WO2006129694A1 - プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池 - Google Patents

プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池 Download PDF

Info

Publication number
WO2006129694A1
WO2006129694A1 PCT/JP2006/310858 JP2006310858W WO2006129694A1 WO 2006129694 A1 WO2006129694 A1 WO 2006129694A1 JP 2006310858 W JP2006310858 W JP 2006310858W WO 2006129694 A1 WO2006129694 A1 WO 2006129694A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer membrane
acid group
polybenzimidazole
sulfonic acid
Prior art date
Application number
PCT/JP2006/310858
Other languages
English (en)
French (fr)
Inventor
Fusaki Fujibayashi
Yoshimitsu Sakaguchi
Satoshi Takase
Original Assignee
Samsung Yokohama Research Institute
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005163962A external-priority patent/JP2006339064A/ja
Priority claimed from JP2005163982A external-priority patent/JP5140907B2/ja
Application filed by Samsung Yokohama Research Institute, Toyo Boseki Kabushiki Kaisha filed Critical Samsung Yokohama Research Institute
Priority to EP06747031A priority Critical patent/EP1901378A4/en
Priority to CN2006800195959A priority patent/CN101189752B/zh
Priority to KR1020087000055A priority patent/KR101129162B1/ko
Priority to US11/921,455 priority patent/US8557472B2/en
Publication of WO2006129694A1 publication Critical patent/WO2006129694A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • PROTON CONDUCTIVE POLYMER MEMBRANE METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
  • the present invention is a composition useful as a polymer electrolyte membrane comprising a polybenzimidazole compound having an acidic group and an acidic compound as constituents and being usable under high-temperature and non-humidified conditions.
  • the present invention relates to a polymer membrane, a method for producing the same, and a fuel cell using the polymer membrane.
  • Polybenzimidazole is a highly heat-stable polymer, but it has been reported that when it is impregnated with phosphoric acid, it becomes even more thermally stable (eg, EJ Powers et al., Hign Performance Polymers: Their urigm and Dev elopment, Elsevier , New York (1986), p. 355 (Non-Patent Document 1)).
  • polybenzimidazole itself does not have ionic conductivity, it is necessary to impregnate polybenzimidazole with a large amount of phosphoric acid in order to obtain sufficient proton conductivity.
  • phosphoric acid which is a low-molecular compound, gradually flows out of polybenzimidazole, and there is a problem that ion conductivity decreases with time.
  • membrane swelling increases, which causes a problem in assembling a fuel cell.
  • the use of a polybenzimidazole structure using a dicarboxylic acid monomer having a pyridine skeleton is also described. The only tetraamine monomer used at the same time is 3,3-diaminobenzidine. There was a tendency for the yarn-stitched polymer to exhibit the same defects as described above.
  • a polymer in which a sulfonic acid group is introduced into polybenzimidazole as described above has an acidic group in the molecule, so that proton conductivity is exhibited even with a small amount of phosphoric acid impregnation. Since it can be expected, a sulfonic acid group-containing polybenzimidazole polymer electrolyte membrane containing an inorganic acid or an organic acid has been reported (for example, JP-A-2003-327826 (Patent Document 3)). However, even in these, processability and fuel cell membrane characteristics However, it cannot be said that the performance required for practical use as a fuel cell is satisfied. In these studies, polymer structures having a pyridine skeleton were not studied.
  • Patent Document 1 International Publication No. WO02Z38650 Pamphlet
  • Patent Document 2 Japanese Patent Publication No. 11-503262
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-327826
  • the present invention solves the above-mentioned problems, can be operated under high-temperature and non-humidified conditions, and has excellent workability when assembling a fuel cell that not only exhibits excellent proton conductivity, but also has durability. It is an object of the present invention to provide a novel proton conductive polymer membrane that exhibits sufficient practical properties in terms of performance, a method for producing the same, and a fuel cell using the same.
  • the present invention relates to a proton-conducting polymer membrane obtained by adding bullphosphonic acid to a polymer membrane containing a polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group.
  • the polybenzimidazole compound in the present invention has the following structural formula (1),
  • n is an integer from 1 to 4, R 1 is a tetravalent aromatic bond unit capable of forming an imidazole ring, R 2 is a divalent aromatic bond unit, Z is a sulfonic acid group and Z or Represents a phosphonic acid group)
  • polybenzimidazole compound in the present invention has the following structural formula (2).
  • Ph is an aromatic bond unit
  • Y is a sulfonic acid group, or one or more functional groups selected from phosphonic acid groups, all in acid form. Or some or all of them may be in the form of derivatives.
  • N is an integer from 1 to 4)
  • the polybenzimidazole compound in the present invention has the following structural formula (3),
  • Ph is one or more types selected from ortho-phenylene, meta-phenylene and para-phenylene power.
  • Ph is one or more types selected from ortho-phenylene, meta-phenylene and para-phenylene power.
  • bullphosphonic acid is 1 with respect to the polybenzimidazole compound.
  • the present invention is also a method for producing the above proton-conducting polymer membrane, wherein the polymer membrane containing a polybenzimidazole compound having a sulfonic acid group and Z or a phosphonic acid group
  • the present invention relates to a method for producing a proton conductive polymer membrane comprising a step of immersing in a solution containing bullphosphonic acid.
  • the present invention further relates to a fuel cell using the proton conductive polymer membrane described above as a solid polymer electrolyte. That is, it has a unit cell composed of an oxygen electrode, a fuel electrode, a solid polymer electrolyte membrane, an oxidant distribution plate, and a fuel distribution plate, and the solid polymer electrolyte membrane includes the oxygen electrode and the fuel electrode.
  • the oxidant distribution plate is provided on the oxygen electrode side to form an oxidizing agent flow path
  • the fuel distribution plate is provided on the fuel electrode side to form a fuel flow path, and
  • the present invention also relates to a fuel cell in which the solid polymer electrolyte membrane is the aforementioned proton conductive polymer membrane.
  • the proton-conductive polymer membrane of the present invention has excellent proton conductivity by including bullphosphonic acid in a polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group as an acidic group.
  • bullphosphonic acid in a polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group as an acidic group.
  • the polymer electrolyte membrane is suitably applied particularly to a fuel cell that operates under high-temperature and non-humidified conditions.
  • FIG. 1 is a graph showing temperature dependence of ionic conductivity in Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the current density at the initial measurement and the battery voltage in Example 1 and Comparative Example 1.
  • FIG. 3 is a diagram showing the relationship between the battery voltage at open circuit voltage and current density of 0.3 AZcm 2 and the operating time of the fuel cell in Example 1 and Comparative Example 1.
  • biphosphonic acid is contained in a polymer membrane containing a polybenzimidazole compound having a sulfonic acid group and Z or a phosphonic acid group as acidic groups.
  • the sulfonic acid group includes both a group existing as a free sulfonic acid and a group existing as a sulfonate, and the phosphonic acid group is particularly described. Unless otherwise specified, it shall include deviations between groups present as free phosphonic acid and groups present as phosphonate.
  • the polybenzimidazole compound of the present invention means a polymer compound containing a benzimidazole ring in a structural unit forming a polymer chain.
  • polybenzimidazole is synthesized by a polymerization reaction between two monomers obtained by combining aromatic tetramine or a derivative thereof and dicarboxylic acid or a derivative thereof.
  • it can be synthesized by self-condensation of a compound having two amino groups or derivatives thereof and one carboxyl group in the same molecule.
  • it can be synthesized in a system in which these are mixed.
  • the polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group in the present invention is not particularly defined in structure, but in these polymerization reactions, a sulfonic acid group or a derivative thereof is contained in a dicarboxylic acid monomer.
  • a dicarboxylic acid containing a phosphonic acid group or a derivative thereof is a nitrogen atom on the imidazole ring.
  • the force that can be introduced through the side chain bonded to the polymer is because the polymer introduced in these forms generally tends to decrease the solvent resistance.
  • a sulfonic acid group can be introduced onto a benzimidazole ring in a polybenzimidazole polymer by a sulfonation reaction or the like, but in this case, the heat resistance of the polymer tends to be lowered.
  • the polybenzimidazole compound containing a sulfonic acid group and Z or phosphonic acid group used in the present invention is specifically represented by the following structural formula (1),
  • n is an integer from 1 to 4, R 1 is a tetravalent aromatic bond unit capable of forming an imidazole ring, R 2 is a divalent aromatic bond unit, Z is a sulfonic acid group and Z or Represents a phosphonic acid group)
  • R 1 represents a tetravalent aromatic bond unit that can form an imidazole ring
  • R 1 is a in good instrument stable nor conjugates or fused ring of a plurality of aromatic rings be monocyclic aromatic ring It has a substituent!
  • R 1 gives the polybenzimidazole compound the property of maintaining high chemical stability even when acid molecules coexist.
  • R 1 may be a single structure or may include a plurality of structures.
  • R 2 may be a single aromatic ring or a combination of a plurality of aromatic rings, or may be a condensed ring, and may have a stable substituent other than a sulfonic acid group or a phosphonic acid group. Also good.
  • the sulfonic acid group and the Z or phosphonic acid group are bonded to the aromatic tetramine moiety via R 2 , thereby imparting good ionic conductivity to the polybenzimidazole compound and good solubility in solvents. Is also granted.
  • Z represents a sulfonic acid group and a force representing Z or a phosphonic acid group, and a part of them may have a salt structure.
  • Specific salt structures include sodium and potassium
  • alkali metal salts such as the above, various metal salts, ammonium salts, alkyl ammonium salts, and the like are not limited thereto.
  • the polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group in the present invention has the following structural formula (2),
  • Ph is an aromatic bond unit
  • Y is a sulfonic acid group, or one or more functional groups selected from phosphonic acid groups, all in acid form. Or some or all of them may be in the form of derivatives.
  • N is an integer from 1 to 4)
  • the route for synthesizing the polybenzimidazole compound of the present invention containing the structures represented by the above structural formula (1) and the above structural formula (2) is not particularly limited, but usually the imidazole ring in the compound Can be synthesized by reacting one or more compounds selected from the group consisting of aromatic tetramines and derivatives thereof, and one or more compounds selected from the group consisting of aromatic dicarboxylic acids and derivatives thereof. it can. At that time, by using a dicarboxylic acid containing a sulfonic acid group, a phosphonic acid group, or a derivative thereof in the dicarboxylic acid to be used, the polybenzimidazole compound is obtained.
  • a sulfonic acid group and a z or phosphonic acid group can be introduced.
  • One or more dicarboxylic acids containing sulfonic acid groups or phosphonic acid groups can be used in combination.
  • dicarboxylic acids that do not contain sulfonic acid groups, phosphonic acid groups, or derivatives thereof can also be used for synthesis.
  • a benzimidazole binding unit which is a component of the polybenzimidazole compound of the present invention
  • a benzimidazole binding unit having a sulfonic acid group and Z or a phosphonic acid group a benzimidazole binding unit having a sulfonic acid group and Z or a phosphonic acid group
  • the benzimidazole-based binding unit having no sulfonic acid group or phosphonic acid group and other binding units are preferably bonded by random polymerization and Z or alternating polymerization.
  • these polymerization modes are not limited to one type, and two or more polymerization modes may coexist in the same compound.
  • aromatic tetramine that gives a polybenzimidazole compound containing a sulfonic acid group and a Z- or phosphonic acid group-containing compound represented by the structural formula (1) and the structural formula (2) include: Although not particularly limited, for example, 1, 2, 4, 5-tetraaminobenzene, 3, 3, -diaminobenzidine, 3, 3 ', 4, 4'-tetraaminodiphenyl ether, 3, 3 ', 4, 4, 1 Tetraaminodiphenenoretician Ethenore, 3, 3', 4, 4, 1 Tetraaminodiphenylsulfone, 3, 3 ', 4, 4, 1 Tetraaminobenzophenone, 2, 2 —Bis (3,4-diaminophenol) propane, bis (3,4-diaminophenol) methane, 2,2-bis (3,4-diaminophenol) hexafluoropropane, 1,4— Bis (3,4-diaminophenone
  • aromatic tetramine derivatives include salts with acids such as hydrochloric acid, sulfuric acid and phosphoric acid.
  • these compounds may be used alone or in combination.
  • these compounds may contain a known acid inhibitor, such as tin chloride (II) or a phosphite compound, if necessary.
  • the sulfonic acid group-containing dicarboxylic acid that gives the structure represented by the structural formula (1) or (2) is selected from those containing four sulfonic acid groups in one aromatic dicarboxylic acid.
  • Specific examples include 2,5 dicarboxybenzenesulfonic acid, 3,5 dicarboxybenzenesulfonic acid, 2,5 dicarboxy1,4 benzenedisulfonic acid, 4,6 dicarboxy-1,3 Sulfonic acid group-containing dicarboxylic acids such as benzenedisulfonic acid, 2,2,1disulfo-1,4,4-biphenyl dicarboxylic acid, 3, 3, -disulfo 4,4, biphenyl dicarboxylic acid, etc.
  • the derivative examples include alkali metal salts such as sodium and potassium, ammonium salts, and alkyl ammonium salts.
  • alkali metal salts such as sodium and potassium, ammonium salts, and alkyl ammonium salts.
  • the structure of the sulfonic acid group-containing dicarboxylic acid is not particularly limited to these. When the aromatic dicarboxylic acid skeleton has 5 or more sulfonic acid groups, the water resistance of the polymer tends to decrease.
  • the purity of the dicarboxylic acid containing a sulfonic acid group is not particularly limited, but is preferably 98% by mass or more, more preferably 99% by mass or more.
  • Polybenzimidazole polymerized using a dicarboxylic acid containing a sulfonic acid group as a raw material tends to have a lower degree of polymerization than when a dicarboxylic acid containing no sulfonic acid group is used. For this reason, it is preferable to prevent the degree of polymerization of the resulting polymer from being lowered by using a dicarboxylic acid having a sulfonic acid group and having a purity as high as possible.
  • aromatic dicarboxylic acid having a phosphonic acid group and derivatives thereof used for synthesizing the polybenzimidazole compound having a phosphonic acid group represented by the structural formulas (1) and (2) A compound having 1 to 4 phosphonic acid groups in the aromatic dicarboxylic acid skeleton can be preferably used.
  • Has a phosphonic acid group such as 2,5-dicarboxyphenylphosphonic acid, 3,5-dicarboxyphenylphosphonic acid, 2,5-bisphosphonoterephthalic acid, 4,6-bisphosphonoisophthalic acid, etc. Mention may be made of aromatic dicarboxylic acids and their derivatives.
  • the aromatic dicarboxylic acid skeleton has 5 or more phosphonic acid groups, the water resistance of the polymer tends to decrease.
  • examples of the phosphonic acid derivatives of aromatic dicarboxylic acids having these phosphonic acid groups include alkali metal salts such as sodium and potassium, ammonium salts, alkyl ammonium salts, and the like. be able to.
  • these compounds may be used alone or in combination.
  • these compounds may contain a known acid inhibitor, such as tin chloride (II) or a phosphite compound, if necessary.
  • aromatic dicarboxylic acid having a phosphonic acid group is not limited to these! /, Force It is shown here that the ratio of the phosphonic acid group in the polymer chain can be increased efficiently.
  • Aromatic dicarboxylic acids having a phosphonic acid group of the phosphonic acid group type as described above are preferred.
  • the purity of the aromatic dicarboxylic acid having a phosphonic acid group used for the synthesis of the polybenzimidazole compound of the present invention is not particularly limited, but is preferably 97% by mass or more, preferably 98% by mass or more. Is more preferable.
  • the polybenzimidazole compound polymerized using an aromatic dicarboxylic acid having a phosphonic acid group as a raw material has no sulfonic acid group and phosphonic acid group, compared to the case where an aromatic dicarboxylic acid is used as a raw material.
  • the degree of polymerization tends to be low, it is preferable to prevent the degree of polymerization of the resulting polymer from being lowered by using a dicarboxylic acid having a sulfonic acid group that is as pure as possible.
  • a dicarboxylic acid having a sulfonic acid group that is as pure as possible.
  • the purity of the aromatic dicarboxylic acid is less than 97% by mass, the degree of polymerization of the resulting polybenzimidazole compound tends to be lowered, making it unsuitable as a solid polymer electrolyte material.
  • the above-mentioned phosphonic acid group and aromatic dicarboxylic acid having a sulfonic acid group can be mixed and used, but do not contain a sulfonic acid group and a phosphonic acid group, and copolymerize with aromatic dicarboxylic acid.
  • the polybenzimidazole compound having an acidic group of the present invention may be synthesized.
  • Aromatic dicarboxylic acids having no carboxylic acid are not particularly limited, but examples thereof include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, and biphenyl. It is possible to use general aromatic dicarboxylic acids reported as polyester raw materials such as dicarboxylic acid, terfene / resilience rubonic acid, 2,2 bis (4 carboxyphenol) hexafluoropropane, etc. it can
  • These compounds may be used alone or in combination. Furthermore, these compounds may contain known antioxidants such as tin chloride ( ⁇ ) and phosphite compounds as necessary.
  • an aromatic dicarboxylic acid having no sulfonic acid group or phosphonic acid group is used together with an aromatic dicarboxylic acid having a phosphonic acid group or a sulfonic acid group.
  • it is preferable to blend so that the content of the aromatic dicarboxylic acid having a phosphonic acid group and z or sulfonic acid group in the wholly aromatic dicarboxylic acid is 20 mol% or more.
  • the effect of improving proton conductivity due to the polybenzimidazole compound of the present invention having a sulfonic acid group and Z or phosphonic acid group can be remarkably obtained.
  • the content of aromatic dicarboxylic acid having a phosphonic acid group and Z or sulfonic acid group in the wholly aromatic dicarboxylic acid is 50 mol.
  • the polybenzimidazole compound has a low conductivity and is suitable as a material for a solid polymer electrolyte. It tends to be a thing!
  • the proton conductive polymer membrane of the present invention preferably includes a component represented by the following structural formula (3) from the viewpoint of excellent processability and durability when assembling a fuel cell.
  • X is —O—, —SO—, —S—, —CO—, —C (
  • Ph is one or more selected from ortho-phenol, meta-phenylene and para-phenol.
  • the structure represented by the structural formula (3) is represented by the following structural formulas (4) and Z or (5) because of the high reactivity as a monomer and the ease of handling of the obtained polymer. It is preferable to have a structure represented by
  • the polybenzimidazole having the above structure can be synthesized by a polymerization reaction between monomers in which an aromatic tetramine or a derivative thereof and a dicarboxylic acid having a pyridine ring or a derivative thereof are combined.
  • aromatic tetramine that gives the structure of the above structural formula (3) (preferably the structural formulas (4) and (5)) include 3, 3 ′, 4, 4′-tetraaminodiphenyl.
  • Ether 3, 3 ,, 4, 4, —tetraaminodiphenyl sulfone, 3, 3 ,, 4, 4, —tetraamino diphenylthioether, 3, 3 ′, 4, 4′-tetraaminobenzophenone, 2, 2-bis (3,4-diaminophenol) propane, 2,2-bis (3,4-diaminophenol) hexafluoropropane, 1,4-bis (3,4-diaminophenoxy) benzene 1,3-bis (3,4-diaminophenoxy) benzene, 1,2-bis (3,4-diaminophenoxy) benzene and derivatives thereof.
  • aromatic tetramine derivatives include salts with acids such as hydrochloric acid, sulfuric acid and phosphoric acid. These compounds may contain known antioxidation agents such as tin (II) chloride and phosphorous acid compounds, if necessary. Yes.
  • these aromatic tetramines and derivatives thereof may be used as a single compound, but a plurality of compounds may be mixed and used.
  • Examples of the dicarboxylic acid that gives the structure of the above structural formula (3) include 2,5 pyridinedicanolevonic acid, 2,6 pyridine strength norlevonic acid, 2, 3 Pyridine strength norlevonic acid, 2, 4 Pyridine strength norebonic acid, 3, 4 Pyridine strength norebonic acid, 3, 5 Pyridine strength norlevonic acid and their derivatives.
  • Specific examples of the derivatives include acid chlorides and ester compounds with various lower alcohols. These dicarboxylic acids and their derivatives may be used as a single compound, but a mixture of multiple compounds can be used.
  • the polybenzimidazole polymer film of the present invention may contain other polybenzimidazole structures in addition to the structure represented by the structural formula (3).
  • the aromatic tetramine used in this case is not particularly limited, but 1, 2, 4, 5-tetraaminobenzene, 3, 3′-diaminobenzidine, bis (3,4-diaminophenol) methane. And their derivatives.
  • dicarboxylic acids that can be used include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, biphenyl dicarboxylic acid, terfenyl dicarboxylic acid, 2, 2 Common aromatic dicarboxylic acids reported as polyester raw materials such as bis (4 carboxyphenol) hexafluoropropane and derivatives thereof can be used.
  • the proton conductive polymer membrane of the present invention has the structure. It is a main component, and other structural components may be less than 50% of the total.
  • Group power consisting of the above-mentioned aromatic tetramines and derivatives thereof, and at least one compound selected from the group consisting of one or more compounds selected from the group consisting of aromatic dicarboxylic acids and derivatives thereof.
  • the method for synthesizing a polybenzimidazole compound having a group and Z or phosphonic acid group is not particularly limited.
  • F. Wolfe Encyclopedia of Polymer science and Engineering, 2nd Ed. Vol. 11, P. 601 (1988) can be synthesized by dehydration and cyclopolymerization using polyphosphoric acid as a solvent.
  • polyphosphoric acid methanesulfonic acid
  • Polymerization by a similar mechanism using a Z phosphorus pentoxide mixed solvent system can also be applied.
  • polymerization using polyphosphoric acid which is commonly used, is preferred.
  • the polybenzimidazole compound used in the present invention for example, a precursor polymer having a polyamide structure or the like by a reaction in a suitable organic solvent or in the form of a mixed raw material monomer melt. And a method of converting it to the desired polybenzimidazole structure by a subsequent cyclization reaction by appropriate heat treatment or the like can also be used.
  • the reaction time for synthesizing the polybenzimidazole compound of the present invention cannot be defined unconditionally because there is an optimum reaction time depending on the combination of individual raw material monomers, but it has been reported in the past.
  • the thermal stability of the obtained polybenzimidazole compound is reduced in a system containing a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group or a phosphonic acid group.
  • a raw material monomer such as an aromatic dicarboxylic acid having a sulfonic acid group or a phosphonic acid group.
  • it is preferable to shorten the reaction time within a range where the effects of the present invention can be obtained.
  • a polybenzimidazole compound having a sulfonic acid group and a phosphonic acid group can also be obtained in a highly heat stable state.
  • the reaction temperature for synthesizing the polybenzimidazole compound of the present invention cannot be defined unconditionally because there is an optimum reaction temperature depending on the combination of individual raw material monomers.
  • the reaction at high temperature has sulfonic acid groups and phosphonic acid groups.
  • a system containing a raw material monomer such as aromatic dicarboxylic acid it may be impossible to control the amount of sulfonic acid groups or phosphonic acid groups introduced into the obtained polybenzimidazole compound. It is preferable to lower the reaction temperature within a range where the effects of the present invention can be obtained.
  • the repeating units are randomly polymerized and Z or alternately polymerized. Preferred to join and by. In this case, it exhibits stable electrical properties and durability as a polymer electrolyte membrane material.
  • alternating polymerization is a mode of binding in which the same repeating unit is not essentially bonded continuously, and is clearly distinguished from random polymerization and block polymerization described later (for example, NMR measurement).
  • the number average molecular weight of the polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group of the present invention is not particularly limited, but is preferably 2,000 or more. 000 or more is more preferable.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 300,000 or less. When the number average molecular weight is less than 2,000, it tends to be difficult to obtain a molded article having good durability from the polybenzimidazole compound due to a decrease in viscosity. In addition, when the molecular weight exceeds 1,000,000, a polybenzimidazole compound is formed by increasing the viscosity. Tend to be difficult.
  • the number average molecular weight of the polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group of the present invention is substantially evaluated by a logarithmic viscosity when measured in methanesulfonic acid. Can do.
  • the logarithmic viscosity is preferably 0.3 or more, more preferably 0.50 or more.
  • the logarithmic viscosity is preferably 8 or less, and more preferably 7 or less.
  • the logarithmic viscosity is less than 0.3, there is a tendency that it is difficult to obtain a molded product having good durability and the like from the polybenzimidazole compound due to a decrease in the viscosity.
  • the logarithmic viscosity exceeds 8, it tends to be difficult to mold the polybenzimidazole compound due to the increase in viscosity.
  • the polybenzimidazole compound having a sulfonic acid group and Z or phosphonic acid group of the present invention is preferably blended as a main component in the resin composition.
  • the polymer that can be used with the polybenzimidazole compound of the present invention as a resin composition include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, nylon 6, nylon 6, 6, nylon 6, 10 , Polyamides such as nylon 12, polymethyl methacrylate, polymethacrylates, polymethyl acrylate, polyacrylates, polyacrylates, polymethacrylates Polyolefins, including polyethylene, polypropylene, polystyrene and gen-based polymers, polyurethane-based resins, cellulose-based resins such as cellulose acetate, ethyl cellulose, polyarylate, aramid, polycarbonate, polyurethane resin Id, Polyphenylene oxide, Polysulfone, Polyethersulfone
  • the polybenzimidazole compound in the present invention is 50% by mass or more and less than 100% by mass of the entire resin composition. Preferably. More preferably, they are 60 mass% or more and less than 100 mass%, More preferably, they are 70 mass% or more and less than 100 mass%.
  • the sulfonic acid of the present invention When the content of the group and z or phosphonic acid group-containing polybenzimidazole compound is less than 50% by mass of the entire resin composition, the acidic group concentration in the polymer film containing this resin composition is low.
  • the effect of improving proton conductivity by ionic groups tends to decrease, and the mobility of ions conducted also by the discontinuous phase of sulfonic acid group and Z or phosphonic acid group-containing units. Tend to be disadvantageous.
  • the sulfonic acid group and Z or phosphonic acid group-containing polybenzimidazole compound of the present invention or a resin composition containing the same can be used, for example, as an antioxidant, a heat stabilizer, a lubricant, and a tackifier.
  • additives such as an agent, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, an antifoaming agent, a dispersant, and a polymerization inhibitor may be included.
  • the polybenzimidazole compound containing a sulfonic acid group and Z or phosphonic acid group of the present invention or a resin composition containing the same is used as a polymerization solution, an isolated polymer, a re-dissolved polymer solution, etc. It can be formed into a film shape by any method such as extrusion, rolling and casting. A preferred method for forming the polymer film containing the polybenzimidazole compound of the present invention or the resin composition containing the same is cast from a solution.
  • Solvents for dissolving a polybenzimidazole compound or a resin composition containing the same include N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, Aprotic polar solvents such as oxamethylphosphonamide, and strong acid powers such as polyphosphoric acid, methanesulfonic acid, sulfuric acid, trifluoroacetic acid, and the like Power to select an appropriate one is not limited to these. Of these solvents, organic solvent systems are particularly preferably used.
  • N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, and N-methyl 2-pyrrolidone in which the polybenzimidazole of the present invention dissolves well, are preferably selected as the solvent.
  • a plurality of these solvents may be used as a mixture within a possible range.
  • a solvent obtained by adding a Lewis acid such as lithium bromide, lithium chloride, or aluminum chloride salt to an organic solvent may be used as a means for improving the solubility of polybenzimidazole or a resin composition containing the same.
  • the polymer concentration in the solution is preferably in the range of 0.1 to 50% by mass.
  • the processability tends to deteriorate.
  • the polymer solution is cast on a substrate and the solvent is removed, it is preferable from the viewpoint of film uniformity that the solvent is removed by drying. In order to avoid decomposition and alteration of the polymer and solvent, it is also preferable to dry at a temperature as low as possible under reduced pressure.
  • a glass plate, a Teflon (registered trademark) plate, a metal plate, a polymer sheet, or the like can be used as the substrate to be cast.
  • the viscosity of the solution is high, heating the substrate or the solution and casting it at a high temperature lowers the viscosity of the solution and can be easily cast.
  • the thickness of the solution at the time of casting is not particularly limited, but is preferably 30-1500 ⁇ m. If it is less than 30 m, it tends to be difficult to maintain the form as a film, and if it exceeds 1500, a non-uniform film tends to be easily formed.
  • the thickness of the solution is more preferably 100 to 1000 m.
  • a method for controlling the cast thickness of the solution a known method can be used. For example, it is possible to secure a certain thickness using an applicator, a doctor blade, or the like, or to control the thickness with the amount and concentration of the solution while keeping the cast area constant using a glass petri dish or the like.
  • the cast solution can be made into a more uniform film by adjusting the solvent removal rate.
  • the evaporation rate can be reduced by lowering the temperature in the first stage.
  • the solidification rate of the polymer can be adjusted by leaving the solution in the air or in an inert gas for an appropriate time.
  • the film of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, it is preferably 200 m or less, and more preferably 50 m or less. In addition, the film thickness is preferably 5 m or more from the viewpoint of film strength and cacheability.
  • the polymer membrane containing the polybenzimidazole compound is impregnated with vinylphosphonic acid, and the proton conducting polymer membrane of the present invention is obtained.
  • the behavior of proton conductivity due to impregnation, the amount of acid compound that can be impregnated, the high molecular weight due to impregnation Swelling deformation of the membrane, durability of the resulting proton conducting polymer membrane, and the like are different.
  • the deformation force of the polymer membrane is reduced.
  • a proton-conducting polymer membrane exhibiting excellent proton conductivity, durability, and durability even when used for a long time can be obtained.
  • bullphosphonic acid is contained in the range of 10 mass% to 1000 mass% with respect to the polybenzimidazole compound of the present invention. It is more preferable if it is within the range of% to 800% by mass.
  • the polymer film is immersed in a solution containing buluphosphonic acid itself or vinylphosphonic acid. Etc. are preferable.
  • the amount of bullphosphonic acid impregnation can be controlled by changing the temperature condition and immersion time during immersion.
  • the amount of vinylphosphonic acid impregnation is preferably a force determined by the combination of the immersion temperature and the immersion time.
  • the immersion temperature is preferably in the range of 20 ° C to 150 ° C, for example.
  • the immersion time is preferably in the range of 10 minutes to 20 hours, for example.
  • the purity of the vinylphosphonic acid to be impregnated is preferably 50% by mass or more, and it can be used even if impurities such as phosphoric acid and ethylphosphonic acid which are by-produced when producing vinylphosphonic acid are contained. . Further, in order to adjust the viscosity of buluphosphonic acid, it is possible to use a solution of a solvent that is compatible with vinylphosphonic acid in a range that the purity of buluphosphonic acid is not less than 50% by mass.
  • inorganic and Z or organic acidic compounds can be impregnated simultaneously.
  • examples of the inorganic acid that can be used here include phosphoric acid, polyphosphoric acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, and derivatives thereof.
  • organic sulfonic acid and organic phosphonic acid are used as the organic acid.
  • organic sulfonic acid examples include methanesulfonic acid, ethanesulfonic acid, hexanesulfonic acid, octylsulfonic acid, dodecylsulfonic acid, cetylsulfonic acid, sulfosuccinic acid, sulfodaltaric acid, sulfoadipic acid, sulfopimelic acid, sulfosulphonic acid.
  • Alkaline sulfonic acid such as verinic acid, sulfoazeline acid, sulfosebacic acid, trifluoromethanesulfuric acid
  • Perfluoroalkylsulfonic acid such as phonic acid, pentafluoroethanesulfonic acid, heptafluoropropylsulfonic acid, benzenesulfonic acid, 1,3 benzenedisulfonic acid, toluenesulfonic acid, octylbenzenesulfonic acid, 2-methyl-5 isopropyl benzene sulfonic acid, dodecyl benzene sulfonic acid, di-nornaphthalene sulfonic acid, naphthalene sulfonic acid, black benzene sulfonic acid, phenol sulfonic acid, trichloro benzene sulfonic acid, nitrotoluen
  • organic phosphonic acid examples include aromatic phosphonic acids such as phenolphosphonic acid and 1,3 dicarboxyphenolphosphonic acid, and aliphatic such as 1-hydroxyethane 1,1-diphosphonic acid.
  • Powers that can include phosphonic acids and derivatives thereof Organic phosphonic acids having various structures can be used without being limited thereto.
  • the acidic compound to be impregnated can be impregnated as a mixture of two or more kinds, not just one kind. When vinylphosphonic acid and other inorganic and / or organic acidic compounds are impregnated at the same time, it is preferred that 50 mol% or more of the acidic compounds to be impregnated is vinylphosphonic acid.
  • the amount of impregnation of acidic molecules comprising inorganic and Z or organic acidic compounds and burphosphonic acid Is preferably in the range of 10 to: LOOO% by weight, more preferably in the range of 50 to 800% by weight with respect to the film weight of the polymer membrane in the present invention. If the amount of acidic molecules impregnated is less than 10% by weight relative to the weight of the polymer membrane, the proton conductivity tends to be low under high temperature and no humidification.
  • the amount of acidic molecules impregnated exceeds 1000% by weight with respect to the weight of the polymer membrane, problems such as acid molecules oozing out from the polymer electrolyte membrane tend to occur.
  • the amount of impregnation is determined by extracting all acidic molecules from the membrane, for example, by extracting the polymer electrolyte membrane with hot water. From the difference in membrane weight before and after extraction, 1 oox (membrane weight before extraction-membrane weight after extraction) Z extraction It can be calculated as the weight of the back membrane (%).
  • the same method as described above can be employed as the method of impregnation with vinylphosphonic acid.
  • Including polybenzimidazole in the present invention The method of impregnating a polymer membrane with acidic molecules can be carried out by impregnating the polymer membrane with a liquid acidic molecule itself or a solution containing acidic molecules. At this time, the acidic molecule content can be controlled by changing the temperature condition and the immersion time. The acidic molecule content is determined by the combination of immersion temperature and immersion time.
  • the immersion temperature is preferably in the range of 20 to 150 ° C. This is because when the temperature is less than 20 ° C, the impregnation rate tends to be slow, and when it exceeds 150 ° C, the membrane tends to be easily deformed during the impregnation.
  • the immersion time is preferably in the range of 10 minutes to 20 hours. This is because when the time is less than 10 minutes, acidic molecules tend to be impregnated sufficiently evenly, and when it exceeds 20 hours, productivity tends to decrease.
  • a solution containing bullphosphonic acid a solvent that is well mixed with acidic molecules, such as water and lower alcohol, can be used as the solvent.
  • the solution concentration is preferably 50% or more.
  • a membrane electrode assembly of the ion conductive polymer membrane of the present invention and an electrode can be obtained.
  • a conventionally known method can be preferably employed. For example, an adhesive is applied to the electrode surface, and the proton conductive polymer membrane and the electrode are bonded, or the proton There is a method of heating and pressurizing the conductive polymer film and the electrode. And the oxygen electrode
  • An oxidant distribution plate having an oxidant flow path comprising a fuel electrode, and a solid polymer electrolyte membrane made of the proton conductive polymer film of the present invention sandwiched between the oxygen electrode and the fuel electrode.
  • Polybenzimidazole compound is a polymer powder containing methanesulfuric acid at a concentration of 0.5 gZdl. Dissolve in phonic acid and measure the solution viscosity using an Ostwald viscometer in a constant temperature bath at 30 ° C. Logarithmic viscosity [ln (taZtb)] Zc (where ta is the number of seconds the sample solution falls, tb is The number of seconds of falling of the solvent alone, c was evaluated as the polymer concentration (gZdl)).
  • the prepared proton-conducting polymer membrane is sandwiched between platinum electrodes (diameter: 13 mm), and complex impedance measurement is performed using an electrochemical measurement system 12608W manufactured by Solartron. From the obtained resistance value The temperature dependence of ionic conductivity (unit: S / cm) was determined.
  • the prepared proton-conducting polymer membrane is sandwiched between commercially available fuel cell electrodes (manufactured by Electrochem) to form membrane electrode assemblies, which are initially opened with hydrogen and air under conditions of 150 ° C and no humidification.
  • the circuit voltage and the open circuit voltage after 500 hours, the initial battery voltage at the time of power generation at a current density of 0.3 AZcm 2 and the battery voltage after 500 hours were measured. From these values, the reduction rate (%) after 500 hours when the initial voltage was 100% was calculated.
  • the temperature was raised to 150 ° C for 1 hour, and the temperature was raised to 200 ° C and polymerized for 6 hours. After completion of the polymerization, the mixture was allowed to cool, water was added to take out the polymerized product, and washing with water was repeated using a household mixer until neutrality was shown with a pH test paper. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 2.18.
  • the obtained polymer lg was dissolved in 10 g of N-methyl-2-pyrrolidone (NMP) on an oil bath, cast on a glass plate on a hot plate, and NMP was distilled off until a film was formed. Immerse in water for more than one night. The obtained film was immersed in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 day or more, and then washed by immersing several times with pure water to remove the acid component, thereby increasing the thickness of 22 ⁇ m. A molecular film 1 was obtained.
  • NMP N-methyl-2-pyrrolidone
  • This polymer membrane 1 was immersed in buluphosphonic acid (purity 85 mass%, Tokyo Chemical Industry Co., Ltd.) at 120 ° C for 3 hours to obtain a proton conductive polymer membrane to which burphosphonic acid was added.
  • the bullphosphonic acid content at this time was about 240% by mass with respect to the polymer membrane 1 by calculating the mass changing force.
  • the temperature was raised to 150 ° C for 1 hour, and further raised to 200 ° C for 5 hours for polymerization. After completion of the polymerization, the mixture was allowed to cool, water was added, the polymer was taken out, and washing with water was repeated using a home mixer until the pH test paper showed neutrality. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.79.
  • the obtained polymer lg was dissolved in NMPlOg on an oil bath, cast onto a glass plate on a hot plate, NMP was distilled off until a film was formed, and then immersed in water overnight or longer.
  • the obtained film was immersed in dilute sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) for 1 day or more, and then washed by immersing several times with pure water to remove the acid component.
  • Vinyl phosphonic acid was added to the polymer membrane 2 in the same manner as in Example 1 to obtain a proton conductive polymer membrane.
  • the vinylphosphonic acid content at this time was about 250% by mass based on the polymer film 2 calculated from the mass change.
  • ion conductivity and fuel cell power generation characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.
  • the obtained polymer lg was dissolved in NMPlOg on an oil bath, cast on a glass plate on a hot plate, NMP was distilled off until a film was formed, and then immersed in water overnight or longer.
  • the obtained film was immersed in dilute sulfuric acid (6 ml of concentrated sulfuric acid, 300 ml of water) for 1 day or more, and then washed by immersing several times with pure water to remove the acid component, and a polymer with a thickness of 21 ⁇ m was obtained.
  • Membrane 3 was obtained.
  • Vinyl phosphonic acid was added to the polymer membrane 3 in the same manner as in Example 1 to obtain a proton conductive polymer membrane.
  • the vinylphosphonic acid content at this time was about 210% by mass relative to the polymer film 3 calculated from the mass change.
  • the polymer membrane 1 obtained in Example 1 was immersed in vinylphosphonic acid (purity 85 mass%, Tokyo Chemical Industry Co., Ltd.) at 70 ° C for 12 hours to obtain a proton conductive polymer membrane to which vinylphosphonic acid was added. It was.
  • the vinylphosphonic acid content at this time was about 180% by mass with respect to the polymer membrane 1 by calculating the mass changing force.
  • the polymer membrane 1 obtained in Example 1 was immersed in vinylphosphonic acid (purity 85% by mass, Tokyo Chemical Industry Co., Ltd.) at 90 ° C for 7 hours to prepare a proton conductive polymer membrane to which vinylphosphonic acid was added. Obtained.
  • the bullphosphonic acid content at this time was about 310% by mass relative to the polymer membrane 1 by calculating the mass changing force.
  • This polymer lg was dissolved in 10 g of dimethylacetamide (DMAc) on an oil bath, cast on a glass plate on a hot plate, and DMAc was distilled off until a film was formed. Further, it was vacuum dried at 120 ° C. for 12 hours to obtain a polymer film 4 having a thickness of 20 ⁇ m from which DMAc was completely distilled off.
  • DMAc dimethylacetamide
  • This polymer membrane 4 was immersed in orthophosphoric acid (purity 85% by mass, Tokyo Chemical Industry Co., Ltd.) at room temperature for 3 hours to obtain a proton conductive polymer membrane to which orthophosphoric acid was added.
  • the orthophosphoric acid content at this time was approximately 350% by mass with respect to the polymer film 4 by calculating the mass change force.
  • the polymer membrane 1 obtained in Example 1 was immersed in orthophosphoric acid (purity 85% by mass, Tokyo Chemical Industry Co., Ltd.) at room temperature to add orthophosphoric acid. Therefore, it was hard to conduct subsequent tests.
  • orthophosphoric acid purity 85% by mass, Tokyo Chemical Industry Co., Ltd.
  • Membrane 1 Membrane 2
  • Membrane 3 Membrane 1 Membrane 1 Vinyl Vinyl Vinyl Vinyl t * nil Impregnated acid type
  • FIG. 1 is a diagram showing the temperature dependence of ionic conductivity in Example 1 and Comparative Example 1.
  • the proton conductive polymer membrane of Example 1 has the same ionic conductivity in spite of a smaller amount of acid impregnation than the proton conductive polymer membrane of Comparative Example 1. It can be seen that the proton conducting polymer membrane of the present invention has good ionic conductivity.
  • FIG. 2 is a diagram showing the relationship between the current density at the initial measurement and the battery voltage in Example 1 and Comparative Example 1.
  • the proton conducting polymer membrane of Example 1 has slightly improved power generation characteristics despite the small amount of acid impregnation compared to the proton conducting polymer membrane of Comparative Example 1.
  • the proton conducting polymer membrane of the present invention has good fuel cell characteristics.
  • FIG. 3 is a graph showing the relationship between the open circuit voltage and the battery voltage at a current density of 0.3 A / cm 2 and the operating time of the fuel cell in Example 1 and Comparative Example 1. As shown in FIG. 3, it can be seen that in Comparative Example 1, both the open circuit voltage and the voltage with a current density of 0.3 AZcm 2 decrease as the operation time becomes longer. On the other hand, almost no decrease in these voltages was observed in Example 1, indicating that the fuel cell of the present invention has good durability.
  • the proton conductive polymer membrane according to the present invention is excellent in electrical characteristics and durability.
  • the temperature was raised to 150 ° C for 1 hour, and the temperature was raised to 200 ° C and polymerized for 5 hours. After completion of the polymerization, the mixture was allowed to cool, water was added, the polymer was taken out, and washing with water was repeated until the pH test paper became neutral using a household mixer. The obtained polymer was dried under reduced pressure at 80 ° C. overnight. The logarithmic viscosity of the polymer was 1.66.
  • the obtained polymer lg was dissolved in 10 g of N-methyl-2-pyrrolidone (NMP) on an oil bath, cast onto a glass plate on a hot plate, and NMP was distilled off until it became a film. Soaked for more than one night.
  • the resulting film is diluted sulfuric acid (concentrated sulfuric acid 6 ml, water 300 ml) After being immersed in the inside for 1 day or more, it was further immersed and washed with pure water several times to obtain a polymer film 5 having a thickness of 21 ⁇ m.
  • This polymer membrane 5 was immersed in vinylphosphonic acid (purity: 85%, manufactured by Tokyo Chemical Industry Co., Ltd.) at 50 ° C for 3 hours, and polybenzimidazole proton added with bullphosphonic acid. A conductive polymer film was obtained. The vinylphosphonic acid content at this time was 300% by weight based on the weight of the polymer film 5 calculated from the weight change. Using this benzimidazole-based proton conductive polymer membrane, the temperature dependence of the ionic conductivity and the fuel cell power generation characteristics were measured in the same manner as in Example 1.
  • Table 3 shows the open circuit voltage and the output voltage at a current density of 0.3 AZcm 2 at the initial stage of power generation and after 500 hours.
  • Table 3 shows the ionic conductivity at 150 ° C. for the benzimidazole proton conductive polymer membrane of Example 6 and the initial value of the fuel cell produced using this benzimidazole proton conductive polymer membrane.
  • the open circuit voltage and the open circuit voltage after 500 hours, the initial battery voltage at a current density of 0.3 AZcm 2 and the battery voltage after 500 hours are shown.
  • Table 3 also shows the reduction rate (%) after 500 hours when the initial voltage is 100%. Based on the results shown in Table 2 and Table 3, it was implemented in the initial state. There is no significant difference in open circuit voltage between Example 6 and Comparative Examples 1 and 2, but there is a slight difference between Example 6 and Comparative Example 1 in particular for the voltage with a current density of 0.3 AZcm 2. Is recognized. Furthermore, it can be seen that after 500 hours, the voltages of Comparative Examples 1 and 2 are clearly deteriorated compared to Example 6.
  • the benzimidazole proton conductive polymer membrane of Example 6 is superior in electrical properties and durability to the proton conductive polymer membrane of Comparative Examples 1 and 2. I understand.
  • the proton conductive polymer membrane according to the present invention is a proton conductive membrane that can be operated under high-temperature non-humidified conditions, and is a process for assembling a fuel cell that only exhibits excellent proton conductivity.
  • a novel polymer electrolyte membrane is provided that exhibits excellent practical properties and sufficient practical characteristics in terms of durability as a fuel cell. Utilizing the above characteristics, the proton conductive polymer membrane of the present invention can be used in a wide range of applications such as various battery electrolytes, sensors, capacitors, electrolytic membranes, etc., and contribute to the development and growth of the industry. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料 電池
技術分野
[0001] 本発明は、酸性基を有するポリべンズイミダゾール系化合物と酸性ィ匕合物とを構成 成分とし、高温無加湿条件で使用できる高分子電解質膜として有用な組成物である プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池に関す るものである。
背景技術
[0002] 近年、新しいエネルギー源として固体高分子型燃料電池膜が注目されており、燃 料電池中でカチオン交換膜として用いられる高分子膜の開発が進められている。該 高分子膜は、良好なプロトン導電率を示すとともに化学的、熱的、電気化学的および 力学的に十分安定なものでなくてはならない。そのため、長寿命で使用できる高分子 膜としては、主に米デュポン社製の「ナフイオン (登録商標)」を代表例とするパーフル ォロカーボンスルホン酸膜が使用されてきた。しかしながら、パーフルォロカーボンス ルホン酸膜を使用する場合、 100°Cを越える条件で燃料電池を運転しょうとすると、 高分子膜の含水率が急激に落ちるほか、膜の軟化も顕著となり、燃料電池として十 分な性能を発揮することはできな 、と 、う問題がある。
[0003] 100°C以上の高温領域で燃料電池を運転するためには、基本的に耐熱性の高 ヽ ポリマーによる燃料電池膜が必要となる。このことから、芳香族環含有ポリマーにスル ホン酸基を導入した高分子電解質膜が種々検討されている。一方、特に、高耐熱、 高耐久性のポリマーとして知られるポリべンズイミダゾール等の芳香族ポリアゾール 系のポリマーに酸性基を導入して上記目的に利用することが考えられ、スルホン酸基 やホスホン酸基を含有するポリべンズイミダゾール系ポリマーによる高分子電解質膜 の報告がみられる(たとえば国際公開第 WO02Z38650号パンフレット(特許文献 1 ) )。これらのポリマーにおいては、 80°C付近でのプロトン伝導性はさほど大きくない 力 高温での伝導性発現が期待される。しかし、酸性基としてスルホン酸基を導入し た構造のポリマーは有機溶媒への溶解性がよいのでカ卩ェ性に優れるものの、プロト ン伝導性があまり高くならない傾向がある。一方、酸性基としてホスホン酸基を導入し た構造のポリマーは、酸性基量を増やした場合にプロトン伝導性が高くなる傾向があ るが、それでも実用的に十分なプロトン伝導性を示すものとは言えない。また、これら のポリマーがプロトン伝導性を示すには加湿条件とする必要があるので、 100°C以上 の温度で加湿することなく使用することは不可能と言える。
[0004] ポリマー中にスルホン酸基やホスホン酸基等の酸性基を導入するだけでは 100°C 以上の高温領域かつ無加湿の条件では実用的なプロトン伝導性を示すことができな いことから、ポリべンズイミダゾールにリン酸を含浸させ、イオン伝導機能をリン酸によ り引き出した高温用の燃料電池用電解質膜が報告されて 、る(たとえば特表平 11― 503262号公報 (特許文献 2) )。ポリべンズイミダゾールは熱安定性の高 、ポリマー といえるが、リン酸を含浸するとさらに熱安定性が高くなるという報告がある(たとえば 、 E. J. Powersら、 Hign Performance Polymers: Their urigm and Dev elopment、 Elsevier, New York (1986)、 p. 355 (非特許文献 1) )。
[0005] しかし、ポリべンズイミダゾール自体にはイオン伝導特性がな 、ので、十分なプロト ン伝導性を得るためには、ポリべンズイミダゾールにリン酸を多量に含浸させる必要 がある。また、低分子化合物であるリン酸はポリべンズイミダゾールカ 徐々に流出し 、イオン伝導性が時間とともに低下していくという問題がある。さらに、リン酸含浸量が 多くなると膜膨潤が大きくなるため、燃料電池を組み立てる際の障害になるという問 題も生じる。また、この中では、ピリジン骨格を有するジカルボン酸モノマーを用いた ポリべンズイミダゾール構造を使用することも記載されている力 同時に使用するテト ラミンモノマーが 3, 3,ージァミノべンジジンのみであり、この糸且み合わせのポリマーに ついても、上述と同様の欠点を示す傾向があった。
[0006] これに対し、上述したようなポリべンズイミダゾールにスルホン酸基を導入したポリマ 一は、分子内に酸性基を有しているため、少ないリン酸含浸量でもプロトン伝導性が 発現すると期待できることから、無機酸、有機酸を含有させたスルホン酸基含有ポリ ベンズイミダゾール高分子電解質膜が報告されている(たとえば特開 2003— 32782 6号公報 (特許文献 3) )。しかしながら、これらにおいても加工性や燃料電池膜特性 等の燃料電池として実用的に必要な性能を満足しているとは言えないのが現状であ る。また、これらの検討の中ではピリジン骨格を有するポリマー構造について検討さ れることはなかった。
特許文献 1:国際公開第 WO02Z38650号パンフレット
特許文献 2:特表平 11― 503262号公報
特許文献 3:特開 2003 - 327826号公報
特干文献 1 :E. J. Powersら、 High Performance Polymers: Tneir Origin and Development^ Elsevier ^ New York (1986)、 p. 355
発明の開示
発明が解決しょうとする課題
[0007] 本発明は上記の課題を解決し、高温無加湿条件においても運転可能であり、優れ たプロトン伝導性を示すだけでなぐ燃料電池を組み立てる際の加工性に優れるとと もに、耐久性においても十分な実用特性を示す新規なプロトン伝導性高分子膜およ びその製造方法、さらにこれを用いた燃料電池を提供することを目的とする。
課題を解決するための手段
[0008] 本発明は、スルホン酸基および Zまたはホスホン酸基を有するポリべンズイミダゾー ル系化合物を含む高分子膜にビュルホスホン酸を含有させてなるプロトン伝導性高 分子膜に関する。
[0009] 本発明におけるポリべンズイミダゾール系化合物は、下記の構造式(1)、
[化 1]
Figure imgf000005_0001
(式中、 nは 1から 4の整数、 R1はイミダゾール環を形成できる 4価の芳香族結合ュ- ット、 R2は 2価の芳香族結合ユニット、 Zはスルホン酸基および Zまたはホスホン酸基 を表す)
で示されるスルホン酸基および Zまたはホスホン酸基含有構成要素を含むことが好 ましい。
[0010] さらに、本発明におけるポリべンズイミダゾール系化合物は、下記の構造式(2) .
[化 2]
Figure imgf000006_0001
(式中、 Xは、直接結合, -0 so
Figure imgf000006_0002
CF ) - , — O— Ph— O よりなる群力 選ばれる 1種以上の結合様式を表し、 Arは
3 2
芳香族ユニットから選ばれる 1種以上の結合様式、 Phは芳香族結合ユニット、 Yはス ルホン酸基、ホスホン酸基力 選ばれる 1種以上の官能基であり、すべてが酸の形態 であっても一部またはすべてが誘導体の形態であっても良ぐ nは 1から 4までの整数 を表すものとする)
で示されるスルホン酸基および Zまたはホスホン酸基含有構成要素を含むことが好 ましい。
[0011] 本発明におけるポリべンズイミダゾール系化合物は、下記の構造式(3)、
[化 3]
Figure imgf000006_0003
(式中、 Xは O- SO s- CO C (CH ) C (CF )
2 3 2 3 2
O-Ph-O-よりなる群から選ばれる 1種以上の結合様式を示し、 Phはオルトフエ- レン、メタフエ-レン、パラフエ-レン力も選ばれる 1種以上を示す。)
で示される構成要素を含むことが好まし 、。
[0012] 本発明においては、上記の構造式(3)で示される構造が、下記の構造式 (4)およ び Zまたは構造式(5)、
Figure imgf000007_0001
(式中、 Xは O 、 一SO —、 一S 、 一CO—、 -C (CH ) 一、 -C (CF ) 一、
2 3 2 3 2
O-Ph-O-よりなる群から選ばれる 1種以上の結合様式を示し、 Phはオルトフエ- レン、メタフエ-レン、パラフエ-レン力も選ばれる 1種以上を示す。)
で示される構造を主成分とすることが好まし 、。
[0013] 本発明においては、ポリべンズイミダゾール系化合物に対してビュルホスホン酸が 1
0質量%〜1000質量%の範囲内で含有されることが好ましい。
[0014] 本発明はまた、上記のプロトン伝導性高分子膜の製造方法であって、スルホン酸基 および Zまたはホスホン酸基を有するポリべンズイミダゾール系化合物を含む高分子 膜を、ビュルホスホン酸またはビュルホスホン酸を含む溶液に浸漬する工程を含む プロトン伝導性高分子膜の製造方法に関する。
[0015] 本発明はさらに、前述のプロトン伝導性高分子膜を固体高分子電解質として用い た燃料電池に関する。すなわち、酸素極と、燃料極と、固体高分子電解質膜と、酸化 剤配流板と、燃料配流板とからなる単位セルを有し、該固体高分子電解質膜は、該 酸素極および該燃料極に挟持され、該酸化剤配流板は、酸素極側に設けられて酸 ィ匕剤流路を形成し、該燃料配流板は、燃料極側に設けられて燃料流路を形成し、か つ、該固体高分子電解質膜が前述のプロトン伝導性高分子膜である燃料電池に関 する。
発明の効果
[0016] 本発明のプロトン伝導性高分子膜は、酸性基としてスルホン酸基および Zまたはホ スホン酸基を有するポリべンズイミダゾール系化合物にビュルホスホン酸を含有させ ることにより、優れたプロトン伝導性を示すだけでなぐ燃料電池を組み立てる際の加 ェ性に優れるとともに、耐久性においても十分な実用特性を示す。これにより、特に 高温無加湿条件で運転する燃料電池に対して好適に適用される高分子電解質膜と なる。
図面の簡単な説明
[0017] [図 1]実施例 1および比較例 1における、イオン伝導度の温度依存性を示す図である
[図 2]実施例 1および比較例 1における、測定初期の電流密度と電池電圧との関係を 示す図である。
[図 3]実施例 1および比較例 1における、開回路電圧および電流密度 0. 3AZcm2で の電池電圧と、燃料電池の運転時間との関係を示す図である。
発明を実施するための最良の形態
[0018] 本発明のプロトン伝導性高分子膜においては、酸性基としてスルホン酸基および Z またはホスホン酸基を有するポリべンズイミダゾール系化合物を含む高分子膜にビ- ルホスホン酸を含有させる。本発明において、スルホン酸基とは、特に記載がない限 り、遊離のスルホン酸として存在する基およびスルホン酸塩として存在する基の ヽず れも含むものとし、ホスホン酸基とは、特に記載がない限り、遊離のホスホン酸として 存在する基およびホスホン酸塩として存在する基の 、ずれも含むものとする。また、 本発明のポリべンズイミダゾール系化合物とは、高分子鎖を形成する構成単位の中 にべンズイミダゾール環を含んでいる高分子化合物を意味する。
[0019] 通常ポリべンズイミダゾールは、芳香族テトラミンまたはその誘導体とジカルボン酸 またはその誘導体を組み合わせた 2種のモノマー間の重合反応により合成される。ま た、同一分子内に 2個のアミノ基またはその誘導体と 1個のカルボキシル基を持つ化 合物の自己縮合により合成することができる。さらに、これらを混合した系においても 合成することができる。本発明におけるスルホン酸基および Zまたはホスホン酸基を 有するポリべンズイミダゾール系化合物は、特に構造が規定されることはないが、これ らの重合反応においてジカルボン酸モノマー中にスルホン酸基またはその誘導体お よび/またはホスホン酸基またはその誘導体を含むジカルボン酸を使用することで合 成することが好ましい。スルホン酸基やホスホン酸基は、イミダゾール環上窒素原子 に結合した側鎖を介して導入することも可能である力 これらの形で導入したポリマー は一般的に耐溶剤性が低下する傾向にあるためである。また、ポリべンズイミダゾー ルポリマー中のベンズイミダゾール環上にスルホン化反応等により、スルホン酸基を 導入することもできるが、この場合は、ポリマーの耐熱性が低下しやすい傾向となる。 本発明にお ヽて使用される、スルホン酸基および Zまたはホスホン酸基を含有する ポリべンズイミダゾール系化合物は、具体的には、下記構造式(1)、
[化 5]
Figure imgf000009_0001
(式中、 nは 1から 4の整数、 R1はイミダゾール環を形成できる 4価の芳香族結合ュ- ット、 R2は 2価の芳香族結合ユニット、 Zはスルホン酸基および Zまたはホスホン酸基 を表す)
で示される構成成分を含んで 、ることが好まし 、。 nが 0であるユニットにお!/、てはプ 口トン伝導性が低くなる傾向があり、 nが 5以上であるユニットにおいてはポリマーの耐 水性が低下する傾向があるからである。ただし、上記構造式(1)のユニットを含む構 造であれば、部分的に nが 0や 5以上のユニットが共存していても問題はない。また、 R1はイミダゾール環を形成できる 4価の芳香族結合ユニットを表し、 R1は芳香環の単 環であっても複数の芳香環の結合体あるいは縮合環であっても良ぐ安定な置換基 を有して!/ヽても良 、。 R1の芳香族ユニットによりポリべンズイミダゾール系化合物に酸 性分子が共存しても化学的に高い安定性を保つという特性が付与される。 R1は単独 の構造であってもよいが、複数の構造を含んでいるものでも良い。 R2は、芳香環の単 環であっても複数の芳香環の結合体ある 、は縮合環であっても良ぐスルホン酸基 やホスホン酸基以外の安定な置換基を有して ヽても良 ヽ。スルホン酸基および Zま たはホスホン酸基が R2を介して芳香族テトラミン部位と結合することにより、ポリべンズ イミダゾール系化合物に良好なイオン伝導性が付与され、また溶媒に対する良好な 溶解性も付与される。 Zはスルホン酸基および Zまたはホスホン酸基を表す力 それ らの一部が塩構造となっていても良い。具体的な塩構造としては、ナトリウム、カリウム 等のアルカリ金属塩の他、各種金属塩、アンモ-ゥム塩、アルキルアンモ-ゥム塩等 をあげることができる力 これらに限定されることはない。
[0021] 本発明におけるスルホン酸基および Zまたはホスホン酸基を有するポリべンズイミ ダゾール系化合物は、下記構造式(2)、
[化 6]
Figure imgf000010_0001
(式中、 Xは、直接結合, —O—, —SO—, -S - , -CO- , -C (CH ) 一, C (
2 3 2
CF ) - , — O— Ph— O よりなる群力 選ばれる 1種以上の結合様式を表し、 Arは
3 2
芳香族ユニットから選ばれる 1種以上の結合様式、 Phは芳香族結合ユニット、 Yはス ルホン酸基、ホスホン酸基力 選ばれる 1種以上の官能基であり、すべてが酸の形態 であっても一部またはすべてが誘導体の形態であっても良ぐ nは 1から 4までの整数 を表すものとする)
で示される構成成分を含んで ヽることがさらに好ま 、。
[0022] 上記の誘導体としては、ナトリウム、カリウム等のアルカリ金属塩の他、各種金属塩、 アンモ-ゥム塩、アルキルアンモ-ゥム塩等の塩構造をあげることができる力 これら に限定されることはない。式中の nが 0であるユニットにおいてはプロトン伝導性を示 す能力が低下する傾向があり、 nが 5以上であるユニットにおいてはポリマーの耐水 性が低下する傾向がある。ただし、上記構造式 (2)のユニットを含む構造であれば、 部分的に n力 ^や 5以上のユニットが共存して 、ても問題はな 、。
[0023] 上記の構造式(1)および上記の構造式(2)で示す構造を含む本発明のポリべンズ イミダゾール系化合物を合成する経路は特には限定されないが、通常は化合物中の イミダゾール環を形成し得る芳香族テトラミン類およびそれらの誘導体よりなる群から 選ばれる一種以上の化合物と、芳香族ジカルボン酸およびその誘導体よりなる群か ら選ばれる一種以上の化合物との反応により合成することができる。その際、使用す るジカルボン酸の中にスルホン酸基やホスホン酸基、またはそれらの誘導体を含有 するジカルボン酸を使用することで、得られるポリべンズイミダゾール系化合物中にス ルホン酸基および zまたはホスホン酸基を導入することができる。スルホン酸基ゃホ スホン酸基を含むジカルボン酸はそれぞれ一種以上組み合わせて使用することが出 来る。当然、スルホン酸基やホスホン酸基またはそれらの誘導体を含まないジカルボ ン酸も同時に使用して合成することもできる。
[0024] これらの構造を与えるモノマーと、たとえば後述の構造式(3) (好ましくは構造式 (4 )および Zまたは(5) )を与えるモノマーとの重合により、ピリジン環とともに上記構造 式(2)で示される酸性基ユニットをもつポリべンズイミダゾールを合成することができる
[0025] ここで、本発明のポリべンズイミダゾール系化合物の構成要素であるべンズイミダゾ ール系結合ユニットにお 、て、スルホン酸基および Zまたはホスホン酸基を有するベ ンズイミダゾール系結合ユニットや、スルホン酸基もホスホン酸基も有さな 、ベンズィ ミダゾール系結合ユニットや、その他の結合ユニットは、ランダム重合および Zまたは 交互的重合により結合していることが好ましい。また、これらの重合形式は一種に限ら れず、二種以上の重合形式が同一の化合物中で並存して 、てもよ 、。
[0026] 上記の構造式( 1)、構造式 (2)で示される構成成分を含むスルホン酸基および Z またはホスホン酸基含有ポリべンズイミダゾール系化合物を与える芳香族テトラミンの 具体例としては、特に限定されるものではないが、たとえば、 1, 2, 4, 5—テトラアミノ ベンゼン、 3, 3,ージァミノべンジジン、 3, 3' , 4, 4'ーテトラアミノジフエニルエーテ ノレ、 3, 3' , 4, 4,一テトラアミノジフエニノレチ才エーテノレ、 3, 3' , 4, 4,一テトラアミノ ジフエ-ルスルホン、 3, 3' , 4, 4,一テトラァミノべンゾフエノン、 2, 2—ビス(3, 4— ジァミノフエ-ル)プロパン、ビス(3, 4—ジァミノフエ-ル)メタン、 2, 2—ビス(3, 4— ジァミノフエ-ル)へキサフルォロプロパン、 1, 4—ビス(3, 4—ジアミノフエノキシ)ベ ンゼン、 1, 3—ビス(3, 4—ジアミノフエノキシ)ベンゼン、 1, 2—ビス(3, 4—ジァミノ フエノキシ)ベンゼン等およびこれらの誘導体が挙げられる。これらのうち、構造式(2) で表される結合ユニットを形成することができる、 3, 3,一ジァミノべンジジン, 3, 3' , 4, 4'ーテトラアミノジフエニルエーテル、 3, 3' , 4, 4'ーテトラアミノジフエニルスルホ ン、 3, 3' , 4, 4,一テトラアミノジフエニノレチ才エーテノレ、 3, 3' , 4, 4,一テトラアミノ ベンゾフエノン、 2, 2—ビス(3, 4—ジァミノフエ-ル)プロパン、 2, 2—ビス(3, 4—ジ ァミノフエ-ル)へキサフルォロプロパン、 1, 4 ビス(3, 4 ジアミノフエノキシ)ベン ゼン、 1, 3 ビス(3, 4 ジァミノフエノキシ)ベンゼン、 1, 2 ビス(3, 4 ジァミノフ エノキシ)ベンゼンおよびこれらの誘導体が特に好ま 、。
[0027] これらの芳香族テトラミン類の誘導体の具体例としては、塩酸、硫酸、リン酸等の酸 との塩等を挙げることができる。また、これらの化合物は単独で使用してもよいが、同 時に複数使用することもできる。さらに、これらの化合物は、必要に応じて塩化すず (I I)や亜リン酸ィ匕合物等の公知の酸ィ匕防止剤を含んで 、てもよ 、。
[0028] 上述の構造式(1)または(2)の構造を与えるスルホン酸基含有ジカルボン酸は、芳 香族系ジカルボン酸中に 1個力 4個のスルホン酸基を含有するものを選択すること ができる力 具体例としては、たとえば、 2, 5 ジカルボキシベンゼンスルホン酸、 3, 5 ジカルボキシベンゼンスルホン酸、 2, 5 ジカルボキシ 1, 4 ベンゼンジスル ホン酸、 4, 6 ジカルボキシ一 1, 3 ベンゼンジスルホン酸、 2, 2,一ジスルホ一 4, 4,ービフエ-ルジカルボン酸、 3, 3,—ジスルホー 4, 4,ービフエ-ルジカルボン酸、 等のスルホン酸基含有ジカルボン酸およびこれらの誘導体を挙げることができる。誘 導体としては、ナトリウム、カリウム等のアルカリ金属塩や、アンモ-ゥム塩、アルキル アンモ-ゥム塩等をあげることができる。スルホン酸基含有ジカルボン酸の構造は特 にこれらに限定されることはない。芳香族ジカルボン酸骨格中に 5個以上のスルホン 酸基を有する場合、ポリマーの耐水性が低下し易い傾向がある。
[0029] スルホン酸基を含有するジカルボン酸の純度は特に制限されるものではないが、 9 8質量%以上が好ましぐ 99質量%以上がより好ましい。スルホン酸基を含有するジ カルボン酸を原料として重合されたポリべンズイミダゾールは、スルホン酸基を含有し ないジカルボン酸を用いた場合に比べて、重合度が低くなる傾向が見られる。このた め、スルホン酸基を含有するジカルボン酸としてできるだけ純度が高 、ものを用いる ことにより、得られるポリマーの重合度が低くなることを防止することが好ましい。
[0030] 上記の構造式(1) , (2)で示されるホスホン酸基を有するポリべンズイミダゾール系 化合物を合成する際に用いるホスホン酸基を有する芳香族ジカルボン酸およびその 誘導体としては、特に限定されるものではなぐ芳香族ジカルボン酸骨格中に 1個か ら 4個のホスホン酸基を有する化合物を好適に使用することができる。具体例として は、 2, 5—ジカルボキシフエニルホスホン酸、 3, 5—ジカルボキシフエニルホスホン 酸、 2, 5—ビスホスホノテレフタル酸、 4, 6—ビスホスホノイソフタル酸等のホスホン酸 基を有する芳香族ジカルボン酸およびこれらの誘導体を挙げることができる。芳香族 ジカルボン酸骨格中に 5個以上のホスホン酸基を有する場合、ポリマーの耐水性が 低下し易い傾向がある。
[0031] ここで、これらのホスホン酸基を有する芳香族ジカルボン酸のホスホン酸誘導体とし ては、ナトリウム、カリウム等のアルカリ金属塩や、アンモ-ゥム塩、アルキルアンモ- ゥム塩等をあげることができる。また、これらの化合物は単独で使用してもよいが、同 時に複数使用することもできる。さらに、これらの化合物は、必要に応じて塩化すず (I I)や亜リン酸ィ匕合物等の公知の酸ィ匕防止剤を含んで 、てもよ 、。
[0032] ホスホン酸基を有する芳香族ジカルボン酸の構造はこれらに限定されることはな!/、 力 高分子鎖中のホスホン酸基の割合を効率良く増やすことができる点で、ここに示 したようなフヱ-ルホスホン酸基型のホスホン酸基を有する芳香族ジカルボン酸が好 ましい。
[0033] 本発明のポリべンズイミダゾール系化合物の合成に用いる、ホスホン酸基を有する 芳香族ジカルボン酸の純度は特に限定されるものではないが、 97質量%以上が好 ましぐ 98質量%以上がより好ましい。ホスホン酸基を有する芳香族ジカルボン酸を 原料として重合されたポリべンズイミダゾール系化合物は、スルホン酸基およびホス ホン酸基を有さな 、芳香族ジカルボン酸を原料として用いた場合に比べて、重合度 が低くなる傾向があるため、スルホン酸基を含有するジカルボン酸としてできるだけ純 度が高いものを用いることにより、得られるポリマーの重合度が低くなることを防止す ることが好ましい。芳香族ジカルボン酸の純度が 97質量%未満の場合、得られるポリ ベンズイミダゾール系化合物の重合度が低下して固体高分子電解質の材料として適 さないものとなる傾向がある。
[0034] 上記のホスホン酸基とスルホン酸基を有する芳香族ジカルボン酸を混合して使用 することができるが、スルホン酸基およびホスホン酸基を含有しな 、芳香族ジカルボ ン酸とともに共重合反応することにより、本発明の酸性基を有するポリべンズイミダゾ ール系化合物を合成してもよ 、。この際使用できるスルホン酸基およびホスホン酸基 を有さない芳香族ジカルボン酸としては、特に限定されるものではないが、たとえば、 テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフエ-ルエーテルジカルボ ン酸、ジフエ-ルスルホンジカルボン酸、ビフエ-ルジカルボン酸、ターフェ二/レジ力 ルボン酸、 2, 2 ビス(4 カルボキシフエ-ル)へキサフルォロプロパン等のポリエス テル原料として報告されている一般的な芳香族ジカルボン酸を使用することができる
[0035] また、これらの化合物は単独で使用してもよいが、同時に複数使用することもできる 。さらに、これらの化合物は、必要に応じて塩化すず (Π)や亜リン酸化合物等の公知 の酸化防止剤を含んで 、てもよ 、。
[0036] 本発明で使用されるポリべンズイミダゾール系化合物の合成において、ホスホン酸 基ゃスルホン酸基を有する芳香族ジカルボン酸とともにスルホン酸基およびホスホン 酸基を有さな ヽ芳香族ジカルボン酸を使用する場合、全芳香族ジカルボン酸中にお けるホスホン酸基および zまたはスルホン酸基を有する芳香族ジカルボン酸の含有 率を 20モル%以上となるように配合することが好ましい。この場合、本発明のポリベン ズイミダゾール系化合物がスルホン酸基および Zまたはホスホン酸基を有することに よるプロトン伝導性の向上効果を顕著に得ることができる。また、さらに顕著なプロトン 伝導性の向上効果を引き出すためには、全芳香族ジカルボン酸中におけるホスホン 酸基および Zまたはスルホン酸基を有する芳香族ジカルボン酸の含有率を 50モル
%以上となるように配合することがさらに好ましい。ホスホン酸基および zまたはスル ホン酸基を有する芳香族ジカルボン酸の含有率が 20モル%未満の場合には、ポリ ベンズイミダゾール系化合物の導電率が低く、固体高分子電解質の材料として適さ な 、ものになり易!、傾向がある。
[0037] 本発明のプロトン伝導性高分子膜は、燃料電池を組み立てる際の加工性および耐 久性に優れる点で、下記構造式 (3)で示される構成要素を含むことが好ま 、。
[化 7]
Figure imgf000014_0001
ただし、上記構造式(3)において、 Xは— O—、—SO—、— S—、— CO—、— C (
2
CH ) ―、 -C (CF ) ―、— O— Ph— O—よりなる群力ら選ばれる 1種以上を示す。
3 2 3 2
また Phはオルトフエ-レン、メタフエ-レン、パラフエ-レン力も選ばれる 1種以上を示 す。
本発明においては、モノマーとしての反応性の高さ、および得られたポリマーの取り 扱い易さから、上記構造式 (3)で示される構造は、下記構造式 (4)および Zまたは( 5)で示される構造を主成分とすることが好ま 、。
[化 8]
Figure imgf000015_0001
(上記構造式 (4)、 (5)中、 Xは上述と同様である。 )
上記構造のポリべンズイミダゾールは、芳香族テトラミンまたはその誘導体とピリジン 環を有するジカルボン酸またはその誘導体とを組み合わせたモノマー間の重合反応 により合成することができる。上記構造式 (3) (好ましくは構造式 (4)、 (5) )の構造を 与える芳香族テトラミンとしては、具体的には、 3, 3' , 4, 4'ーテトラアミノジフエ-ル エーテル、 3, 3,, 4, 4,—テトラアミノジフエ-ルスルホン、 3, 3,, 4, 4,—テトラアミ ノジフエ二ルチオエーテル、 3, 3 ' , 4, 4'ーテトラァミノべンゾフエノン、 2, 2—ビス(3 , 4—ジァミノフエ-ル)プロパン、 2, 2—ビス(3, 4—ジァミノフエ-ル)へキサフルォ 口プロパン、 1, 4—ビス(3, 4—ジァミノフエノキシ)ベンゼン、 1, 3—ビス(3, 4—ジァ ミノフエノキシ)ベンゼン、 1, 2—ビス(3, 4—ジアミノフエノキシ)ベンゼンおよびこれら の誘導体が挙げられる。これらの芳香族テトラミン類の誘導体の具体例としては、塩 酸、硫酸、リン酸などの酸との塩などを挙げることができる。これらの化合物は、必要 に応じて塩化スズ (II)や亜リン酸ィ匕合物などの公知の酸ィ匕防止剤を含んで 、てもよ い。また、これらの芳香族テトラミンおよびその誘導体は単一化合物として使用しても よいが、複数の化合物を混合して使用してもよい。
[0040] 上記構造式(3) (好ましくは構造式 (4)、 (5) )の構造を与えるジカルボン酸としては 、 2, 5 ピリジンジカノレボン酸、 2, 6 ピリジン力ノレボン酸、 2, 3 ピリジン力ノレボン 酸、 2, 4 ピリジン力ノレボン酸、 3, 4 ピリジン力ノレボン酸、 3, 5 ピリジン力ノレボン 酸およびそれらの誘導体である。誘導体の具体例としては、酸クロライドや各種低級 アルコールとのエステル化合物などを例示することができる。これらのジカルボン酸お よびその誘導体は単一化合物として使用してもよいが、複数の化合物を混合して使 用してちょい。
[0041] 本発明のポリべンズイミダゾール系高分子膜には、上記構造式 (3)で示される構造 とともにそれ以外のポリべンズイミダゾール構造が含まれて 、ても構わな 、。その際 使用される芳香族テトラミンとしては特に限定されることはないが、 1, 2, 4, 5—テトラ ァミノベンゼン、 3, 3'—ジァミノべンジジン、ビス(3, 4—ジァミノフエ-ル)メタンなど 、およびこれらの誘導体を挙げることができる。また、他に使用できるジカルボン酸と しては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフエ-ルエーテルジ カルボン酸、ジフヱ-ルスルホンジカルボン酸、ビフヱ-ルジカルボン酸、ターフェ二 ルジカルボン酸、 2, 2 ビス(4 カルボキシフエ-ル)へキサフルォロプロパンなど のポリエステル原料として報告されている一般的な芳香族ジカルボン酸およびこれら の誘導体を使用することができる。そのほか、 2, 5 ジカルボキシベンゼンスルホン 酸、 3, 5 ジカルボキシベンゼンスルホン酸、 2, 5 ジカルボキシ 1, 4 ベンゼン ジスルホン酸、 4, 6 ジカルボキシ 1, 3 ベンゼンジスルホン酸、 2, 2,—ジスル ホー 4, 4'ービフエニルジカルボン酸、 3, 3, 一ジスルホー 4, 4'ービフエニルジカル ボン酸などのスルホン酸含有ジカルボン酸およびこれらの誘導体、 2, 5 ジカルボキ シフエ-ルホスホン酸、 3, 5 ジカルボキシフエ-ルホスホン酸、 2, 5 ビスホスホノ テレフタル酸、 4, 6—ビスホスホノイソフタル酸などのホスホン酸基を有する芳香族ジ カルボン酸およびこれらの誘導体を使用することができる。
[0042] また、同一分子内に 2個のアミノ基またはその誘導体と 1個のカルボキシル基を持 つ化合物を混合した重合系においても合成することができる。本発明のプロトン伝導 性高分子膜が上記構造式 (3) (好ましくは、上記構造式 (4)および Zまたは(5) )で 表される構造を含む場合、本発明のプロトン伝導性高分子膜が該構造を主成分とす るものであり、他の構造成分は全体の 50%未満であっても良い。
[0043] 上述の芳香族テトラミン類およびそれらの誘導体よりなる群力 選ばれる一種以上 の化合物と、芳香族ジカルボン酸およびその誘導体よりなる群から選ばれる一種以 上の化合物とを用いて、スルホン酸基および Zまたはホスホン酸基を有するポリベン ズイミダゾール系化合物を合成する方法は、特に限定されるものではないが、たとえ は、】. F. Wolfe, Encyclopedia of Polymer science and Engineering, 2 nd Ed. , Vol. 11, P. 601 (1988)に記載されるようなポリリン酸を溶媒とする脱水 、環化重合により合成することができる。また、ポリリン酸のかわりにメタンスルホン酸
Z五酸化リン混合溶媒系を用いた同様の機構による重合を適用することもできる。な お、熱安定性の高いポリべンズイミダゾール系化合物を合成するには、一般によく使 用されるポリリン酸を用いた重合が好まし 、。
[0044] さらに、本発明で使用されるポリべンズイミダゾール系化合物を得るには、たとえば 、適当な有機溶媒中や混合原料モノマー融体の形での反応でポリアミド構造等を有 する前駆体ポリマーを合成しておき、その後の適当な熱処理等による環化反応で目 的のポリべンズイミダゾール構造に変換する方法等も使用することができる。
[0045] また、本発明のポリべンズイミダゾール系化合物を合成する際の反応時間は、個々 の原料モノマーの組み合わせにより最適な反応時間があるので一概には規定できな いが、従来報告されているような長時間をかけた反応では、スルホン酸基やホスホン 酸基を有する芳香族ジカルボン酸等の原料モノマーを含む系では、得られたポリべ ンズイミダゾール系化合物の熱安定性が低下してしまう場合もあり、この場合には反 応時間を本発明の効果の得られる範囲で短くすることが好ましい。このように反応時 間を短くすることにより、スルホン酸基およびホスホン酸基を有するポリべンズイミダゾ ール系化合物も熱安定性の高い状態で得ることができる。
[0046] 本発明のポリべンズイミダゾール系化合物を合成する際の反応温度は、個々の原 料モノマーの組み合わせにより最適な反応温度があるので一概には規定できないが 、従来報告されているような高温による反応では、スルホン酸基やホスホン酸基を有 する芳香族ジカルボン酸等の原料モノマーを含む系では、得られたポリべンズイミダ ゾール系化合物へのスルホン酸基やホスホン酸基の導入量の制御が不能となる場 合もあり、この場合には反応温度を本発明の効果の得られる範囲で低くすることが好 ましい。このように反応温度を低くすることにより、酸性基の量が多いポリべンズイミダ ゾール系化合物へのスルホン酸基やホスホン酸基の導入量の制御を可能とすること ができる。
[0047] また、合成されたポリべンズイミダゾール系化合物において繰り返し単位を構成す ることになる原料モノマーが複数の種類力 なる場合には、該繰返し単位同士はラン ダム重合および Zまたは交互的重合により結合して 、ることが好まし 、。この場合、 高分子電解質膜の材料として安定した電気特性および耐久性を示す。なお、交互的 重合とは、同一繰り返し単位が連続して結合していることが本質的にない結合様式で あり、ランダム重合および後述するブロック重合とは明確に区別される(たとえば、 N MR測定による連鎖分布の評価を用いて確認できる)。ここで、本発明のポリべンズィ ミダゾール系化合物をランダム重合および Zまたは交互的重合の重合形式により合 成する方法としては、すべてのモノマー原料を重合初期から当量性を合わせた配合 割合で仕込んでおく方法等が好ましく採用され得る。
[0048] なお、ポリべンズイミダゾール系化合物をランダム重合や交互的重合ではなくブロッ ク重合により合成することもできる力 その際には、当量性をずらした配合割合のモノ マー原料の仕込み条件で第一成分のオリゴマーを合成し、さらにモノマー原料を追 カロして第二成分も含めて当量性が合う形に配合割合を調整した上で重合を行なうこ とが好ましい。
[0049] 本発明のスルホン酸基および Zまたはホスホン酸基を有するポリべンズイミダゾー ル系化合物の数平均分子量は、特に限定されるものではないが、 2, 000以上である ことが好ましぐ 4, 000以上であればより好ましい。また、この数平均分子量は 1, 00 0, 000以下であることが好ましぐ 300, 000以下であればより好ましい。数平均分子 量が 2, 000未満の場合には、粘度の低下によりポリべンズイミダゾール系化合物か ら良好な耐久性等を備えた成形物が得られ難い傾向がある。また、この分子量が 1, 000, 000を超えると粘度の上昇によりポリべンズイミダゾール系化合物を成形するこ とが困難になる傾向がある。
[0050] また、本発明のスルホン酸基および Zまたはホスホン酸基を有するポリべンズイミダ ゾール系化合物の数平均分子量は、実質的にはメタンスルホン酸中で測定した場合 の対数粘度で評価することができる。そして、この対数粘度は 0. 3以上であることが 好ましぐ特に 0. 50以上であればより好ましい。また、この対数粘度は 8以下であるこ と力 子ましく、特に 7以下であればより好ましい。この対数粘度が 0. 3未満の場合に は、粘度の低下によりポリべンズイミダゾール系化合物から良好な耐久性等を備えた 成形物が得られ難い傾向がある。また、この対数粘度が 8を超えると粘度の上昇によ りポリべンズイミダゾール系化合物を成形することが困難になる傾向がある。
[0051] 本発明のスルホン酸基および Zまたはホスホン酸基を有するポリべンズイミダゾー ル系化合物は、榭脂組成物中の主成分として配合されていることも好ましい。榭脂組 成物として本発明のポリべンズイミダゾール系化合物とともに使用できるポリマーとし ては、たとえばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン ナフタレート等のポリエステル類、ナイロン 6、ナイロン 6, 6、ナイロン 6, 10、ナイロン 12等のポリアミド類、ポリメチルメタタリレート、ポリメタクリル酸エステル類、ポリメチル アタリレート、ポリアクリル酸エステル類等のアタリレート系榭脂、ポリアクリル酸系榭脂 、ポリメタクリル酸系榭脂、ポリエチレン、ポリプロピレン、ポリスチレンやジェン系ポリ マーを含む各種ポリオレフイン、ポリウレタン系榭脂、酢酸セルロース、ェチルセル口 ース等のセルロース系榭脂、ポリアリレート、ァラミド、ポリカーボネート、ポリフエ-レ ンスノレフイド、ポリフエ二レンォキシド、ポリスルホン、ポリエーテルスルホン、ポリエー テルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリべンズイミダ ゾール、ポリべンズォキサゾール、ポリべンズチアゾール等の芳香族系ポリマー、ェ ポキシ榭脂、フエノール榭脂、ノボラック榭脂、ベンゾォキサジン榭脂等の熱硬化性 榭脂等が挙げられ、特に制限はない。
[0052] 本発明におけるポリべンズイミダゾール系化合物をこれら榭脂組成物として使用す る場合には、該ポリべンズイミダゾール系化合物が、榭脂組成物全体の 50質量%以 上 100質量%未満を占めることが好ましい。より好ましくは 60質量%以上 100質量% 未満、さらに好ましくは 70質量%以上 100質量%未満である。本発明のスルホン酸 基および zまたはホスホン酸基含有ポリべンズイミダゾール系化合物の含有量が榭 脂組成物全体の 50質量%未満の場合には、この榭脂組成物を含む高分子膜中の 酸性基濃度が低くなり、イオン性基によるプロトン伝導性の向上効果が低下する傾向 があり、また、スルホン酸基および Zまたはホスホン酸基含有ユニットが非連続相とな ることによつても伝導するイオンの移動度の点で不利になる傾向がある。なお、本発 明のスルホン酸基および Zまたはホスホン酸基含有ポリべンズイミダゾール系化合物 またはこれを含む榭脂組成物は、必要に応じて、たとえば酸化防止剤、熱安定剤、 滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤 、分散剤、重合禁止剤、等の各種添加剤を含んでいても良い。
本発明のスルホン酸基および Zまたはホスホン酸基を含有するポリべンズイミダゾ ール系化合物またはこれを含む榭脂組成物は、重合溶液、単離したポリマー、およ び再溶解させたポリマー溶液等カゝら押し出し、圧延、キャスト等任意の方法で膜形状 に成形することができる。本発明のポリべンズイミダゾール系化合物またはこれを含 む榭脂組成物を含有する高分子膜を成形する好まし 、方法としては、溶液からのキ ャストが挙げられる。ポリべンズイミダゾール系化合物またはこれを含む榭脂組成物を 溶解するための溶媒としては、 N, N ジメチルァセトアミド、 N, N ジメチルホルム アミド、ジメチルスルホキシド、 N—メチル—2—ピロリドン、へキサメチルホスホンアミド 等の非プロトン極性溶媒や、ポリリン酸、メタンスルホン酸、硫酸、トリフルォロ酢酸等 の強酸力 適切なものを選ぶことができる力 これらに限定されるものではない。これ らの溶媒のうち、特に有機溶媒系は好ましく用いられる。さらに、本発明のポリべンズ イミダゾールが良好に溶解する N, N ジメチルァセトアミド、 N, N ジメチルホルム アミド、ジメチルスルホキシド、 N—メチル 2—ピロリドンを溶媒として選定することが 好ましい。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。また、ポリ ベンズイミダゾールまたはこれを含む榭脂組成物の溶解性を向上させる手段として、 臭化リチウム、塩化リチウム、塩ィ匕アルミニウム等のルイス酸を有機溶媒に添加したも のを溶媒としてもよい。溶液中のポリマー濃度は 0. 1〜50質量%の範囲であることが 好ましい。ポリマー濃度が 0. 1質量%未満である場合には成形性が悪ィ匕し易い傾向 があり、 50質量%を超える場合には加工性が悪ィ匕し易い傾向がある。 [0054] ポリマー溶液を基板にキャストし、溶媒を除去する際には、溶媒を乾燥除去すること が膜の均一性という点で好ましい。また、ポリマーや溶媒の分解や変質をさけるため 、減圧下でできるだけ低い温度で乾燥することも好ましい。キャストする基板には、ガ ラス板、テフロン (登録商標)板、金属板、ポリマーシート等を用いることができる。溶 液の粘度が高 ヽ場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度 が低下して容易にキャストすることができる。
[0055] キャストする際の溶液の厚みは特に制限されないが、 30-1500 μ mであることが 好ましい。 30 m未満とすると膜としての形態を保ち難くなる傾向があり、 1500 を超えると不均一な膜ができ易くなる傾向がある。溶液の厚みはより好ましくは 100〜 1000 mである。溶液のキャスト厚を制御する方法は公知の方法を用いることがで きる。たとえば、アプリケーター、ドクターブレード等を用いて一定の厚みを確保する ことや、ガラスシャーレ等を用いてキャスト面積を一定にして溶液の量や濃度で厚み を制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより 均一な膜とすることができる。たとえば、加熱して溶媒を留去する場合には、最初の 段階では低温にして蒸発速度を下げたりすることができる。また、水等の非溶媒に浸 潰して溶媒を除去する場合には、溶液を空気中や不活性ガス中に適当な時間放置 しておく等してポリマーの凝固速度を調整することができる。本発明の膜は目的に応 じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが 好ましい。具体的には 200 m以下であることが好ましぐ 50 m以下であることがさ らに好ましい。また、膜の強度やカ卩ェ性の面から、膜厚は 5 m以上であることが好ま しい。
[0056] ポリべンズイミダゾール系化合物を含む高分子膜には、ビニルホスホン酸が含浸さ れ、本発明のプロトン伝導性高分子膜が得られる。一般に、ポリべンズイミダゾール 系化合物を含む高分子膜と、該高分子膜に含浸させる酸化合物との組合せによって 、含浸によるプロトン伝導性の発現挙動や、酸化合物の含浸可能量、含浸による高 分子膜の膨潤変形、得られるプロトン伝導性高分子膜の耐久性等が種々異なる。本 発明にお 、ては、ポリべンズイミダゾール系化合物とビニルホスホン酸とを組み合わ せることにより、十分な量のビュルホスホン酸を含浸させても高分子膜の変形力 、さく 、優れたプロトン伝導性を示すとともに耐久性にぉ 、ても長時間の使用に耐え得ると V、う特性を有するプロトン伝導性高分子膜が得られる。ビニルホスホン酸の含浸量と しては、本発明のポリべンズイミダゾール系化合物に対してビュルホスホン酸が 10質 量%〜 1000質量%の範囲内で含有されていることが好ましぐ 50質量%〜800質 量%の範囲内であればさらに好ましい。ビュルホスホン酸含浸量が、 10質量%ょり少 ない場合には、高温無加湿下でのプロトン伝導性が低くなり易い傾向がある。一方、 ビュルホスホン酸含浸量が 1000質量%よりも多くなると、高分子電解質膜からビュル ホスホン酸が染み出す等の問題が生じ易い傾向がある。
[0057] 本発明のポリべンズイミダゾール系化合物を含む高分子膜にビュルホスホン酸を含 浸させる方法としては、該高分子膜を、ビュルホスホン酸そのものまたはビニルホスホ ン酸を含む溶液に浸漬する方法等が好ましく挙げられる。浸漬時の温度条件、浸漬 時間を変えることにより、ビュルホスホン酸含浸量をコントロールすることができる。ビ ニルホスホン酸含浸量は、浸漬温度、浸漬時間の組合せで決定される力 浸漬させ る温度としてはたとえば 20°Cから 150°Cの範囲とすることが好ましい。また、浸漬時間 はたとえば 10分から 20時間の範囲内であることが好ましい。含浸させるビニルホスホ ン酸の純度は 50質量%以上であることが好ましぐビニルホスホン酸を製造する際に 副生されるリン酸やェチルホスホン酸等の不純物が含まれていても用いることが出来 る。また、ビュルホスホン酸の粘度を調節するために、ビュルホスホン酸の純度が 50 質量%を下回らな 、範囲でビニルホスホン酸と相溶である溶媒との溶液を用いること が出来る。
[0058] また、含浸させるビュルホスホン酸とともに、他の無機および Zまたは有機の酸性ィ匕 合物を同時に含浸させることもできる。ここで使用できる無機酸としては、リン酸、ポリ リン酸、硫酸、硝酸、フッ酸、塩酸、臭化水素酸およびそれらの誘導体が挙げられる。 また、有機酸としては、有機スルホン酸、有機ホスホン酸が使用される。有機スルホン 酸の具体的な例としては、メタンスルホン酸、エタンスルホン酸、へキサンスルホン酸 、ォクチルスルホン酸、ドデシルスルホン酸、セチルスルホン酸、スルホコハク酸、ス ルホダルタル酸、スルホアジピン酸、スルホピメリン酸、スルホスべリン酸、スルホアゼ ライン酸、スルホセバシン酸を始めとするアルキルスルホン酸、トリフルォロメタンスル ホン酸、ペンタフルォロエタンスルホン酸、ヘプタフルォロプロピルスルホン酸、等の パーフルォロアルキルスルホン酸、ベンゼンスルホン酸、 1, 3 ベンゼンジスルホン 酸、トルエンスルホン酸、ォクチルベンゼンスルホン酸、 2—メチルー 5 イソプロピル ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ジノ-ルナフタレンスルホン酸、 ナフタレンスルホン酸、クロ口ベンゼンスルホン酸、フエノールスルホン酸、トリクロ口べ ンゼンスルホン酸、ニトロトルエンスルホン酸、ニトロベンゼンスルホン酸、スルホ安息 香酸、等の芳香族スルホン酸、およびこれらの誘導体を挙げることができるが、これら に限定されることなく各種構造の有機スルホン酸を使用することが出来る。有機ホス ホン酸の具体的な例としては、フエ-ルホスホン酸、 1, 3 ジカルボキシフエ-ルホス ホン酸等の芳香族系ホスホン酸、 1ーヒドロキシェタン 1, 1ージホスホン酸等の脂 肪族系ホスホン酸、およびこれらの誘導体を挙げることができる力 これらに限定され ることなく各種構造の有機ホスホン酸を使用することが出来る。含浸させる酸性化合 物は 1種だけでなぐ 2種以上の混合物として含浸させることもできる。ビニルホスホン 酸と他の無機および/または有機の酸性ィ匕合物を同時に含浸させる場合は、含浸さ せる酸性ィ匕合物の内 50モル%以上がビニルホスホン酸であることが好ましい。
[0059] 上記の無機および Zまたは有機の酸性ィ匕合物をビュルホスホン酸と組み合わせて 用いる場合、無機および Zまたは有機の酸性ィ匕合物とビュルホスホン酸とからなる酸 性分子の含浸量は、本発明における高分子膜の膜重量に対して、 10〜: LOOO重量 %の範囲であるのが好ましぐ 50〜800重量%の範囲であるのがより好ましい。酸性 分子の含浸量が高分子膜の膜重量に対して 10重量%未満であると、高温無加湿下 でのプロトン伝導性が低くなる傾向が現れてくる。また酸性分子の含浸量が高分子膜 の膜重量に対して 1000重量%を超えると、高分子電解質膜から酸性分子が染み出 すなどの問題が生じる傾向にある。なお、当該含浸量は、たとえば高分子電解質膜 を熱水抽出することで酸性分子を膜から全て抜き出し、抽出前後の膜重量差より、 1 oox (抽出前膜重量-抽出後膜重量) Z抽出後膜重量 (%)というようにして算出す ることがでさる。
[0060] 上記の酸性分子を含浸させる場合も、ビニルホスホン酸を含浸させる方法として前 述したのと同様の方法が採用され得る。本発明におけるポリべンズイミダゾールを含 む高分子膜に酸性分子を含浸させる方法は、該高分子膜を液状の酸性分子そのも のまたは酸性分子を含む溶液に含浸することにより行なうことができる。この際、浸漬 させる温度条件、浸漬時間を変えることにより、酸性分子含有量をコントロールするこ とができる。酸性分子含有量は、浸漬温度、浸漬時間の組み合わせで決定されるが
、浸漬させる温度としては 20〜150°Cの範囲とすることが好ましい。該温度が 20°C未 満である場合には、含浸速度が遅くなる傾向にあり、また 150°Cを超える場合には、 含浸時に膜の変形が起こり易い傾向にあるためである。また、浸漬時間は 10分から 2 0時間の範囲内であることが好ましい。当該時間が 10分未満である場合には、酸性 分子が十分に均等に含浸されにくい傾向にあり、また 20時間を越える場合には、生 産性が低下する傾向にあるためである。ビュルホスホン酸を含む溶液を用いて浸漬 処理を行なう場合は、溶媒としては水、低級アルコールなど、酸性分子と良好に混合 する溶媒を用いることができる。溶液濃度は 50%以上であることが好ましい。
[0061] また、上述した本発明のイオン伝導性高分子膜を電極に設置することによって、本 発明のイオン伝導性高分子膜と電極との膜電極接合体を得ることができる。この膜電 極接合体の作製方法としては、従来から公知の方法が好ましく採用でき、たとえば、 電極表面に接着剤を塗布し、プロトン伝導性高分子膜と電極とを接着する方法、また はプロトン伝導性高分子膜と電極とを加熱加圧する方法等がある。そして、酸素極と
、燃料極と、該酸素極および燃料極に挟持された、本発明のプロトン伝導性高分子 膜からなる固体高分子電解質膜と、を備え、酸化剤流路を形成した酸化剤配流板を 酸素極側に設け、燃料流路を形成した燃料配流板を燃料極側に設けたものを単位 セルとすることにより、特に 100°C以上の高温で運転できるとともに加湿条件を必要と しない、本発明の燃料電池を得ることができる。
[0062] [実施例]
以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらの実 施例に限定されることはない。なお、実施例および比較例における性能評価は次の 方法で行なった。
[0063] <対数粘度 >
ポリべンズイミダゾール系化合物は、ポリマー粉末を 0. 5gZdlの濃度でメタンスル ホン酸に溶解し、 30°Cの恒温槽中でォストワルド粘度計を用いて溶液粘度測定を行 ない、対数粘度 [ln(taZtb) ]Zc (但し、 taは試料溶液の落下秒数、 tbは溶媒のみの 落下秒数、 cはポリマー濃度 (gZdl) )として評価した。
[0064] <イオン伝導度 >
調製されたプロトン伝導性高分子膜を白金電極 (直径 13mm)に挟み、ソーラートロ ン(Solartron)社製電気化学測定システム 12608Wを用いて複素インピーダンス測 定を行な ヽ、得られた抵抗値からイオン伝導度 (単位: S/cm)の温度依存性を求め た。
[0065] <発電特性 >
調製されたプロトン伝導性高分子膜を、市販の燃料電池用電極 (Electrochem社 製)で挟持して膜電極接合体とし、 150°C、無加湿の条件下、水素,空気で、初期の 開回路電圧および 500時間後の開回路電圧と、電流密度 0. 3AZcm2における発 電時の初期の電池電圧および 500時間後の電池電圧とを測定した。また、これらの 値から、初期の電圧を 100%とした時の 500時間後の低下率(%)を算出した。
[0066] (実施例 1)
3, 3,, 4, 4,—テトラアミノジフエ-ルスルホン 6. 000g (2. 1557 X 10— ole)、 2 , 5—ジカルボキシベンゼンスルホン酸モノナトリウム(純度 99質量0 /0) 5. 7812g (2. 1557 X 10— 2mole)、ポリリン酸(五酸ィ匕リン含量 75質量0 /0) 52. 8g、五酸ィ匕リン 43. 3gを重合容器に量り取った。窒素を流し、オイルバス上ゆっくり撹拌しながら 100°C まで昇温した。 100°Cで 1時間保持した後、 150°Cに昇温して 1時間、 200°Cに昇温 して 6時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキ サーを用いて pH試験紙で中性を示すまで水洗を繰り返した。得られたポリマーは 80 °Cで終夜減圧乾燥した。ポリマーの対数粘度は、 2. 18を示した。
[0067] 得られたポリマー lgを N—メチルー 2—ピロリドン(NMP) 10gにオイルバス上で溶 解し、ホットプレート上のガラス板にキャストし、フィルム状になるまで NMPを留去した 後、水中に一晩以上浸漬した。得られたフィルムは、希硫酸 (濃硫酸 6ml、水 300ml )中に 1日以上浸漬した後、純水でさらに数回浸漬洗浄することで酸成分を除去し、 2 2 μ mの厚みの高分子膜 1を得た。 [0068] この高分子膜 1をビュルホスホン酸 (純度 85質量%、東京化成株式会社)に 120°C で 3時間浸漬して、ビュルホスホン酸を添加したプロトン伝導性高分子膜を得た。この 時のビュルホスホン酸含有量は、質量変化力も計算して、高分子膜 1に対して約 240 質量%であった。
[0069] 得られたプロトン伝導性高分子膜を用い、前述の方法によりイオン伝導度の温度依 存性および発電特性を評価した。結果を表 1に示す。
[0070] (実施例 2)
3, 3' , 4, 4,—テトラアミノジフエ-ルスルホン 1. 830g (6. 575 X 10— ole)、 3, 5—ジカルボキシフエ-ルホスホン酸(純度 98質量0 /0) 1. 084g (4. 405 X 10— ole )、テレフタノレ酸 0. 360g (2. 170 X 10— 3mole)、ポリリン酸(五酸ィ匕リン含量 75質量 %) 24. 98g、五酸化リン 20. 02gを重合容器に量り取った。窒素を流し、オイルバス 上ゆっくり撹拌しながら 100°Cまで昇温した。 100°Cで 1時間保持した後、 150°Cに 昇温して 1時間、さらに 200°Cに昇温して 5時間重合した。重合終了後放冷し、水を 加えて重合物を取り出し、家庭用ミキサーを用いて pH試験紙が中性を示すまで水洗 を繰り返した。得られたポリマーは 80°Cで終夜減圧乾燥した。ポリマーの対数粘度は 、 1. 79を示した。
[0071] 得られたポリマー lgを NMPlOgにオイルバス上で溶解し、ホットプレート上のガラ ス板にキャストし、フィルム状になるまで NMPを留去した後、水中に一晩以上浸漬し た。得られたフィルムは、希硫酸 (濃硫酸 6ml、水 300ml)中に 1日以上浸漬した後、 純水でさらに数回浸漬洗浄することで酸成分を除去し、 22 mの厚みの高分子膜 2 を得た。
[0072] この高分子膜 2に実施例 1と同様な方法によりビニルホスホン酸を添加し、プロトン 伝導性高分子膜を得た。この時のビニルホスホン酸含有量は、質量変化から計算し て、高分子膜 2に対して約 250質量%であった。このプロトン伝導性高分子膜を用い て実施例 1と同様な方法により、イオン伝導度および燃料電池発電特性測定を行な つた。結果を表 1に記す。
[0073] (実施例 3)
3, 3' , 4, 4,—テトラアミノジフエ-ルスルホン 1. 830g (6. 575 X 10— ole)、 2, 5—ジカルボキシベンゼンスルホン酸モノナトリウム(純度 99質量%) 0. 529g (l. 97 3 X 10— 3mole)、 3, 5—ジカルボキシフエ-ルホスホン酸(純度 98質量%) 1. 133g ( 4. 602 X 10— 3mole)、ポリリン酸(五酸ィ匕リン含量 75質量0 /0) 24. 98g、五酸ィ匕リン 2 0. 02gを重合容器に量り取った。窒素を流し、オイルバス上ゆっくり撹拌しながら 10 0°Cまで昇温した。 100°Cで 1時間保持した後、 150°Cに昇温して 1時間、さらに 200 °Cに昇温して 5時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家 庭用ミキサーを用いて pH試験紙が中性を示すまで水洗を繰り返した。得られたポリ マーは 80°Cで終夜減圧乾燥した。ポリマーの対数粘度は、 1. 21を示した。
[0074] 得られたポリマー lgを NMPlOgにオイルバス上で溶解し、ホットプレート上のガラ ス板にキャストし、フィルム状になるまで NMPを留去した後、水中に一晩以上浸漬し た。得られたフィルムは、希硫酸 (濃硫酸 6ml、水 300ml)中に 1日以上浸漬した後、 純水でさらに数回浸漬洗浄することで酸成分を除去し、 21 μ mの厚みの高分子膜 3 を得た。
[0075] この高分子膜 3に実施例 1と同様な方法によりビニルホスホン酸を添加し、プロトン 伝導性高分子膜を得た。この時のビニルホスホン酸含有量は、質量変化から計算し て、高分子膜 3に対して約 210質量%であった。
[0076] このプロトン伝導性高分子膜を用いて実施例 1と同様な方法により、イオン伝導度 および燃料電池発電特性測定を行なった。結果を表 1に記す。
[0077] (実施例 4)
実施例 1で得た高分子膜 1をビニルホスホン酸 (純度 85質量%、東京化成株式会 社)に 70°Cで 12時間浸漬してビニルホスホン酸を添加したプロトン伝導性高分子膜 を得た。この時のビニルホスホン酸含有量は、質量変化力も計算して、高分子膜 1に 対して約 180質量%であった。
[0078] このプロトン伝導性高分子膜を用いて実施例 1と同様な方法により、イオン伝導度 および燃料電池発電特性測定を行なった。結果を表 1に記す。
[0079] (実施例 5)
実施例 1で得た高分子膜 1をビニルホスホン酸 (純度 85質量%、東京化成株式会 社)に 90°Cで 7時間浸漬してビニルホスホン酸を添加したプロトン伝導性高分子膜を 得た。この時のビュルホスホン酸含有量は質量変化力も計算して、高分子膜 1に対し て約 310質量%であつた。
[0080] このプロトン伝導性高分子膜を用いて実施例 1と同様な方法により、イオン伝導度 および燃料電池発電特性測定を行なった。結果を表 1に記す。
[0081] (比較例 1)
米国特許第 3313783号公報、米国特許第 3509108号公報等に記載されている 製造方法を参考として、ポリ— 2, 2, - (m—フエ-レン) - 5, 5,—ビベンズイミダゾ ールを得た。このポリマー lgをジメチルァセトアミド(DMAc) 10gにオイルバス上で 溶解し、ホットプレート上のガラス板にキャストし、フィルム状になるまで DMAcを留去 した。さらに 120°Cで 12時間真空乾燥し DMAcを完全に留去した 20 μ mの厚みの 高分子膜 4を得た。
[0082] この高分子膜 4を、オルトリン酸 (純度 85質量%、東京化成株式会社)に室温にて 3 時間浸漬して、オルトリン酸を添加したプロトン伝導性高分子膜を得た。この時のォ ルトリン酸含有量は、質量変化力も計算して、高分子膜 4に対して約 350質量%であ つた o
[0083] 得られたプロトン伝導性高分子膜について、実施例 1と同様な方法によりイオン伝 導度の温度依存性および燃料電池発電特性を測定した。結果を表 2に示す。
[0084] (比較例 2)
比較例 1で得た高分子膜 4に、実施例 1と同様な方法によりビュルホスホン酸を添 加しプロトン伝導性高分子膜を得た。この時のビニルホスホン酸含有量は、質量変化 力も計算して、高分子膜 4に対して約 390質量%であった。
[0085] このプロトン伝導性高分子膜を用いて、実施例 1と同様な方法により、イオン伝導度 および燃料電池発電特性測定を行なった。結果を表 2に記す。
[0086] (比較例 3)
実施例 1で得た高分子膜 1を、室温にてオルトリン酸 (純度 85質量%、東京化成株 式会社)に浸漬してオルトリン酸を添加することを試みたところ、高分子膜 1は溶解し てしまい以後の試験を行なうことが出来な力つた。
[0087] [表 1] 実施例 実施例 実施例 実施例 実施例 1 2 3 4 5 高分子 高分子 fB] T十 高分子 高分子膜
膜 1 膜 2 膜 3 膜 1 膜 1 ビニル ビニル ビニル ビニル t*ニル 含浸酸種類
ホスホン酸 ホスホン酸 ホスホン酸 ホスホン酸 木スホン酸 酸含浸量(質量 ¾) 240 250 210 180 310 イオン伝導度(150°C)
1.4 1.5 1.1 1.0 1.8 ( 10 S/cm)
開回路電圧
0.984 0.995 0.975 0.985 0.971 初 (V)
期 電圧 (V)
0.573 0.570 0.566 0.565 0.581 発 (0.3A/cm2)
開回路電圧
0.980 0.988 0.974 0.983 0.968 持 500 (V)
性 時 低下率 (%) 0.4 0.7 0.1 0.2 0, 3 間 電圧 (V)
0.571 0.566 0.564 0.564 0.576 後 (0.3A/cm2)
低下率 (%) 0.4 0.7 0.4 0.2 0.9 2]
比較例 比較例 比較例
1 2 3
高分子 刀卞
高分子膜
膜 4 膜 4 膜 1
ヒ"ニル
含浸酸種類 オルトリン酸 オルトリン酸
Φス木ン酸
酸含浸量 (質量 ¾) 350 390
イオン伝導度(150°C)
1. 4 1. 4
( lO"2S/cm)
re]
開回路電圧 分
0. 951 0. 965 子
初 (V) 膜
期 電圧 (V) 溶
0. 546 0. 568 解
発 (0. 3A/cm2) に
電 開回路電圧
0. 882 0. 930
持 500 (V) 測
性 時 低下率 ( ) 7. 3 3. 6 不
間 電圧 (V)
0. 481 0. 545
後 (0. 3A/cm!)
低下率 (¾) 13. 5 4. 2
[0089] 表 1および表 2に示した結果より、初期状態では、実施例 1〜5および比較例 1およ び 2との間で、開回路電圧、電流密度 0. 3AZcm2の電圧のいずれについても大き な差は見られないものの、実施例 1〜5においては比較例 1および 2と同等かそれ以 上の値を示している。 500時間経過後では、実施例 1〜5の開回路電圧および電流 密度 0. 3AZcm2の電圧は、比較例 1および 2と比べて高い値を示している。また、実 施例 1〜5の開回路電圧および電流密度 0. 3AZcm2の電圧の低下率はいずれも 1 %より小さいのに対し、比較例 1および 2においてはこれらの低下率が著しく高い値を 示している。このことから、比較例 1および 2のプロトン伝導性高分子膜と比べて実施 例 1〜5のプロトン伝導性高分子膜においては劣化が抑制できていることが分かる。
[0090] 図 1は、実施例 1および比較例 1における、イオン伝導度の温度依存性を示す図で ある。図 1に示されるように、実施例 1のプロトン伝導性高分子膜は、比較例 1のプロト ン伝導性高分子膜に比較して酸の含浸量が少ないにも関わらずイオン伝導性が同 等であり、本発明のプロトン伝導性高分子膜が良好なイオン伝導性を有することが分 かる。
[0091] 図 2は、実施例 1および比較例 1における、測定初期の電流密度と電池電圧との関 係を示す図である。図 2に示されるように、実施例 1のプロトン伝導性高分子膜は、比 較例 1のプロトン伝導性高分子膜に比較して酸の含浸量が少ないにも関わらず発電 特性が若干向上しており、本発明のプロトン伝導性高分子膜が良好な燃料電池特性 を有することが分力ゝる。
[0092] 図 3は、実施例 1および比較例 1における、開回路電圧および電流密度 0. 3A/c m2での電池電圧と、燃料電池の運転時間との関係を示す図である。図 3に示される ように、比較例 1については、運転時間が長時間になるにつれて、開回路電圧および 電流密度 0. 3AZcm2の電圧のいずれも低下していくことがわかる。一方、実施例 1 についてはこれらの電圧の低下がほとんど見られず、本発明の燃料電池が良好な耐 久性を有することが分力る。
[0093] 以上のように、本発明に係るプロトン伝導性高分子膜は電気特性および耐久性に 優れていることが分かる。
[0094] (実施例 6)
3, 3' , 4, 4,—テトラアミノジフエ-ルスルホン 6, 000g (2. 1557 X 10— ole)、 2 , 6—ピリジンジカノレボン酸 2. 8821g (l. 7246 X 10— 2mole)、 3, 5—ジカノレボキシ フエ-ルホスホン酸(純度: 98%) 1. 0615g (0. 4311 X 10— ole)、ポリリン酸(五 酸化リン含量: 75%) 36. 86g、五酸化リン 29. 54gを重合容器に量り取った。窒素 を流し、オイルバス上ゆっくり攪拌しながら 100°Cまで昇温した。 100°Cで 1時間保持 した後、 150°Cに昇温して 1時間、 200°Cに昇温して 5時間重合した。重合終了後放 冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いて pH試験紙が中性にな るまで水洗を繰り返した。得られたポリマーは 80°Cで終夜減圧乾燥した。ポリマーの 対数粘度は、 1. 66を示した。
[0095] 得られたポリマー lgを N—メチルー 2—ピロリドン(NMP) 10gにオイルバス上で溶 解し、ホットプレート上ガラス板にキャストし、フィルム状になるまで NMPを留去した後 、水中に一晩以上浸漬した。得られたフィルムは、希硫酸 (濃硫酸 6ml、水 300ml) 中に 1日以上浸漬した後、純水でさらに数回浸漬洗浄し 21 μ mの厚みの高分子膜 5 を得た。
[0096] この高分子膜 5を、ビニルホスホン酸 (純度: 85%、東京化成株式会社製)に 50°C で 3時間浸漬して、ビュルホスホン酸を添カ卩したポリべンズイミダゾール系プロトン伝 導性高分子膜を得た。このときのビニルホスホン酸含有量は重量変化カゝら計算して、 高分子膜 5の膜重量に対して 300重量%であった。このべンズイミダゾール系プロト ン伝導性高分子膜を用いて、実施例 1と同様の方法でイオン伝導度の温度依存性 および燃料電池発電特性を測定した。
[0097] 表 3には、発電初期および 500時間経過後における開回路電圧および電流密度 0 . 3AZcm2における出力電圧を示す。
[0098] [表 3]
Figure imgf000032_0001
表 3には、実施例 6のべンズイミダゾール系プロトン伝導性高分子膜についての 15 0°Cにおけるイオン伝導度およびこのベンズイミダゾール系プロトン伝導性高分子膜 を用いて製造した燃料電池について、初期の開回路電圧および 500時間後の開回 路電圧と、電流密度 0. 3AZcm2における初期の電池電圧および 500時間後の電 池電圧を示した。また、表 3には、初期の電圧を 100%としたときの 500時間後の低 下率(%)を併せて記載した。表 2および表 3に示した結果より、初期状態では、実施 例 6および比較例 1, 2の間で、開回路電圧について大きな差は見られないが、電流 密度 0. 3AZcm2の電圧について、特に実施例 6と比較例 1との間に若干の差が認 められる。さらに、 500時間経過後では、明らかに比較例 1, 2の電圧が実施例 6に対 して劣化して 、ることが判る。
[0100] 以上のように、実施例 6のべンズイミダゾール系プロトン伝導性高分子膜は、比較例 1, 2のプロトン伝導性高分子膜に対して、電気特性および耐久性に優れていること が分かる。
[0101] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。
産業上の利用可能性
[0102] 本発明に係るプロトン伝導性高分子膜により、高温無加湿条件で運転可能なプロト ン伝導性膜であって、優れたプロトン伝導性を示すだけでなぐ燃料電池を組み立て る際の加工性に優れるとともに、燃料電池としての耐久性においても十分な実用特 性を示す新規な高分子電解質膜が提供される。上記の特性を生かし、本発明のプロ トン伝導性高分子膜は、各種電池電解質、センサー、コンデンサー、電解膜等、幅広 い用途で利用することができ、産業界の発展、成長に寄与することができる。

Claims

請求の範囲 スルホン酸基および zまたはホスホン酸基を有するポリべンズイミダゾール系化合 物を含む高分子膜にビュルホスホン酸を含有させてなるプロトン伝導性高分子膜。 前記ポリべンズイミダゾール系化合物力 下記の構造式(1)、
[化 1]
Figure imgf000034_0001
(式中、 nは 1から 4の整数、 R1はイミダゾール環を形成できる 4価の芳香族結合ュ- ット、 R2は 2価の芳香族結合ユニット、 Zはスルホン酸基および Zまたはホスホン酸基 を表す)
で示されるスルホン酸基および Zまたはホスホン酸基含有構成要素を含む、請求項 1に記載のプロトン伝導性高分子膜。
前記ポリべンズイミダゾール系化合物力 下記の構造式(2)、
[化 2]
Figure imgf000034_0002
(式中、 Xは、直接結合, — O— , —SO—, -S - , -CO- , — C (CH ) - , — C (
2 3 2
CF ) - , — O— Ph— O—よりなる群力 選ばれる 1種以上の結合様式を表し、 Arは
3 2
芳香族ユニットから選ばれる 1種以上の結合様式、 Phは芳香族結合ユニット、 Yはス ルホン酸基、ホスホン酸基力 選ばれる 1種以上の官能基であり、すべてが酸の形態 であっても一部またはすべてが誘導体の形態であっても良ぐ nは 1から 4までの整数 を表すものとする)
で示されるスルホン酸基および Zまたはホスホン酸基含有構成要素を含む、請求項 1に記載のプロトン伝導性高分子膜。
前記ポリべンズイミダゾール系化合物力 下記の構造式(3)、
Figure imgf000035_0001
(式中、 Xは一 O SO S— -CO- ,— C (CH ) C (CF ) -
2 3 2 3 2
O-Ph-O-よりなる群から選ばれる 1種以上の結合様式を示し、 Phはオルトフエ一 レン、メタフエ-レン、パラフエ-レン力も選ばれる 1種以上を示す。)
で示される構成要素を含む、請求項 1に記載のプロトン伝導性高分子膜。
前記構造式 (3)で示される構造が、下記の構造式
(4)および Zまたは構造式
(5) [化 4]
Figure imgf000035_0002
(式中、 Xは Ο- SO s - CO C (CH ) C (CF )
2 3 2 3 2
O-Ph-O-よりなる群から選ばれる 1種以上の結合様式を示し、 Phはオルトフエ- レン、メタフエ-レン、パラフエ-レン力も選ばれる 1種以上を示す。)
で示される構造を主成分とする、請求項 4に記載のプロトン伝導性高分子膜。
[6] 前記ポリべンズイミダゾール系化合物に対してビュルホスホン酸が 10質量%〜 100 0質量%の範囲内で含有されて ヽる、請求項 1に記載のプロトン伝導性高分子膜。
[7] 請求項 1〜6のいずれかに記載のプロトン伝導性高分子膜の製造方法であって、 前記高分子膜をビニルホスホン酸またはビュルホスホン酸を含む溶液に浸漬するェ 程を含む、プロトン伝導性高分子膜の製造方法。
[8] 酸素極と、燃料極と、固体高分子電解質膜と、酸化剤配流板と、燃料配流板とから なる単位セルを有し、
前記固体高分子電解質膜は、前記酸素極および前記燃料極に挟持され、 前記酸化剤配流板は、酸素極側に設けられて酸化剤流路を形成し、 前記燃料配流板は、燃料極側に設けられて燃料流路を形成し、かつ、 前記固体高分子電解質膜が請求項 1〜6のいずれかに記載のプロトン伝導性高分 子膜である、燃料電池。
PCT/JP2006/310858 2005-06-03 2006-05-31 プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池 WO2006129694A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06747031A EP1901378A4 (en) 2005-06-03 2006-05-31 PROTON CONDUCTIVE POLYMER MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
CN2006800195959A CN101189752B (zh) 2005-06-03 2006-05-31 质子传导性聚合物膜及其制造方法、以及使用该聚合物膜的燃料电池
KR1020087000055A KR101129162B1 (ko) 2005-06-03 2006-05-31 양성자 전도성 고분자막 및 그의 제조 방법, 및 이를이용한 연료 전지
US11/921,455 US8557472B2 (en) 2005-06-03 2006-05-31 Proton conducting polymer membrane, method for production thereof and fuel cell therewith

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-163982 2005-06-03
JP2005163962A JP2006339064A (ja) 2005-06-03 2005-06-03 ポリベンズイミダゾール系プロトン伝導性高分子膜およびその製造方法ならびにそれを用いた燃料電池
JP2005163982A JP5140907B2 (ja) 2005-06-03 2005-06-03 プロトン伝導性高分子膜およびその製造方法およびそれを用いた燃料電池
JP2005-163962 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006129694A1 true WO2006129694A1 (ja) 2006-12-07

Family

ID=37481623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310858 WO2006129694A1 (ja) 2005-06-03 2006-05-31 プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池

Country Status (4)

Country Link
US (1) US8557472B2 (ja)
EP (1) EP1901378A4 (ja)
KR (1) KR101129162B1 (ja)
WO (1) WO2006129694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105547A1 (ja) * 2007-02-27 2008-09-04 Teijin Limited 固体高分子電解質
KR100938627B1 (ko) 2007-11-30 2010-01-26 한국화학연구원 술폰산 및 포스폰산이 함유된 수소이온 전도성 공중합체,그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막연료전지

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2673069C (en) * 2006-12-22 2016-06-21 Vincenzo Arcella Process for operating a fuel cell in dry conditions
KR20090014604A (ko) * 2007-08-06 2009-02-11 삼성전자주식회사 연료전지용 프로톤 전도체 및 이를 이용한 연료전지
TWI340773B (en) * 2008-07-07 2011-04-21 Univ Taipei Medical Method of fabricating nano-fibers by electrospinning
TWI424882B (zh) 2010-12-29 2014-02-01 Ind Tech Res Inst 具含氮化合物修飾之金屬觸媒組成物
US10501317B2 (en) * 2011-03-24 2019-12-10 Council Of Scientific & Industrial Research High aspect ratio nanoscale multifunctional materials
ES2666853T3 (es) * 2011-06-17 2018-05-08 Fluidic, Inc. Celda de metal-aire con un material de intercambio iónico
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
EP3666814A4 (en) 2017-09-15 2021-09-01 Daikin Industries, Ltd. POLYBENZIMIDAZOLE, CORRESPONDING POLYAMIDE PRECURSOR AND PROCESS FOR ITS PRODUCTION
JP2022501463A (ja) * 2018-09-14 2022-01-06 ユニバーシティー オブ サウス カロライナ 有機溶媒なしでpbiフィルムを製造するための新規な方法
CN114824394B (zh) * 2021-01-29 2024-01-26 武汉氢阳能源有限公司 一种改性无机杂多酸复合高温质子交换膜及其制备方法
CN114479081B (zh) * 2022-01-28 2023-04-21 华南理工大学 一种膦酸功能化聚苯并咪唑及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110982A (ja) * 1995-10-18 1997-04-28 Japan Synthetic Rubber Co Ltd リン酸基含有重合体
JP2003229143A (ja) * 2002-02-06 2003-08-15 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜及びそれからなる燃料電池
CA2477864A1 (en) * 2002-03-05 2003-09-12 Pemeas Gmbh Protein-conducting electrolyte membrane for high temperature applications and application thereof in fuel cells
JP2003327694A (ja) * 2002-05-08 2003-11-19 Toyobo Co Ltd スルホン酸基および/またはホスホン酸基を有するポリベンザゾール系化合物、それを含む樹脂組成物、樹脂成形物、固体高分子電解質膜、固体電解質膜/電極触媒層複合体およびその複合体の製造方法
JP2003327825A (ja) * 2002-05-08 2003-11-19 Toyobo Co Ltd 酸性基含有ポリベンズイミダゾール系化合物と酸性基含有ポリマーを含む組成物、イオン伝導膜、接着剤、複合体、燃料電池
JP2004131533A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd スルホン酸基および/またはホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP2004131532A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd ホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP2004131530A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd イオン性基を有するポリベンズイミダゾール系化合物を主成分とする溶液、成形物およびその成形物の製造法
JP2005068396A (ja) * 2003-04-18 2005-03-17 Toyobo Co Ltd 複合イオン交換膜

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313783A (en) 1962-07-20 1967-04-11 Teijin Ltd Process for preparation of polybenzimidazoles
US3509108A (en) 1969-03-04 1970-04-28 Celanese Corp Preparation of polybenzimidazoles
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JP3656244B2 (ja) 1999-11-29 2005-06-08 株式会社豊田中央研究所 高耐久性固体高分子電解質及びその高耐久性固体高分子電解質を用いた電極−電解質接合体並びにその電極−電解質接合体を用いた電気化学デバイス
CN100358938C (zh) 2000-11-13 2008-01-02 东洋纺织株式会社 具有磺酸基和/或膦酸基的聚吲哚类化合物、固体电解质膜/电极催化剂层复合体及其制造方法
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
JP4549007B2 (ja) 2002-05-08 2010-09-22 東洋紡績株式会社 酸性基含有ポリベンズイミダゾール系化合物と酸性化合物を含有する組成物、イオン伝導膜、接着剤、複合体、燃料電池
DE10220817A1 (de) 2002-05-10 2003-11-27 Celanese Ventures Gmbh Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
JP4040359B2 (ja) 2002-05-15 2008-01-30 キヤノン株式会社 着色樹脂微粒子水分散体の製造方法、着色樹脂微粒子水分散体、インク、記録ユニット、インクカートリッジ、インクジェット記録装置及びインクジェット記録方法
DE10228657A1 (de) * 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
JP2005044611A (ja) 2003-07-28 2005-02-17 Toyobo Co Ltd 複合イオン交換膜およびそれを用いた固体高分子型燃料電池
JP4547177B2 (ja) * 2004-03-29 2010-09-22 本田技研工業株式会社 燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110982A (ja) * 1995-10-18 1997-04-28 Japan Synthetic Rubber Co Ltd リン酸基含有重合体
JP2003229143A (ja) * 2002-02-06 2003-08-15 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜及びそれからなる燃料電池
CA2477864A1 (en) * 2002-03-05 2003-09-12 Pemeas Gmbh Protein-conducting electrolyte membrane for high temperature applications and application thereof in fuel cells
JP2003327694A (ja) * 2002-05-08 2003-11-19 Toyobo Co Ltd スルホン酸基および/またはホスホン酸基を有するポリベンザゾール系化合物、それを含む樹脂組成物、樹脂成形物、固体高分子電解質膜、固体電解質膜/電極触媒層複合体およびその複合体の製造方法
JP2003327825A (ja) * 2002-05-08 2003-11-19 Toyobo Co Ltd 酸性基含有ポリベンズイミダゾール系化合物と酸性基含有ポリマーを含む組成物、イオン伝導膜、接着剤、複合体、燃料電池
JP2004131533A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd スルホン酸基および/またはホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP2004131532A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd ホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP2004131530A (ja) * 2002-10-08 2004-04-30 Toyobo Co Ltd イオン性基を有するポリベンズイミダゾール系化合物を主成分とする溶液、成形物およびその成形物の製造法
JP2005068396A (ja) * 2003-04-18 2005-03-17 Toyobo Co Ltd 複合イオン交換膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105547A1 (ja) * 2007-02-27 2008-09-04 Teijin Limited 固体高分子電解質
KR100938627B1 (ko) 2007-11-30 2010-01-26 한국화학연구원 술폰산 및 포스폰산이 함유된 수소이온 전도성 공중합체,그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막연료전지

Also Published As

Publication number Publication date
KR20080017428A (ko) 2008-02-26
KR101129162B1 (ko) 2012-03-28
EP1901378A1 (en) 2008-03-19
EP1901378A4 (en) 2009-11-18
US20090136818A1 (en) 2009-05-28
US8557472B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
JP5140907B2 (ja) プロトン伝導性高分子膜およびその製造方法およびそれを用いた燃料電池
WO2006129694A1 (ja) プロトン伝導性高分子膜およびその製造方法、およびそれを用いた燃料電池
US7288603B2 (en) Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
JP5706101B2 (ja) ポリアゾールの架橋体、その製造方法、それを含む燃料電池用電極と電解質膜、その製造方法及びそれを含む燃料電池
JP6447520B2 (ja) レドックス電池用イオン交換膜、複合体、及びレドックス電池
JP4549007B2 (ja) 酸性基含有ポリベンズイミダゾール系化合物と酸性化合物を含有する組成物、イオン伝導膜、接着剤、複合体、燃料電池
WO2017141878A1 (ja) 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池
JP2006339064A (ja) ポリベンズイミダゾール系プロトン伝導性高分子膜およびその製造方法ならびにそれを用いた燃料電池
JP2017033895A (ja) レドックス電池用隔膜
JP2016207608A (ja) ポリベンズイミダゾール系レドックス電池用イオン交換膜及びその製造方法、複合体、及びレドックス電池
JP4096227B2 (ja) 酸性基含有ポリベンズイミダゾール系化合物と酸性基含有ポリマーを含む組成物、イオン伝導膜、接着剤、複合体、燃料電池
JP2004131533A (ja) スルホン酸基および/またはホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP2004131532A (ja) ホスホン酸基を有するポリベンズイミダゾール系化合物、およびそれを含む樹脂組成物、およびその製造方法
JP4228040B2 (ja) スルホン酸基および/またはホスホン酸基を有するポリベンザゾール系化合物、それを含む樹脂組成物、樹脂成形物、固体高分子電解質膜、固体電解質膜/電極触媒層複合体およびその複合体の製造方法
JP4470099B2 (ja) 酸性基含有ポリベンズイミダゾール系化合物およびその組成物
JP4752336B2 (ja) 熱安定性改良プロトン伝導膜および該伝導膜形成用組成物
JP4337038B2 (ja) 酸性基含有ポリベンズイミダゾール系化合物を含む組成物
JP4061522B2 (ja) ポリアゾールポリマー系組成物及びそれを主成分とする膜、並びにポリアゾール系ポリマー組成物の成形方法
JP4200224B2 (ja) イオン伝導性スルホン酸含有ポリアゾール
JP2007063533A (ja) スルホン酸基含有ポリマーとその用途および製造方法
JP2008248254A (ja) 固体高分子電解質膜/電極触媒層複合体およびその製造方法
JP2013051145A (ja) 燃料電池の運転方法
JP2002146013A (ja) イオン伝導性ホスホン酸含有ポリアゾール
JP3968625B2 (ja) ホスホン酸含有ポリアゾール
JP2002146022A (ja) スルホン酸またはホスホン酸含有イオン伝導性ポリイミダゾール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019595.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006747031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087000055

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11921455

Country of ref document: US