WO2006129367A1 - 不揮発性メモリ - Google Patents

不揮発性メモリ Download PDF

Info

Publication number
WO2006129367A1
WO2006129367A1 PCT/JP2005/010190 JP2005010190W WO2006129367A1 WO 2006129367 A1 WO2006129367 A1 WO 2006129367A1 JP 2005010190 W JP2005010190 W JP 2005010190W WO 2006129367 A1 WO2006129367 A1 WO 2006129367A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
metal oxide
nanohole
memory
containing metal
Prior art date
Application number
PCT/JP2005/010190
Other languages
English (en)
French (fr)
Inventor
Seisuke Nigo
Takayuki Ohnishi
Original Assignee
Misuzu R & D Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misuzu R & D Ltd. filed Critical Misuzu R & D Ltd.
Priority to PCT/JP2005/010190 priority Critical patent/WO2006129367A1/ja
Priority to US11/916,335 priority patent/US20080197440A1/en
Priority to JP2007518839A priority patent/JPWO2006129367A1/ja
Publication of WO2006129367A1 publication Critical patent/WO2006129367A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8616Charge trapping diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/34Material includes an oxide or a nitride

Definitions

  • the present invention relates to a non-silicon nonvolatile memory. Specifically, the present invention relates to a nonvolatile memory that uses an interface state formed on a partition wall of a nanohole-containing metal oxide film as a charge holder of the memory.
  • SRAM Static RAM: Anytime read / write memory that does not require memory retention (refresh) operation
  • DRAM Dynamic RAM: Anytime that requires refresh operation
  • Read / write memory and flash memory (non-volatile semiconductor memory that combines the features of RAM and ROM that can retain data after power-off).
  • SRAM In addition to the disadvantage of being volatile, SRAM cannot be increased in capacity because it is difficult to achieve high integration, but it is used for cache memory, etc. because it can be accessed at high speed. DRAM is also volatile, and because it is a data destructive read type, it requires a refresh operation at the time of reading. Yes.
  • flash memory is widely used as a nonvolatile memory that does not lose its memory even when the power is turned off. Flash memory is 1000 nanoseconds, which is 200 times longer than DRAM, but it is used for storing relatively small amounts of data due to its integration and non-volatile characteristics.
  • so-called universal 'memory which is not satisfactory with conventional memory in the ubiquitous' computing era, high-speed processing era' when information devices are no longer only PCs, has the advantages of SRAM, DRAM, and flash memory. It has been a long time since I was waiting for.
  • FeRAM solves the volatility that is a drawback of DRAM by adopting a ferroelectric capacitor, and achieves a low voltage by reducing the write time to 50 nanoseconds. However, since it is a data destruction read type memory, the read time becomes longer due to the rewrite operation. In addition, the power of 2-transistor 2-capacitor type memory cells has been put to practical use, and because of the complex structure, there is a limit to large capacity.
  • MRAM uses a change in the force magnetic field that is suitable for high-speed access, so the manufacturing process is special and expensive. In addition, it is necessary to reduce the size of the sense amplifier in order to achieve a large capacity, so that the problem of reducing the write current remains.
  • OUM uses a new storage medium, a chalcogenide alloy, and utilizes the phenomenon that electrical resistance decreases when it is heated to 600 ° C and crystallized, and returns to high resistance when rapidly cooled and crystallized. Therefore, it is expected to be a non-volatile memory that can replace the flash memory because of its simple structure with two electrodes.
  • reliability is a concern because writing is performed by current heating, and a long voltage application time during writing becomes an obstacle to high-speed operation, and the timing for practical use is undecided.
  • MOSFET Metal Oxide-Semiconductor Field Effect Transistor
  • Figure 1 shows a conventional MOSFET memory.
  • the MOSFET type memory has three electrodes: a gate electrode 21, a source electrode 29, and a drain electrode 25.
  • the floating gate 24, the oxide film 23, the control gate 22, and the drain junction region 26 and the source junction region 28 provided in the substrate 27 are sequentially connected via the tunnel oxide film 30. Yes. Then, by trapping electrons in the floating gate 24 and extracting the electrons through the tunnel oxide film 30, when the voltage is applied to the gate electrode, it conducts to the upper surface of the substrate 27.
  • the conventional MOSFET-type memory has a two-stage control method, and the floating gate is electrically charged.
  • the tunnel effect is only used to move the child in and out, and the tunnel effect is not directly used in the memory current circuit. Therefore, there is a limit to speeding up and voltage reduction.
  • a nonvolatile memory using a Schottky barrier is provided with a silicon silicide film and a metal silicide film that forms a Schottky barrier diode (see Patent Document 1), and a non-volatile memory using a tunnel effect is quantum mechanics.
  • Patent Document 1 a silicon silicide film and a metal silicide film that forms a Schottky barrier diode
  • Patent Document 2 an insulating layer that can directly tunnel electrons
  • Patent Document 3 A structure that emits a tunnel (see Patent Document 3) has been proposed.
  • Patent Documents 1 to 3 are technologies that use the tunnel effect to put electrons into and out of the floating gate of the MOSFET-type nonvolatile memory through the insulating film. Inverted channel formation is used. In other words, since the tunnel effect is not directly used to turn on / off the memory current, the current on / off ratio cannot be significantly improved, and there is a limit to speeding up and lowering the voltage.
  • Patent Document 1 Japanese Patent No. 2913752
  • Patent Document 2 JP 2002-289709 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-68893
  • the present invention realizes a high-speed access equivalent to that of SRAM, enables integration exceeding DRAM, and can be driven by a small battery, and can be driven by a small battery and has a low voltage and low power consumption. Is intended to provide.
  • the present inventors have found that when a nanohole-containing metal oxide film is formed in a honeycomb shape, interface states exist in the partition walls at a high density. It was found that the trap charge due to the electrons trapped at the interface state can be used as the storage charge at the same time as the control charge that directly turns on and off the memory current if is placed in the Schottky junction state. .
  • Harcom type FET-RAM Honeycomb-type FET-Random Access Memory; HoFET-RAM
  • a nanohole-containing metal oxide film having a thickness of 0.05 to 5 m having a Hercom structure is placed in a Schottky junction state between a pair of metal electrodes, thereby forming the nanohole-containing metal oxide film.
  • the nanohole-containing metal oxide film has a structure in which a plurality of double Schottky barriers are formed in parallel.
  • the nonvolatile memory of the present invention stores information using trapped charges, and at the same time eliminates and restores the double Schottky barrier, so that the current on / off specific power is as high as 10 6 or more.
  • the applied voltage during reading is 0.2 V or less, and the applied voltage during writing is Fowler-Nordnom
  • the tunnel current (hereinafter referred to as “FN tunnel current”) is about IV, and the voltage at the time of erasure is about IV.
  • FN tunnel current is about IV
  • the voltage at the time of erasure is about IV.
  • the electrons excited by the hot electrons of the FN tunnel current are used as a trigger at the time of writing, so the writing speed is faster than the conventional method of injecting electrons into the capacitor, and the switching is fast. Is possible.
  • FIG. 1 is a cross-sectional view schematically showing a structure of a conventional MOSFET nonvolatile memory.
  • FIG. 2 is a cross-sectional view schematically showing the structure (one cell) of the nonvolatile memory of the present invention.
  • FIG. 3 is a graph showing changes in current-voltage characteristics in the nonvolatile memory of the present invention.
  • FIG. 4 is a schematic diagram showing a change of a Schottky barrier due to an electron trap, schematically showing a cross section of two nanoholes and a partition wall in the nonvolatile memory of the present invention.
  • a nanohole-containing metal oxide film having a 0.05 to 5 ⁇ m thick cam structure is disposed in a Schottky junction state between a pair of metal electrodes.
  • the present invention also provides a metal electrode force that is Schottky bonded to the upper end of the partition wall of the substrate electrode, the nanohole-containing metal oxide film formed by anodizing the surface of the substrate electrode, and the nanohole-containing metal oxide film.
  • the nanohole-containing metal oxide film has a structure in which a plurality of double Schottky barriers are formed in parallel.
  • a normal Schottky diode is non-conductive at a voltage of about 0.3 V due to a Schottky barrier, but when a voltage higher than the Schottky barrier, for example, 5 V, is applied in the forward direction, a surge current flows beyond the Schottky barrier. When the applied voltage drops below the barrier, it returns to non-conduction. However, if there is an interface state at the Schottky junction, it acts as a trap level or recombination center, and abnormal phenomena such as leakage current and hysteresis other than normal current appear. It is necessary to make it as small as possible. Not limited to the above example, the common state of semiconductors is that interface states become uncontrollable disturbances, so eliminating them as much as possible is considered the best policy, and charge retention is achieved by actively using interface states. In my body, my invention was never made.
  • the interface state which is not controlling the interface state itself, is pushed into the three-dimensional nanostructure, thereby restricting the location where the interface state exists and substantially interfacial state. To control.
  • the nonvolatile memory of the present invention has a honeycomb structure in which a metal oxide film having nanoholes is formed in a honeycomb-shaped structure because the Schottky electrode is planarly bonded as in the prior art (see FIG. 1).
  • An upper end of the partition wall having a cross-sectional shape and a metal electrode are arranged in a Schottky junction state (see Fig. 2).
  • Nanohole-containing metal oxide film barrier (corresponding to n-type semiconductor)
  • the force electrode in the presence of an interface state due to lattice defects of 10 16 / cm 3 or more formed during anodization is formed at the upper end of the hard-came partition wall, for example, the upper end protrusion of the partition wall with a width of 20 nm.
  • the interface state existing at the Schottky electrode junction is about 1Z10 or less.
  • the remaining interface states of about 9Z10 are aligned perpendicular to the electrode direction without being in contact with the electrode, and exist facing both surfaces of the partition wall. For this reason, the interface state existing in the vertical partition wall does not disturb the current flowing through the Schottky electrode.
  • an FN tunnel current flows through the double Schottky barrier when a voltage of about IV is applied, and the electrons excited by the hot electrons are transferred between the oxide film and the partition wall. It becomes trapped at the interface state and becomes a metastable trap charge.
  • the local electric field lowers the potential of the central layer of the partition wall, and double-shock barrier (49a in Fig. 4 (a)) force S tunnel state (Fig. 4 (b) 49b).
  • This conduction state is a metastable state, and even when the power is turned off, trapped electrons remain in the interface state as they are, and the conduction state is maintained until the trapped electrons are extracted to the lower electrode by a reverse voltage.
  • the present invention switches the conduction state and the non-conduction state by erasing or restoring the shot barrier by putting trap electrons into and out of the interface state formed in the partition wall of the nanohole-containing metal oxide film.
  • the information of “0” and “1” is stored and held.
  • the nonvolatile memory of the present invention directly controls the memory current by the trap charge, so that neither a gate electrode nor an attached capacitor structure is required. That is, the present invention has realized a nonvolatile memory including one extremely simple transistor having two electrodes (a metal electrode 42 that is Schottky-bonded with a substrate electrode 44).
  • the lattice defect density of the partition walls of the nanohole-containing metal oxide film is preferably 10 16 Zcm 3 or more, and more preferably 10 18 / cm 3 or more.
  • the density of the lattice defects is less than 10 14 Zcm 3 , trapped charges are insufficient, and the Schottky barrier may not be sufficiently thin and may not be in a conductive state.
  • the thickness of the nanohole-containing metal oxide film is in the range of 0.05 to 5 111, preferably in the range of 0.1 to 1 / ⁇ ⁇ . Leakage current increases when the thickness of the nanohole-containing metal oxide film is less than 0.05 / zm, and FN tunneling current is less likely to occur when the thickness is 5 m or more.
  • the nanohole-containing metal oxide film can be obtained by anodizing the surface of a metal such as aluminum or titanium.
  • the electrolytic solution for example, in the presence of an acid having a concentration of 1 to 5%, the temperature is preferably adjusted to 0 ° C. to 50 ° C., and the voltage is preferably controlled within a range of 10V to 150V.
  • a high-purity aluminum such as 1000 series having a purity of 99.0% or more, preferably 99.5% or more, and having a smooth surface is used. It is preferable to use it.
  • the diameter of the nanohole formed in the metal oxide film by self-assembly is preferably 10 to 150 nm, more preferably 30 to 60 nm.
  • the diameter is less than lOnm, it becomes difficult to make it conductive.
  • the reason for this is thought to be that since the partition wall thickness is reduced in proportion to the nanohole diameter, the interface state that forms the charge holding body and the channel layer at the center of the partition wall overlap, making the channel layer thinner, and the channel current does not flow. .
  • the partition wall thickness increases proportionally, so the charge retaining layer at the interface state and the channel layer in the center of the partition wall are too far apart, and the size effect of the local electric field becomes insufficient. .
  • the trap charge at the interface state does not sufficiently lower the potential at the center of the partition wall, so that the tunnel effect due to thinning of the Schottky barrier is less likely to occur, and it becomes difficult to make the conductive state.
  • the diameter of the nanohole can be controlled by adjusting the type of acid used in the anodizing electrolyte.
  • sulfuric acid is used as the electrolyte
  • the diameter of the nanoholes is the smallest, and the diameter of the nanoholes increases in the order of the mixture of oxalic acid and phosphoric acid, oxalic acid, and phosphoric acid.
  • nanoholes made with 2-4% electrolyte of oxalic acid are preferred because they have a diameter force of S30-60nm and are perpendicular to the surface! /.
  • a metal such as gold, aluminum, nickel, titanium, tin, or tungsten is Schottky bonded to the upper end of the partition wall of the nanohole-containing metal oxide film by vapor deposition or sputtering.
  • One metal electrode is used, and the other metal is a metal such as aluminum or titanium.
  • Gold or aluminum is preferred as the metal to be Schottky bonded. With this configuration, there is an advantage that the operating voltage is stabilized.
  • the two-dimensional array of nanoholes formed in the metal oxide film is provided every two or three or more. By dividing it into a single memory cell by dividing it into insulating grooves, the two-dimensional array of nanoholes can be used as it is as a memory cell array
  • FIG. 2 is a cross-sectional view schematically showing the structure of the nonvolatile memory of the present invention.
  • Figure 2 is a diagram in which one memory cell is composed of five nanoholes among the many nanoholes that exist in the form of a honeycomb in the metal oxide film containing nanoholes.
  • the substrate electrode 14 is also made of aluminum, and the other surface of the substrate electrode 14 has a nanohole-containing metal oxide film 13 formed by anodizing the substrate electrode 14, and the upper end of the partition wall. Is provided with a Schottky electrode 12 formed by vapor deposition, sputtering or the like, and a lead electrode 11 is connected to the Schottky electrode 12. Since there are Schottky barriers between the partition walls of the nanohole-containing metal oxide film 13 and the Schottky electrode 12 and the substrate electrode 14, the electrodes are blocked by the double Schottky barrier.
  • the Schottky electrode 12 and the substrate electrode 14 When gold is used for the Schottky electrode, when a low voltage, for example, 0.2 V, is applied between the Schottky electrode 12 and the substrate electrode 14, the Schottky electrode 12 and nanoholes are included. Due to the Schottky barrier formed at the junction surface of the metal oxide film 13 with the partition wall, no current flows between the Schottky electrode 12 and the substrate electrode 14. However, when a slightly higher voltage, such as IV, is applied, an FN tunnel current flows through the Schottky barrier, and the electrons excited by the hot electrons flow into the nanohole-containing metal oxide film / wall.
  • a slightly higher voltage such as IV
  • the trapped charge When trapped at the interface state, the trapped charge lowers the potential of the nanohole partition wall 47, and the Schottky barrier between the Schottky electrode 12 and the substrate electrode 14 is thinned and becomes a tunnel state. However, a current of more than 10 mA flows at a voltage of 0.2V. This conduction state is a metastable state and is maintained even when the applied voltage is zero.
  • FIG. 3 is a graph showing changes in current-voltage characteristics of the nonvolatile memory of the present invention.
  • memory is written by applying IV between the Schottky electrode 12 and the substrate electrode 14 as shown in Fig. 3 (point B).
  • Memory is erased by applying IV to (E point).
  • IV When 0.2V is applied between the same electrodes and a current of about 17mA flows, it is set to "0" ON state (C point), and when no current flows, the state is set to "1" OFF state (A point)
  • the stored contents can be read out.
  • the same characteristics are basically exhibited when aluminum is used as the metal for the metal electrode.
  • the present invention can directly turn on / off the memory current and store information at the same time by eliminating or reviving the double Schottky barrier between the electrodes only by taking in and out trapped electrons. Therefore, the response is quick with few control factors.
  • FIG. 4 is a schematic cross-sectional view when one memory cell is composed of two nanoholes, and a schematic view showing changes in trap electrons and Schottky barriers.
  • FIG. 4 (a) shows the state of the memory element (“1” off state) at point A in FIG.
  • nanoholes 45 having a diameter of 10 to 150 nm, preferably 30 to 60 nm, are arranged substantially perpendicular to the upper electrode.
  • the nanohole barrier ribs 47 in which the interface states for trapping electrons are formed are arranged in parallel to the electrode direction, as if two fine capacitors were arranged opposite to each other. It becomes a state.
  • the tip convex portion of the nanohole partition wall 47 and the Schottky electrode 42 are in a non-conductive state due to the Schottky barrier.
  • the nanohole-containing metal oxide film 43 is formed on the substrate electrode 44 by anodizing aluminum or the like of the substrate electrode 44. Similarly, the nanohole partition wall 47 and the substrate electrode 44 are not electrically connected by the Schottky barrier. State. That is, the electrode 42 and the electrode 44 are electrically disconnected by the double Schottky barrier 49a, and the point A in FIG. 3 is non-conductive between the electrode 42 and the electrode 44 at an applied voltage of 0.2V. Show that it is in a state.
  • FIG. 4 shows an example in which three pairs of double Schottky barriers are formed in parallel.
  • the aluminum anodic oxide film manufactured by the method shown in Example 1 has a diameter force Onm of about nanoholes 45 as shown in FIG. 5, and all the nanoholes 45 are almost perpendicular to the substrate electrode 44. Is formed.
  • the nanohole partition wall 47 is also substantially vertical and has a uniform wall thickness, which shows that the microstructural requirements for using the nanohole partition wall 47 for charge carriers and channels are met.
  • the thickness of the Schottky barrier is reduced, and a tunnel state is established and a conduction (ON) state is established.
  • the state in Fig. 4 (b) is metastable, and trapped electrons continue to exist at the interface state even when the applied voltage is zero, so that the conduction state is maintained. In other words, it moves on the metastable line that connects point C and point D of the hysteresis curve in Fig. 3 through the origin.
  • Point C in Fig. 3 is an ON state with 0.2 V applied in the presence of trapped electrons, and the memory contents are determined by the difference in the current values at points A and C.
  • a detection current of more than 10 mA flows at about 0.2 V, and trapped electrons are not extracted at an applied voltage of about 0.2 V, so the on-state does not change depending on the reading operation! /.
  • the detection current is in an off state of several tens of pA or less, and trapped electrons are not generated at an applied voltage of about 0.2 V, so the off state does not change with the read operation.
  • the voltage at point E should be sufficient to pull out trapped electrons.
  • trapped electrons are extracted to the lower electrode, the trap charge disappears, the Schottky barrier thickness returns to the original state, and the device is turned off. This state is a stable state.
  • one memory cell can be composed of three or more nanoholes. In that case, the number of channels of one memory cell increases, and the on-current increases proportionally.
  • a single memory cell functions as long as there is a single channel, so the minimum size of the memory cell is twice the nanohole spacing (0.1 l) and the calculated minimum cell area Becomes 0.04 m 2 .
  • FIG. 1 shows a cross-sectional view of one cell of the memory cell fabricated above.
  • the thickness of the aluminum oxide nanoholes was 0.
  • the nanohole diameter was 35 nm.
  • the thickness of the gold electrode is LOOnm, cell area was 4 ⁇ m 2.
  • Figure 5 shows a photograph of the cross section of the aluminum oxide film obtained in Example 1 observed with a transmission electron microscope. (Rate: 300,000 times). Figure 5 shows that it has a regular nanohole barrier.
  • Example 1 instead of an aluminum substrate, a silicon substrate was thermally oxidized to obtain SiO
  • the change in resistance value of the memory element obtained in Example 1 was measured with a high-speed oscilloscope.
  • Figure 7 shows the data of resistance change. As shown in Figure 7, the time lag was taken into account because the shift time from high resistance (22 M ⁇ ) to low resistance (2 ⁇ ) when applying IV between the electrodes was 0.02 s (20 ns). Even so, it can be seen that the write time is less than 50ns.
  • FIG. 8 is an example of a 4 ⁇ 4 memory basic circuit using the nonvolatile memory of the present invention.
  • the transistor 'switch 3 for switching between IV, 0.2V and IV with signals corresponding to each operation It becomes a simple circuit composed of pieces.
  • Table 1 summarizes the characteristic comparison between the nonvolatile memory of the present invention and the conventional memory device. From Table 1, it can be seen that the nonvolatile memory of the present invention solves all the above-mentioned problems required for universal memories.
  • Nonvolatile memory Volatile memory Flash memory of the present invention
  • nonvolatile memory of the present invention directly controls the memory current, high-speed switching is possible and power consumption is low. As a result, according to the present invention, it is possible to provide a non-volatile memory that can perform high-speed access, high integration, small battery drive, low voltage, and low power consumption.
  • the nonvolatile memory of the present invention is a simple bipolar element having no gate electrode, and the aluminum substrate can be used as it is for the lower electrode wiring, so that the memory wiring becomes very simple and can be easily miniaturized. Furthermore, since the aluminum material that is widely used in the silicon semiconductor process is used, the conventional manufacturing equipment can be used as it is.
  • the nanohole array regularly and two-dimensionally arranged at equal intervals formed on the anodized aluminum film can be used as a memory cell array in the state where it is arranged.
  • the memory manufacturing of the present invention has an advantage that the productivity can be increased because most of the complicated microfabrication can be replaced by self-organization.
  • the doping technology required for conventional silicon semiconductors is no longer necessary, and the materials are aluminum, general-purpose electrode materials, insulating materials, radio wave shielding materials, etc., and rare elements such as compound semiconductors are required. There are advantages to not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 フラッシュメモリと同様の不揮発性、SRAMと同等の高速アクセスを実現し、DRAMを超える集積化を可能にし、かつ小型電池駆動に耐えうる低電圧、低消費電力の不揮発性メモリを提供する。  本発明は、(1)一対の金属電極の間に、ハニカム構造を有する膜厚0.05~5μmのナノホール含有金属酸化膜をショットキー接合状態に配置することにより、該ナノホール含有金属酸化膜の隔壁に形成された界面準位を、メモリの電荷保持体として利用することを特徴とする不揮発性メモリ、及び(2)基板電極、該基板電極の表面を陽極酸化して形成したナノホール含有金属酸化膜、及び該ナノホール含有金属酸化膜の隔壁上端部にショットキー接合された金属電極からなり、該ナノホール含有金属酸化膜が、複数の二重ショットキー障壁が並行に形成された構造を有することを特徴とする不揮発性メモリである。                                                                         

Description

明 細 書
不揮発性メモリ
技術分野
[0001] 本発明は、非シリコン系の不揮発性メモリに関する。詳しくは、本発明は、ナノホー ル含有金属酸化膜の隔壁に形成された界面準位を、メモリの電荷保持体として利用 する不揮発性メモリに関する。
背景技術
[0002] 読み書き可能なメモリとして汎用的に利用されているのは、 SRAM (Static RAM :記 憶保持 (リフレッシュ)動作が不要な随時読み出し書き込みメモリ)、 DRAM (Dynamic RAM:リフレッシュ動作が必要な随時読み出し書き込みメモリ)、フラッシュメモリ(RAM の特長と、電源遮断後のデータが保持できる ROMの特長を併せ持つ不揮発性半導 体メモリ)である。
SRAMは揮発性であるという欠点に加えて、高集積ィ匕が困難なために大容量化が できないが、高速アクセスが可能であるため、キャッシュメモリなどに利用されている。 DRAMも揮発性という欠点にカ卩えて、データ破壊読出し型であるために読出し時にリ フレッシュ動作が必要である力 大容量ィ匕できるという特性を生力してパソコンの主メ モリに多用されている。
[0003] 一方、電源を遮断しても記憶が消えない不揮発性メモリとして、フラッシュメモリが汎 用されている。フラッシュメモリは、書込み時間が 1000ナノ秒と DRAMの 200倍長く 力かるが、集積化と不揮発性の特性を生力して比較的小容量のデータ保存に利用さ れている。しかし、情報機器がパソコンのみでなくなったュビキタス 'コンビユーティン グ時代、高速処理時代では、従来のメモリでは満足できず、 SRAM、 DRAM,フラッシ ュメモリのそれぞれの利点を併せ持つ、いわゆるユニバーサル 'メモリの開発が待望 されて久しい。
[0004] ュ-バーサノレ.メモリの開発を目指して、 FeRAM (Ferroelectric RAM:強誘電体メモ リ)、 MRAM (Magnetic RAM:磁気抵抗効果を示す記憶素子を用いたメモリ)、 OUM ( Ovonics Unified Memory:記憶素子に相変化膜を利用する半導体メモリ)等の不揮発 性メモリの開発が進められている。
FeRAMは、 DRAMの欠点である揮発性を強誘電体キャパシタの採用で解決し、書 込み時間を 50ナノ秒にして、低電圧化も達成した。しかし、データ破壊読み出し型メ モリなので、再書込み動作のために読み出し時間が長くなる。また、 2トランジスタ 2キ ャパシタ型のメモリセルが実用化されている力 S、構造が複雑なために大容量ィ匕に限 界がある。
[0005] MRAMは、高速アクセスに適している力 磁界の変化を利用しているため製造プロ セスが特殊でコスト高となる。また、大容量ィ匕のためにはセンスアンプの小型化が必 要で、そのためには書込み電流を低減する課題が残っている。
OUMは、新しい記憶媒体であるカルコゲ-ド合金を用いたもので、 600°Cに電流加 熱して結晶化すると電気抵抗が低下し、急冷して非結晶化すると高抵抗に戻る現象 を利用しており、 2極素子の単純構造なのでフラッシュメモリを代替しうる不揮発性メ モリとして期待されている。しかし、電流加熱で書き込みを行うために信頼性が懸念さ れており、書き込み時の電圧印加時間が長いことが高速ィ匕の障害になり、実用化の 時期は未定である。
このように、従来の不揮発性メモリは 3者 3様であり、いずれも決定的に優位な技術 を提供するものではない。
[0006] 不揮発性メモリとしては、従来力も一般的にフラッシュメモリとして使われているもの に MOSFET (Metaト Oxide— Semiconductor Field Effect Transistor :MOS電界効果トラ ンジスタ)型メモリがある。従来の MOSFET型メモリを図 1に示す。 MOSFET型メモリは 、ゲート電極 21とソース電極 29、ドレイン電極 25の 3電極を有している。順次積層さ れたフローティングゲート 24、酸化膜 23、コントロールゲート 22と、基板 27に設けら れたドレイン接合領域 26とソース接合領域 28とは、トンネル酸ィ匕膜 30を介して、接続 されている。そして、トンネル酸ィ匕膜 30を介して、フローティングゲート 24内に電子を 捕捉したり電子を抽出したりすることで、ゲート電極に電圧を印カロした際に、基板 27 の上表面部に導通チャンネルを形成したり、導通チャンネルを解消したりして、ドレイ ン電極 25とソース電極 29の間の導通をオン.オフさせて情報を記憶させている。すな わち、従来の MOSFET型メモリは、 2段階制御方式であり、フローティングゲートに電 子を出し入れするためにトンネル効果を利用しているだけで、メモリ電流回路にトンネ ル効果を直接利用するものではないため、高速化、低電圧化に限界がある。
[0007] 最近は低消費電力と高速ィ匕を狙ったトンネル 'メモリが研究開発されている。トンネ ル型メモリの例では、富士通研究所力 S「ダイレクト 'トンネルメモリ」という携帯通信機器 用メモリを開発したと発表している。低消費電力と多量のデータ記憶の観点から、口 ジック LSI用極薄ゲート絶縁膜のダイレクトトンネル現象を利用したものである。その 用途としては、待機中消費電力が DRAMの 1/10000以下の次世代 G-bitRAMを目指 している。ただし、この素子もコントロールゲートとフローティングゲートの 2種類のゲー トが必要である。
[0008] 特許文献には、不揮発性メモリにショットキー障壁やトンネル効果を利用した種々 の提案がなされている。例えば、ショットキー障壁を利用した不揮発性メモリとして、シ リコン膜とショットキー障壁ダイオードを構成する金属シリサイド膜を設けたもの (特許 文献 1参照)、トンネル効果を利用した不揮発性メモリとして、量子力学的に電子が直 接トンネルすることが可能な絶縁層を設けたもの (特許文献 2参照)、さらに、トンネル 効果を利用した不揮発性メモリとして、トラップに捕獲された電子が絶縁膜を介してト ンネル放出される構成のもの(特許文献 3参照)が提案されて 、る。
[0009] しかし、特許文献 1〜3は、 MOSFET型不揮発性メモリのフローティングゲートへ絶 縁膜を通して電子を出し入れするためにトンネル効果を利用する技術であり、 V、ずれ もメモリ電流の制御については反転チャンネル形成を利用している。すなわち、メモリ 電流のオン ·オフに直接にトンネル効果を利用するものではな 、ため、電流のオン · オフ比を大幅に改善できず、高速化と低電圧化に限界があった。
[0010] 特許文献 1 :特許第 2913752号公報
特許文献 2:特開 2002— 289709号公報
特許文献 3:特開 2003— 68893号公報
発明の開示
[0011] 本発明は、このような状況下で、 SRAMと同等の高速アクセスを実現し、 DRAMを超 える集積化を可能にし、かつ小型電池駆動ができる低電圧、低消費電力の不揮発 性メモリを提供することを目的とするものである。 本発明者らは、前記目的を達成するために鋭意研究した結果、ナノホール含有金 属酸化膜をハニカム型に形成すると、その隔壁には界面準位が高密度で存在する ため、その金属酸化膜をショットキー接合状態に配置すれば、界面準位にトラップし た電子によるトラップ電荷は、メモリ電流をダイレクトにオン'オフする制御電荷になる と同時に、記憶電荷として利用することができることを見出した。
すなわち、本発明は、ハ-カム型の FET- RAM (Honeycomb-type FET- Random A ccess Memory; HoFET— RAM)というべきものであり、
(1)一対の金属電極の間に、ハ-カム構造を有する膜厚 0. 05〜5 mのナノホール 含有金属酸化膜をショットキー接合状態に配置することにより、該ナノホール含有金 属酸化膜の隔壁に形成された界面準位を、メモリの電荷保持体として利用することを 特徴とする不揮発性メモリ、及び
(2)基板電極、該基板電極の表面を陽極酸化して形成したナノホール含有金属酸 化膜、及び該ナノホール含有金属酸化膜の隔壁上端部にショットキー接合された金 属電極カゝらなり、該ナノホール含有金属酸化膜が、複数の二重ショットキー障壁が並 行に形成された構造を有することを特徴とする不揮発性メモリを提供するものである。
[0012] 本発明の不揮発性メモリは、トラップ電荷を利用して情報を記憶すると同時に、二 重ショットキー障壁を消滅、復活させるので、電流のオン'オフ比力 例えば 106以上 と高い。メモリの動作電圧は使用するショットキー電極の金属の種類で変わる力 金 を使用した場合には、読出し時の印加電圧は 0. 2V以下で、書込み時の印加電圧 は、ファウラー ·ノルドノヽィム 'トンネル電流(以下、「FNトンネル電流」という)が発生す る IV程度、消去時の電圧は IV程度である。このように、メモリの消費電力が少な いため、小型電池駆動が可能である。
さらに、本発明によれば、 FNトンネル電流のホットエレクトロンにより励起された電 子を書込み時のトリガとして利用しているので、従来のキャパシタへの電子注入方式 に比べて書込み速度が早く、高速スイッチングが可能である。
図面の簡単な説明
[0013] [図 1]従来の MOSFET型不揮発性メモリの構造を模式的に示す断面図である。
[図 2]本発明の不揮発性メモリの構造(1セル分)を模式的に示す断面図である。 [図 3]本発明の不揮発性メモリにおける電流 電圧特性の変化を示す図である。
[図 4]本発明の不揮発性メモリを、 2つのナノホールと隔壁の断面を模式的に示して、 電子トラップによるショットキー障壁の変化を示す模式図である。
圆 5]実施例 1で作製したアルミ陽極酸ィ匕膜の透過型電子顕微鏡写真である。
圆 6]本発明の実施例データを測定するためのメモリ素子の抵抗値測定回路の一例 である。
圆 7]測定した抵抗値変化のデータを示すグラフである。
圆 8]本発明の不揮発性メモリを応用した記憶装置の回路図である。
符号の説明
11、 41 リード電極
12、 42 ショットキー接合された金属電極
13、 43 ナノホール含有金属酸化膜
14、 44 基板電極
15、 45 絶縁材で埋められたナノホール
16、 46 絶縁膜
17、 47 ナノホーノレ隔壁
18、 48 シリコン基板
21 ゲ -ト電極
22 コントロールゲート
23 酸化膜
24 フロ一ティングゲート
25 ドレイン電極
26 ドレイン接合領域
27 基板
28 ソー -ス接合領域
29 ソー -ス電極
30 トンネル酸ィ匕膜
49a 二重ショットキー障壁 49b トラップ電荷により障壁厚さが減少してトンネル状態になった二重ショットキー 障壁
50 トラップ電子
発明を実施するための最良の形態
[0015] 本発明は、一対の金属電極の間に、膜厚 0. 05〜5 μ mのハ-カム構造を有する ナノホール含有金属酸化膜をショットキー接合状態に配置することにより、該ナノホー ル含有金属酸化膜の隔壁に形成された界面準位を、メモリの電荷保持体として利用 することを特徴とする不揮発性メモリである。また、本発明は、基板電極、該基板電極 の表面を陽極酸化して形成したナノホール含有金属酸化膜、及び該ナノホール含有 金属酸ィ匕膜の隔壁上端部にショットキー接合された金属電極力 なり、該ナノホール 含有金属酸化膜が、複数の二重ショットキー障壁が並行に形成された構造を有する ことを特徴とする不揮発性メモリである。
通常のショットキーダイオードは、ショットキー障壁により 0. 3V程度の印加電圧では 非導通であるが、ショットキー障壁以上の電圧、例えば 5Vを順方向に印加するとショ ットキー障壁を超えてサージ電流が流れて導通し、印加電圧が障壁以下に低下する と非導通に戻る。しかし、ショットキー接合部に界面準位が存在すると、それがトラップ 準位や再結合中心として作用して正規の電流以外のリーク電流やヒステリシス等の 異常現象が現れるので、界面準位の密度をできるだけ小さくすることが必要である。 上記の例に限らず、半導体の常識として、界面準位は制御不能な外乱となるため、 できるだけ無くすることが最良の方策と考えられており、界面準位を積極的に利用し て電荷保持体にすると ヽぅ発明はなされて ヽなかった。
[0016] 本発明においては、界面準位そのものを制御するのではなぐ界面準位を立体的 なナノ構造の中に押込めることにより、それが存在する場所を規制して実質的に界面 準位を制御する。
つまり、本発明の不揮発性メモリは、従来(図 1参照)のようにショットキー電極を平 面的に接合するのでなぐナノホールを有する金属酸ィ匕膜をノヽ-カム構造にして、蜂 の巣状の横断面形状を有する隔壁上端部と金属電極をショットキー接合状態に配置 する(図 2参照)。ナノホール含有金属酸ィ匕膜の隔壁 (n—型半導体に該当する)には 陽極酸ィ匕の際に形成した 1016/cm3以上の格子欠陥に起因する界面準位が存在す る力 電極はハ-カム状の隔壁上端部の、例えば隔壁の上端凸部 20nm巾の部分 で接合するので、ショットキー電極接合部に存在する界面準位は全体の約 1Z10以 下になる。残り約 9Z10の界面準位は、電極に接することなく電極方向に垂直に積 層して配向し、隔壁の両表面に対向して存在する。そのために、この垂直隔壁部分 に存在する界面準位は、ショットキー電極を通って流れる電流を阻害しな 、。
[0017] また、隔壁の垂直部に存在する約 9Z10に相当する界面準位にトラップされた電 子は、お互いにクーロン力で反発し合って隔壁の両表面に偏在する。このため、ナノ ホール内に SiO等の絶縁材を充填することによりナノホール内表面を絶縁ィ匕すれば
2
準安定状態に保たれ、隔壁中央の酸ィ匕膜の両側を挟んだ準安定なトラップ電荷とし て機能する。この界面準位に電子がトラップされるとそのトラップ電荷によって、それ に挟まれた隔壁中央層の電位が低下し、ポテンシャルが湾曲することでショトキ一障 壁が薄厚化してトンネル状態になって電極間が導通する。
[0018] これらのシーケンシャルな動作を要約すると、 IV程度の電圧印加で二重ショトキ一 障壁を貫通して FNトンネル電流が流れ、そのホットエレクトロンによって励起された 電子が、酸ィ匕膜 ·隔壁の界面準位にトラップされて準安定なトラップ電荷となり、その 局所電界によって隔壁中央層の電位が下がり、二重ショトキ一障壁(図 4 (a)の 49a) 力 Sトンネル状態(図 4 (b)の 49b)となって導通状態になる。
[0019] この導通状態は準安定状態であり、電源を遮断してもトラップ電子はそのまま界面 準位に残留し、トラップ電子が逆電圧で下部電極に引き抜かれるまで導通状態は保 持される。
つまり、本発明は、ナノホール含有金属酸ィ匕膜の隔壁に形成した界面準位にトラッ プ電子を出し入れすることで、ショトキ一障壁を消滅させたり復活させて、導通状態と 非導通状態を切り替えて、「0」と「1」の情報を記憶保持することを特徴とする。このよ うに、本発明の不揮発性メモリは、トラップ電荷によってダイレクトにメモリ電流を制御 するので、ゲート電極も付属キャパシタ構造も必要としない。すなわち、本発明は、 2 つの電極 (基板電極 44とショットキー接合された金属電極 42)を有する極めてシンプ ルなトランジスタ 1つで構成された不揮発性メモリを実現した。 [0020] 本発明にお 、て、ナノホール含有金属酸ィ匕膜の隔壁の格子欠陥密度は、好ましく は 1016Zcm3以上であり、更に好ましくは、 1018/cm3以上である。前記格子欠陥の 密度が 1014Zcm3未満になると、トラップ電荷が不足して、ショットキー障壁が十分に 薄くならず導通状態にならないおそれがある。
ナノホール含有金属酸化膜の厚さは、 0. 05〜5 111の範囲でぁり、好ましくは0. 1 〜1 /ζ πιの範囲である。ナノホール含有金属酸化膜の厚さが 0. 05 /z m未満になると リーク電流が多くなり、 5 m以上では FNトンネル電流が発生し難くなるために、好ま しくない。
[0021] ナノホール含有金属酸化膜は、アルミニウム、チタン等の金属の表面を陽極酸ィ匕処 理すること〖こより得ることができる。
陽極酸化処理の方法としては、公知の方法を採用することができ、特に制限はない 。電解液として、例えば濃度 1〜5%の酸の存在下で、温度を 0°C〜50°Cに調整し、 電圧を 10V〜150Vの範囲で一定値に制御して行うことが好ましい。酸としては、特 に限定されないが、 1〜5%のシユウ酸、硫酸、リン酸等を用いることが好ましぐ特に 〔濃度 1〜5%のシユウ酸〕:〔濃度 1〜5%の硫酸〕 = 2〜4 : 1〜3の割合、特に 3 : 2の 割合で混合した混合液が好まし ヽ。
また、規則的な微細構造を有するナノホール含有金属酸化膜を作製するためには 、 1000系等の純度 99. 0%以上、好ましくは 99. 5%以上の高純度アルミニウムで 表面が平滑なものを用いることが好まし 、。
[0022] 金属酸ィ匕膜中に自己組織ィ匕により形成されるナノホールの直径は、 10〜150nm が好ましぐ 30〜60nmがより好ましい。その直径が lOnm以下になると、導通状態に することが困難になる。この理由は、ナノホール直径に比例して隔壁厚さが薄くなる ので、電荷保持体になる界面準位と隔壁中央のチャネル層が重なってチャネル層が 薄くなり、チャネル電流が流れなくなるためと考えられる。一方、直径が 150nm以上 になると、それに比例して隔壁厚さが厚くなるので、界面準位の電荷保持層と隔壁中 央のチャネル層が離れ過ぎて、局所電界のサイズ効果が不十分となる。つまり、界面 準位のトラップ電荷で隔壁中央部の電位が十分に低下しな 、ために、ショットキー障 壁の薄厚化によるトンネル効果が発生し難くなつて、導通状態にすることが困難にな る。
ナノホールの直径の制御は、陽極酸化処理の電解液に使用する酸の種類を調整 することによって行うことができる。電解液として硫酸を用いた場合は、ナノホールの 直径が最も小さくなり、シユウ酸とリン酸の混合液、シユウ酸、リン酸の順にナノホール の直径が大きくなる。特に、シユウ酸の 2〜4%電解液で作製したナノホールは直径 力 S30〜60nmで、表面に対して垂直になり好まし!/、。
[0023] 本発明の不揮発性メモリにおいて、ナノホール含有金属酸ィ匕膜の隔壁上端部に、 金、アルミニウム、ニッケル、チタン、スズ、タングステン等の金属を、蒸着またはスパ ッタリングによりショットキー接合させて一方の金属電極とし、アルミニウム、チタン等 の地金金属をもう一方の電極とする。ショットキー接合する金属としては、金、アルミ- ゥムが好ましい。このように構成することにより、動作電圧が安定するという利点がある 本発明の不揮発性メモリにおいては、金属酸ィ匕膜中に形成されたナノホールの二 次元配列を、 2個又は 3個以上毎に絶縁分割した溝で区切ってメモリの 1セルとする ことで、ナノホールの 2次元配列をそのままメモリセル配列として利用することができる
[0024] ここで、本発明の不揮発性メモリの構造を、図を参照してより詳細に説明する。図 2 は、本発明の不揮発性メモリの構造を模式的に示す断面図である。図 2は、ナノホー ル含有金属酸化膜に蜂の巣状に多数存在するナノホールの内、 5つのナノホールで 1つのメモリセルを構成した図である。
図 2において、基板電極 14はアルミニウム等力もなり、基板電極 14の他面には、基 板電極 14を陽極酸ィ匕して形成したナノホール含有金属酸ィ匕膜 13があり、その隔壁 上端部に蒸着、スパッタリング等により形成されたショットキー電極 12が設けてあり、 ショットキー電極 12にはリード電極 11が接続されている。ナノホール含有金属酸化膜 13の隔壁と、ショットキー電極 12及び基板電極 14との間には各々、ショットキー障壁 が存在するので、 2重ショットキー障壁により電極間が遮断される。
[0025] ショットキー電極に金を使用した場合には、ショットキー電極 12と、基板電極 14の間 に低電圧、例えば 0. 2Vの電圧を印加した場合、ショットキー電極 12とナノホール含 有金属酸ィ匕膜 13の隔壁との接合面に形成されたショットキー障壁のために、ショット キー電極 12と基板電極 14との電極間に電流は流れない。し力し、もう少し高い電圧 、例えば IVの電圧を印加すると、ショットキー障壁を貫通して FNトンネル電流が流 れ、そのホットエレクトロンによって励起された電子がナノホール含有金属酸ィ匕膜 ·隔 壁の界面準位にトラップされるとトラップ電荷により、ナノホール隔壁 47の電位が下が り、ショットキー電極 12と基板電極 14との電極間のショットキー障壁は、薄厚化してト ンネル状態となって導通し、 0. 2Vの電圧で十数 mAの電流が流れる。この導通状態 は準安定状態であり、印加電圧をゼロにしても保持される。
一方、ショットキー電極 12と基板電極 14との電極間に一 IVを印加すると、トラップ されていた電子が下部電極側に引き抜かれて、ショットキー障壁が復活して、ショット キー電極 12と基板電極 14の電極間は元の非導通状態に戻る。
図 3は、本発明の不揮発性メモリの電流 電圧特性の変化を示す図である。ショット キー接合金属として金を使用した場合は、図 3に示すように、ショットキー電極 12と基 板電極 14との電極間に IVを印加することで記憶を書き込み (B点)、同じ電極間に IVを印加することで記憶を消去する(E点)。同じ電極間に 0. 2Vを印加して 17m A程度の電流が流れる状態を「0」オン状態 (C点)とし、電流が流れな 、状態を「 1」ォ フ状態 (A点)とすることで記憶内容を読み出すことができる。
なお、金属電極に用いる金属としてアルミニウムを使用した場合も基本的には同様 の特性を示す。
このように、本発明は、トラップ電子の出し入れのみで、電極間の二重ショットキー 障壁を消滅又は復活させることで、ダイレクトにメモリ電流をオン'オフさせると同時に 、情報を記憶させる 1段階制御であるので、制御要因が少なぐ応答が速い。
また、ダイレクトにメモリ電流経路の二重ショットキー障壁をオン'オフ制御している ので、電流のオン'オフ比が 106以上と非常に高ぐ読み出し時の印加電圧を大幅に 低下してもメモリ電流を十分確保できる。つまり、本発明は、原理的に低電圧駆動を 可能にするものである。なお、外部からのノイズなどの衝撃電波によってトラップ電子 が発生して誤動作することを防止するためにメモリセル全体を電磁シールドすること が好ましい。 [0027] 図 4は、 1つのメモリセルを 2つのナノホールで構成した場合の断面模式図、及びト ラップ電子とショットキー障壁の変化を示す模式図である。以下に、図 4と図 3を用い て、本発明の動作原理を説明する。
図 4 (a)は、図 3の A点におけるメモリ素子の状態(「1」オフ状態)を示す。ナノホー ル含有金属酸化膜 43には、直径 10〜150nm、好ましくは 30〜60nmのナノホール 45が上部電極に対してほぼ垂直に配置されている。その結果、電子をトラップする界 面準位が形成されたナノホール隔壁 47は、電極方向に平行に並び、あたかもナノホ ール隔壁 47ごとに微細な 2つのキャパシタが対向して配置されたのと同様な状態に なる。ナノホール隔壁 47の先端凸部とショットキー電極 42とは、ショットキー障壁によ り非導通状態である。ナノホール含有金属酸化膜 43は、基板電極 44のアルミニウム 等を陽極酸ィ匕して基板電極 44上に形成したもので、ナノホール隔壁 47と基板電極 4 4の間も同様にショットキー障壁により非導通状態である。つまり、電極 42と電極 44の 間は、二重のショットキー障壁 49aにより電気的に遮断されており、図 3の A点は、 0. 2Vの印加電圧では電極 42と電極 44間は非導通状態であることを示して ヽる。なお 、図 4には、 3組の二重ショットキー障壁を並列に形成した例が示されている。
本実施形態では、実施例 1に示す方法で製作したアルミ陽極酸化膜は、図 5に示 すように、ナノホール 45の直径力 Onm程度で、全てのナノホール 45は基板電極 44 に対してほぼ垂直に形成されている。同様に、ナノホール隔壁 47も、ほぼ垂直で均 一の壁厚であり、ナノホール隔壁 47を電荷保持体とチャネルに利用するための微細 構造的な必要条件が満たされて 、ることを示して 、る。
[0028] 次に、図 3に示すように、電極間の書き込み印加電圧を IV程度に増加すると、 A点 はヒステリシス曲線上の B点に移行する。この現象は、 IVの印加電圧力 ショットキー 電極 42、基板電極 44とナノホール隔壁 47の間に存在するショットキー障壁を FNトン ネル電流が流れる電圧に相当するので、ショットキー障壁を通って FNトンネル電流 が流れることを示す。ショットキー障壁を通過した電子は、余分なエネルギーを持つ、 いわゆるホットエレクトロンであり、ナノホール隔壁 47の価電子帯電子を励起してその エネルギーを放出する。ナノホール隔壁 47には高密度の界面準位が存在するので 、励起された電子は界面準位にトラップされる。 その状態を図 4 (b) (「0」オン状態)に模式的に示す。図 4 (b)のようにナノホール隔 壁 47にトラップされた電子によるトラップ電荷は、ショットキー接合面に直交する局所 電界を形成してポテンシャル面を湾曲させる結果として、電極方向のショットキー障 壁厚さが減少して、ショットキー障壁がトンネル状態になる。
[0029] つまり、図 4 (b)のナノホール隔壁 47の中央層の部分で、ショットキー障壁の厚さが 低下して、トンネル状態となって、導通 (オン)状態になる。
図 4 (b)の状態は準安定であり、印加電圧をゼロにしてもトラップ電子は界面準位に 存在し続けるので、導通状態は保持される。つまり、図 3のヒステリシス曲線の C点と 原点を通って D点をつなぐ準安定なライン上を移動する。
[0030] 図 3の C点はトラップ電子の存在下で 0. 2V印加のオン状態であり、 A点と C点の電 流値の違いでメモリ内容を判定する。 C点では、 0. 2V程度で十数 mAの検知電流が 流れ、 0. 2V程度の印加電圧ではトラップ電子は引き抜かれることはないので、読み 出し動作によってオン状態は変わらな!/、。 一方、 A点では、検知電流は数十 pA以 下のオフ状態であり、 0. 2V程度の印加電圧ではトラップ電子は発生しないので、読 み出し動作によってオフ状態は変わらない。
メモリの消去は、図 3の E点で行う。 E点の電圧は、トラップ電子を引抜くのに十分な 電圧にする。例えば IVを印加するとトラップ電子は下部電極に引き抜かれてトラッ プ電荷がなくなり、ショットキー障壁厚が元に戻って、オフ状態になる。この状態は安 定状態である。
上記のように、本発明の不揮発性メモリは、簡単な動作原理でメモリに必要な全機 能がシーケンシャルに動作し、図 4の(a):「1」オフ状態と (b):「0」オン状態が高速で スイッチングする。
[0031] 本発明の不揮発性メモリは、一つのメモリセルを 3個以上のナノホールで構成する ことも可能である。その場合には、一つのメモリセルのチャンネル数が増加し、それに 比例してオン電流が大きくなる。
原理的には、一つのメモリセルは、一つのチャンネルがあれば機能するので、メモリ セルの最小寸法はナノホールの間隔(0. l ^ m)の 2倍になり、計算上の最小セル面 積は 0.04 m2になる。 実施例
次に、本発明を実施例によりさらに詳細に説明する力 本発明はこの実施例によつ てなんら限定されるものではな 、。
実施例 1
純度 99. 99%、 2ίη φ、厚さ 0. 5mmのアルミニウム表面を CMP (ィ匕学的機械研磨 )または過塩素酸およびエタノールが 1対 4の混合浴中で、約 4分間電解研磨した後 、 3%シユウ酸浴中で、試料の片面に力ソードを配置し、浴液を攪拌しながら浴温 20 °C、 40Vで定電圧陽極酸化を数時間行った後に純水、クロム酸、リン酸の混合浴温 6 0°C中で酸ィ匕膜を溶解した後に再度、上記条件にて陽極酸化を数分行い、直径約 3 5nmの細孔が lOOnmの等間隔で配列した約 0. 3 μ m厚のナノホール含有アルミ- ゥム酸ィ匕膜を作製した。
片面を、厚さ 0. 5mmのシリコン基板に接着、乾燥した後、 lOOnmピッチで並んだ 細孔の 20列おきにアルミニウム基板の下面が完全に切り離れる深さまで、 1 μ mの幅 のスリット(列方向のスリット)を入れた。
次にそのスリットに直交する方向に lOOnmピッチで並んだ細孔の 20列おきに、ァ ルミ酸ィ匕膜が完全に切り離れる深さまで、 1 μ mの幅のスリット (行方向スリット)を入れ 、格子状スリット溝に SiOをスパッタリングにて成膜し絶縁膜を形成した。
2
アルミ酸ィ匕膜ナノホールの隔壁上端部が露出するように SiO絶縁膜を選択エッチ
2
ングし、 lOOnm厚さの金をスパッタにて成膜し、セル毎に上部電極を形成した。以上 の処理により、セルは列方向には基板電極で電気的に接続され、行方向には各々、 絶縁されたメモリセルの 2次元配列ができた。ワイヤボンディングで上部電極を行方 向に接続し、 2次元のメモリセルが完成した。図 2に、上記で作製したメモリセルの 1セ ル分の断面図を示す。
アルミ酸化膜ナノホールの厚さは 0. で、ナノホール直径は 35nmであった。 また金電極の厚さは lOOnmで、セル面積は 4 μ m2であった。
なお、アルミ酸ィ匕膜厚さ、電極の厚さ、ナノホールの配列ピッチ、直径、セル面積は SEM (走査型電子顕微鏡)、 TEM (透過型電子顕微鏡)により観察 '測定した。図 5 は、実施例 1で得られたアルミ酸化膜断面を透過型電子顕微鏡で観察した写真 (倍 率 : 30万倍)である。図 5から、規則的なナノホール隔壁を有することが分力る。
[0033] 実施例 2
実施例 1において、アルミニウム基板の代わりに、シリコン基板を熱酸化処理し SiO
2 膜を形成し、その上に 20 m厚さでアルミニウムをスパッタ成膜した基板 (2in φ厚さ
0. 5mm)を用いて、実施例 1と同様に行った。
[0034] 図 6に示した抵抗値測定回路を用いて、実施例 1で得られたメモリ素子の抵抗値変 化を、高速オシロスコープで測定した。その抵抗値変化のデータを図 7に示す。図 7 に示した通り、電極間に IVを印加したときの高抵抗 (22M Ω )から低抵抗(2 Ω )への シフト時間が 0. 02 s (20ns)であったことから、タイムラグを考慮しても、書き込み時 間は 50ns以下となることが分る。
[0035] 図 8は、本発明の不揮発性メモリを用いた 4 X 4メモリ基本回路の一例である。
この基本回路は、メモリ素子が 2電極型であるので、初期の計算機で使用されたコ ァ 'メモリと同じぐメモリアドレスの行と列を選択する 2組のアドレス選択信号で、(4 +
4)個のトランジスタ 'スィッチを作動させる単純な回路になる。
書込み、読出し及び消去は、印加電圧を切替えるだけでよいので、各動作に対応 した信号 (書込み信号、読出し信号及び消去信号)で、 IV、 0. 2V及び IVを切替 えるためのトランジスタ 'スィッチ 3個で構成された単純な回路になる。
[0036] 本発明の不揮発性メモリと従来のメモリ'デバイスとの特性比較を、表 1に纏めて示 す。表 1から、本発明の不揮発性メモリは、ユニバーサルメモリに要求される上記課題 を全て解決するものであることが分る。
[0037] [表 1]
不揮発性メモリ 揮発性メモリ 本発明 フラッシュメモリ
FeRAM MRAM OUM SRAM DRAM
(HoFET-RAM) (M0SFET型)
読出し im速 中高速 中速 速 m速 速 中速 書込み 低速 中速 速 mi速 速 中速 不揮発性 あり あり 中間 あり あり なし なし リフレッシュ 不要 不要 不要 不要 不要 不要 必要 セル面積
0.04 0.04~ 0.08 0. 2 0. 2 0. 1 0. 4 0. 1 集積度 0UMと同等 多値化期待 悪い 期待大 期待大 悪い 限界に近い 低電圧動作 可 不可 限界あり 可 可 可 限界あり 動作電流
1 0以下 1 0 - 1 00 1 0以上 1 0以上 1 0以上 1 0 - 80 100
( mA) 産業上の利用可能性
本発明の不揮発性メモリは、メモリ電流を直接制御するので、高速スイッチングが可 能であり、消費電力が少ない。その結果、本発明によれば、高速アクセス、高集積ィ匕 、小型電池駆動ができ、低電圧、低消費電力の不揮発性メモリが提供できる。
また、本発明の不揮発性メモリは、ゲート電極がない単純な 2極素子であり、アルミ 基板をそのまま下部電極配線に利用できるのでメモリ配線が極めて単純になり、微細 化が容易である。さらに、シリコン半導体プロセスで汎用的に使用されているアルミ- ゥム素材を用いるので、従来の製造設備をそのまま利用できる。
更に、アルミニウムの陽極酸ィ匕皮膜に形成された等間隔で規則的に 2次元配列し たナノホール配列を、それが配列されたままの状態で、メモリセル配列として利用す ることができる。このため、本発明のメモリ製造は、複雑な微細加工の大半の部分を 自己組織ィ匕形成に代替できるので、生産性を高くできる利点がある。
カロえて、従来のシリコン半導体で必須であったドーピング技術が不要になり、素材 はアルミニウムと汎用的な電極材、絶縁材、及び電波シールド材等であり、化合物半 導体のような希少元素を必要としない利点がある。

Claims

請求の範囲
[1] 一対の金属電極の間に、ハ-カム構造を有する膜厚 0. 05〜5 μ mのナノホール含 有金属酸化膜をショットキー接合状態に配置することにより、該ナノホール含有金属 酸化膜の隔壁に形成された界面準位を、メモリの電荷保持体として利用することを特 徴とする不揮発性メモリ。
[2] 前記ナノホール含有金属酸ィ匕膜が、アルミニウムまたはチタンの表面を陽極酸ィ匕 処理して、直径が 10〜150nmのナノホールを形成したものである請求項 1に記載の 不揮発性メモリ。
[3] 前記ナノホール含有金属酸化膜が、陽極酸化処理により形成されたナノホールを、 2個又は 3個以上毎に絶縁された溝で区切ってメモリの 1セルとしたものである請求項 1又は 2に記載の不揮発性メモリ。
[4] 前記一対の金属電極が、ナノホール含有金属酸ィ匕膜の隔壁上端部に金属を接合 させて形成したショットキー電極と、アルミニウムまたはチタンの酸ィ匕膜の地金力もな る基板電極である請求項 1又は 2のいずれか〖こ記載の不揮発性メモリ。
[5] トラップ電荷の有無によりショットキー障壁を消滅又は復活させることにより、直接、メ モリの電流制御を行う請求項 1又は 2に記載の不揮発性メモリ。
[6] 基板電極、該基板電極の表面を陽極酸化して形成したナノホール含有金属酸ィ匕 膜、及び該ナノホール含有金属酸ィ匕膜の隔壁上端部にショットキー接合された金属 電極からなり、該ナノホール含有金属酸化膜が、複数の二重ショットキー障壁が並行 に形成された構造を有することを特徴とする不揮発性メモリ。
PCT/JP2005/010190 2005-06-02 2005-06-02 不揮発性メモリ WO2006129367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/010190 WO2006129367A1 (ja) 2005-06-02 2005-06-02 不揮発性メモリ
US11/916,335 US20080197440A1 (en) 2005-06-02 2005-06-02 Nonvolatile Memory
JP2007518839A JPWO2006129367A1 (ja) 2005-06-02 2005-06-02 不揮発性メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/010190 WO2006129367A1 (ja) 2005-06-02 2005-06-02 不揮発性メモリ

Publications (1)

Publication Number Publication Date
WO2006129367A1 true WO2006129367A1 (ja) 2006-12-07

Family

ID=37481304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010190 WO2006129367A1 (ja) 2005-06-02 2005-06-02 不揮発性メモリ

Country Status (3)

Country Link
US (1) US20080197440A1 (ja)
JP (1) JPWO2006129367A1 (ja)
WO (1) WO2006129367A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077465A (ja) * 2009-10-02 2011-04-14 Nec Corp 記憶装置、及び記憶装置の動作方法
JP2013222784A (ja) * 2012-04-16 2013-10-28 Nihon Univ 抵抗変化型不揮発性メモリおよびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507104A (ja) * 2000-08-22 2004-03-04 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ ドープされた細長い半導体、そのような半導体の成長、そのような半導体を含んだデバイス、およびそのようなデバイスの製造
JP2004193423A (ja) * 2002-12-12 2004-07-08 Nichicon Corp 電解コンデンサの駆動用電解液
JP2004207739A (ja) * 2002-12-23 2004-07-22 Samsung Electronics Co Ltd ナノドットを有するメモリ製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303182A (en) * 1991-11-08 1994-04-12 Rohm Co., Ltd. Nonvolatile semiconductor memory utilizing a ferroelectric film
US5731608A (en) * 1997-03-07 1998-03-24 Sharp Microelectronics Technology, Inc. One transistor ferroelectric memory cell and method of making the same
WO1998044567A1 (fr) * 1997-03-28 1998-10-08 Hitachi, Ltd. Dispositif de memoire remanente a semi-conducteur, dispositif a semi-conducteur et procedes de fabrication associes de ceux-ci
US6512263B1 (en) * 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
WO2003078685A1 (fr) * 2002-03-15 2003-09-25 Canon Kabushiki Kaisha Dispositif fonctionnel et procede de fabrication du dispositif, support d'enregistrement magnetique vertical, dispositif d'enregistrement et de lecture magnetique, et dispositif de traitement d'information
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
JP4428921B2 (ja) * 2002-12-13 2010-03-10 キヤノン株式会社 ナノ構造体、電子デバイス、及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507104A (ja) * 2000-08-22 2004-03-04 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ ドープされた細長い半導体、そのような半導体の成長、そのような半導体を含んだデバイス、およびそのようなデバイスの製造
JP2004193423A (ja) * 2002-12-12 2004-07-08 Nichicon Corp 電解コンデンサの駆動用電解液
JP2004207739A (ja) * 2002-12-23 2004-07-22 Samsung Electronics Co Ltd ナノドットを有するメモリ製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077465A (ja) * 2009-10-02 2011-04-14 Nec Corp 記憶装置、及び記憶装置の動作方法
JP2013222784A (ja) * 2012-04-16 2013-10-28 Nihon Univ 抵抗変化型不揮発性メモリおよびその製造方法

Also Published As

Publication number Publication date
US20080197440A1 (en) 2008-08-21
JPWO2006129367A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
Schenk et al. Memory technology—a primer for material scientists
US9208873B2 (en) Non-volatile storage system biasing conditions for standby and first read
KR101357178B1 (ko) 개선된 스위칭을 갖는 pcmo 비휘발성의 저항성 메모리
JP4981304B2 (ja) 一つの抵抗体及び一つのダイオードを有する不揮発性メモリ素子及び不揮発性メモリ素子アレイ
JP5281267B2 (ja) 修正可能なゲートスタックメモリ素子
US7538338B2 (en) Memory using variable tunnel barrier widths
US8492740B2 (en) Memory element and memory device
US7307321B1 (en) Memory device with improved data retention
JP2005317976A (ja) 段階的な抵抗値を有する多層構造を利用したメモリ素子
Akinaga Recent advances and future prospects in functional-oxide nanoelectronics: the emerging materials and novel functionalities that are accelerating semiconductor device research and development
JP2012238893A (ja) 混合原子価導電性酸化物を用いたメモリ
US20060256608A1 (en) Resistive memory device with improved data retention and reduced power
TW201011909A (en) Storage element and storage device
JP2009076670A (ja) 情報記憶素子
JP6196623B2 (ja) 抵抗変化メモリ素子
KR100657966B1 (ko) 리셋 전류 안정화를 위한 메모리 소자의 제조 방법
Tappertzhofen Introduction to non-volatile memory
WO2006129367A1 (ja) 不揮発性メモリ
JP4544340B2 (ja) 電子素子およびその製造方法並びに記憶装置
Pan Experimental and simulation study of resistive switches for memory applications
US7968464B2 (en) Memory device with improved data retention
JP3897754B2 (ja) ショットキー接合型不揮発性メモリ
JP2014207380A (ja) 可変抵抗素子を用いたメモリセル
KR20080026091A (ko) 비휘발성 메모리
KR20120095287A (ko) 비휘발성 메모리 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007518839

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077028067

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11916335

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-03-2008)

122 Ep: pct application non-entry in european phase

Ref document number: 05745754

Country of ref document: EP

Kind code of ref document: A1