WO2006131201A2 - Harnstoffversorgungssystem für einen abgasreinigungskatalysator und hierfür geeigneter heizeinsatz - Google Patents

Harnstoffversorgungssystem für einen abgasreinigungskatalysator und hierfür geeigneter heizeinsatz Download PDF

Info

Publication number
WO2006131201A2
WO2006131201A2 PCT/EP2006/004822 EP2006004822W WO2006131201A2 WO 2006131201 A2 WO2006131201 A2 WO 2006131201A2 EP 2006004822 W EP2006004822 W EP 2006004822W WO 2006131201 A2 WO2006131201 A2 WO 2006131201A2
Authority
WO
WIPO (PCT)
Prior art keywords
urea
heating element
metal housing
heating
supply system
Prior art date
Application number
PCT/EP2006/004822
Other languages
English (en)
French (fr)
Other versions
WO2006131201A3 (de
Inventor
Roland Starck
Oleg Kexel
Gerhard Thome
Armin Lang
Original Assignee
Eichenauer Heizelemente Gmbh & Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36917358&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006131201(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102005025724A external-priority patent/DE102005025724A1/de
Application filed by Eichenauer Heizelemente Gmbh & Co.Kg filed Critical Eichenauer Heizelemente Gmbh & Co.Kg
Priority to DE112006001140.5T priority Critical patent/DE112006001140B4/de
Priority to US11/921,363 priority patent/US7836684B2/en
Publication of WO2006131201A2 publication Critical patent/WO2006131201A2/de
Publication of WO2006131201A3 publication Critical patent/WO2006131201A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/04Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03427Arrangements or special measures related to fuel tanks or fuel handling for heating fuel, e.g. to avoiding freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a urea supply system for an exhaust gas purification catalyst, as is standard installed in motor vehicles.
  • a urea supply system includes a urea tank for receiving urea solution, a connection line connecting the urea tank with the catalyst, a pump for pumping urea solution through the connection line from the urea tank to the catalyst, a heating unit for thawing frozen urea solution, and a return line , which branches off from the connecting line and leads to the urea tank.
  • a urea supply system is known for example from US 6063350.
  • Urea is needed by an exhaust gas purifying catalyst as an ammonia supplier.
  • the urea solution may freeze, requiring a heating element to thaw the urea solution as quickly as possible to provide the urea needed to operate the catalyst.
  • urea solution is corrosive, all liquid-carrying parts of the urea supply system must be made of chemically resistant materials or coated with a suitable protective layer.
  • suitable materials such as stainless steel or acid-resistant plastics, have a relatively low thermal conductivity, so that it is not easy to thaw urea solution sufficiently quickly even at ambient temperatures of, for example -30 0 C to supply the exhaust gas purifying catalyst with urea.
  • the object of the invention is to show a cost-effective way, as a urea supply system for an exhaust gas purification catalyst of an internal combustion engine at temperatures below freezing in a short time can be put into a ready state.
  • a gap forms during the thawing of the frozen urea solution (urea solution ice) contained in the tank between the heating insert and the surrounding urea solution ice, it is filled with thawed urea solution which emerges from the return line.
  • a good heat coupling of the heating insert is always given to the contents of the urea tanks.
  • a thawing container is connected to the connecting line in which a fraction of the quantity of urea which can be stored in the system can be dammed up by means of the heating insert. It is particularly advantageous to arrange the heating insert in the defrosting container and the defrosting container in a larger urea tank.
  • a system according to the invention initially only a small part of the total amount of urea, preferably about 0.2 I to 1.0 I, thawed.
  • the thawing container makes it possible to quickly thaw a quantity of urea solution sufficient for the operation of the exhaust gas purifying catalyst, since the heat output of the heating insert can initially be used primarily for heating the urea solution contained in the thawing container.
  • the thawing of the residual urea solution which is outside the thawing container in the urea tank, can occur at a later time without affecting the function of the urea supply system.
  • a return line branches off from the connecting line, which leads to the thawing container.
  • the pump of the urea supply system can be used to provide in the urea tank for better mixing of already thawed urea solution with urea solution still to be thawed, in particular the formation of an insulating air gap between the heating insert and urea ice can be prevented.
  • the heat generated by the heating element can dissipate much more efficiently to frozen urea solution and the catalyst faster liquid urea solution provided in a sufficient amount.
  • the measure according to the invention to attach a return line to the connecting line is extremely inexpensive, since the already existing pump of the urea supply system can be used to effect a better heat coupling of the heating element to the thawed urea solution.
  • Another advantage of a urea supply system according to the invention is that for thawing urea solution in the urea tank not only the heating power of the heating insert but also the heating power of line or pump heaters can be used, on which urea solution on that of the connecting line and the return line formed circuit is passed.
  • the defrosting container preferably has an overflow opening through which urea solution can emerge from the defrosting container into the remaining urea tank.
  • the connection line preferably has a first connection, with which urea solution can be sucked out of the defrosting container, and a second connection, with which urea solution can be sucked out of the remaining part of the urea tank.
  • the thawing container may for example be designed as a cup, which is arranged in the urea tank.
  • Another possibility is to form the thawing container as a compartment of the urea tank or in the form of a second, separate tank.
  • a side portion of the urea fuel tank may be separated from the remainder of the urea tank by an intermediate wall to form the defrost container. It is not necessary that the partition is liquid-tight.
  • a liquid exchange between the body tank and the rest of the urea tank is harmless in principle.
  • the greater this liquid exchange the less the heating power of the heating element is concentrated on the urea solution in the thawing container. Excessive liquid exchange between the defrosting tank and the remaining urea tank can therefore lead to the advantage of particularly rapid heating of a small amount of urea solution, the initially sufficient for the operation of the catalyst is limited use.
  • the advantages of the return line can be used particularly efficiently if a distribution element is arranged at the outlet of the return line in order to divide up a urea stream emerging from the return line and to introduce it into the thawing container in a distributed manner.
  • the distribution element can be designed, for example, as a nozzle or a plate with a plurality of passage openings, so that the urea flow emerging from the return line is distributed like a shower. In this way, already heated urea solution is even better mixed with still to be thawed urea solution, so that the heat generated by the heating element is used particularly efficiently to thaw frozen urea solution.
  • the return line can be provided with a plurality of outlet openings, through which urea solution is returned during operation.
  • these outlet openings may be formed as lateral openings, for example in the lateral surface of a hose or pipe, so that urea solution passes through the lateral openings in the urea tank.
  • An advantageous measure in this connection is to provide the return line with a ventilation opening to ventilate the cavity and to facilitate the suction of urea solution.
  • the ventilation opening should be arranged in the return line above the urea level present when the tank is filled, so that air can enter the return line through the ventilation opening.
  • the ventilation opening is preferably quite small, so that no appreciable amount of urea solution can escape through the ventilation opening.
  • the heating insert according to the invention comprises a corrosion-resistant tube for immersion in the urea solution, a metal housing to which pipe is at least indirectly attached, at least one heating element arranged in the metal housing, a frame extending outside the metal housing and an electrical connection line of the heating element carries, and a plastic sheath that protects the frame and the metal case.
  • Figure 1 is a schematic representation of a urea supply system according to the invention for an exhaust gas purification catalyst of a motor vehicle.
  • FIG. 2 shows a detailed view of a heating insert according to the invention for the urea supply system shown in FIG. 1;
  • FIG. 2 shows a detailed view of a heating insert according to the invention for the urea supply system shown in FIG. 1;
  • FIG. 3 shows the heating insert shown in FIG. 2 without thawing container
  • FIG. Fig. 4 is a cross-sectional view of Fig. 3;
  • FIG. 5 shows a metal housing of the heating insert shown in a cross-sectional view
  • Fig. 6 is a detail view of Fig. 5; Fig. 7 shows a further Ausf ⁇ hrungsbeispiel of an inventive
  • FIGS. 7 and 8 show the metal housing of the heating insert shown in FIGS. 7 and 8 in a cross-sectional view
  • FIG. 10 shows a further embodiment of a heating insert according to the invention.
  • FIG. 11 shows the embodiment shown in Figure 10 without plastic sheath.
  • Fig. 12 is the frame of the embodiment shown in Figs. 10 and 11;
  • FIG. 13 shows the metal housing of the heating insert shown in FIGS. 10 and 11 in a cross-sectional view
  • FIG. 14 is a rear view of FIG. 10.
  • FIG. 1 shows schematically an exhaust gas purifying catalyst 1 of a motor vehicle and an associated urea supply system 2.
  • nitrogen oxides (NO, NO 2 ) are reduced to nitrogen by means of ammonia (NH 3 ).
  • the ammonia required for this purpose is obtained from urea solution which is provided by the urea supply system 2.
  • the urea supply system 2 shown in FIG. 1 comprises a urea tank 3 for receiving urea solution, a connection line 6, 11 connecting the urea tank 3 to the catalyst 1, a pump 5, urea solution through the connection line 6, 11 from the urea tank 3 to pump the catalyst 1, and a heating From the connection line 11, a return line 4 branches off, which leads into the urea tank 3, so that heated urea solution can be returned to the urea tank 3. In this way, a better mixing of already thawed urea solution is achieved with urea solution to be heated, so that can be thawed quickly required for the operation of the exhaust gas purifying catalyst 1 amount of urea solution.
  • the outlet of the return line 4 is designed and arranged such that, during operation, urea solution emerging from the return line 4 prevents the formation of an air gap between the heating insert 8 and urea solution ice to be thawed.
  • the return line can, as shown in Figure 1, close to the intake opening of a suction pipe of the heating element 8, or, as will be explained below with reference to Figures 2 and 3, above the settling when filled tank 3 urea level. If the return line according to FIG. 1 ends close to the suction opening of an intake pipe of the heating insert 8 in order to prevent the emergence of an air gap between the heating insert 8 and thawed urea solution ice particularly efficiently by deliberately introducing thawed urea solution, it is favorable in the return line 4 Provide ventilation opening 19.
  • the ventilation opening is arranged in the return line above the presence of a filled tank urea level, so that through the ventilation opening 19 air can get into the return line.
  • the return line 4 ends at a distance of not more than 5 cm from the suction port of the intake pipe.
  • To the heating element 8 includes a thawing container 9, which is connected both to the
  • the thawing container 9 causes the heating power of the heating insert 8 Initially, primarily for heating the urea solution contained in the defrosting container 9 can be used.
  • the thawing container 9 has a capacity of about one liter and usually contains at least 0.2 to 0.3 liters of urea solution, so that particularly quickly enough for the operation of the exhaust gas purifying catalyst 1 amount of urea can be thawed.
  • the thawing of the remaining urea solution can take place at a later time without impairing the function of the urea supply system 2.
  • the thawing container 9 has an outer wall adjacent to liquid in the urea tank. This measure has the advantage that, after the thawing of urea solution in the defrosting container, heat is released into the urea tank 3 and in this way the heating insert 8 can be used both for the defrosting container 9 and for the urea tank 3.
  • the connecting line 6 has a first port 17, can be sucked with the urea solution from the defrosting container 9, and a second port 7, can be sucked with the urea solution from the remaining part of the urea tank 3.
  • the two ports 7, 17 are brought together via a switching valve 18.
  • the thawing container 9 has an overflow opening 29 (see Fig. 2), so that the suction of urea solution through the second port 7, the improved through the return line 4 heat distribution for the thawing of the remaining urea solution, which is located outside the defrosting container 9, are used can.
  • the urea supply system 1 further comprises a control valve 10, which is connected to an air reservoir 12 with an air compressor 13, and a metering valve 14, with the urea solution and air in metered quantities to the catalyst 1 can be supplied.
  • the pump 5, the valves 9, 10, 18 and the metering valve 14 are controlled by a control unit 15, the pressure of a probe 16 with data on the oxygen partial pressure in the catalyst 1 and a temperature sensor with data on the urea temperature in Urea tank 3 is supplied.
  • FIG. 2 shows an exemplary embodiment of a heating insert 8 for the urea supply system 2 shown in FIG. 1.
  • the heating insert 8 comprises a corrosion-resistant tube 20, for example made of plastic or stainless steel, for immersion in urea solution to be heated, which serves as an intake tube to the connecting line shown in FIG 17, 6 is connected, a metal housing (see Fig. 4), which is fixed to the outside of the intake pipe 20, and at least one PTC heating element (see Fig. 4), which is arranged in the metal housing.
  • the metal housing is surrounded by a corrosion-resistant coating in the form of a plastic sheath 21 for protection from the corrosive urea solution.
  • this plastic shell 21 is an injection molded part, in which the connecting lines 22 of the at least one heating element are embedded.
  • To the heating element 8 also includes the already described thawing container 9 for urea solution, in which the intake pipe 20 is arranged with the at least one heating element. Attached to the intake pipe 20 is a distribution element 23 which, as intended, protrudes from the urea solution to be heated and serves to divide a urea stream impinging thereon.
  • the return line 4, from which this urea stream exits, is also shown in FIG.
  • the distribution element 23 is a plate with a plurality of passage openings 24, which, like a shower head, divides an incident fluid flow into drops or partial beams. It is advantageous if the distribution element 23 is attached to the return line 4 or the intake pipe 20 of the heating element 8. Alternatively, the distribution element 23 may also be fastened to the thawing container 9.
  • the distribution element 23 may be formed as a hole element, for example according to Figure 2, or as a baffle made of sheet metal or plastic. Alternatively, the distribution element can also be designed as a nozzle or perforated hose end.
  • liquid can also be directed to the heating element 8 in order to fill a possible gap between the heating element 8 and frozen urea solution.
  • an overflow opening 29 is arranged in the defrosting container 9, through which heated urea can escape.
  • FIG. 3 the heating insert 8 shown in FIG. 2 without thawing container 9 is shown in an oblique view together with the return line 4.
  • This heat-conducting element 25 is a substantially disc-shaped metal sheet
  • Stainless steel which is attached to the lower end of the intake pipe 20. In the heat conducting element are passage openings 26, can circulate through the urea solution.
  • the stainless steel used is preferably V4A steel.
  • FIG. 4 shows a cross-sectional view of the heating insert 8 shown in FIGS. 2 and 3. In this illustration, that of the plastic jacket
  • PTC heating elements are also referred to as PTC thermistors and have the advantage of inherent protection against overheating due to their positive temperature coefficient.
  • the metal housing 27 is a profile tube pushed onto the intake pipe 20 and made of a material which conducts heat well, preferably an aluminum alloy.
  • the heating elements 28 are held in the metal housing 27 by a mounting frame 30.
  • the mounting frame 30 carries connection plates 31 with an insulating layer, for example of ceramic fibers, so that the heating elements 28 can be supplied via the connecting lines 22 with power.
  • a suitable mounting frame 30 with the components held by it is described in DE 102 58 257 A1, the disclosure of which is incorporated by reference into the subject of the application.
  • the metal housing 27 After introducing the mounting frame 30 with the components held by it (in particular the heating elements 28 and the terminal plates 21) in the metal housing 27, this is pressed in order to achieve the best possible heat coupling of the heating elements 28 to the metal housing 27. Furthermore, the metal housing 20 is pressed against the intake pipe, so that there is also a good heat coupling to the intake pipe 20. As FIG. 4 shows, a wall 27a of the metal housing 27 is arranged between the intake pipe 20 and the heating element 28. This wall 27a helps to distribute the heat generated by the Schuele- elements 28 over a large area over the intake pipe 20.
  • the metal housing 27 consists of a spring-hard aluminum alloy, for example an AlMgSi alloy, in particular an AIMgSi o , 5 ..i alloy.
  • the metal housing 27 is tightly enclosed by the plastic jacket 21 and protected in this way from the corrosive urea solution.
  • the plastic jacket 21 has a groove 32 for an intake pipe 20 surrounding O-ring 33. In this way it is prevented that urea solution passes between the intake pipe 20 and the plastic jacket 21 through to the metal housing 27.
  • the metal housing 27 and the intake pipe 20 may also be encapsulated to form the plastic shell 21, so that can be dispensed with an O-ring.
  • FIG. 5 shows the metal housing 27 of the described heating insert 8 in a cross-sectional view.
  • the metal housing 27 is a profile tube made of a spring-hard aluminum alloy.
  • the metal housing 27 has a channel 35 for receiving the mounting frame 30 with the heating elements 28.
  • the intake pipe 20 is inserted during assembly of the heating element 8. Between these two channels 35, 36 extends the intermediate wall 27a, so that heat generated by the heating elements 28 can be passed over the metal housing 27 on all sides to the intake pipe 20.
  • FIG. 5 shows the metal housing 27 before it is pressed together with the intake pipe 20.
  • the metal housing 27 preferably has at least one, in the illustrated embodiment, two, extending in the longitudinal direction elevations 37, which have a U-shaped cross section with an opening 36 facing the channel. After pushing the Metallgeoph s 27 on the intake pipe 20, these elevations 37 are pressed so that the cross section of the channel 36 is reduced and the metal housing 27 fits tightly against the intake pipe 20.
  • these elevations 37 are shown after pressing. As FIG. 6 shows, the elevations 37 are pressed together into press creases 39.
  • FIG. 7 shows a further exemplary embodiment of a heating insert 8 for the urea supply system 2 shown in FIG. 1 without the associated defrosting container.
  • the heating insert shown in FIG. 7 comprises a plurality of stainless steel tubes 41.
  • One of these stainless steel tubes 41 can be connected as an intake pipe to the connecting line 17 of the urea supply system 2.
  • the heating insert 8 shown in FIG. 7 has improved heat coupling to the urea solution to be heated through the use of a plurality of stainless steel tubes 41. This is because the thermal conductivity of stainless steel is higher than the thermal conductivity of the required for protecting the metal housing 27 plastic sheath 21.
  • Another advantage of the illustrated heating element 8 is that the heat output generated can be concentrated on the lower part of a thawing container. In this way, even with a partially filled defrosting container, the heat generated by the heating element 8 can be fully utilized for thawing urea solution.
  • FIG. 8 shows the heating insert 8 shown in FIG. 7 without the plastic jacket 21, with which the metal housing 27 and the connection lines 22 be protected against the action of corrosive urea solution.
  • the plastic sheath 21 shown in Fig. 7 can be inexpensively applied by the metal housing 27 is overmolded. In the interests of the best possible heat coupling is to make sure that the inner sides of the stainless steel tubes 41 remain free.
  • the metal housing 27 is - as in the embodiment described above - a hollow profile of a spring-hard aluminum alloy.
  • the metal housing 27 shown in Fig. 8 has a plurality (namely two) heating channels 35, in each of which at least one heating element 28 is arranged with a portion of the mounting frame 30.
  • the metal housing 27 has a plurality of pipe sections 40, in each of which a stainless steel pipe 41 is arranged.
  • the pipe sections 40 are connected via arms 42 to a central body 43, in which the heating elements are arranged. In this way, the heat generated is introduced over a large area in the thawed urea solution.
  • Fig. 9 the metal housing 27 is shown in a cross section.
  • the pipe sections 40 are provided with elevations 37 which - as described with reference to FIGS. 5 and 6 - are compressed after insertion of the stainless steel pipes 41 into press pleats 39.
  • the central body 43 has a central channel 44 between the heating channels 35.
  • This central channel 44 primarily causes the central body 43 to be pressed more easily to provide optimum thermal coupling between the heating elements 28 and the metal housing 27.
  • a stainless steel pipe can also be arranged in the central channel 44.
  • the central channel 44 remains preferably free, so that its inner surface must also be coated with the plastic sheath 21.
  • FIG. 10 shows a further exemplary embodiment of a heating insert 8 for thawing a corrosive solution which is suitable for the urea supply system 2 described above.
  • the heating element 8 comprises a corrosion-resistant tube 20 as a suction tube for immersion in the solution, a metal housing 27 which is attached via a plastic jacket 21 to the intake pipe 20, two PTC heating elements, which are arranged in the metal housing 27, one in the Figures 11 and 12 illustrated frame 30 which extends outside of the metal housing 27 and at least one electrical connection line 50, 51 of the heating element, in the illustrated embodiment, both connecting lines 50, 51, fixed.
  • the frame 30 and the metal housing 27 are surrounded by a protective plastic sheath 21.
  • the plastic shell 21 was injected around the frame 30 and the metal housing 27 as an injection molded part.
  • a special feature of the illustrated embodiment is that the plastic sheath 21 is multi-layered.
  • a first plastic layer was first sprayed onto frame 30 and metal housing 27 to surround frame 30 with respect to metal housing 27 and leads 50, 51 with respect to the frame 30 to fix.
  • the first plastic layer is preferably applied in a hot-melt injection molding process at a relatively low pressure. In this way, greater dimensional accuracy is achieved prior to final overmolding with the second layer and secure positioning and sealing of the entire heater insert with the terminals.
  • the second layer is applied at a higher pressure.
  • a glass fiber reinforced plastic in particular a polyamide, is used for the second layer.
  • Particularly suitable is a hydrolysis resistant modified polyamide.
  • the plastic shell 21 is shaped so that it forms a receptacle in which the intake pipe 20 is arranged.
  • the receptacle is designed as a channel, in particular ⁇ -shaped channel.
  • the intake pipe 20 is a good thermal conductivity, elastic plastic pipe, for example, EPDM with a Shore hardness of 60 to 80 Shore A.
  • the frame 30 shown in FIGS. 11 and 12 has a stability-increasing lattice structure and extends along the intake pipe 20. As FIG. 12 shows, the frame 30 has a significantly greater length than the metal housing 27. It is favorable if the frame 30 has at least one twice as long as the metal housing 27 has, even better if he has at least three times the length of the metal housing 27. In this way, the PTC heating elements arranged in the metal housing 27 can deliver their heating energy in a lower region of the liquid tank and thus thaw ice at the mouth of the suction pipe 20 at an early stage.
  • the frame 30 supports the intake pipe 20 and, together with the electrical connection lines 50, 51, carries it out of the liquid intended for use in the tank.
  • connection line 50, 51 are arranged in channels 52, 53 of the frame 30 (FIG. 12), by means of which the connection lines are fixed and positioned during assembly. It is particularly favorable to guide at least one of the electrical connection lines 50, 51, preferably both electrical connection lines 50, 51, along the back of the intake tube 20, so that the intake tube can be heated by the connection lines. For this purpose, it is favorable to manufacture at least one, preferably both connection lines, at least in sections from a heating conductor alloy, so that heating takes place during operation by ohmic resistance heating.
  • the frame 30 shown in Figure 12 is also a mounting frame, are held by the plate-shaped PTC heating elements of the heating element.
  • the frame 30 has for this purpose two receptacles 54, are used in the intended plate-shaped PTC heating elements.
  • the frame 30 also carries two connection plates 55, 56, which are each connected to one of the two connection lines 50, 51, preferably by welding, according to FIG. 11, and establish contact with inserted PTC heating elements in the receptacles 54.
  • the receptacles 54 of the frame 30 are inserted like a drawer into matching rectangular openings of the metal housing 27.
  • the housing 27 is an extruded profile which, after the insertion of the receptacles 54, is pressed in the area of the PTC elements in order to provide a good thermal coupling of the housing to the PTC heating elements.
  • an electrical contact of the metal housing 27 is made to the grounded contact plate 56, so that a ground connection is provided for both PTC elements.
  • the intake pipe 20 projects with its suction end over the metal housing 27 and with its connection end beyond the frame 30.
  • the intake pipe 20 includes two separate channels 60, 61. One of the two channels, preferably the smaller channel 61 is closed at the suction end of the intake pipe 20, for example by an inserted stainless steel pin. If the illustrated heating element 8 is inserted in a defrosting container 9, which is arranged in a urea tank 3, the suction tube 20 projects with its suction end through an opening of the defrosting container 9 (not shown) and into the urea tank 3 into it. As FIG. 14 shows, a second suction opening 63 is located in a lateral surface of the intake pipe 20, through which liquid can be sucked into the second duct 61.
  • the second suction opening 63 has a distance of at least 1 cm, preferably several cm, from the suction end of the intake pipe 20. If the heating insert 8 is arranged in a defrosting container 9 as intended, liquid from the defrosting container and with the first suction opening can flow through the second suction opening 63 of the channel 60 liquid are sucked from a urea tank 3. If the liquid is frozen in the urea tank 3, so liquid is automatically conveyed from the thawing container 9 in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Transportation (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

Die Erfindung betrifft ein Harnstoffversorgungssystem für einen Abgasreinigungskatalysator (1) einer Verbrennungskraftmaschine, umfassend einen Harnstofftank (3) zur Aufnahme von Harnstofflösung, eine Verbindungsleitung (6, 11), die den Harnstofftank (3) mit einem Abgasreinigungskatalysator (1) verbindet, eine Pumpe (5), um Harnstofflösung durch die Verbindungsleitung (6, 11) von dem Harnstofftank (3) zu dem Katalysator (1) zu pumpen, und einen Heizeinsatz (8) zum Auftauen von gefrorener Harnstofflösung. Erfindungsgemäß ist vorgesehen, dass die Rückführleitung (4) derart ausgebildet und angeordnet ist, dass im Betrieb durch aus der Rückführleitung (4) austretende Harnstofflösung das Entstehen eines Luftspaltes zwischen dem Heizeinsatz (8) und aufzutauendem Harnstofflösungs-Eis verhindert wird. Die Erfindung betrifft ferner einen Heizeinsatz für ein derartiges Harnstoffversorgungssystem.

Description

Anmelder: Eichenauer Heizelemente GmbH & Co. KG, Kandel
Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
Die Erfindung betrifft ein Harnstoffversorgungssystem für einen Abgasreinigungskatalysator, wie es standardmäßig in Kraftfahrzeugen eingebaut ist. Ein solches Harnstoffversorgungssystem umfasst einen Harnstofftank zur Aufnahme von Harnstofflösung, eine Verbindungsleitung, die den Harnstofftank mit dem Katalysator verbindet, eine Pumpe, um Harnstofflösung durch die Verbindungsleitung von dem Harnstofftank zu dem Katalysator zu pumpen, einen Heizeinsatz zum Auftauen von gefrorener Harnstofflösung, und eine Rückführleitung, die von der Verbindungsleitung abzweigt und zu dem Harnstofftank führt. Ein derartiges Harnstoff- Versorgungssystem ist beispielsweise aus der US 6063350 bekannt.
Harnstoff wird von einem Abgasreinigungskatalysator als Ammoniaklieferant benötigt. Bei Frost kann die Harnstofflösung einfrieren, so dass ein Heizeinsatz benötigt wird, um die Harnstofflösung möglichst rasch aufzu- tauen, damit der für den Betrieb des Katalysators benötigte Harnstoff zur Verfügung gestellt werden kann.
Da Harnstofflösung korrosiv ist, müssen alle flüssigkeitsführenden Teile des Harnstoffversorgungssystems aus chemisch beständigen Materialien bestehen oder mit einer geeigneten Schutzschicht überzogen sein. Geeignete Materialien, wie beispielsweise Edelstahl oder säurebeständige Kunststoffe, haben jedoch einen relativ geringen Wärmeleitwert, so dass es nicht einfach ist, Harnstofflösung auch bei Umgebungstemperaturen von beispielsweise -300C ausreichend schnell aufzutauen, um den Abgasreinigungskatalysator mit Harnstoff versorgen zu können. Aufgabe der Erfindung ist es, einen kostengünstigen Weg aufzuzeigen, wie ein Harnstoffversorgungssystem für einen Abgasreinigungskatalysator einer Verbrennungskraftmaschine bei Temperaturen unter dem Gefrier- punkt in kurzer Zeit in einen betriebsbereiten Zustand versetzt werden kann.
Diese Aufgabe wird mit einem Harnstoffversorgungssystem der Eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Rückführleitung derart ausgebildet und angeordnet ist, dass im Betrieb durch aus der Rückführleitung austretende Harnstofflösung das Entstehen eines Luftspaltes zwischen dem Heizeinsatz und aufzutauendem Harnstofflösungs- Eis verhindert wird.
Im Rahmen der Erfindung wurde festgestellt, dass die im Stand der Technik bekannten Schwierigkeiten beim Auftauen von Harnstofflösung in dem Harnstofftank eines Harnstoffversorgungssystems überraschender Weise nicht in erster Linie auf der relativ schlechten Wärmeleitfähigkeit der für den Heizeinsatz üblicherweise verwendeten Materialien, beispielsweise Edelstahl, beruhen. Statt dessen wird die Abfuhr der von dem Heizeinsatz erzeugten Wärme im wesentlichen durch die schlechte Wärmeleitfähigkeit der aufzutauenden Harnstofflösung begrenzt. Bei bekannten System kann insbesondere zwischen dem Heizeinsatz und gefrorener Harnstofflösung ein Luftspalt entstehen, durch den die Wärmeabfuhr zusätzlich erschwert wird. Bei einem erfindungsgemäßen System wird das Entstehen eines isolierenden Luftspalts verhindert, indem dem Heizeinsatz mittels der Rückführleitung aufgetaute Harnstofflösung zugeführt wird. Bildet sich beim Auftauen der in dem Tank enthaltenen gefrorenen Harnstofflösung (Harnstofflösungs-Eis) zwischen dem Heizeinsatz und umgebendem Harnstofflösungs-Eis ein Spalt, so wird dieser mit aufgetauter Harnstofflösung gefüllt, die aus der Rückführleitung austritt. Auf diese Weise ist stets eine gute Wärmeankopplung des Heizeinsatzes an den Inhalt der Harnstofftanks gegeben. Bevorzugt ist bei einem erfindungsgemäßen Harnstoffversorgungssystem an die Verbindungsleitung ein Auftaubehälter angeschlossen, in dem ein für die Inbetriebnahme des Katalysators ausreichender Bruchteil der in dem System speicherbare Harnstoffmenge mittels des Heizeinsatzes auf- taubar ist. Besonders günstig ist es, den Heizeinsatz in dem Auftaubehälter und den Auftaubehälter in einem größeren Harnstofftank anzuordnen.
Auf diese Weise wird bei einem erfindungsgemäßen System zunächst nur ein kleiner Teil der gesamten Harnstoffmenge, bevorzugt etwa 0,2 I bis 1,0 I, aufgetaut. Der Auftaubehälter ermöglicht es, rasch eine für den Betrieb des Abgasreinigungskatalysators ausreichende Menge Harnstofflösung aufzutauen, da die Heizleistung des Heizeinsatzes zunächst in erster Linie zum Erwärmen der in dem Auftaubehälter enthaltene Harnstofflö- sung genutzt werden kann. Das Auftauen der restlichen Harnstofflösung, die sich außerhalb des Auftaubehälters in dem Harnstofftank befindet, kann ohne Beeinträchtigung der Funktion des Harnstoffversorgungssystems zu einem späteren Zeitpunkt erfolgen.
Bevorzugt zweigt von der Verbindungsleitung eine Rückführleitung ab, die zu dem Auftaubehälter führt. Durch die erfindungsgemäß vorgesehen Rückführleitung kann die Pumpe des Harnstoffversorgungssystem verwendet werden, um in dem Harnstofftank für eine bessere Durchmischung von bereits aufgetauter Harnstofflösung mit noch aufzutauender Harnstofflösung zu sorgen, insbesondere kann dabei die Bildung eines isolierenden Luftspalts zwischen dem Heizeinsatz und Harnstoffeis verhindert werden. Auf diese Weise lässt sich die von dem Heizeinsatz erzeugte Wärme wesentlich effizienter an gefrorene Harnstofflösung abführen und dem Katalysator schneller flüssige Harnstofflösung in einer ausreichenden Menge zur Verfügung stellten. Die erfindungsgemäße Maßnahme, an die Verbindungsleitung eine Rückführleitung anzuschießen ist außerordentlich kostengünstig, da die ohnehin vorhandene Pumpe des Harnstoffversorgungssystems genutzt werden kann, um eine bessere Wärmeankopplung des Heizeinsatzes an die aufzutauende Harnstofflösung zu bewirken. Ein weiterer Vorteil eines erfindungsgemäßen Harnstoffversorgungssystems besteht darin, dass zum Auftauen von Harnstofflösung in dem Harnstofftank nicht nur die Heizleistung des Heizeinsatzes sondern zusätzlich auch die Heizleistung von Leitungs- oder Pumpenheizungen genutzt wer- den kann, an denen Harnstofflösung auf dem von der Verbindungsleitung und der Rϋckführleitung gebildeten Kreislauf vorbeigeführt wird.
Bevorzugt hat der Auftaubehälter eine Überlauföffnung, durch die Harnstofflösung von dem Auftaubehälter in den restlichen Harnstofftank aus- treten kann. Um diese Überlauföffnung effizient zu nutzen hat die Verbindungsleitung bevorzugt einen ersten Anschluss, mit dem Harnstofflösung aus dem Auftaubehälter gesaugt werden kann, und einen zweiten Anschluss, mit dem Harnstofflösung aus dem übrigen Teil des Harnstofftanks gesaugt werden kann. Auf diese Weise lässt sich über die Rück- führleitung dem Harn Stoffbehälter kalte Harnstofflösung zuführen und über die Überlauföffnung erwärmte Harnstofflösung in den übrigen Teil des Harn stofftanks befördern. Nachdem die Harnstofflösung in dem Auftaubehälter vollständig aufgetaut ist, lässt sich so auch die übrige Harnstofflösung rasch auftauen und die Heizleistung des Heizeinsatzes effizient nutzen.
Der Auftaubehälter kann beispielsweise als Becher ausgebildet sein, der in dem Harnstofftank angeordnet ist. Eine weitere Möglichkeit besteht darin, den Auftaubehälter als Abteil des Harnstofftanks oder in Form eines zweiten, separaten Tanks auszubilden. Beispielsweise kann ein seitlicher Bereich des Harn stofftanks durch eine Zwischenwand von dem übrigen Harnstofftank abgetrennt werden, um den Auftaubehälter zu bilden. Dabei ist es nicht erforderlich, dass die Zwischenwand flüssigkeitsdicht ist. Ein Flüssigkeitsaustausch zwischen dem Aufbaubehälter und dem übrigen Harnstofftank ist prinzipiell unschädlich. Je größer dieser Flüssigkeitsaustausch ist, desto weniger ist jedoch die Heizleistung des Heizeinsatzes auf die Harnstofflösung in dem Auftaubehälter konzentriert. Ein zu großer Flüssigkeitsaustausch zwischen dem Auftaubehälter und dem übrigen Harnstofftank kann deshalb dazu führen, dass sich der Vorteil eines besonders raschen Erwärmens einer kleinen Menge Harnstofflösung, die für den Betrieb des Katalysators zunächst ausreicht, nur eingeschränkt nutzbar ist.
Die Vorteile der Rückführleitung lassen sich besonders effizient nutzen, wenn an dem Ausgang der Rückführleitung ein Verteilelement angeordnet ist, um einen aus der Rückführleitung austretenden Harnstoffstrom aufzuteilen und verteilt in den Auftaubehälter einzuleiten. Das Verteilelement kann beispielsweise als eine Düse oder eine Platte mit mehreren Durchtrittsöffnungen ausgebildet sein, so dass der aus der Rückführleitung aus- tretende Harnstoffstrom wie von einer Dusche verteilt wird. Auf diese Weise wird bereits erwärmte Harnstofflösung noch besser mit noch aufzutauender Harnstofflösung vermischt, so dass die von dem Heizeinsatz erzeugte Wärme besonders effizient genutzt wird, um gefrorene Harnstofflösung aufzutauen.
Für eine besonders effiziente Durchmischung des aus der Rückführleitung austretenden Harnstoffstroms kann die Rückführleitung mit mehreren Austrittsöffnungen versehen sein, durch die im Betrieb Harnstofflösung zurückgeführt wird. Beispielsweise können diese Austrittsöffnungen als seitliche Öffnungen, beispielsweise in der Mantelfläche eines Schlauches oder Rohres, ausgebildet sein, so dass Harnstofflösung durch die seitlichen Öffnungen in den Harnstofftank gelangt.
Günstig ist es insbesondere, die erwärmte Harnstofflösung mit der Rückführleitung gezielt zu dem Heizeinsatz zu leiten. Um den Heizeinsatz bildet sich nämlich gleich zu Beginn des Auftauvorgangs eine Kavität in dem Harnstoffeis, die mit aufgetauter Harnstofflösung gefüllt ist. Durch Absaugen von Harnstofflösung besteht die Gefahr, dass diese Kavität entleert wird und ein isolierender Luftspalt um das Heizelement entsteht. Dieser Gefahr kann mittels der Rückführleitung entgegenwirkt werden, insbesondere indem die Rückführleitung nahe an dem Heizelement und der Ansaugöffnung, also in dieser Kavität, endet. Günstig ist es, wenn die Rückführleitung in einem Abstand von nicht mehr als 2 cm von dem Heizelement endet. Günstig ist es ferner, wenn die Rückführleitung in einem Abstand von nicht mehr als 5 cm von der Ansaugöffnung des Ansaugrohres endet.
Eine vorteilhafte Maßnahme in diesem Zusammenhang ist es, die Rück- führleitung mit einer Belüftungsöffnung zu versehen, um die Kavität zu belüften und das Absaugen von Harnstofflösung zu erleichtern. Die Belüftungsöffnung sollte in der Rückführleitung oberhalb des bei gefülltem Tank vorhandenen Harnstoffspiegels angeordnet sein, so dass durch die Belüftungsöffnung Luft in die Rückführleitung gelangen kann. Die Belüf- tungsöffnung ist bevorzugt recht klein, so dass durch die Belüftungsöffnung keine nennenswerte Menge Harnstofflösung austreten kann.
Ein weiterer Aspekt der Erfindung betrifft einen Heizeinsatz zum Auftauen einer korrosiven Lösung, der insbesondere für ein erfindungsgemäßes Harnstoffversorgungssystem geeignet ist. Der erfindungsgemäße Heizeinsatz umfasst ein korrosionsbeständiges Rohr zum Eintauchen in die Harnstofflösung, ein Metallgehäuse, an dem Rohr zumindest indirekt befestigt ist, mindestens ein Heizelement, das in dem Metallgehäuse angeordnet ist, einen Rahmen, der sich außerhalb des Metallgehäuses erstreckt und eine elektrische Anschlussleitung des Heizelements trägt, und einen Kunststoffmantel, der den Rahmen und das Metallgehäuse schützt.
Weitere Einzelheiten und Vorteile der Erfindung werden anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Die darin beschriebenen Merkmale können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltungen der Erfindung zu schaffen. Gleiche und einander entsprechende Teile sind dabei mit übereinstimmenden Bezugszahlen gekennzeichnet. Es zeigen:
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Harnstoffversorgungssystems für ein Abgasreinigungskatalysator eines Kraftfahrzeugs;
Fig. 2 eine Detailansicht eines erfindungsgemäßen Heizeinsatzes für das in Fig. 1 gezeigte Harnstoffversorgungssystem;
Fig. 3 den in Fig. 2 gezeigten Heizeinsatz ohne Auftaubehälter; Fig. 4 eine Querschnittansicht zu Fig. 3;
Fig. 5 ein Metallgehäuse des gezeigten Heizeinsatzes in einer Querschnittansicht;
Fig. 6 eine Detailansicht zu Fig. 5; Fig. 7 ein weiteres Ausfϋhrungsbeispiel eines erfindungsgemäßen
Heizeinsatzes;
Fig. 8 das in Fig. 7 gezeigte Ausführungsbeispiel ohne Kunststoff mantel ;
Fig. 9 das Metallgehäuse des in Fig. 7 und 8 gezeigten Heizeinsatzes in einer Querschnittansicht;
Fig. 10 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Heizeinsatzes;
Fig. 11 das in Figur 10 dargestellte Ausführungsbeispiel ohne Kunststoffmantel; Fig. 12 der Rahmen des in Figur 10 und 11 gezeigten Ausführungsbeispiels;
Fig. 13 das Metallgehäuse des in Figur 10 und 11 gezeigten Heizeinsatzes in einer Querschnittansicht; und
Fig. 14 eine Rückansicht zu Figur 10.
Figur 1 zeigt schematisch einen Abgasreinigungskatalysator 1 eines Kraftfahrzeugs und ein dazugehörendes Harnstoffversorgungssystem 2. In dem Abgasreinigungskatalysator 1 werden Stickoxide (NO, NO2) mittels Ammoniak (NH3) zu Stickstoff reduziert. Der dafür benötigte Ammoniak wird aus Harnstofflösung gewonnen, die von dem Harnstoffversorgungssystem 2 bereit gestellt wird.
Das in Fig. 1 dargestellte Harnstoffversorgungssystem 2 umfasst einen Harnstofftank 3 zur Aufnahme von Harnstofflösung, eine Verbindungslei- tung 6, 11, die den Harnstofftank 3 mit dem Katalysator 1 verbindet, eine Pumpe 5, um Harnstofflösung durch die Verbindungsleitung 6, 11 von dem Harnstofftank 3 zu dem Katalysator 1 zu pumpen, und einen Heiz- einsatz 8 zum Erwärmen von Harnstofflösung in dem Harnstofftank 3. Von der Verbindungsleitung 11 zweigt eine Rückführleitung 4 ab, die in den Harnstofftank 3 führt, so dass erwärmte Harnstofflösung in den Harnstofftank 3 zurückgeleitet werden kann. Auf diese Weise wird eine bessere Durchmischung von bereits aufgetauter Harnstofflösung mit noch zu erwärmender Harnstofflösung erreicht, so dass rasch eine für den Betrieb des Abgasreinigungskatalysators 1 erforderliche Menge Harnstofflösung aufgetaut werden kann. Der Ausgang der Rückführleitung 4 ist derart ausgebildet und angeordnet, dass im Betrieb durch aus der Rückführlei- tung 4 austretende Harnstofflösung das Entstehen eines Luftspaltes zwischen dem Heizeinsatz 8 und aufzutauendem Harnstofflösungs-Eis verhindert wird.
Die Rückführleitung kann, wie in Figur 1 dargestellt, nahe an der Ansaug- Öffnung eines Ansaugrohres des Heizeinsatzes 8 enden, oder, wie im folgenden anhand der Figuren 2 und 3 erläutert wird, oberhalb des sich bei gefülltem Tank 3 einstellendem Harnstoffspiegels enden. Endet die die Rückführleitung gemäß Figur 1 nahe an der Ansaugöffnung eines Ansaugrohres des Heizeinsatzes 8, um besonders effizient durch gezieltes Einleiten von aufgetauter Harnstofflösung das Entstehen eines Luftspaltes zwischen dem Heizeinsatz 8 und aufzutauendem Harnstofflösungs-Eis zu verhindern, ist es günstig in der Rückführleitung 4 eine Belüftungsöffnung 19 vorzusehen. Die Belüftungsöffnung ist in der Rückführleitung oberhalb des bei gefülltem Tank vorhandenen Harnstoffspiegels angeordnet, so dass durch die Belüftungsöffnung 19 Luft in die Rückführleitung gelangen kann. Durch den Auftauvorgang kann sich nämlich in dem Harnstoffeis eine Kavität um den Heizeinsatz 8 bilden. Mittels der Belüftungsöffnung 19 kann das Entstehen eines Unterdrucks verhindert werden, der das Absaugen von Harnstofflösung erschweren würde. Hierfür ist es günstig, wenn die Rückführleitung 4 in einem Abstand von nicht mehr als 5 cm von der Ansaugöffnung des Ansaugrohres endet.
Zu dem Heizeinsatz 8 gehört ein Auftaubehälter 9, der sowohl an die
Rückführleitung 4 als auch an die Verbindungsleitung 6 angeschlossen ist. Der Auftaubehälter 9 bewirkt, dass die Heizleistung des Heizeinsatzes 8 zunächst in erster Linie zum Erwärmen der in dem Auftaubehälter 9 enthaltenen Harnstofflösung genutzt werden kann. Der Auftaubehälter 9 hat ein Fassungsvermögen von etwa einem Liter und enthält in der Regel mindestens 0,2 bis 0,3 Liter Harnstofflösung, so dass besonders rasch eine für den Betrieb des Abgasreinigungskatalysators 1 ausreichende Harnstoffmenge aufgetaut werden kann. Das Auftauen der übrigen Harnstofflösung kann ohne Beeinträchtigung der Funktion des Harnstoffversor- gungs-systems 2 zu einem späteren Zeitpunkt erfolgen. Der Auftaubehälter 9 hat eine Außenwand, die an Flüssigkeit in dem Harnstofftank angrenzt. Diese Maßnahme hat den Vorteil, dass nach dem Auftauen von Harnstofflösung in dem Auftaubehälter Wärme in den Harnstofftank 3 abgegeben wird und auf diese Weise der Heizeinsatz 8 sowohl für den Auftaubehälter 9 als auch für den Harnstofftank 3 genutzt werden kann.
Die Verbindungsleitung 6 hat einen ersten Anschluss 17, mit dem Harnstofflösung aus dem Auftaubehälter 9 gesaugt werden kann, und einen zweiten Anschluss 7, mit dem Harnstofflösung aus dem übrigen Teil des Harnstofftanks 3 gesaugt werden kann. Die beiden Anschlüsse 7, 17 werden über ein Umschaltventil 18 zusammengeführt. Der Auftaubehälter 9 hat eine Überlauföffnung 29 (siehe Fig. 2), so dass beim Ansaugen von Harnstofflösung über den zweiten Anschluss 7 die durch die Rückführleitung 4 verbesserte Wärmeverteilung auch für das Auftauen der übrigen Harnstofflösung, die sich außerhalb des Auftaubehälters 9 befindet, genutzt werden kann.
Das Harnstoffversorgungssystem 1 umfasst ferner ein Regelventil 10, das an einen Luftvorrat 12 mit einem Luftverdichter 13 angeschlossen ist, und ein Dosierventil 14, mit dem Harnstofflösung und Luft in dosierten Mengen dem Katalysator 1 zugeführt werden können. Die Pumpe 5, die Ven- tile 9, 10, 18 und das Dosierventil 14 werden von einer Steuereinheit 15 gesteuert, die von einer Sonde 16 mit Daten über den Sauerstoffpartial- druck in dem Katalysator 1 und von einem Temperaturfühler mit Daten über die Harnstofftemperatur im Harnstofftank 3 versorgt wird. Figur 2 zeigt ein Ausführungsbeispiel eines Heizeinsatzes 8 für das in Figur 1 gezeigte Harnstoffversorgungssystem 2. Der Heizeinsatz 8 umfasst ein korrosionsbeständiges Rohr 20, beispielsweise aus Kunststoff oder Edelstahl, zum Eintauchen in zu erwärmende Harnstofflösung, das als Ansaugrohr an die in Fig. 1 gezeigte Verbindungsleitung 17, 6 angeschlossen ist, ein Metallgehäuse (siehe Fig. 4), das an der Außenseite des Ansaugrohrs 20 befestigt ist, und mindestens ein PTC-Heizelement (siehe Fig. 4), das in dem Metallgehäuse angeordnet ist. Das Metallgehäuse ist zum Schutz vor der korrosiven Harnstofflösung mit einem korrosionsbe- ständigen Überzug in Form eines Kunststoffmantels 21 umgeben. Bei diesem Kunststoffmantel 21 handelt es sich um ein Spritzgussteil, in das die Anschlussleitungen 22 des mindestens einen Heizelements eingebettet sind.
Zu dem Heizeinsatz 8 gehört ferner der bereits beschriebene Auftaubehälter 9 für Harnstofflösung, in dem das Ansaugrohr 20 mit dem mindestens einen Heizelement angeordnet ist. An dem Ansaugrohr 20 ist ein Verteilelement 23 befestigt, das bestimmungsgemäß aus der zu erwärmenden Harnstofflösung herausragt und dazu dient, einen darauf auf- treffenden Harnstoffstrom aufzuteilen. Die Rückführleitung 4, aus der dieser Harnstoffstrom austritt, ist in Figur 2 ebenfalls dargestellt. Bei dem Verteilelement 23 handelt es sich um eine Platte mit mehreren Durchtrittsöffnungen 24, die wie ein Duschkopf einen auftreffenden Flüssigkeitsstrom in Tropfen oder Teilstrahlen aufteilt. Günstig ist es, wenn das Verteilelement 23 auf die Rückführleitung 4 oder das Ansaugrohr 20 des Heizeinsatzes 8 aufgesteckt ist. Alternativ kann das Verteilelement 23 auch an dem Auftaubehälter 9 befestigt sein. Das Verteilelement 23 kann als Lochelement, beispielsweise gemäß Figur 2, oder als Prallelement aus Blech oder Kunststoff ausgebildet sein. Alternativ kann das Verteilelement auch als Düse oder perforiertes Schlauchende ausgebildet sein.
Alternativ kann Flüssigkeit auch gezielt zu dem Heizeinsatz 8 geleitet werden, um einen eventuellen Spalt zwischen dem Heizeinsatz 8 und gefrorener Harnstofflösung zu füllen. Unterhalb von dem Verteilelement 23 ist in dem Auftaubehälter 9 eine Überlauföffnung 29 angeordnet, durch die erwärmter Harnstoff austreten kann.
In Figur 3 ist der in Figur 2 gezeigte Heizeinsatz 8 ohne Auftaubehälter 9 in einer Schrägansicht zusammen mit der Rückführleitung 4 dargestellt. Um Wärme von dem Ansaugrohr 20 aus Edelstahl möglichst effizient in die zu erwärmende Harnstofflösung abzuführen, ist an dem Ansaugrohr
20 ein Wärmeleitelement 25 befestigt. Bei diesem Wärmeleitelement 25 handelt es sich um ein im wesentlich scheibenförmiges Metallblech aus
Edelstahl, das auf das untere Ende des Ansaugrohrs 20 aufgesteckt ist. In dem Wärmeleitelement befinden sich Durchtrittsöffnungen 26, durch die Harnstofflösung zirkulieren kann. Bei dem verwendeten Edelstahl handelt es sich bevorzugt um V4A-Stahl.
Figur 4 zeigt eine Querschnittansicht des in Figuren 2 und 3 gezeigten Heizeinsatzes 8. In dieser Darstellung ist das von dem Kunststoffmantel
21 umgebene Metallgehäuse 27, in dem plattenförmige PTC-Heizelemente 28 angeordnet sind, zu erkennen. PTC-Heizelemente werden auch als Kaltleiter bezeichnet und haben wegen ihres positiven Temperaturkoeffizienten den Vorteil eines inhärenten Schutzes vor Überhitzung.
Bei dem Metallgehäuse 27 handelt es sich um ein auf das Ansaugrohr 20 aufgeschobenes Profilrohr aus einem gut wärmeleitenden Material, bevor- zugt einer Aluminiumlegierung. Die Heizelemente 28 werden in dem Metallgehäuse 27 von einem Montagerahmen 30 gehalten. Durch einen Montagerahmen 30 lässt sich die Fertigung wesentlich vereinfachen, da eine leicht handhabbare Einheit in das Metallgehäuse 27 eingebracht wird. Der Montagerahmen 30 trägt Anschlussbleche 31 mit einer Isolierschicht, beispielsweise aus Keramikfasern, so dass die Heizelemente 28 über die Anschlussleitungen 22 mit Strom versorgt werden können. Ein geeigneter Montagerahmen 30 mit den von ihm gehaltenen Bauteilen ist in der DE 102 58 257 Al beschrieben, deren diesbezügliche Offenbarung durch Bezugnahme zum Gegenstand der Anmeldung gemacht wird. Nach dem Einbringen des Montagerahmens 30 mit den von ihm gehaltenen Bauteilen (insbesondere den Heizelementen 28 und den Anschlussblechen 21) in das Metallgehäuse 27, wird dieses verpresst, um eine möglichst gute Wärmeankopplung der Heizelemente 28 an das Metallge- häuse 27 zu erreichen. Des weiteren wird das Metallgehäuse 20 an das Ansaugrohr angepresst, so dass sich auch zu dem Ansaugrohr 20 eine gute Wärmekopplung ergibt. Wie Figur 4 zeigt, ist zwischen dem Ansaugrohr 20 und dem Heizelement 28 eine Wand 27a des Metallgehäuses 27 angeordnet. Diese Wand 27a trägt dazu bei, die von den Heizele- menten 28 erzeugte Wärme großflächig über das Ansaugrohr 20 zu verteilen. Das Metallgehäuse 27 besteht aus einer federharten Aluminiumlegierung, beispielsweise einer AlMgSi-Legierung insbesondere einer AIMgSio,5..i-Legierung.
Das Metallgehäuse 27 ist von dem Kunststoffmantel 21 dicht umschlossen und auf diese Weise vor der korrosiven Harnstofflösung geschützt. Der Kunststoffmantel 21 weist eine Nut 32 für einen das Ansaugrohr 20 umgebenden O-Ring 33 auf. Auf diese Weise wird verhindert, dass Harnstofflösung zwischen dem Ansaugrohr 20 und dem Kunststoffmantel 21 hindurch zu dem Metallgehäuse 27 gelangt. Das Metallgehäuse 27 und das Ansaugrohr 20 können aber auch umspritzt werden, um den Kunststoffmantel 21 zu bilden, so dass auf einen O-Ring verzichtet werden kann.
In Figur 4 ist ferner zu erkennen, dass das Wärmeleitelement 25 mit Klemmlaschen 34 flächig an dem Ansaugrohr 20 anliegt, um eine möglichst gute Wärmeankopplung zu erreichen.
In Figur 5 ist das Metallgehäuse 27 des beschriebenen Heizeinsatzes 8 in einer Querschnittansicht dargestellt. Wie bereits erwähnt, handelt es sich bei dem Metallgehäuse 27 um ein Profilrohr aus einer federharten Aluminiumlegierung. Das Metallgehäuse 27 hat einen Kanal 35 zur Aufnahme des Montagerahmens 30 mit den Heizelementen 28. In einen weiteren Kanal 36 des Metallgehäuses 27 wird bei der Montage des Heizeinsatzes 8 das Ansaugrohr 20 eingeschoben. Zwischen diesen beiden Kanälen 35, 36 verläuft die Zwischenwand 27a, so dass von den Heizelementen 28 erzeugte Wärme über das Metallgehäuse 27 allseitig zu dem Ansaugrohr 20 geleitet werden kann.
Figur 5 zeigt das Metallgehäuse 27 bevor es mit dem Ansaugrohr 20 ver- presst wird. Das Metallgehäuse 27 hat bevorzugt mindestens eine, bei dem gezeigten Ausführungsbeispiel zwei, in Längsrichtung verlaufende Erhebungen 37, die einen U-förmigen Querschnitt mit einer dem Kanal 36 zugewandten Öffnung aufweisen. Nach dem Aufschieben des Metallgehäu- ses 27 auf das Ansaugrohr 20 werden diese Erhebungen 37 verpresst, so dass sich der Querschnitt des Kanals 36 reduziert und das Metallgehäuse 27 eng an den Ansaugrohr 20 anliegt. In Figur 6 sind diese Erhebungen 37 nach dem Verpressen dargestellt. Wie Figur 6 zeigt, werden die Erhebungen 37 zu Pressfalten 39 zusammengepresst.
Fig. 7 zeigt ein weiteres Ausführungsbeispiel eines Heizeinsatzes 8 für das in Fig. 1 gezeigte Harnstoffversorgungssystem 2 ohne den dazugehörenden Auftaubehälter. Der wesentliche Unterschied zu dem im vorhergehenden beschriebenen Ausführungsbeispiel besteht darin, dass der in Fig. 7 dargestellte Heizeinsatz mehrere Edelstahlrohre 41 umfasst. Eines dieser Edelstahlrohre 41 kann als Ansaugrohr an die Anschlussleitung 17 des Harnstoffversorgungssystems 2 angeschlossen werden. Der in Fig. 7 dargestellte Heizeinsatz 8 hat durch die Verwendung mehrerer Edelstahlrohre 41 eine verbesserte Wärmeankopplung an die zu erwärmende Harnstofflösung. Dies liegt daran, dass die Wärmeleitfähigkeit von Edelstahl höher als die Wärmeleitfähigkeit des zum Schutz des Metallgehäuses 27 erforderlichen Kunststoffmantels 21 ist. Ein weiterer Vorteil des dargestellten Heizeinsatzes 8 besteht darin, dass die erzeugte Heizleistung auf den unteren Teil eines Auftaubehälters konzentriert werden kann. Auf diese Weise kann selbst bei einem nur teilweise gefüllten Auftaubehälter die von dem Heizeinsatz 8 erzeugte Wärme vollständig zum Auftauen von Harnstofflösung genutzt werden.
Fig. 8 zeigt den in Fig. 7 dargestellten Heizeinsatz 8 ohne den Kunststoff- mantel 21, mit dem das Metallgehäuse 27 und die Anschlussleitungen 22 vor der Einwirkung korrosiver Harnstoff lösung geschützt werden. Der in Fig. 7 gezeigte Kunststoffmantel 21 kann kostengünstig aufgebracht werden, indem das Metallgehäuse 27 umspritzt wird. Im Interesse einer möglichst guten Wärmeankopplung ist dabei darauf zu achten, dass die Innenseiten der Edelstahlrohre 41 frei bleiben.
Bei dem Metallgehäuse 27 handelt es sich - wie bei dem im vorhergehenden beschriebenen Ausführungsbeispiel - um ein Hohlprofil aus einer federharten Aluminiumlegierung. Das in Fig. 8 dargestellte Metallgehäuse 27 hat jedoch mehrere (nämlich zwei) Heizkanäle 35, in denen jeweils mindestens ein Heizelement 28 mit einem Abschnitt des Montagerahmens 30 angeordnet ist.
Als weitere Kanäle weist das Metallgehäuse 27 mehrere Rohrabschnitte 40 auf, in denen jeweils ein Edelstahlrohr 41 angeordnet ist. Die Rohrabschnitte 40 sind über Arme 42 mit einem Zentralkörper 43 verbunden, in dem die Heizelemente angeordnet sind. Auf diese Weise wird die erzeugte Wärme großflächig in die aufzutauende Harnstofflösung eingeleitet.
In Fig. 9 ist das Metallgehäuse 27 in einem Querschnitt dargestellt. Wie man darin sieht, sind die Rohrabschnitte 40 mit Erhebungen 37 versehen, die - wie anhand von Fig. 5 und 6 beschrieben - nach Einbringen der Edelstahlrohre 41 zu Pressfalten 39 verpresst werden.
Wie Fig. 9 zeigt, weist der Zentralkörper 43 zwischen den Heizkanälen 35 einen zentralen Kanal 44 auf. Dieser zentrale Kanal 44 bewirkt in erster Linie, dass sich der Zentralkörper 43 leichter verpressen lässt, um eine optimale Wärmeankopplung zwischen den Heizelementen 28 und dem Metallgehäuse 27 zu schaffen. In dem zentralen Kanal 44 kann ebenfalls ein Edelstahlrohr angeordnet werden. Um das Verpressen nicht zu erschweren, bleibt der zentrale Kanal 44 bevorzugt jedoch frei, so dass dessen innere Oberfläche ebenfalls mit dem Kunststoffmantel 21 überzogen werden muss. In Figur 10 ist ein weiteres Ausführungsbeispiel eines Heizeinsatzes 8 zum Auftauen einer korrosiven Lösung dargestellt, der für das im vorhergehenden beschriebene Harnstoffversorgungssystem 2 geeignet ist. Der Heizeinsatz 8 umfasst ein korrosionsbeständiges Rohr 20 als Ansaugrohr zum Eintauchen in die Lösung, ein Metallgehäuse 27, das über einen Kunststoffmantel 21 an dem Ansaugrohr 20 befestigt ist, zwei PTC-Heiz- elemente, die in dem Metallgehäuse 27 angeordnet sind, einen in den Figuren 11 und 12 dargestellten Rahmen 30, der sich außerhalb des Metallgehäuses 27 erstreckt und mindestens eine elektrische Anschluss- leitung 50, 51 des Heizelements, bei dem dargestellten Ausführungsbeispiel beide Anschlussleitungen 50, 51, fixiert. Der Rahmen 30 und das Metallgehäuse 27 sind von einem schützenden Kunststoffmantel 21 umgeben.
Der Kunststoffmantel 21 wurde als Spritzgussteil um den Rahmen 30 und das Metallgehäuse 27 herumgespritzt. Eine Besonderheit des dargestellten Ausführungsbeispiels besteht darin, dass der Kunststoffmantel 21 mehrschichtig ist. Bei der Herstellung wurde nach dem Zusammenfügen von Rahmen 30 und Metallgehäuse 27 zunächst eine erste Kunststoff- schicht auf den Rahmen 30 und das Metallgehäuse 27 gespritzt, um den Rahmen 30 in Bezug auf das Metallgehäuse 27 und die Anschlussleitungen 50, 51 in Bezug auf den Rahmen 30 zu fixieren.
Die erste Kunststoffschicht wird bevorzugt in einem Hot-melt-Spritzguss- verfahren bei relativ niedrigem Druck aufgebracht. Auf diese Weise wird eine größere Maßgenauigkeit vor dem endgültigen Umspritzen mit der zweiten Schicht und eine sichere Positionierung und Abdichtung des gesamten Heizeinsatzes mit den Anschlüssen erreicht. Die zweite Schicht wird bei einem höheren Druck aufgebracht. Bevorzugt wird für die zweite Schicht ein glasfaserverstärkter Kunststoff, insbesondere ein Polyamid, verwendet. Geeignet ist insbesondere ein hydrolysebeständig modifiziertes Polyamid.
Durch den beschriebenen zweischaligen Aufbau kann eine doppelte Dichtfunktion und damit eine höhere Zuverlässigkeit erreicht werden, da die Dichtwirkung des Kunststoffmantels 21 durch Risse in nur einer der beiden Kunststoffschichten nicht beeinträchtigt wird.
Der Kunststoffmantel 21 ist so geformt, dass er eine Aufnahme bildet, in der das Ansaugrohr 20 angeordnet ist. Bei dem dargestellten Ausführungsbeispiel ist die Aufnahme als Rinne, insbesondere Ω-förmige Rinne, ausgebildet. Bei dem Ansaugrohr 20 handelt es sich um ein gut wärmeleitendes, elastisches Kunststoffrohr, beispielsweise aus EPDM mit einer Shore-Härte von 60 bis 80 Shore A.
Der in Figuren 11 und 12 dargestellte Rahmen 30 hat eine stabilitätserhö- hende Gitterstruktur und erstreckt sich entlang des Ansaugrohrs 20. Wie Figur 12 zeigt, hat der Rahmen 30 eine deutlich größere Länge als das Metallgehäuse 27. Günstig ist es wenn der Rahmen 30 eine mindestens doppelt so große Länge wie das Metallgehäuse 27 hat, noch besser wenn er mindestens dreimal so große Länge wie das Metallgehäuse 27 hat. Auf diese Weise können die in dem Metallgehäuse 27 angeordneten PTC-Heiz- elemente ihre Heizenergie in einem unteren Bereich des Flüssigkeitstanks abgeben und so frühzeitig Eis an der Mündung des Ansaugrohrs 20 auf- tauen. Der Rahmen 30 stützt das Ansaugrohr 20 und führt es zusammen mit den elektrischen Anschlussleitungen 50, 51 aus der bestimmungsgemäß in dem Tank vorhandenen Flüssigkeit heraus.
Die Anschlussleitung 50, 51 sind in Rinnen 52, 53 des Rahmens 30 (Figur 12) angeordnet, durch welche die Anschlussleitungen bei der Montage fixiert und positioniert werden. Besonders günstig ist es, mindestens eine der elektrischen Anschlussleitungen 50, 51, bevorzugt beide elektrischen Anschlussleitungen 50, 51, an dem Rücken des Ansaugrohrs 20 entlang zu führen, so dass das Ansaugrohr von den Anschlussleitungen erwärmt werden kann. Hierfür ist es günstig, mindestens, eine bevorzugt beide Anschlussleitungen, zumindest abschnittsweise aus einer Heizleiterlegierung zu fertigen, so dass im Betrieb eine Erwärmung durch ohmsche Widerstandsheizung statt findet. Der in Figur 12 dargestellte Rahmen 30 ist zugleich ein Montagerahmen, von dem plattenförmige PTC-Heizelemente des Heizeinsatzes gehalten werden. Der Rahmen 30 hat zu diesem Zweck zwei Aufnahmen 54, in die bestimmungsgemäß plattenförmige PTC-Heizelemente eingesetzt werden. Der Rahmen 30 trägt ferner zwei Anschlussbleche 55, 56, die gemäß Figur 11 jeweils an eine der beiden Anschlussleitungen 50, 51, bevorzugt durch Schweißen angeschlossen sind und einen Kontakt zu eingesetzten PTC-Heizelementen in den Aufnahmen 54 herstellen. Nach Einsetzen der plattenförmigen PTC-Heizelemente werden die Aufnahmen 54 des Rah- mens 30 schubladenartig in passende rechteckige Öffnungen des Metallgehäuses 27 eingeschoben.
Bei dem Gehäuse 27 handelt es sich um eine Strangpressprofil, das nach dem Einschieben der Aufnahmen 54 im Bereich der PTC-Elemente ver- presst wird, um eine gute thermische Ankopplung des Gehäuses an die PTC-Heizelemente zu schaffen. Dabei wird ein elektrischer Kontakt des Metallgehäuses 27 zu der auf Masse gelegten Kontaktplatte 56 hergestellt, so dass für beide PTC-Elemente ein Masseanschluss vorhanden ist.
Das Metallgehäuse 27 besteht ebenso wie bei den vorhergehend beschriebenen Ausführungsbeispielen aus einer Aluminiumlegierung und weist Heizkanäle 35 auf, in der der Rahmen 30 mit dem PTC-Heizelementen eingeschoben ist. Von den Heizelementen erzeugte Wärme wird durch Wärmeabgabeflächen 45, die bei dem dargestellten Ausführungs- beispiel als Rippen ausgebildet sind, abgegeben.
Wie Figur 10 zeigt, ragt das Ansaugrohr 20 mit seinem Ansaugende über das Metallgehäuse 27 und mit seinem Anschlussende über den Rahmen 30 hinaus. Das Ansaugrohr 20 enthält zwei getrennte Kanäle 60, 61. Einer der beiden Kanäle, bevorzugt der kleinere Kanal 61 ist an dem Ansaugende des Ansaugrohrs 20, beispielsweise durch einen eingeschobenen Edelstahlstift verschlossen. Wird der dargestellte Heizeinsatz 8 in einem Auftaubehälter 9 eingesetzt, der in einem Harnstofftank 3 angeordnet ist, ragt das Ansaugrohr 20 mit seinem Ansaugende durch eine Öffnung des Auftaubehälters 9 (nicht dargestellt) hindurch und in den Harnstofftank 3 hinein. Wie Figur 14 zeigt, befindet sich in einer Mantelfläche des Ansaugrohrs 20 eine zweite Ansaugöffnung 63, durch die Flüssigkeit in den zweiten Kanal 61 gesaugt werden kann. Die zweite Ansaugöffnung 63 hat einen Abstand von mindestens 1 cm, bevorzugt mehreren cm, von dem Ansaugende des Ansaugrohrs 20. Ist der Heizeinsatz 8 bestimmungsgemäß in einem Auftaubehälter 9 angeordnet, so kann durch die zweite Ansaugöffnung 63 Flüssigkeit aus dem Auftaubehälter und mit der ersten Ansaugöffnung des Kanals 60 Flüssigkeit aus einem Harnstofftank 3 gesaugt werden. Ist die Flüssigkeit in dem Harnstofftank 3 eingefroren, so wird auf diese Weise automatisch Flüssigkeit aus dem Auftau behälter 9 gefördert.
In einfacher Weise kann so durch Wahl der Querschnittsverhältnisse der beiden Kanäle 60, 61 des Ansaugrohrs 20 ein definiertes Strömungsver- hältnis zur Harnstoffförderung hergestellt werden.
Bezugszahlenliste
1 Abgasreinigungskatalysator
2 Harnstoffversorgungssystem
3 Harnstofftank 4 Rückführleitung
5 Pumpe
6 Verbindungsleitung
7 zweiter Anschluss der Verbindungsleitung
8 Heizeinsatz 9 Auftaubehälter
10 Regelventil
11 Verbindungsleitung
12 Luftvorrat
13 Luftverdichter 14 Dosierventil
15 Steuereinheit
16 Sonde
17 erster Anschluss der Verbindungsleitung
18 Umschaltventil 19 Belüftungsöffnung
20 Ansaugrohr
21 Kunststoffmantel
22 Anschlussleitungen
23 Verteilelement 24 Durchtrittsöffnungen
25 Wärmeleitelement
26 Durchtrittsöffnungen
27 Metallgehäuse
27a Wand des Metallgehäuses 28 Heizelemente 29 Überlauföffnung
30 Montagerahmen
31 Anschlussbleche
32 Nut 33 O-Ring
34 Klemmlaschen
35 Kanal zur Aufnahme des Montagerahmens
36 Kanal zur Aufnahme des Ansaugrohrs
37 Erhebungen 38 Öffnung der Erhebungen
39 Pressfalten
40 Rohrabschnitte des Metallgehäuses
41 Rohr
42 Arm des Metallgehäuses 43 Zentralkörper des Metallgehäuses
44 zentraler Kanal
45 Wärmeabgabeflächen
50 Anschlussleitung des Heizelements
51 Anschlussleitung des Heizelements 52 Rinne für Anschlussleitung 50
53 Rinne für Anschlussleitung 52
54 Aufnahme für PTC-Heizelement
60 Kanal des Ansaugrohr 20
61 Kanal des Ansaugrohr 20 63 seitliche Ansaugöffnung des Ansaugrohrs 20

Claims

Patentansprüche
1. Harnstoffversorgungssystem für einen Abgasreinigungskatalysator (1) einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs, umfassend: - einen Harnstofftank (3) zur Aufnahme von Harnstofflösung,
- eine Verbindungsleitung (6, 11), die den Harnstofftank (3) mit einem Abgasreinigungskatalysator (1) verbindet,
- eine Pumpe (5), um Harnstofflösung durch die Verbindungsleitung (6, 11) von dem Harnstofftank (3) zu dem Katalysator (1) zu pum- pen,
- einen Heizeinsatz (8) zum Auftauen von gefrorener Harnstofflösung, und
- eine Rückführleitung (4), die von der Verbindungsleitung (6, 11) abzweigt und zu dem Harnstofftank (3) führt, dadurch gekennzeichnet, dass die Rückführleitung (4) derart ausgebildet und angeordnet ist, dass im Betrieb durch aus der Rückführleitung (4) austretende Harnstofflösung das Entstehen eines Luftspaltes zwischen dem Heizeinsatz (8) und aufzutauendem Harnstofflösungs-Eis verhindert wird.
2. Harnstoffversorgungssystem nach Anspruch 1, dadurch gekennzeichnet, dass an einem Ausgang der Rückführleitung (4) ein Verteilelement (23) angeordnet ist, um einen aus der Rückführleitung (4) austretenden Harnstoffstrom zu verteilen.
3. Harnstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführleitung (4) derart ausgebildet und angeordnet ist, dass im Betrieb Harnstoff gezielt zu dem Heizeinsatz (8) geleitet wird, um einen eventuellen Spalt zwischen dem Heizeinsatz (8) und gefrorener Harnstofflösung zu füllen.
4. Harnstoffversorgungssystem nach einem der vorhergehenden Ansprii- che, dadurch gekennzeichnet, dass an die Verbindungsleitung (6) ein
Auftaubehälter (9) angeschlossen ist, in dem ein für die Inbetriebnahme des Katalysators (1) ausreichender Bruchteil der in dem System speicherbaren Harnstoffmenge mittels des Heizeinsatzes (8) auftaubar ist, wobei die Rückführleitung (4) zu dem Auftaubehälter (9) führt.
5. Harnstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Heizeinsatz (8) ein Ansaugrohr (20) aufweist, das an die Verbindungsleitung (6, 11) angeschlossen ist.
6. Harnstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführleitung (4) mehrere Austrittsöffnungen aufweist, durch die im Betrieb Harnstoff zurückge- führt wird.
7. Harnstoffversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführleitung (4) eine Belüftungsöffnung (19) aufweist.
8. Heizeinsatz zum Auftauen einer korrosiven Lösung, insbesondere für ein Harnstoffversorgungssystem nach einem der vorgehenden Ansprüche, umfassend:
- ein korrosionsbeständiges Rohr (20, 41) zum Eintauchen in die Lösung,
- ein Metallgehäuse (27), das an dem Rohr (20, 41) befestigt ist,
- mindestens ein Heizelement (28), das in dem Metallgehäuse (27) angeordnet ist, - einen Rahmen (30), der sich außerhalb des Metallgehäuses (27) erstreckt und eine elektrische Anschlussleitung des Heizelements (28) trägt, und
- einen Kunststoffmantel (21), der den Rahmen (30) und das Metallgehäuse (27) schützt.
9. Heizeinsatz nach Anspruch 8, dadurch gekennzeichnet, dass das Metallgehäuse (27) ein Profilrohr ist.
10. Heizeinsatz nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass sich der Rahmen (30) entlang des als Ansaugrohr dienenden Rohrs (20) erstreckt.
11. Heizeinsatz nach einem der Ansprüche 8 bis 10, dadurch gekennzeich- net, dass der Rahmen (30) eine größere Länge als das Metallgehäuse
(27), vorzugsweise eine mindest doppelt so große Länge wie das Metallgehäuse (27), hat.
12. Heizeinsatz nach einem der Ansprüche 8 bis 11, dadurch gekennzeich- net, dass der Rahmen (30) eine Gitterstruktur hat.
13. Heizeinsatz nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass der Rahmen (30) ein Montagerahmen ist, von dem das mindestens eine Heizelement (28) in dem Metallgehäuse (27) gehalten ist.
14. Heizeinsatz nach Anspruch einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass der Kunststoffmantel (21) als Spritzgussteil um den Rahmen (30) und das Metallgehäuse (27) herum gespritzt wurde.
15. Heizeinsatz nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass der Kunststoffmantel (21) mehrschichtig ist.
16. Heizeinsatz nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, dass das Rohr (20) ein Ansaugrohr ist, in dem zwei Kanäle (60, 61) verlaufen.
17. Heizeinsatz nach Anspruch 16, dadurch gekennzeichnet, dass bestimmungsgemäß einer der Kanäle (60) des Ansaugrohrs (20) mit seiner Ansaugöffnung Flüssigkeit aus einem Harnstofftank (3) und ein anderer der Kanäle (61) mit seiner Ansaugöffnung (63) Flüssigkeit aus einem Auftaubehälter (9) fördert.
PCT/EP2006/004822 2005-06-04 2006-05-22 Harnstoffversorgungssystem für einen abgasreinigungskatalysator und hierfür geeigneter heizeinsatz WO2006131201A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006001140.5T DE112006001140B4 (de) 2005-06-04 2006-05-22 Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
US11/921,363 US7836684B2 (en) 2005-06-04 2006-05-22 Urea supply system for a waste gas cleaning catalyst and heating insert suitable therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005025724.0 2005-06-04
DE102005025724A DE102005025724A1 (de) 2005-06-04 2005-06-04 Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
DE102006005141.6 2006-02-04
DE102006005141 2006-02-04

Publications (2)

Publication Number Publication Date
WO2006131201A2 true WO2006131201A2 (de) 2006-12-14
WO2006131201A3 WO2006131201A3 (de) 2007-03-01

Family

ID=36917358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004822 WO2006131201A2 (de) 2005-06-04 2006-05-22 Harnstoffversorgungssystem für einen abgasreinigungskatalysator und hierfür geeigneter heizeinsatz

Country Status (3)

Country Link
US (1) US7836684B2 (de)
DE (1) DE112006001140B4 (de)
WO (1) WO2006131201A2 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080694A1 (de) * 2006-12-28 2008-07-10 Robert Bosch Gmbh Belüftungsheizung für reduktionsmitteltank
DE102007024782A1 (de) 2007-05-26 2008-11-27 Eichenauer Heizelemente Gmbh & Co. Kg Heizeinsatz und Harnstoffversorgungssystem für einen Abgasreinigungskatalysator mit einem derartigen Heizeinsatz
EP2071146A1 (de) * 2007-12-12 2009-06-17 Robert Bosch GmbH Tankeinbaumodul und Verfahren zur Herstellung eines Tankeinbaumoduls
EP2080874A3 (de) * 2008-01-18 2010-02-24 DBK David + Baader GmbH Tankentnahmesystem mit elektrischer und fluidischer Heizvorrichtung
JP2010059963A (ja) * 2008-09-03 2010-03-18 Delphi Technologies Inc 窒素酸化物還元剤を車両に貯蔵するための装置
WO2010046152A1 (de) * 2008-10-20 2010-04-29 Robert Bosch Gmbh Dosiersystem für ein flüssiges medium, insbesondere harnstoff-wasser-lösung
US20100199648A1 (en) * 2007-09-21 2010-08-12 Inergy Automotive Systems Research (Societe Anonyme) System for storing an additive solution and injecting it into the exhaust gases of an engine
US20110047972A1 (en) * 2009-08-14 2011-03-03 Peter Bauer Device and method for metering a reducing agent into an exhaust gas system of a motor vehicle
EP2316558A1 (de) * 2006-12-22 2011-05-04 Amminex A/S Verfahren und Vorrichtung zur Speicherung und Abgabe von Ammoniak mit in-situ-Auffüllen der Abgabeeinheit
FR2954402A1 (fr) * 2009-12-23 2011-06-24 Inergy Automotive Systems Res Reservoir de stockage pour additif de gaz d'echappement d'un moteur
DE102010009182A1 (de) 2010-02-01 2011-08-04 Eichenauer Heizelemente GmbH & Co. KG, 76870 Heizvorrichtung
WO2011157602A1 (de) * 2010-06-16 2011-12-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur förderung von flüssigem reduktionsmittel
US8096112B2 (en) * 2007-09-28 2012-01-17 Caterpillar Inc. Exhaust after-treatment system having a secondary tank
DE102011011367A1 (de) 2011-02-16 2012-08-16 Eichenauer Heizelemente Gmbh & Co. Kg Tankheizung
US20120315196A1 (en) * 2010-01-13 2012-12-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Apparatus having a tank and a delivery unit for reducing agent
US8359831B2 (en) 2008-10-31 2013-01-29 Ti Group Automotive Systems, L.L.C. Reactant delivery for engine exhaust gas treatment
WO2014086553A1 (de) * 2012-12-07 2014-06-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum betrieb einer vorrichtung zur bereitstellung eines flüssigen additivs
DE102009042980B4 (de) * 2008-09-30 2015-10-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Reduktionsmittelbehälter für ein Schadstoffbegrenzungssystem und Schadstoffbegrenzungssystem für einen Verbrennungsmotor
US9400064B2 (en) 2007-05-23 2016-07-26 Amminex A/S Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
EP3301272A1 (de) * 2007-05-16 2018-04-04 Plastic Omnium Advanced Innovation and Research Harnstofftank und grundplatte mit integriertem erwärmungselement
CN111836949A (zh) * 2018-01-11 2020-10-27 罗伯特·博世有限公司 用于对能冻结的运行/辅助材料进行调温的设备

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614213B2 (en) * 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
EP2029865B1 (de) * 2006-06-08 2010-10-06 Inergy Automotive Systems Research (Société Anonyme) System zur lagerung von motorabgasadditiven
US7954312B2 (en) * 2007-05-09 2011-06-07 Ford Global Technologies, Llc Approach for detecting reductant availability and make-up
US8455784B2 (en) * 2008-05-07 2013-06-04 GM Global Technology Operations LLC Method and system for welding workpieces
US20100050606A1 (en) * 2008-09-04 2010-03-04 Fulks Gary C Urea tank assembly
DE102009041179A1 (de) * 2009-09-11 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Fördervorrichtung für ein Reduktionsmittel
US20110138791A1 (en) * 2009-12-15 2011-06-16 Delphi Technologies, Inc. Liquid Reductant Dosing Module with Heating Device
FR2954404A1 (fr) * 2009-12-22 2011-06-24 Ti Automotive Fuel Systems Sas Crepine chauffante et dispositif d'injection comprenant une telle crepine
JP5564989B2 (ja) * 2010-02-26 2014-08-06 いすゞ自動車株式会社 液体還元剤貯蔵タンクのブリーザーパイプ構造
US8495868B2 (en) * 2010-03-22 2013-07-30 Caterpillar Inc. Control strategy for heated fluid lines
US9879829B2 (en) 2010-06-15 2018-01-30 Shaw Development, Llc Tank module interface for fluid reservoirs
WO2012053265A1 (ja) * 2010-10-22 2012-04-26 ボッシュ株式会社 還元剤供給装置及び還元剤供給装置の制御方法並びに排気浄化装置
US8822887B2 (en) 2010-10-27 2014-09-02 Shaw Arrow Development, LLC Multi-mode heater for a diesel emission fluid tank
US8402750B2 (en) * 2010-12-07 2013-03-26 Tenneco Automotive Operating Company Inc. Reagent tank normalizing system
DE102010062982A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Tankeinbaumodul, Flüssigkeitstank
DE102010062997A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Flüssigkeitsentnahmemodul, Flüssigkeitstank
US8661785B2 (en) * 2011-04-15 2014-03-04 Ford Global Technologies, Llc System and method for liquid reductant injection
US20120275773A1 (en) * 2011-04-26 2012-11-01 Floyd Ryan A Reductant Heater
US20130000743A1 (en) * 2011-06-29 2013-01-03 Ti Group Automotive Systems, L.L.C. Scr fluid distribution and circulation system
EP2730762B1 (de) * 2011-07-09 2016-12-21 Bosch Corporation Reduktionsmittelzufuhrvorrichtung und abgasreinigungsvorrichtung für brennkraftmaschine
DE102011081628A1 (de) * 2011-08-26 2013-02-28 Robert Bosch Gmbh Dosiersystem für ein flüssiges Reduktionsmittel
FR2983237B1 (fr) 2011-11-30 2014-01-24 Peugeot Citroen Automobiles Sa Procede d'optimisation du temps de chauffage d'une source d'ammoniac pour la reduction d'oxydes d'azote
DE102012204106A1 (de) * 2012-03-15 2013-09-19 Robert Bosch Gmbh Wärmeverteilkörper für eine Heizung eines SCR-Systems und Heizung
EP2650497A1 (de) 2012-04-11 2013-10-16 TI Automotive Fuel Systems SAS System zur Aufbewahrung einer Additivlösung für einen Fahrzeugmotor
DE102012213417A1 (de) * 2012-07-31 2014-02-06 Robert Bosch Gmbh Aufheizeinrichtung für einen Betriebs-/Hilfsstoff mit Ausgleichselement
US9103600B2 (en) 2012-12-21 2015-08-11 Caterpillar Inc. Injector cooling apparatus and method
EP2846014B1 (de) * 2013-09-10 2017-03-15 Inergy Automotive Systems Research (Société Anonyme) Modul für ein SCR-System und System damit
US9468875B2 (en) * 2014-01-14 2016-10-18 Caterpillar Inc. Filter system and filtration method for fluid reservoirs
USD729141S1 (en) 2014-05-28 2015-05-12 Shaw Development LLC Diesel emissions fluid tank
USD729722S1 (en) 2014-05-28 2015-05-19 Shaw Development LLC Diesel emissions fluid tank floor
US20150354425A1 (en) * 2014-06-06 2015-12-10 Caterpillar Inc. Heating element for reductant tank
US10245534B2 (en) 2015-05-28 2019-04-02 Shaw Development, Llc Filter inline heater
US10371030B2 (en) 2016-09-30 2019-08-06 Deere & Company Diesel exhaust fluid system
US10323556B2 (en) * 2016-12-16 2019-06-18 Gates Corporation Electric immersion heater for diesel exhaust fluid reservoir
CN109296424A (zh) * 2018-11-12 2019-02-01 南京蔚岚环境技术研究院有限公司 车辆用尾气净化***及工作方法
CN112145261B (zh) * 2020-08-05 2021-12-07 中船澄西船舶修造有限公司 一种船用低温自清洁式尿素舱
CN113006904B (zh) * 2021-02-24 2022-01-28 合肥工业大学 一种车用固体尿素供氨装置
US11492948B2 (en) 2021-03-19 2022-11-08 RB Distribution, Inc. Diesel exhaust fluid (DEF) module cover and sensor assembly

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684786A (en) * 1984-08-01 1987-08-04 Navistar International Corporation Electrically heated fuel pick-up assembly for vehicle fuel tanks
FR2595333A1 (fr) * 1986-03-10 1987-09-11 Lacroix Robert Dispositif permettant de rechauffer le gas-oil ou le fuel, carburants utilises par les moteurs diesel, dans le reservoir, a l'interieur du tuyau d'aspiration
FR2634090A1 (fr) * 1988-07-07 1990-01-12 Diry Andre Dispositif pour le rechauffage d'un ecoulement de liquide notamment eau ou gazole
US5158131A (en) * 1990-01-22 1992-10-27 Hurner Erwin E Method and apparatus for mounting an intank fuel heater
DE19800421A1 (de) * 1998-01-08 1999-07-15 Bosch Gmbh Robert Gemischabgabevorrichtung
WO2000021881A1 (en) * 1998-10-13 2000-04-20 Clean Diesel Technologies, Inc. REDUCING NOx EMISSIONS FROM AN ENGINE BY TEMPERATURE-CONTROLLED UREA INJECTION FOR SELECTIVE CATALYTIC REDUCTION
DE10139142A1 (de) * 2001-08-09 2003-02-20 Bosch Gmbh Robert Abgasbehandlungseinheit und Messvorrichtung zur Ermittlung einer Konzentration einer Harnstoff-Wasser-Lösung
DE20121116U1 (de) * 2001-12-21 2003-04-24 Eichenauer Gmbh & Co Kg F Elektrische Heizeinrichtung zum Beheizen einer Flüssigkeit in einem Kfz
DE20219608U1 (de) * 2002-12-05 2003-06-12 Erhard & Soehne Gmbh Behälter zur Aufnahme von Betriebsstoffen
EP1505135A1 (de) * 2003-08-05 2005-02-09 Eichenauer Heizelemente GmbH & Co.KG Verbindung
WO2005024194A1 (ja) * 2003-09-05 2005-03-17 Nissan Diesel Motor Co., Ltd. エンジンの排気浄化装置
EP1582732A1 (de) * 2004-03-29 2005-10-05 DBK David + Baader GmbH Entnahmeeinheit mit Heizeinrichtung und Wärmetauscherfortsatz, für einen Tank mit ausfällendem und/oder gefrierendem Fluid
WO2005107322A1 (de) * 2004-05-04 2005-11-10 Eichenauer Heizelemente Gmbh & Co. Kg Verfahren zum elektrischen isolieren eines elektrischen funktionselements und derart isolierte funktionselemente aufweisende einrichtung
EP1602805A1 (de) * 2004-06-02 2005-12-07 MAN Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zum Beheizen eines in einem Behälter eines Kraftfahrzeugs mitgeführten Reduktionsmittels zur Abgasnachbehandlung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989572A (en) * 1990-02-16 1991-02-05 General Motors Corporation Vehicle fuel system with reduced tank heating
US5533486A (en) * 1993-12-23 1996-07-09 Freightliner Corporation Fuel system for heating and cooling fuel
JP3022601B2 (ja) * 1994-09-13 2000-03-21 シーメンス アクチエンゲゼルシヤフト 排気ガス浄化装置に液体を供給する方法及び装置
DE4432577A1 (de) 1994-09-13 1996-03-14 Siemens Ag Einrichtung zur Einbringung einer Flüssigkeit in ein Strömungsmedium
JP3543879B2 (ja) 1995-10-11 2004-07-21 住友ゴム工業株式会社 タイヤ空気圧異常警報装置
US5976475A (en) 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
JP4447142B2 (ja) 2000-10-06 2010-04-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
CA2378905C (en) * 2001-03-27 2009-09-08 Jack Lange Fuel conduction system
US6810661B2 (en) * 2002-08-09 2004-11-02 Ford Global Technologies, Llc Method and system for freeze protecting liquid NOx reductants for vehicle application
DE10332114A1 (de) 2003-07-09 2005-01-27 Robert Bosch Gmbh Gekühlte Vorrichtung zur Dosierung von Reduktionsmittel zum Abgas eines Verbrennungsmotors
DE10341996A1 (de) 2003-09-02 2005-03-24 Hydraulik-Ring Gmbh Abgasnachbehandlungseinrichtung für Dieselmotoren von Fahrzeugen, vorzugsweise von PKWs

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684786A (en) * 1984-08-01 1987-08-04 Navistar International Corporation Electrically heated fuel pick-up assembly for vehicle fuel tanks
FR2595333A1 (fr) * 1986-03-10 1987-09-11 Lacroix Robert Dispositif permettant de rechauffer le gas-oil ou le fuel, carburants utilises par les moteurs diesel, dans le reservoir, a l'interieur du tuyau d'aspiration
FR2634090A1 (fr) * 1988-07-07 1990-01-12 Diry Andre Dispositif pour le rechauffage d'un ecoulement de liquide notamment eau ou gazole
US5158131A (en) * 1990-01-22 1992-10-27 Hurner Erwin E Method and apparatus for mounting an intank fuel heater
DE19800421A1 (de) * 1998-01-08 1999-07-15 Bosch Gmbh Robert Gemischabgabevorrichtung
WO2000021881A1 (en) * 1998-10-13 2000-04-20 Clean Diesel Technologies, Inc. REDUCING NOx EMISSIONS FROM AN ENGINE BY TEMPERATURE-CONTROLLED UREA INJECTION FOR SELECTIVE CATALYTIC REDUCTION
DE10139142A1 (de) * 2001-08-09 2003-02-20 Bosch Gmbh Robert Abgasbehandlungseinheit und Messvorrichtung zur Ermittlung einer Konzentration einer Harnstoff-Wasser-Lösung
DE20121116U1 (de) * 2001-12-21 2003-04-24 Eichenauer Gmbh & Co Kg F Elektrische Heizeinrichtung zum Beheizen einer Flüssigkeit in einem Kfz
DE20219608U1 (de) * 2002-12-05 2003-06-12 Erhard & Soehne Gmbh Behälter zur Aufnahme von Betriebsstoffen
EP1505135A1 (de) * 2003-08-05 2005-02-09 Eichenauer Heizelemente GmbH & Co.KG Verbindung
WO2005024194A1 (ja) * 2003-09-05 2005-03-17 Nissan Diesel Motor Co., Ltd. エンジンの排気浄化装置
EP1582732A1 (de) * 2004-03-29 2005-10-05 DBK David + Baader GmbH Entnahmeeinheit mit Heizeinrichtung und Wärmetauscherfortsatz, für einen Tank mit ausfällendem und/oder gefrierendem Fluid
WO2005107322A1 (de) * 2004-05-04 2005-11-10 Eichenauer Heizelemente Gmbh & Co. Kg Verfahren zum elektrischen isolieren eines elektrischen funktionselements und derart isolierte funktionselemente aufweisende einrichtung
EP1602805A1 (de) * 2004-06-02 2005-12-07 MAN Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zum Beheizen eines in einem Behälter eines Kraftfahrzeugs mitgeführten Reduktionsmittels zur Abgasnachbehandlung

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316558A1 (de) * 2006-12-22 2011-05-04 Amminex A/S Verfahren und Vorrichtung zur Speicherung und Abgabe von Ammoniak mit in-situ-Auffüllen der Abgabeeinheit
WO2008080694A1 (de) * 2006-12-28 2008-07-10 Robert Bosch Gmbh Belüftungsheizung für reduktionsmitteltank
US10139130B2 (en) 2007-05-16 2018-11-27 Plastic Omnium Advanced Innovation And Research Urea tank and base plate with an integrated heating element
EP3301272A1 (de) * 2007-05-16 2018-04-04 Plastic Omnium Advanced Innovation and Research Harnstofftank und grundplatte mit integriertem erwärmungselement
US9400064B2 (en) 2007-05-23 2016-07-26 Amminex A/S Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
DE102007024782A1 (de) 2007-05-26 2008-11-27 Eichenauer Heizelemente Gmbh & Co. Kg Heizeinsatz und Harnstoffversorgungssystem für einen Abgasreinigungskatalysator mit einem derartigen Heizeinsatz
DE102007024782B4 (de) * 2007-05-26 2011-08-25 Eichenauer Heizelemente GmbH & Co. KG, 76870 Heizeinsatz und dessen Verwendung in einem Harnstoffversorgungssystem
US20100199648A1 (en) * 2007-09-21 2010-08-12 Inergy Automotive Systems Research (Societe Anonyme) System for storing an additive solution and injecting it into the exhaust gases of an engine
US8424724B2 (en) * 2007-09-21 2013-04-23 Inergy Automotive Systems Research System for storing an additive solution and injecting it into the exhaust gases of an engine
US8096112B2 (en) * 2007-09-28 2012-01-17 Caterpillar Inc. Exhaust after-treatment system having a secondary tank
EP2071146A1 (de) * 2007-12-12 2009-06-17 Robert Bosch GmbH Tankeinbaumodul und Verfahren zur Herstellung eines Tankeinbaumoduls
EP2080874A3 (de) * 2008-01-18 2010-02-24 DBK David + Baader GmbH Tankentnahmesystem mit elektrischer und fluidischer Heizvorrichtung
US8301020B2 (en) 2008-01-18 2012-10-30 Dbk David + Baader Gmbh Tank withdrawal system with electric and fluidic heating device
JP2010059963A (ja) * 2008-09-03 2010-03-18 Delphi Technologies Inc 窒素酸化物還元剤を車両に貯蔵するための装置
DE102009042980B4 (de) * 2008-09-30 2015-10-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Reduktionsmittelbehälter für ein Schadstoffbegrenzungssystem und Schadstoffbegrenzungssystem für einen Verbrennungsmotor
WO2010046152A1 (de) * 2008-10-20 2010-04-29 Robert Bosch Gmbh Dosiersystem für ein flüssiges medium, insbesondere harnstoff-wasser-lösung
US8359831B2 (en) 2008-10-31 2013-01-29 Ti Group Automotive Systems, L.L.C. Reactant delivery for engine exhaust gas treatment
US8875493B2 (en) 2008-10-31 2014-11-04 Ti Group Automotive Systems, L.L.C. Reactant delivery for engine exhaust gas treatment
US20110047972A1 (en) * 2009-08-14 2011-03-03 Peter Bauer Device and method for metering a reducing agent into an exhaust gas system of a motor vehicle
US9404408B2 (en) * 2009-08-14 2016-08-02 Continental Automotive Gmbh Device and method for metering a reducing agent into an exhaust gas system of a motor vehicle
FR2954402A1 (fr) * 2009-12-23 2011-06-24 Inergy Automotive Systems Res Reservoir de stockage pour additif de gaz d'echappement d'un moteur
US20120315196A1 (en) * 2010-01-13 2012-12-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Apparatus having a tank and a delivery unit for reducing agent
US10041392B2 (en) * 2010-01-13 2018-08-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Apparatus having a tank and a delivery unit for reducing agent
DE102010009182A1 (de) 2010-02-01 2011-08-04 Eichenauer Heizelemente GmbH & Co. KG, 76870 Heizvorrichtung
DE102010009182B4 (de) 2010-02-01 2018-10-04 Eichenauer Heizelemente Gmbh & Co. Kg Heizvorrichtung
US8955311B2 (en) 2010-06-16 2015-02-17 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for conveying liquid reducing agent and motor vehicle having the device
WO2011157602A1 (de) * 2010-06-16 2011-12-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur förderung von flüssigem reduktionsmittel
DE102011011367B4 (de) * 2011-02-16 2016-06-16 Eichenauer Heizelemente Gmbh & Co. Kg Verfahren zum Herstellen einer Tankheizung
DE102011011367A1 (de) 2011-02-16 2012-08-16 Eichenauer Heizelemente Gmbh & Co. Kg Tankheizung
WO2014086553A1 (de) * 2012-12-07 2014-06-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum betrieb einer vorrichtung zur bereitstellung eines flüssigen additivs
US10718244B2 (en) 2012-12-07 2020-07-21 Continental Automotive Gmbh Method for operating a device for providing a liquid additive
CN111836949A (zh) * 2018-01-11 2020-10-27 罗伯特·博世有限公司 用于对能冻结的运行/辅助材料进行调温的设备

Also Published As

Publication number Publication date
DE112006001140A5 (de) 2008-04-17
WO2006131201A3 (de) 2007-03-01
US20090100824A1 (en) 2009-04-23
DE112006001140B4 (de) 2014-06-05
US7836684B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
DE112006001140B4 (de) Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
DE112006001103B4 (de) Tankheizung
DE102005025724A1 (de) Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
DE112006001892B4 (de) Heizsystem
EP1767417B2 (de) Verwendung eines Tanksystems mit einem Haupttank und einer Abschmelzvorrichtung mit Schmelztank
DE102007024782B4 (de) Heizeinsatz und dessen Verwendung in einem Harnstoffversorgungssystem
EP2235339A1 (de) Tankentnahmesystem
WO2006136306A1 (de) Reduktionsmittelversorgungssystem für einen abgasreinigungskatalysator und heizeinrichtung hierfür
EP2766651B1 (de) Konfektionierte medienleitung mit zumindest einer beheizbaren medienleitung und mit zumindest einem zumindest teilweise beheizbaren leitungsverbinder
WO2011086039A1 (de) Vorrichtung mit einem tank und einer fördereinheit für reduktionsmittel
DE102010024022A1 (de) Vorrichtung zur Förderung von flüssigem Reduktionsmittel
DE102008006323B4 (de) Reduktionsmittelversorgungssystem für einen Abgasreinigungskatalysator eines Verbrennungsmotors und Steckverbindung zum Anschließen von beheizbaren Flüssigkeitsleitungen
DE102013000588A1 (de) Konfektionierte beheizbare Medienleitung, Verwendung einer solchen sowie Verfahren zum Herstellen einer solchen
EP1741888B1 (de) Vorratsbehälter eines Kraftfahrzeugs
DE202011100991U1 (de) Medienleitung
EP2414646B1 (de) Einspritzeinrichtung für harnstoffwasserlösung
DE102007027413B4 (de) Reduktionsmittelversorgungssystem für einen Abgasreinigungskatalysator eines Verbrennungsmotors
DE102004062603B3 (de) Harnstoff-Dosiersystem für einen Abgasreinigungskatalysator eines Kfz und Ringheizung für ein solches Harnstoff-Dosiersystem
DE102009047334A1 (de) Tank mit mindestens einem elektrischen Heizelement und Abgasvorrichtung für eine Brennkraftmaschine mit elektrisch beheizbarem Tank
DE19811019C2 (de) Spritzwasserleitung zum Reinigen von Kfz-Scheiben
DE102007016789A1 (de) Beheizbares Anschlussstück für eine Fluidleitung
DE102007031413A1 (de) Reduktionsmittelversorgungssystem für einen Abgasreinigungskatalysator eines Verbrennungsmotors und Verfahren zum Beheizen seiner Flüssigkeitsleitungen
EP1101534B1 (de) Heizbare Düse für den Einsatz in Scheibenwaschanlagen
DE102011115890A1 (de) Zumindest teilweise beheizbarer Leitungsverbinder für einebeheizbare Medienleitung sowie konfektionierte Medienleitung mit einem solchen Leitungsverbinder
WO2020192999A1 (de) Vorrichtung zur beheizung eines tanks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060011405

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11921363

Country of ref document: US

REF Corresponds to

Ref document number: 112006001140

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 10 APRIL 2008 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 06761927

Country of ref document: EP

Kind code of ref document: A2