JP2007041282A - Photosensitive composition, color filter and its manufacturing method, and liquid crystal display - Google Patents

Photosensitive composition, color filter and its manufacturing method, and liquid crystal display Download PDF

Info

Publication number
JP2007041282A
JP2007041282A JP2005225311A JP2005225311A JP2007041282A JP 2007041282 A JP2007041282 A JP 2007041282A JP 2005225311 A JP2005225311 A JP 2005225311A JP 2005225311 A JP2005225311 A JP 2005225311A JP 2007041282 A JP2007041282 A JP 2007041282A
Authority
JP
Japan
Prior art keywords
exposure
pigment
light
photosensitive
photosensitive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225311A
Other languages
Japanese (ja)
Inventor
Shinichi Yoshinari
伸一 吉成
Mitsuru Sawano
充 沢野
Morimasa Sato
守正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005225311A priority Critical patent/JP2007041282A/en
Publication of JP2007041282A publication Critical patent/JP2007041282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosensitive composition that is very small in spectral sensitivity changes against the wavelength fluctuations as the problem in laser exposing, with less uneven recording and line width variations and can form high resolution images without using a photomask, and provide a color filter and a manufacturing method of the color filter. <P>SOLUTION: This is a photosensitive composition containing a photopolymerization initiator, a photopolymerizing compound having an ethylenic reactive group, and a non-photocuring component not contributing to photosetting by light irradiation. The photosensitive layer consisting of the above photosensitive composition has a change in -8-+8% when the exposing laser wavelength deviates ±10nm from the center. It is used in the exposure relatively scanning the photosensitive layer consisting of the above photosensitive composition based on the image data by modulating the light in the exposing device using two or more laser heads. The manufacturing method of a color filter uses this photosensitive composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適な感光性組成物、並びにカラーフィルタ及び該カラーフィルタの製造方法、液晶表示装置に関する。   The present invention relates to a photosensitive composition suitable for a liquid crystal display device (LCD) such as a portable terminal, a portable game machine, a notebook computer, and a television monitor, PALC (plasma address liquid crystal), a plasma display, etc., a color filter, and the color filter The present invention relates to a filter manufacturing method and a liquid crystal display device.

カラーフィルタは、液晶ディスプレイ(以下、「LCD」、「液晶表示装置」と称することもある)に不可欠な構成部品である。この液晶ディスプレイは非常にコンパクトであり、性能面でもこれまでのCRTディスプレイと同等以上であるため、CRTディスプレイから置き換わりつつある。
液晶ディスプレイのカラー画像は、カラーフィルタを通過した光がそのままカラーフィルタを構成する各画素の色に着色されて、それらの色の光を合成して形成される。そして、通常、R、G、及びBの三色の画素でカラー画像を形成している。
The color filter is an indispensable component for a liquid crystal display (hereinafter also referred to as “LCD” or “liquid crystal display device”). Since this liquid crystal display is very compact and is equivalent to or better than conventional CRT displays in terms of performance, it is replacing the CRT displays.
The color image of the liquid crystal display is formed by combining the light of the colors that pass through the color filter as they are and are combined with the colors of the pixels constituting the color filter. In general, a color image is formed with pixels of three colors of R, G, and B.

近年では、液晶ディスプレイ(LCD)の大画面化及び高精細化の技術開発が進み、その用途はノートパソコン用ディスプレイからデスクトップパソコン用モニター、更にはテレビモニター(以下、「TV」と称することもある)まで拡大されてきている。このような背景の下で、LCDにはコストダウンと表示特性の向上とが強く要求されるようになってきている。
このコストダウンの方向としては、単に材料のコストダウンにとどまらず、工程の簡素化が進行中であり、特に、露光のためのフォトマスクをなくすことが検討されている。
一方、表示特性向上の方向としては、1インチあたりの画素数を増やしていく高精細化などが検討されている。
特に、R、G、及びBの三色の各画素間を規定するように形成されるブラックマトリクスは、みかけの画素幅を規定しているため、該ブラックマトリクスの線幅のばらつきは、その周期性によって、モアレや、周期ムラなどの表示ムラとなりやすい。このため、ブラックマトリクスを形成するブラック画像の微細パターンを高精細に形成可能な方法が求められている。また、R、G、及びBの三色の画素の高品位化も重要であり、表示ムラのないカラーフィルタが求められている。
In recent years, the development of technology for increasing the screen size and definition of liquid crystal displays (LCDs) has progressed, and the applications are from laptop computer displays to desktop personal computer monitors, and even television monitors (hereinafter sometimes referred to as “TV”). ). Against this background, LCDs are strongly required to reduce costs and improve display characteristics.
As the direction of cost reduction, not only the cost reduction of materials but also the simplification of the process is underway. In particular, the elimination of a photomask for exposure is being studied.
On the other hand, as a direction for improving display characteristics, high definition and the like in which the number of pixels per inch is increased are being studied.
In particular, since the black matrix formed so as to define the pixels of the three colors R, G, and B defines the apparent pixel width, the variation in the line width of the black matrix is the period. Depending on the nature, it tends to cause display unevenness such as moire and periodic unevenness. Therefore, there is a need for a method that can form a fine pattern of a black image forming a black matrix with high definition. In addition, it is important to improve the quality of R, G, and B pixels, and a color filter without display unevenness is demanded.

このようなカラーフィルタの形成方法としては、一般に、感光性組成物を露光し、現像することにより微細パターンを形成する、フォトリソグラフィー法が知られている。
前記フォトリソグラフィー法を行う露光装置として、フォトマスクを用いることなく、半導体レーザ、ガスレーザ等のレーザ光を、画素パターン等のデジタルデータに基づいて、感光性組成物上に直接スキャンして、パターニングを行うレーザダイレクトイメージングシステム(以下、「LDI」と称することがある)による露光装置が研究されている(例えば、非特許文献1参照)。
As a method for forming such a color filter, a photolithography method is generally known in which a fine pattern is formed by exposing and developing a photosensitive composition.
As an exposure apparatus for performing the photolithography method, patterning is performed by directly scanning laser light such as a semiconductor laser or a gas laser on the photosensitive composition based on digital data such as a pixel pattern without using a photomask. An exposure apparatus using a laser direct imaging system (hereinafter sometimes referred to as “LDI”) to be performed has been studied (for example, see Non-Patent Document 1).

しかしながら、従来のアナログ露光方式(光源が一つ、かつ、光源ランプの個体差が少ない)と比べて前記LDIによる露光装置を用いた露光は、レーザーヘッドごとに光源が異なり、かつ光源の個体差が大きいなどの理由から、レーザーヘッド間差による波長バラツキの影響を受けやすく、記録ムラが生じてカラーフィルタの品質を落としてしまうという問題がある。特に、カラーフィルタの作製では、感光性組成物中に非光硬化性成分としての有機顔料が含まれているため、光硬化が進みづらく、その傾向がより顕著であることが知られている。
更に、レーザーヘッド内のビームのバラツキの影響を軽減する目的で、N重露光(ただし、Nは2以上の整数を表す)を行うと、レーザーヘッド内の露光が均一化するため、上記レーザーヘッド間差による波長ばらつきの影響がより目立ってしまう。
However, compared with the conventional analog exposure method (one light source and less individual difference of the light source lamp), the exposure using the LDI exposure apparatus has different light sources for each laser head and individual differences of the light sources. For example, there is a problem in that it is easily affected by wavelength variation due to the difference between laser heads, resulting in recording unevenness and degrading the quality of the color filter. In particular, in the production of a color filter, since an organic pigment as a non-photocurable component is contained in the photosensitive composition, it is known that photocuring is difficult to proceed and the tendency is more remarkable.
Furthermore, for the purpose of reducing the influence of beam variations in the laser head, the exposure in the laser head becomes uniform when N double exposure (where N represents an integer of 2 or more) is performed. The effect of wavelength variation due to the difference between the two becomes more conspicuous.

したがってフォトマスクを用いることなく、レーザー露光時の問題点であるレーザー露光波長のふれに対して分光感度の変化が極めて少なく、記録ムラがなく、線幅ばらつきが小さく、高精細に形成可能な感光性組成物、並びにカラーフィルタの製造方法、及び該カラーフィルタの製造方法により製造される表示特性に優れたカラーフィルタは、未だ提供されておらず、更なる改良開発が望まれているのが現状である。   Therefore, without using a photomask, there is very little change in spectral sensitivity with respect to fluctuations in the laser exposure wavelength, which is a problem in laser exposure, there is no recording unevenness, line width variation is small, and photosensitivity that can be formed with high definition. Composition, color filter manufacturing method, and color filter excellent in display characteristics manufactured by the color filter manufacturing method have not yet been provided, and further improvement and development are desired. It is.

石川明人"マスクレス露光による開発短縮と量産適用化"、「エレクロトニクス実装技術」、株式会社技術調査会、Vol.18、No.6、2002年、p.74-79Akihito Ishikawa "Development shortening and mass production application by maskless exposure", "Electrotronics packaging technology", Technical Research Committee, Vol.18, No.6, 2002, p.74-79

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、フォトマスクを用いることなく、レーザー露光時の問題点であるレーザー露光波長のふれに対して分光感度の変化が極めて少なく、記録ムラがなく、線幅ばらつきが小さく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられる感光性組成物、並びにカラーフィルタ及び該カラーフィルタの製造方法、液晶表示装置を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention does not use a photomask, and there is very little change in spectral sensitivity with respect to fluctuations in the laser exposure wavelength, which is a problem during laser exposure, no recording unevenness, small line width variation, and high definition. The photosensitive composition is suitable for use in liquid crystal display devices (LCD) such as portable terminals and portable game machines, PALC (plasma addressed liquid crystal), and plasma displays. And a color filter, a method of manufacturing the color filter, and a liquid crystal display device.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、感光性組成物の分光感度を露光波長に対しフラットにすることによって、記録ムラの発生を抑え、個体差の大きな低品質のレーザーヘッドにも使用が可能となり、装置コストを下げることができ、更に、記録されたカラーフィルタパターンの形状もエッジのシャープさがより好ましいものとなることを知見した。   As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, by making the spectral sensitivity of the photosensitive composition flat with respect to the exposure wavelength, the occurrence of recording unevenness is suppressed, and low quality with large individual differences is obtained. It has been found that it can be used for a laser head, the cost of the apparatus can be reduced, and the shape of the recorded color filter pattern has a more preferable edge sharpness.

本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するための手段は以下の通りである。即ち、
<1> 少なくとも光重合開始剤と、エチレン性反応性基を有する光重合性化合物と、光照射による硬化反応に寄与しない非光硬化性成分と、を含有する感光性組成物であって、
前記感光性組成物からなる感光層は、レーザー露光波長が中心値から±10nm変化したときの分光感度の変化率が−8%〜+8%の範囲であり、
前記感光性組成物からなる感光層に対し、画像データに基づいて、2つ以上のレーザーヘッドを有する露光装置により光を変調しながら相対走査する露光に用いられることを特徴とする感光性組成物である。
<2> 露光が、多重露光方式である前記<1>に記載の感光性組成物である。
<3> 光重合開始剤が、ロフィンダイマー化合物の少なくとも1種を含有する前記<1>から<2>のいずれかに記載の感光性組成物である。
<4> 更に増感剤を含有し、該増感剤がアクリドン化合物である前記<1>から<3>のいずれかに記載の感光性組成物である。
<5> 非光硬化性成分が、架橋性基を有さない高分子化合物、着色剤、及び無機充填剤のいずれかである前記<1>から<4>のいずれかに記載の感光性組成物である。
<6> 非光硬化性成分の感光性組成物中の全固形成分に対する含有量が、50〜90質量%である前記<1>から<5>のいずれかに記載の感光性組成物である。
<7> 2つ以上のレーザーヘッドが二次元状に配列されている前記<1>から<6>のいずれかに記載の感光性組成物である。
<8> 露光装置が、二次元状に並んだ空間光変調素子を有する前記<1>から<7>のいずれかに記載の感光性組成物である。
<9> レーザー露光波長の中心値が350〜450nmである前記<1>から<8>のいずれかに記載の感光性組成物である。
<10> 基材と、該基材上に前記<1>から<9>のいずれかに記載の感光性組成物を塗布し、乾燥させてなる感光層とを有することを特徴とする感光性フィルムである。
<11> 前記<1>から<9>のいずれかに記載の感光性組成物を、基材の表面に塗布し、乾燥して感光層を形成した後、該感光層を露光し、現像することを特徴とするカラーフィルタの製造方法である。
<12> 前記<10>に記載の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、該感光性フィルムの感光層を露光し、現像することを特徴とするカラーフィルタの製造方法である。
<13> 感光性組成物が、少なくとも、黒色(K)に着色されている前記<11>から<12>のいずれかに記載のカラーフィルタの製造方法である。
<14> 少なくとも、赤色(R)、緑色(G)、及び青色(B)の3原色に着色された感光性組成物を用いて、基材の表面に所定の配置で、R、G及びBの各色毎に、順次、感光層の形成、露光、及び現像を繰り返してカラーフィルタを形成する前記<11>から<12>のいずれかに記載のカラーフィルタの製造方法である。
<15> 赤色(R)着色に少なくとも顔料C.I.ピグメントレッド254を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー139の少なくともいずれかの顔料を、並びに、青色(B)着色に少なくとも顔料C.I.ピグメントブルー15:6を用いる前記<14>に記載のカラーフィルタの製造方法である。
<16> 赤色(R)着色に顔料C.I.ピグメントレッド254及び顔料C.I.ピグメントレッド177の少なくともいずれかの顔料を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150の少なくともいずれかの顔料を、並びに、青色(B)着色に顔料C.I.ピグメントブルー15:6及び顔料C.I.ピグメントバイオレット23の少なくともいずれかの顔料を用いる前記<14>に記載のカラーフィルタの製造方法である。
<17> 前記<11>から<16>のいずれかに記載のカラーフィルタの製造方法により製造されたことを特徴とするカラーフィルタである。
<18> 前記<17>に記載のカラーフィルタを備えたことを特徴とする液晶表示装置である。
This invention is based on the said knowledge by this inventor, and the means for solving the said subject are as follows. That is,
<1> A photosensitive composition containing at least a photopolymerization initiator, a photopolymerizable compound having an ethylenic reactive group, and a non-photocurable component that does not contribute to a curing reaction by light irradiation,
The photosensitive layer comprising the photosensitive composition has a spectral sensitivity change rate in the range of −8% to + 8% when the laser exposure wavelength changes ± 10 nm from the center value.
A photosensitive composition comprising: a photosensitive layer comprising the photosensitive composition, wherein the photosensitive layer is used for exposure by relative scanning while modulating light based on image data using an exposure apparatus having two or more laser heads. It is.
<2> The photosensitive composition according to <1>, wherein the exposure is a multiple exposure method.
<3> The photosensitive composition according to any one of <1> to <2>, wherein the photopolymerization initiator contains at least one kind of lophine dimer compound.
<4> The photosensitive composition according to any one of <1> to <3>, further including a sensitizer, wherein the sensitizer is an acridone compound.
<5> The photosensitive composition according to any one of <1> to <4>, wherein the non-photocurable component is any of a polymer compound having no crosslinkable group, a colorant, and an inorganic filler. It is a thing.
<6> The photosensitive composition according to any one of <1> to <5>, wherein the content of the non-photocurable component with respect to the total solid components in the photosensitive composition is 50 to 90% by mass. .
<7> The photosensitive composition according to any one of <1> to <6>, wherein two or more laser heads are two-dimensionally arranged.
<8> The photosensitive composition according to any one of <1> to <7>, wherein the exposure apparatus includes spatial light modulation elements arranged two-dimensionally.
<9> The photosensitive composition according to any one of <1> to <8>, wherein the center value of the laser exposure wavelength is 350 to 450 nm.
<10> A photosensitive material comprising: a base material; and a photosensitive layer formed by applying and drying the photosensitive composition according to any one of <1> to <9> on the base material. It is a film.
<11> The photosensitive composition according to any one of <1> to <9> is applied to the surface of a substrate, dried to form a photosensitive layer, and then the photosensitive layer is exposed and developed. This is a method for manufacturing a color filter.
<12> After laminating the photosensitive film according to the above <10> on the surface of the substrate under at least one of heating and pressurization, exposing and developing the photosensitive layer of the photosensitive film. It is a manufacturing method of the color filter characterized.
<13> The method for producing a color filter according to any one of <11> to <12>, wherein the photosensitive composition is colored at least black (K).
<14> Using a photosensitive composition colored in at least three primary colors of red (R), green (G), and blue (B), R, G, and B in a predetermined arrangement on the surface of the substrate The method for producing a color filter according to any one of <11> to <12>, wherein the color filter is formed by sequentially repeating formation, exposure, and development of the photosensitive layer for each of the colors.
<15> At least pigment C.I. I. Pigment Red 254 is colored green (G) with pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 139 and at least a pigment C.I. I. It is a manufacturing method of the color filter as described in said <14> using pigment blue 15: 6.
<16> Pigment C.I. I. Pigment red 254 and pigment C.I. I. Pigment Red 177 at least one pigment is changed to a green (G) coloring pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 150 and at least blue (B) pigment C.I. I. Pigment blue 15: 6 and pigment C.I. I. The method for producing a color filter according to <14>, wherein at least one pigment of pigment violet 23 is used.
<17> A color filter manufactured by the method for manufacturing a color filter according to any one of <11> to <16>.
<18> A liquid crystal display device comprising the color filter according to <17>.

本発明によると、従来における問題を解決することができ、フォトマスクを用いることなく、レーザー露光時の問題点であるレーザー露光波長のふれに対して分光感度の変化が極めて少なく、記録ムラがなく、線幅ばらつきが小さく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられる感光性組成物、並びにカラーフィルタ及び該カラーフィルタの製造方法、液晶表示装置を提供することができる。   According to the present invention, the conventional problems can be solved, and without using a photomask, there is very little change in spectral sensitivity with respect to fluctuations in the laser exposure wavelength, which is a problem during laser exposure, and there is no recording unevenness. , Line width variation is small, high-definition can be formed, low cost, excellent display characteristics, for liquid crystal display devices (LCD) such as portable terminals and portable game machines, PALC (plasma address liquid crystal), plasma display, etc. And a color filter, a method for producing the color filter, and a liquid crystal display device can be provided.

(感光性組成物)
本発明の感光性組成物は、少なくとも光重合開始剤と、エチレン性反応性基を有する光重合性化合物と、光照射による硬化反応に寄与しない非光硬化性成分と、を含有し、更に必要に応じてその他の成分を含有してなる。
(Photosensitive composition)
The photosensitive composition of the present invention contains at least a photopolymerization initiator, a photopolymerizable compound having an ethylenic reactive group, and a non-photocurable component that does not contribute to a curing reaction by light irradiation, and is further necessary. Depending on the case, it contains other components.

ここで、前記感光性組成物からなる感光層は、レーザー露光波長が中心値から±10nm変化したときの分光感度の変化率が−8%〜+8%の範囲であり、−5%〜+5%の範囲が好ましく、−3%〜+3%の範囲がより好ましく、−2%〜+2%の範囲が更に好ましい。前記分光感度の変化率が±8%の範囲を外れると、記録ムラ(露光ムラ)が生じてカラーフィルタの品質を落としてしまうことがある。   Here, the photosensitive layer made of the photosensitive composition has a spectral sensitivity change rate of −8% to + 8% when the laser exposure wavelength changes ± 10 nm from the central value, and is −5% to + 5%. The range of −3% to + 3% is more preferable, and the range of −2% to + 2% is still more preferable. If the change rate of the spectral sensitivity is out of the range of ± 8%, recording unevenness (exposure unevenness) may occur and the quality of the color filter may be deteriorated.

ここで、前記分光感度の変化率は、例えば、「フォトポリマー・テクノロジー」(山岡亜夫著、昭和63年日刊工業新聞社発行、第262頁)等に詳述されているように、基板表面に感光層を形成したサンプルについて、分光感度測定装置を用い、キセノンランプ又はタングステンランプ等の光源から分光した光を、横軸方向に露光波長が直線的に、縦軸方向に露光強度が対数的に変化するように設定して照射して露光した後、現像処理することにより、各露光波長の感度に応じた画像が得られる。その画像高さから画像形成可能な露光エネルギーを算出し、横軸に波長、縦軸にその露光エネルギーの逆数をプロットして得られる分光感度曲線から求めることができる。
そして、得られた分光感度曲線から、露光中心波長から±10nm変化させたときの分光感度の変化率を算出することができる。
前記レーザー露光波長の中心値は350〜450nmが好ましく、400〜420nmがより好ましい。
Here, the change rate of the spectral sensitivity is determined on the surface of the substrate as described in detail in, for example, “Photopolymer Technology” (Aya Yamaoka, published by Nikkan Kogyo Shimbun, 1988, page 262). Using a spectral sensitivity measurement device, the sample with the photosensitive layer formed is spectrally separated from a light source such as a xenon lamp or a tungsten lamp. The exposure wavelength is linear in the horizontal axis direction and the exposure intensity is logarithmic in the vertical axis direction. An image corresponding to the sensitivity of each exposure wavelength can be obtained by performing development processing after irradiating and exposing the light so as to change. The exposure energy capable of forming an image is calculated from the image height, and can be obtained from a spectral sensitivity curve obtained by plotting the wavelength on the horizontal axis and the reciprocal of the exposure energy on the vertical axis.
Then, from the obtained spectral sensitivity curve, it is possible to calculate the change rate of the spectral sensitivity when the exposure center wavelength is changed by ± 10 nm.
The central value of the laser exposure wavelength is preferably 350 to 450 nm, and more preferably 400 to 420 nm.

このように分光感度の変化を少なくする手段としては、例えば、光重合開始剤の吸収スペクトルができるだけブロードなものを選択するか、必要に応じて複数種類の光重合開始剤や増感剤を混合することにより達成することができる。なお、光重合開始剤及び増感剤については後述する。   As a means for reducing the change in spectral sensitivity in this way, for example, a photopolymerization initiator whose absorption spectrum is as broad as possible is selected, or plural types of photopolymerization initiators and sensitizers are mixed as necessary. This can be achieved. The photopolymerization initiator and sensitizer will be described later.

前記感光性組成物からなる感光層に対し、画像データに基づいて、2つ以上のレーザーヘッドを有する露光装置を用いて光を変調しながら相対走査させる露光に用いられる。なお、露光方法及び露光装置については、後述する。   The photosensitive layer made of the photosensitive composition is used for exposure in which relative scanning is performed while modulating light using an exposure apparatus having two or more laser heads based on image data. The exposure method and the exposure apparatus will be described later.

次に、上述したように、前記感光層(例えば、カラーレジスト層)は、少なくとも光重合開始剤と、エチレン性反応性基を有する光重合性化合物と、光照射による硬化反応に寄与しない非光硬化性成分と、を含み、更に必要に応じて適宜選択されるその他の成分を含む感光性組成物を用いて得られる。   Next, as described above, the photosensitive layer (for example, a color resist layer) includes at least a photopolymerization initiator, a photopolymerizable compound having an ethylenic reactive group, and non-light that does not contribute to a curing reaction by light irradiation. And a curable component, and further using a photosensitive composition containing other components appropriately selected as necessary.

<光重合性化合物>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個のエチレン性反応性基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
<Photopolymerizable compound>
There is no restriction | limiting in particular as said polymeric compound, Although it can select suitably according to the objective, it has at least 1 ethylenic reactive group in a molecule | numerator, and a boiling point is 100 degreeC or more at normal pressure. A compound is preferable, for example, at least 1 sort (s) selected from the monomer which has a (meth) acryl group is mentioned suitably.

前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as a monomer which has the said (meth) acryl group, According to the objective, it can select suitably, For example, polyethyleneglycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, phenoxyethyl (meth) ) Monofunctional acrylates and monofunctional methacrylates such as acrylates; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolethane triacrylate, trimethylolpropane triacrylate, trimethylolpropane diacrylate, neopentylglycol di (Meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate, tri (acryloyloxyethyl) cyanurate, glycerin Poly (functional) alcohols such as tri (meth) acrylate, trimethylolpropane, glycerin, bisphenol, etc., which are subjected to addition reaction with ethylene oxide and propylene oxide, and converted to (meth) acrylate, Japanese Patent Publication No. 48-41708, Japanese Patent Publication No. 50- Urethane acrylates described in JP-A-6034, JP-A-51-37193, etc .; JP-A-48-64183, JP-B-49-43191, JP-B-52-30 Polyester acrylates described in each publication of such 90 No.; and epoxy resin and (meth) polyfunctional acrylates or methacrylates such as epoxy acrylates which are reaction products of acrylic acid. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable. These may be used individually by 1 type and may use 2 or more types together.

前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、10〜60質量%が好ましく、15〜50質量%がより好ましく、20〜40質量%が特に好ましい。該固形分含有量が10質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、60質量%を超えると、感光層の粘着性が強くなりすぎることがある。
前記重合性化合物と後述するバインダーの比率は、質量比で、重合性化合物/バインダー=0.5〜1.5が好ましく、0.6〜1.2がより好ましく、0.65〜1.1が特に好ましい。この範囲を超えると、現像時に残渣が生じるなどの問題が生じることがあり、この範囲未満では、完成したカラーフィルタの耐性が低下することがある。
10-60 mass% is preferable, as for solid content in the said photosensitive composition solid content of the said polymeric compound, 15-50 mass% is more preferable, and 20-40 mass% is especially preferable. If the solid content is less than 10% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur, and if it exceeds 60% by mass, the adhesiveness of the photosensitive layer may become too strong. is there.
The ratio of the polymerizable compound to the binder described later is a mass ratio, preferably polymerizable compound / binder = 0.5 to 1.5, more preferably 0.6 to 1.2, and 0.65 to 1.1. Is particularly preferred. If this range is exceeded, problems such as residues may occur during development, and if it is less than this range, the durability of the completed color filter may be reduced.

<光重合開始剤>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
<Photopolymerization initiator>
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, it is visible from the ultraviolet region. It is preferable to have photosensitivity to the light, and it may be an activator that produces some kind of action with a photoexcited sensitizer and generates active radicals, and initiates cationic polymerization depending on the type of monomer. Initiator may be used.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ロフィンダイマー化合物、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。これらの中でも、感度の点でロフィンダイマー化合物が特に好ましい。   Examples of the photopolymerization initiator include lophine dimer compounds, halogenated hydrocarbon derivatives (eg, those having a triazine skeleton, those having an oxadiazole skeleton), phosphine oxide, hexaarylbiimidazole, oxime derivatives, organic Examples include peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, and the like. Among these, a lophine dimer compound is particularly preferable in terms of sensitivity.

前記ロフィンダイマー化合物としては、例えば、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール2量体などが挙げられる。   Examples of the lophine dimer compound include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer.

前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bulletin of the Chemical Society of Japan、42、2924(1969)記載の化合物、英国特許第第1388492号明細書に記載の化合物、特開昭53−133428号公報記載の化合物、独国特許第第3337024号明細書に記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第第4212976号明細書に記載されている化合物、などが挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include compounds described in Wakabayashi et al., Bulletin of the Chemical Society of Japan, 42, 2924 (1969), compounds described in British Patent No. 1388492, Compounds described in JP-A-53-133428, compounds described in German Patent No. 3333724, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), a compound described in JP-A-62-258241, a compound described in JP-A-5-281728, a compound described in JP-A-5-34920, and U.S. Pat. No. 4,221,976. Compounds described in the specification, and the like.

更に、米国特許第第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第第3046127号明細書及び米国特許第第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフルオロアンチモンやヘキサフルオロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、国際公開第01/71428号パンフレットに記載のオニウム塩化合物などが挙げられる。   Further, the vicinal polyketaldonyl compound described in US Pat. No. 2,367,660, the acyloin ether compound described in US Pat. No. 2,448,828, and US Pat. No. 2,722,512 Aromatic acyloin compounds substituted with α-hydrocarbons, polynuclear quinone compounds described in US Pat. No. 3,046,127 and US Pat. No. 2,951,758, and JP-A-2002-229194 Organic boron compounds, radical generators, triarylsulfonium salts (for example, salts with hexafluoroantimony and hexafluorophosphate), phosphonium salt compounds (for example, (phenylthiophenyl) diphenylsulfonium salts, etc.) (as cationic polymerization initiators) Valid), International Publication No. 01/7 Such as onium salt compounds described in 428 pamphlet and the like.

前記若林ら著、Bulletin of the Chemical Society of Japan、42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in Wakabayashi et al., Bulletin of the Chemical Society of Japan, 42, 2924 (1969) include 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Chlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-Tolyl) -4,6-bis (trichloromethyl) -1,3,5- Triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine , 2-n-noni -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (α, α, β-trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, etc. Is mentioned.

前記英国特許第第1388492号明細書に記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報に記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
Examples of the compound described in the British Patent No. 1388492 include 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4. , 6-Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxy) Styryl) -4-amino-6-trichloromethyl-1,3,5-triazine and the like.
Examples of the compound described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine and the like.

前記独国特許第第3337024号明細書に記載の化合物としては、例えば、2−(4−スチリルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in German Patent No. 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4 -(4-methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1, 3,5-triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloro Methyl) -1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan -2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1, 3,5-triazine and the like can be mentioned.

前記F.C.Schaefer等によるJournal of Organic Chemistry 29、1527(1964)記載の化合物としては、例えば、2−メチル−4、6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. Examples of compounds described in Schaefer et al., Journal of Organic Chemistry 29, 1527 (1964) include 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6- Tris (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl)- Examples include 1,3,5-triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報に記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4 -Naphtyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropyl) Phenylethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloro Chill) -1,3,5-triazine.

前記特開平5−281728号公報に記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2 , 6-Difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine and the like.

前記特開平5−34920号公報に記載の化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N、N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl]-. 1,3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4 -Chlorophenyl) -4,6-bis (tribromomethyl) -s-triazine and the like.

前記米国特許第第4212976号明細書に記載の化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2-trichloro Methyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 (2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl)- 1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1 3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4 -Oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tripromemethyl-5-styryl-1,3,4-oxadiazole Etc.).

前記オキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。   Examples of the oxime derivative include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutan-2-one, and 2-acetoxyiminopentane-3-one. 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, 2-ethoxycarbonyl And oximino-1-phenylpropan-1-one.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB、ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフルオロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、米国特許第第3615455号明細書に記載された化合物などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, and the like, polyhalogen compounds (for example, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3′-carbonylbi (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206 , Coumarin compounds described in JP-A No. 2002-363207, JP-A No. 2002-363208, JP-A No. 2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) Acid n-butyl, 4-dimethylaminobenzoic acid phenetic acid 4-dimethylaminobenzoic acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxyethyl, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4- Dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl- 4-toluidine, N, N-diethyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tridodecyl Amines, aminofluoranes (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc.), acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2, 6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.), metallocenes (for example, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6- Difluoro 3- (1H-pyrrol-1-yl) -phenyl) titanium, η5-cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), etc.), JP-A-53-133428 Gazette, Japanese Patent Publication No.57-1819 No. 57-6096, US Pat. No. 3,615,455, and the like.

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4、4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシ−2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro -Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, In propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記ヘキサアリールビイミダゾール化合物としては、例えば、2,2’−ビス(o−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビスイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5.5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、などが挙げられる。   Examples of the hexaarylbiimidazole compound include 2,2′-bis (o-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′-bisimidazole and 2,2′-bis. (2-Chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′- Bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2, , 6-trichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-cyanophenyl) -4,4 ′, 5.5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-cyanophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-methylphenyl) -4,4 ', 5,5'-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetrakis 4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-methylphenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis ( 2-ethylphenyl) -4,4 ′, 5,5′-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′- Tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′- Bis (2-phenylphenyl) -4,4 ′, 5,5′-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2′-bis (2-phenyl) Enylphenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-phenylphenyl) -4,4 ′, 5,5′-tetrakis ( 4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-dichlorophenyl)- 4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2 '-Bis (2-bromophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4 ', 5,5'- Tetrafeni Biimidazole, 2,2′-bis (2,4,6-tribromophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-cyanophenyl) -4 , 4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-dicyanophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-tricyanophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-methylphenyl) -4,4 ′, 5,5′- Tetraphenylbiimidazole, 2,2′-bis (2,4-dimethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-trimethylphenyl) ) -4,4 ', 5,5'-tetraphenyl Imidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-diethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-triethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2 -Phenylphenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2,4-diphenylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2′-bis (2,4,6-triphenylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, and the like.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
The said photoinitiator may be used individually by 1 type, and may use 2 or more types together.
Particularly preferred examples of the photopolymerization initiator include halogenated carbonization having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton, which can handle laser light having a wavelength of 405 nm in the later-described exposure. Examples include a composite photoinitiator, a hexaarylbiimidazole compound, or titanocene, which is a combination of a hydrogen compound and an amine compound as a sensitizer described later.

前記光重合開始剤の含有量としては、前記感光性組成物中の全固形成分に対し、0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%が特に好ましい。
前記光重合開始剤の含有量は、前記重合性化合物との質量比で表すと、光重合開始剤/重合性化合物=0.01〜0.2が好ましく、0.02〜0.1がより好ましく、0.03〜0.08が特に好ましい。この範囲を超えると、現像残渣が生じたり、析出故障が生じるという問題があり、この範囲未満であると、十分な感度が得られないことがある。
As content of the said photoinitiator, 0.1-50 mass% is preferable with respect to the total solid component in the said photosensitive composition, 0.5-30 mass% is more preferable, 1-20 mass% Is particularly preferred.
When the content of the photopolymerization initiator is expressed by a mass ratio with the polymerizable compound, the photopolymerization initiator / polymerizable compound is preferably 0.01 to 0.2, more preferably 0.02 to 0.1. Preferably, 0.03 to 0.08 is particularly preferable. If it exceeds this range, there is a problem that a development residue or a precipitation failure occurs. If it is less than this range, sufficient sensitivity may not be obtained.

<増感剤>
また、感光層への露光における露光感度や感光波長を調製する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
<Sensitizer>
In addition to the photopolymerization initiator, a sensitizer can be added for the purpose of adjusting exposure sensitivity and photosensitive wavelength in exposure of the photosensitive layer.
The sensitizer can be appropriately selected by visible light, ultraviolet light, visible light laser, or the like as a light irradiation means described later.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から目的に応じて適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン化合物、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5、7−ジ−n−プロポキシクマリン)、3、3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5、7−ジプロポキシクマリン等が挙げられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物など)が挙げられる。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers according to the purpose. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), Xanthenes (for example, fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (for example, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (for example, merocyanine, carbomerocyanine), thiazines ( For example, thionine, methylene blue, toluidine blue), acridine compounds, anthraquinones (for example, anthraquinone), squalium (for example, squalium), acridones (for example, acridone, chloroacridone, N-methylacridone, N-butylacridone) , N-butyl-chloroacridone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) coumarin, 3-benzoyl) -7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5,7-di-n -Propoxycoumarin), 3,3'-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl Examples thereof include coumarin, 3-benzoyl-5, 7-dipropoxycoumarin, and others. JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, JP-A-2002-363207 No. 2002-363208, JP-A No. 2002-363209, and the like.

これらの中でも、アクリジン化合物、が特に好ましい。該アクリジン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、9−置換アクリジン[9−アルキルアクリジン(例えば、9−メチルアクリジン、9−ブチルアクリジン)、9−アリールアクリジン(例えば、9−フェニルアクリジン)、アクリドン化合物(例えば、アクリドン、N−アルキルアクリドン)、チオアクリドン化合物(例えば、チオアクリドン、N−アルキルチオアクリドン)、10H−アクリジン−9−イリデンアミン誘導体[例えば、(10−アルキル−(10H−)アクリジン−9−イリデン)アルキルアミン誘導体、(10−アルキル−(10H−)アクリジン−9−イリデン)アリールアミン誘導体、(10−アルキル−(10H−)アクリジン−9−オン)オキシム誘導体]、などが挙げられる。   Among these, an acridine compound is particularly preferable. The acridine compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 9-substituted acridine [9-alkylacridine (for example, 9-methylacridine, 9-butylacridine), 9-aryl Acridine (eg, 9-phenylacridine), acridone compound (eg, acridone, N-alkylacridone), thioacridone compound (eg, thioacridone, N-alkylthioacridone), 10H-acridine-9-ylideneamine derivative [eg, ( 10-alkyl- (10H-) acridine-9-ylidene) alkylamine derivatives, (10-alkyl- (10H-) acridine-9-ylidene) arylamine derivatives, (10-alkyl- (10H-) acridine-9- On) oxime derivatives], na And the like.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system)], and the like.

前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。   As content of the said sensitizer, 0.05-30 mass% is preferable with respect to all the components in the said photosensitive composition, 0.1-20 mass% is more preferable, 0.2-10 mass% Is particularly preferred. When the content is less than 0.05% by mass, the sensitivity to active energy rays is reduced, the exposure process takes time, and productivity may be reduced. The sensitizer may be precipitated from the photosensitive layer.

<非光硬化性成分>
前記非光硬化性成分としては、光照射による硬化反応に寄与しなければ特に制限はなく、目的に応じて適宜選択することができるが、例えば、架橋性基を有さない高分子化合物、着色剤、無機充填剤、などが挙げられる。
<Non-photocurable component>
The non-photocurable component is not particularly limited as long as it does not contribute to the curing reaction by light irradiation, and can be appropriately selected according to the purpose. For example, a high molecular compound having no crosslinkable group, coloring Agents, inorganic fillers, and the like.

−架橋性基を有さない高分子化合物−
前記架橋性基を有さない高分子化合物としては、架橋性基を有さないポリマーであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、カラーフィルタの作製に用いられる各種バインダーが挙げられる。
-Polymer compound having no crosslinkable group-
The polymer compound having no crosslinkable group is not particularly limited as long as it is a polymer having no crosslinkable group, and can be appropriately selected according to the purpose. For example, it is used for producing a color filter. And various binders.

前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
For example, the binder is preferably swellable in an alkaline aqueous solution, and more preferably soluble in an alkaline aqueous solution.
As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.

前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調製の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。
There is no restriction | limiting in particular as said acidic group, According to the objective, it can select suitably, For example, a carboxyl group, a sulfonic acid group, a phosphoric acid group etc. are mentioned, Among these, a carboxyl group is preferable.
Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, and a modified epoxy resin. Among these, the solubility in a coating solvent, the solubility in an alkali developer, and the like. From the viewpoints of solubility, suitability for synthesis, ease of preparation of film properties, etc., a vinyl copolymer having a carboxyl group is preferred.

前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。   The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.

前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, acrylic acid dimer, and hydroxyl group. An addition reaction product of a monomer (for example, 2-hydroxyethyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride), ω-carboxy-polycaprolactone mono Examples include (meth) acrylate. Among these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
Moreover, you may use the monomer which has anhydrides, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.

前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられる。   The other copolymerizable monomer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters. , Fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes, (meth) acrylonitrile, heterocyclic groups substituted with vinyl groups (eg, vinylpyridine, Vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, phosphoric acid mono (2-acryloyloxyethyl ester), phosphorus Acid mono (1- Chill-2-acryloyloxyethyl ester), functional groups (e.g., a urethane group, a urea group, a sulfonamide group, a phenol group and a vinyl monomer and the like having an imide group).

前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。   Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, t-octyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meta ) Acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol monomethyl ether (meth) acrylate , Polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl acrylate, Nylphenoxypolyethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (meth) Examples include acrylate, perfluorooctylethyl (meth) acrylate, tribromophenyl (meth) acrylate, and tribromophenyloxyethyl (meth) acrylate.

前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。   Examples of the crotonic acid esters include butyl crotonate and hexyl crotonate.

前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。   Examples of the vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.

前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。   Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。   Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。   Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.

前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N、N−ジメチル(メタ)アクリルアミド、N、N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。   Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butyl acrylic (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Examples thereof include N, N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide and the like.

前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。   Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloro Examples include methylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, α-methylstyrene, and the like.

前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。   Examples of the vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, and methoxyethyl vinyl ether.

前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。   Examples of the method for synthesizing the vinyl monomer having a functional group include an addition reaction of an isocyanate group and a hydroxyl group or an amino group, specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group. Alternatively, an addition reaction with a compound having one primary or secondary amino group, an addition reaction between a monomer having a hydroxyl group or a monomer having a primary or secondary amino group, and a monoisocyanate can be given.

前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。   Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (1) to (3).

ただし、前記構造式(1)〜(3)中、Rは、水素原子又はメチル基を表す。 In the Structural Formula (1) ~ (3), R 1 represents a hydrogen atom or a methyl group.

前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。   Examples of the monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, toluyl isocyanate, benzyl isocyanate, and phenyl isocyanate.

前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。   Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (4) to (12).

ただし、前記構造式(4)〜(12)中、Rは、水素原子又はメチル基を表し、n、n1、n2は、1以上の整数を表す。 However, in the structural formulas (4) to (12), R 1 represents a hydrogen atom or a methyl group, and n, n1, and n2 represent an integer of 1 or more.

前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フルオロエタノール、トリフルオロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。   Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol, 2-ethylhexanol). , N-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenylethyl alcohol, etc.), phenols (eg, phenol, cresol, naphthol, etc.), and further containing substituents Examples include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, and acetoxyphenol.

前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。   Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.

前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフルオロエチルアミン、ヘキサフルオロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。   Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexyl). Amine, 2-ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine), cyclic alkylamine (cyclopentylamine, cyclohexylamine, etc.), aralkylamine (benzylamine, phenethylamine, etc.), Arylamine (aniline, toluylamine, xylylamine, naphthylamine, etc.), combinations thereof (N-methyl-N-benzylamine, etc.), and amines containing further substituents (trifluoroethylamine) Emissions, hexafluoroisopropyl amine, methoxyaniline, methoxypropylamine and the like) and the like.

また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。   Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and (meth) acrylic. Preferable examples include 2-ethylhexyl acid, styrene, chlorostyrene, bromostyrene, and hydroxystyrene.

前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。   The said other copolymerizable monomer may be used individually by 1 type, and may use 2 or more types together.

前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。   The vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Moreover, it can prepare by utilizing superposition | polymerization by what is called emulsion polymerization etc. in the state which disperse | distributed the said monomer in the aqueous medium.

前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   The suitable solvent used in the solution polymerization method is not particularly limited and may be appropriately selected depending on the monomer used and the solubility of the copolymer to be produced. For example, methanol, ethanol, propanol, Examples include isopropanol, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, toluene and the like. These solvents may be used alone or in combination of two or more.

前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。   The radical polymerization initiator is not particularly limited, and examples thereof include 2,2′-azobis (isobutyronitrile) (AIBN) and 2,2′-azobis- (2,4′-dimethylvaleronitrile). Examples thereof include peroxides such as azo compounds and benzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
There is no restriction | limiting in particular as content rate of the polymeric compound which has a carboxyl group in the said vinyl copolymer, Although it can select suitably according to the objective, For example, 5-50 mol% is preferable, 10-40 mol % Is more preferable, and 15 to 35 mol% is particularly preferable.
If the content is less than 5 mol%, the developability to alkaline water may be insufficient, and if it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.

前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、重量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記重量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
There is no restriction | limiting in particular as molecular weight of the binder which has the said carboxyl group, Although it can select suitably according to the objective, For example, 2,000-300,000 are preferable as a weight average molecular weight, 4,000-150 1,000 is more preferable.
When the weight average molecular weight is less than 2,000, the strength of the film tends to be insufficient and stable production may be difficult, and when it exceeds 300,000, developability may be deteriorated.

前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる重量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。   The binder which has the said carboxyl group may be used individually by 1 type, and may use 2 or more types together. When two or more binders are used in combination, for example, a combination of two or more binders composed of different copolymerization components, two or more binders having different weight average molecular weights, two or more binders having different degrees of dispersion, etc. Is mentioned.

前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、更にポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。   The binder having a carboxyl group may be partially or entirely neutralized with a basic substance. The binder may be used in combination with resins having different structures such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, gelatin and the like.

また、前記バインダーとしては、特許第2873889号公報に記載のアルカリ水溶液に可溶な樹脂などを用いることができる。   Moreover, as the binder, a resin soluble in an alkaline aqueous solution described in Japanese Patent No. 2873889 can be used.

前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜80質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%が特に好ましい。
前記含有量が5質量%未満であると、アルカリ現像性が低下することがあり、80質量%を超えると、現像時間に対する安定性が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
There is no restriction | limiting in particular as content of the said binder in the said photosensitive layer, Although it can select suitably according to the objective, For example, 5-80 mass% is preferable, 10-70 mass% is more preferable, 15-15 50% by mass is particularly preferred.
When the content is less than 5% by mass, the alkali developability may be lowered, and when it exceeds 80% by mass, the stability with respect to the development time may be lowered. The content may be the total content of the binder and the polymer binder used in combination as necessary.

前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜250mgKOH/gが好ましく、90〜200mgKOH/gがより好ましく、100〜180mgKOH/gが特に好ましい。
前記酸価が、70mgKOH/g未満であると、現像性が不足したり、解像性が劣り、パターンを高精細に得ることができないことがあり、250mgKOH/gを超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、パターンを高精細に得ることができないことがある。
The acid value of the binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 70 to 250 mgKOH / g, more preferably 90 to 200 mgKOH / g, and 100 to 180 mgKOH / g. Particularly preferred.
When the acid value is less than 70 mgKOH / g, the developability may be insufficient or the resolution may be inferior, and the pattern may not be obtained with high definition. At least one of the liquidity and the adhesiveness may deteriorate, and the pattern may not be obtained with high definition.

前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物が挙げられる。具体的には、フェノールノボラック型エポキシアクリレートモノテトラヒドロフタレート、あるいは、クレゾールノボラックエポキシアクリレートモノテトラヒドロフタレート、ビスフェノールA型エポキシアクリレートモノテトラヒドロフタレート等であって、例えばエポキシ樹脂や多官能エポキシ化合物に(メタ)アクリル酸等のカルボキシル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させたものである。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
The binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, JP-A Nos. 51-131706, 52-94388, 64-62375, and JP-A-2 -97513, JP-A-3-289656, JP-A-61-2243869, JP-A-2002-296776, and the like. Specifically, phenol novolac type epoxy acrylate monotetrahydrophthalate, cresol novolac epoxy acrylate monotetrahydrophthalate, bisphenol A type epoxy acrylate monotetrahydrophthalate, etc., for example, (meth) acrylic to epoxy resin or polyfunctional epoxy compound This is obtained by reacting a carboxyl group-containing monomer such as an acid and further adding a dibasic acid anhydride such as phthalic anhydride.
The molecular weight of the epoxy acrylate compound is preferably 1,000 to 200,000, and more preferably 2,000 to 100,000. If the molecular weight is less than 1,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality may become brittle or the surface hardness may deteriorate after curing of the photosensitive layer described below. If it exceeds 1,000, developability may deteriorate.

また、特開平6−295060号公報に記載の酸性基及び二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
An acrylic resin having at least one polymerizable group such as an acidic group and a double bond described in JP-A-6-295060 can also be used. Specifically, at least one polymerizable double bond in the molecule, for example, an acrylic group such as a (meth) acrylate group or (meth) acrylamide group, various polymerizations such as vinyl ester of carboxylic acid, vinyl ether, allyl ether Sex double bonds can be used. More specifically, acrylic resins containing carboxyl groups as acidic groups, glycidyl esters of unsaturated fatty acids such as glycidyl acrylate, glycidyl methacrylate, cinnamic acid, and epoxy groups such as cyclohexene oxide in the same molecule (meth) Examples thereof include compounds obtained by adding an epoxy group-containing polymerizable compound such as a compound having an acryloyl group. In addition, a compound obtained by adding an isocyanate group-containing polymerizable compound such as isocyanate ethyl (meth) acrylate to an acrylic resin containing an acidic group and a hydroxyl group, an acrylic resin containing an anhydride group, a hydroxyalkyl ( Examples thereof include compounds obtained by adding a polymerizable compound containing a hydroxyl group such as (meth) acrylate. As these commercially available products, for example, “Kaneka Resin AX; manufactured by Kaneka Chemical Co., Ltd.”, “Cyclomer (CYCLOMER) A-200; manufactured by Daicel Chemical Industries, Ltd.”, “CYCLOMER (M)” 200; manufactured by Daicel Chemical Industries, Ltd. "can be used.
Furthermore, a reaction product of hydroxyalkyl acrylate or hydroxyalkyl methacrylate described in JP-A No. 50-59315 and any of polycarboxylic acid anhydride and epihalohydrin can be used.

また、特開平5−70528号公報に記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開2003−20310号公報記載のアミド基を含有するスチレン又はスチレン誘導体と酸無水物共重合体、特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。   Further, a compound obtained by adding an acid anhydride to an epoxy acrylate having a fluorene skeleton described in JP-A-5-70528, a polyamide (imide) resin described in JP-A-11-288087, and JP-A-2-097502 And styrene-containing styrene derivatives and acid anhydride copolymers described in JP-A No. 2003-203310 and polyimide precursors described in JP-A No. 11-282155 can be used. These may be used individually by 1 type, and 2 or more types may be mixed and used for them.

前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。   The molecular weight of the acrylic resin, epoxy acrylate having a fluorene skeleton, polyamide (imide), amide group-containing styrene / acid anhydride copolymer, or polyimide precursor is preferably 3,000 to 500,000, 5,000-100,000 are more preferable. When the molecular weight is less than 3,000, the tackiness of the surface of the photosensitive layer may become strong, and after curing of the photosensitive layer described later, the film quality may become brittle or the surface hardness may be deteriorated. If it exceeds 1,000, developability may deteriorate.

−着色剤−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機顔料、無機顔料、染料などが挙げられる。
これら着色剤と別に又は併用して、着色剤として金属イオンを配位した樹状分岐分子、並びに金属粒子及び合金粒子の少なくともいずれかの金属系粒子を含有する樹状分岐分子から選ばれるいずれかの樹状分岐分子を含有することも可能である。
-Colorant-
There is no restriction | limiting in particular as said coloring agent, According to the objective, it can select suitably, For example, an organic pigment, an inorganic pigment, dye, etc. are mentioned.
Any one selected from dendritic branched molecules in which metal ions are coordinated as coloring agents, and dendritic branched molecules containing at least one metal particle of metal particles and alloy particles, separately or in combination with these colorants It is also possible to contain the following dendritic branched molecules.

前記有機顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、黄色顔料、オレンジ顔料、赤色顔料、バイオレット顔料、青色顔料、緑色顔料、ブラウン顔料、黒色顔料などが挙げられるが、カラーフィルタを形成する場合には、3原色(B、G、R)及び黒色(K)にそれぞれ着色された複数の感光性転写材料を用いることから、青色顔料、緑色顔料、赤色顔料、及び黒色顔料が好適に用いられる。   The organic pigment is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a yellow pigment, an orange pigment, a red pigment, a violet pigment, a blue pigment, a green pigment, a brown pigment, and a black pigment. However, when forming a color filter, since a plurality of photosensitive transfer materials colored in three primary colors (B, G, R) and black (K) are used, a blue pigment, a green pigment, and a red pigment are used. And black pigments are preferably used.

前記黄色顔料として、例えば、特開2005−17716号公報の段落番号〔0038〕から〔0040〕に記載の色材、特開2005−361447号公報の段落番号〔0068〕から〔0072〕に記載の顔料、及び特開2005−17521号公報の段落番号〔0080〕から〔0088〕に記載の着色剤などが好適に挙げられる。   Examples of the yellow pigment include coloring materials described in paragraphs [0038] to [0040] of JP-A-2005-17716, and paragraphs [0068] to [0072] of JP-A-2005-361447. Preferable examples include pigments and colorants described in paragraphs [0080] to [0088] of JP-A-2005-17521.

本発明においては、携帯端末や携帯ゲーム機等の機器で透過モード、及び反射モードのいずれにおいても良好な表示特性(より色が濃い)を効果的に実現するには、(i)Rの感光性組成物においては顔料C.I.ピグメントレッド254を用い、(ii)Gの感光性組成物においては顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー139を併用して用い、(iii)Bの感光性組成物においては顔料C.I.ピグメントブルー15:6を用いることが好ましい。
ここで、前記(i)におけるC.I.ピグメントレッド254の含有量は、感光性組成物を1〜3μmの乾燥の厚みで塗布した場合において、0.274〜0.335g/mであることが好ましく、0.280〜0.329g/mであることがより好ましく、0.290〜0.320g/mであることが特に好ましい。
前記(ii)におけるC.I.ピグメントグリーン36の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.355〜0.437g/mであることが好ましく、0.364〜0.428g/mであることがより好ましく、0.376〜0.412g/mであることが特に好ましい。
前記(ii)におけるC.I.ピグメントイエロー139の含有量は、0.052〜0.078g/mであることが好ましく、0.060〜0.070g/mであることがより好ましく、0.062〜0.068g/mであることが特に好ましい。なお、前記(ii)において、C.I.ピグメントグリーン36/C.I.ピグメントイエロー139比率は、5.4〜6.7であることが好ましく、5.6〜6.6がより好ましく、5.8〜6.4が特に好ましい。
前記(iii)におけるC.I.ピグメントブルー15:6の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.28〜0.38g/mあることが好ましく、0.29〜0.36g/mであることがより好ましく、0.30〜0.34g/mであることが特に好ましい。
In the present invention, in order to effectively realize a good display characteristic (darker color) in both the transmissive mode and the reflective mode in a device such as a portable terminal or a portable game machine, (i) R photosensitive In the composition, pigment C.I. I. Pigment Red 254, and (ii) In the photosensitive composition of G, pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 139 is used in combination, and the pigment C.I. I. Pigment Blue 15: 6 is preferably used.
Here, the C.I. I. The content of Pigment Red 254 is preferably 0.274 to 0.335 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm, and 0.280 to 0.329 g / m 2. m 2 is more preferable, and 0.290 to 0.320 g / m 2 is particularly preferable.
C. in (ii) above. I. The content of Pigment Green 36 is preferably 0.355 to 0.437 g / m 2 when the photosensitive composition is applied at a dry thickness of 1 to 3 μm, and 0.364 to 0.428 g / m 2. 2 is more preferable, and 0.376 to 0.412 g / m 2 is particularly preferable.
C. in (ii) above. I. The content of CI Pigment Yellow 139 is preferably 0.052~0.078g / m 2, more preferably from 0.060~0.070g / m 2, 0.062~0.068g / m 2 is particularly preferred. In the above (ii), C.I. I. Pigment green 36 / C.I. I. The pigment yellow 139 ratio is preferably 5.4 to 6.7, more preferably 5.6 to 6.6, and particularly preferably 5.8 to 6.4.
C. in (iii) above. I. The content of Pigment Blue 15: 6 is preferably 0.28 to 0.38 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm, and preferably 0.29 to 0.36 g / m 2 is more preferable, and 0.30 to 0.34 g / m 2 is particularly preferable.

また、本発明においては、ノートパソコン用ディスプレイやテレビモニター等の大画面の液晶表示装置等に用いた場合に高い表示特性(色再現域が広く、色温度が高い)を実現するには、(I)赤色(R)の感光性組成物においては顔料C.I.ピグメントレッド254及びC.I.ピグメントレッド177の少なくともいずれかを用い、(II)緑色(G)の感光性組成物においては顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150を併用し、(III)青色(B)の感光性組成物においては顔料C.I.ピグメントブルー15:6及びC.I.ピグメントバイオレット23を併用することが好ましい。   In the present invention, in order to achieve high display characteristics (wide color reproduction range and high color temperature) when used in a large-screen liquid crystal display device such as a notebook computer display or a television monitor, I) In the red (R) photosensitive composition, pigment C.I. I. Pigment red 254 and C.I. I. Pigment Red 177 is used, and in the photosensitive composition of (II) green (G), pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 150 is used in combination, and in the photosensitive composition of (III) blue (B), pigment C.I. I. Pigment blue 15: 6 and C.I. I. Pigment violet 23 is preferably used in combination.

ここで、前記(I)におけるC.I.ピグメントレッド254の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.6〜1.1g/mであることが好ましく、0.80〜0.96g/mであることがより好ましく、0.82〜0.94g/mであることが特に好ましい。
前記(I)におけるC.I.ピグメントレッド177の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.10〜0.30g/mであることが好ましく、0.20〜0.24g/mであることがより好ましく、0.21〜0.23g/mであることが特に好ましい。
前記(II)におけるC.I.ピグメントグリーン36の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.80〜1.45g/mであることが好ましく、0.90〜1.34g/mであることがより好ましく、0.95〜1.29g/mであることが特に好ましい。
前記(II)におけるC.I.ピグメントイエロー150の含有量は、0.30〜0.65g/mであることが好ましく、0.38〜0.58g/mであることがより好ましい。なお、前記(II)において、C.I.ピグメントグリーン36/C.I.ピグメントイエロー150比率は、0.40〜0.50であることが好ましい。
前記(III)におけるC.I.ピグメントブルー15:6の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.50〜0.75g/mであることが好ましく、0.59〜0.67g/mであることがより好ましく、0.60〜0.66g/mであることが特に好ましい。
前記(III)におけるC.I.ピグメントバイオレット23の含有量は、感光性組成物を1〜3μmの乾燥厚みで塗布した場合において、0.03〜0.10g/mであることが好ましく、0.06〜0.08g/mであることがより好ましく、0.066〜0.074g/mであることが更に好ましい。なお、前記(III)において、C.I.ピグメントブルー15:6/C.I.ピグメントバイオレット23比率は、12〜50であることが好ましい。
Here, the C.I. I. The content of Pigment Red 254 is preferably 0.6 to 1.1 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm, and preferably 0.80 to 0.96 g / m. 2 is more preferable, and 0.82 to 0.94 g / m 2 is particularly preferable.
C. in (I) above. I. The content of Pigment Red 177 is preferably 0.10 to 0.30 g / m 2 when the photosensitive composition is applied at a dry thickness of 1 to 3 μm, and preferably 0.20 to 0.24 g / m. 2 is more preferable, and 0.21 to 0.23 g / m 2 is particularly preferable.
C. in said (II). I. The content of Pigment Green 36 is preferably 0.80 to 1.45 g / m 2 and preferably 0.90 to 1.34 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm. 2 is more preferable, and 0.95 to 1.29 g / m 2 is particularly preferable.
C. in said (II). I. The content of pigment yellow 150 is preferably 0.30~0.65g / m 2, and more preferably 0.38~0.58g / m 2. In the above (II), C.I. I. Pigment green 36 / C.I. I. The pigment yellow 150 ratio is preferably 0.40 to 0.50.
C. in said (III). I. The content of Pigment Blue 15: 6 is preferably 0.50 to 0.75 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm, and preferably 0.59 to 0.67 g. / more preferably m is 2, and particularly preferably 0.60~0.66G / m 2.
C. in said (III). I. The content of Pigment Violet 23 is preferably 0.03 to 0.10 g / m 2 when the photosensitive composition is applied with a dry thickness of 1 to 3 μm, and preferably 0.06 to 0.08 g / m. 2 is more preferable, and 0.066 to 0.074 g / m 2 is even more preferable. In the above (III), C.I. I. Pigment Blue 15: 6 / C.I. I. It is preferable that the pigment violet 23 ratio is 12-50.

前記有機顔料の前記感光性組成物の固形分中の含有量としては、少なくとも30質量%であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、30〜60質量%が好ましく、35〜60質量%がより好ましく、45〜60質量%が特に好ましい。
前記有機顔料の前記含有量が、高い光学濃度を必要とする場合に30質量%未満であると、単位厚みあたりの光学濃度が不十分で所望の光学濃度を達成するために膜を厚くしなければならないことがあり、60質量%を超えると、露光部と未露光部の現像液に対する溶解性の差を出すことが困難になることがある。
As content in the solid content of the said photosensitive composition of the said organic pigment, if it is at least 30 mass%, there will be no restriction | limiting in particular, According to the objective, it can select suitably, For example, 30-60 mass% Is preferable, 35-60 mass% is more preferable, 45-60 mass% is especially preferable.
If the content of the organic pigment is less than 30% by mass when a high optical density is required, the optical density per unit thickness is insufficient and the film must be thick to achieve the desired optical density. If it exceeds 60% by mass, it may be difficult to make a difference in solubility between the exposed area and the unexposed area in the developer.

−無機充填剤−
前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、二酸化チタン、酸化亜鉛、酸化ジルコニウム、雲母状酸化鉄、鉛白、酸化鉛、酸化コバルト、ストロンチウムクロメート、モリブデン系顔料、スメクタイト、酸化マグネシウム、酸化カルシウム、炭酸カルシウム、ムライト等が挙げられる。これらの中でも、特に、シリカ、アルミナが好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
-Inorganic filler-
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. For example, silica, alumina, titanium dioxide, zinc oxide, zirconium oxide, mica-like iron oxide, white lead, lead oxide, oxidation Examples include cobalt, strontium chromate, molybdenum pigments, smectite, magnesium oxide, calcium oxide, calcium carbonate, mullite, and the like. Among these, silica and alumina are particularly preferable. These may be used alone or in combination of two or more.

前記非光硬化性成分の感光性組成物中の全固形成分に対する含有量は、50〜90質量%が好ましく、60〜80質量%がより好ましい。前記含有量が50質量%未満であると、感度が不足し、光硬化の不足による膜強度の低下が発生することがあり、90質量%を超えると、非硬化性成分の比率が下がるため、非硬化性成分が着色剤の場合は光学濃度が不足し、非硬化性成分が高分子化合物、無機充填材の場合は露光前の成膜の悪化が起こることがある。   50-90 mass% is preferable, and, as for content with respect to all the solid components in the photosensitive composition of the said non-photocurable component, 60-80 mass% is more preferable. When the content is less than 50% by mass, the sensitivity is insufficient, and the film strength may be reduced due to insufficient photocuring. When the content exceeds 90% by mass, the ratio of the non-curable component is decreased. When the non-curable component is a colorant, the optical density is insufficient, and when the non-curable component is a polymer compound or an inorganic filler, film formation before exposure may be deteriorated.

<<その他の成分>>
前記感光性組成物には、その他の成分として、例えば、熱架橋剤、可塑剤、界面活性剤、紫外線吸収剤、熱重合禁止剤等の成分を含有してもよい。
<< Other ingredients >>
In the said photosensitive composition, you may contain components, such as a thermal crosslinking agent, a plasticizer, surfactant, a ultraviolet absorber, a thermal polymerization inhibitor, as another component.

前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物、メラミン樹脂化合物などを用いることができる。   The thermal crosslinking agent is not particularly limited and may be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability For example, an epoxy compound having at least two oxirane groups in one molecule, an oxetane compound having at least two oxetanyl groups in one molecule, a melamine resin compound, or the like can be used.

前記エポキシ化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業(株)製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190、ESN−360;新日鉄化学(株)製」、「HP−4032、EXA−4750、EXA−4700;大日本インキ化学工業(株)製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200、HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S、CP−50M;日本油脂(株)製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。   Examples of the epoxy compound include a bixylenol type or biphenol type epoxy resin (“YX4000; manufactured by Japan Epoxy Resin Co., Ltd.”) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; NISSAN CHEMICAL”). Kogyo Co., Ltd. ”,“ Araldite PT810; manufactured by Ciba Specialty Chemicals ”, etc.), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type Epoxy resin, hydantoin type epoxy resin, alicyclic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type Poxy resin, glycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin (“ESN-190, ESN-360; manufactured by Nippon Steel Chemical Co., Ltd.”, “HP-4032, EXA-4750, EXA-4700 ; Manufactured by Dainippon Ink and Chemicals, Ltd.), epoxy resins having a dicyclopentadiene skeleton (“HP-7200, HP-7200H; manufactured by Dainippon Ink and Chemicals”, etc.), glycidyl methacrylate copolymer epoxy Examples thereof include, but are not limited to, resins (“CP-50S, CP-50M; manufactured by NOF Corporation”, etc.), copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and the like. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.

前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1、4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1、4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
前記メラミン樹脂化合物としては、例えば、アルキル化メチロールメラミン、ヘキサメチル化メチロールメラミンなどが挙げられる。
Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate or oligomers or copolymers thereof, oxetane groups and novolak resins , Poly (p-hydroxystyrene), cardo-type bisphe And ether compounds such as hydroxyl groups, calixarenes, calixresorcinarenes, silsesquioxanes, and the like, as well as unsaturated monomers having an oxetane ring and alkyl (meth) acrylates. And a copolymer thereof.
Examples of the melamine resin compound include alkylated methylol melamine and hexamethylated methylol melamine.

前記エポキシ化合物又はオキセタン化合物の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化が生じることがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。   1-50 mass% is preferable and, as for solid content in the said photosensitive composition solid content of the said epoxy compound or oxetane compound, 3-30 mass% is more preferable. If the solid content is less than 1% by mass, the hygroscopic property of the cured film is increased and the insulation may be deteriorated. If it exceeds 50% by mass, the developability is deteriorated and the exposure sensitivity is decreased. It may occur and is not preferable.

また、前記エポキシ化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等のブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ化合物、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
Moreover, in order to accelerate the thermal curing of the epoxy compound or the oxetane compound, for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl Amines, amine compounds such as 4-methyl-N, N-dimethylbenzylamine; quaternary ammonium salt compounds such as triethylbenzylammonium chloride; blocked isocyanate compounds such as dimethylamine; imidazole, 2-methylimidazole, 2-ethylimidazole, Imidazo such as 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole Derivative bicyclic amidine compounds and salts thereof; phosphorus compounds such as triphenylphosphine; guanamine compounds such as melamine, guanamine, acetoguanamine, benzoguanamine; 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl -2,4-diamino-S-triazine, 2-vinyl-4,6-diamino-S-triazine / isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct S-triazine derivatives such as, etc. can be used. These may be used alone or in combination of two or more. In addition, there is no restriction | limiting in particular as long as it can accelerate | stimulate the reaction of the said epoxy compound and the said oxetane compound, or these and a carboxyl group, Use the compound which can accelerate | stimulate thermosetting other than the above. Also good.
Solid content in the said photosensitive composition solid content of the said epoxy compound, the said oxetane compound, and the compound which can accelerate | stimulate thermosetting with these and carboxylic acid is 0.01-15 mass% normally.

また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。   Further, as the thermal crosslinking agent, a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is aliphatic, cycloaliphatic or aromatic containing at least two isocyanate groups. It may be derived from a group-substituted aliphatic compound. Specifically, a mixture of 1,3-phenylene diisocyanate and 1,4-phenylene diisocyanate, 2,4- and 2,6-toluene diisocyanate, 1,3- and 1,4-xylylene diisocyanate, bis (4 -Bisocyanate such as isocyanate-phenyl) methane, bis (4-isocyanatocyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate; the bifunctional isocyanate, trimethylolpropane, pentalysitol, glycerin, etc. An alkylene oxide adduct of the polyfunctional alcohol and an adduct of the bifunctional isocyanate; hexamethylene diisocyanate, hexamethylene-1,6-diisocyanate Cyclic trimers, such as preparative and derivatives thereof; and the like.

更に、本発明の感光性組成物の保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
Furthermore, for the purpose of improving the storage stability of the photosensitive composition of the present invention, a compound obtained by reacting a blocking agent with the isocyanate group of the polyisocyanate and its derivative may be used.
Examples of the isocyanate group blocking agent include isopropanol, tert. Alcohols such as butanol; lactams such as ε-caprolactam, phenol, cresol, p-tert. -Butylphenol, p-sec. -Butylphenol, p-sec. -Phenols such as amylphenol, p-octylphenol, p-nonylphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridine and 8-hydroxyquinoline; dialkylmalonate, methylethylketoxime, acetylacetone, alkylacetoacetate oxime, acetoxime, Active methylene compounds such as cyclohexanone oxime; and the like. In addition to these, compounds having at least one polymerizable double bond and at least one blocked isocyanate group in the molecule described in JP-A-6-295060 can be used.

また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメトキシメチルメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。   Moreover, an aldehyde condensation product, a resin precursor, etc. can be used. Specifically, N, N′-dimethylolurea, N, N′-dimethylolmalonamide, N, N′-dimethylolsuccinimide, trimethylolmelamine, tetramethylolmelamine, hexamethylolmelamine, 1,3-N, N'-dimethylol terephthalamide, 2,4,6-trimethylolphenol, 2,6-dimethylol-4-methyliloanisole, 1,3-dimethylol-4,6-diisopropylbenzene and the like can be mentioned. In place of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used. Further, hexamethoxymethyl melamine composed of a formaldehyde condensation product of melamine and urea, butyl ether of melamine and formaldehyde condensation product, or the like may be used.

前記熱架橋剤の添加量としては、本発明の効果を損なわない範囲で加えることができ、前記熱架橋剤の含有量としては、感光性組成物の全固形分の0.01〜10質量%が好ましく、0.02〜5質量%がより好ましく、0.05〜3質量%が特に好ましい。   The addition amount of the thermal crosslinking agent can be added within a range not impairing the effects of the present invention, and the content of the thermal crosslinking agent is 0.01 to 10% by mass of the total solid content of the photosensitive composition. Is preferable, 0.02 to 5 mass% is more preferable, and 0.05 to 3 mass% is particularly preferable.

前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, octyl capryl phthalate, and the like. Phthalic acid esters: Triethylene glycol diacetate, tetraethylene glycol diacetate, dimethylglycol phthalate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, triethylene glycol dicabrylate, etc. Glycol esters of tricresyl phosphate, triphenyl phosphate, etc. Acid esters; Amides such as 4-toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sepacate, dioctyl Aliphatic dibasic acid esters such as sepacate, dioctyl azelate, dibutyl malate; triethyl citrate, tributyl citrate, glycerin triacetyl ester, butyl laurate, 4,5-diepoxycyclohexane-1,2-dicarboxylic acid Examples include glycols such as dioctyl acid, polyethylene glycol, and polypropylene glycol.

前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。   As content of the said plasticizer, 0.1-50 mass% is preferable with respect to all the components of the said photosensitive layer, 0.5-40 mass% is more preferable, 1-30 mass% is especially preferable.

前記界面活性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などから適宜選択できる。   The surfactant is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the surfactant is appropriately selected from an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like. You can choose.

更に、前記界面活性剤としては、次式(1)〜(5)で表される界面活性剤が好適に挙げられる。
Rf1−X−(CHCHO)・・・(1)
Rf1−X−(CHCHO)・・・(2)
Rf1−X−(CHCHO)(CHCHCHO)・・・(3)
Rf1−X−(CHCHO)(CHCHCHO)Rf2・・・(4)
Furthermore, as said surfactant, surfactant represented by following Formula (1)-(5) is mentioned suitably.
Rf1-X- (CH 2 CH 2 O) n R 1 ··· (1)
Rf1-X- (CH 2 CH 2 O) n R 2 ··· (2)
Rf1-X- (CH 2 CH 2 O) n (CH 2 CH 2 CH 2 O) m R 1 ··· (3)
Rf1-X- (CH 2 CH 2 O) n (CH 2 CH 2 CH 2 O) m Rf2 ··· (4)

前記式(1)〜(4)において、R及びRは、炭素素1〜18、好ましくは、炭素数1〜10、より好ましくは、炭素数1〜4のアルキル基を表す。
前記アルキル基としては、飽和アルキル基、不飽和アルキル基が挙げられる。
前記アルキル基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられる。
前記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基、オタタデシル基、エイコサニル基、ドコサニル基、2−クロロエチル基、2−プロモエチル基、2−シアノエチル基、2−メトキシカルボニルエチル基、2−メトキシエチル基、3−プロモプロピル基などが挙げられる。また、これらのアルキル基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよいアリール基、アミド基等で置換されていてもよい。
前記式(1)〜(4)において、Rf1及びRf2は、それぞれ独立して、炭素数1〜18、好ましく2〜12、より好ましくは4〜10のパーフルオロ基を表す。
前記パーフルオロ基としては、飽和パーフルオロ基、不飽和パーフルオロ基が挙げられる。
前記パーフルオロ基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられ、前記Rf1及びRf2の少なくともいずれかが、分岐構造を有するものがより好適に挙げられる。
前記パーフルオロ基としては、例えば、パーフルオロノネニル、パーフルオロメチル、パーフルオロプロピレン、パーフルオロノニネル、パーフルオロ安息香酸、パーフルオロプロピレン、パーフルオロプロピル、パーフルオロ(9−メチルオクチル)、パーフルオロメチルオクチル、パーフルオロブチル、パーフルオロ3−メチルブチル、パーフルオロヘキシル、パーフルオロクチル、パーフルオロ7−オクチルエチル、フルオロヘプチル、パーフルオロデシル、パーフルオロブチルなどが挙げられる。また、これらのパーフルオロ基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよく、アリール基、アミド基等で置換されていてもよい。
前記Rf1及びRf2は互い同じであってもよく、異なっていてもよい。
前記式(1)〜(4)において、nは、1〜40の整数、好ましくは4〜25の整数を表す。
前記式(1)〜(4)において、mは、0〜40の整数、好ましくは0〜25の整数を表す。
前記式(1)〜(4)において、−X−は、−(CH−(lは1〜10、好ましくは、1〜5の整数を表す)、−CO−O−、−O−、−NHCO−、−NHCOO−のいずれかを表す。
前記式(5)において、R,R,Rは水素原子、又はメチル基を表し、a,b,c,p,qは任意の正数を表し、必要に応じて適宜選ばれるが、例として、a=50、b=c=25、p=q=10等が挙げられる。r,sは任意の正の整数を表し、必要に応じて適宜選ばれるが、例として、r=2、s=6等が挙げられる。C2r、C2s+1としては、r、sが3以上のとき、直鎖構造、分岐構造のいずれもが含まれる。前記式(5)で表される界面活性剤の具体例としては、メガファックF−780F(a=40、b=5、c=55、r=2、s=6、p=q=7;大日本インキ化学工業(株)製)などが挙げられる。
前記式(1)〜(5)で表される界面活性剤は、1種単独又は2種以上の組合せで用いることができる。
In the formula (1) ~ (4), R 1 and R 2 are Tansomoto 18, preferably 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms.
Examples of the alkyl group include a saturated alkyl group and an unsaturated alkyl group.
Examples of the structure of the alkyl group include those having a linear structure and a branched structure, and among these, those having a branched structure are preferably exemplified.
Specific examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, heptyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group, otatadecyl group Eicosanyl group, docosanyl group, 2-chloroethyl group, 2-promoethyl group, 2-cyanoethyl group, 2-methoxycarbonylethyl group, 2-methoxyethyl group, 3-promopropyl group and the like. In addition, these alkyl groups may be substituted with a halogen atom, an acyl group, an amino group, a cyano group, an alkyl group, an alkoxy group, an aryl group which may be substituted with alkyl or haloalkyl, an amide group, or the like.
In the above formulas (1) to (4), Rf1 and Rf2 each independently represent a perfluoro group having 1 to 18, preferably 2 to 12, and more preferably 4 to 10 carbon atoms.
Examples of the perfluoro group include a saturated perfluoro group and an unsaturated perfluoro group.
Examples of the structure of the perfluoro group include those having a linear structure and a branched structure. Among these, those having a branched structure are preferred, and at least one of Rf1 and Rf2 has a branched structure. A thing is mentioned more suitably.
Examples of the perfluoro group include perfluorononenyl, perfluoromethyl, perfluoropropylene, perfluorononinel, perfluorobenzoic acid, perfluoropropylene, perfluoropropyl, perfluoro (9-methyloctyl), perfluoro Fluoromethyloctyl, perfluorobutyl, perfluoro-3-methylbutyl, perfluorohexyl, perfluorooctyl, perfluoro 7-octylethyl, fluoroheptyl, perfluorodecyl, perfluorobutyl and the like can be mentioned. These perfluoro groups may be substituted with a halogen atom, acyl group, amino group, cyano group, alkyl group, alkoxy group, alkyl or haloalkyl, or may be substituted with an aryl group, an amide group, or the like. Good.
Rf1 and Rf2 may be the same as or different from each other.
In said Formula (1)-(4), n represents the integer of 1-40, Preferably the integer of 4-25 is represented.
In said Formula (1)-(4), m represents the integer of 0-40, Preferably the integer of 0-25 is represented.
In the formula (1) ~ (4), -X- is, - (CH 2) l - (l 1 to 10, preferably represents an integer of 1 to 5), - CO-O -, - O -, -NHCO-, or -NHCOO- is represented.
In the formula (5), R 3 , R 4 , and R 5 represent a hydrogen atom or a methyl group, and a, b, c, p, and q represent arbitrary positive numbers, and are appropriately selected as necessary. Examples include a = 50, b = c = 25, and p = q = 10. r and s represent arbitrary positive integers and are appropriately selected as necessary. Examples thereof include r = 2 and s = 6. C r H 2r and C s F 2s + 1 include both a linear structure and a branched structure when r and s are 3 or more. Specific examples of the surfactant represented by the formula (5) include Megafac F-780F (a = 40, b = 5, c = 55, r = 2, s = 6, p = q = 7; Dainippon Ink & Chemicals, Inc.).
The surfactants represented by the formulas (1) to (5) can be used singly or in combination of two or more.

前記界面活性剤の含有量としては、感光性組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
As content of the said surfactant, 0.001-10 mass% is preferable with respect to solid content of the photosensitive composition.
When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be deteriorated.

前記感光性組成物が前記界面活性剤を含有することにより、塗布液としての流動性が良好となり、塗布工程で使用されるスピンコーターやスリットコーターのノズルや配管、容器中での液の付着性が改善され、前記ノズル内に汚れとして残る残渣を効果的に減少させることができるので、塗布液の切り替え時に洗浄に要する洗浄液の量や作業時間を軽減でき、カラーフィルタの生産性を向上させることができる。また、前記カラーレジスト層を形成する際に発生する面状ムラ等を改善することができる。   When the photosensitive composition contains the surfactant, the fluidity as a coating liquid is improved, and the adhesion of the liquid in the nozzles and pipes and containers of spin coaters and slit coaters used in the coating process. Since the residue remaining as dirt in the nozzle can be effectively reduced, the amount of cleaning liquid required for cleaning when switching the coating liquid and the work time can be reduced, and the productivity of the color filter can be improved. Can do. In addition, it is possible to improve surface unevenness that occurs when the color resist layer is formed.

前記熱重合禁止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4−メトキシフェノール、ハイドロキノン、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
前記熱重合禁止剤の含有量としては、感光性組成物の全成分に対し、0.0001〜10質量%が好ましく、0.0005〜5質量%がより好ましく、0.001〜1質量%が特に好ましい。
The thermal polymerization inhibitor is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 4-methoxyphenol, hydroquinone, alkyl or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone 4-methoxy-2-hydroxybenzophenone, cuprous chloride, phenothiazine, chloranil, naphthylamine, β-naphthol, 2,6-di-t-butyl-4-cresol, 2,2′-methylenebis (4-methyl- 6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4-toluidine, methylene blue, copper and organic chelating agent reactant, methyl salicylate, phenothiazine, nitroso compound, chelate of nitroso compound and Al, etc. It is done.
As content of the said thermal-polymerization inhibitor, 0.0001-10 mass% is preferable with respect to all the components of a photosensitive composition, 0.0005-5 mass% is more preferable, 0.001-1 mass% is Particularly preferred.

前記紫外線吸収剤としては、特開平5−72724号公報記載の化合物のほか、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、ニッケルキレート系、ヒンダードアミン系などが挙げられる。
具体的には、フェニルサリシレート、4−t−ブチルフェニルサリシレート、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−4’−ヒドロキシベンゾエート、4−t−ブチルフェニルサリシレート、2,4−ジ−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、エチル−2−シアノ−3,3−ジ−フェニルアクリレート、2,2’−ヒドロキシ−4−メトキシベンゾフェノン、ニッケルジブチルジチオカーバメート、ビス(2,2,6,6−テトラメトル−4−ピリジン)−セバケート、4−t−ブチルフェニルサリシレート、サルチル酸フェニル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン縮合物、コハク酸−ビス(2,2,6,6−テトラメチル−4−ピペリデニル)−エステル、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、7−{[4−クロロ−6−(ジエチルアミノ)−5−トリアジン−2−イル]アミノ}−3−フェニルクマリンなどが挙げられる。
なお、感光性組成物の全固形分に対する紫外線吸収剤の含有量は、0.5〜15質量%が好ましく、1〜12質量%がより好ましく、1.2〜10質量%が特に好ましい。
Examples of the ultraviolet absorber include salicylate-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based, nickel chelate-based, hindered amine-based compounds and the like in addition to the compounds described in JP-A-5-72724.
Specifically, phenyl salicylate, 4-t-butylphenyl salicylate, 2,4-di-t-butylphenyl-3 ′, 5′-di-t-4′-hydroxybenzoate, 4-t-butylphenyl salicylate 2,4-di-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, ethyl-2-cyano-3,3-di-phenyl acrylate, 2,2'-hydroxy-4- Methoxybenzophenone, nickel dibutyldithiocarbamate, bis (2,2,6,6-tetramethol-4-pyridine) -seba 4-t-butylphenyl salicylate, phenyl salicylate, 4-hydroxy-2,2,6,6-tetramethylpiperidine condensate, succinic acid-bis (2,2,6,6-tetramethyl-4 -Piperenyl) -ester, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 7-{[4-chloro-6- (diethylamino) -5 Triazin-2-yl] amino} -3-phenylcoumarin and the like.
In addition, 0.5-15 mass% is preferable, as for content of the ultraviolet absorber with respect to the total solid of a photosensitive composition, 1-12 mass% is more preferable, and 1.2-10 mass% is especially preferable.

前記感光層を形成する感光性組成物は、溶剤を用いて調製することができる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルアセテートなどが好適に挙げられる。これらの溶剤は、単独又2種以上の組合せで用いることができる。
前記感光性組成物の調製時における前記溶剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物の全固形分濃度が5〜80質量%となるように添加されることが好ましく、10〜60質量%となるように添加されることがより好ましく、15〜50質量%となるように添加されることが特に好ましい。
The photosensitive composition for forming the photosensitive layer can be prepared using a solvent.
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n-hexanol; acetone , Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone; esters such as ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate Aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; halogenated carbonization such as carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, monochlorobenzene Motorui; tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethers such as 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and sulfolane. These may be used alone or in combination of two or more. Among these, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexane, ethyl carbitol acetate, butyl Preferred examples include carbitol acetate and propylene glycol methyl ether acetate. These solvents can be used alone or in combination of two or more.
There is no restriction | limiting in particular as the addition amount of the said solvent at the time of preparation of the said photosensitive composition, According to the objective, it can select suitably, The total solid content concentration of the said photosensitive composition is 5-80 mass%. It is preferable to add so that it may become, it is more preferable to add so that it may become 10-60 mass%, and it is especially preferable to add so that it may become 15-50 mass%.

前記感光層の厚みは、0.3〜10μmが好ましく、0.75〜7μmがより好まく、1.0〜5μmが特に好ましい。
前記感光層の厚みが0.3μm未満であると、感光層用塗布液の塗布時にピンホールが発生しやすく、製造適性が低下することがあり、10μmを超えると、現像時に未露光部を除去するのに長時間を要することがある
The thickness of the photosensitive layer is preferably 0.3 to 10 μm, more preferably 0.75 to 7 μm, and particularly preferably 1.0 to 5 μm.
If the thickness of the photosensitive layer is less than 0.3 μm, pinholes are likely to occur when the coating solution for the photosensitive layer is applied, and the manufacturing suitability may be reduced. If the thickness exceeds 10 μm, unexposed portions are removed during development. It may take a long time to do

前記感光性組成物を用いて感光層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布により形成する方法、シート状の各層を加圧及び加熱の少なくともいずれかを行うことにより、ラミネートすることにより形成する方法、それらの併用などが挙げられる。
前記感光層形成工程としては、以下に示す第1の態様の感光層形成工程及び第2の態様の感光層形成工程が好適に挙げられる。
The method for forming a photosensitive layer using the photosensitive composition is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a method for forming by coating, pressurizing and heating each sheet-like layer The method of forming by laminating by performing at least one of these, combined use, etc. are mentioned.
Suitable examples of the photosensitive layer forming step include the photosensitive layer forming step of the first aspect and the photosensitive layer forming step of the second aspect described below.

第1の態様の感光層形成工程としては、前記感光性組成物を基材の表面に塗布し、乾燥することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。   As the photosensitive layer forming step of the first aspect, at least a photosensitive layer is formed on the surface of the substrate by applying the photosensitive composition to the surface of the substrate and drying, and further appropriately selected. And a step of forming other layers.

第2の態様の感光層形成工程としては、前記感光性組成物をフィルム状に成形した感光性フィルム(以下、「感光性転写材料」と称することがある)を基材の表面に加熱及び加圧の少なくともいずれかの下において積層することで、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。   In the photosensitive layer forming step of the second aspect, a photosensitive film (hereinafter sometimes referred to as “photosensitive transfer material”) obtained by forming the photosensitive composition into a film is heated and applied to the surface of the substrate. By laminating under at least one of the pressures, there is a step of forming at least a photosensitive layer on the surface of the base material and further forming other layers appropriately selected.

第1の態様の感光層形成工程において、前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。   In the photosensitive layer forming step of the first aspect, the coating and drying method is not particularly limited and can be appropriately selected depending on the purpose. For example, the photosensitive composition is formed on the surface of the substrate. Can be dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive composition solution, and the solution can be directly applied and dried for lamination.

前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。   There is no restriction | limiting in particular as a solvent of the said photosensitive composition solution, According to the objective, it can select suitably.

前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。本発明においては、液が吐出する部分にスリット状の穴を有するスリット状ノズルを用いた塗布装置(スリットコーター)によって行うことが好ましい。具体的には、特開2004−89851号公報、特開2004−17043号公報、特開2003−170098号公報、特開2003−164787号公報、特開2003−10767号公報、特開2002−79163号公報、特開2001−310147号公報等に記載のスリット状ノズル、及びスリットコーターが好適に用いられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
The coating method is not particularly limited and can be appropriately selected depending on the purpose. For example, using a spin coater, a slit spin coater, a roll coater, a die coater, a curtain coater, etc. The method of apply | coating is mentioned. In this invention, it is preferable to carry out by the coating device (slit coater) using the slit-shaped nozzle which has a slit-shaped hole in the part which discharges a liquid. Specifically, JP-A-2004-89851, JP-A-2004-17043, JP-A-2003-170098, JP-A-2003-164787, JP-A-2003-10767, JP-A-2002-79163. Slit nozzles and slit coaters described in Japanese Patent Laid-Open No. 2001-310147 and the like are preferably used.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

第1の態様の感光層形成工程において形成されるその他の層としては、後述する酸素遮断層以外にも、特に制限はなく、目的に応じて適宜選択することができ、例えば、剥離層、接着層、光吸収層、表面保護層などが挙げられる。
前記その他の層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光層上に塗布する方法、シート状に形成されたその他の層を積層する方法などが挙げられる。
The other layers formed in the photosensitive layer forming step of the first aspect are not particularly limited other than the oxygen barrier layer described later, and can be appropriately selected according to the purpose. Examples thereof include a layer, a light absorption layer, and a surface protective layer.
There is no restriction | limiting in particular as a formation method of the said other layer, According to the objective, it can select suitably, For example, the method of apply | coating on the said photosensitive layer, The method of laminating | stacking the other layer formed in the sheet form Etc.

前記第2の態様の感光層形成工程において、基材の表面に感光層、後述する酸素遮断層、必要に応じて適宜選択されるその他の層を形成する方法としては、前記基材の表面に支持体と該支持体上に感光性組成物が積層されてなる感光層と、必要に応じて適宜選択されるその他の層とを有する感光性フィルム(感光性転写材料)を加熱及び加圧の少なくともいずれかを行いながら積層する方法が挙げられ、支持体上に感光性組成物が積層されてなる感光性フィルムを、該感光性組成物が基材の表面側となるように積層し、次いで、支持体を感光性組成物上から剥離する方法が好適に挙げられる。
前記支持体を剥離することにより、支持体による光の散乱や屈折の等影響により、感光性組成物層上に結像させる像にボケ像が生じることが防止され、所定のパターンが高解像度で得られる。
なお、前記感光性フィルムが、後述する保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
In the photosensitive layer forming step of the second aspect, as a method of forming a photosensitive layer, an oxygen blocking layer, which will be described later, and other layers appropriately selected as necessary, on the surface of the substrate, A photosensitive film (photosensitive transfer material) having a support, a photosensitive layer in which the photosensitive composition is laminated on the support, and other layers appropriately selected as necessary is heated and pressurized. There is a method of laminating while performing at least one, laminating a photosensitive film in which a photosensitive composition is laminated on a support so that the photosensitive composition is on the surface side of the substrate, and then A method of peeling the support from the photosensitive composition is preferable.
By peeling the support, it is possible to prevent a blurred image from being formed on the image formed on the photosensitive composition layer due to light scattering, refraction, and the like by the support. can get.
In addition, when the said photosensitive film has a protective film mentioned later, it is preferable to peel this protective film and to laminate | stack so that the said photosensitive layer may overlap with the said base material.

前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜160℃が好ましく、80〜130℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
There is no restriction | limiting in particular as said heating temperature, Although it can select suitably according to the objective, For example, 70-160 degreeC is preferable and 80-130 degreeC is more preferable.
There is no restriction | limiting in particular as a pressure of the said pressurization, Although it can select suitably according to the objective, For example, 0.01-1.0 MPa is preferable and 0.05-1.0 MPa is more preferable.

前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネーター株式会社社製、VP−II、(株)日立インダストリイズ製、LamicII型)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。   There is no restriction | limiting in particular as an apparatus which performs at least any one of the said heating and pressurization, According to the objective, it can select suitably, For example, heat press, a heat roll laminator (For example, Taisei Laminator Co., Ltd. make, VP -II, manufactured by Hitachi Industries, Ltd., Lamic II type), vacuum laminator (for example, MVLP500 manufactured by Meiki Seisakusho) and the like are preferable.

前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。   The support is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferable that the photosensitive layer can be peeled off and that light transmittance is good, and that the surface is smooth. Is more preferable.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4〜300μmが好ましく、5〜175μmがより好ましく、10〜100μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said support body, According to the objective, it can select suitably, For example, 4-300 micrometers is preferable, 5-175 micrometers is more preferable, and 10-100 micrometers is especially preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, Although it can select suitably according to the objective, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

前記支持体は、合成樹脂製であり、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル−酢酸ビニル共重合体、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
The support is preferably made of synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly (Meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride-vinyl acetate copolymer, polytetrafluoroethylene, polytri Various plastic films such as fluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
As the support, for example, the support described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, or the like is used. You can also.

前記感光性フィルムにおける感光層の形成は、前記基材への前記感光性組成物溶液の塗布及び乾燥(前記第1の態様の感光層形成方法)と同様な方法で行うことができる。   Formation of the photosensitive layer in the photosensitive film can be performed by the same method as the application of the photosensitive composition solution to the substrate and drying (the photosensitive layer forming method of the first aspect).

前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有するフィルムである。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜40μmが特に好ましい。
The protective film is a film having a function of preventing and protecting the photosensitive layer from being stained and damaged.
There is no restriction | limiting in particular as thickness of the said protective film, According to the objective, it can select suitably, For example, 5-100 micrometers is preferable, 8-50 micrometers is more preferable, 10-40 micrometers is especially preferable.

前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記感光層上に設けられる。   There is no restriction | limiting in particular as a location provided in the said photosensitive film of the said protective film, Although it can select suitably according to the objective, Usually, it provides on the said photosensitive layer.

前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとの関係としては、接着力A>接着力Bであることが好適である。   When the protective film is used, the relationship between the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film is preferably adhesive force A> adhesive force B. .

前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
The coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, and more preferably 0.5 to 1.2.
When the coefficient of static friction is less than 0.3, slipping is excessive, so that winding deviation may occur when the roll is formed. Sometimes.

前記保護フィルムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオロエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムなどが特に好ましいものとして挙げられる。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、特開2005−70767号公報の段落番号〔0151〕に記載の組合せや、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。
The protective film is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include those used for the support, silicone paper, polyethylene, polypropylene laminated paper, polyolefin or polytetrafluoro. An ethylene sheet etc. are mentioned, Among these, a polyethylene film, a polypropylene film, etc. are mentioned as a particularly preferable thing.
Examples of the combination of the support and the protective film (support / protective film) include the combination described in paragraph [0151] of JP-A-2005-70767, polyethylene terephthalate / polyethylene terephthalate, and the like.

前記保護フィルムとしては、上述の接着力の関係を満たすため、前記保護フィルムと前記感光層との接着性を調製するために表面処理することが好ましく、例えば、該表面処理の方法としては、特開2005−70767号公報の段落番号〔0151〕に記載の方法等が挙げられる。   The protective film is preferably surface-treated in order to adjust the adhesiveness between the protective film and the photosensitive layer in order to satisfy the above-described adhesive force relationship. Examples include the method described in paragraph No. [0151] of JP-A-2005-70767.

前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱可塑性樹脂層、中間層、などが挙げられる。   There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, a thermoplastic resin layer, an intermediate | middle layer, etc. are mentioned.

−熱可塑性樹脂層−
前記熱可塑性樹脂層(以下、「クッション層」と称することもある)は、アルカリ現像を可能とし、また、転写時にはみ出した該熱可塑性樹脂層により被転写体が汚染されるのを防止可能とする観点からアルカリ可溶性であることが好ましく、前記感光性転写材料を被転写体上に転写させる際、該被転写体上に存在する凹凸に起因して発生する転写不良を効果的に防止するクッション材としての機能を有していることが好ましく、該感光性転写材料を前記被転写体上に加熱密着させた際に該被転写体上に存在する凹凸に応じて変形可能であるのがより好ましい。
-Thermoplastic resin layer-
The thermoplastic resin layer (hereinafter sometimes referred to as a “cushion layer”) enables alkali development, and prevents the transfer target from being contaminated by the thermoplastic resin layer protruding during transfer. In view of the above, it is preferably alkali-soluble, and when transferring the photosensitive transfer material onto the transfer object, a cushion that effectively prevents transfer defects caused by unevenness present on the transfer object It preferably has a function as a material, and is more deformable according to the unevenness present on the transferred body when the photosensitive transfer material is heated and adhered onto the transferred body. preferable.

前記熱可塑性樹脂層に用いる材料としては、例えば、特開平5−72724号公報に記載されている有機高分子物質が好ましく、ヴイカーVicat法(具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法)による軟化点が約80℃以下の有機高分子物質より選択されることが特に好ましい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル又はそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル又はそのケン化物、ポリ塩化ビニル、塩化ビニルと酢酸ビニル又はそのケン化物の様な塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル又はそのケン化物の様なスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル又はそのケン化物の様なビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシメチル化ナイロン、N−ジメチルアミノ化ナイロンの様なポリアミド樹脂等の有機高分子などが挙げられる。
前記熱可塑性樹脂層の乾燥厚みは、2〜30μmが好ましく、5〜20μmがより好ましく、7〜16μmが特に好ましい。
As the material used for the thermoplastic resin layer, for example, organic polymer substances described in JP-A-5-72724 are preferable, and the Viker Vicat method (specifically, American Material Testing Method ASTM D1235). It is particularly preferred that the softening point by the polymer softening point measurement method according to (1) is selected from organic polymer substances having a temperature of about 80 ° C. or lower. Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers such as ethylene and vinyl acetate or saponified products thereof, ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride, vinyl chloride and vinyl acetate or saponified products thereof. Vinyl chloride copolymer such as fluoride, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer such as styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, vinyl toluene and (meta ) Vinyl toluene copolymer such as acrylic ester or saponified product thereof, poly (meth) acrylic ester, (meth) acrylic ester copolymer such as butyl (meth) acrylate and vinyl acetate, vinyl acetate copolymer Combined nylon, copolymer nylon, N-alkoxymethylated sodium Ron, and organic polymers of the polyamide resins, such as N- dimethylamino nylon and the like.
The dry thickness of the thermoplastic resin layer is preferably 2 to 30 μm, more preferably 5 to 20 μm, and particularly preferably 7 to 16 μm.

−中間層−
前記中間層は、前記感光層上に設けられ、前記感光性転写材料が熱可塑性樹脂層を有する場合には該感光層と該熱可塑性樹脂層との間に設けられる。該感光層と該熱可塑性樹脂層との形成においては有機溶剤を用いるため、該中間層がその間に位置すると、両層が互いに混ざり合うのを防止することができる。
-Intermediate layer-
The intermediate layer is provided on the photosensitive layer, and is provided between the photosensitive layer and the thermoplastic resin layer when the photosensitive transfer material has a thermoplastic resin layer. In forming the photosensitive layer and the thermoplastic resin layer, an organic solvent is used. Therefore, when the intermediate layer is located between them, the layers can be prevented from being mixed with each other.

前記中間層としては、水又はアルカリ水溶液に分散乃至溶解するものが好ましい。
前記中間層の材料としては、公知のものを使用することができ、例えば、特開昭46−2121号公報及び特公昭56−40824号公報に記載のポリビニルエーテル/無水マレイン酸重合体、カルボキシアルキルセルロースの水溶性塩、水溶性セルロースエーテル類、カルボキシアルキル澱粉の水溶性塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド類、水溶性ポリアミド、ポリアクリル酸の水溶性塩、ゼラチン、エチレンオキサイド重合体、各種澱粉及びその類似物からなる群の水溶性塩、スチレン/マレイン酸の共重合体、マレイネート樹脂、などが挙げられる。
これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも親水性高分子を使用するのが好ましく、該親水性高分子の中でも、少なくともポリビニルアルコールを使用するのが好ましく、ポリビニルアルコールとポリビニルピロリドンとの併用が特に好ましい。
The intermediate layer is preferably dispersed or dissolved in water or an aqueous alkali solution.
As the material for the intermediate layer, known materials can be used. For example, polyvinyl ether / maleic anhydride polymer, carboxyalkyl described in JP-A No. 46-2121 and JP-B No. 56-40824 Water-soluble salt of cellulose, water-soluble cellulose ether, water-soluble salt of carboxyalkyl starch, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, water-soluble polyamide, water-soluble salt of polyacrylic acid, gelatin, ethylene oxide polymer, various Water soluble salts of the group consisting of starch and the like, styrene / maleic acid copolymers, maleate resins, and the like.
These may be used alone or in combination of two or more. Among these, it is preferable to use a hydrophilic polymer, and among these hydrophilic polymers, it is preferable to use at least polyvinyl alcohol, and a combination of polyvinyl alcohol and polyvinyl pyrrolidone is particularly preferable.

前記ポリビニルアルコールとしては、特に制限はなく、目的に応じて適宜選択することができるが、その鹸化率は80%以上が好ましい。
前記ポリビニルピロリドンを使用する場合、その含有量としては、該中間層の固形分に対し、1〜75体積%が好ましく、1〜60体積%がより好ましく、10〜50体積%が特に好ましい。
前記含有量が、1体積%未満であると、前記感光層との十分な密着性が得られないことがあり、一方、75体積%を超えると、酸素遮断能が低下することがあり、好ましくない。
前記中間層は、酸素透過率が小さいことが好ましい。前記中間層の酸素透過率が大きく酸素遮断能が低い場合には、前記感光層に対する露光時における光量をアップする必要を生じたり、露光時間を長くする必要が生ずることがあり、解像度も低下してしまうことがある。
There is no restriction | limiting in particular as said polyvinyl alcohol, Although it can select suitably according to the objective, The saponification rate has preferable 80% or more.
When using the said polyvinyl pyrrolidone, as content, 1-75 volume% is preferable with respect to solid content of this intermediate | middle layer, 1-60 volume% is more preferable, 10-50 volume% is especially preferable.
When the content is less than 1% by volume, sufficient adhesion to the photosensitive layer may not be obtained. On the other hand, when the content exceeds 75% by volume, the oxygen-blocking ability may be decreased. Absent.
The intermediate layer preferably has a low oxygen permeability. When the oxygen permeability of the intermediate layer is large and the oxygen blocking ability is low, it may be necessary to increase the amount of light at the time of exposure to the photosensitive layer, or it may be necessary to lengthen the exposure time, and the resolution also decreases. May end up.

前記中間層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、0.1〜5μm程度であるのが好ましく、0.5〜2μmがより好ましい。
前記厚みが、0.1μm未満であると、酸素透過性が高過ぎてしまうことがあり、5μmを超えると、現像時や中間層除去時に長時間を要し、好ましくない。
There is no restriction | limiting in particular as thickness of the said intermediate | middle layer, According to the objective, it can select suitably, It is preferable that it is about 0.1-5 micrometers, and 0.5-2 micrometers is more preferable.
If the thickness is less than 0.1 μm, oxygen permeability may be too high, and if it exceeds 5 μm, it takes a long time for development or removal of the intermediate layer, which is not preferable.

前記感光性フィルムの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、仮支持体上に、熱可塑性樹脂層と、中間層と、感光層とを、この順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。   The structure of the photosensitive film is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a thermoplastic resin layer, an intermediate layer, and a photosensitive layer on the support, the temporary support, and the like. The form which has a layer in this order is mentioned. The photosensitive layer may be a single layer or a plurality of layers.

前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。   The photosensitive film is preferably stored, for example, wound around a cylindrical core, wound in a long roll shape. There is no restriction | limiting in particular as the length of the said elongate photosensitive film, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. Moreover, you may slit the said roll-shaped photosensitive film in a sheet form. When storing, from the viewpoint of protecting the end face and preventing edge fusion, it is preferable to install a separator (particularly moisture-proof and containing a desiccant) on the end face, and use a low moisture-permeable material for packaging. Is preferred.

前記感光性フィルムは、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材のパターン形成用として広く用いることができ、これらの中でも、本発明のカラーフィルタの製造方法に好適に用いることができる。   The photosensitive film can be widely used for pattern formation of display members such as color filters, pillar materials, rib materials, spacers, partition walls, etc. Among them, it is preferably used in the method for producing a color filter of the present invention. be able to.

なお、前記第2の態様の感光層形成方法により形成された感光層を有する積層体への露光方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、支持体上にクッション層を介して存在する感光層からなるフィルムの場合は、前記支持体、必要に応じてクッション層も剥離した後、前記中間層を介して前記感光層を露光することが好ましい。   In addition, there is no restriction | limiting in particular as an exposure method to the laminated body which has the photosensitive layer formed by the photosensitive layer forming method of the said 2nd aspect, According to the objective, it can select suitably, For example, on a support body In the case of a film comprising a photosensitive layer present via a cushion layer, it is preferable that the photosensitive layer is exposed via the intermediate layer after peeling off the support and, if necessary, the cushion layer.

(カラーフィルタの製造方法及びカラーフィルタ)
本発明のカラーフィルタの製造方法は、感光層形成工程と、露光工程と、現像工程とを少なくとも含んでなり、更に必要に応じて適宜選択されたその他の工程を含んでなる。
本発明のカラーフィルタは、本発明の前記カラーフィルタの製造方法により製造される。
以下、本発明のカラーフィルタの製造方法の説明を通じて、本発明のカラーフィルの詳細についても明らかにする。
(Color filter manufacturing method and color filter)
The method for producing a color filter of the present invention includes at least a photosensitive layer forming step, an exposure step, and a development step, and further includes other steps appropriately selected as necessary.
The color filter of the present invention is manufactured by the method for manufacturing the color filter of the present invention.
Hereinafter, the details of the color fill of the present invention will be clarified through the description of the method for producing the color filter of the present invention.

前記感光層形成工程では、本発明の前記感光性組成物を用いて基材の表面に感光層を形成する工程である。   In the photosensitive layer forming step, a photosensitive layer is formed on the surface of the substrate using the photosensitive composition of the present invention.

前記感光層形成工程で用いられる前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凹凸のある表面を有するものまで、目的に応じて適宜選択することができ、板状の基材(基板)が好ましく、具体的には、ガラス板(例えば、ソーダガラス板、酸化ケイ素をスパッタしたガラス板、無アルカリガラス板、石英ガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。   The substrate used in the photosensitive layer forming step is not particularly limited, and may be appropriately selected from known materials having high surface smoothness to those having an uneven surface according to the purpose. In particular, a plate-like substrate (substrate) is preferable. Specifically, a glass plate (for example, soda glass plate, glass plate sputtered with silicon oxide, non-alkali glass plate, quartz glass plate, etc.), synthetic resinous A film, paper, a metal plate, etc. are mentioned.

前記基材は、該基材上に前記感光層が重なるようにして積層してなる積層体を形成して用いることができる。即ち、前記積層体における感光層の前記感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程によりパターンを形成することができる。   The substrate can be used by forming a laminate formed by laminating the photosensitive layer on the substrate. That is, by exposing the photosensitive layer of the laminate to the photosensitive layer, the exposed region can be cured, and a pattern can be formed by a development process described later.

[露光工程]
前記露光工程としては、前記感光性組成物からなる感光層に対し、画像データに基づいて、2つ以上のレーザーヘッドを有する露光装置により光を変調しながら相対走査させて露光する工程である。
前記2つ以上のレーザーヘッドは、二次元状に配列されていることが好ましく、これに対応して、二次元状に並んだ空間光変調素子を有することが好ましい。
前記レーザーヘッドの数は、2つ以上であれば特に制限はなく、目的に応じて適宜選択することができる。
[Exposure process]
The exposure step is a step of exposing the photosensitive layer made of the photosensitive composition by relative scanning while modulating light with an exposure apparatus having two or more laser heads based on image data.
The two or more laser heads are preferably arranged two-dimensionally, and correspondingly, it is preferable to have two-dimensionally arranged spatial light modulation elements.
The number of the laser heads is not particularly limited as long as it is two or more, and can be appropriately selected according to the purpose.

具体的には、前記露光は、光照射手段及び光変調手段を少なくとも備えた2つ以上の露光ヘッドと、前記感光層の少なくともいずれかを移動させつつ、前記感光層に対して、前記光照射手段から出射した光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光する工程であり、該露光はマスクレス露光である。   Specifically, in the exposure, the light irradiation is performed on the photosensitive layer while moving at least one of the two or more exposure heads including at least a light irradiation unit and a light modulation unit, and the photosensitive layer. This is a step of exposing the photosensitive layer by irradiating light emitted from the exposure unit from the exposure head while modulating the light according to pattern information by the light modulation unit, and the exposure is maskless exposure.

前記マスクレス露光(「マスクレスパターン露光」ともいう)とは、パターン情報(「画像データ」ともいう)に基づいて、光照射手段からの光を変調しながら、露光ヘッドと前記感光層の被露光面とを相対走査することにより、前記感光層の被露光面上に二次元パターン(「画像」ともいう)を形成する露光方法である。これに対し、マスクを用いた従来の露光方法は、露光光を透過させない材質、又は露光光を弱めて透過させる材質でパターンを形成してなるマスクを、前記感光層の被露光面上の光路に配置して露光を行う方法である。   The maskless exposure (also referred to as “maskless pattern exposure”) refers to the exposure head and the photosensitive layer covered while modulating the light from the light irradiation means based on pattern information (also referred to as “image data”). In this exposure method, a two-dimensional pattern (also referred to as “image”) is formed on the exposed surface of the photosensitive layer by performing relative scanning with the exposed surface. On the other hand, in the conventional exposure method using a mask, a mask formed with a pattern using a material that does not transmit exposure light or a material that transmits exposure light by weakening the exposure light is used as an optical path on the exposed surface of the photosensitive layer. It is the method of arrange | positioning and performing exposure.

前記光照射手段から照射される光の光源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、及びレーザ光(半導体レーザ、固体レーザ、液体レーザ、気体レーザ)等が挙げられ、これらの中でも、超高圧水銀灯及びレーザ光が好ましく、光のオンオフ制御が短時間で行え、光の干渉制御が容易ある観点から、レーザ光がより好ましい。   The light source of light emitted from the light irradiation means is not particularly limited and can be appropriately selected according to the purpose. For example, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc lamp, a halogen lamp, a copying machine, etc. Fluorescent tubes, LEDs, and laser beams (semiconductor lasers, solid state lasers, liquid lasers, gas lasers), etc., among these, ultra-high pressure mercury lamps and laser beams are preferable, and light on / off control can be performed in a short time, From the viewpoint of easy light interference control, laser light is more preferable.

前記光源の波長としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記超高圧水銀灯としては、i線(365nm)が好ましく、固体レーザとしては、YAG−SHG固体レーザ(532nm)、半導体励起固体レーザ(532nm、355nm、266nm)が好ましく、気体レーザとしては、KrFレーザ(249nm)、ArFレーザ(193nm)が好ましい。半導体レーザとしては、感光性組成物の露光時間の短縮を図る目的、及び入手のしやすさの観点から、300〜500nmが好ましく、340〜450nmがより好ましく、405nm又は410nmであることが特に好ましい。   There is no restriction | limiting in particular as a wavelength of the said light source, Although it can select suitably according to the objective, For example, as an ultra-high pressure mercury lamp, i line | wire (365 nm) is preferable, As a solid laser, YAG-SHG solid is preferable. A laser (532 nm) and a semiconductor excitation solid-state laser (532 nm, 355 nm, 266 nm) are preferable. As a gas laser, a KrF laser (249 nm) and an ArF laser (193 nm) are preferable. The semiconductor laser is preferably 300 to 500 nm, more preferably 340 to 450 nm, and particularly preferably 405 nm or 410 nm from the viewpoints of shortening the exposure time of the photosensitive composition and easy availability. .

前記レーザ光のビーム径としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層における解像度の観点から、ガウシアンビームの1/e値で5〜30μnが好ましく、7〜20μmがより好ましい。
また、前記レーザ光の光エネルギー量としては、特に制限はなく、目的に応じて適宜選択することができるが、露光時間の短縮と解像度の観点から、1〜100mJ/cmが好ましく、5〜20mJ/cmがより好ましい。
The beam diameter of the laser beam is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of resolution in the photosensitive layer, a 1 / e 2 value of a Gaussian beam is preferably 5 to 30 μn, 7-20 micrometers is more preferable.
The amount of light energy of the laser light is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 100 mJ / cm 2 from the viewpoint of shortening the exposure time and resolution. 20 mJ / cm 2 is more preferable.

前記光源としては、光を一端から入射し、入射した前記光を他端から出射する光ファイバを複数本束ねてなるバンドル状のファイバ光源が好ましく、前記光ファイバが、光源からの光を2以上合成した合波レーザ光を出射可能であることがより好ましい。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させるレンズ系とにより合波レーザ光を合成し、照射する方法が挙げられる。
The light source is preferably a bundle-shaped fiber light source in which a plurality of optical fibers that enter light from one end and emit the incident light from the other end are bundled, and the optical fiber receives two or more light from the light source. More preferably, the combined laser beam can be emitted.
There is no restriction | limiting in particular as the irradiation method of the said combined laser beam, Although it can select suitably according to the objective, A laser irradiated from a several laser light source, a multimode optical fiber, and this several laser light source A method of combining and irradiating a combined laser beam with a lens system that collects light and couples it to the multi-mode optical fiber is exemplified.

前記露光工程において、前記光照射手段からの光を変調する光変調手段としては、前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能であるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間変調素子、及び光多面鏡(ポリゴンミラー)等が挙げられる。   In the exposure step, the light modulating means for modulating the light from the light irradiating means is a two-dimensional shape of n (where n is a natural number of 2 or more) that receives and emits the light from the light irradiating means. There is no particular limitation as long as it has arranged picture element parts and the picture element parts can be controlled based on pattern information, and can be appropriately selected according to the purpose. For example, a spatial modulation element And an optical polygon mirror (polygon mirror).

前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができるが、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、ミラー階調型空間変調素子、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられる。
なお、MEMSとは、IC製造プロセスを基板としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、及び制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。更に、Grating Light Valve(GLV)を複数並べて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や、透過型空間光変調素子(LCD)を使用する構成においては、前記光源として、レーザのほかにランプ等を使用することができる。
これらの空間光変調素子の中でもDMD、及びミラー階調型空間変調素子がより好適に挙げられ、DMDが特に好適に挙げられる。
The spatial light modulation element is not particularly limited and may be appropriately selected depending on the intended purpose. However, a digital micromirror device (DMD) or a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM) may be used. Preferred examples include a special light modulator, a mirror gradation type spatial modulation element, an optical element that modulates transmitted light by an electro-optic effect (PLZT element), and a liquid crystal light shutter (FLC).
Note that MEMS is a general term for a micro system that integrates micro-sized sensors, actuators, and control circuits based on a micro-machining technology using an IC manufacturing process as a substrate. It means a spatial light modulator driven by electromechanical operation using Further, a plurality of Grading Light Valves (GLVs) arranged in two dimensions can be used. In the configuration using these reflective spatial light modulators (GLV) and transmissive spatial light modulators (LCD), a lamp or the like can be used as the light source in addition to the laser.
Among these spatial light modulation elements, DMD and mirror gradation type spatial modulation elements are more preferable, and DMD is particularly preferable.

前記光多面鏡(ポリゴンミラー)としては、複数面(例えば6面)の平面反射面を有する回転部材であって、回転によって光を走査させることが可能な限り、特に制限はなく、目的に応じて適宜選択することができる。なお、前記光多面体(ポリゴンミラー)を用いる露光においては、前記感光層の被露光面を、前記光多面体(ポリゴンミラー)の走査方向に対して直角に移動させることにより、前記被露光面前面を露光することができる。   The optical polygon mirror (polygon mirror) is a rotating member having a plurality of (for example, six) plane reflecting surfaces, and is not particularly limited as long as light can be scanned by rotation. Can be selected as appropriate. In the exposure using the optical polyhedron (polygon mirror), the exposed surface of the photosensitive layer is moved at a right angle to the scanning direction of the optical polyhedron (polygon mirror), so that the front surface of the exposed surface is moved. Can be exposed.

前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
In the exposure step, the method for exposing the photosensitive layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include digital exposure and analog exposure, but digital exposure is preferred. .
The digital exposure method is not particularly limited and may be appropriately selected depending on the purpose. For example, the digital exposure method is performed using laser light modulated according to a control signal generated based on predetermined pattern information. Is preferred.
Furthermore, in the exposure step, the method for exposing the photosensitive layer is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of enabling high-speed exposure in a short time, It is preferably carried out while relatively moving the photosensitive layer, and particularly preferably used in combination with the digital micromirror device (DMD).

前記露光工程において、不活性ガス雰囲気下行うことが好ましい。前記感光層形成工程により形成された感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、不活性ガスを前記感光層表面に直接吹きかける方法、枠状フレームの一辺が開放され、不活性ガスの導入孔が少なくとも残りの1辺に形成された試料台中の露光空間に、露光対象である感光層が形成された試料を載置し、前記不活性ガスの導入孔から不活性ガスを導入して、感光層表面を不活性ガスで覆いつつ、露光を行う方法などが挙げられる。
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導入することも可能である。
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されることを防止できれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素、ヘリウム、アルゴンなどが挙げられる。
The exposure step is preferably performed in an inert gas atmosphere. The method for exposing the photosensitive layer formed in the photosensitive layer forming step is not particularly limited and can be appropriately selected according to the purpose. For example, a method of directly spraying an inert gas on the surface of the photosensitive layer, A sample on which a photosensitive layer to be exposed is placed in an exposure space in a sample table in which one side of the frame-shaped frame is opened and an inert gas introduction hole is formed on at least one remaining side. Examples thereof include a method of performing exposure while introducing an inert gas from an active gas introduction hole and covering the surface of the photosensitive layer with an inert gas.
In addition, it is possible to introduce an inert gas into the sealed space under reduced pressure using the exposure space as a sealed space.
The inert gas is not particularly limited as long as it can prevent the polymerization reaction of the photosensitive layer from being inhibited by the influence of oxygen, and can be appropriately selected according to the purpose. For example, nitrogen, helium, argon, etc. Is mentioned.

以下、本発明のカラーフィルタの製造方法の態様、及び該カラーフィルタの製造方法に好適に用いられる露光装置を、図面を参照しながら説明する。
前記露光装置としては、いわゆるフラットベッドタイプの露光装置の他、感光材料がドラムの外周面に巻きつけられるアウタードラムタイプの露光装置、及び感光材料がシリンダの内周面に装着されるインナードラムタイプの露光装置であってもよい。以下、一例として、フラットベットタイプの露光装置について説明する。
Hereinafter, an embodiment of a method for producing a color filter of the present invention and an exposure apparatus suitably used for the method for producing the color filter will be described with reference to the drawings.
As the exposure apparatus, in addition to a so-called flat bed type exposure apparatus, an outer drum type exposure apparatus in which a photosensitive material is wound around the outer peripheral surface of the drum, and an inner drum type in which the photosensitive material is mounted on the inner peripheral surface of the cylinder The exposure apparatus may be used. Hereinafter, a flat bed type exposure apparatus will be described as an example.

<露光装置>
前記露光装置は、図1に示すように、前記感光層を前記基体上に積層してなる積層体12(以下、「感光層12」、又は「感光材料12」と表す)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、この露光装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
<Exposure device>
As shown in FIG. 1, the exposure apparatus adsorbs to the surface a laminate 12 (hereinafter referred to as “photosensitive layer 12” or “photosensitive material 12”) formed by laminating the photosensitive layer on the substrate. A flat moving stage 14 is provided. Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation table 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The exposure apparatus 10 is provided with a stage driving device (not shown) that drives the stage 14 along the guide 20.

設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光層12の先端及び後端を検知する複数(例えば2個)のセンサ26(又はカメラ26)が設けられている。スキャナ24及びセンサ26(又はカメラ26)は、ゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26(又はカメラ26)は、これらを制御する図示しないコントローラに接続されている。   A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the movement path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 (or cameras 26) for detecting the front and rear ends of the photosensitive layer 12 are provided on the other side. ing. The scanner 24 and the sensor 26 (or the camera 26) are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 (or the camera 26) are connected to a controller (not shown) that controls them.

スキャナ24には、図2及び図3Bに示すように、m行n列(例えば、2行5列)の略マトリックス状に配列された10個の露光ヘッドが備えられている。
図2に示すように、各露光ヘッド30が、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている場合には、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。
ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
As shown in FIGS. 2 and 3B, the scanner 24 includes ten exposure heads arranged in an approximately matrix of m rows and n columns (for example, 2 rows and 5 columns).
As shown in FIG. 2, each exposure head 30 is arranged so that each pixel portion (micromirror) row direction of an internal digital micromirror device (DMD) 36 described later has a scanning direction and a predetermined set inclination angle θ. As is apparent, when attached to the scanner 24, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction.
As the stage 14 moves, a strip-shaped exposed region 34 is formed in the photosensitive layer 12 for each exposure head 30.
In the following description, when the individual exposure heads arranged in the mth row and the nth column are indicated, the exposure head 30 mn is indicated, and exposure by the individual exposure heads arranged in the mth row and the nth column is performed. When an area is indicated, it is expressed as an exposure area 32 mn .

また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。 Further, as shown in FIGS. 3A and 3B, each of the exposure heads 30 in each row arranged in a line so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34 is In the arrangement direction, they are shifted by a predetermined interval (a natural number times the long side of the exposure area, twice in this embodiment). Therefore, can not be exposed portion between the exposure area 32 11 in the first row and the exposure area 32 12, it can be exposed by the second row of the exposure area 32 21.

スキャナ24による感光層12の副走査が終了し、センサ26(又はカメラ26)で感光層12の後端が検出されると、ステージ14は、ステージ駆動装置304により、ガイド20に沿ってゲート22の最上流側にある原点に復帰し、再度、ガイド20に沿ってゲート22の上流側から下流側に一定速度で移動される。   When the sub scanning of the photosensitive layer 12 by the scanner 24 is completed and the rear end of the photosensitive layer 12 is detected by the sensor 26 (or the camera 26), the stage 14 is moved along the guide 20 by the stage driving device 304. It returns to the origin on the most upstream side of the gate and is moved again along the guide 20 from the upstream side to the downstream side of the gate 22 at a constant speed.

ここで、説明のため、ステージ14の表面と平行な平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。   Here, for explanation, an X axis and a Y axis orthogonal to each other are defined in a plane parallel to the surface of the stage 14 as shown in FIG.

ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されていてもよい。
各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
A slit formed in a “<” shape that opens in the direction of the X-axis at the upstream edge (hereinafter sometimes simply referred to as “upstream”) along the scanning direction of the stage 14. 10 may be formed at equal intervals.
Each slit 28 includes a slit 28 a located on the upstream side and a slit 28 b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.

スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。   The position of the slit 28 is substantially coincident with the center of the exposure head 30. Further, the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set so as to sufficiently cover the width of the overlapping portion between the exposed regions 34.

ステージ14内部の各スリット28の下方の位置には、N重露光を行う場合、理想のN重露光を実現するために描素部を選択する後述の使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれていてもよい。また、前記光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。   In the position below each slit 28 in the stage 14, when performing N double exposure, a pixel unit is used in a later-described used pixel part specifying process for selecting a pixel part in order to realize an ideal N double exposure. A single cell type photodetector (not shown) as a light spot position detecting means for detecting a light spot may be incorporated. Further, the photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in a used pixel part specifying process described later.

露光時における前記露光装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。   The operation mode of the exposure apparatus at the time of exposure may be a mode in which exposure is continuously performed while the exposure head is constantly moved, or at each movement destination position while the exposure head is moved stepwise. The exposure head may be stationary and the exposure operation may be performed.

また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。   The exposure method is preferably performed while relatively moving the exposure light and the photosensitive layer, and in this case, it is preferable to use the high-speed modulation together. Thereby, high-speed exposure can be performed in a short time.

<<露光ヘッド>>
露光ヘッド30の概略構成の一例を、図4、図5A、及び図5Bに示す。図4、図5A、及び図5Bでは、前記露光ヘッド30中を伝播する光の光路に沿って、各構成要素を示している。
本例では、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備え、光照射手段として、ファイバアレイ光源38を備えている。
<< Exposure head >>
An example of a schematic configuration of the exposure head 30 is shown in FIGS. 4, 5A, and 5B. 4, 5 </ b> A, and 5 </ b> B, each component is shown along an optical path of light propagating through the exposure head 30.
In this example, a DMD 36 (manufactured by Texas Instruments Inc., USA) is provided as light modulation means (spatial light modulation element that modulates each pixel part) according to image data in accordance with image data. As a light irradiation means, a fiber array light source 38 is provided.

図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させる集光レンズ系40、この集光レンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、集光レンズ系40を概略的に示してある。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の露光面上に結像する結像レンズ系50が配置されている。なお図4では、結像レンズ系50を概略的に示してある。
As shown in FIG. 4, on the light incident side of the DMD 36, there is provided a laser emitting portion in which the emission end portion (light emitting point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. The fiber array light source 38, the condensing lens system 40 that corrects the laser light emitted from the fiber array light source 38 and condenses the light on the DMD, and reflects the laser light transmitted through the condensing lens system 40 toward the DMD 36. The mirrors 42 are arranged in this order. In FIG. 4, the condensing lens system 40 is schematically shown.
Further, an imaging lens system 50 that images the laser light reflected by the DMD 36 on the exposure surface of the photosensitive layer 12 is disposed on the light reflection side of the DMD 36. In FIG. 4, the imaging lens system 50 is schematically shown.

前記集光レンズ系40は、例えば、図5A及び図5Bに示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成され、更に後述する他の部材等からなる。
前記結像レンズ系50は、例えば、DMD36と感光層12の露光面とが共役な関係となるように配置された2枚のレンズ52及び54で構成され、更に、マイクロレンズアレイ、及びアパーチャアレイ等の後述する他のレンズ群からなる。
For example, as shown in FIGS. 5A and 5B, the condensing lens system 40 includes a pair of combination lenses 44 for collimating the laser light emitted from the fiber array light source 38, and the collimated laser light. It is composed of a pair of combination lenses 46 for correcting the light quantity distribution to be uniform, and a condensing lens 48 for condensing the laser light whose light quantity distribution is corrected on the DMD 36, and further includes other members and the like which will be described later. .
The imaging lens system 50 includes, for example, two lenses 52 and 54 arranged so that the DMD 36 and the exposure surface of the photosensitive layer 12 have a conjugate relationship, and further includes a microlens array and an aperture array. And other lens groups described later.

−光変調手段−
前記光変調手段としてのDMD36は、図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
-Light modulation means-
As shown in FIG. 6, the DMD 36 as the light modulating means has a large number of micromirrors 58 arranged in a lattice form on the SRAM cell (memory cell) 56 as a pixel portion constituting each pixel (pixel). This is a mirror device. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 μm in both the vertical direction and the horizontal direction. The SRAM cell 56 is of a silicon gate CMOS manufactured in a normal semiconductor memory manufacturing line via a support including a hinge and a yoke, and the whole is configured monolithically (integrated).

DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(例えば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された図8のコントローラ302によって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
When an image signal representing the density of each point constituting a desired two-dimensional pattern in binary is written in the SRAM cell (memory cell) 56 of the DMD 36, each micromirror 58 supported by the column is centered on the diagonal line. As shown in FIG. 2, the angle is inclined to ± α degrees (for example, ± 10 degrees) with respect to the substrate side on which the DMD 36 is disposed. FIG. 7A shows a state in which the micromirror 58 is tilted to + α degrees in the on state, and FIG. 7B shows a state in which the micromirror 58 is tilted to −α degrees in the off state. Thus, by controlling the tilt of the micromirror 58 in each pixel of the DMD 36 according to the image signal, the laser light B incident on the DMD 36 is reflected in the tilt direction of each micromirror 58.
The on / off control of each micromirror 58 is performed by the controller 302 of FIG. 8 connected to the DMD 36. Further, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.

また、DMD36は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図9AはDMD36を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図9BはDMD36を傾斜させた場合の露光ビーム53の走査軌跡を示している。   Further, it is preferable that the DMD 36 is disposed with a slight inclination so that the short side forms a predetermined angle θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. 9A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 36 is not tilted, and FIG. 9B shows the scanning trajectory of the exposure beam 53 when the DMD 36 is tilted.

DMD36には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図9Bに示すように、DMD36を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD36を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD36の傾斜角は微小であるので、DMD36を傾斜させた場合の走査幅Wと、DMD36を傾斜させない場合の走査幅Wとは略同一である。 In the DMD 36, a number of micromirror arrays in which a number of micromirrors are arranged in the longitudinal direction (for example, 1024) are arranged in a short direction (for example, 756 pairs). , by inclining the DMD 36, the pitch P 2 of the scanning locus of the exposure beams 53 from each micromirror (scan line), becomes narrower than the pitch P 1 of the scanning line in the case of not tilting the DMD 36, greatly improve the resolution be able to. On the other hand, since the inclination angle of the DMD 36 is minute, the scanning width W 2 in the case of tilting the DMD 36, is substantially equal to the scanning width W 1 when not inclined DMD 36.

異なるマイクロミラー列により同じ走査線上が重ねて露光されることにより、アライメントマークに対する露光位置の微少量を制御することができ、高精細な露光を実現することができる、また、主走査方向に配列された複数の露光ヘッドの間のつなぎ目(ヘッド間つなぎ領域)を微少量の制御により段差なくつなぐことができる。
DMDを傾斜させるかわりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらし、図10に示すように千鳥情に配置しても、同様の効果を得ることができる。
By exposing the same scanning line on different micromirror rows in an overlapping manner, it is possible to control a minute amount of the exposure position with respect to the alignment mark, realizing high-definition exposure, and arranging in the main scanning direction It is possible to connect the joints between the plurality of exposure heads (joint areas between the heads) without any step by a very small amount of control.
The same effect can be obtained even if each micromirror array is shifted by a predetermined interval in the direction orthogonal to the sub-scanning direction and arranged in a zigzag pattern as shown in FIG. 10 instead of inclining the DMD.

なお、図10に示すように、スキャナ24によるX方向への1回の走査で感光層12の全面を露光してもよく、図11A及び図11Bに示すように、スキャナ24により感光層12をX方向へ走査した後、スキャナ24をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光層12の全面を露光するようにしてもよい。   As shown in FIG. 10, the entire surface of the photosensitive layer 12 may be exposed by one scanning in the X direction by the scanner 24. As shown in FIGS. 11A and 11B, the photosensitive layer 12 is removed by the scanner 24. After scanning in the X direction, the scanner 24 is moved one step in the Y direction, and scanning in the X direction is repeated, so that the entire surface of the photosensitive layer 12 is exposed by a plurality of scans. May be.

−光照射手段−
前記光照射手段の好適な例として、合波レーザを照射可能な手段、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する手段(ファイバアレイ光源)について説明する。
-Light irradiation means-
As a suitable example of the light irradiating means, a means capable of irradiating a combined laser, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated from each of the plurality of lasers to collect the multimode. A means (fiber array light source) having a lens system coupled to an optical fiber will be described.

ファイバアレイ光源38は、図12に示すように、複数(例えば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図13に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。   As shown in FIG. 12, the fiber array light source 38 includes a plurality of (for example, 14) laser modules 60, and one end of a multimode optical fiber 62 is coupled to each laser module 60. An optical fiber 64 having a cladding diameter smaller than that of the multimode optical fiber 62 is coupled to the other end of the multimode optical fiber 62. As shown in detail in FIG. 13, seven ends of the optical fiber 64 opposite to the multimode optical fiber 62 are arranged along the direction orthogonal to the scanning direction, and these are arranged in two rows to form the laser emitting unit 66. Is configured.

光ファイバ64の端部で構成されるレーザ出射部66は、図13に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 13, the laser emitting portion 66 constituted by the end portion of the optical fiber 64 is sandwiched and fixed between two support plates 68 having a flat surface. Moreover, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the optical fiber 64 for protection. The light exit end face of the optical fiber 64 has a high light density and is likely to collect dust and easily deteriorate. However, by arranging the protective plate as described above, it is possible to prevent the dust from adhering to the end face and to delay the deterioration. Can do.

このような光ファイバは、例えば、図14に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。   For example, as shown in FIG. 14, an optical fiber 64 having a length of 1 to 30 cm and having a small cladding diameter is coaxially connected to the tip of the multimode optical fiber 62 having a large cladding diameter on the laser light emission side. Can be obtained by linking them together. In the two optical fibers, the incident end face of the optical fiber 64 is fused and joined to the outgoing end face of the multimode optical fiber 62 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 64 a of the optical fiber 64 is the same as the diameter of the core 62 a of the multimode optical fiber 62.

また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。   In addition, a short optical fiber in which an optical fiber having a short cladding diameter and a large cladding diameter is fused with an optical fiber having a small cladding diameter may be coupled to the output end of the multimode optical fiber 62 via a ferrule or an optical connector. Good. By detachably coupling using a connector or the like, the tip portion can be easily replaced when an optical fiber having a small cladding diameter is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 64 may be referred to as an emission end portion of the multimode optical fiber 62.

マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。   The multimode optical fiber 62 and the optical fiber 64 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 62 and the optical fiber 64 are step index type optical fibers, and the multimode optical fiber 62 has a cladding diameter = 125 μm, a core diameter = 50 μm, NA = 0.2, an incident end face. The transmittance of the coat is 99.5% or more, and the optical fiber 64 has a clad diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.

一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。   In general, in the laser light in the infrared region, the propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. In the case of laser light having a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter−core diameter) / 2} is set to an infrared light having a wavelength band of 800 nm. The propagation loss hardly increases even if it is about ½ of the case of propagating infrared light and about ¼ of the case of propagating infrared light in the 1.5 μm wavelength band for communication. Therefore, the cladding diameter can be reduced to 60 μm.

ただし、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。   However, the cladding diameter of the optical fiber is not limited to 60 μm. The clad diameter of the optical fiber used in the conventional fiber array light source is 125 μm. However, the smaller the clad diameter, the deeper the focal depth, so the clad diameter of the optical fiber is preferably 80 μm or less, more preferably 60 μm or less. 40 μm or less is more preferable. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 64 is preferably 10 μm or more.

レーザモジュール60は、図15に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、かつ光ファイバ本数をより減らすことができる。   The laser module 60 is composed of a combined laser light source (fiber array light source) shown in FIG. This combined laser light source includes a plurality of (for example, seven) chip-like lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 arranged on the heat block 110, And LD7, collimator lenses L1, L2, L3, L4, L5, L6, and L7 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 200, and one multimode. And an optical fiber 62. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can be incident on a multimode optical fiber having a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2. In addition, the number of optical fibers can be further reduced.

GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。   The GaN-based semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and the maximum output is also all the same (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above 405 nm in a wavelength range of 350 nm to 450 nm may be used.

前記合波レーザ光源は、図16及び図17に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作成されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。   As shown in FIGS. 16 and 17, the combined laser light source is housed in a box-shaped package 400 having an upper opening together with other optical elements. The package 400 includes a package lid 410 created so as to close the opening. After the degassing process, a sealing gas is introduced, and the package 400 and the package lid are closed by closing the opening of the package 400 with the package lid 410. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by the reference numeral 410.

パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。   A base plate 420 is fixed to the bottom surface of the package 400, and the heat block 110, a condensing lens holder 450 that holds the condensing lens 200, and the multimode optical fiber 62 are disposed on the top surface of the base plate 420. A fiber holder 460 that holds the incident end is attached. The exit end of the multimode optical fiber 62 is drawn out of the package from an opening formed in the wall surface of the package 400.

また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。   A collimator lens holder 440 is attached to the side surface of the heat block 110, and the collimator lenses L1 to L7 are held. An opening is formed in the lateral wall surface of the package 400, and a wiring 470 for supplying a driving current to the GaN semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.

なお、図17においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。   In FIG. 17, in order to avoid complication of the drawing, only the GaN semiconductor laser LD7 is numbered among the plurality of GaN semiconductor lasers, and only the collimator lens L7 is numbered among the plurality of collimator lenses. is doing.

図18は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図18の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。   FIG. 18 shows a front shape of a mounting portion of the collimator lenses L1 to L7. Each of the collimator lenses L <b> 1 to L <b> 7 is formed in a shape in which a region including the optical axis of a circular lens having an aspherical surface is cut out in a parallel plane. This elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses L1 to L7 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 18).

一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。   On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having a light emission width of 2 μm, and each of the laser beams B1 in a state parallel to the active layer and a divergence angle in a direction perpendicular to the active layer, for example, 10 ° and 30 °. A laser emitting ~ B7 is used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.

したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。 Therefore, in the laser beams B1 to B7 emitted from the respective light emitting points, the direction in which the divergence angle is large coincides with the length direction and the divergence angle is small with respect to the elongated collimator lenses L1 to L7 as described above. Incident light is incident in a state where the direction coincides with the width direction (direction perpendicular to the length direction). That is, the collimator lenses L1 to L7 have a width of 1.1 mm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2. 6 mm. In addition, each of the collimator lenses L1 to L7 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.

集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。 The condensing lens 200 is formed by cutting a region including the optical axis of a circular lens having an aspherical surface into a long and narrow plane in parallel planes, and is long in the arrangement direction of the collimator lenses L1 to L7, that is, in the horizontal direction and short in the direction perpendicular thereto. Is formed. The condenser lens 200 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 200 is also formed by molding resin or optical glass, for example.

また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力でかつ深い焦点深度を備えた露光装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、露光装置の低コスト化が図られる。   In addition, because the light emitting means for illuminating the DMD uses a high-intensity fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, it has a high output and a deep depth of focus. An exposure apparatus can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the exposure apparatus can be reduced.

また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えた露光装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速かつ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。   In addition, since the cladding diameter at the exit end of the optical fiber is smaller than the cladding diameter at the entrance end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, an exposure apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep depth of focus can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.

また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。   The light irradiating means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, emits laser light incident from a single semiconductor laser having one light emitting point. A fiber array light source in which fiber light sources including optical fibers are arrayed can be used.

また、複数の発光点を備えた光照射手段としては、例えば、図19に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図20Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。ただし、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。   Further, as the light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 19, a laser in which a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 are arranged on the heat block 110. An array can be used. In addition, a chip-shaped multicavity laser 110 in which a plurality of (for example, five) light emitting points 111a shown in FIG. 20A are arranged in a predetermined direction is known. Since the multicavity laser 111 can arrange the light emitting points with high positional accuracy as compared with the case where the chip-shaped semiconductor lasers are arranged, it is easy to multiplex the laser beams emitted from the respective light emitting points. However, as the number of light emitting points increases, the multi-cavity laser 111 is likely to be bent at the time of laser manufacture. Therefore, the number of light emitting points 111a is preferably 5 or less.

前記光照射手段としては、このマルチキャビティレーザ111や、図20Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。   As the light irradiation means, as shown in FIG. 20B, a plurality of multi-cavity lasers 111 are arranged on the heat block 110 in the same direction as the arrangement direction of the light emitting points 111a of each chip. A multi-cavity laser array can be used as a laser light source.

また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。   The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers. For example, as shown in FIG. 21, a combined laser light source including a chip-shaped multicavity laser 111 having a plurality of (for example, three) light emitting points 111a can be used. The combined laser light source includes a multi-cavity laser 111, a single multi-mode optical fiber 62, and a condenser lens 200. The multicavity laser 111 can be composed of, for example, a GaN laser diode having an oscillation wavelength of 405 nm.

前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above-described configuration, each of the laser beams B emitted from each of the plurality of light emitting points 111 a of the multicavity laser 111 is collected by the condenser lens 200 and enters the core 62 a of the multimode optical fiber 62. The laser light incident on the core 62a propagates in the optical fiber, is combined into one, and is emitted.

マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。   A plurality of light emitting points 111 a of the multicavity laser 111 are arranged in parallel within a width substantially equal to the core diameter of the multimode optical fiber 62, and a focal point substantially equal to the core diameter of the multimode optical fiber 62 is formed as the condenser lens 200. By using a convex lens of a distance or a rod lens that collimates the outgoing beam from the multicavity laser 111 only in a plane perpendicular to the active layer, the coupling efficiency of the laser beam B to the multimode optical fiber 62 can be increased. it can.

また、図22に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。   Further, as shown in FIG. 22, a multi-cavity laser 111 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-cavity lasers 111 are equally spaced on the heat block 110. A combined laser light source including the laser array 140 arranged in (1) can be used. The plurality of multi-cavity lasers 111 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 111a of each chip.

この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。   This combined laser light source includes a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 111, and a single rod arranged between the laser array 140 and the plurality of lens arrays 114. The lens 113, one multimode optical fiber 62, and a condenser lens 200 are provided. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multicavity laser 110.

上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 111 a of the plurality of multi-cavity lasers 111 is condensed in a predetermined direction by the rod lens 113 and then each microlens of the lens array 114. It becomes parallel light. The collimated laser beam L is condensed by the condenser lens 200 and enters the core 62 a of the multimode optical fiber 62. The laser light incident on the core 62a propagates in the optical fiber, is combined into one, and is emitted.

更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図23A及び図23Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。   Still another example of the combined laser light source will be described. As shown in FIGS. 23A and 23B, this combined laser light source has a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and is stored between two heat blocks. A space is formed. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers 111 in which a plurality of light emitting points (for example, five) are arranged in an array form the light emitting points 111a of each chip. It is arranged and fixed at equal intervals in the same direction as the arrangement direction.

略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。   A concave portion is formed in the substantially rectangular heat block 180, and a plurality of (for example, two) light emitting points (for example, five) are arranged in an array on the upper surface of the space side of the heat block 180. The multi-cavity laser 110 is arranged such that its emission point is located on the same vertical plane as the emission point of the laser chip arranged on the upper surface of the heat block 182.

マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。   On the laser beam emission side of the multi-cavity laser 111, a collimator lens array 184 in which collimator lenses are arranged corresponding to the light emission points 111a of the respective chips is arranged. In the collimating lens array 184, the length direction of each collimating lens coincides with the direction in which the divergence angle of the laser beam is large (the fast axis direction), and the width direction of each collimating lens is the direction in which the divergence angle is small (slow axis direction). They are arranged to match. Thus, by collimating and integrating the collimating lenses, the space utilization efficiency of the laser light can be improved, the output of the combined laser light source can be increased, and the number of parts can be reduced and the cost can be reduced. .

また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。   Further, on the laser beam emitting side of the collimating lens array 184, there is one multimode optical fiber 62 and a condensing lens 200 that condenses and couples the laser beam to the incident end of the multimode optical fiber 62. Is arranged.

前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 111a of the plurality of multi-cavity lasers 111 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184 and collected. The light is collected by the optical lens 200 and is incident on the core 62 a of the multimode optical fiber 62. The laser light incident on the core 62a propagates in the optical fiber, is combined into one, and is emitted.

前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明の露光装置のレーザ光源を構成するファイバ光源として特に好適である。   As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multicavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be formed, which is particularly suitable as a fiber light source constituting the laser light source of the exposure apparatus of the present invention.

なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。   A laser module in which each of the combined laser light sources is housed in a casing and the emission end portion of the multimode optical fiber 62 is pulled out from the casing can be configured.

また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一でかつクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。   In addition, the other end of the multimode optical fiber of the combined laser light source is coupled with another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber. However, for example, a multimode optical fiber having a cladding diameter of 125 μm, 80 μm, 60 μm or the like may be used without coupling another optical fiber to the emission end.

−−輝度−−
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ64の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ64がアレイ状に配列されたレーザ出射部での出力は約1W(=180mW×6)である。
-Brightness-
In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the light arranged in an array A combined laser beam B with an output of 180 mW (= 30 mW × 0.85 × 7) can be obtained for each of the fibers 64. Therefore, the output at the laser emitting section in which the six optical fibers 64 are arranged in an array is about 1 W (= 180 mW × 6).

ファイバアレイ光源のレーザ出射部には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。   In the laser emission part of the fiber array light source, high-luminance light emitting points are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has a low output, so that a desired output cannot be obtained unless multiple rows are arranged. Since the laser light source has a high output, a desired output can be obtained even with a small number of columns, for example, one column.

例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser having an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is 50 μm and the cladding diameter is 125 μm. Since a multimode optical fiber having a numerical aperture (NA) of 0.2 is used, if an output of about 1 W (watt) is to be obtained, 48 multimode optical fibers (8 × 6) must be bundled. In addition, since the area of the light emitting region is 0.62 mm 2 (0.675 mm × 0.925 mm), the luminance at the laser emitting portion is 1.6 × 10 6 (W / m 2 ), which is per optical fiber. The luminance of is 3.2 × 10 6 (W / m 2 ).

これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical fibers, and the area of the light emitting region at the laser emitting portion is Since it is 0.0081 mm 2 (0.325 mm × 0.025 mm), the luminance at the laser emitting portion 68 is 123 × 10 6 (W / m 2 ), and the luminance is increased by about 80 times compared to the conventional case. Can do. Further, the luminance per optical fiber is 90 × 10 6 (W / m 2 ), and the luminance can be increased by about 28 times compared to the conventional one.

−−焦点深度−−
ここで、図24A及び図24Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図24Aに示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)38aの発光領域が大きいので、DMD36へ入射する光束の角度が大きくなり、結果として走査面(感光層12)へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
-Depth of focus-
Here, with reference to FIG. 24A and FIG. 24B, the difference in the depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission region of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emission region of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 24A, in the conventional exposure head, since the light emitting area of the light irradiation means (bundle-shaped fiber light source) 38a is large, the angle of the light beam incident on the DMD 36 becomes large, and as a result, the scanning surface (photosensitive layer 12). The angle of the light beam incident on becomes larger. For this reason, the beam diameter tends to increase with respect to the light condensing direction (shift in the focus direction).

一方、図24Bに示すように、本発明の露光装置における露光ヘッドでは、ファイバアレイ光源38bの発光領域の副走査方向の径が小さいので、集光レンズ系40を通過してDMD36へ入射する光束の角度が小さくなり、結果として走査面(感光層12)へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図24A及び図24Bは、光学的な関係を説明するために展開図とした。   On the other hand, as shown in FIG. 24B, in the exposure head of the exposure apparatus of the present invention, the diameter of the light emitting area of the fiber array light source 38b is small in the sub-scanning direction. As a result, the angle of the light beam incident on the scanning surface (photosensitive layer 12) is reduced. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus substantially corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required light quantity of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 μm × 10 μm. The DMD is a reflective spatial light modulator, but FIGS. 24A and 24B are developed views for explaining the optical relationship.

〔光量分布の補正方法〕
前記光変調手段を備えるデジタル露光装置では、各描画単位で微細なパターンを高精度に形成するために、露光ヘッド内の各描画単位の光量が均一であることが重要である。ただし実際には、露光ヘッドから照射される光ビームは、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまうという問題がある。
そこで、前記光照射手段から前記光変調手段に照射される光の光量分布を補正し、被露光面上での露光光の光量分布を均一に補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図25に示す。
[Light intensity distribution correction method]
In a digital exposure apparatus provided with the light modulation means, it is important that the light quantity of each drawing unit in the exposure head is uniform in order to form a fine pattern with high accuracy in each drawing unit. However, in practice, the light beam emitted from the exposure head has a problem that the light intensity in the peripheral portion is lower than the central portion of the optical axis due to the lens system.
Therefore, a method for correcting the light amount distribution of the light emitted from the light irradiation unit to the light modulation unit and correcting the light amount distribution of the exposure light on the exposed surface will be described below.
FIG. 25 shows a schematic diagram of the configuration of an exposure head suitable for this method.

前記光量分布補正方法は、集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する方法であり、以下に説明する第1の形態、及び第2の形態が好適に挙げられる。   The light amount distribution correcting method is to provide a distribution of light amount in an irradiation region of light irradiated from the light irradiation unit to the light modulation unit by a condensing lens system, and to cover the photosensitive layer of the light modulated by the light modulation unit. This is a method for correcting the light amount distribution on the exposure surface to be uniform, and the first and second embodiments described below are preferable.

−第1の実施形態−
DMDの光反射側には投影光学系が設けられ、この投影光学系は、DMDの光反射側の露光面にある感光層上に光源像を投影するため、DMD側から感光層へ向って順に、レンズ系、マイクロレンズアレイ、対物レンズ系の各露光用の光学部材が配置されて構成されている。
前記レンズ系及び前記対物レンズ系は、複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMDにより反射されるレーザビーム(光線束)の断面積を拡大することで、DMDにより反射されたレーザビームによる感光層上の露光エリアの面積を所定の大きさに拡大している。なお、感光層は、対物レンズ系の後方焦点位置に配置される。
-First embodiment-
A projection optical system is provided on the light reflection side of the DMD, and this projection optical system projects a light source image on the photosensitive layer on the exposure surface on the light reflection side of the DMD, so that in order from the DMD side to the photosensitive layer. , An optical member for each exposure of a lens system, a microlens array, and an objective lens system is arranged.
The lens system and the objective lens system are configured as a magnifying optical system in which a plurality of lenses (such as a convex lens and a concave lens) are combined, and magnify the cross-sectional area of the laser beam (light beam) reflected by the DMD. Thus, the area of the exposure area on the photosensitive layer by the laser beam reflected by the DMD is enlarged to a predetermined size. The photosensitive layer is disposed at the back focal position of the objective lens system.

通常は、この光ビームの光量(光強度)分布は、レンズ系の要因により光軸の中心部に比べて周辺部が低下してしまうが、本実施形態の露光ヘッドには、ファイバアレイ光源から出射されたレーザ光の光量分布を均一化してDMDに照射するために、DMDの光入射側の光路上に配置した集光レンズ系にロッドインテグレータを設けている。ただし、このロッドインテグレータによっても、本実施形態のように各描画単位をマイクロレンズアレイによって集光する系では、光軸中心部に対する周辺部の光強度低下が顕著となり、より高い精度で画像露光を行う場合に光量分布を要求精度まで補正することが難しい。また、この光量分布の補正精度を高めるために、ロッドインテグレータを長尺化することも考えられるが、その場合、ロッドインテグレータは非常に高価な光学部品であるため、装置コストが上昇し、また、露光ヘッドが大型化してしまう弊害がある。   Normally, the light amount (light intensity) distribution of this light beam is lower in the peripheral portion than in the central portion of the optical axis due to factors of the lens system. However, the exposure head of this embodiment includes a fiber array light source. In order to make the light quantity distribution of the emitted laser light uniform and irradiate the DMD, a rod integrator is provided in a condensing lens system arranged on the optical path on the light incident side of the DMD. However, even with this rod integrator, in the system in which each drawing unit is condensed by the microlens array as in this embodiment, the light intensity in the peripheral portion with respect to the central portion of the optical axis is significantly reduced, and image exposure can be performed with higher accuracy. In this case, it is difficult to correct the light quantity distribution to the required accuracy. In order to improve the correction accuracy of this light quantity distribution, it is conceivable to lengthen the rod integrator, but in that case, the rod integrator is a very expensive optical component, so the device cost increases, There is an adverse effect that the exposure head becomes larger.

これに対し、本実施形態の露光ヘッドでは、前述したように、ファイバアレイ光源38から集光レンズ系へ入射されたレーザ光が、主光線の角度に分布を持ち光軸中心に比べて周辺部の光輝度が高められたレーザ光とされて集光レンズ系から出射され、DMDに照射されるため、DMDのレーザ光照射領域における光量分布は、光軸中心に比べて周辺部の光量が高められる。そのため、DMDにより画素毎に変調された光ビームが、光軸中心から周辺部に行くに従って光の透過量を低下させる特性を持つマイクロレンズアレイを透過して感光層の露光面に照射されると、露光面での光ビームの光量分布は均一になるよう補正される。   On the other hand, in the exposure head of the present embodiment, as described above, the laser light incident from the fiber array light source 38 to the condensing lens system has a distribution in the angle of the principal ray and is a peripheral portion compared to the optical axis center. Therefore, the light intensity distribution in the laser light irradiation area of the DMD is higher than that at the center of the optical axis because the light is emitted from the condenser lens system and emitted to the DMD. It is done. Therefore, when the light beam modulated for each pixel by the DMD passes through the microlens array having the characteristic of reducing the amount of transmitted light from the center of the optical axis to the periphery, and is irradiated onto the exposure surface of the photosensitive layer. The light amount distribution of the light beam on the exposure surface is corrected to be uniform.

−第2の実施形態−
第2の実施形態は、上述した第1の実施形態に係る露光装置の露光ヘッドにおいて、集光レンズ系に、非球面レンズを有するテレセントリック光学系を設けることで、第1の実施形態と同様に露光面での光ビームの光量分布を均一化する技術である。
-Second Embodiment-
The second embodiment is similar to the first embodiment by providing a telecentric optical system having an aspheric lens in the condenser lens system in the exposure head of the exposure apparatus according to the first embodiment described above. This is a technique for uniformizing the light quantity distribution of the light beam on the exposure surface.

第2の実施形態に係る露光ヘッドでは、例えば集光レンズ系に、2枚で一組の平凸レンズにより構成されたテレセントリック光学系が設けられており、このテレセントリック光学系は、例えばロッドインテグレータと集光レンズの間に配置されている。   In the exposure head according to the second embodiment, for example, a concentrating lens system is provided with a telecentric optical system constituted by a pair of plano-convex lenses in a condensing lens system. It is arranged between the optical lenses.

平凸レンズは、凸面側が非球面状に形成された非球面レンズとされている。レーザ光の入射側(ファイバアレイ光源側)に配置された平凸レンズは、入射面の面形状が、曲率半径が光軸(光軸中心)から離れるに従い大きくなる非球面、換言すれば、曲率が光軸Xから離れるに従い小さくなる非球面とされ、出射面が平面状とされている。また、レーザ光の出射側(DMD側)に配置された平凸レンズは、入射面が平面状とされ、出射面の面形状が、曲率半径が光軸Xから離れるに従い小さくなる非球面、換言すれば、曲率が光軸Xから離れるに従い大きくなる非球面とされている。   The plano-convex lens is an aspheric lens having a convex surface formed in an aspheric shape. The plano-convex lens arranged on the laser beam incident side (fiber array light source side) has an aspherical surface in which the surface shape of the incident surface increases as the radius of curvature increases from the optical axis (center of the optical axis). The aspheric surface becomes smaller as the distance from the optical axis X increases, and the exit surface is planar. In addition, the plano-convex lens disposed on the laser beam emission side (DMD side) has an aspherical surface in which the incident surface is flat and the surface shape of the emission surface decreases as the radius of curvature increases from the optical axis X. For example, the aspherical surface has a curvature that increases as the distance from the optical axis X increases.

〔焦点位置精度の補正方法〕
前記結像レンズ系を構成する投影レンズの像面湾曲、非点隔差、歪曲等は、テレセントリック性を低下させ、露光光の焦点位置精度を悪化させるという問題がある。この影響を排除するために多重露光を行うと、露光スピードの低下、画質の低下等が生じるという問題がある。
そこで、結像レンズ系において、被露光面上での露光光の焦点位置精度を補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図29、図35A、及び図35Bに示す。
[Focus position accuracy correction method]
The curvature of field, astigmatism, distortion and the like of the projection lens constituting the imaging lens system have a problem that the telecentricity is lowered and the focus position accuracy of the exposure light is deteriorated. If multiple exposure is performed in order to eliminate this influence, there is a problem that the exposure speed is lowered, the image quality is lowered, and the like.
Therefore, a method for correcting the focus position accuracy of the exposure light on the exposed surface in the imaging lens system will be described below.
Note that schematic diagrams of an exposure head suitable for this method are shown in FIGS. 29, 35A, and 35B.

前記焦点位置精度の補正方法としては、例えば、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いる方法、及び、前記結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する方法が好適に挙げられる。また、前記感光層(感光材料)の相対移動の方向を、該感光材料のうねり方向に向けて移動させる方法も好適に挙げられる。   As the method of correcting the focal position accuracy, for example, a method using a focus adjusting unit that adjusts the focus of the exposure light imaged on the exposed surface of the photosensitive layer by changing the optical path length of the light modulated by the light modulating unit. And a method of forming an image of light modulated by the light modulation means only in a substantially rectangular region including the central portion of the imaging lens system. Further, a method of moving the relative movement direction of the photosensitive layer (photosensitive material) toward the waviness direction of the photosensitive material is also preferable.

〔露光パターン像歪みの補正方法〕
前記空間光変調素子の各描素部の面の歪みは、集光位置における光ビームに歪みをもたらすという問題があり、特に、前記DMDを空間光変調素子として用いた場合には顕著であり、高精細な露光パターンが形成されないという問題がある。
そこで、前記DMDからの光を収束するマイクロレンズアレイにおいて該DMDの出射面の歪みを補正することにより、前記感光層の被露光面上に結像される像の歪みを補正する方法を以下に説明する。
[Exposure pattern image distortion correction method]
The distortion of the surface of each picture element portion of the spatial light modulator has the problem of causing distortion to the light beam at the condensing position, particularly when the DMD is used as a spatial light modulator, There is a problem that a high-definition exposure pattern is not formed.
Accordingly, a method of correcting distortion of an image formed on the exposed surface of the photosensitive layer by correcting distortion of the exit surface of the DMD in a microlens array that converges light from the DMD will be described below. explain.

前記露光パターン像歪みの補正方法としては、例えば、前記マイクロレンズアレイの各マイクロレンズを、前記描素部の面の歪みによる収差を補正する特性を有するものとすることが挙げられ、そのようなマイクロレンズとしては、具体的には、非球面を有するマイクロレンズ、屈折率分布を有するマイクロレンズ、及び周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズ等が挙げられる。   The exposure pattern image distortion correction method includes, for example, that each microlens of the microlens array has a characteristic of correcting aberration due to distortion of the surface of the image element portion, such as Specific examples of the microlens include a microlens having an aspherical surface, a microlens having a refractive index distribution, and a microlens having a lens opening shape that does not allow light from a peripheral portion to enter.

また、以上説明した実施形態では、マイクロレンズの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。   In the embodiment described above, the end surface on the light exit side of the microlens is an aspheric surface (toric surface). However, the microlens has one of two light passage end surfaces as a spherical surface and the other as a cylindrical surface. A microlens array can be configured to obtain the same effect as in the above embodiment.

更に、以上説明した実施形態においては、マイクロレンズアレイのマイクロレンズが、マイクロミラーの反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラーの反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。   Furthermore, in the embodiment described above, the microlens of the microlens array has an aspheric shape that corrects aberration due to distortion of the reflection surface of the micromirror, but instead of adopting such an aspheric shape. The same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution for correcting aberration due to distortion of the reflection surface of the micromirror.

なお、先に述べたマイクロレンズのように、面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラーの反射面の歪みによる収差を補正するようにしてもよい。   In addition, in the microlens whose surface shape is aspherical like the microlens described above, the above-described refractive index distribution is also given, and the reflection surface of the micromirror is determined by both the surface shape and the refractive index distribution. You may make it correct | amend the aberration by distortion of this.

次に、前記描素部の周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズからなるマイクロレンズアレイについて説明する。
先に説明した通り、DMDのマイクロミラーの反射面には歪みが存在するが、その歪み変化量はマイクロミラーの中心から周辺部に行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラーの1つの対角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(x方向)の周辺部歪み変化量と比べて大きく、上記の傾向もより顕著となっている。この問題に対処するために、アレイ状に配設されたマイクロレンズが、円形のレンズ開口を有することが好ましい。
そこで、上述のように歪みが大きいマイクロミラーの反射面の周辺部、特に、四隅部で反射したレーザ光はマイクロレンズによって集光されなくなり、集光されたレーザ光の集光位置における形状が歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像を感光層に露光可能となる。
Next, a microlens array composed of microlenses having a lens aperture shape that does not allow light from the peripheral portion of the picture element portion to enter will be described.
As described above, there is distortion on the reflection surface of the DMD micromirror, but the amount of change in the distortion tends to increase gradually from the center of the micromirror to the periphery. The amount of change in the peripheral portion distortion in one diagonal direction (y direction) of the micromirror is larger than the amount of change in the peripheral portion distortion in another diagonal direction (x direction), and the above-described tendency is more remarkable. In order to cope with this problem, it is preferable that the microlenses arranged in an array have a circular lens opening.
Therefore, as described above, the laser light reflected at the periphery of the reflective surface of the micromirror having a large distortion, particularly at the four corners, is not condensed by the microlens, and the shape of the condensed laser light at the condensing position is distorted. Can be prevented. Therefore, a higher-definition image without distortion can be exposed on the photosensitive layer.

〔多重露光による補正〕
上述のとおり、前記露光ヘッドを構成する各種レンズ系に起因する露光光の歪みの影響は、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。更に、前記露光ヘッドの取付け位置や取付け角度のズレに起因する解像度のばらつきや濃度ムラも、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。
[Correction by multiple exposure]
As described above, the influence of the distortion of the exposure light caused by the various lens systems constituting the exposure head can be equalized by the effect of offset by selecting the micromirror to be used. Further, resolution variations and density unevenness due to deviations in the mounting position and mounting angle of the exposure head can be equalized by the effect of offset by selecting a micromirror to be used.

具体的には、走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う方法が好適に挙げられる。   Specifically, an exposure head in which the column direction of the picture element portions forms a predetermined set inclination angle θ with respect to the scanning direction can be used by the use picture element specifying means for the exposure head. Among the picture element parts, the picture element part to be used for N double exposure (where N is a natural number of 2 or more) is designated, and the used picture element part is controlled by the use pixel part control means for the exposure head. A method in which exposure is performed by moving the exposure head relative to the photosensitive layer in the scanning direction by controlling the drawing unit so that only the drawing unit designated by the designation unit is involved in exposure. Are preferable.

前記N重露光とは、前記感光層上の被露光面の略すべての領域において、前記露光ヘッドの走査方向に平行な直線が、該被露光面上に照射されたN本の光線列と交わる露光をいう。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
In the N double exposure, in almost all the area of the exposed surface on the photosensitive layer, a straight line parallel to the scanning direction of the exposure head intersects with N light lines irradiated on the exposed surface. Refers to exposure.
N in the N-fold exposure is not particularly limited as long as it is a natural number of 2 or more, and can be appropriately selected according to the purpose. However, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .

<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
<< Used pixel part designation means >>
The used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot on a surface to be exposed as a pixel unit, and N-fold exposure based on a detection result by the light spot position detecting means. It is preferable to include at least a pixel part selection unit that selects a pixel part to be used for the realization.
Hereinafter, an example of a method for designating a pixel part used for N-exposure by the used pixel part designation unit will be described.

(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、露光装置10により、感光層12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
(1) Method for designating used pixel portion in single exposure head In the present embodiment (1), the exposure apparatus 10 performs double exposure on the photosensitive layer 12, and each exposure head 30 A description will be given of a method for designating a used pixel part for reducing resolution variation and density unevenness caused by an attachment angle error and realizing ideal double exposure.

露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ・・・(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ・・・(式2)
であり、上記式1は、
stanθideal=N・・・(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
The set inclination angle θ in the column direction of the image element (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 or the like. It is assumed that an angle slightly larger than the angle θ ideal that is exactly double exposure using 256 lines of pixel parts is adopted.
This angle θ ideal is equal to the number N of N double exposures, the number s of usable micromirrors 58 in the column direction, the interval p of usable micromirrors 58 in the column direction, and the microscopic exposure head 30 in a tilted state. For the pitch δ of the scanning line formed by the mirror,
spsinθ ideal ≧ Nδ (Formula 1)
Given by. As described above, the DMD 36 according to the present embodiment includes a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals arranged in a rectangular lattice shape.
pcosθ ideal = δ (Formula 2)
And the above equation 1 is
stanθ ideal = N (Formula 3)
It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle θ ideal is about 0.45 degrees according to Equation 3. Therefore, as the set inclination angle θ, for example, an angle of about 0.50 degrees may be employed. It is assumed that the exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle θ within an adjustable range.

図25は、上記のように初期調整された露光装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m、n)とそれぞれ表記するものとする。   FIG. 25 is an explanatory diagram showing an example of unevenness in the pattern on the exposure surface due to the influence of the mounting angle error of one exposure head 30 and pattern distortion in the exposure apparatus 10 initially adjusted as described above. is there. In the following drawings and description, the light spot in the m-th row is represented by r (m) with respect to the light spot generated by each pixel part (micromirror) and constituting the exposure area on the exposed surface. ), The light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).

図25の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図25では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
The upper part of FIG. 25 shows a pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive layer 12 with the stage 14 being stationary, and the lower part is the upper part. 2 shows the state of the exposure pattern formed on the surface to be exposed when the stage 14 is moved and continuous exposure is performed in a state where the light spot group pattern as shown in FIG.
In FIG. 25, for convenience of explanation, the exposure pattern by the odd-numbered columns and the exposure pattern by the even-numbered columns of the micromirrors 58 that can be used are separately shown. Two exposure patterns are superimposed.

図25の例では、設定傾斜角度θを上記の角度θidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。 In the example of FIG. 25, as a result of adopting the set tilt angle θ slightly larger than the angle θ ideal , and because it is difficult to finely adjust the mounting angle of the exposure head 30, the actual mounting angle and the above As a result of the error in the set inclination angle θ, density unevenness occurs in any region on the exposed surface. Specifically, in both the exposure pattern by the odd-numbered micromirrors and the exposure pattern by the even-numbered micromirrors, it is ideal in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows. Overexposure occurs with respect to double exposure, resulting in a redundant drawing area and uneven density.

更に、図25の例では、露光面上に現れるパターン歪みの一例であって、露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差等が挙げられる。
図25の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
Furthermore, the example of FIG. 25 is an example of pattern distortion appearing on the exposure surface, and “angular distortion” occurs in which the inclination angle of each pixel column projected on the exposure surface is not uniform. The causes of such angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposure surface, distortion of the DMD 36 itself, micromirror placement errors, and the like.
The angle distortion appearing in the example of FIG. 25 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.

上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ´は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図26及び70を用いて、前記実傾斜角度θ´の特定、及び使用画素選択処理について説明する。
In order to reduce the density unevenness in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows as described above, a set of the slit 28 and the photodetector is used as the light spot position detecting means. The actual inclination angle θ ′ is specified for each exposure head 30, and based on the actual inclination angle θ ′, the arithmetic unit connected to the photodetector as the pixel portion selection unit is used for actual exposure. A process of selecting a micromirror to be used is performed.
The actual inclination angle θ ′ is based on at least two light spot positions detected by the light spot position detection means, and the light spot column direction on the surface to be exposed and the scanning direction of the exposure head when the exposure head is tilted. It is specified by the angle formed by.
Hereinafter, the specification of the actual inclination angle θ ′ and the used pixel selection process will be described with reference to FIGS.

−実傾斜角度θ´の特定−
図26は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ´として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1、512)及びP(256、512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ´として特定する。
-Specification of actual inclination angle θ'-
FIG. 26 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
In the example of the present embodiment (1), the angle formed by the 512th light spot row positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle θ ′. . Specifically, the micromirrors 58 in the first row and the 512th column on the DMD 36 and the micromirrors 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of the micromirrors 58 are turned on. The positions of P (1, 512) and P (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual inclination angle θ ′.

図27は、光点P(256、512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
FIG. 27 is a top view illustrating a method for detecting the position of the light spot P (256, 512).
First, in a state where the micromirror 58 in the 256th row and the 512th column is turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is changed. The slit 28 is positioned at an arbitrary position so as to be between the upstream slit 28a and the downstream slit 28b. The coordinates of the intersection of the slit 28a and the slit 28b at this time are (X0, Y0). The values of the coordinates (X0, Y0) are determined and recorded from the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28. .

次に、ステージ14を移動させ、スリット28をY軸に沿って図27における右方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、512)の位置として記録する。   Next, the stage 14 is moved, and the slit 28 is relatively moved to the right in FIG. 27 along the Y axis. Then, as indicated by a two-dot chain line in FIG. 27, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (X0, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).

次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図27における左方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を光点P(256、512)の位置として記録する。   Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved to the left in FIG. 27 along the Y axis. Then, as indicated by a two-dot chain line in FIG. 27, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector. The coordinates (X0, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).

以上の測定結果から、光点P(256、512)の被露光面上における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1、512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ´として特定する。   From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 512) on the exposed surface are X = X0 + (Y1-Y2) / 2 and Y = (Y1 + Y2) / 2. Determine by calculation. By the same measurement, coordinates indicating the position of P (1, 512) are also determined, an inclination angle formed by a straight line connecting the respective coordinates and the scanning direction of the exposure head 30 is derived, and this is obtained as an actual inclination angle θ ′. As specified.

−使用描素部の選択−
このようにして特定された実傾斜角度θ´を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ´=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
−Selection of used pixel part−
Using the actual inclination angle θ ′ thus specified, the arithmetic unit connected to the photodetector is expressed by the following equation 4
ttanθ ′ = N (Expression 4)
The natural number T closest to the value t satisfying the above relationship is derived, and the first to T-th row micromirrors on the DMD 36 are selected as micromirrors that are actually used during the main exposure. In this way, in the exposure region near the 512th column, a micromirror that minimizes the total area of the overexposed region and the underexposed region with respect to the ideal double exposure is actually obtained. It can be selected as a micromirror to be used for.

ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
Here, instead of deriving the natural number closest to the above value t, the minimum natural number greater than or equal to the value t may be derived. In that case, in the exposure region near the 512th column, a micromirror that minimizes the area of the overexposed region and does not produce an underexposed region with respect to ideal double exposure. It can be selected as a micromirror to be actually used.
It is also possible to derive the maximum natural number equal to or less than the value t. In that case, in the exposure region near the 512th column, a micromirror that minimizes the area of the underexposed region and does not produce an overexposed region with respect to ideal double exposure. It can be selected as a micromirror to be actually used.

図28は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図25に示した露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記使用描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図28に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
FIG. 28 shows how the unevenness on the exposure surface shown in FIG. 25 is improved in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed.
In this example, it is assumed that T = 253 is derived as the natural number T and the micromirrors in the first row to the 253rd row are selected. For the micromirrors in the 254th to 256th lines that have not been selected, a signal for setting the angle of the always-off state is sent by the used pixel part control means, and these micromirrors are substantially Is not involved in exposure. As shown in FIG. 28, in the exposure region near the 512th column, overexposure and underexposure are almost completely eliminated, and uniform exposure very close to ideal double exposure is realized.

一方、図28の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
On the other hand, in the left region of FIG. 28 (near c (1) in the figure), the inclination angle of the light spot sequence on the exposed surface is near the center (near c (512) in the figure) due to the angular distortion. It is smaller than the inclination angle of the light beam row in the region. Therefore, in the exposure using only the micromirror selected based on the actual inclination angle θ ′ measured with c (512) as a reference, the ideal double pattern is used for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. An area that is underexposed with respect to the exposure is slightly generated.
However, in the actual exposure pattern formed by overlaying the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns shown in the figure, the regions where the exposure amount is insufficient are complemented with each other, and the exposure unevenness due to the angular distortion is double-exposed. The effect of offsetting can be minimized.

また、図28の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
In the right region of FIG. 28 (near c (1024) in the figure), the inclination angle of the light beam on the exposed surface is near the center (near c (512) in the figure) due to the angular distortion. It is larger than the inclination angle of the light beam row in the region. Therefore, in the exposure with the micromirror selected based on the actual inclination angle θ ′ measured with c (512) as a reference, as shown in the figure, there is an overexposed region with respect to the ideal double exposure. It will occur slightly.
However, in the actual exposure pattern formed by superimposing the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns shown in the figure, the overexposed regions are complemented with each other, and the density unevenness due to the angular distortion is caused by the double exposure. The effect of offsetting can be minimized.

本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ´が測定され、該実傾斜角度θ´を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ´の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ´として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
更に、前記最小値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
In the present embodiment (1), as described above, the actual inclination angle θ ′ of the 512th ray array is measured, and based on the T derived from the equation (4) using the actual inclination angle θ ′. The micro-mirror 58 to be used is selected. However, as a method of specifying the actual inclination angle θ ′, a plurality of actual directions formed by the column direction (light spot column) of the plurality of image elements and the scanning direction of the exposure head are used. Each of the tilt angles is measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle θ ′. It is good also as a form to select.
When the average value or the median value is set to the actual inclination angle θ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of the overexposed region and the underexposed region is minimized, and the number of pixel units (number of light spots) in the overexposed region and the underexposed region are drawn. It is possible to realize exposure such that the number of prime units (number of light spots) is equal.
Further, if the maximum value is set to the actual inclination angle θ ′, it is possible to realize an exposure that places more importance on eliminating an overexposed region with respect to an ideal N double exposure, for example, an underexposure. It is possible to realize exposure that minimizes the area of the region and does not generate an overexposed region.
Furthermore, if the minimum value is set to the actual inclination angle θ ′, it is possible to realize an exposure that places more importance on eliminating an underexposed region with respect to an ideal N-fold exposure, for example, an overexposure. It is possible to realize an exposure that minimizes the area of the region and does not cause a region that is underexposed.

一方、前記実傾斜角度θ´の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ´として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。更に、c(n)列近傍の光点列中の少なくとも2つの光点(例えば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ´として特定してもよい。
On the other hand, the specification of the actual inclination angle θ ′ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in the row near the c (n), The actual inclination angle θ ′ may be specified.
Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on a straight line and in the vicinity along the scanning direction of the exposure head are detected. The actual inclination angle θ ′ can be obtained from the position information. Further, the angle obtained based on the positions of at least two light spots (for example, two light spots arranged so as to straddle c (n)) in the light spot array in the vicinity of the c (n) line is an actual inclination. You may specify as angle (theta) '.

以上のように、露光装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。   As described above, according to the specification method of the used pixel portion of the present embodiment (1) using the exposure apparatus 10, resolution variation and density unevenness due to the influence of the mounting angle error of each exposure head and pattern distortion are reduced. In addition, ideal N double exposure can be realized.

(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
(2) Method for designating used pixel parts between a plurality of exposure heads <1>
In this embodiment (2), the exposure apparatus 10 performs double exposure on the photosensitive layer 12, and is a head-to-head overlapping area on the exposed surface formed by a plurality of exposure heads 30. In the connection region, the variation in resolution and density unevenness due to the deviation of the relative positions of the two exposure heads (for example, exposure heads 30 12 and 30 21 ) in the X-axis direction from the ideal state are reduced, and the ideal A description will be given of a method for designating a used pixel portion for realizing a typical double exposure.

各露光ヘッド30即ち各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用してちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、露光装置10は、各露光ヘッド30即ち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
As the set tilt angle θ of each exposure head 30, that is, each DMD 36, the usable 1024 column × 256 row pixel part micromirror 58 is used if there is no ideal mounting angle error of the exposure head 30. Then, it is assumed that an angle θ ideal that is exactly double exposure is adopted.
This angle θ ideal is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1). In the present embodiment (2), it is assumed that the exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36, becomes this angle θ ideal .

図29は、上記のように初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。 FIG. 29 shows the influence of the deviation of the relative positions of the two exposure heads (for example, exposure heads 30 12 and 30 21 ) in the X-axis direction from the ideal state in the exposure apparatus 10 initially adjusted as described above. FIG. 6 is an explanatory diagram showing an example of density unevenness generated in a pattern on the exposed surface. The displacement of the relative position of each exposure head in the X-axis direction can occur because it is difficult to finely adjust the relative position between the exposure heads.

図29の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図29の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図29では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
The upper portion of FIG. 29 is a light spot group from the usable micromirror 58 of the DMD 36 of the exposure heads 30 12 and 30 21 projected onto the exposed surface of the photosensitive layer 12 with the stage 14 being stationary. It is the figure which showed these patterns. The lower part of FIG. 29 shows an exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed in a state where the light spot group pattern as shown in the upper part appears. The state is shown for exposure areas 32 12 and 32 21 .
In FIG. 29, for convenience of explanation, every other exposure pattern of the micromirror 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B. The actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.

図29の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。 In the example of FIG. 29, as a result of the deviation of the relative position between the exposure heads 30 12 and 30 21 in the X-axis direction from the ideal state, the exposure pattern by the pixel column group A and the pixel column group B In both of the above exposure patterns, a portion where the exposure amount is larger than the ideal double exposure state occurs in the connection area between the heads in the exposure areas 32 12 and 32 21 .

上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 In order to reduce density unevenness appearing in the inter-head connecting region formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), a slit is used as the light spot position detecting means. 28 and a set of photodetectors, the positions of some of the light spots constituting the connecting area between the heads formed on the exposed surface among the light spot groups from the exposure heads 30 12 and 30 21. Detect (coordinates). Based on the position (coordinates), processing for selecting a micromirror to be used for actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel portion selection means.

−位置(座標)の検出−
図30は、図29と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、即ち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
-Detection of position (coordinates)-
FIG. 30 is a top view showing the positional relationship between the exposure areas 32 12 and 32 21 similar to FIG. 29 and the corresponding slits 28. The size of the slit 28 is large enough to cover the width of the overlapping portion between the exposed areas 34 by the exposure heads 30 12 and 30 21 , that is, the slit 28 is formed on the exposed surface by the exposure heads 30 12 and 30 21. The size is sufficient to cover the connection area between the heads.

図31は、一例として露光エリア3221の光点P(256、1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
Figure 31 is a top view for explaining a detection method of detecting the position of a point P of the exposure area 32 21 as an example (256, 1024).
First, in a state where the micromirror in the 256th row and the 1024th column is turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position so as to be between the slit 28a on the side and the slit 28b on the downstream side. The coordinates of the intersection of the slit 28a and the slit 28b at this time are (X0, Y0). The values of the coordinates (X0, Y0) are determined and recorded from the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position of the slit 28. .

次に、ステージ14を移動させ、スリット28をY軸に沿って図31における右方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、1024)の位置として記録する。   Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 31, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (X0, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).

次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図31における左方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を、光点P(256、1024)として記録する。   Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved to the left in FIG. 31 along the Y axis. Then, as indicated by a two-dot chain line in FIG. 31, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (X0, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).

以上の測定結果から、光点P(256、1024)の被露光面における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。   From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 1024) on the exposed surface are calculated as X = X0 + (Y1−Y2) / 2, Y = (Y1 + Y2) / 2. Determined by

−不使用描素部の特定−
図29の例では、まず、露光エリア3212の光点P(256、1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256、1024)、P(256、1023)・・・と順番に検出していき、露光エリア3212の光点P(256、1)よりも大きいX座標を示す露光エリア3221の光点P(256、n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図29において、露光エリア3221の光点P(256、1020)が、露光エリア3212の光点P(256、1)よりも大きいX座標を示し、その露光エリア3221の光点P(256、1020)が検出されたところで検出動作が終了したとすると、図32において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
-Identification of unused pixel parts-
In the example of FIG. 29, first, the position of the point P of the exposure area 32 12 (256,1) is detected by a set of slits 28 and a photodetector as the light spot position detecting unit. Subsequently, the position of each light spot on the 256 line of light spots row r of the exposure area 32 21 (256), P ( 256,1024), to detect the P (256,1023) ··· and order periodically, where the exposure area 32 21 of point P indicating the exposure area 32 12 point P (256,1) larger X coordinate than the (256, n) is detected, and terminates the detecting operation. Then, the micro mirrors corresponding to light spots constituting the c (1024) from the light spot column c of the exposure area 32 21 (n + 1), specifies as a micro-mirror is not used during the exposure (unused pixel parts).
For example, in FIG. 29, the exposure area 32 21 point P (256,1020) is shows a larger X coordinate than the point P of the exposure area 32 12 (256,1) of the exposure area 32 21 spot If P (256,1020) is that the detection operation at the detected ended, the light spots constituting the first 1024 lines from the 1021 line of exposure area 32 21, corresponding to the portion 70 covered with hatched in FIG. 32 The corresponding micromirror is identified as a micromirror that is not used during the main exposure.

次に、N重露光の数Nに対して、露光エリア3212の光点P(256、N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256、2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1、1020)から順番にP(1、1020)、P(2、1020)・・・と検出していき、露光エリア3212の光点P(256、2)よりも大きいX座標を示す光点P(m、1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標とが比較され、露光エリア3221の光点P(m、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
更に、露光エリア3212の光点P(256、N−1)即ち光点P(256、1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
Next, the number N of the N multiple exposure, the position of the point P of the exposure area 32 12 (256, N) is detected. In the present embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
Then, among the light spot columns of the exposure area 32 21, except those identified as light spots string corresponding to the micromirrors is not used during the exposure in the above, the position of the light spot constituting the rightmost 1020 column a, P (1,1020) in order from P (1,1020), P (2,1020 ) ··· and continue to detection, greater than the point P of the exposure area 32 12 (256,2) X When the light spot P (m, 1020) indicating the coordinates is detected, the detection operation is terminated.
Thereafter, the connected operational devices to said light detector, and X-coordinate of the exposure area 32 12 of the light spot P (256, two), point P of the exposure area 32 21 (m, 1020) and P (m- and X-coordinate of 1,1020) are compared, if the direction of the X coordinate of the point P of the exposure area 32 21 (m, 1020) is closer to the X coordinate of the point P in the exposure area 32 12 (256, 2) a micro mirror corresponding to P (m-1,1020) from point P of the exposure area 322i (1,1020) is identified as a micro-mirror is not used during the exposure.
Also, if the direction of the X coordinate of the point P in the exposure area 32 21 (m-1,1020) it is near to the X coordinates of the point P in the exposure regions 32 12 (256, 2), the light exposure area 32 21 Micromirrors corresponding to points P (1, 1020) to P (m-2, 1020) are identified as micromirrors that are not used for the main exposure.
Furthermore, the position of the point P of the exposure area 32 12 (256, N-1 ) That point P (256,1), the position of each point constituting the first 1019 column is the next row of the exposure area 32 21 The same detection process and identification of micromirrors that are not used are also performed.

その結果、例えば、図32において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。   As a result, for example, micromirrors corresponding to the light spots constituting the shaded area 72 in FIG. 32 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set the micromirror angle to the off-state angle, and these micromirrors are substantially not used for exposure.

このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図32の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。 As described above, the micromirrors that are not used at the time of actual exposure are identified, and the micromirrors that are not used at the time of actual exposure are selected as the micromirrors that are used at the time of actual exposure, whereby the exposure areas 32 12 and 32 21 In the joint area between the heads, the total area of the overexposed area and the underexposed area with respect to the ideal double exposure can be minimized. As shown in the lower part of FIG. Uniform exposure extremely close to double exposure can be realized.

なお、上記の例においては、図32において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
更に、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
In the above example, upon the particular light spots constituting the regions 72 covered with hatched in FIG. 32, the X coordinate of the point P in the exposure area 32 12 (256, 2), the exposure area 32 21 of the light spot P (m, 1020) and P (m-1,1020) without comparison of the X-coordinate of the immediately, P from point P of the exposure area 32 21 (1,1020) (m- 2 1020) may be specified as a micromirror that is not used during the main exposure. In that case, in the connecting area between the heads, a micromirror is actually used that minimizes the area of an overexposed area with respect to an ideal double exposure and does not cause an underexposed area. It can be selected as a micromirror.
Further, the micro-mirrors corresponding to P (m-1,1020) from point P of the exposure area 32 21 (1,1020), it may be specified as micro mirrors not used in this exposure. In that case, in the connecting region between the heads, a micromirror is actually used in which the area of the region that is underexposed with respect to the ideal double exposure is minimized and the region that is not overexposed does not occur. It can be selected as a micromirror.
Further, in the connecting area between the heads, the number of pixel units (the number of light points) in an area that is overexposed with respect to an ideal double drawing, and the number of pixel units (the number of light points) in an area that is underexposed. It is good also as selecting the micromirror actually used so that it may become equal.

以上のように、露光装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。   As described above, according to the method for designating the used pixel portion of the present embodiment (2) using the exposure apparatus 10, the resolution variation and the density due to the relative position shift in the X-axis direction of the plurality of exposure heads. Unevenness can be reduced and ideal N-fold exposure can be realized.

(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
(3) Specification method of used pixel parts between a plurality of exposure heads <2>
In this embodiment (3), the exposure apparatus 10 performs double exposure on the photosensitive layer 12, and is a head-to-head overlapping area on the exposed surface formed by a plurality of exposure heads 30. In the joint region, the relative position of the two exposure heads (for example, exposure heads 30 12 and 30 21 ) from the ideal state in the X-axis direction, the mounting angle error of each exposure head, and the distance between the two exposure heads A description will be given of a method for designating a used pixel part for reducing the variation in resolution and density unevenness due to the relative mounting angle error of the lens and realizing ideal double exposure.

各露光ヘッド30即ち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
As the set tilt angle of each exposure head 30, that is, each DMD 36, in an ideal state where there is no mounting angle error of the exposure head 30, a usable 1024 column × 256 row pixel element (micromirror 58) is provided. It is assumed that an angle slightly larger than the angle θ ideal that is used for exactly double exposure is adopted.
This angle θ ideal is a value obtained in the same manner as the above embodiment (1) using the above equations 1 to 3, and in this embodiment, s = 256 and N = 2 as described above. The angle θ ideal is about 0.45 degrees. Therefore, as the set inclination angle θ, for example, an angle of about 0.50 degrees may be employed. It is assumed that the exposure apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle θ within an adjustable range.

図33は、上記のように各露光ヘッド30即ち各DMD36の取付角度が初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差及び相対位置のずれの影響により、露光面上のパターンに生じるむらの例を示した説明図である。 FIG. 33 shows the mounting angle errors of two exposure heads (for example, exposure heads 30 12 and 30 21 ) in the exposure apparatus 10 in which the mounting angles of the exposure heads 30, that is, the DMDs 36 are initially adjusted as described above. FIG. 10 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposure surface due to the influence of the relative mounting angle error between the exposure heads 30 12 and 30 21 and the relative position shift.

図33の例では、図29の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
更に、図33の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
In the example of Figure 33, similar to the example of FIG. 29, as a result of the displacement of the relative position of the exposure head 30 12 X-axis direction 30 21, exposure with every other row of light spots (pixel column groups A and B) In both exposure patterns 32 12 and 32 21 , the exposure amount overlaps on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface of the exposure areas 32 12 and 32 21 , which is more than the ideal double exposure state. A region 74 is generated, which causes uneven density.
Furthermore, in the example of FIG. 33, it is difficult to finely adjust the result of setting the tilt angle θ of each exposure head slightly larger than the angle θ ideal satisfying the above equation (1) and the mounting angle of each exposure head. Therefore, as a result of the actual mounting angle deviating from the set inclination angle θ, even in regions other than the exposure region overlapping on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface, In the connection region between the pixel part columns, which is an overlapped exposure region on the exposed surface, formed by a plurality of pixel part columns, both in the exposure pattern by every other light spot group (pixel column group A and B). A region 76 that is overexposed than the ideal double exposure state is generated, and this causes further density unevenness.

本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
In this embodiment (3), first, the use pixel selection process for reducing the uneven density due to the influence of the deviation of the mounting angle error and relative mounting angle of the exposure heads 30 12 and 30 21.
Specifically, a set of a slit 28 and a photodetector is used as the light spot position detecting means, and an actual inclination angle θ ′ is specified for each of the exposure heads 30 12 and 30 21 , and the actual inclination angle θ ′ is set. Based on this, it is assumed that processing for selecting a micromirror to be used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel part selection means.

−実傾斜角度θ´の特定−
実傾斜角度θ´の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1、1)とP(256、1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1、1024)とP(256、1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
-Specification of actual inclination angle θ'-
The actual inclination angle θ ′ is specified by the positions of the light spots P (1, 1) and P (256, 1) in the exposure area 32 12 for the exposure head 30 12 and in the exposure area 32 21 for the exposure head 30 21 . The positions of the light spots P (1, 1024) and P (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), and the inclination angle of the straight line connecting them. And the angle formed by the scanning direction of the exposure head.

−不使用描素部の特定−
そのようにして特定された実傾斜角度θ´を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図34において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
-Identification of unused pixel parts-
The arithmetic device connected to the photodetector using the actual inclination angle θ ′ thus specified is similar to the following equation 4 similar to the arithmetic device in the embodiment (1) described above.
ttanθ ′ = N (Formula 4)
The natural number T closest to the value t satisfying the above relationship is derived for each of the exposure heads 30 12 and 30 21 , and the micromirrors in the (T + 1) th to 256th rows on the DMD 36 are not used for the main exposure. Processing to identify as a micromirror is performed.
For example, T = 254 for the exposure head 30 12, when T = 255 was derived for the exposure head 3O21, micro mirrors corresponding to light spots constituting the parts 78 and 80 covered with hatched in FIG. 34 These are specified as micromirrors that are not used for the main exposure. As a result, in each of the exposure areas 32 12 and 32 21 other than the head-to-head connection area, the total area of the overexposed area and the underexposed area with respect to the ideal double exposure is minimized. be able to.

ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
Here, instead of deriving the natural number closest to the above value t, the minimum natural number greater than or equal to the value t may be derived. In this case, exposure is performed for ideal double exposure in each of the exposure areas 32 12 and 32 21 other than the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by a plurality of exposure heads. It is possible to minimize the area where the amount is excessive and to prevent an area where the exposure amount is insufficient.
Or it is good also as deriving the maximum natural number below value t. In this case, exposure is performed for ideal double exposure in each of the exposure areas 32 12 and 32 21 other than the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by a plurality of exposure heads. It is possible to minimize the area of the insufficient region and prevent the region from being overexposed.
In each area other than the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by a plurality of exposure heads, the number of pixel units (light It is also possible to identify micromirrors that are not used during the main exposure so that the number of pixel units (the number of light points) in the underexposed region is equal to the number of points.

その後、図34において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図29から17を用いて説明した本実施形態(3)と同様の処理がなされ、図34において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
Thereafter, with respect to the micromirrors corresponding to the light spots other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 34, the same processing as that of the present embodiment (3) described with reference to FIGS. 29 to 17 is performed. In FIG. 34, the micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 are identified and added as micromirrors that are not used during the main exposure.
With respect to the micromirrors that are specified not to be used at the time of exposure, a signal for setting the angle of the always-off state is sent by the pixel element control means, and these micromirrors are substantially exposed. Not involved.

以上のように、露光装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。   As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the exposure apparatus 10, the relative position shifts in the X-axis direction of the plurality of exposure heads and the mounting angles of the exposure heads Variations in resolution and density unevenness due to errors and relative mounting angle errors between exposure heads can be reduced, and ideal N-fold exposure can be realized.

以上、露光装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。   Although the above-described method for specifying the used pixel portion by the exposure apparatus 10 has been described in detail, the above embodiments (1) to (3) are merely examples, and various modifications can be made without departing from the scope of the present invention. is there.

また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、例えば2次元検出器等を用いてもよい。   In the above embodiments (1) to (3), as a means for detecting the position of the light spot on the exposed surface, a set of the slit 28 and the single cell type photodetector is used. The present invention is not limited to this, and any form may be used. For example, a two-dimensional detector may be used.

更に、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ´を求め、その実傾斜角度θ´に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ´の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。更には、例えばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。   Furthermore, in the above embodiments (1) to (3), the actual inclination angle θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle θ ′ is obtained. The micromirrors to be used are selected based on the above, but a usable micromirror may be selected without the derivation of the actual inclination angle θ ′. Furthermore, for example, the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by visually confirming the resolution and density unevenness of the reference exposure result. It is included in the scope of the invention.

なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図35Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図35Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
更に別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と露光面間の光学要素(例えば1枚レンズである図5A及び図5Bのレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
In addition to the angular distortion described in the above example, there are various forms of pattern distortion that can occur on the exposed surface.
As an example, as shown in FIG. 35A, there is a form of magnification distortion in which light rays from each micromirror 58 on the DMD 36 reach the exposure area 32 on the exposure surface at different magnifications.
As another example, as shown in FIG. 35B, there is a form of beam diameter distortion in which the light from each micromirror 58 on the DMD 36 reaches the exposure area 32 on the exposure surface with a different beam diameter. These magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposure surface.
As yet another example, there is a form of light amount distortion in which light beams from the micromirrors 58 on the DMD 36 reach the exposure area 32 on the exposure surface with different light amounts. This light amount distortion is not only various aberrations and misalignment, but also the position dependency of the transmittance of the optical elements between the DMD 36 and the exposure surface (for example, the lenses 52 and 54 in FIGS. 5A and 5B, which are single lenses), and the DMD 36 itself. This is caused by unevenness in the amount of light. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposure surface.

上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、2重露光による埋め合わせの効果で均すことができる。   According to the above embodiments (1) to (3), the residual elements of pattern distortion in these forms after selecting the micromirrors actually used for the main exposure are the same as the residual elements of angular distortion described above. It can be leveled by the effect of offset by double exposure.

<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
<< Reference exposure >>
As a modified example of the above embodiments (1) to (3), among available micromirrors, it corresponds to (N-1) every micromirror column or 1 / N rows of all light spot rows. A reference exposure is performed using only a group of micromirrors constituting an adjacent row, and among the micromirrors used for the reference exposure, micromirrors that are not used at the time of actual exposure are specified so that uniform exposure can be realized. It is good as well.
The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is analyzed to confirm resolution variation and density unevenness and to estimate the actual inclination angle. The analysis of the result of the reference exposure may be a visual analysis by an operator.

図36A及び図36Bは、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図36Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図36Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
FIG. 36A and FIG. 36B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
In this example, it is assumed that double exposure is performed during the main exposure, and therefore N = 2. First, reference exposure is performed using only micromirrors corresponding to the odd-numbered light spot rows indicated by the solid lines in FIG. 36A, and the reference exposure results are output as samples. Based on the reference exposure result outputted from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and density unevenness, or estimating an actual inclination angle.
For example, micromirrors other than the micromirror corresponding to the light spot array shown by hatching in FIG. 36B are designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. . For even-numbered light spot arrays, reference exposure may be performed separately in the same manner, and the micromirror used during the main exposure may be designated, or the same pattern as that for the odd-numbered light spot arrays may be applied. Good.
By specifying the micromirrors used in the main exposure as described above, in the main exposure using both the odd-numbered and even-numbered micromirrors, a state close to ideal double exposure can be realized.

図37は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図37に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図37に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
FIG. 37 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) rows of micromirrors using a plurality of exposure heads.
In this example, it is assumed that double exposure is performed during the main exposure, and therefore N = 2. First, reference is made using only the micromirrors corresponding to the odd-numbered light spot rows of two exposure heads (for example, exposure heads 30 12 and 30 21 ) adjacent to each other in the X-axis direction, which are indicated by solid lines in FIG. Exposure is performed, and a reference exposure result is output as a sample. Based on the output reference exposure result, the variation in resolution and density unevenness in the area other than the joint area between the heads formed on the exposed surface by the two exposure heads are confirmed, or the actual inclination angle is estimated. Thus, the micromirror to be used at the time of the main exposure can be designated.
For example, the micromirrors other than the micromirrors corresponding to the light spot rows in the area 86 shown by hatching in FIG. Specified as actually used. For even-numbered light spot arrays, reference exposure may be performed separately in the same manner, and a micromirror used in the main exposure may be designated, or the same pattern as that for the odd-numbered pixel columns may be applied. Good.
In this way, in the main exposure using both the odd-numbered and even-numbered micromirrors by designating the micromirrors that are actually used during the main exposure, the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be realized in a region other than the head-to-head connection region.

図38A及び図38Bは、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図38Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図38Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
FIG. 38A and FIG. 38B show an example of a form in which reference exposure is performed using a single exposure head and using only micromirror groups constituting adjacent rows corresponding to 1 / N rows of the total number of light spot rows. FIG.
In this example, it is assumed that double exposure is performed during the main exposure, and therefore N = 2. First, reference exposure is performed using only micromirrors corresponding to the light spots in the first to 128 (= 256/2) rows shown by the solid line in FIG. 38A, and the reference exposure results are output as samples. Based on the reference exposure result outputted from the sample, a micromirror to be used in the main exposure can be designated.
For example, a micromirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 38B is designated as actually used in the main exposure among the micromirrors in the first to 128th rows. Can be done. For the micromirrors in the 129th to 256th rows, reference exposure may be separately performed in the same manner, and the micromirrors used in the main exposure may be designated, or the micromirrors in the first to 128th rows may be designated. The same pattern as that for the mirror may be applied.
By designating the micromirror to be used at the time of the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using the entire micromirror.

図39は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図39に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図39に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
In FIG. 39, a plurality of exposure heads are used, and two adjacent exposure heads (for example, exposure heads 30 12 and 30 21 ) adjacent to each other in the X-axis direction are adjacent to each other corresponding to 1 / N rows of the total number of light spots. It is explanatory drawing which showed an example of the form which performs reference exposure using only the micromirror group which comprises a line.
In this example, it is assumed that double exposure is performed during the main exposure, and therefore N = 2. First, reference exposure is performed using only micromirrors corresponding to the light spots in the first to 128th (= 256/2) rows indicated by the solid line in FIG. 39, and the reference exposure results are output as samples. . Based on the reference exposure result outputted from the sample, it is possible to realize the main exposure in which the variation in resolution and the density unevenness in the region other than the joint region between the heads formed on the exposed surface by the two exposure heads are minimized. In addition, it is possible to designate a micromirror to be used during the main exposure.
For example, micromirrors other than the micromirrors corresponding to the light spot arrays in the region 90 shown shaded in FIG. 39 and the shaded region 92 are included in the micromirrors in the first row to the 128th row. Designated as actually used at the time of exposure. For the micromirrors in the 129th to 256th rows, reference exposure may be separately performed in the same manner, and the micromirrors used for the main exposure may be designated, or the micromirrors in the first to 128th rows may be designated. The same pattern as that for the mirror may be applied.
In this way, by specifying the micromirror to be used during the main exposure, a state close to ideal double exposure is realized in an area other than the inter-head connecting area formed on the exposed surface by two exposure heads. it can.

以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。   In the above embodiments (1) to (3) and the modified examples, the case where the main exposure is the double exposure has been described. However, the present invention is not limited to this, and any multiple exposure more than the double exposure may be used. . In particular, by setting the exposure to about 3 to 7 exposures, high resolution can be secured, and exposure with reduced variations in resolution and density unevenness can be realized.

また、上記の実施形態及び変更例に係る露光装置には、更に、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを露光面上に形成することができる。   Further, in the exposure apparatus according to the embodiment and the modified example, the dimension of the predetermined part of the two-dimensional pattern represented by the image data is matched with the dimension of the corresponding part that can be realized by the selected use pixel. A mechanism for converting image data is preferably provided. By converting the image data in such a manner, a high-definition pattern according to a desired two-dimensional pattern can be formed on the exposure surface.

〔ジャギー低減方法〕
解像度を高めるために、前記露光ヘッドを傾斜させて露光を行うと、形成する露光パターンによっては、無視できないジャギーが発生してしまうという問題がある。例えば、走査方向又はそれと直交する方向に延在する直線状のパターンを形成する場合、前記光変調手段によって形成される各描素部の位置と、パターンの所望の描画位置との間のずれがジャギーとして視認されてしまうことがある。
この問題に対し、単位面積当たりの描画画素数を増加させる等の手段を講じることなく、最適な描画条件を設定することにより、ジャギーの発生を抑制する方法を説明する。
[Jaggie reduction method]
When exposure is performed with the exposure head tilted in order to increase the resolution, there is a problem that jaggy that cannot be ignored occurs depending on the exposure pattern to be formed. For example, in the case of forming a linear pattern extending in the scanning direction or in a direction perpendicular to the scanning direction, there is a deviation between the position of each picture element formed by the light modulation means and the desired drawing position of the pattern. It may be visually recognized as jaggy.
With respect to this problem, a method for suppressing the occurrence of jaggies by setting optimum drawing conditions without taking measures such as increasing the number of drawing pixels per unit area will be described.

露光ヘッドは、シートフイルム(感光材料)の走査方向と直交する方向に2列で千鳥状に配列される。各露光ヘッドに組み込まれるDMDは、高い解像度を実現すべく、走査方向に対して所定角度傾斜した状態に設定される。即ち、DMDをシートフイルムの走査方向に対して傾斜させることにより、DMDを構成するマイクロミラーの走査方向と直交する方向に対する間隔が狭くなり、これによって、走査方向と直交する方向に対する解像度を高くすることができる。なお、露光ヘッド間の継ぎ目が生じることのないよう、各露光ヘッドによる露光エリアが走査方向と直交する方向に重畳するように設定される。   The exposure heads are arranged in a zigzag pattern in two rows in a direction orthogonal to the scanning direction of the sheet film (photosensitive material). The DMD incorporated in each exposure head is set in a state inclined at a predetermined angle with respect to the scanning direction in order to achieve high resolution. That is, by inclining the DMD with respect to the scanning direction of the sheet film, the interval with respect to the direction orthogonal to the scanning direction of the micromirrors constituting the DMD is narrowed, thereby increasing the resolution with respect to the direction orthogonal to the scanning direction. be able to. Note that the exposure area by each exposure head is set so as to overlap in a direction orthogonal to the scanning direction so that a seam between the exposure heads does not occur.

露光装置を制御する制御ユニット(制御手段)は、エンコーダにより検出した移動ステージの位置データに基づいて同期信号を生成する同期信号生成部と、生成された同期信号に基づいて移動ステージを走査方向に移動させる露光ステージ駆動部と、シートフイルムに描画される画像の描画データを記憶する描画データ記憶部と、同期信号及び描画データに基づいてDMDのSRAMセルを変調制御し、マイクロミラーを駆動するDMD変調部とを備える。   A control unit (control means) that controls the exposure apparatus includes a synchronization signal generation unit that generates a synchronization signal based on the position data of the movement stage detected by the encoder, and the movement stage in the scanning direction based on the generated synchronization signal. An exposure stage driving unit that moves, a drawing data storage unit that stores drawing data of an image drawn on a sheet film, and a DMD that modulates and controls the SRAM cell of the DMD based on the synchronization signal and the drawing data, and drives the micromirror And a modulation unit.

また、制御ユニットは、同期信号生成部により生成される同期信号を調整する周波数変更部(描画タイミング変更手段)、位相差変更部(位相差変更手段)及び移動速度変更部(移動速度変更手段)を備える。   The control unit also includes a frequency changing unit (drawing timing changing unit), a phase difference changing unit (phase difference changing unit), and a moving speed changing unit (moving speed changing unit) that adjust the synchronizing signal generated by the synchronizing signal generating unit. Is provided.

周波数変更部は、DMDを構成するマイクロミラーの走査方向に対するオンオフ制御のタイミングを決定する周波数を変更して同期信号生成部に供給し、シートフイルムに描画される画素の走査方向の間隔を調整する。位相差変更部は、走査方向と略直交する方向に隣接して配列されたマイクロミラーのオンオフ制御のタイミングの位相差を変更して同期信号生成部に供給し、シートフイルムに描画される画素の走査方向に対する位相差を調整する。移動速度変更部は、移動ステージの移動速度を変更して同期信号生成部に供給することで移動ステージの移動速度を調整する。   The frequency changing unit changes the frequency for determining the on / off control timing with respect to the scanning direction of the micromirrors constituting the DMD, supplies the same to the synchronization signal generating unit, and adjusts the interval in the scanning direction of the pixels drawn on the sheet film . The phase difference changing unit changes the phase difference of the on / off control timing of the micromirrors arranged adjacent to each other in a direction substantially orthogonal to the scanning direction, supplies the same to the synchronization signal generation unit, and outputs the pixels drawn on the sheet film. The phase difference with respect to the scanning direction is adjusted. The moving speed changing unit adjusts the moving speed of the moving stage by changing the moving speed of the moving stage and supplying it to the synchronization signal generating unit.

更に、制御ユニットには、必要に応じて、露光ヘッド回転駆動部(描画画素群回転手段)及び光学倍率変更部(描画倍率変更手段)を配設することができる。露光ヘッド回転駆動部は、露光ヘッドをレーザビームLの光軸の回りに所定角度回転させ、シートフイルム上に形成される画素配列の走査方向に対する傾斜角度を調整する。なお、露光ヘッドの一部の光学部材を回転させることによって、画素配列の傾斜角度を調整するようにしてもよい。光学倍率変更部は、露光ヘッドの第2結像光学レンズにより構成されるズーム光学系を制御して光学倍率を変更し、隣接するマイクロミラーによりシートフイルム上に形成される画素の配列ピッチ又は同一のマイクロミラーによる描画ピッチを調整する。   Furthermore, the control unit can be provided with an exposure head rotation drive unit (drawing pixel group rotation unit) and an optical magnification change unit (drawing magnification change unit) as necessary. The exposure head rotation drive unit rotates the exposure head by a predetermined angle around the optical axis of the laser beam L, and adjusts the inclination angle of the pixel array formed on the sheet film with respect to the scanning direction. Note that the tilt angle of the pixel array may be adjusted by rotating some optical members of the exposure head. The optical magnification changing unit controls the zoom optical system configured by the second imaging optical lens of the exposure head to change the optical magnification, and the arrangement pitch of pixels formed on the sheet film by the adjacent micromirrors or the same Adjust the drawing pitch of the micromirror.

[現像工程]
前記現像工程としては、前記露光工程により前記感光層を露光し、未露光部分を除去することにより現像する工程を有する。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
[Development process]
The developing step includes a step of developing the photosensitive layer by exposing the photosensitive layer by the exposing step and removing an unexposed portion.
There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, For example, alkaline aqueous solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weakly alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液、0.01〜0.1質量%の水酸化カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass sodium carbonate aqueous solution or a potassium carbonate aqueous solution, and a 0.01 to 0.1% by mass potassium hydroxide aqueous solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.

なお、現像の方式としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パドル現像、シャワー現像、シャワー&スピン現像、ディプ現像等が挙げられる。ここで、上記シャワー現像について説明すると、露光後の感光性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。なお、現像の前に感光性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。   The development method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include paddle development, shower development, shower & spin development, and dip development. Here, the shower development will be described. The uncured portion can be removed by spraying a developer onto the exposed photosensitive resin layer by shower. In addition, it is preferable to spray an alkaline liquid with low solubility of the photosensitive resin layer by a shower or the like before development to remove the thermoplastic resin layer, the intermediate layer, and the like. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like.

[その他の工程]
前記その他の工程としては、特に制限はなく、公知のカラーフィルタ製造方法における工程の中から適宜選択することが挙げられるが、例えば、硬化処理工程、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
[Other processes]
There is no restriction | limiting in particular as said other process, Although selecting suitably from the processes in a well-known color filter manufacturing method is mentioned, For example, a hardening process process etc. are mentioned. These may be used alone or in combination of two or more.

−硬化処理工程−
前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが好ましい。
前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
-Curing process-
It is preferable to provide a curing treatment step for performing a curing treatment on the photosensitive layer after the development step.
There is no restriction | limiting in particular as said hardening process, Although it can select suitably according to the objective, For example, a whole surface exposure process, a whole surface heat processing, etc. are mentioned suitably.

前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、形成されたパターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the formed pattern is cured.
There is no restriction | limiting in particular as an apparatus which performs the said whole surface exposure, Although it can select suitably according to the objective, For example, UV exposure machines, such as an ultrahigh pressure mercury lamp, are mentioned suitably.

前記全面加熱処理の方法としては、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
Examples of the entire surface heat treatment method include a method of heating the entire surface of the laminate on which the pattern is formed after the developing step. The whole surface heating increases the film strength of the surface of the pattern.
As heating temperature in the said whole surface heating, 120-250 degreeC is preferable and 120-200 degreeC is more preferable. When the heating temperature is less than 120 ° C., the film strength may not be improved by heat treatment. When the heating temperature exceeds 250 ° C., the resin in the photosensitive composition is decomposed, and the film quality is weak and brittle. Sometimes.
As heating time in the said whole surface heating, 10 to 120 minutes are preferable and 15 to 60 minutes are more preferable.
There is no restriction | limiting in particular as an apparatus which performs the said whole surface heating, According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, IR heater etc. are mentioned.

本発明のカラーフィルタ製造方法は、感光層の被露光面上に結像させる像の歪みを抑制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細なカラーフィルタパターンの形成に好適に使用することができる。   The color filter manufacturing method of the present invention can form a pattern with high definition and efficiency by suppressing distortion of an image formed on the exposed surface of the photosensitive layer. It can be suitably used for forming various required patterns, and can be particularly suitably used for forming a high-definition color filter pattern.

本発明のカラーフィルタの製造方法においては、上述したように、ガラス基板等の透明基板上に、本発明のパターン形成方法により、RGBの3原色の画素をモザイク状又はストライプ状に配置することができる。
また、前記カラーフィルタの前記画素群は、互いに異なる色を呈する2色の画素からなるものでも、3色の画素、4色以上の画素からなるものであってもよい。例えば3色の場合、赤(R)、緑(G)及び青(B)の3つの色相で構成される。RGB3色の画素群を配置する場合には、モザイク型、トライアングル型、ストライプ型等の配置が好ましく、4色以上の画素群を配置する場合にはどのような配置であってもよい。
各画素の寸法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、40〜200μmとすることが好適に挙げられる。ストライプ状であれば40〜200μm巾が通常用いられる。
前記カラーフィルタの製造方法としては、例えば、透明基板上に黒色に着色された感光層を用いて、露光及び現像を行いブラックマトリックスを形成し、次いで、RGBの3原色のいずれかに着色された感光層を用いて、前記ブラックマトリックスに対して所定の配置で、各色毎に、順次、露光及び現像を繰り返して、前記透明基板上にRGBの3原色がモザイク状又はストライプ状に配置されたカラーフィルタを形成する方法や、逆にブラックマトリックスを形成した後に画素群を形成する方法が挙げられる。なお、RGB画素の形成については、特開2004−347831号公報等を参考にすることができる。
In the method for producing a color filter of the present invention, as described above, the pixels of the three primary colors RGB can be arranged in a mosaic or stripe pattern on a transparent substrate such as a glass substrate by the pattern forming method of the present invention. it can.
In addition, the pixel group of the color filter may be composed of two-color pixels exhibiting different colors, or may be composed of three-color pixels, four-color pixels or more. For example, in the case of three colors, it is composed of three hues of red (R), green (G), and blue (B). When arranging pixel groups of three colors of RGB, arrangement of mosaic type, triangle type, stripe type, etc. is preferable, and when arranging pixel groups of four or more colors, any arrangement may be used.
There is no restriction | limiting in particular as a dimension of each pixel, According to the objective, it can select suitably, For example, it is preferable to set it as 40-200 micrometers. In the case of a stripe shape, a width of 40 to 200 μm is usually used.
As a method for producing the color filter, for example, using a photosensitive layer colored black on a transparent substrate, exposure and development were performed to form a black matrix, and then the color filter was colored in one of the three primary colors of RGB. A color in which the three primary colors of RGB are arranged in a mosaic or stripe pattern on the transparent substrate by repeating exposure and development sequentially for each color in a predetermined arrangement with respect to the black matrix using a photosensitive layer. There are a method of forming a filter and a method of forming a pixel group after forming a black matrix. For the formation of RGB pixels, reference can be made to JP-A-2004-347831.

(液晶表示装置)
本発明の液晶表示装置は、互いに対向して配される一対の基板間に液晶が封入されてなり、本発明の前記カラーフィルタを有してなり、更に必要に応じてその他の部材を有してなる。
本発明のカラーフィルタは、液晶表示装置の対向基板(TFTなどの能動素子が無い側の基板)に形成するものを対象としている他、TFT基板側に形成するCOA方式、TFT基板側に黒だけを形成するBOA方式、又はTFT基板にハイアパーチャー構造を有するHA方式も対象とすることができる。
(Liquid crystal display device)
The liquid crystal display device of the present invention comprises a liquid crystal sealed between a pair of substrates arranged opposite to each other, has the color filter of the present invention, and further has other members as necessary. It becomes.
The color filter of the present invention is intended to be formed on the counter substrate of the liquid crystal display device (the substrate on the side where there is no active element such as a TFT). The BOA method for forming the layer or the HA method having a high aperture structure on the TFT substrate can also be targeted.

前記カラーフィルタ上には、更に必要に応じて、オーバーコート膜や透明導電膜を形成することができる。その後、カラーフィルタと対向基板との間に液晶が封入され、液晶表示装置が作製される。液晶の表示方式としては、特に制限はなく、目的に応じて適宜選定されるが、例えば、ECB(Electrically Controlled Birefringence)、TN(Twisted Nematic)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、HAN(Hybrid Aligned Nematic)、STN(Supper Twisted Nematic)、IPS(In-Plane Switching)、GH(Guest Host)、FLC(強誘電性液晶)、AFLC(反強誘電性液晶)、PDLC(高分子分散型液晶)などの表示方式に適用可能である。   An overcoat film or a transparent conductive film can be further formed on the color filter as necessary. Thereafter, liquid crystal is sealed between the color filter and the counter substrate, and a liquid crystal display device is manufactured. The liquid crystal display method is not particularly limited and is appropriately selected according to the purpose. For example, ECB (Electrically Controlled Birefringence), TN (Twisted Nematic), OCB (Optically Compensatory Bend), VA (Vertically Aligned), HAN (Hybrid Aligned Nematic), STN (Supper Twisted Nematic), IPS (In-Plane Switching), GH (Guest Host), FLC (ferroelectric liquid crystal), AFLC (antiferroelectric liquid crystal), PDLC (polymer dispersion) Applicable to display methods such as liquid crystal display).

本発明の液晶表示装置は、本発明のカラーフィルタを用いることにより、反射モード及び半透過モードのいずれにおいても鮮明な色を表示することができ、反射型と半透過型を兼用する携帯端末や携帯ゲーム機等の機器に好適に用いることができる。特に、反射型液晶表示装置として用いた場合に優れた表示特性を発揮させることができる。   By using the color filter of the present invention, the liquid crystal display device of the present invention can display a clear color in any of the reflection mode and the semi-transmission mode. It can be suitably used for devices such as portable game machines. In particular, when used as a reflective liquid crystal display device, excellent display characteristics can be exhibited.

前記反射型液晶表示装置としては、例えば、(1)薄膜トランジスタ(以下、「TFT」という。)等の駆動素子と画素電極(導電層)とが配列形成された駆動側基板と、カラーフィルタ及び対向電極(導電層)を備えるカラーフィルタ側基板とをスペーサーを介在させて対向配置し、その間隙部に液晶材料を封入して構成される装置、(2)カラーフィルタが前記駆動側基板に直接形成されたカラーフィルタ一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサーを介在させて対向配置し、その間隙部に液晶材料を封入して構成される装置(特開2003−241178号公報参照)、などが挙げられる。   Examples of the reflective liquid crystal display device include: (1) a driving side substrate in which driving elements such as thin film transistors (hereinafter referred to as “TFTs”) and pixel electrodes (conductive layers) are arranged; A device constructed by placing a color filter side substrate provided with an electrode (conductive layer) opposite to each other with a spacer interposed therebetween and enclosing a liquid crystal material in the gap, and (2) a color filter formed directly on the drive side substrate The color filter integrated drive substrate and the counter substrate provided with the counter electrode (conductive layer) are arranged to face each other with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap (Japanese Patent Application Laid-Open No. 2003-2003). 241178) and the like.

半透過型液晶表示装置としては、例えば、以下の装置などが挙げられる。
(1)反射膜が、接着層と銀系薄膜からなる多層構成であり、かつ、接着層を介して基板上に、全体が電気的に接続したパターンとなるように配設され、更に、カラーフィルタの画素と対向する部位の一部に、光の透過のための開孔を有する装置(特開平11−52366号公報参照)。
(2)1画素内の光透過領域には、その全領域に画素内の着色画素が同色・同一厚みの着色層を形成し、光反射領域には、該着色層と該着色層の欠落部を形成した装置(特開2002−169148号公報参照)。
(3)1画素内の光透過領域には、均一な凹部を形成し、光反射領域には、パターン状凹部を形成したガラス基板上に、着色層形成材料を用い、かつ、該光透過領域には、均一な厚い着色層を設け、前記光反射領域には、厚い着色層部と薄い着色層部のパターン状着色層を設けた装置(特開2002−258028号公報参照)。
(4)加法混色の3原色(R、G、B)によってカラー表示を行うカラーフィルタにおいて、R、G、Bの各1画素が、各々の補色であるシアン、マゼンタ、イエローの内の2色、具体的には、赤色画素はマゼンタとイエロー、緑色画素はシアンとイエロー、青色画素はシアンとマゼンタの組み合わせで構成され、光透過領域には、該2色の画素が積層して形成されており、2色の減法による混色でR、G、Bの透過カラー表示を行い、光反射領域には、前記2色の画素が各々単層で形成されており、2色の加法による混色でR、G、Bの反射カラー表示を行う装置(特開2002−258029号公報参照)。
(5)各画素内に光の透過領域と反射領域とを有し、該反射領域が光回折及び光散乱機能を有する装置(特開2002−268055号公報参照)。
(6)着色画素が同一の感光性着色樹脂組成物を用いて形成された着色層であって、1画素内の、光透過領域には、透過型用の厚みを有する着色層(着色層1)を形成し、光反射領域には、該着色層(着色層1)より薄い厚みを有する反射型用の着色層(着色層2)を形成した装置(特開2002−365422号公報参照)。
その他、反射領域と、透過領域に、別々の材料により同じ色の着色画素を形成することも可能である。
Examples of the transflective liquid crystal display device include the following devices.
(1) The reflective film has a multilayer structure composed of an adhesive layer and a silver-based thin film, and is disposed on the substrate so as to form an electrically connected pattern via the adhesive layer. An apparatus having an opening for transmitting light in a part of a portion facing a pixel of a filter (see Japanese Patent Application Laid-Open No. 11-52366).
(2) In the light transmission region in one pixel, the colored pixels in the pixel form the same color and the same thickness in the entire region, and in the light reflection region, the colored layer and the missing portion of the colored layer (See JP 2002-169148 A).
(3) A uniform concave portion is formed in a light transmission region in one pixel, and a colored layer forming material is used on a glass substrate on which a patterned concave portion is formed in the light reflection region, and the light transmission region Is a device in which a uniform thick colored layer is provided and a patterned colored layer of a thick colored layer portion and a thin colored layer portion is provided in the light reflection region (see Japanese Patent Application Laid-Open No. 2002-258028).
(4) In a color filter that performs color display using three additive primary colors (R, G, B), each pixel of R, G, B is a complementary color of cyan, magenta, and yellow. Specifically, the red pixel is composed of magenta and yellow, the green pixel is composed of cyan and yellow, the blue pixel is composed of cyan and magenta, and the light transmission region is formed by stacking the pixels of the two colors. In addition, R, G, and B transmissive color display is performed by mixing colors by subtracting two colors, and the two-color pixels are each formed in a single layer in the light reflection region, and R by mixing colors by adding two colors. , G, B reflective color display device (see Japanese Patent Application Laid-Open No. 2002-258029).
(5) An apparatus having a light transmission region and a reflection region in each pixel, and the reflection region has light diffraction and light scattering functions (see Japanese Patent Application Laid-Open No. 2002-268055).
(6) A colored layer in which colored pixels are formed using the same photosensitive colored resin composition, and a light-transmitting region in one pixel has a colored layer (colored layer 1) having a thickness for a transmission type. ), And a reflective colored layer (colored layer 2) having a thinner thickness than the colored layer (colored layer 1) is formed in the light reflecting region (see Japanese Patent Application Laid-Open No. 2002-365422).
In addition, it is also possible to form colored pixels of the same color in the reflective region and the transmissive region using different materials.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例中の「部」及び「%」は、それぞれ「質量部」及び「質量%」を示す。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples at all. In the examples, “parts” and “%” indicate “parts by mass” and “% by mass”, respectively.

(実施例1)
−感光性樹脂転写材料K1の作製−
仮支持体としての厚み75μmのポリエチレンテレフタレートフィルム上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布し、乾燥させた。次に、下記処方P1からなる中間層用塗布液を塗布し、乾燥させた。次に、下記表1に記載の組成よりなる着色感光性樹脂組成物K1を塗布し、乾燥させた。その結果、前記仮支持体上に、乾燥厚みが14.6μmの熱可塑性樹脂層と、乾燥厚みが1.6μmの中間層と、乾燥厚みが2.4μmの感光層とを設け、保護フイルム(厚み12μmポリプロピレンフィルム)を圧着した。
このようにして仮支持体と熱可塑性樹脂層と中間層とブラック(K)の感光層とが一体となった感光性樹脂転写材料K1を作製した。
Example 1
-Production of photosensitive resin transfer material K1-
On a polyethylene terephthalate film having a thickness of 75 μm as a temporary support, a coating solution for a thermoplastic resin layer having the following formulation H1 was applied using a slit nozzle and dried. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Next, a colored photosensitive resin composition K1 having the composition described in Table 1 below was applied and dried. As a result, a thermoplastic resin layer having a dry thickness of 14.6 μm, an intermediate layer having a dry thickness of 1.6 μm, and a photosensitive layer having a dry thickness of 2.4 μm were provided on the temporary support, and a protective film ( A 12 μm-thick polypropylene film) was pressure-bonded.
In this way, a photosensitive resin transfer material K1 in which the temporary support, the thermoplastic resin layer, the intermediate layer, and the black (K) photosensitive layer were integrated was produced.

−熱可塑性樹脂層用塗布液:処方H1−
・メタノール・・・11.1部
・プロピレングリコールモノメチルエーテルアセテート・・・6.36部
・メチルエチルケトン・・・52.4部
・メチルメタクリレート/2−エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg≒70℃)・・・5.83部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、重量平均分子量=1万、Tg≒100℃)・・・13.6部
・ビスフェノールAにペンタエチレングリコールモノメタクリートを2当量脱水縮合した化合物(新中村化学工業株式会社製、2,2−ビス[4−(メタクリロキシポリエトキシ)フェニル]プロパン)・・・9.1部
・界面活性剤1(大日本インキ化学工業株式会社製、商品名:メガファックF780F)・・・0.54部
-Coating liquid for thermoplastic resin layer: Formulation H1-
Methanol: 11.1 parts Propylene glycol monomethyl ether acetate: 6.36 parts Methyl ethyl ketone: 52.4 parts Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (co-polymer) Polymerization composition ratio (molar ratio) = 55 / 11.7 / 4.5 / 28.8, weight average molecular weight = 100,000, Tg≈70 ° C.) 5.83 parts Styrene / acrylic acid copolymer ( Copolymerization composition ratio (molar ratio) = 63/37, weight average molecular weight = 10,000, Tg≈100 ° C.) 13.6 parts Compound obtained by dehydration condensation of 2 equivalents of bisphenol A with pentaethylene glycol monomethacrylate Shin-Nakamura Chemical Co., Ltd., 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propane) ... 9.1 parts Surfactant 1 (Dainippon Ink Chemical Co., Ltd., trade name: MegaFuck F780F) 0.54 parts

−中間層用塗布液:処方P1−
・ポリビニルアルコール(PVA205、株式会社クラレ製、鹸化度=88%、重合度550)・・・32.2部
・ポリビニルピロリドン(アイエスピー・ジャパン株式会社製、K−30)・・・14.9部
・蒸留水・・・524部
・メタノール・・・429部
-Coating liquid for intermediate layer: Formulation P1-
Polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd., degree of saponification = 88%, degree of polymerization 550) 32.2 parts Polyvinylpyrrolidone (produced by IS Japan Co., Ltd., K-30) 14.9・ Distilled water: 524 parts ・ Methanol: 429 parts

次に、前記感光性樹脂転写材料K1の作製において用いた前記着色感光性樹脂組成物K1を、下記表1に記載の組成よりなる下記着色感光性樹脂組成物R1、G1及びB1に変更し、それ以外は上記と同様の方法により、感光性樹脂転写材料R1、G1及びB1を作製した。   Next, the colored photosensitive resin composition K1 used in the production of the photosensitive resin transfer material K1 is changed to the following colored photosensitive resin compositions R1, G1, and B1 having the composition described in Table 1 below. Other than that, photosensitive resin transfer materials R1, G1, and B1 were prepared in the same manner as described above.

なお、表1中の各成分の単位は質量部である。 In addition, the unit of each component in Table 1 is part by mass.

ここで、表1に記載の着色感光性樹脂組成物K1、R1、G1、及びB1の調製について説明する。   Here, the preparation of the colored photosensitive resin compositions K1, R1, G1, and B1 shown in Table 1 will be described.

<着色感光性樹脂組成物K1>
着色感光性樹脂組成物K1は、まず、表1に記載の量のK顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。
次いで、メチルエチルケトン、バインダー1、ハイドロキノンモノメチルエーテル、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチル)−3−ブロモフェニル]−s−トリアジン、及び界面活性剤1をはかり取り、温度25℃(±2℃)で、この順に添加して、温度40℃(±2℃)にて、150rpmで30分間攪拌することによって得られた。
なお、表1の処方K1に記載の組成物の内、以下の意味を表す。
*K顔料分散物1:
・カーボンブラック(デグッサ社製、商品名Special Black 250)・・・13.1部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・0.65部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・6.72部
・プロピレングリコールモノメチルエーテルアセテート・・・79.53部
*バインダー1:
・ベンジルメタクリレート/メタクリル酸=78/22モル比のランダム共重合物、重量平均分子量4.4万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
*DPHA液:
・ジペンタエリスリトールヘキサアクリレート(重合禁止剤MEHQを500ppm含有、日本化薬株式会社製、商品名:KAYARAD DPHA)・・・76部
・プロピレングリコールモノメチルエーテルアセテート・・・24部
*界面活性剤1:
・C13CHCHOCOCH=CH:40部と、H(O(CH)CHCH)OCOCH=CH:55部と、H(OCHCH)OCOCH=CH:5部との共重合体、重量平均分子量3万・・・30部
・メチルエチルケトン・・・70部
<Colored photosensitive resin composition K1>
The colored photosensitive resin composition K1 is first weighed in the amount of K pigment dispersion 1 and propylene glycol monomethyl ether acetate listed in Table 1, mixed at a temperature of 24 ° C. (± 2 ° C.), and stirred at 150 rpm for 10 minutes. did.
Next, methyl ethyl ketone, binder 1, hydroquinone monomethyl ether, DPHA solution, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethyl) -3-bromophenyl] -s-triazine, And surfactant 1 were weighed out, added in this order at a temperature of 25 ° C. (± 2 ° C.), and stirred at 150 rpm for 30 minutes at a temperature of 40 ° C. (± 2 ° C.).
In addition, the following meaning is represented among the compositions described in Formula 1 in Table 1.
* K pigment dispersion 1:
Carbon black (trade name Special Black 250, manufactured by Degussa Co., Ltd.) 13.1 parts N, N′-bis- (3-diethylaminopropyl) -5- [4- [2-oxo-1- (2 -Oxo-2,3-dihydro-1H-benzimidazol-5-ylcarbamoyl) -propylazo] -benzoylamino] -isophthalamide ... 0.65 parts Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio) Random copolymer, weight average molecular weight 37,000) ... 6.72 parts · Propylene glycol monomethyl ether acetate ... 79.53 parts * Binder 1:
-Random copolymer of benzyl methacrylate / methacrylic acid = 78/22 molar ratio, weight average molecular weight 44,000 ... 27 parts-Propylene glycol monomethyl ether acetate ... 73 parts * DPHA solution:
Dipentaerythritol hexaacrylate (containing 500 ppm of polymerization inhibitor MEHQ, manufactured by Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA) ... 76 parts Propylene glycol monomethyl ether acetate ... 24 parts * Surfactant 1:
· C 6 F 13 CH 2 CH 2 OCOCH = CH 2: and 40 parts, H (O (CH 3) CHCH 2) 7 OCOCH = CH 2: and 55 parts, H (OCH 2 CH 2) 7 OCOCH = CH 2 : Copolymer with 5 parts, weight average molecular weight 30,000 ... 30 parts ・ Methyl ethyl ketone ... 70 parts

<着色感光性樹脂組成物R1>
着色感光性樹脂組成物R1は、まず、表1に記載の量のR顔料分散物1、R顔料分散物2、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。次いで、表1に記載の量のメチルエチルケトン、バインダー2、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチル)−3−ブロモフェニル]−s−トリアジン、フェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150rpm10分間攪拌した。次いで、表1に記載の量のED152をはかり取り、温度24℃(±2℃)で混合して150rpm20分間攪拌した。次に、表1に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpm30分間攪拌し、ナイロンメッシュ#200で濾過することによって得られた。
なお、表1に記載の組成物の内、以下の意味を表す。
*R顔料分散物1:
・C.I.ピグメント・レッド254・・・8部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・0.8部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・8部
・プロピレングリコールモノメチルエーテルアセテート・・・83.2部
*R顔料分散物2:
・C.I.ピグメント・レッド177・・・18部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万))・・・12部
・プロピレングリコールモノメチルエーテルアセテート・・・70部
*バインダー2:
・ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=38/25/37モル比のランダム共重合物、重量平均分子量3万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
*ED152:楠本化成株式会社製、HIPLAAD ED152
<Colored photosensitive resin composition R1>
The colored photosensitive resin composition R1 is first weighed in the amounts of R pigment dispersion 1, R pigment dispersion 2, and propylene glycol monomethyl ether acetate in the amounts shown in Table 1, and mixed at a temperature of 24 ° C. (± 2 ° C.). And stirred at 150 rpm for 10 minutes. Then, the amounts of methyl ethyl ketone, binder 2, DPHA solution, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethyl) -3-bromophenyl] -s shown in Table 1 -Triazine and phenothiazine were weighed and added in this order at a temperature of 24 ° C (± 2 ° C) and stirred at 150 rpm for 10 minutes. Next, the amount of ED152 shown in Table 1 was weighed, mixed at a temperature of 24 ° C. (± 2 ° C.), and stirred at 150 rpm for 20 minutes. Next, the surfactant 1 in the amount shown in Table 1 was weighed out, added at a temperature of 24 ° C. (± 2 ° C.), stirred at 30 rpm for 30 minutes, and filtered through nylon mesh # 200.
In addition, the following meaning is represented among the compositions described in Table 1.
* R pigment dispersion 1:
・ C. I. Pigment Red 254... 8 parts N, N′-bis- (3-diethylaminopropyl) -5- [4- [2-oxo-1- (2-oxo-2,3-dihydro-1H-benzo Imidazol-5-ylcarbamoyl) -propylazo] -benzoylamino] -isophthalamide ... 0.8 parts Random copolymer of benzyl methacrylate / methacrylic acid = 72/28 molar ratio, weight average molecular weight 3.7 8 parts) Propylene glycol monomethyl ether acetate 83.2 parts * R pigment dispersion 2:
・ C. I. Pigment Red 177 18 parts Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000)) 12 parts Propylene glycol monomethyl ether acetate ..70 parts * Binder 2:
・ Random copolymer of benzyl methacrylate / methacrylic acid / methyl methacrylate = 38/25/37 molar ratio, weight average molecular weight 30,000... 27 parts ・ Propylene glycol monomethyl ether acetate 73 parts * ED152: Enomoto Chemicals Made by company, HIPLAAD ED152

<着色感光性樹脂組成物G1>
着色感光性樹脂組成物G1は、まず、表1に記載の量のG顔料分散物1、Y顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。次いで、表1に記載の量のメチルエチルケトン、シクロヘキサノン、バインダー1、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチル)−3−ブロモフェニル]−s−トリアジン、及びフェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150rpmで30分間攪拌した。次いで、表1に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpmで5分間攪拌し、ナイロンメッシュ#200で濾過することによって得られる。
なお、表1に記載の組成物の内、以下の意味を表す。
*G顔料分散物1:
・C.I.ピグメント・グリーン36・・・18部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・12部
・シクロヘキサノン・・・35部
・プロピレングリコールモノメチルエーテルアセテート・・・35部
*Y顔料分散物1:(御国色素社製、商品名:CFエローEX3393)
<Colored photosensitive resin composition G1>
The colored photosensitive resin composition G1 is first weighed in the amounts of G pigment dispersion 1, Y pigment dispersion 1, and propylene glycol monomethyl ether acetate shown in Table 1 and mixed at a temperature of 24 ° C. (± 2 ° C.). And stirred at 150 rpm for 10 minutes. Next, methyl ethyl ketone, cyclohexanone, binder 1, DPHA solution, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethyl) -3-bromophenyl] in the amounts shown in Table 1 -S-Triazine and phenothiazine were weighed out, added in this order at a temperature of 24 ° C (± 2 ° C), and stirred at 150 rpm for 30 minutes. Subsequently, the surfactant 1 in the amount shown in Table 1 is weighed out, added at a temperature of 24 ° C. (± 2 ° C.), stirred at 30 rpm for 5 minutes, and filtered through nylon mesh # 200.
In addition, the following meaning is represented among the compositions described in Table 1.
* G pigment dispersion 1:
・ C. I. Pigment Green 36 ... 18 parts Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000) ... 12 partsCyclohexanone 35 parts Propylene glycol monomethyl ether acetate 35 parts * Y Pigment Dispersion 1: (manufactured by Gokoku Color Co., Ltd., trade name: CF Yellow EX3393)

<着色感光性樹脂組成物B1>
着色感光性樹脂組成物B1は、まず、表1に記載の量のB顔料分散物1、B顔料分散物2、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpm10分間攪拌した。次いで、表1に記載の量のメチルエチルケトン、バインダー3、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチル)−3−ブロモフェニル]−s−トリアジン、フェノチアジンをはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150rpm30分間攪拌した。更に、表1に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpmで5分間攪拌し、ナイロンメッシュ#200で濾過することによって得られた。
なお、表1に記載の組成物の内、以下の意味を表す。
*B顔料分散物1:(御国色素社製、商品名:CFブルーEX3357)
*B顔料分散物2:(御国色素社製、商品名:CFブルーEX3383)
*バインダー3:
・ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=36/22/42モル比のランダム共重合物、重量平均分子量3万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
<Colored photosensitive resin composition B1>
The colored photosensitive resin composition B1 is first weighed in the amounts of B pigment dispersion 1, B pigment dispersion 2, and propylene glycol monomethyl ether acetate shown in Table 1 and mixed at a temperature of 24 ° C. (± 2 ° C.). And stirring at 150 rpm for 10 minutes. Then, the amounts of methyl ethyl ketone, binder 3, DPHA solution, 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethyl) -3-bromophenyl] -s shown in Table 1 -Triazine and phenothiazine were weighed out, added in this order at a temperature of 25 ° C (± 2 ° C), and stirred at a temperature of 40 ° C (± 2 ° C) at 150 rpm for 30 minutes. Further, the surfactant 1 in the amount shown in Table 1 was weighed out, added at a temperature of 24 ° C. (± 2 ° C.), stirred at 30 rpm for 5 minutes, and filtered through a nylon mesh # 200.
In addition, the following meaning is represented among the compositions described in Table 1.
* B Pigment Dispersion 1: (Mikuni Color Co., Ltd., trade name: CF Blue EX3357)
* B Pigment Dispersion 2: (manufactured by Mikuni Color Co., Ltd., trade name: CF Blue EX3383)
* Binder 3:
・ Random copolymer of benzyl methacrylate / methacrylic acid / methyl methacrylate = 36/22/42 molar ratio, weight average molecular weight 30,000... 27 parts ・ Propylene glycol monomethyl ether acetate 73 parts

−ブラック(K)画像の形成−
無アルカリガラス基板に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3%水溶液(商品名:KBM603、信越化学工業社製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基板を基板予備加熱装置で100℃、2分間加熱した。
次に、前記感光性樹脂転写材料K1の保護フィルムを剥離後、ラミネーター((株)日立インダストリイズ社製、LamicII型)を用い、前記基板に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。
-Formation of black (K) image-
A glass cleaner solution prepared on an alkali-free glass substrate is sprayed with a rotating brush having nylon hair while being sprayed for 20 seconds by showering, and after pure water shower cleaning, a silane coupling solution (N-β (aminoethyl) γ-aminopropyl) A 0.3% trimethoxysilane aqueous solution (trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water, and the substrate was heated at 100 ° C. for 2 minutes with a substrate preheating apparatus.
Next, after peeling off the protective film of the photosensitive resin transfer material K1, using a laminator (Lamic II type, manufactured by Hitachi Industries, Ltd.), a rubber roller temperature of 130 ° C., a linear pressure of 100 N / cm is applied to the substrate. Lamination was performed at a conveyance speed of 2.2 m / min.

−露光−
露光は、下記の露光装置を用いた露光方法により行った。
7つの半導体レーザからなる半導体レーザの束を7束集めたものを1つのレーザーヘッドし、該レーザーヘッドを合計8ヘッド有し、光変調素子(マイクロミラー)が2次元状に並んだ空間光変調デバイス(SLM)照明する照明光学系、SLMの像を形成する結像光学系、結像光学系と感光層付き基板とを相対的に走査する搬送する搬送系を備えた露光装置を用い、画像データに応じてマイクロミラーをON/OFF変調させることにより、感光層上に二次元画像を形成する露光装置により中心波長365nmの波長、70mJ/cmの露光量で露光を行った。
なお、この露光ヘッドは、走査方向に対する描素部の列方向の傾斜角度θを適宜調節し、2重露光となるよう設定されていた。
-Exposure-
The exposure was performed by an exposure method using the following exposure apparatus.
Spatial light modulation in which a bundle of seven semiconductor lasers consisting of seven semiconductor lasers is collected as one laser head, and there are a total of eight laser heads, with light modulation elements (micromirrors) arranged in two dimensions. An exposure apparatus having an illumination optical system for illuminating a device (SLM), an imaging optical system for forming an image of the SLM, and a transport system for transporting the imaging optical system and the substrate with the photosensitive layer relatively, By performing ON / OFF modulation of the micromirror according to the data, exposure was performed at a central wavelength of 365 nm and an exposure amount of 70 mJ / cm 2 by an exposure apparatus that forms a two-dimensional image on the photosensitive layer.
The exposure head was set so as to achieve double exposure by appropriately adjusting the inclination angle θ in the column direction of the picture element portion with respect to the scanning direction.

次に、トリエタノールアミン系現像液(2.5%のトリエタノールアミン含有、ノニオン界面活性剤含有、ポリプロピレン系消泡剤含有、商品名:T−PD1、富士写真フイルム株式会社製)を用いて、30℃、50秒間、フラットノズル圧力0.04MPaでシャワー現像し、熱可塑性樹脂層及び中間層を除去した。   Next, using a triethanolamine developer (2.5% triethanolamine-containing, nonionic surfactant-containing, polypropylene-based antifoaming agent-containing, trade name: T-PD1, manufactured by Fuji Photo Film Co., Ltd.) Shower development was performed at 30 ° C. for 50 seconds at a flat nozzle pressure of 0.04 MPa, and the thermoplastic resin layer and the intermediate layer were removed.

引き続き、炭酸Na系現像液(0.06モル/リットルの炭酸水素ナトリウム、同濃度の炭酸ナトリウム、1%のジブチルナフタレンスルホン酸ナトリウム、アニオン界面活性剤、消泡剤、安定剤含有、商品名:T−CD1、富士写真フイルム株式会社製)を用い、29℃、30秒間、コーン型ノズル圧力0.15MPaでシャワー現像し、感光層を現像し、パターニング画素を得た。
引き続き、洗浄剤(燐酸塩、珪酸塩、ノニオン界面活性剤、消泡剤、及び安定剤含有、商品名T−SD1、富士写真フイルム株式会社製)を用い、33℃、20秒間、コーン型ノズル圧力0.02MPaでシャワーとナイロン毛を有する回転ブラシにより残渣除去を行い、ブラック(K)の画像を得た。その後更に、該基板に対して該樹脂層の側から超高圧水銀灯で500mJ/cmの光でポスト露光後、220℃、15分間熱処理した。
このブラック(K)の画像を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置により100℃2分間加熱した。
Subsequently, a sodium carbonate-based developer (0.06 mol / liter sodium bicarbonate, sodium carbonate of the same concentration, 1% sodium dibutylnaphthalenesulfonate, anionic surfactant, antifoaming agent, stabilizer, trade name: Using T-CD1, manufactured by Fuji Photo Film Co., Ltd., shower development was performed at 29 ° C. for 30 seconds with a cone type nozzle pressure of 0.15 MPa, and the photosensitive layer was developed to obtain a patterned pixel.
Subsequently, using a cleaning agent (containing phosphate, silicate, nonionic surfactant, antifoaming agent and stabilizer, trade name T-SD1, manufactured by Fuji Photo Film Co., Ltd.), 33 ° C., 20 seconds, cone type nozzle Residue removal was performed with a rotary brush having a shower and nylon bristles at a pressure of 0.02 MPa to obtain a black (K) image. Thereafter Further, after post-exposure with light at 500 mJ / cm 2 by an ultrahigh pressure mercury lamp from the side of the resin layer relative to the substrate, 220 ° C., and heat-treated for 15 minutes.
The substrate on which this black (K) image was formed was again cleaned with a brush as described above, and after pure water shower cleaning, the substrate was heated at 100 ° C. for 2 minutes without using a silane coupling solution. .

−レッド(R)画素の形成−
前記感光性樹脂転写材料R1を用い、ブラック(K)画像を形成した基板上に、前記感光性樹脂転写材料K1と同様の工程により、レッド(R)の画素を得た。ただし、露光量は40mJ/cm、炭酸Na系現像液による現像は35℃、35秒間とした。
該感光層R1の厚みは2.0μmであり、顔料C.I.ピグメント・レッド254及びC.I.ピグメント・レッド177の塗布量はそれぞれ、0.88g/m、0.22g/mであった。
このRの画素を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置により100℃、2分間加熱した。
-Formation of red (R) pixels-
Red (R) pixels were obtained on the substrate on which a black (K) image was formed using the photosensitive resin transfer material R1 by the same process as the photosensitive resin transfer material K1. However, the exposure amount is 40 mJ / cm 2, development with carbonate Na developing solution is 35 ° C., was 35 seconds.
The photosensitive layer R1 has a thickness of 2.0 μm. I. Pigment red 254 and C.I. I. The application amounts of Pigment Red 177 were 0.88 g / m 2 and 0.22 g / m 2 , respectively.
The substrate on which the R pixel was formed was again cleaned with a brush as described above, and after pure water shower cleaning, the substrate was heated at 100 ° C. for 2 minutes by a substrate preheating device without using a silane coupling solution.

−グリーン(G)画素の形成−
前記感光性樹脂転写材料G1を用い、前記レッド(R)画素を形成した基板上に、前記感光性樹脂転写材料R1と同様の工程で、グリーン(G)の画素を得た。ただし、露光量は40mJ/cm、炭酸Na系現像液による現像は34℃、45秒間とした。
該感光層G1の厚みは2.0μmであり、顔料C.I.ピグメント・グリーン36及びC.I.ピグメント・イエロー150の塗布量はそれぞれ、1.12g/m、0.48g/mであった。
RとGの画像を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置により100℃、2分間加熱した。
-Formation of green (G) pixels-
Using the photosensitive resin transfer material G1, green (G) pixels were obtained on the substrate on which the red (R) pixels were formed, in the same process as the photosensitive resin transfer material R1. However, the exposure amount was 40 mJ / cm 2 , and development with a sodium carbonate-based developer was 34 ° C. for 45 seconds.
The photosensitive layer G1 has a thickness of 2.0 μm. I. Pigment green 36 and C.I. I. Each coating amount of Pigment Yellow 150, 1.12g / m 2, was 0.48 g / m 2.
The substrate on which the R and G images were formed was again cleaned with a brush as described above, and after pure water shower cleaning, the substrate was heated at 100 ° C. for 2 minutes by a substrate preheating device without using a silane coupling solution.

−ブルー(B)画素の形成−
前記感光性樹脂転写材料B1を用い、前記レッド(R)画素とグリーン(G)画素を形成した基板上に、前記感光性樹脂転写材料R1と同様の工程で、ブルー(B)の画素を得た。ただし、露光量は30mJ/cm、炭酸Na系現像液による現像は36℃、40秒間とした。
該感光層B1の厚みは2.0μmであり、顔料C.I.ピグメント・ブルー15:6及びC.I.ピグメント・バイオレット23の塗布量はそれぞれ、0.63g/m、0.07g/mであった。
-Formation of blue (B) pixels-
Using the photosensitive resin transfer material B1, a blue (B) pixel is obtained on the substrate on which the red (R) pixel and the green (G) pixel are formed in the same process as the photosensitive resin transfer material R1. It was. However, the exposure amount was 30 mJ / cm 2 , and development with a sodium carbonate-based developer was 36 ° C. for 40 seconds.
The photosensitive layer B1 has a thickness of 2.0 μm. I. Pigment blue 15: 6 and C.I. I. Each coating amount of Pigment Violet 23, 0.63g / m 2, was 0.07 g / m 2.

(実施例2〜3及び比較例1)
−カラーフィルタの作製−
実施例2〜3及び比較例1は、表2に示すように開始剤1と増感剤の種類を変えた以外は、実施例1と同様にして、実施例2〜3及び比較例1の各カラーフィルタを作製した。
(Examples 2-3 and Comparative Example 1)
-Fabrication of color filter-
Examples 2-3 and Comparative Example 1 were the same as those in Examples 2-3 and Comparative Example 1 except that the types of initiator 1 and sensitizer were changed as shown in Table 2. Each color filter was produced.

次に、作製した各カラーフィルタ基板についての形状、線幅バラツキ、及び分光感度について、以下のようにして、評価した。結果を表3に示す。   Next, the shape, line width variation, and spectral sensitivity of each produced color filter substrate were evaluated as follows. The results are shown in Table 3.

<形状>
作製した各カラーフィルタパターンについて、その形状(シャープさ)を走査型電子顕微鏡(SEM)により観察し、下記基準により評価した。
〔評価基準〕
◎:きわめて良好
○:良好
△:やや劣る
×:不良
<Shape>
About each produced color filter pattern, the shape (sharpness) was observed with the scanning electron microscope (SEM), and the following reference | standard evaluated.
〔Evaluation criteria〕
◎: Extremely good ○: Good △: Slightly inferior ×: Poor

<線幅バラツキ>
作製した各カラーフィルタパターンを走査型電子顕微鏡(SEM)により観察し、線幅バラツキを求めた。
<Line width variation>
Each produced color filter pattern was observed with a scanning electron microscope (SEM), and the line width variation was determined.

<分光感度>
分光感度は、「フォトポリマー・テクノロジー」(山岡亜夫著、昭和63年日刊工業新聞社発行、第262頁)に詳述されているように、基板表面に感光層を形成したサンプルについて、分光感度測定装置を用い、キセノンランプ又はタングステンランプ等の光源から分光した光を、横軸方向に露光波長が直線的に、縦軸方向に露光強度が対数的に変化するように設定して照射して露光した後、現像処理することにより、各露光波長の感度に応じた画像が得られる。その画像高さから画像形成可能な露光エネルギーを算出し、横軸に波長、縦軸にその露光エネルギーの逆数をプロットして得られる分光感度曲線から求めることができる。
そして、得られた分光感度曲線から、露光中心波長から±10nm変化させたときの分光感度の変化率を算出した。
<Spectral sensitivity>
As described in detail in “Photopolymer Technology” (Akio Yamaoka, published by Nikkan Kogyo Shimbun Co., Ltd., page 262), spectral sensitivity is measured for samples having a photosensitive layer formed on the surface of the substrate. Using a measuring device, irradiate light separated from a light source such as a xenon lamp or tungsten lamp with the exposure wavelength set linearly in the horizontal axis direction and the exposure intensity changed logarithmically in the vertical axis direction. An image corresponding to the sensitivity of each exposure wavelength is obtained by developing after exposure. The exposure energy capable of forming an image is calculated from the image height, and can be obtained from a spectral sensitivity curve obtained by plotting the wavelength on the horizontal axis and the reciprocal of the exposure energy on the vertical axis.
Then, from the obtained spectral sensitivity curve, the change rate of the spectral sensitivity when the exposure center wavelength was changed by ± 10 nm was calculated.

(実施例4)
−スペーサー用感光性転写シートAの作製−
前記感光性転写材料K1の作製において用いた前記感光性組成物K1を、下記表4に記載の組成よりなるスペーサー処方Aに変更した以外は、上記と同様の方法により、スペーサー用感光性転写シートAを作製した。
Example 4
-Preparation of photosensitive transfer sheet A for spacer-
A photosensitive transfer sheet for spacers was prepared in the same manner as described above except that the photosensitive composition K1 used in the production of the photosensitive transfer material K1 was changed to a spacer formulation A having the composition shown in Table 4 below. A was produced.

なお、表4中の各成分の単位は質量部である。
ここで、前記表4に記載の処方中の各組成の詳細は以下の通りである。
*シリカ
・シリカゾルの30%メチルイソブチルケトン分散物
(商品名:MIBK−ST、日産化学工業(株)製)
*バインダー4
・メタクリル酸/アリルメタクリレート共重合体
(=20/80[モル比]、分子量36000;高分子物質)
*消色染料
・ビクトリアピュアブルーBOH−M(保土谷化学工業(株)製)
なお、DPHA液と界面活性剤1は上記説明したものと同様である。
In addition, the unit of each component in Table 4 is part by mass.
Here, the detail of each composition in prescription of the said Table 4 is as follows.
* Silica ・ Silica sol 30% methyl isobutyl ketone dispersion (trade name: MIBK-ST, manufactured by Nissan Chemical Industries, Ltd.)
* Binder 4
・ Methacrylic acid / allyl methacrylate copolymer (= 20/80 [molar ratio], molecular weight 36000; polymer substance)
* Decoloring dyes Victoria Victoria Blue BOH-M (Hodogaya Chemical Co., Ltd.)
The DPHA solution and the surfactant 1 are the same as those described above.

−フォトスペーサーの作製−
得られたスペーサー用感光性転写シートAのカバーフィルムを剥離し、露出した感光性樹脂層の表面を、上記で作製したITO膜がスパッタ形成されたカラーフィルタ基板のITO膜上に重ね合わせ、ラミネーターLamicII型〔(株)日立インダストリイズ製〕を用いて、線圧100N/cm、130℃の加圧加熱条件下で搬送速度2m/分にて貼り合わせた。その後、PET仮支持体を熱可塑性樹脂層との界面で剥離除去し、感光性樹脂層を熱可塑性樹脂層及び中間層と共に転写した(層形成工程)。
-Production of photo spacer-
The cover film of the obtained photosensitive transfer sheet A for spacers is peeled off, and the exposed surface of the photosensitive resin layer is overlaid on the ITO film of the color filter substrate on which the ITO film produced above is formed by sputtering. Using a Lamic II type (manufactured by Hitachi Industries, Ltd.), bonding was performed at a conveyance speed of 2 m / min under pressure heating conditions of a linear pressure of 100 N / cm and 130 ° C. Thereafter, the PET temporary support was peeled and removed at the interface with the thermoplastic resin layer, and the photosensitive resin layer was transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).

次に、実施例1と同様の方法で露光した。
次いで、KOH現像液CDK−1(富士フイルムエレクトロニクスマテリアルズ(株)製)を、フラットノズルから23℃、ノズル圧力0.04MPaにて80秒間噴射してシャワー現像し、未露光部を現像除去してパターン(スペーサーパターン)を得た(パターニング工程)。
得られたスペーサーパターンは、直径16μm、平均高さ3.7μmの透明な柱状であった。
次に、スペーサーパターンが設けられたカラーフィルタ基板を、230℃下で30分間加熱処理を行い(熱処理工程)、フォトスペーサーを作製した。
Next, it exposed by the method similar to Example 1. FIG.
Next, KOH developer CDK-1 (manufactured by FUJIFILM Electronics Materials Co., Ltd.) is sprayed from a flat nozzle at 23 ° C. and a nozzle pressure of 0.04 MPa for 80 seconds to perform shower development, and unexposed portions are developed and removed. Pattern (spacer pattern) was obtained (patterning step).
The obtained spacer pattern was a transparent column having a diameter of 16 μm and an average height of 3.7 μm.
Next, the color filter substrate provided with the spacer pattern was heat-treated at 230 ° C. for 30 minutes (heat treatment step) to produce a photospacer.

得られたフォトスペーサーの分光感度の変化率は5%であり、線幅のバラツキは5%であり、得られたスペーサーの形状は良好であった。   The change rate of the spectral sensitivity of the obtained photospacer was 5%, the line width variation was 5%, and the shape of the obtained spacer was good.

本発明のカラーフィルタの製造方法により製造されるカラーフィルタは、反射モード及び透過モードのいずれにおいても良好な表示特性を備え、特に、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用に好適であり、また、PALC(プラズマアドレス液晶)、プラズマディスプレイ用としても好適に用いられる。   The color filter manufactured by the method for manufacturing a color filter of the present invention has good display characteristics in both the reflection mode and the transmission mode, and particularly for liquid crystal display devices (LCD) such as portable terminals and portable game machines. It is also suitable for PALC (plasma addressed liquid crystal) and plasma display.

図1は、露光装置の一例の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of an example of an exposure apparatus. 図2は、露光装置のスキャナの構成の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the configuration of the scanner of the exposure apparatus. 図3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図である。FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer. 図3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head. 図4は、露光ヘッドの概略構成の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a schematic configuration of the exposure head. 図5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。FIG. 5A is a top view showing an example of a detailed configuration of the exposure head. 図5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。FIG. 5B is a side view showing an example of a detailed configuration of the exposure head. 図6は、図1の露光装置のDMDの一例を示す部分拡大図である。FIG. 6 is a partially enlarged view showing an example of the DMD of the exposure apparatus of FIG. 図7Aは、マイクロミラーがオン状態である+α度に傾いた状態を示す図である。FIG. 7A is a diagram illustrating a state in which the micromirror is tilted to + α degrees in the on state. 図7Bは、マイクロミラーがオフ状態である−α度に傾いた状態を示す図である。FIG. 7B is a diagram illustrating a state in which the micromirror is in an off state and tilted to −α degrees. 図8は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。FIG. 8 is an example of a controller that controls DMD based on pattern information. 図9Aは、DMDを傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)の走査軌跡を示す図である。FIG. 9A is a diagram showing a scanning trajectory of a reflected light image (exposure beam) by each micromirror when the DMD is not tilted. 図9Bは、DMDを傾斜させた場合の露光ビームの走査軌跡を示す図である。FIG. 9B is a diagram showing the scanning trajectory of the exposure beam when the DMD is tilted. 図10は、スキャナによる1回の走査で感光層を露光する露光方式を説明するための平面図の一例である。FIG. 10 is an example of a plan view for explaining an exposure method in which the photosensitive layer is exposed by one scanning by the scanner. 図11Aは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための図であって、スキャナにより感光層をX方向へ走査した後、スキャナをY方向に1ステップ移動した状態を示す図である。FIG. 11A is a diagram for explaining an exposure method in which a photosensitive layer is exposed by scanning a plurality of times by the scanner, and after the photosensitive layer is scanned in the X direction by the scanner, the scanner is moved by one step in the Y direction. FIG. 図11Bは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための図であって、図11Aの後、X方向へ走査を行う状態を示す図である。FIG. 11B is a diagram for explaining an exposure method for exposing the photosensitive layer by a plurality of scans by the scanner, and shows a state in which scanning is performed in the X direction after FIG. 11A. 図12は、ファイバアレイ光源の構成の一例を示す斜視図である。FIG. 12 is a perspective view showing an example of the configuration of the fiber array light source. 図13は、ファイバアレイ光源のレーザ出射部における発光点の配列の一例を示す正面図である。FIG. 13 is a front view showing an example of the arrangement of light emitting points in the laser emitting section of the fiber array light source. 図14は、マルチモード光ファイバの構成を示す図の一例である。FIG. 14 is an example of a diagram illustrating a configuration of a multimode optical fiber. 図15は、合波レーザ光源の構成を示す平面図の一例である。FIG. 15 is an example of a plan view showing the configuration of the combined laser light source. 図16は、レーザモジュールの構成を示す平面図の一例である。FIG. 16 is an example of a plan view showing the configuration of the laser module. 図17は、図16に示すレーザモジュールの構成を示す側面図の一例である。FIG. 17 is an example of a side view showing the configuration of the laser module shown in FIG. 図18は、図16に示すレーザモジュールの構成を示す部分側面図である。18 is a partial side view showing the configuration of the laser module shown in FIG. 図19は、レーザアレイの構成を示す斜視図の一例である。FIG. 19 is an example of a perspective view illustrating a configuration of a laser array. 図20Aは、マルチキャビティレーザの構成の一例を示す斜視図である。FIG. 20A is a perspective view showing an example of the configuration of a multi-cavity laser. 図20Bは、図20Aに示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの一例を示す斜視図である。20B is a perspective view showing an example of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 20A are arranged in an array. 図21は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 21 is an example of a plan view showing another configuration of the combined laser light source. 図22は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 22 is an example of a plan view showing another configuration of the combined laser light source. 図23Aは、合波レーザ光源の他の構成の一例を示す平面図である。FIG. 23A is a plan view showing an example of another configuration of the combined laser light source. 図23Bは、図23Aの光軸に沿った構成の一例を示す断面図である。FIG. 23B is a cross-sectional view showing an example of a configuration along the optical axis of FIG. 23A. 図24Aは、従来の露光装置における光軸に沿った断面図の一例である。FIG. 24A is an example of a cross-sectional view along the optical axis in a conventional exposure apparatus. 図24Bは、本発明のパターン形成方法(露光装置)おける光軸に沿った断面図の一例である。FIG. 24B is an example of a cross-sectional view along the optical axis in the pattern forming method (exposure apparatus) of the present invention. 図25は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、露光面上のパターンに生じるむらの例を示した説明図である。FIG. 25 is an explanatory diagram showing an example of unevenness that occurs in the pattern on the exposure surface when there is a mounting angle error and pattern distortion of the exposure head. 図26は、1つのDMDによる露光エリアと、対応するスリットとの位置関係を示した上面図である。FIG. 26 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit. 図27は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。FIG. 27 is a top view for explaining a method of measuring the position of the light spot on the exposed surface using a slit. 図28は、選択されたマイクロミラーのみが露光に使用された結果、露光面上のパターンに生じるむらが改善された状態を示す説明図である。FIG. 28 is an explanatory diagram showing a state in which unevenness occurring in the pattern on the exposure surface is improved as a result of using only the selected micromirrors for exposure. 図29は、隣接する露光ヘッド間に相対位置のずれがある際に、露光面上のパターンに生じるむらの例を示した説明図である。FIG. 29 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposure surface when there is a relative position shift between adjacent exposure heads. 図30は、隣接する2つの露光ヘッドによる露光エリアと、対応するスリットとの位置関係を示した上面図である。FIG. 30 is a top view showing the positional relationship between the exposure areas by two adjacent exposure heads and the corresponding slits. 図31は、露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。FIG. 31 is a top view for explaining a method of measuring the position of the light spot on the exposure surface using a slit. 図32は、図29の例において選択された使用画素のみが実動され、露光面上のパターンに生じるむらが改善された状態を示す説明図である。FIG. 32 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 29 are actually moved and the unevenness in the pattern on the exposure surface is improved. 図33は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある際に、露光面上のパターンに生じるむらの例を示した説明図である。FIG. 33 is an explanatory diagram showing an example of unevenness in the pattern on the exposure surface when there is a relative position shift and an attachment angle error between adjacent exposure heads. 図34は、図33の例において選択された使用描素部のみを用いた露光を示す説明図である。FIG. 34 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG. 図35Aは、倍率歪みの一例を示す説明図である。FIG. 35A is an explanatory diagram illustrating an example of magnification distortion. 図35Bは、ビーム径歪みの一例を示す説明図である。FIG. 35B is an explanatory diagram showing an example of beam diameter distortion. 図36Aは、単一露光ヘッドを用いた参照露光の第一の例を示し、実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する状態を説明する図である。FIG. 36A shows a first example of reference exposure using a single exposure head, in which reference exposure is performed using only micromirrors corresponding to odd-numbered light spot rows indicated by solid lines, and the reference exposure result is obtained. It is a figure explaining the state which outputs a sample. 図36Bは、単一露光ヘッドを用いた参照露光の第一の例を示し、斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される状態を示す図である。FIG. 36B shows a first example of reference exposure using a single exposure head, in which micromirrors other than the micromirrors corresponding to the light spot rows covered with diagonal lines constitute odd-numbered light spot rows. It is a figure which shows the state designated as what is actually used in this exposure in a mirror. 図37は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である。FIG. 37 is an explanatory diagram showing a first example of reference exposure using a plurality of exposure heads. 図38Aは、単一露光ヘッドを用いた参照露光の第二の例を示し、実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する状態を示す説明図である。FIG. 38A shows a second example of reference exposure using a single exposure head, and uses only micromirrors corresponding to the light spots in the first to 128 (= 256/2) rows indicated by solid lines. It is explanatory drawing which shows the state which performs reference exposure and outputs the sample of the reference exposure result. 図38Bは、単一露光ヘッドを用いた参照露光の第二の例を示し、斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る状態を示す図である。FIG. 38B shows a second example of reference exposure using a single exposure head, in which micromirrors other than the micromirror corresponding to the light spot group indicated by hatching are in the first to 128th rows. It is a figure which shows the state which can be designated as what is actually used in the time of this exposure in a micromirror. 図39は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である。FIG. 39 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.

符号の説明Explanation of symbols

B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 露光装置
12 感光層
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ(カメラ)
28 スリット
30 露光ヘッド
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
40 集光レンズ系
50 結像レンズ系
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
B1 to B7 Laser beam L1 to L7 Collimator lens LD1 to LD7 GaN-based semiconductor laser 10 Exposure device 12 Photosensitive layer 14 Moving stage 18 Installation table 20 Guide 22 Gate 24 Scanner 26 Sensor (Camera)
28 Slit 30 Exposure Head 36 Digital Micromirror Device (DMD)
38 Fiber array light source 40 Condensing lens system 50 Imaging lens system 58 Micromirror (image element)
60 laser module 62 multimode optical fiber 64 optical fiber 66 laser emitting section 110 heat block 111 multicavity laser 113 rod lens 114 lens array 140 laser array 200 condenser lens

Claims (16)

少なくとも光重合開始剤と、エチレン性反応性基を有する光重合性化合物と、光照射による硬化反応に寄与しない非光硬化性成分と、を含有する感光性組成物であって、
前記感光性組成物からなる感光層は、レーザー露光波長が中心値から±10nm変化したときの分光感度の変化率が−8%〜+8%の範囲であり、
前記感光性組成物からなる感光層に対し、画像データに基づいて、2つ以上のレーザーヘッドを有する露光装置により光を変調しながら相対走査する露光に用いられることを特徴とする感光性組成物。
A photosensitive composition comprising at least a photopolymerization initiator, a photopolymerizable compound having an ethylenic reactive group, and a non-photocurable component that does not contribute to a curing reaction by light irradiation,
The photosensitive layer comprising the photosensitive composition has a spectral sensitivity change rate in the range of −8% to + 8% when the laser exposure wavelength changes ± 10 nm from the center value.
A photosensitive composition comprising: a photosensitive layer comprising the photosensitive composition, wherein the photosensitive layer is used for exposure by relative scanning while modulating light based on image data using an exposure apparatus having two or more laser heads. .
露光が、多重露光方式である請求項1に記載の感光性組成物。   The photosensitive composition according to claim 1, wherein the exposure is a multiple exposure method. 非光硬化性成分が、架橋性基を有さない高分子化合物、着色剤、及び無機充填剤のいずれかである請求項1から2のいずれかに記載の感光性組成物。   The photosensitive composition according to claim 1, wherein the non-photocurable component is any one of a polymer compound having no crosslinkable group, a colorant, and an inorganic filler. 非光硬化性成分の感光性組成物中の全固形成分に対する含有量が、50〜90質量%である請求項1から3のいずれかに記載の感光性組成物。   The photosensitive composition according to any one of claims 1 to 3, wherein the content of the non-photocurable component with respect to the total solid components in the photosensitive composition is 50 to 90% by mass. 2つ以上のレーザーヘッドが二次元状に配列されている請求項1から4のいずれかに記載の感光性組成物。   The photosensitive composition according to claim 1, wherein two or more laser heads are arranged two-dimensionally. 露光装置が、二次元状に並んだ空間光変調素子を有する請求項1から5のいずれかに記載の感光性組成物。   The photosensitive composition according to any one of claims 1 to 5, wherein the exposure apparatus has two-dimensionally arranged spatial light modulation elements. レーザー露光波長の中心値が350〜450nmである請求項1から6のいずれかに記載の感光性組成物。   The photosensitive composition according to claim 1, wherein the central value of the laser exposure wavelength is 350 to 450 nm. 基材と、該基材上に請求項1から7のいずれかに記載の感光性組成物を塗布し、乾燥させてなる感光層とを有することを特徴とする感光性フィルム。   A photosensitive film comprising: a base material; and a photosensitive layer obtained by applying the photosensitive composition according to claim 1 on the base material and drying the base material. 請求項1から7のいずれかに記載の感光性組成物を、基材の表面に塗布し、乾燥して感光層を形成した後、該感光層を露光し、現像することを特徴とするカラーフィルタの製造方法。   A color comprising applying the photosensitive composition according to any one of claims 1 to 7 to the surface of a substrate and drying to form a photosensitive layer, and then exposing and developing the photosensitive layer. A method for manufacturing a filter. 請求項8に記載の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、該感光性フィルムの感光層を露光し、現像することを特徴とするカラーフィルタの製造方法。   9. A color comprising: laminating the photosensitive film according to claim 8 on the surface of a substrate under at least one of heating and pressurization, and then exposing and developing the photosensitive layer of the photosensitive film. A method for manufacturing a filter. 感光性組成物が、少なくとも、黒色(K)に着色されている請求項9から10のいずれかに記載のカラーフィルタの製造方法。   The manufacturing method of the color filter in any one of Claim 9 to 10 with which the photosensitive composition is colored at least black (K). 少なくとも、赤色(R)、緑色(G)、及び青色(B)の3原色に着色された感光性組成物を用いて、基材の表面に所定の配置で、R、G及びBの各色毎に、順次、感光層の形成、露光、及び現像を繰り返してカラーフィルタを形成する請求項9から11のいずれかに記載のカラーフィルタの製造方法。   For each color of R, G, and B in a predetermined arrangement on the surface of the substrate, using a photosensitive composition colored in at least three primary colors of red (R), green (G), and blue (B) The method for producing a color filter according to claim 9, wherein the color filter is formed by sequentially repeating formation of the photosensitive layer, exposure, and development. 赤色(R)着色に少なくとも顔料C.I.ピグメントレッド254を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー139の少なくともいずれかの顔料を、並びに、青色(B)着色に少なくとも顔料C.I.ピグメントブルー15:6を用いる請求項12に記載のカラーフィルタの製造方法。   At least pigment C.I. I. Pigment Red 254 is colored green (G) with pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 139 and at least a pigment C.I. I. The method for producing a color filter according to claim 12, wherein Pigment Blue 15: 6 is used. 赤色(R)着色に顔料C.I.ピグメントレッド254及び顔料C.I.ピグメントレッド177の少なくともいずれかの顔料を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150の少なくともいずれかの顔料を、並びに、青色(B)着色に顔料C.I.ピグメントブルー15:6及び顔料C.I.ピグメントバイオレット23の少なくともいずれかの顔料を用いる請求項12に記載のカラーフィルタの製造方法。   Pigment to red (R) coloring C.I. I. Pigment red 254 and pigment C.I. I. Pigment Red 177 at least one pigment is changed to a green (G) coloring pigment C.I. I. Pigment green 36 and pigment C.I. I. Pigment Yellow 150 and at least blue (B) pigment C.I. I. Pigment blue 15: 6 and pigment C.I. I. The method for producing a color filter according to claim 12, wherein at least one pigment of pigment violet 23 is used. 請求項9から14のいずれかに記載のカラーフィルタの製造方法により製造されたことを特徴とするカラーフィルタ。   A color filter manufactured by the method for manufacturing a color filter according to claim 9. 請求項15に記載のカラーフィルタを備えたことを特徴とする液晶表示装置。
A liquid crystal display device comprising the color filter according to claim 15.
JP2005225311A 2005-08-03 2005-08-03 Photosensitive composition, color filter and its manufacturing method, and liquid crystal display Pending JP2007041282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225311A JP2007041282A (en) 2005-08-03 2005-08-03 Photosensitive composition, color filter and its manufacturing method, and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225311A JP2007041282A (en) 2005-08-03 2005-08-03 Photosensitive composition, color filter and its manufacturing method, and liquid crystal display

Publications (1)

Publication Number Publication Date
JP2007041282A true JP2007041282A (en) 2007-02-15

Family

ID=37799324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225311A Pending JP2007041282A (en) 2005-08-03 2005-08-03 Photosensitive composition, color filter and its manufacturing method, and liquid crystal display

Country Status (1)

Country Link
JP (1) JP2007041282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020602A (en) * 2006-07-12 2008-01-31 Toyo Ink Mfg Co Ltd Black-colored composition for color filter, and the color filter
JP2013140379A (en) * 2013-02-07 2013-07-18 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive film, method of manufacturing permanent mask resist, and permanent mask resist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166315A (en) * 1999-12-03 2001-06-22 Fuji Photo Film Co Ltd Spacer for liquid crystal panel and liquid crystal element using the same
JP2002131899A (en) * 2000-10-24 2002-05-09 Fuji Photo Film Co Ltd Negative photosensitive thermosetting resin composition, negative photosensitive thermosetting transfer material, method for forming interlayer insulation film, high-aperture liquid crystal display device and manufacturing method for it
JP2005292336A (en) * 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd Pattern forming material, pattern forming apparatus and pattern forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166315A (en) * 1999-12-03 2001-06-22 Fuji Photo Film Co Ltd Spacer for liquid crystal panel and liquid crystal element using the same
JP2002131899A (en) * 2000-10-24 2002-05-09 Fuji Photo Film Co Ltd Negative photosensitive thermosetting resin composition, negative photosensitive thermosetting transfer material, method for forming interlayer insulation film, high-aperture liquid crystal display device and manufacturing method for it
JP2005292336A (en) * 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd Pattern forming material, pattern forming apparatus and pattern forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020602A (en) * 2006-07-12 2008-01-31 Toyo Ink Mfg Co Ltd Black-colored composition for color filter, and the color filter
JP2013140379A (en) * 2013-02-07 2013-07-18 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive film, method of manufacturing permanent mask resist, and permanent mask resist

Similar Documents

Publication Publication Date Title
JP2007041239A (en) Method for producing color filter, the color filter and liquid crystal display
JP2007093785A (en) Method for manufacturing display apparatus member, display apparatus member, and display apparatus
KR20070020283A (en) Pattern forming method, color filter manufacturing method, color filter, and liquid crystal display
JP2006285108A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the pattern
JP4603496B2 (en) Photosensitive composition, photosensitive film, and method for forming permanent pattern and permanent pattern
JP2008233112A (en) Production method of color filter, and color filter and display unit
JP2007025275A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming same
JP2006243543A (en) Method for forming permanent pattern
JP2007101607A (en) Display apparatus member, method for manufacturing same, and display apparatus
JP2007071957A (en) Color filter, pattern forming method and liquid crystal display device
JP4546368B2 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP4494243B2 (en) Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same
JP4916141B2 (en) Color filter forming material, color filter manufacturing method, color filter, and liquid crystal display device
JP2007041281A (en) Black image and method for producing the same, and substrate with light shielding film and liquid crystal display device
JP2007025597A (en) Method for manufacturing color filter, color filter, and display apparatus
JP2007171246A (en) Photosensitive composition, pattern forming material, pattern forming apparatus and pattern forming method
JP2006048031A (en) Photosensitive film, process for producing the same and process for forming permanent pattern
KR20070017039A (en) Photosensitive composition, color filter and manufacturing method thereof, liquid crystal display device
JP2006018221A (en) Method for manufacturing color filter, the color filter and liquid crystal display
JP2007041282A (en) Photosensitive composition, color filter and its manufacturing method, and liquid crystal display
JP2007025003A (en) Method for manufacturing color filter, color filter, and display apparatus
JP4950453B2 (en) Color filter, method for manufacturing the same, and liquid crystal display device
JP4546349B2 (en) Pattern forming material, pattern forming method and pattern
JP2006023715A (en) Color filter manufacturing method, color filter and liquid crystal display
JP2007041127A (en) Method for manufacturing color filter, color filter and liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228