用して あよい。  For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, reference exposure may be separately performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for the odd-numbered pixel lines may be applied. Good.
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数 列及び偶数列双方のマイクロミラーを使用した本露光においては、 2つの露光ヘッド により被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想 的な 2重露光に近い状態が実現できる。  In this way, by specifying the micromirrors that are actually used during the main exposure, in the main exposure using both the odd-numbered and even-numbered micromirrors, the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
図 21は、単一露光ヘッドを用い、全光点行数の 1/N行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図 である。  FIG. 21 is an explanatory diagram showing an example of a mode in which a single exposure head is used and reference exposure is performed using only micromirror groups that form adjacent rows corresponding to 1 / N rows of the total number of light spots. It is.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 21Aに実線で示した 1行目力 128 ( = 256/2)行目の光点に対応するマイクロミラ 一のみを使用して参照露光を行レ、、参照露光結果をサンプル出力する。前記サンプ ル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを 指定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirror corresponding to the light spot of the first line 128 (= 256/2) in the first line indicated by the solid line in FIG. 21A, and the reference exposure result is output as a sample. Based on the reference exposure result outputted from the sample, a micromirror to be used in the main exposure can be designated.
例えば、図 21Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイク 口ミラーが、第 1行目から第 128行目のマイクロミラー中、本露光時において実際に使 用されるものとして指定され得る。第 129行目から第 256行目のマイクロミラーについ ては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定して もよレ、し、第 1行目から第 128行目のマイクロミラーに対するパターンと同一のパター ンを適用してもよい。 For example, microphone mouth mirrors other than the micromirrors corresponding to the light spot group shown by hatching in FIG. 21B are actually used during the main exposure in the first to 128th micromirrors. Can be specified as For the micromirrors in the 129th to 256th lines, perform a separate reference exposure in the same way, and specify the micromirror to be used during the main exposure. However, the same pattern as the pattern for the micromirrors in the first to 128th rows may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイ クロミラーを使用した本露光においては、理想的な 2重露光に近い状態が実現できる  By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
[0189] 図 22は、複数の露光ヘッドを用い、 X軸方向に関して隣接する 2つの露光ヘッド( 一例として露光ヘッド 30 と 30 )について、それぞれ全光点行数の 1/N行に相当 [0189] Fig. 22 shows the use of multiple exposure heads, and the two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30) correspond to 1 / N rows of the total number of light spots.
12 21  12 21
する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一 例を示した説明図である。  FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 22に実線で示した第 1行目から第 128 ( = 25672)行目の光点に対応するマイクロ ミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記 サンプル出力された参照露光結果に基づき、 2つの露光ヘッドにより被露光面上に 形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむら を最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミ ラーを指定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirrors corresponding to the light spots in the first to 128th (= 25672) rows indicated by solid lines in FIG. 22, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. In addition, it is possible to specify a micromirror to be used during the main exposure.
例えば、図 22に斜線で覆って示す領域 90及び網掛けで示す領域 92内の光点列 に対応するマイクロミラー以外のマイクロミラー力 第 1行目から第 128行目のマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。第 129行目か ら第 256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に 使用するマイクロミラーを指定してもよいし、第 1行目から第 128行目のマイクロミラー に対するパターンと同一のパターンを適用してもよい。  For example, the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro mirrors in the first to 128th rows. Designated as actually used at the time. For the micromirrors on the 129th to 256th lines, a separate reference exposure may be performed in the same manner, and the micromirrors used for the main exposure may be designated, or the first to 128th lines may be designated. The same pattern as that for the micromirror may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、 2つの露光 ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において 理想的な 2重露光に近い状態が実現できる。  By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
[0190] 以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を 2重露光と する場合について説明したが、これに限定されず、 2重露光以上のいかなる多重露 光としてもよい。特に 3重露光から 7重露光程度とすることにより、高解像度を確保し、 解像度のばらつき及び濃度むらが軽減された露光を実現することができる。 [0190] In the above embodiments (1) to (3) and the modified examples, the case where the main exposure is double exposure has been described. However, the present invention is not limited to this. It may be light. In particular, high resolution is ensured by setting from 3 to 7 exposures. It is possible to realize exposure with reduced variations in resolution and uneven density.
[0191] また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表 す 2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応 部分の寸法と一致するように、画像データを変換する機構が設けられていることが好 ましレ、。そのように画像データを変換することによって、所望の 2次元パターンどおり の高精細なパターンを被露光面上に形成することができる。  [0191] Further, in the exposure apparatus according to the embodiment and the modification example described above, the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
[0192] [現像工程]  [0192] [Development process]
前記現像工程としては、前記露光工程により前記感光層を露光し、未露光部分を 除去することにより現像する工程を有する。  The developing step includes a step of developing by exposing the photosensitive layer by the exposing step and removing an unexposed portion.
前記未硬化領域の除去方法としては、特に制限はなぐ 目的に応じて適宜選択す ること力 Sでき、例えば、現像液を用いて除去する方法などが挙げられる。  The method for removing the uncured region is not particularly limited, and can be appropriately selected according to the purpose. Examples thereof include a method of removing using a developer.
[0193] 前記現像液としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも 、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例え ば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム 、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナト リウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる [0193] The developer is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, and the like. Among these, a weakly alkaline aqueous solution is used. preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium phosphate. , Potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, borax, etc.
[0194] 前記弱アルカリ性の水溶液の pHとしては、例えば、約 8〜: 12力 S好ましく、約 9〜: 11 力 り好ましい。前記弱アルカリ性の水溶液としては、例えば、 0.:!〜 5質量%の炭酸 ナトリウム水溶液又は炭酸カリウム水溶液、 0. 01-0. 1質量%の水酸化カリウム水 溶液などが挙げられる。 [0194] The pH of the weakly alkaline aqueous solution is, for example, preferably about 8 to 12 force S, more preferably about 9 to 11 force. Examples of the weak alkaline aqueous solution include 0.:! To 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution, 0.01% to 0.1% by mass of potassium hydroxide aqueous solution, and the like.
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することが できるが、例えば、約 25°C〜40°Cが好ましい。  The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
[0195] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、ェタノ ールァミン、テトラメチルアンモニゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モノレホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよレ、。 [0195] The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, monoreforin, triethanolamine, etc.) Organic solvents (for example, alcohols, ketones, esters, ethers, amides, latatones) to accelerate development Etc.) etc. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
[0196] なお、現像の方式としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、パドル現像、シャワー現像、シャワー &スピン現像、ディップ現像等が挙げ られる。  [0196] The development method is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include paddle development, shower development, shower & spin development, and dip development.
ここで、上記シャワー現像について説明すると、露光後の感光性樹脂層に現像液 をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、現像 の前に感光性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、 熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗 浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去するこ とが好ましい。  Here, the shower development will be described. The uncured portion can be removed by spraying a developer onto the exposed photosensitive resin layer by shower. In addition, it is preferable to spray an alkaline solution having a low solubility of the photosensitive resin layer by a shower or the like before development to remove the thermoplastic resin layer, the intermediate layer, or the like. Further, after the development, it is preferable to remove the development residue while spraying a detergent or the like with a shower and rubbing with a brush or the like.
[0197] [その他の工程] [0197] [Other processes]
前記その他の工程としては、特に制限はなぐ公知のカラーフィルタ製造方法にお ける工程の中から適宜選択することが挙げられる力 例えば、硬化処理工程、などが 挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。  As the other steps, there is a force that can be appropriately selected from the steps in a known color filter manufacturing method without any particular limitation, for example, a curing treatment step and the like. These may be used alone or in combination of two or more.
[0198] 硬化処理工程 [0198] Curing process
前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが 好ましい。  It is preferable to provide a curing treatment step for performing a curing treatment on the photosensitive layer after the development step.
前記硬化処理工程としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。  The curing treatment step is not particularly limited and can be appropriately selected depending on the purpose. For example, a full exposure process, a full heat treatment, and the like are preferable.
[0199] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記パターン が形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により 、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、形成されたパ ターンの表面が硬化される。  [0199] Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the pattern is formed after the development step. By the entire surface exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the formed pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ 目的に応じて適宜選択するこ とができるが、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation. For example, a UV exposure machine such as an ultra-high pressure mercury lamp is preferably used.
[0200] 前記全面加熱処理の方法としては、前記現像工程の後に、前記パターンが形成さ れた前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記パ ターンの表面の膜強度が高められる。 [0200] Examples of the whole surface heat treatment method include a method of heating the entire surface of the laminate on which the pattern is formed after the developing step. By heating the entire surface, The film strength on the surface of the turn is increased.
前記全面加熱における加熱温度としては、 120〜250°C力 S好ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ 、膜質が弱く脆くなることがある。  The heating temperature in the entire surface heating is preferably 120 to 250 ° C force S, more preferably 120 to 200 ° C force. When the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. When the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。  The heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、 目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0201] 本発明のカラーフィルタ製造方法は、感光層の被露光面上に結像させる像の歪み を抑制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高 精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特 に高精細なカラーフィルタパターンの形成に好適に使用することができる。  [0201] The method for producing a color filter of the present invention can form a pattern with high definition and efficiency by suppressing distortion of an image formed on the exposed surface of the photosensitive layer. It can be suitably used for the formation of various patterns that require special exposure, and can be particularly suitably used for the formation of high-definition color filter patterns.
[0202] 本発明のカラーフィルタの製造方法においては、上述したように、ガラス基板等の 透明基板上に、本発明のパターン形成方法により、 RGBの 3原色の画素をモザイク 状又はストライプ状に配置することができる。  [0202] In the method for producing a color filter of the present invention, as described above, pixels of the three primary colors of RGB are arranged in a mosaic or stripe pattern on a transparent substrate such as a glass substrate by the pattern forming method of the present invention. can do.
各画素の寸法としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、 40〜200 /1 111とすることカ 子適に挙げられる。ストライプ状であれば 40〜20 O /i m巾が通常用いられる。  The size of each pixel is not particularly limited and can be appropriately selected according to the purpose. For example, 40 to 200/1111 can be appropriately selected. For stripes, a width of 40-20 O / im is usually used.
前記カラーフィルタの製造方法としては、例えば、透明基板上に黒色に着色された 感光層を用いて、露光及び現像を行いブラックマトリックスを形成し、次いで、 RGBの 3原色のいずれかに着色された感光層を用いて、前記ブラックマトリックスに対して所 定の配置で、各色毎に、順次、露光及び現像を繰り返して、前記透明基板上に RGB の 3原色がモザイク状又はストライプ状に配置されたカラーフィルタを形成する方法が 挙げられる。  As a method for producing the color filter, for example, using a photosensitive layer colored in black on a transparent substrate, exposure and development are performed to form a black matrix, and then the color filter is colored in one of the three primary colors of RGB. Using the photosensitive layer, the three primary colors of RGB were arranged in a mosaic or stripe pattern on the transparent substrate by repeating exposure and development sequentially for each color in a predetermined arrangement with respect to the black matrix. A method for forming a color filter is mentioned.
[0203] (カラーフィルタ)  [0203] (Color filter)
本発明のカラーフィルタは、本発明の前記カラーフィルタの製造方法により製造さ れる。 The color filter of the present invention is manufactured by the method for manufacturing the color filter of the present invention. It is.
前記カラーフィルタは、赤色 (R)着色に顔料 C. I.ビグメントレッド 254、緑色(G)着 色に顔料 C. I.ビグメントグリーン 36及び顔料 C. I.ビグメントイエロー 139、並びに 青色(B)着色に顔料 C. I.ビグメントブルー 15 : 6を用いて製造した場合には、 D65 光源によるレッド(R)、グリーン(G)及びブルー(B)のそれぞれ総ての単色の色度が 、例えば下記表 1に記載の値となる。この範囲であると、反射モードと透過モードの色 のバランスがとれたものとなる。  The color filters are pigment CI pigment red 254 for red (R) coloring, pigment CI pigment green 36 and pigment CI pigment yellow 139 for green (G) coloring, and pigment CI pigment for blue (B) coloring. When manufactured using Blue 15: 6, the chromaticity of all single colors of red (R), green (G), and blue (B) by the D65 light source is, for example, the value shown in Table 1 below. Become. If it is within this range, the colors of the reflection mode and the transmission mode are balanced.
[表 1]  [table 1]
Figure imgf000066_0001
Figure imgf000066_0001
ここで、前記色度は、顕微分光硬度計 (ォリンパス光学工業株式会社製、 OSP100 又は 200)により測定し、 D65光源視野 2度の結果として計算して、 xyz表色系の xy Y値で表す。また、 目標色度との差は、 La*b*表色系の A Eab値で表す。  Here, the chromaticity is measured by a microspectroscopy hardness meter (manufactured by Olympus Optical Co., Ltd., OSP100 or 200), calculated as a result of a D65 light source field of view of 2 degrees, and expressed as an xy Y value in the xyz color system. . The difference from the target chromaticity is expressed by the A Eab value of the La * b * color system.
[0205] 前記カラーフィルタは、赤色(R)着色に顔料 C. I.ビグメントレッド 254及び C. I.ピ グメントレッド 177の少なくともいずれカ 緑色(G)着色に顔料 C. I.ピグメントグリー ン 36及び顔料 C. I.ビグメントイエロー 150、並びに青色(B)着色に顔料 C. I.ピグメ ントブルー 15 : 6及び C. I.ビグメントバイオレット 23を用いて製造した場合には、 F1 0光源によるレッド(R)、グリーン(G)及びブルー(B)のそれぞれ総ての単色の色度 が、例えば下記表 2に記載の値となる。この範囲であれば、色再現域が広ぐ色温度 が高い TV用のカラーフィルタとして好ましい。  [0205] The color filter has at least one of pigment CI pigment red 254 and CI pigment red 177 for red (R) coloring, pigment CI pigment green 36 and pigment CI pigment yellow 150 for green (G) coloring, In addition, when manufactured using CI pigment blue 15: 6 and CI pigment violet 23 for the coloring of blue (B), the total of red (R), green (G) and blue (B) by F10 light source The chromaticities of all the single colors are the values shown in Table 2 below, for example. Within this range, it is preferable as a color filter for TV with a wide color reproduction range and a high color temperature.
[0206] [表 2] X y Y [0206] [Table 2] X y Y
R 0.656 0.336 21 .4  R 0.656 0.336 21.4
G 0.293 0.634 52.1  G 0.293 0.634 52.1
B 0.146 0.088 6.90 ここで、前記色度は、顕微分光硬度計 (ォリンパス光学工業株式会社製、 OSP100 又は 200)により測定し、 F10光源視野 2度の結果として計算して、 xyz表色系の xyY 値で表す。また、 目標色度との差は、 La*b*表色系の A Eab値で表す。  B 0.146 0.088 6.90 Here, the chromaticity is measured with a microspectroscopy hardness meter (manufactured by Olympus Optical Co., Ltd., OSP100 or 200) and calculated as a result of F10 light source field of view of 2 degrees. Expressed by value. The difference from the target chromaticity is expressed by the A Eab value of the La * b * color system.
[0207] (表示装置) [0207] (Display device)
本発明の表示装置は、本発明の前記カラーフィルタを有してなり、互いに対向して 配される一対の基板間に液晶が封入されてなり、更に必要に応じてその他の部材を 有してなる。  A display device according to the present invention includes the color filter according to the present invention, wherein liquid crystal is sealed between a pair of substrates disposed to face each other, and further includes other members as necessary. Become.
本発明のカラーフィルタは、液晶表示装置の対向基板 (TFTなどの能動素子が無 い側の基板)に形成するものを対象としている他、 TFT基板側に形成する COA方式 、 TFT基板側に黒だけを形成する BOA方式、又は TFT基板にハイアパーチヤー構 造を有する HA方式も対象とすることができる。  The color filter of the present invention is not limited to the one formed on the counter substrate of the liquid crystal display device (the substrate on the side where there is no active element such as TFT), the COA method formed on the TFT substrate side, and the black filter on the TFT substrate side. The BOA method, which forms only the substrate, or the HA method, which has a high aperture structure on the TFT substrate, can also be targeted.
[0208] 前記カラーフィルタ上には、更に必要に応じて、オーバーコート膜や透明導電膜を 形成すること力 Sできる。その後、カラーフィルタと対向基板との間に液晶が封入され、 液晶表示装置が作製される。  [0208] On the color filter, if necessary, an overcoat film or a transparent conductive film can be formed. Thereafter, liquid crystal is sealed between the color filter and the counter substrate, and a liquid crystal display device is manufactured.
適用される液晶の表示方式としては、特に制限はなぐ 目的に応じて適宜選定され る力、、 f列 は、 ECB (Electrically Controlled Birefringence)、 TN、 1'wisted Nematic )、 OCB (Optically Compensatory Bend)、 VA (Vertically Aligned)、 HAN (Hybri d Aligned Nematic;、 STN (Supper Twisted Nematic)、 IPS (In—Plane Switching) 、 GH (Guest Host)、 FLC (強誘電性液晶)、 AFLC (反強誘電性液晶)、及び PDL C (高分子分散型液晶)などが挙げられる。  There are no particular restrictions on the liquid crystal display system to be applied. The force is selected appropriately according to the purpose.The f column is ECB (Electrically Controlled Birefringence), TN, 1'wisted Nematic), OCB (Optically Compensatory Bend). , VA (Vertically Aligned), HAN (Hybri d Aligned Nematic), STN (Supper Twisted Nematic), IPS (In-Plane Switching), GH (Guest Host), FLC (ferroelectric liquid crystal), AFLC (antiferroelectric) Liquid crystal) and PDL C (polymer dispersed liquid crystal).
[0209] 前記表示装置の基本的な構成態様としては、(1)薄膜トランジスタ(以下、「TFT」と いう。)等の駆動素子と画素電極 (導電層)とが配列形成された駆動側基板と、カラー フィルタ及び対向電極(導電層)を備えるカラーフィルタ側基板とをスぺーサーを介在 させて対向配置し、その間隙部に液晶材料を封入して構成されるもの、(2)カラーフ ィルタが前記駆動側基板に直接形成されたカラーフィルター体型駆動基板と、対向 電極(導電層)を備える対向基板とをスぺーサーを介在させて対向配置し、その間隙 部に液晶材料を封入して構成されるもの等が挙げられる。 [0209] The basic configuration of the display device includes: (1) a driving-side substrate in which driving elements such as thin film transistors (hereinafter referred to as "TFTs") and pixel electrodes (conductive layers) are arranged; , A color filter and a substrate with a color filter and a counter electrode (conductive layer), with a spacer And (2) a color filter body type drive substrate in which a color filter is directly formed on the drive side substrate, and a counter electrode (conductive layer). And a counter substrate provided with a spacer interposed therebetween and enclosing a liquid crystal material in the gap.
[0210] 本発明の表示装置は、 D65光源視野 2度において良好な色度を有する本発明の カラーフィルタを用いることにより、透過モード及び反射モードのいずれにおいても鮮 明な色を表示することができ、透過モードと反射モードを兼用する携帯端末や携帯ゲ ーム機等の機器に好適に用レ、ることができる。 [0210] The display device of the present invention can display a clear color in both the transmissive mode and the reflective mode by using the color filter of the present invention having good chromaticity in the D65 light source field of view of 2 degrees. Therefore, it can be suitably used for devices such as portable terminals and portable game machines that use both the transmission mode and the reflection mode.
また、本発明の表示装置は、 F10光源視野 2度において良好な色度を有する本発 明のカラーフィルタを用いることにより、高い色純度と色温度を実現でき、例えば、ノ ートパソコン、テレビモニター等の液晶表示装置などに好適に用いることができる。 実施例  In addition, the display device of the present invention can achieve high color purity and color temperature by using the color filter of the present invention having good chromaticity in the F10 light source field of view of 2 degrees. For example, a notebook personal computer, a TV monitor, etc. The liquid crystal display device can be suitably used. Example
[0211] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0211] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
なお、特に断りのない限り、以下において「部」、「%」及び「分子量」は、それぞれ「 質量部」、「質量%」及び「重量平均分子量」を表す。  Unless otherwise specified, “parts”, “%”, and “molecular weight” represent “parts by mass”, “mass%”, and “weight average molecular weight”, respectively.
[0212] (実施例 1) [0212] (Example 1)
〔カラーフィルタパターンの形成 (塗布法)〕  [Color filter pattern formation (coating method)]
(1)ブラックマトリクスの形成  (1) Formation of black matrix
無アルカリガラス基板を、 UV洗浄装置で洗浄後、洗浄剤を用いてブラシ洗浄し、 更に超純水で超音波洗浄した。該基板を 120°Cにて 3分熱処理して表面状態を安 定化させた。該基板を冷却し 23°Cに温調後、スリット状ノズルを有すガラス基板用コ 一ター(エフ.エー.エス.アジア社製、商品名: MH—1600)にて、下記表 3に記載 の組成よりなる感光性組成物 K1を塗布した。引き続き VCD (真空乾燥装置、東京応 化工業 (株)製)で 30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、 12 0°Cにて 3分間プリベータして膜厚 2 μ mの感光層 K1を形成した。  The alkali-free glass substrate was cleaned with a UV cleaning device, brushed with a cleaning agent, and then ultrasonically cleaned with ultrapure water. The substrate was heat-treated at 120 ° C. for 3 minutes to stabilize the surface state. After cooling the substrate and adjusting the temperature to 23 ° C, the glass substrate coater (manufactured by FS Asia Co., Ltd., product name: MH-1600) with slit-shaped nozzles is used. A photosensitive composition K1 having the composition described above was applied. Subsequently, after part of the solvent was dried by VCD (vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, the film was pre-betated at 120 ° C for 3 minutes. A photosensitive layer K1 having a thickness of 2 μm was formed.
[0213] 感光性組成物 K1の調製 [0213] Preparation of photosensitive composition K1
下記表 3に記載の量の K顔料分散物 1、プロピレングリコールモノメチルエーテルァ セテートをはかり取り、温度 24°C (± 2°C)で混合して、 150rpmで 10分間攪拌した。 次いで、下記表 3に記載の量のメチルェチルケトン、バインダー 2、ハイドロキノンモノ メチルエーテル、 DPHA液、 B— CIM (2, 2—ビス(2—クロ口フエ二ル)一 4, 5, 4' , 5—テトラフヱニル _ 1, 2'—ビイミダゾール、保土谷化学工業社製)、 NBCA (10_ n_ブチル _ 2_クロロアタリドン、黒金化成社製)、 N—フエ二ルメルカプトべンズイミ ダゾール、及び界面活性剤 1をはかり取り、温度 25°C ( ± 2°C)でこの順に添加して、 温度40。〇(± 2。0、 150RPMで 30分間攪拌し、ナイロンメッシュ # 200で濾過した 以上により、感光性組成物 K1を調製した。 [表 3] The amount of K pigment dispersion 1, propylene glycol monomethyl ether as shown in Table 3 below The setrate was weighed, mixed at a temperature of 24 ° C (± 2 ° C), and stirred at 150 rpm for 10 minutes. Next, methyl ethyl ketone, binder 2, hydroquinone monomethyl ether, DPHA solution, B—CIM (2, 2-bis (2-phenyl)) in the amounts shown in Table 3 below 4, 5, 4 ', 5-tetraphenyl _ 1,2'-biimidazole (Hodogaya Chemical Industries, Ltd.), NBCA (10_ n_butyl _2 chloro attaridone, Kurogane Kasei Co., Ltd.), N-phenylmercaptobensimi Dazole and surfactant 1 are weighed out and added in this order at a temperature of 25 ° C (± 2 ° C) and a temperature of 40. 〇 (± 2.0, stirred at 150 RPM for 30 minutes, filtered through nylon mesh # 200 Photosensitive composition K1 was prepared as described above. [Table 3]
Figure imgf000069_0001
Figure imgf000069_0001
なお、表 3に記載の組成物のうち、  Of the compositions listed in Table 3,
•K顔料分散物 1の組成は、カーボンブラック(デグッサ社製) 13. 1質量%、下記式 ( 6)で表される分散剤 0. 65質量%、ポリマー(ベンジルメタタリレート/メタクリル酸 = 72/28モル比のランダム共重合物、分子量 3. 7万) 6. 72質量%、及びプロピレン グリコールモノメチルエーテルアセテート 79. 53質量%からなる。  • The composition of K pigment dispersion 1 is carbon black (manufactured by Degussa) 13.1% by mass, 0.65% by mass of a dispersant represented by the following formula (6), polymer (benzyl metatalylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 37,000) 6. 72% by mass and propylene glycol monomethyl ether acetate 79.53% by mass.
'バインダー 2の組成は、ポリマー(ベンジルメタタリレート/メタクリル酸 = 78/22モ ル比のランダム共重合物、分子量 3. 8万) 27質量0 /0、及びプロピレングリコールモノ メチルエーテルアセテート 73質量0 /0からなる。 'The composition of the binder 2, the polymer (random copolymer of benzyl methacrylate Tali rate / methacrylic acid = 78/22 molar ratio, molecular weight 38,000) 27 wt 0/0, and propylene glycol monomethyl Consisting of methyl ether acetate 73 mass 0/0.
•DPHA液の組成は、ジペンタエリトリトールへキサアタリレート(重合禁止剤 MEHQ 500ppm含有、 日本化薬 (株)製、商品名: KAYARAD DPHA)76®fi%,及び プロピレングリコールモノメチルエーテルアセテート 24質量0 /0力もなる。 • The composition of DPHA solution is dipentaerythritol hexaatalylate (containing polymerization inhibitor MEHQ 500ppm, Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA) 76®fi%, and propylene glycol monomethyl ether acetate 24 mass 0 / 0 power.
'界面活性剤 1の組成は、下記構造物 1 30質量%、及びメチルェチルケトン (MEK )70質量%からなる。  'The composition of Surfactant 1 consists of 30% by mass of the following structure 1 and 70% by mass of methyl ethyl ketone (MEK).
[0215] [化 1]  [0215] [Chemical 1]
式 (6) Formula (6)
Figure imgf000070_0001
Figure imgf000070_0001
[0216] [化 2] 橇邋物 1  [0216] [Chemical 2] Garbage 1
Figure imgf000070_0002
Figure imgf000070_0002
(fつ: SSIJ、 x ~ ¾ v y = f> ^ ( f : SSIJ, x ~ ¾ vy = f> ^
Mw=33940, w/Mn = 2. 55  Mw = 33940, w / Mn = 2.55
PO:プロピレン才キサイド、 EO:エチレンオキサイド》 ただし、前記構造物 1の式中、 X及び yの数値はモル比を表す。  PO: propylene-aged oxide, EO: ethylene oxide >> However, in the formula of the structure 1, the numerical values of X and y represent a molar ratio.
一露光工程一  One exposure process
基材上の前記感光層 K1に対し、下記に説明する露光装置及び露光方法により、 波長が 405nmのレーザ光により、 20mjZcm2申目当のブラックマトリクスパターンの露 光を行った。露光は、 N雰囲気下で、 15段ステップゥエッジパターン(A〇D = 0.1 The photosensitive layer K1 on the base material was exposed to a black matrix pattern of 20 mjZcm 2 with a laser beam having a wavelength of 405 nm by an exposure apparatus and an exposure method described below. For exposure, in a N atmosphere, a 15-step step edge pattern (A0D = 0.1
2  2
5)、及び線幅の異なる多数の穴部が形成される格子パターンが得られるように行レ、、 前記感光層の一部の領域を硬化させた。 5), and so as to obtain a lattice pattern in which a large number of holes having different line widths are formed, A part of the photosensitive layer was cured.
[0218] < <露光装置、露光方法 > >  [0218] <Exposure apparatus, exposure method>
前記光照射手段として特開 2005— 258431号公報に記載の合波レーザ光源と、 前記光変調手段として図 6に概略図を示した主走查方向にマイクロミラー 58が 1024 個配列されたマイクロミラー歹 1Jが、副走查方向に 768組配列された内、 1024個 X 25 6列のみを駆動するように制御した DMD36と、図 5に示した光を前記感光層に結像 する光学系とを有する露光ヘッド 30を備えた露光装置 10を用いた。  A combined laser light source described in JP-A-2005-258431 as the light irradiating means, and a micromirror in which 1024 micromirrors 58 are arranged in the main axis direction shown schematically in FIG. 6 as the light modulating means. DM DMD36 controlled to drive only 1024 x 256 6 rows out of 768 pairs arranged in the sub-running direction, and an optical system that focuses the light shown in Fig. 5 on the photosensitive layer An exposure apparatus 10 having an exposure head 30 having
[0219] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、使用可能な 1024 列 X 256行のマイクロミラー 58を使用してちょうど 2重露光となる角度 Θ よりも若干  [0219] The tilt angle of each exposure head 30, ie each DMD 36, is slightly larger than the angle Θ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
ideal  ideal
大きい角度を採用した。この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラ  A large angle was adopted. This angle Θ is the number of N exposures N, the available micromirrors
ideal  ideal
一 58の列方向の個数 s、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光 ヘッド 30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッ チ δに対し、下記式 1、  (1) The number s in the column direction of 58, the interval p in the column direction of the usable micromirrors 58, and the pitch δ of the scanning line formed by the micromirrors when the exposure head 30 is tilted, ,
spsin θ ≥Ν δ (式 1)  spsin θ ≥Ν δ (Equation 1)
ideal  ideal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan 0 =N (式 3)  stan 0 = N (Equation 3)
ideal  ideal
であり、 s = 256、 N = 2であるので、角度 Θ は約 0. 45度である。したがって、設  Since s = 256 and N = 2, the angle Θ is about 0.45 degrees. Therefore,
ideal  ideal
定傾斜角度 Θとしては、たとえば 0. 50度を採用した。  As the constant inclination angle Θ, for example, 0.50 degrees was adopted.
[0220] まず、 2重露光における解像度のばらつきと露光むらを補正するため、被露光面の 露光パターンの状態を調べた。結果を図 16に示した。図 16においては、ステージ 14 を静止させた状態で感光層 12の被露光面上に投影される、露光ヘッド 30 と 30 が [0220] First, the state of the exposure pattern on the surface to be exposed was examined in order to correct the variation in resolution and uneven exposure in double exposure. The results are shown in FIG. In FIG. 16, the exposure heads 30 and 30 projected onto the exposed surface of the photosensitive layer 12 with the stage 14 stationary are shown.
12 21 有する DMD36の使用可能なマイクロミラー 58からの光点群のパターンを示した。ま た、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステ ージ 14を移動させて連続露光を行った際に、被露光面上に形成される露光パター ンの状態を、露光エリア 32 と 32 について示した。なお、図 16では、説明の便宜の ため、使用可能なマイクロミラー 58の 1列おきの露光パターンを、画素列群 Aによる 露光パターンと画素列群 Bによる露光パターンとに分けて示したが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。 The pattern of light spots from the usable micromirror 58 of DMD36 with 12 21 is shown. In addition, the exposure formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part. The pattern status is shown for exposure areas 32 and 32. In FIG. 16, for convenience of explanation Therefore, every other exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on pixel array group A and an exposure pattern based on pixel array group B, but the actual exposure pattern on the exposed surface is These two exposure patterns are superimposed.
[0221] 図 16に示したとおり、露光ヘッド 30 と 30 の間の相対位置の、理想的な状態から [0221] As shown in FIG. 16, the relative position between exposure heads 30 and 30 is ideal.
12 21  12 21
のずれの結果として、画素列群 Aによる露光パターンと画素列群 Bによる露光パター ンとの双方で、露光エリア 32 と 32 の前記露光ヘッドの走查方向と直交する座標  As a result of the deviation, the coordinates orthogonal to the strike direction of the exposure head in the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B.
12 21  12 21
軸上で重複する露光領域において、理想的な 2重露光の状態よりも露光過多な領域 が生じていることが判る。  It can be seen that there are overexposed areas in the overlapping exposure areas on the axis than in the ideal double exposure state.
[0222] 前記光点位置検出手段としてスリット 28及び光検出器の組を用レ、、露光ヘッド 30 [0222] As the light spot position detecting means, a set of a slit 28 and a photodetector is used, and an exposure head 30 is used.
12 ついては露光エリア 32 内の光点 P (l, 1)と P (256, 1)の位置を、露光ヘッド 30  12, the positions of the light spots P (l, 1) and P (256, 1) in the exposure area 32
12 21 については露光エリア 32 内の光点 P (l, 1024)と P (256, 1024)の位置を検出し  For 12 21, the positions of light spots P (l, 1024) and P (256, 1024) within the exposure area 32 are detected.
21  twenty one
、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。  The angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
[0223] 実傾斜角度 Θ を用いて、下記式 4 [0223] Using the actual inclination angle Θ, the following equation 4
ttan e ' =Ν (式 4)  ttan e '= Ν (Equation 4)
の関係を満たす値 tに最も近い自然数 Τを、露光ヘッド 30 と 30 のそれぞれについ  The natural number 近 い that is closest to the value t that satisfies the relationship
12 21  12 21
て導出した。露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 25  Derived. T = 254 for exposure head 30, 、 = 25 for exposure head 30
12 21  12 21
5がそれぞれ導出された。その結果、図 17において斜線で覆われた部分 78及び 80 を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。  5 were derived respectively. As a result, the micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
[0224] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、同様にして図 17において斜線で覆われた領 域 82及び網掛けで覆われた領域 84を構成する光点に対応するマイクロミラーが特 定され、本露光時に使用しないマイクロミラーとして追加された。 [0224] After that, regarding the micromirror corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17, the area 82 and the shaded area covered by the oblique lines in FIG. Micromirrors corresponding to the light spots constituting the region 84 covered with the above were identified and added as micromirrors not used during the main exposure.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しないように制御した。  With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Control was performed so as not to be involved in exposure.
これにより、露光エリア 32 と 32 のうち、複数の前記露光ヘッドで形成された被露  As a result, the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32.
12 21  12 21
光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的 な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最 /J、とすることができる。 In each area other than the head-to-head connection area, which is the overlapping exposure area on the optical surface, the total area of the overexposed and underexposed areas with respect to the ideal double exposure is maximized. / J.
[0225] 現像工程  [0225] Development process
露光が終了した前記感光層 K1の表面に、純水をシャワーノズルを用いて噴霧して 均一に湿らせた後、 K〇H系現像液 (KOH、ノニオン界面活性剤含有、商品名: CD K_ l、富士フィルムエレクトロニクスマテリアルズ (株)製)を純水で 100倍希釈した 液にて、 23°Cで 80秒間、フラットノズノレ圧力 0, 04MPaでシャワー現像し、次いで超 純水を、超高圧洗浄ノズノレを用いて 9. 8MPaの圧力で噴射して残渣の除去を行レ、、 ブラックマトリクスパターンを得た。その後、 220°Cで 30分間熱処理を行った。  After the exposure, the surface of the photosensitive layer K1 is sprayed with pure water using a shower nozzle and uniformly moistened, and then a KOH developer (containing KOH, nonionic surfactant, product name: CD K_ l, Fuji Film Electronics Materials Co., Ltd.) 100-fold diluted with pure water, shower-developed at 23 ° C for 80 seconds at flat nozzle pressure 0, 04 MPa, then ultrapure water Using a high pressure cleaning nozzle, the residue was removed by spraying at a pressure of 9.8 MPa to obtain a black matrix pattern. Thereafter, heat treatment was performed at 220 ° C. for 30 minutes.
[0226] (2)レッド(R)画素の形成  [0226] (2) Formation of red (R) pixels
前記ブラックマトリクスを形成した基板に、下記表 4に記載の組成よりなる下記感光 性組成物 R1を用レ、、前記ブラックマトリクスの形成と同様の工程により、熱処理済み R画素を形成した。該 R1感光層膜厚は 1. 5 111、及び顔料(〇. I.ビグメントレッド 2 54)の塗布量は 0. 274g/m2であった。 On the substrate on which the black matrix was formed, the following photosensitive composition R1 having the composition shown in Table 4 was used, and heat-treated R pixels were formed by the same process as the formation of the black matrix. The R1 photosensitive layer thickness was 1.5 111, and the coating amount of the pigment (O.I. Pigment Red 254) was 0.274 g / m 2 .
[0227] 感光性組成物 R1の調製  [0227] Preparation of photosensitive composition R1
下記表 4に記載の量の R顔料分散物 1、 R顔料分散物 2、プロピレングリコールモノ メチルエーテルアセテートをは力り取り、温度 24°C ( ± 2°C)で混合して 15(kpmで 10 分間攪拌した。次いで、下記表 4に記載の量のメチルェチルケトン、シクロへキサノン 、バインダー 1、 DPHA液、 B— CIM (保土谷化学工業社製)、 NBCA (黒金化成社 製)、 N フエ二ルメルカプトべンズイミダゾール、及びフエノチアジンをは力り取り、温 度 24°C ( ± 2°C)でこの順に添カ卩して 150rpmで 30分間攪拌した。更に、下記表 4に 記載の量の界面活性剤 1をはかり取り、温度 24°C (± 2°C)で添カ卩して 30rpmで 5分 間攪拌し、ナイロンメッシュ # 200で濾過した。以上により、感光性組成物 R1を調製 した。  Remove R Pigment Dispersion 1, R Pigment Dispersion 2, and Propylene Glycol Monomethyl Ether Acetate in the amounts shown in Table 4 below and mix at a temperature of 24 ° C (± 2 ° C) to 15 (kpm The mixture was stirred for 10 minutes, and then methylethylketone, cyclohexanone, binder 1, DPHA solution, B-CIM (Hodogaya Chemical Co., Ltd.), NBCA (Kurokin Kasei Co., Ltd.) in the amounts shown in Table 4 below. , N phenylmercaptobenzimidazole, and phenothiazine were removed by force, added in this order at a temperature of 24 ° C (± 2 ° C), and stirred at 150 rpm for 30 minutes. The indicated amount of Surfactant 1 was weighed out, added at a temperature of 24 ° C (± 2 ° C), stirred at 30 rpm for 5 minutes, and filtered through nylon mesh # 200. Product R1 was prepared.
[0228] [表 4] 感光性組成物 Rl 質量部 [0228] [Table 4] Photosensitive composition Rl parts by mass
R賴料分散物 1 ( C. I. P. R. 254) g  R Material dispersion 1 (C.I.P.R.254) g
R賴料分散物 2 ( C. I. P. R. 254) g  R Material dispersion 2 (C.I.P.R.254) g
プロピレングリコールモノメチルエーテルアセテート 2.0  Propylene glycol monomethyl ether acetate 2.0
メチルェチルケトン 24  Methyl ethyl ketone 24
シクロへキサノン 13  Cyclohexanone 13
バインダー 1 10  Binder 1 10
DPHA液 2.9  DPHA solution 2.9
B - CIM 1 .01  B-CIM 1.01
N BCA 0.38  N BCA 0.38
N—フエ二ルメルカプトべンズイミダゾ一ル 0.1 2  N—Fermercaptobens imidazole 0.1 2
フエノチアジン 0.009  Phenothiazine 0.009
界面活性剤 1 0.04 なお、表 4に記載の組成物のうち、  Surfactant 1 0.04 Of the compositions listed in Table 4,
•R顔料分散物 1の組成は、 C. I.ビグメントレッド 254 (チバスぺシャリティケミカルズ 社製) 8質量%、前記式 (6)で表される分散剤 0. 8質量%、ポリマー (ベンジルメタク リレート/メタクリル酸 = 72/28モル比のランダム共重合物) 8質量0 /0、及びプロピレ ングリコールモノメチルエーテルアセテート 83質量%からなる。 • The composition of R Pigment Dispersion 1 is CI Pigment Red 254 (manufactured by Ciba Specialty Chemicals) 8% by mass, 0.8% by mass of the dispersant represented by the above formula (6), polymer (benzyl methacrylate / random copolymer of methacrylic acid = 72/28 mole ratio) 8 weight 0/0, and propylene glycol consists monomethyl ether acetate 83 wt%.
•R顔料分散物 2の組成は、 C. I.ビグメントレッド 254 (チバスべシャリティケミカノレズ 社製) 5· 3質量0 /0、アクリル酸モノ(ジメチルァミノプロピル)アミド /メタクリル酸(ポリ エチレングリコールモノメチルエーテル)エステル/メタクリル酸(ポリメチルメタクリレ ート含有アルコール)エステル 1 · 6質量0 /0、プロピレングリコールモノメチルエーテル アセテート 93質量%からなる。 • Composition of R Pigment Dispersion 2, CI Pigment Red 254 (Chibasu manufactured base fischeri tee Chemicals Roh Lez Ltd.) 5.3 mass 0/0, acrylic acid mono (dimethyl § amino propyl) amide / methacrylic acid (poly ethylene glycol monomethyl ether) ester / methacrylic acid (polymethyl methacrylate over preparative containing alcohol) esters 1 - 6 mass 0/0, 93 mass% of propylene glycol monomethyl ether acetate.
'バインダー 1の組成は、ポリマー(ベンジルメタタリレート/メタクリル酸/メチルメタク リレート = 38Z25Z37のランダム共重合物、分子量 3. 8万) 27質量0/。、プロピレン グリコールモノメチルエーテルアセテート 73質量%からなる。 'The composition of binder 1 is polymer (benzyl methacrylate / methacrylic acid / methyl methacrylate = random copolymer of 38Z25Z37, molecular weight 3.80,000) 27 mass 0 /. And 73% by mass of propylene glycol monomethyl ether acetate.
一露光工程及び現像工程一 One exposure process and development process
基板上の前記感光層 R1に対し、前記感光層 K1と同様に露光した。露光量は 20m j/cm2であった。また、評価のため、ブラックマトリクスを形成しない基板にも、これと 同様に前記感光層 R1を形成し、カラーフィルタパターン、解像度評価パターン(直径 の異なる多数の穴部が形成されたパターン)、及びステップゥエッジパターンを用い て同様の処理をした。その後、ブラックマトリクスと同様に現像し、熱処理した。 The photosensitive layer R1 on the substrate was exposed in the same manner as the photosensitive layer K1. Exposure amount is 20m j / cm 2 . For evaluation, the photosensitive layer R1 is also formed on a substrate on which a black matrix is not formed, and a color filter pattern, a resolution evaluation pattern (a pattern in which a large number of holes having different diameters are formed), and The same processing was performed using a step-to-edge pattern. Then, it developed similarly to the black matrix and heat-processed.
[0230] [評価] [0230] [Evaluation]
形成されたレッド(R)のカラーフィルタパターン(画素)について、以下の方法により 露光感度、解像度、及びムラの評価を行った。結果を下記表 10に示す。  The formed red (R) color filter pattern (pixel) was evaluated for exposure sensitivity, resolution, and unevenness by the following methods. The results are shown in Table 10 below.
[0231] <露光感度 > [0231] <Exposure sensitivity>
得られた前記レッド (R)のカラーフィルタパターン(画素)において、残った前記感 光層の硬化領域の厚みを測定した。次いで、レーザ光の照射量と、硬化層の厚さと の関係をプロットして感度曲線を得る。こうして得た感度曲線から基板上の硬化領域 の厚さが 1. となり、硬化領域の表面が光沢面である時の光エネルギー量を、 感光層を硬化させるために必要な光エネルギー量とした。  In the obtained red (R) color filter pattern (pixels), the thickness of the cured region of the remaining photosensitive layer was measured. Next, a sensitivity curve is obtained by plotting the relationship between the irradiation amount of the laser beam and the thickness of the cured layer. From the sensitivity curve thus obtained, the thickness of the cured region on the substrate was 1. The amount of light energy when the surface of the cured region was a glossy surface was determined as the amount of light energy required to cure the photosensitive layer.
[0232] <解像度 > [0232] <Resolution>
得られた前記レッド (R)の解像度評価パターン形成済みの基板の表面を光学顕微 鏡で観察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解 像度とした。該解像度は数値が小さいほど良好である。  The surface of the obtained red (R) resolution evaluation pattern-formed substrate was observed with an optical microscope, and the minimum hole diameter with no residual film in the hole portion of the cured layer pattern was measured and resolved. Degree. The smaller the numerical value, the better the resolution.
[0233] (3)グリーン (G)画素の形成 [0233] (3) Green (G) Pixel formation
前記ブラックマトリクスとレッド (R)画素を形成した基板に、下記表 5に記載の組成よ りなる下記感光性組成物 G1を用い、前記ブラックマトリクスの形成と同様の工程によ り、熱処理済みグリーン (G)画素を形成した。該 G1感光層膜厚は 1. 4 μ ΐη、及び顔 料(C. I.ビグメントグリーン 36)の塗布量は 0. 355g/m2、顔料(C. I.ピグメントイエ ロー 139)の塗布量は 0. 052gZm2であった。ブラックマトリクスと同様に露光し、現 像し、熱処理した。露光量は 40mjZcm2相当であった。 The following photosensitive composition G1 having the composition shown in Table 5 below is used on the substrate on which the black matrix and red (R) pixels are formed, and the heat-treated green is formed by the same process as the formation of the black matrix. (G) A pixel was formed. The G1 photosensitive layer thickness is 1.4 μΐη, the coating amount of the pigment (CI Pigment Green 36) is 0.355 g / m 2 , and the coating amount of the pigment (CI Pigment Yellow 139) is 0.052 gZm 2. Met. It was exposed, imaged and heat treated in the same way as the black matrix. Exposure amount was 40MjZcm 2 equivalent.
[0234] 一感光性組成物 G1の調製一 [0234] Preparation of one photosensitive composition G1
下記表 5に記載の量の G顔料分散物 1、 Y顔料分散物 1、プロピレングリコールモノ メチルエーテルアセテートをは力 取り、温度 24。C ( ± 2。C)で混合して 150rpmで 10 分間攪拌した。次いで、下記表 5に記載の量のメチルェチルケトン、バインダー 1、 D PHA液、 B— CIM (保土谷化学工業社製)、 NBCA (黒金化成社製)、 N—フエニル メルカプトべンズイミダゾール、及びフヱノチアジンをは力り取り、温度 24°C ( ± 2°C) でこの順に添カ卩して 150rpmで 30分間攪拌した。更に、下記表 5に記載の量の界面 活性剤 1をはかり取り、温度 24°C (± 2°C)で添カ卩して 30rpmで 5分間攪拌し、ナイ口 ンメッシュ # 200で濾過した。以上により、感光性組成物 G1を調製した。 The amount of G pigment dispersion 1, Y pigment dispersion 1, and propylene glycol monomethyl ether acetate in the amounts shown in Table 5 below is concentrated at a temperature of 24. The mixture was mixed at C (± 2. C) and stirred at 150 rpm for 10 minutes. Next, methyl ethyl ketone, binder 1, D in the amounts shown in Table 5 below PHA solution, B—CIM (Hodogaya Chemical Co., Ltd.), NBCA (Kurokin Kasei Co., Ltd.), N-phenyl mercaptobenzimidazole, and phenothiazine are removed, and the temperature is 24 ° C (± 2 ° C) Then, the mixture was added in this order and stirred at 150 rpm for 30 minutes. Further, the amount of Surfactant 1 described in Table 5 below was weighed out, added at a temperature of 24 ° C (± 2 ° C), stirred at 30 rpm for 5 minutes, and filtered through a nylon mesh # 200. . The photosensitive composition G1 was prepared as described above.
[表 5] [Table 5]
Figure imgf000076_0001
Figure imgf000076_0001
なお、表 5に記載の組成物のうち、  Of the compositions listed in Table 5,
•G顔料分散物 1の組成は、 C. I. ビグメントグリーン 36 (東洋インキ製造株式会社製 、分散物) 18質量0 /0、ポリマー(ベンジルメタタリレート Zメタクリル酸 = 72/28モル 比のランダム共重合物、分子量 3. 8万) 12質量%、シクロへキサノン 35質量%、プロ ピレンダリコールモノメチルエーテルアセテート 35質量%からなる。 • Composition of G Pigment Dispersion 1, CI Pigment Green 36 (manufactured by Toyo Ink Mfg. Co., Ltd., dispersion) 18 Weight 0/0, a random co-polymer (benzyl methacrylate Tari rate Z methacrylic acid = 72/28 mole ratio Polymer, molecular weight 38,000) 12% by mass, cyclohexanone 35% by mass, propylene glycol monomethyl ether acetate 35% by mass.
•Y顔料分散物 1の組成は、 C. I.ビグメントイエロー 139 (東洋インキ製造 (株)製、商 品名:パリォロールエロー L1820) 18質量0 /0、ポリマー(ベンジルメタタリレート/メタ クリル酸 = 72/28モル比のランダム共重合物、分子量 3. 8万) 15質量0 /0、シクロへ キサノン 15質量0 /0、プロピレングリコールモノメチルエーテルアセテート 52質量0 /0か らなる。 • Y composition of the pigment dispersion 1, CI Pigment Yellow 139 (Toyo Ink Mfg. Co., Ltd., trade name: Paris O roll Yellow L1820) 18 Weight 0/0, the polymer (benzyl methacrylate Tari rate / methacrylic acid = random copolymer of 72/28 molar ratio, molecular weight 38,000) 15 wt 0/0, cyclohexanone 15 weight 0/0 cyclohexane, propylene glycol monomethyl ether acetate 52 mass 0/0 or It becomes.
[0237] (4)ブルー(B)画素の形成  [0237] (4) Formation of blue (B) pixels
前記ブラックマトリクス、レッド (R)画素、及びグリーン (G)画素を形成した基板に、 下記表 6に記載の組成よりなる下記感光性組成物 B1を用レ、、前記ブラックマトリクス の形成と同様の工程により、熱処理済みブルー(B)画素を形成し、 目的のカラーフィ ルタを作製した。  The substrate having the black matrix, red (R) pixel, and green (G) pixel formed thereon is coated with the following photosensitive composition B1 having the composition shown in Table 6 below, and the same as the formation of the black matrix. Through the process, heat-treated blue (B) pixels were formed, and the target color filter was fabricated.
該 B1感光層膜厚は 1. 4 x m、及び顔料(C. I.ピグメントブルー 15: 6)の塗布量は 0. 29g/m2であった。前記 K感光層と同様に露光し、現像し、熱処理した。露光量 は 50mj/cm2であった。 The film thickness of the B1 photosensitive layer was 1.4 xm, and the coating amount of the pigment (CI Pigment Blue 15: 6) was 0.29 g / m 2 . Exposure, development, and heat treatment were performed in the same manner as the K photosensitive layer. The exposure was 50 mj / cm 2 .
[0238] 一感光性組成物 B1の調製一 [0238] Preparation of one photosensitive composition B1
下記表 6に記載の量の B顔料分散物 1、プロピレングリコールモノメチルエーテルァ セテートをはかり取り、温度 24°C (± 2°C)で混合して 150rpmで 10分間攪拌した。次 いで、下記表 6に記載の量のメチルェチルケトン、バインダー 2、 DPHA液、 B— CI M (保土谷化学工業社製)、 NBCA (黒金化成社製)、 N—フエ二ルメルカプトべンズ イミダゾール、及びフエノチアジンをは力り取り、温度 25°C (± 2°C)でこの順に添加し て、温度 40°C (± 2°C)で 150i"pm、 30分間攪拌した。更に、下記表 6に記載の量の 界面活性剤 1をはかり取り、温度 24°C (± 2°C)で添加して 30RPMで 5分間攪拌し、 ナイロンメッシュ # 200で濾過した。以上により、感光性組成物 B1を調製した。  B pigment dispersion 1 and propylene glycol monomethyl ether acetate in the amounts shown in Table 6 below were weighed out, mixed at a temperature of 24 ° C. (± 2 ° C.), and stirred at 150 rpm for 10 minutes. Next, methyl ethyl ketone, binder 2, DPHA solution, B—CI M (made by Hodogaya Chemical Co., Ltd.), NBCA (made by Kurokin Kasei Co., Ltd.), N—vinyl mercapto, as shown in Table 6 below. The benzimidazole and phenothiazine were removed by force, added in this order at a temperature of 25 ° C (± 2 ° C), and stirred at a temperature of 40 ° C (± 2 ° C) at 150 i "pm for 30 minutes. The amount of Surfactant 1 listed in Table 6 below was weighed out, added at a temperature of 24 ° C (± 2 ° C), stirred at 30 RPM for 5 minutes, and filtered through nylon mesh # 200. Sex composition B1 was prepared.
[0239] [表 6] [0239] [Table 6]
感光性組成物 B 1 質量部 Photosensitive composition B 1 part by mass
B顔料分散物 1 (C. I. P. B. 1 5 : 6) 1 2.7  B Pigment dispersion 1 (C.I.P.B. 1 5: 6) 1 2.7
プロピレングリコールモノメチルエーテルアセテート 40.0  Propylene glycol monomethyl ether acetate 40.0
メチルェチルケトン 27  Methyl ethyl ketone 27
バインダ一2 14  Binder 1 2 14
DPHA液 5.5  DPHA solution 5.5
B - CIM 0.88  B-CIM 0.88
NBCA 0.33  NBCA 0.33
N—フ: ^ルメルカプトべンズイミダゾ一ル 0.1 1  N—F: ^ Lumercaptobens imidazole 0.1 1
フエノチアジン 0.02  Phenothiazine 0.02
界面活性剤 1 0.05 なお、表 6に記載の組成物のうち、  Surfactant 1 0.05 Of the compositions listed in Table 6,
•B顔料分散物 1の組成は、 C. I.ピグメントブルー 15 : 6 (東洋インキ製造 (株)製) 10 質量%、分散剤 1 (EFKA- 6745, EFKA ADDITIVES B. V社製) 0. 5質量% 、分散剤 2 (ディスパロン DA_ 725、楠本化成 (株)製) 0. 63質量%、ポリマー(ベン ジルメタタリレート/メタクリル酸 = 72/28モル比のランダム共重合物、分子量 3. 8 万) 12. 5質量0 /0、プロピレングリコールモノメチルエーテルアセテート 76. 37質量0 /0 からなる。 • The composition of B Pigment Dispersion 1 is CI Pigment Blue 15: 6 (Toyo Ink Mfg. Co., Ltd.) 10% by mass, Dispersant 1 (EFKA-6745, EFKA ADDITIVES B. V) 0.5% by mass , Dispersant 2 (Disparon DA_725, manufactured by Enomoto Kasei Co., Ltd.) 0.63% by mass, polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio, random copolymer, molecular weight 38,000) 12.5 mass 0/0, of propylene glycol monomethyl ether acetate 76.37 parts by mass 0/0.
(実施例 2) (Example 2)
[カラーフィルタパターンの形成(フィルム法) ]  [Color filter pattern formation (film method)]
<感光性転写材料の作製 > <Production of photosensitive transfer material>
厚さ 75 μ mのポリエチレンテレフタレート(PET)フィルム仮支持体の上に、スリット 状ノズノレを用いて、下記処方 HIからなる熱可塑性樹脂層用塗布液を塗布、乾燥さ せた。次に、下記処方 P1からなる中間層用塗布液を塗布、乾燥させた。更に、前記 着色感光性樹脂組成物 K1を塗布、乾燥させ、該仮支持体の上に乾燥膜厚が 14. 6 / mの熱可塑性樹脂層と、乾燥膜厚が 1. 6 / mの中間層と、乾燥膜厚が 2 / mの感 光性樹脂層を設け、保護フィルム (厚さ 12 μ mポリプロピレンフィルム)を圧着した。 以上により、仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)とブラック (K)の感 光性樹脂層とがー体となった感光性樹脂転写材料 Klを作製した。 On a 75 μm-thick polyethylene terephthalate (PET) film temporary support, a coating solution for a thermoplastic resin layer having the following formulation HI was applied and dried using a slit-shaped nozzle. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Furthermore, the colored photosensitive resin composition K1 is applied and dried, and a thermoplastic resin layer having a dry film thickness of 14.6 / m on the temporary support and an intermediate film having a dry film thickness of 1.6 / m A layer and a photosensitive resin layer having a dry film thickness of 2 / m were provided, and a protective film (12 μm thick polypropylene film) was pressure-bonded. As described above, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black (K) feel. A photosensitive resin transfer material Kl having a solid body with the photosensitive resin layer was produced.
[0241] 熱可塑性樹脂層用塗布液:処方 H 1の調製  [0241] Preparation of coating solution for thermoplastic resin layer: Formulation H 1
メタノーノレ 11. 1質量部、プロピレングリコールモノメチルエーテルアセテート 6· 36 質量部、メチルェチルケトン 52. 4質量部、メチルメタタリレート /2 _ェチルへキシル アタリレート/ベンジルメタタリレート/メタクリル酸共重合体(共重合組成比(モル比) = 55/11. 7/4. 5/28. 8、分子量 = 10万、 Tg 70°C) 5. 83質量部、スチレン /アクリル酸共重合体 (共重合組成比(モル比) = 63/37、分子量 = 1万、 Tg= 10 0。C) 13. 6質量部、ビスフエノーノレ Aにペンタエチレングリコールモノメタクリートを 2 当量脱水縮合した化合物 (新中村化学工業 (株)製、 2, 2—ビス [4一(メタクリロキシポ リエトキシ)フヱニル]プロパン)が 9.1質量部、及び前記界面活性剤 1が 0. 54質量部 からなる熱可塑性樹脂層用塗布液を調製した。  Methanolol 11.1 parts by mass, propylene glycol monomethyl ether acetate 6 · 36 parts by mass, methyl ethyl ketone 52.4 parts by mass, methyl metatalylate / 2 _ethylhexyl Atalylate / benzyl metatalylate / methacrylic acid copolymer Copolymer (copolymerization composition ratio (molar ratio) = 55/11. 7/4. 5 / 28.8, molecular weight = 100,000, Tg 70 ° C) 5. 83 parts by mass, styrene / acrylic acid copolymer (copolymer Polymer composition ratio (molar ratio) = 63/37, molecular weight = 10,000, Tg = 100 0. C) 13.6 parts by mass, compound obtained by dehydration condensation of 2 equivalents of bisphenol A and pentaethylene glycol monomethacrylate (Shin Nakamura Chemical) A coating solution for a thermoplastic resin layer comprising 9.1 parts by mass of 2,2-bis [4 (methacryloxypolyethoxy) phenyl] propane, manufactured by Kogyo Co., Ltd., and 0.54 parts by mass of the surfactant 1 is prepared. did.
[0242] 一中間層用塗布液:処方 P1の調製一  [0242] One intermediate layer coating solution: Formulation P1
PVA205 (ポリビニルァノレコール、(株)クラレ製、鹼化度 = 88%、重合度 550) 32 . 2質量部、ポリビュルピロリドン(アイエスピ一.ジャパン (株)製、 K— 30) 14· 9質量 部、蒸留水 524質量部、及びメタノール 429質量部からなる中間層用塗布液を調製 した。  PVA205 (Polyvinyl alcohol, Kuraray Co., Ltd., degree of hatching = 88%, degree of polymerization 550) 32.2 parts by mass, polybulurpyrrolidone (Apispi. Japan Co., Ltd., K-30) 14 · 9 An intermediate layer coating solution comprising parts by weight, 524 parts by weight of distilled water, and 429 parts by weight of methanol was prepared.
[0243] 次に、前記感光性転写材料 K1の作製において用いた前記感光性組成物 K1を、 下記表 7〜9に記載の組成よりなる下記感光性組成物 R101、 G101及び B101に変 更した以外は、上記と同様の方法により、感光性転写材料 R101、 G101及び B101 をそれぞれ作製した。  [0243] Next, the photosensitive composition K1 used in the production of the photosensitive transfer material K1 was changed to the following photosensitive compositions R101, G101 and B101 having the compositions shown in Tables 7 to 9 below. Except for the above, photosensitive transfer materials R101, G101 and B101 were produced in the same manner as described above.
なお、感光性組成物 R101、 G101及び B101の調製方法は、それぞれ前記感光 性組成物 Rl、 G1及び B1の調製方法に準ずる。  The method for preparing photosensitive compositions R101, G101, and B101 is in accordance with the method for preparing photosensitive compositions Rl, G1, and B1, respectively.
[0244] [表 7] 感光性樹脂組成物 R101 質量部[0244] [Table 7] Photosensitive resin composition R101 parts by mass
R顔料分散物 1 (C. I. P. R. 254) 9R Pigment dispersion 1 (C.I.P.R.254) 9
R賴料分散物 2 (C. I. P. R. 254) g プロピレングリコールモノメチルエーテルアセテート 9.1 メチルェチルケトン 33 シクロへキサノン 18 バインダー 1 17R Material dispersion 2 (C.I.P.R.254) g Propylene glycol monomethyl ether acetate 9.1 Methyl ethyl ketone 33 Cyclohexanone 18 Binder 1 17
DPHA液 4.2DPHA solution 4.2
B-CIM 1.28B-CIM 1.28
NBCA 0.48NBCA 0.48
N—フエ二ルメルカプトべンズイミダゾ一ル 0.15 フエノチアジン 0.009 界面活性剤 1 0.06 N-phenol mercaptobens imidazole 0.15 Phenothiazine 0.009 Surfactant 1 0.06
[0245] [表 8] 感光性樹脂組成物 G 101 質量部[0245] [Table 8] Photosensitive resin composition G 101 parts by mass
G賴料分散物 1 (C. I. P. G. 36) 10.9G dispersion 1 (C.I.P.G.36) 10.9
Y顔料分散物 1 (C. I. P. Y. 139) 1.6 プロピレングリコールモノメチルエーテルアセテート 40.3 メチルェチルケトン 26 バインダー 1 12.7Y pigment dispersion 1 (C.I.P.Y.139) 1.6 Propylene glycol monomethyl ether acetate 40.3 Methyl ethyl ketone 26 Binder 1 12.7
DPHA液 5.1DPHA solution 5.1
B-CIM 0.88B-CIM 0.88
NBCA 0.33NBCA 0.33
N—フエ二ルメルカプトべンズイミダゾ一ル 0.11 フエノチアジン 0.01 界面活性剤 1 0.09 N-phenylmercaptobensimidazole 0.11 phenothiazine 0.01 surfactant 1 0.09
[0246] [表 9] 感光性樹脂組成物 B 1 01 質量部 [0246] [Table 9] Photosensitive resin composition B 1 01 parts by mass
B顔料分散物 1 (C. I. P. B. 1 5 : 6) 1 2.7  B Pigment dispersion 1 (C.I.P.B. 1 5: 6) 1 2.7
プロピレングリコールモノメチルエーテルアセテート 40  Propylene glycol monomethyl ether acetate 40
メチルェチルケトン 27  Methyl ethyl ketone 27
バインダー 2 14  Binder 2 14
DPHA液 5.5  DPHA solution 5.5
B - CIM 0.88  B-CIM 0.88
N BCA 0.33  N BCA 0.33
N—フエ二ルメルカプトべンズイミダゾ一ル 0.1 1  N-Phenol mercaptobens imidazole 0.1 1
フエノチアジン 0.02  Phenothiazine 0.02
界面活性剤 1 0.05  Surfactant 1 0.05
[0247] (1)ブラックマトリクスの形成 [0247] (1) Formation of black matrix
無アルカリガラス基板を、 25°Cに調整したガラス洗浄剤液をシャワーにより 20秒間 吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シラ ンカップリング液(N— β (アミノエチル) γ—ァミノプロピルトリメトキシシラン 0· 3質量 %水溶液、商品名: ΚΒΜ603、信越化学工業株式会社製)をシャワーにより 20秒間 吹き付け、純水シャワー洗浄した。この基板を基板予備加熱装置で 100°Cにて 2分 加熱して次のラミネーターに送った。  The alkali-free glass substrate was cleaned with a rotating brush with nylon bristles while spraying a glass detergent solution adjusted to 25 ° C for 20 seconds with a shower. After washing with pure water, the silane coupling solution (N-β (amino Ethyl) γ-aminopropyltrimethoxysilane 0.3 mass% aqueous solution, trade name: ΚΒΜ603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water. This substrate was heated at 100 ° C. for 2 minutes with a substrate preheating device and sent to the next laminator.
前記感光性樹脂転写材料 K1の保護フィルムを剥離後、ラミネーター((株)日立ィ ンダストリイズ社製、 LamicII型)を用い、前記 100°Cに加熱した基板に、ゴムローラ 一温度 130°C、線圧 100N/cm、搬送速度 2. 2m/分でラミネートした。  After the protective film of the photosensitive resin transfer material K1 is peeled off, a laminator (Lamic II type, manufactured by Hitachi Industries, Ltd.) is used to heat the substrate to 100 ° C and a rubber roller at a temperature of 130 ° C and linear pressure. Lamination was performed at 100 N / cm and a conveyance speed of 2 m / min.
[0248] 露光工程 [0248] Exposure process
保護フィルムを剥離後、実施例 1の露光装置を用いて、波長が 405nmのレーザ光 を、実施例 1と同様のステップゥエッジパターン、及びストライプ形状及びドット形状に 照射して露光し、前記感光層の一部の領域を硬化させた。実施例 1と同様にカラーフ ィルタパターンの他、ブラックマトリクスを形成しない基板にカラーフィルタパターン、 感度評価パターン、及び解像度評価パターンも作製した。また、露光量は 80mjZc m2で、大気雰囲気下で行った。 [0249] 現像工程 After peeling off the protective film, the exposure apparatus of Example 1 was used to expose the laser beam having a wavelength of 405 nm by irradiating the same step-to-edge pattern, stripe shape, and dot shape as in Example 1, and performing the exposure. Some areas of the layer were cured. In the same manner as in Example 1, in addition to the color filter pattern, a color filter pattern, a sensitivity evaluation pattern, and a resolution evaluation pattern were also formed on a substrate on which no black matrix was formed. The exposure amount was 80 mjZcm 2 and was performed in an air atmosphere. [0249] Development process
次に、トリエタノールアミン系現像液(2· 5質量0 /0のトリエタノールァミン含有、ノニォ ン界面活性剤含有、ポリプロピレン系消泡剤含有、商品名: T PD1、富士写真フィ ルム株式会社製)を純水で 12倍に希釈した液にて 30°Cにて 50秒、フラットノズル圧 力 0. 04MPaでシャワー現像し熱可塑性樹脂層及び中間層を除去した。 Next, triethanol § Min containing triethanol amine developing solution (2-5 wt 0/0, Nonio emissions surfactant-containing, containing polypropylene-based defoaming agent, trade name: T PD1, Fuji Photo Fi Lum Inc. The product was shower-developed with a solution diluted 12 times with pure water at 30 ° C for 50 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin layer and the intermediate layer.
引き続き、炭酸 Na系現像液(0. 06モル/リットルの炭酸水素ナトリウム、同濃度の 炭酸ナトリウム、 1 %のジブチルナフタレンスルホン酸ナトリウム、ァニオン界面活性剤 、消泡剤、安定剤含有、商品名: T一 CD1、富士写真フィルム株式会社製)を純水で 5倍に希釈した液を用レ、、 35。Cにて 35秒、コーン型ノズル圧力 0. 15MPaでシャヮ 一現像し感光性樹脂層を現像レ ターニング画素を得た。  Subsequently, sodium carbonate developer (0.06 mol / l sodium bicarbonate, sodium carbonate of the same concentration, 1% sodium dibutylnaphthalenesulfonate, anionic surfactant, antifoaming agent, stabilizer, product name: T1 CD1, manufactured by Fuji Photo Film Co., Ltd.) diluted 5 times with pure water, 35. The film was developed for 35 seconds at C with a cone type nozzle pressure of 0.15 MPa, and a photosensitive resin layer was obtained as a development-retarded pixel.
引き続き、洗浄剤 (燐酸塩、珪酸塩、ノニオン界面活性剤、消泡剤、安定剤含有、 商品名: T_ SD1、富士写真フィルム株式会社製)を純水で 10倍に希釈した液を用 レヽ、 33°Cにて 20秒、コーン型ノズル圧力 0· 02MPaでシャワーとナイロン毛を有す 回転ブラシにより残渣除去を行レ、、ブラックマトリクスパターンを得た。その後更に、該 基板に対して該樹脂層の側から超高圧水銀灯で 500mj/cm2の光でポスト露光後、 220°C、 15分熱処理(ベータ)した。 Continuing, use a solution obtained by diluting a detergent (phosphate, silicate, nonionic surfactant, antifoaming agent, stabilizer, product name: T_SD1, manufactured by Fuji Photo Film Co., Ltd.) 10 times with pure water. Residue removal was performed with a rotating brush having a shower and nylon bristles at a cone nozzle pressure of 0 · 02 MPa at 33 ° C for 20 seconds to obtain a black matrix pattern. Thereafter, the substrate was further post-exposed with light of 500 mj / cm 2 with an ultrahigh pressure mercury lamp from the side of the resin layer, and then heat-treated (beta) at 220 ° C. for 15 minutes.
該 K1感光層の膜厚は 2· Ο μ ΐη、顔料(C. I.ビグメントレッド 254)の塗布量は 0· 3 14g/m2であった。 The film thickness of the K1 photosensitive layer was 2 · Ομΐη, and the coating amount of the pigment (CI Pigment Red 254) was 0.3 · 14 g / m 2 .
ここで、実施例 1と同様にしてブラックマトリクスパターンについて、露光感度、解像 度、及びムラを評価した。結果を下記表 10に示す。  Here, in the same manner as in Example 1, the exposure sensitivity, resolution, and unevenness of the black matrix pattern were evaluated. The results are shown in Table 10 below.
このブラックマトリクスパターンを形成した基板を再び、前記のようにブラシで洗浄し 、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置に送 つた。  The substrate on which this black matrix pattern was formed was again cleaned with a brush as described above, and after pure water shower cleaning, the silane coupling solution was not used and was sent to a substrate preheating device.
[0250] (2)レッド(R)画素の形成  [0250] (2) Formation of red (R) pixels
前記感光性転写材料 R101を用レ、、前記感光性転写材料 K1と同様の工程で、熱 処理済みのレッド (R)の画素を作製した。露光量は 20mj/cm2とした。 Using the photosensitive transfer material R101, heat-treated red (R) pixels were produced in the same process as the photosensitive transfer material K1. The exposure dose was 20 mj / cm 2 .
該 R101感光層の膜厚は 2. O x m、顔料(C. I.ピグメントレッド 254)の塗布量は 0 . 314g/m2であった。 このブラックマトリクスパターンとレッド(R)の画素を形成した基板を再び、前記のよう にブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板 予備加熱装置に送った。 The film thickness of the R101 photosensitive layer was 2. O xm, and the coating amount of the pigment (CI Pigment Red 254) was 0.314 g / m 2 . The substrate on which the black matrix pattern and red (R) pixels were formed was again cleaned with a brush as described above, and after pure water shower cleaning, the silane coupling liquid was not used and the substrate was sent to a substrate preheating device. .
[0251] (3)グリーン(G)画素の形成 [0251] (3) Green (G) pixel formation
前記感光性転写材料 G101を用レ、、前記感光性転写材料 R101と同様の工程で、 熱処理済みのグリーン (G)の画素を作製した。露光量は 40mjZcm2とした。 Using the photosensitive transfer material G101, heat-treated green (G) pixels were produced in the same process as the photosensitive transfer material R101. Exposure amount was 40mjZcm 2.
該 G101の感光層膜厚は 2. 0 x m、及び顔料(C. I.ビグメントグリーン 36)の塗布 量 0. 396g/m2、顔料(C. I.ビグメントイエロー 139)の塗布量は 0. 0648gZm2で あった。 The photosensitive layer thickness of G101 is 2.0 xm, the coating amount of pigment (CI pigment green 36) is 0.396 g / m 2 , and the coating amount of pigment (CI pigment yellow 139) is 0.0648 gZm 2 . It was.
このブラックマトリクスパターンとレッド(R)とグリーン (G)の画素を形成した基板を再 び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用 せずに、基板予備加熱装置に送った。  The substrate on which this black matrix pattern and red (R) and green (G) pixels are formed is again cleaned with a brush as described above, and after pure water shower cleaning, without using a silane coupling liquid, Sent to preheater.
[0252] (4)ブルー(B)画素の形成 [0252] (4) Formation of blue (B) pixels
前記感光性転写材料 B 101を用い、前記感光性転写材料 R101と同様の工程で、 熱処理済みのブルー(B)の画素を作製した。露光量は 50mj/cm2とした。 Using the photosensitive transfer material B101, heat-treated blue (B) pixels were produced in the same process as the photosensitive transfer material R101. The exposure dose was 50 mj / cm 2 .
該 B 101感光層膜厚は 2. Ο μ τη,及び顔料(C. I.ビグメントブルー 15: 6)の塗布 量は 0· 32g/m2であった。 The thickness of the B 101 photosensitive layer was 2.τμτη, and the coating amount of pigment (CI pigment blue 15: 6) was 0 · 32 g / m 2 .
[0253] 〔評価〕 [0253] [Evaluation]
<塗布ムラ >  <Coating unevenness>
評価のためレッド (R)の感光層のみを形成した直後の基板を、暗室で Naランプを 斜めから照射し、 目視にて観察し、ムラの発生の有無を判断した。  For evaluation, the substrate immediately after the formation of only the red (R) photosensitive layer was irradiated obliquely with a Na lamp in a dark room and visually observed to determine the occurrence of unevenness.
<表示ムラ >  <Display unevenness>
パターユングが終了した画素付きの基板(評価のためレッド(R)の感光層のみを形 成した)を、暗室で Naランプを斜めから照射し、 目視にて観察し、ムラの発生の有無 を判断した。  A substrate with pixels that have finished patterning (only the red (R) photosensitive layer was formed for evaluation) was irradiated obliquely with a Na lamp in a dark room and visually observed to check for unevenness. It was judged.
なお、これらムラの評価はムラが観察しやすいという観点からレッド (R)の例を示し た。 [0254] [表 10] In addition, the evaluation of these unevennesses has shown an example of red (R) from the viewpoint that unevenness is easy to observe. [0254] [Table 10]
Figure imgf000084_0001
Figure imgf000084_0001
表 10の結果より、実施例 1及び 2のカラーフィルタパターンは塗布ムラ及び表示ムラ が少なぐ露光感度及び解像度が高ぐ良好なカラーフィルタが製造できることが認 められた。  From the results in Table 10, it was confirmed that the color filter patterns of Examples 1 and 2 can produce good color filters with high exposure sensitivity and high resolution with less coating unevenness and display unevenness.
[0255] [液晶表示装置の作製及び評価]  [0255] [Production and Evaluation of Liquid Crystal Display]
実施例 1〜2のカラーフィルタを用いて LEDバックライトを有する反射、透過兼用の 液晶表示装置を作製した。実施例:!〜 2のカラーフィルタを用いた液晶表示装置が、 良好な表示特性を示すことを確認した。  Using the color filters of Examples 1 and 2, a reflective / transmissive liquid crystal display device having an LED backlight was produced. Example: It was confirmed that the liquid crystal display device using the color filters of 2 to 2 showed good display characteristics.
[0256] (実施例 3) [0256] (Example 3)
〔カラーフィルタパターンの形成〕(TV用、塗布法)  [Color filter pattern formation] (for TV, coating method)
(1)ブラックマトリクスの形成  (1) Formation of black matrix
実施例 1と同様にして、ブラックマトリクスを形成した。  A black matrix was formed in the same manner as in Example 1.
[0257] (2)レッド(R)画素の形成 [0257] (2) Formation of red (R) pixels
下記表 11に記載の組成よりなる感光性組成物 R2を用レ、、実施例 1と同様にして形 成した。塗布膜厚は 1. であった。  A photosensitive composition R2 having the composition described in Table 11 below was prepared in the same manner as in Example 1. The coating thickness was 1.
[表 11] [Table 11]
感光性組成物 R2 質量部 Photosensitive composition R2 parts by mass
R顔料分散物 1 (C. I. P. R. 254) 44.0  R Pigment dispersion 1 (C.I.P.R.254) 44.0
F彦頁^ ^分散物 3 (C. I. P. R. 1フフ) 5.0  F hiko page ^ ^ Dispersion 3 (C.I.P.R. 1 Huff) 5.0
プロピレングリコールモノメチルエーテルアセテート 7.6  Propylene glycol monomethyl ether acetate 7.6
メチルェチルケトン 37.0  Methyl ethyl ketone 37.0
バインダー 1 0.7  Binder 1 0.7
DPHA液 3.8  DPHA solution 3.8
B - CIM 0.88  B-CIM 0.88
N BCA 0.33  N BCA 0.33
N—フエ二ルメルカプトべンズイミダゾ一ル 0.1 1  N-Phenol mercaptobens imidazole 0.1 1
フエノチアジン 0.010  Phenothiazine 0.010
界面活性剤 1 0.06 なお、表 11に記載の組成物のうち、  Surfactant 1 0.06 Of the compositions listed in Table 11,
•R顔料分散物 3の組成は、 C. I.ビグメントレッド 177 (チバスぺシャリティケミカルズ 社製) 18部、ポリマー(ベンジルメタタリレート/メタクリル酸 = 72/28モル比のラン ダム共重合物) 12部、及びプロピレングリコールモノメチルエーテルアセテート 70部 からなる。 • The composition of R Pigment Dispersion 3 is CI Pigment Red 177 (manufactured by Ciba Specialty Chemicals) 18 parts, polymer (Random copolymer with benzyl metatalylate / methacrylic acid = 72/28 molar ratio) 12 Part, and 70 parts of propylene glycol monomethyl ether acetate.
(3)グリーン (G)画素の形成  (3) Green (G) pixel formation
下記表 12に記載の組成よりなる感光性組成物 G2を用レ、、実施例 1と同様にして形 成した。塗布膜厚は 1. 6 /i mであった。  A photosensitive composition G2 having the composition described in Table 12 below was prepared in the same manner as in Example 1. The coating thickness was 1.6 / im.
[表 12] [Table 12]
感光性組成物 G2 質量部 Photosensitive composition G2 parts by mass
G顔料分散物 1 (C. I. P. G. 36) 23.7  G pigment dispersion 1 (C.I.P.G.36) 23.7
Y顔料分散物 2 (C. I. P. Y. 1 50) 12.5  Y pigment dispersion 2 (C.I.P.Y. 1 50) 12.5
プロピレングリコールモノメチルエーテルアセテート 29.1  Propylene glycol monomethyl ether acetate 29.1
メチルェチルケトン 26.0  Methyl ethyl ketone 26.0
シクロへキサノン 1.3  Cyclohexanone 1.3
バインダー 2 2.5  Binder 2 2.5
DPHA液 3.5  DPHA solution 3.5
B - CIM 1.1 4  B-CIM 1.1 4
N BCA 0.43  N BCA 0.43
N—フエ二ルメルカプトペンズイミダゾ一ル 0.1 3  N-vinyl mercapto pen imidazole 0.1 3
フエノチアジン 0.005  Phenothiazine 0.005
界面活性剤 1 0.07 なお、表 12に記載の組成物のうち、 Y顔料分散物 2の組成は、御国色素 (株)製、 商品名: CFエロー EX3393を用いた。  Surfactant 1 0.07 Of the compositions shown in Table 12, Y Pigment Dispersion 2 was manufactured by Gokoku Color Co., Ltd., trade name: CF Yellow EX3393.
(4)ブルー(B)画素の形成 (4) Blue (B) pixel formation
下記表 13に記載の組成よりなる感光性組成物 B2を用レ、、実施例 1と同様にして形 成した。塗布膜厚は 1. であった。  A photosensitive composition B2 having the composition described in Table 13 below was prepared in the same manner as in Example 1. The coating thickness was 1.
[表 13] [Table 13]
感光性組成物 B 2 質量部 Photosensitive composition B 2 parts by mass
B賴料分散物 2 (C. I. P. B. 15:6) 8.0  B Material dispersion 2 (C.I.P.B.15: 6) 8.0
B賴料分散物 3(C. I. P. B. 15:6, C. I. P. V. 23) 14.0  B Material dispersion 3 (C.I.P.B. 15: 6, C.I.P.V.23) 14.0
プロピレングリコールモノメチルエーテルアセテート 28.0  Propylene glycol monomethyl ether acetate 28.0
メチルェチルケトン 26.0  Methyl ethyl ketone 26.0
バインダー 3 17.3  Binder 3 17.3
DPHA液 4.0  DPHA solution 4.0
B-CIM 1.0  B-CIM 1.0
NBCA 0.38  NBCA 0.38
N—フエ二ルメルカプトべンズイミダゾール 0.12  N-phenylmercaptobensimidazole 0.12
フエノチアジン 0.02  Phenothiazine 0.02
界面活性剤 1 0.06 なお、表 13に記載の組成物のうち、  Surfactant 1 0.06 Of the compositions listed in Table 13,
•B顔料分散物 2は、御国色素 (株)製、商品名: CFブルー EX3357を用いた。 • B Pigment Dispersion 2 manufactured by Mikuni Color Co., Ltd., trade name: CF Blue EX3357 was used.
•B顔料分散物 3は、御国色素 (株)製、商品名: CFブルー EX3383を用いた。• B Pigment Dispersion 3 manufactured by Mikuni Color Co., Ltd., trade name: CF Blue EX3383 was used.
'バインダー 3の組成は、 (ベンジルメタタリレート/メタクリル酸/メチルメタタリレート'The composition of Binder 3 is (benzyl methacrylate / methacrylic acid / methyl methacrylate)
= 36/22/42モル比のランダム共重合物、分子量 3.8万) 27質量0 /0、プロピレン グリコールモノメチルエーテルアセテート 73質量%からなる。 = Random copolymer of 36/22/42 molar ratio, molecular weight 38,000) 27 wt 0/0, consisting 73% by weight of propylene glycol monomethyl ether acetate.
[0260] (実施例 4) [0260] (Example 4)
〔カラーフィルタパターンの形成〕(TV用、フィルム法)  [Color filter pattern formation] (for TV, film method)
(1)ブラックマトリクスの形成  (1) Formation of black matrix
実施例 2と同様にして、ブラックマトリクスを形成した。ただし、形成順序はブラック( ブラックマトリクス)を最初とし、ブラックマトリクスと周辺額縁部分を形成した。  A black matrix was formed in the same manner as in Example 2. However, the formation order was black (black matrix) first, and the black matrix and the peripheral frame portion were formed.
[0261] (2)レッド(R)画素の形成 [0261] (2) Formation of red (R) pixels
下記表 14に記載の組成よりなる感光性組成物 R102を用レ、、実施例 2と同様にして 形成した。塗布膜厚は 2. O zmであった。  A photosensitive composition R102 having the composition described in Table 14 below was prepared in the same manner as in Example 2. The coating thickness was 2. O zm.
[表 14] 感光性樹脂組成物 R1 02 質量部 [Table 14] Photosensitive resin composition R1 02 parts by mass
R賴料分散物 1 ( C. I. P. R. 254) 44.0  R Material dispersion 1 (C.I.P.R.254) 44.0
R賴料分散物 2 ( C. I. P. F . 1フ 5.0  R Material dispersion 2 (C.I.P.F.
プロピレングリコールモノメチルエーテルアセテート 7.6  Propylene glycol monomethyl ether acetate 7.6
メチルェチルケトン 37.0  Methyl ethyl ketone 37.0
バインダー 1 0.8  Binder 1 0.8
DPHA液 4.4  DPHA solution 4.4
B - CIM 0.94  B-CIM 0.94
N BCA 0.35  N BCA 0.35
N—フエ二ルメルカプトべンズイミダゾ一ル 0.1 1  N-Phenol mercaptobens imidazole 0.1 1
フエノチアジン 0.010  Phenothiazine 0.010
燐酸エステル系特殊活性剤 1 0.520  Phosphate ester special activator 1 0.520
界面活性剤 1 0.06 なお、表 14に記載の組成物のうち、燐酸エステル系特殊活性剤 1は、楠本化成 (株 )製、商品名: HIPLAAD ED152を用いた。  Surfactant 1 0.06 Of the compositions shown in Table 14, the phosphate ester-based special activator 1 was manufactured by Enomoto Kasei Co., Ltd. and trade name: HIPLAAD ED152.
(3)グリーン (G)画素の形成 (3) Green (G) pixel formation
下記表 15に記載の組成よりなる感光性組成物 G102を用レ、、実施例 2と同様にし て形成した。塗布膜厚は 2. 0 /i mであった。  A photosensitive composition G102 having the composition described in Table 15 below was prepared in the same manner as in Example 2. The coating film thickness was 2.0 / im.
[表 15] [Table 15]
感光性樹脂組成物 G 102 質量部 Photosensitive resin composition G 102 parts by mass
G顔料分散物 1 (C. I. P. G. 36) 23.7  G pigment dispersion 1 (C.I.P.G.36) 23.7
Y顔料分散物 2 (C. I. P. Y. 150) 12.5  Y pigment dispersion 2 (C.I.P.Y.150) 12.5
プロピレングリコールモノメチルエーテルアセテート 29.1  Propylene glycol monomethyl ether acetate 29.1
メチルェチルケトン 26.0  Methyl ethyl ketone 26.0
シクロへキサノン 1.3  Cyclohexanone 1.3
バインダー 2 3.0  Binder 2 3.0
DPHA液 4.3  DPHA solution 4.3
B-CIM 1.21  B-CIM 1.21
NBCA 0.45  NBCA 0.45
N—フエ二ルメルカプトペンズイミダゾ一ル 0.14  N—Phenolmercaptopenzimidazole 0.14
フエノチアジン 0.005  Phenothiazine 0.005
界面活性剤 1 0.07  Surfactant 1 0.07
(4)ブルー(B)画素の形成 (4) Blue (B) pixel formation
下記表 16に記載の組成よりなる感光性組成物 B102を用い、実施例 2と同様にして 形成した。塗布膜厚は 1. であった。  It was formed in the same manner as in Example 2 using the photosensitive composition B102 having the composition described in Table 16 below. The coating thickness was 1.
[表 16] 感光性組成物 B 102 質量部 [Table 16] Photosensitive composition B 102 parts by mass
B顔料分散物 2 (C. I. P. B. 15:6) 8.0  B Pigment dispersion 2 (C.I.P.B.15: 6) 8.0
B顔料分散物 3(C. I. P. B. 15:6, C. I. P. V. 23) 14.0  B pigment dispersion 3 (C.I.P.B. 15: 6, C.I.P.V.23) 14.0
プロピレングリコールモノメチルエーテルアセテート 28.0  Propylene glycol monomethyl ether acetate 28.0
メチルェチルケトン 26.0  Methyl ethyl ketone 26.0
バインダ一3 18.5  Binder 1 3 18.5
DPHA液 4.3  DPHA solution 4.3
B-CIM 1.1  B-CIM 1.1
NBCA 0.41  NBCA 0.41
N—フエ二ルメルカプトべンズイミダゾール 0.12  N-phenylmercaptobensimidazole 0.12
フエノチアジン 0.02  Phenothiazine 0.02
界面活性剤 1 0.06 [0264] 実施例 3及び 4について、実施例 1及び 2と同様にして、露光感度、解像度、及びム ラを評価した。結果を表 17に示す。 Surfactant 1 0.06 For Examples 3 and 4, the exposure sensitivity, resolution, and unevenness were evaluated in the same manner as in Examples 1 and 2. The results are shown in Table 17.
[0265] [表 17] [0265] [Table 17]
Figure imgf000090_0001
Figure imgf000090_0001
表 17の結果より、実施例 3及び 4のカラーフィルタパターンは塗布ムラ及び表示ムラ が少なぐ露光感度及び解像度が高ぐ良好なカラーフィルタが製造できることが認 められた。  From the results in Table 17, it was confirmed that the color filter patterns of Examples 3 and 4 can produce good color filters with high exposure sensitivity and high resolution with less coating unevenness and display unevenness.
[0266] <エツジラフネス評価 >  [0266] <Egypt roughness evaluation>
実施例 3においてストライプ状に形成されたブラックマトリクスのうち、ライン幅 20 μ mのラインの任意の 5箇所について、レーザ顕微鏡 (VK— 9500、キーエンス(株)製 ;対物レンズ 50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所( 山頂部)と、最もくびれた箇所 (谷底部)との差を絶対値として求め、観察した 5箇所の 平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良 好な性能を示すため好ましい。結果を表 18に示す。  Using the laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 times), arbitrary five points of the line having a line width of 20 μm among the black matrix formed in the stripe shape in Example 3 are used. Observe and find the absolute value of the difference between the most swollen point (top) and the narrowest point (valley) at the edge position in the field of view, and calculate the average value of the five points observed. Is edge roughness. The edge roughness is preferably as the value is small because it exhibits good performance. The results are shown in Table 18.
[0267] (比較例 1)  [0267] (Comparative Example 1)
実施例 1の露光装置において、前記式 3に基づき N= lとして設定傾斜角度 Θを算 出し、前記式 4に基づき ttan Θ ' = 1の関係を満たす値 tに最も近い自然数 Tを導出し 、 N重露光(N= l)を行ったこと以外は、実施例 3と同様にしてストライプ状のブラック マトリクスを形成し、上記の方法によりエッジラフネスを評価した。結果を表 18に示す  In the exposure apparatus of Example 1, the set inclination angle Θ is calculated as N = l based on the equation 3, and the natural number T closest to the value t satisfying the relationship of ttan Θ ′ = 1 is derived based on the equation 4. A striped black matrix was formed in the same manner as in Example 3 except that N double exposure (N = 1) was performed, and the edge roughness was evaluated by the above method. The results are shown in Table 18.
[0268] なお、比較例 1における被露光面の露光の状態の例を、図 23に示した。図 23にお いては、ステージ 14を静止させた状態で感光材料 12の被露光面上に投影される、 一の露光ヘッド(例えば、 30 )が有する DMD36の使用可能なマイクロミラー 58から [0268] Fig. 23 shows an example of the state of exposure of the exposed surface in Comparative Example 1. In FIG. 23, from the usable micromirror 58 of the DMD 36 having one exposure head (for example, 30) projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary.
12  12
の光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群の パターンが現れている状態でステージ 14を移動させて連続露光を行った際に、被露 光面上に形成される露光パターンの状態を、一の露光エリア (例えば、 32 )につい The pattern of light spots was shown. In addition, when continuous exposure is performed by moving the stage 14 with the light spot cloud pattern as shown in the upper part appearing in the lower part, the exposure The state of the exposure pattern formed on the optical surface is assigned to one exposure area (for example, 32).
12 て示した。  12 shown.
前記一の露光ヘッド(例えば、 30 )の理想的な状態からのずれの結果として、被  As a result of the deviation of the one exposure head (eg 30) from the ideal state,
12  12
露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素 列の傾斜角度が均一ではなくなる「角度歪み」が生じている。図 23の例に現れている 角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど大きぐ図の右方の 列ほど小さくなつている形態の歪みである。この角度歪みの結果として、図の左方に 示した被露光面上に露光過多となる領域が生じ、図の右方に示した被露光面上に露 光不足となる領域が生じる。 This is an example of pattern distortion appearing on the exposure surface, and “angular distortion” occurs in which the inclination angle of each pixel column projected on the exposure surface is not uniform. The angular distortion appearing in the example of FIG. 23 is a distortion in which the tilt angle with respect to the scanning direction is larger in the left column of the figure and smaller in the right column of the figure. As a result of this angular distortion, an overexposed region appears on the exposed surface shown on the left side of the figure, and an underexposed region appears on the exposed surface shown on the right side of the figure.
[表 18]
Figure imgf000091_0001
[Table 18]
Figure imgf000091_0001
表 18の結果より、比較例 1と比べ、実施例 3のブラックマトリクスは、 2重露光におけ る解像度のばらつきと露光むらが補正されているため、エッジラフネスが小さぐ高精 細なブラックマトリクスパターンを形成できることがわかった。  From the results in Table 18, compared to Comparative Example 1, the black matrix of Example 3 is a highly precise black matrix with small edge roughness due to correction of dispersion in resolution and uneven exposure in double exposure. It was found that a pattern could be formed.
産業上の利用可能性 Industrial applicability
本発明のカラーフィルタの製造方法により製造されるカラーフィルタは、透過モード 及び反射モードのいずれにおいても良好な表示特性を備え、携帯端末、携帯ゲーム 機等の液晶表示装置 (LCD)用に好適であり、また、ノートパソコン、テレビモニター 等の液晶表示装置 (LCD)用、 PALC (プラズマアドレス液晶)、プラズマディスプレイ 用としても好適に用いられる。また、ここに実例として挙げたカラーフィルタの他に、特 開平 11— 248921号公報、特許第 3255107号公報などに記載の、少なくとも RGB のいずれかの色を重ねてスぺーサーを形成することもできる。  The color filter manufactured by the method for manufacturing a color filter of the present invention has good display characteristics in both the transmission mode and the reflection mode, and is suitable for liquid crystal display devices (LCD) such as portable terminals and portable game machines. In addition, it is also suitably used for liquid crystal display devices (LCD) such as notebook computers and TV monitors, PALC (plasma address liquid crystal), and plasma displays. Further, in addition to the color filter exemplified here, it is also possible to form a spacer by overlapping at least one of the RGB colors described in Japanese Patent Publication No. 11-248921 and Japanese Patent No. 3255107. it can.

Claims

請求の範囲 The scope of the claims
[1] バインダー、重合性化合物、着色剤、及び光重合開始剤を含む感光性組成物を用 いて、基材の表面に、少なくとも感光層を形成する感光層形成工程と、  [1] A photosensitive layer forming step of forming at least a photosensitive layer on the surface of a substrate using a photosensitive composition containing a binder, a polymerizable compound, a colorant, and a photopolymerization initiator;
該感光層に対し、  For the photosensitive layer,
光照射手段、及び前記光照射手段からの光を受光し出射する n個(ただし、 nは 2 以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記 描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査 方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置され た露光ヘッドを用い、  A light irradiating means, and n (where n is a natural number of 2 or more) picture element portions arranged to receive and emit light from the light irradiating means, and according to pattern information An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to a scanning direction of the exposure head. Using the head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光(ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う 露光工程と、  With respect to the exposure head, by using a usable pixel part designating unit, among the usable pixel parts, the pixel part to be used for N double exposure (where N is a natural number of 2 or more) is designated, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and An exposure step of performing exposure by relatively moving the exposure head in the scanning direction; and
前記露光工程により露光された前記感光層を現像する現像工程と、を含むことを特 徴とするカラーフィルタの製造方法。  And a development step of developing the photosensitive layer exposed in the exposure step.
[2] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露 光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現する ために使用する前記描素部を指定する請求項 1に記載のカラーフィルタの製造方法 [2] The exposure is performed by a plurality of exposure heads, and the used pixel part specifying means is involved in the exposure of the head-to-head connection region, which is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads. 2. The method for producing a color filter according to claim 1, wherein among the picture element parts, the picture element part used for realizing N double exposure in the connection region between the heads is designated.
[3] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外 の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域における N重 露光を実現するために使用する前記描素部を指定する請求項 2に記載のカラーフィ ルタの製造方法。 [3] The exposure is performed by a plurality of exposure heads, and the used picture element designation means is involved in exposure other than the inter-head connection region that is an overlapping exposure region on the exposed surface formed by the plurality of exposure heads. 3. The method for producing a color filter according to claim 2, wherein, in the picture element part, the picture element part to be used for realizing N double exposure in an area other than the inter-head connecting area is designated.
[4] 使用描素部指定手段が、 描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、 [4] Use pixel part designation means A light spot position detecting means for detecting a light spot position on a surface to be exposed as a pixel unit generated by the pixel part and constituting an exposure area on the surface to be exposed;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と  Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure;
を備える請求項 1から 3のいずれかに記載のカラーフィルタの製造方法。  A method for producing a color filter according to any one of claims 1 to 3.
[5] 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに 描素部選択手段として前記光検出器と接続された演算装置を有する請求項 1から 4 のレ、ずれかに記載のカラーフィルタの製造方法。 [5] The used pixel part specifying means includes a slit and a photodetector as the light spot position detecting means, and an arithmetic unit connected to the photodetector as the pixel part selecting means. The manufacturing method of the color filter as described in any one.
[6] N重露光の Nが、 3以上 7以下の自然数である請求項 1から 5のいずれかに記載の カラーフィルタの製造方法。 6. The method for producing a color filter according to any one of claims 1 to 5, wherein N in N double exposure is a natural number of 3 or more and 7 or less.
[7] 光変調手段が、空間光変調素子である請求項 1から 6のいずれかに記載のカラー フィルタの製造方法。 7. The method for producing a color filter according to claim 1, wherein the light modulation means is a spatial light modulation element.
[8] 空間光変調素子が、デジタル 'マイクロミラー ·デバイス(DMD)である請求項 7に記 載のカラーフィルタの製造方法。  [8] The method for producing a color filter according to [7], wherein the spatial light modulator is a digital micromirror device (DMD).
[9] 設定傾斜角度 Θ 1 N重露光数の N、描素部の列方向の個数 s、前記描素部の列 方向の間隔 P、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向 と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin θ ≥Ν δ  [9] Set tilt angle Θ 1 N N of multiple exposure numbers, number s of pixel portions in the row direction, interval P in the row direction of the pixel portions, and scanning of the exposure head in a state where the exposure head is tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the direction, the following equation is given: spsin θ ≥Ν δ
ideal を満たす Θ に対し、 θ≥ Θ の関係を満たすように設定される請求項 1から 8のい ideal ideal  Claims 1 to 8 are set to satisfy the relationship θ≥ Θ for Θ satisfying ideal
ずれかに記載のカラーフィルタの製造方法。  The manufacturing method of the color filter as described in any one.
[10] 光照射手段が、 2以上の光を合成して照射可能である請求項 1から 9のいずれかに 記載のカラーフィルタの製造方法。 [10] The method for producing a color filter according to any one of [1] to [9], wherein the light irradiation means can synthesize and irradiate two or more lights.
[11] 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザから それぞれ照射されたレーザビームを集光して前記マルチモード光ファイバの入射端 面に収束させる集合光学系とを有する請求項 1から 10のいずれかに記載のカラーフ ィルタの製造方法。 [11] The light irradiation means collects a plurality of lasers, a multimode optical fiber, and a laser beam emitted from each of the plurality of lasers, and converges them on the incident end face of the multimode optical fiber. The method for producing a color filter according to claim 1, wherein:
[12] 感光層が、感光性組成物を基材の表面に塗布し、乾燥することにより形成される請 求項 1から 11のいずれかに記載のカラーフィルタの製造方法。  [12] The method for producing a color filter according to any one of claims 1 to 11, wherein the photosensitive layer is formed by applying a photosensitive composition to a surface of a substrate and drying.
[13] 感光層が、支持体上に感光性組成物からなる感光性転写層を有する感光性転写 材料を用いて、該感光性転写層と基材とが当接するように該基材上に積層し、次い で、支持体を剥離することにより形成される請求項 1から 11のいずれかに記載のカラ 一フィルタの製造方法。 [13] Photosensitive transfer wherein the photosensitive layer has a photosensitive transfer layer made of a photosensitive composition on a support. The material according to any one of claims 1 to 11, wherein the photosensitive transfer layer and the base material are laminated on the base material so that they are in contact with each other, and then the support is peeled off. The manufacturing method of the color filter of description.
[14] 感光性組成物が、少なくとも、黒色 (K)に着色されている請求項 1から 13のいずれ 力、に記載のカラーフィルタの製造方法。  [14] The method for producing a color filter according to any one of [1] to [13], wherein the photosensitive composition is colored at least black (K).
[15] 少なくとも、赤色 (R)、緑色(G)、及び青色(B)の 3原色に着色された感光性組成 物を用いて、基材の表面に所定の配置で、 R、 G及び Bの各色毎に、順次、感光層形 成工程、露光工程、及び現像工程を繰り返してカラーフィルタを形成する請求項 1か ら 14のレ、ずれかに記載のカラーフィルタの製造方法。  [15] Using a photosensitive composition colored in at least three primary colors of red (R), green (G), and blue (B), R, G, and B in a predetermined arrangement on the surface of the substrate 15. The method for producing a color filter according to claim 1, wherein the color filter is formed by repeating the photosensitive layer forming step, the exposure step, and the development step sequentially for each of the colors.
[16] 赤色 (R)着色に少なくとも顔料 C. I.ビグメントレッド 254を、緑色(G)着色に顔料 C . I.ピグメントグリーン 36及び顔料 C. I.ピグメントイエロー 139の少なくともいずれか の顔料を、並びに、青色(B)着色に少なくとも顔料 C. I.ビグメントブルー 15 : 6を用 レ、る請求項 15に記載のカラーフィルタの製造方法。  [16] Red (R) coloring at least Pigment CI Pigment Red 254, Green (G) coloring at least Pigment CI Pigment Green 36 and Pigment CI Pigment Yellow 139, and Blue ( 16. The method for producing a color filter according to claim 15, wherein at least a pigment CI pigment blue 15: 6 is used for coloring.
[17] 赤色(R)着色に顔料 C. I.ビグメントレッド 254及び顔料 C. I.ビグメントレッド 177 の少なくともいずれかの顔料を、緑色(G)着色に顔料 C. I.ビグメントグリーン 36及び 顔料 C. I.ビグメントイエロー 150の少なくともいずれかの顔料を、並びに、青色(B) 着色に顔料 C. I.ビグメントブルー 15 : 6及び顔料 C. I.ビグメントバイオレット 23の少 なくともいずれかの顔料を用いる請求項 15に記載のカラーフィルタの製造方法。  [17] Pigment CI Pigment Red 254 and Pigment CI Pigment Red 177 for red (R) coloring, Pigment CI Pigment Green 36 and Pigment CI Pigment Yellow 150 for Green (G) coloring 16. The production of a color filter according to claim 15, wherein at least one of the pigments and at least one of pigment CI pigment blue 15: 6 and pigment CI pigment violet 23 are used for coloring in blue (B). Method.
[18] 請求項 1から 17のいずれかに記載のカラーフィルタの製造方法により製造されたこ とを特徴とするカラーフィルタ。  [18] A color filter produced by the method for producing a color filter according to any one of claims 1 to 17.
[19] 請求項 18に記載のカラーフィルタを用いたことを特徴とする表示装置。  [19] A display device comprising the color filter according to [18].
PCT/JP2006/312138 2005-06-22 2006-06-16 Production method of color filter, and color filter and display unit WO2006137343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-182677 2005-06-22
JP2005182677A JP2008233112A (en) 2005-06-22 2005-06-22 Production method of color filter, and color filter and display unit

Publications (1)

Publication Number Publication Date
WO2006137343A1 true WO2006137343A1 (en) 2006-12-28

Family

ID=37570373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312138 WO2006137343A1 (en) 2005-06-22 2006-06-16 Production method of color filter, and color filter and display unit

Country Status (3)

Country Link
JP (1) JP2008233112A (en)
TW (1) TW200706394A (en)
WO (1) WO2006137343A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064749A (en) * 2009-09-15 2011-03-31 Dnp Fine Chemicals Co Ltd Photosensitive colored composition
KR20120021488A (en) * 2010-08-03 2012-03-09 주식회사 동진쎄미켐 Negative photosensitive resin composition
JP5611016B2 (en) * 2010-12-07 2014-10-22 株式会社日立ハイテクノロジーズ Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP5842925B2 (en) * 2011-11-04 2016-01-13 株式会社ニコン Substrate processing apparatus and substrate processing method
KR102259562B1 (en) * 2014-03-31 2021-06-03 엘지디스플레이 주식회사 The exposure mask for liquid crystal display device and exposure method of liquid crystal display device using thereof
TWI529055B (en) 2014-10-27 2016-04-11 財團法人工業技術研究院 Additive manufacturing system and additive manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004157219A (en) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd Exposure head and exposure apparatus
JP2004347831A (en) * 2003-05-22 2004-12-09 Fuji Photo Film Co Ltd Color filter
JP2005003762A (en) * 2003-06-10 2005-01-06 Fuji Photo Film Co Ltd Method for identifying pixel location, method for correcting image deviation, and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004157219A (en) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd Exposure head and exposure apparatus
JP2004347831A (en) * 2003-05-22 2004-12-09 Fuji Photo Film Co Ltd Color filter
JP2005003762A (en) * 2003-06-10 2005-01-06 Fuji Photo Film Co Ltd Method for identifying pixel location, method for correcting image deviation, and image forming apparatus

Also Published As

Publication number Publication date
JP2008233112A (en) 2008-10-02
TW200706394A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
WO2007015393A1 (en) Method for manufacturing color filter, color filter and liquid crystal display
WO2006137343A1 (en) Production method of color filter, and color filter and display unit
WO2007000885A1 (en) Permanent patterning method
JP2007093785A (en) Method for manufacturing display apparatus member, display apparatus member, and display apparatus
JP2010009913A (en) Photopolymerizable resin laminate, and method of manufacturing pattern using the same
JP2007024969A (en) Method for manufacturing structure in cell, structure in cell, and display device
JP2008175877A (en) Photo-spacer for liquid crystal display and method of manufacturing spacer, and liquid crystal display device
JP2007101607A (en) Display apparatus member, method for manufacturing same, and display apparatus
JP2008009404A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007041082A (en) Photosensitive resin composition for liquid crystal display element, color filter using same and method for producing same, and lcd display device
JP2007025597A (en) Method for manufacturing color filter, color filter, and display apparatus
JP2007071957A (en) Color filter, pattern forming method and liquid crystal display device
JP2007025003A (en) Method for manufacturing color filter, color filter, and display apparatus
JP4916141B2 (en) Color filter forming material, color filter manufacturing method, color filter, and liquid crystal display device
JP2007041281A (en) Black image and method for producing the same, and substrate with light shielding film and liquid crystal display device
JP4884917B2 (en) Color filter manufacturing method, color filter, and liquid crystal display device
JP2006018221A (en) Method for manufacturing color filter, the color filter and liquid crystal display
JP2007057717A (en) Manufacturing method of color filter, color filter and display apparatus
WO2006137241A1 (en) Patterning method
WO2007032246A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation
KR20070017039A (en) Photosensitive composition, color filter and manufacturing method thereof, liquid crystal display device
JP2007041282A (en) Photosensitive composition, color filter and its manufacturing method, and liquid crystal display
JP2007025006A (en) Method for manufacturing color filter, color filter, and display apparatus
JP4897270B2 (en) Photosensitive resin composition, color filter, method for producing the same, and liquid crystal display device
JP2006023715A (en) Color filter manufacturing method, color filter and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP