WO2006126604A1 - Transparent planar body and transparent touch switch - Google Patents

Transparent planar body and transparent touch switch Download PDF

Info

Publication number
WO2006126604A1
WO2006126604A1 PCT/JP2006/310383 JP2006310383W WO2006126604A1 WO 2006126604 A1 WO2006126604 A1 WO 2006126604A1 JP 2006310383 W JP2006310383 W JP 2006310383W WO 2006126604 A1 WO2006126604 A1 WO 2006126604A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
transparent conductive
layer
refractive index
touch switch
Prior art date
Application number
PCT/JP2006/310383
Other languages
French (fr)
Japanese (ja)
Inventor
Naohiro Wakabayashi
Tsutomu Yamada
Kuniaki Sasaki
Shuji Furukawa
Keiji Tsukamoto
Original Assignee
Gunze Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Limited filed Critical Gunze Limited
Priority to EP06746812A priority Critical patent/EP1892609A4/en
Priority to KR1020117025372A priority patent/KR101196342B1/en
Priority to US11/795,009 priority patent/US8603611B2/en
Priority to KR1020077018336A priority patent/KR101192391B1/en
Priority to JP2007517871A priority patent/JP4055019B2/en
Publication of WO2006126604A1 publication Critical patent/WO2006126604A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/83Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by legends, e.g. Braille, liquid crystal displays, light emitting or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9645Resistive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a transparent planar body and a transparent touch switch.
  • a capacitive transparent touch switch is known.
  • the transparent touch switch disclosed in Patent Document 1 is configured such that a dielectric layer is interposed between a pair of transparent planar bodies each having a transparent conductive film having a predetermined pattern shape, such as a finger.
  • the touch position can be detected using the change in capacitance caused by grounding through the human body.
  • This transparent touch switch is used by being mounted on the surface of a liquid crystal display device, a CRT, etc.
  • the pattern shape of the transparent conductive film formed on the transparent sheet is conspicuous, leading to a decrease in visibility. .
  • a transparent conductive film disclosed in Patent Document 2 As a conventional transparent sheet, a transparent conductive film disclosed in Patent Document 2 is known. In this transparent conductive film, an undercoat layer is formed between the conductive layer forming film and the conductive layer.
  • the undercoat layer is composed of two layers having different refractive indexes.
  • a zinc oxide tin monoxide film having a thickness of 600 A and a high refractive index is disposed on the conductive layer forming film side.
  • a configuration is disclosed in which a silicon oxide film having a thickness of 50 A and a low refractive index is disposed on the conductive layer side.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-173238 (Figs. 1 and 5)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-197035 (Table 1)
  • the present invention provides a transparent planar body and a transparent touch that can improve visibility.
  • the purpose is to provide a switch.
  • the object of the present invention is a transparent planar body having a transparent conductive film patterned on at least one surface of a transparent substrate, and the transparent conductive film is formed through the transparent substrate.
  • a transmittance adjustment layer that approximates a transmission spectrum of light transmitted through the pattern formation region and a transmission vector of light transmitted through the non-pattern formation region, the transparent conductive film being formed through the transparent substrate.
  • the transmittance adjusting layer has an overcoat layer that covers one surface of the transparent substrate with a substantially uniform thickness, and the overcoat layer has a thickness of the transparent substrate. It is preferable that it is larger than the thickness of the bright conductive film and the refractive index is smaller than the refractive index of the transparent conductive film.
  • the overcoat layer is preferably made of silicon stannate.
  • the overcoat layer preferably has a thickness of 70 to 80 nm.
  • the difference between the refractive index of the transparent conductive film and the refractive index of the overcoat layer is 0.03.
  • an undercoat layer is interposed between the transparent substrate and the transparent conductive film, and the undercoat layer has a laminate strength of two or more layers having different optical refractive indexes, and has a low refractive index.
  • the transparent conductive film is preferably formed on the layer side.
  • the object of the present invention is provided with a plurality of the transparent sheet, each transparent sheet is a capacitance-type transparent touch switch attached via an adhesive layer,
  • the adhesive layer is achieved by a transparent touch switch characterized by having a refractive index smaller than that of the transparent conductive film.
  • a linearly polarizing plate is provided on the surface side.
  • a linearly polarizing plate and a ⁇ ⁇ 4 phase difference plate are provided on the front surface side, and a ⁇ 4 phase difference plate is provided on the back surface side.
  • the transparent substrate is a ⁇ ⁇ 4 phase difference plate.
  • the transmittance adjusting layer includes a low refractive index layer and a laminated body force including a high refractive index layer having a higher optical refractive index than the low refractive index layer.
  • the undercoat layer is interposed between the transparent substrate and the transparent conductive film so that the transparent conductive film is formed on the low refractive index layer side, and the high refractive index
  • the thickness of the layer is preferably smaller than the thickness of the low refractive index layer.
  • the high refractive index layer has a thickness of 10 to 25 nm, and the low refractive index layer has a thickness of 2
  • the high refractive index layer is preferably made of silicon stannate and the low refractive index layer is preferably made of acid silicate silicon.
  • the transparent conductive film preferably has a thickness of 10 to 25 nm.
  • a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, each transparent planar body being bonded via an adhesive layer.
  • the object of the present invention is a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, wherein the transparent conductive films are opposed to each other.
  • the transparent conductive film has a thickness of 20 ⁇ ! ⁇ 2
  • the refractive index of the adhesive layer is achieved by a capacitive transparent touch switch that is 1.6 or more.
  • the object of the present invention is a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, wherein the transparent conductive films are opposed to each other. It is arranged and stuck via an adhesive layer, and the thickness of the transparent conductive film is 25 ⁇ ! ⁇ 3 Onm, and the refractive index of the adhesive layer is achieved by a capacitive transparent touch switch that is 1.7 or more.
  • a linear polarizing plate and a ⁇ 4 phase difference plate are provided on the front surface side, and a ⁇ 4 phase difference plate is provided on the back surface side.
  • the transparent substrate is a ⁇ 4 phase difference plate.
  • the transmittance adjusting layer includes a covering layer that covers an exposed portion on one surface of the transparent substrate where the transparent conductive film is not formed. Is formed so that the surface is substantially flush with the surface of the transparent conductive film, And it is preferable that a refractive index is equivalent to the refractive index of the said transparent conductive film.
  • the covering layer is preferably made of silicon stannate.
  • the transparent conductive film is preferably made of a carbon nanotube composite material.
  • the undercoat layer further comprising an undercoat layer including a low refractive index layer and a high refractive index layer having a higher optical refractive index than the low refractive index layer, the undercoat layer comprising: It is preferable that the transparent conductive film and the coating layer are interposed between the transparent substrate and the transparent conductive film so that the transparent conductive film and the coating layer are formed on the low refractive index layer side.
  • the method further comprises an overcoat layer covering the surfaces of the transparent conductive film and the coating layer.
  • the surface of the overcoat layer is preferably formed flat.
  • a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, each transparent planar body being bonded via an adhesive layer.
  • the object of the present invention is to provide a plurality of the transparent sheet-like bodies, and each of the transparent sheet-like bodies is spaced at a predetermined interval via a spacer so that the transparent conductive films face each other. This is achieved by a resistive touch transparent touch switch placed in the position.
  • a linearly polarizing plate and a ⁇ 4 phase difference plate are provided on the front surface side, and a ⁇ 4 phase difference plate is provided on the back surface side.
  • the transparent substrate is a ⁇ 4 phase difference plate.
  • the transparent conductive film includes a plurality of strip-shaped transparent conductive portions arranged at intervals, and the transmittance adjusting layer includes an insulating slit between the adjacent strip-shaped transparent conductive portions. It is preferable that the belt-like transparent adjusting portion has the same material force as the belt-like transparent conductive portion and has a plurality of resistance slits.
  • the plurality of resistance slits are configured to connect the insulating slits adjacent to the respective strip-shaped transparent adjusting portions.
  • a separation slit for separating the respective strip-shaped transparent adjusting portions is further provided along the insulating slit.
  • the object of the present invention is provided with a plurality of the transparent sheet, each transparent sheet is, This is achieved by a capacitance-type transparent touch switch attached via an adhesive layer.
  • the object of the present invention is provided with a plurality of the transparent sheet-like bodies, and each of the transparent sheet-like bodies has a predetermined interval through a spacer so that the strip-like transparent conductors face each other. This is achieved by a resistive touch transparent touch switch placed at a distance.
  • the transparent substrate is a ⁇ 4 phase difference plate.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a transparent touch switch according to the present invention.
  • FIG. 2 is a plan view showing a part of the transparent touch switch shown in FIG.
  • FIG. 3 is a plan view showing another part of the transparent touch switch shown in FIG. 1.
  • FIG. 4 is a plan view showing a part of a modification of the transparent touch switch shown in FIG. 1.
  • FIG. 5 is a plan view showing another part of the modification of the transparent touch switch shown in FIG. 1.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a measurement sample according to an example of the present invention.
  • FIG. 7 is a diagram showing a spectral transmission spectrum of the measurement sample shown in FIG.
  • FIG. 8 is a diagram showing a spectral transmission spectrum of a comparative example of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a second embodiment of a transparent touch switch according to the present invention.
  • FIG. 10 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 30 nm.
  • FIG. 11 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 15 nm.
  • FIG. 12 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 20 nm.
  • FIG. 13 is a diagram showing a simulation result of a difference in reflectivity depending on the presence or absence of a transparent conductive film when the thickness of the transparent conductive film is 25 nm.
  • FIG. 14 is a diagram showing a simulation result of a difference in reflectance with and without a transparent conductive film.
  • FIG. 15 is a diagram showing another simulation result of the difference in reflectance depending on the presence or absence of a transparent conductive film.
  • FIG. 16 is a diagram showing still another simulation result of the difference in reflectance with and without the transparent conductive film.
  • FIG. 17 is a diagram showing still another simulation result of the difference in reflectance with and without the transparent conductive film.
  • FIG. 18 is a schematic sectional view showing a third embodiment of the transparent touch switch according to the present invention.
  • FIG. 19 is an explanatory diagram for explaining a method of forming a coating layer using a dry coating method.
  • FIG. 20 is a schematic sectional view showing a modification of the transparent touch switch shown in FIG.
  • FIG. 21 is a diagram showing a simulation result of a difference in reflectance with and without a transparent conductive film.
  • FIG. 22 is a view showing another simulation result of the difference in reflectance depending on the presence or absence of the transparent conductive film.
  • ⁇ 23 It is a schematic cross-sectional view showing a modification of the transparent touch switch shown in FIG.
  • FIG. 24 A schematic cross-sectional view showing a fourth embodiment of a capacitance-type touch switch according to the present invention.
  • FIG. 25 is a plan view showing a part of the capacitance type touch switch shown in FIG. 24.
  • FIG. 26 is a plan view showing another part of the capacitance type touch switch shown in FIG. 24.
  • FIG. 27 is a plan view showing a part of a modification of the capacitance-type touch switch shown in FIG. 24.
  • FIG. 28 is a plan view showing another part of the modified example of the capacitance type touch switch shown in FIG. 24.
  • FIG. 29 is a schematic cross-sectional view showing a modified example of the capacitance type touch switch shown in FIG. 24.
  • FIG. 30 is an enlarged plan view of an essential part showing various modifications of the resistance slit.
  • FIG. 31 is an enlarged plan view of an essential part showing various modified examples of the resistance slit.
  • FIG. 32 is an enlarged plan view of an essential part showing various modifications of the separation slit.
  • FIG. 33 is a schematic sectional view showing a modified example of the transparent planar body.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a transparent touch switch according to the present invention.
  • the transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a transparent conductive film 12 is formed on a transparent substrate 11 via an undercoat layer 13, and an undercoat on the transparent substrate 21. And a second transparent planar body 2 having a transparent conductive film 22 formed thereon via a coat layer 23.
  • the first transparent planar body 1 and the second transparent planar body 2 are bonded via an adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
  • Transparent substrate 11, 21 ⁇ , front and back surfaces of base material layer 111, 211 [node coat layer 112, 112; 212 , 212.
  • the base material layers 111 and 211 are highly transparent and have a material strength.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PEEK Polyetheretherketone
  • PC polypropylene
  • PP polyamide
  • PA polyacrylic
  • PAC polyacrylic
  • epoxy resin epoxy resin
  • phenol resin aliphatic cyclic polyolefin
  • norbornene-based thermoplastic transparent resin examples thereof include a flexible film such as fat, a laminate of two or more of these, and a glass plate.
  • the thickness of the base material layer 111, 211 is preferably about 20 to 500 m.
  • the thickness of the nod coat layer 112, 212 is about 3 to 5 111, and the base layer 111, 211 is about 1 to 0 . You may stick a support body in order to provide rigidity.
  • the undercoat layers 13 and 23 are composed of a laminate of two or more layers having different optical refractive indexes, and are arranged so that the transparent conductive films 12 and 22 are formed on the low refractive index layer side. Transparency is improved.
  • each layer constituting the laminate of the undercoat layers 13 and 23 examples include silicon oxide, titanium oxide, and tin oxide, and a preferable combination is tin oxide-hafnium oxide. And silicon oxide tin monoxide system, zinc oxide tin monoxide system, and tin oxide titanium oxide system.
  • the undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
  • the materials of the transparent conductive films 12 and 22 are indium tin oxide ( ⁇ ⁇ ), zinc oxide, acid indium, antimony-added acid tin, fluorine-added acid tin, aluminum-added acid zinc Examples include metal oxides such as zinc-doped zinc oxide, silicon-doped zinc oxide, zinc oxide tin monoxide, indium tin oxide, zinc oxide, indium oxide, and magnesium oxide. You may form combining the above. Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing. The thickness of the transparent conductive films 12 and 22 is usually about 10 to 50 nm.
  • the transparent conductive films 12 and 22 are each formed as an aggregate of a plurality of strip-like conductive parts 12a and 22a extending in parallel.
  • the strip-shaped conductive portions 12a and 22a are arranged so as to be orthogonal to each other.
  • Transparent conductive films 12, 22 It is connected to an external drive circuit (not shown) through a drawing circuit (not shown) that also has a force such as conductive ink.
  • the pattern of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, and any shape can be used as long as a contact point such as a finger can be detected. For example, as shown in FIG. 4 and FIG.
  • the transparent conductive films 12 and 22 have a configuration in which a plurality of rhombus-shaped conductive portions 12b and 22b are linearly connected, and the rhombus shape in each transparent conductive film 12 and 22
  • the conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhomboid conductive portions 12b and 22b do not overlap in plan view.
  • the patterning of the transparent conductive films 12 and 22 has a desired pattern shape on the surfaces of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21 via the undercoat layers 13 and 23, respectively.
  • the mask portion can be dissolved with an alkali solution or the like.
  • the method of performing the patterning of the transparent conductive films 12 and 22 by etching can remove the unnecessary transparent conductive films 12 and 22, while leaving all the undercoat layers 13 and 23 to remain.
  • the patterning method is not limited to this, and other known methods may be used. Further, when the unnecessary transparent conductive films 12 and 22 are removed, the undercoat layers 13 and 23 can also be removed together.
  • the first transparent planar body 1 and the second transparent planar body 2 in the transparent touch switch of the present embodiment are overcoated on the respective opposing surfaces (surfaces on which the transparent conductive films 12 and 22 are formed).
  • Layers 14 and 24 are formed.
  • materials for the overcoat layers 14 and 24 include silicon oxide, titanium oxide, and tin oxide. In particular, silicon-tin oxide is preferably used. Can do.
  • the thickness of the overcoat layers 14 and 24 is usually about 10 to 500 nm, and the refractive index is about 1.3 to 2.3.
  • the thickness of the overcoat layer 14 in the first transparent planar body 1 is preferably larger than the thickness of the transparent conductive film 12, and the refractive index of the overcoat layer 14 is the refractive index of the transparent conductive film 12. Preferably less than the rate.
  • the refractive index of the overcoat layer 14 can be adjusted as appropriate by changing the component ratio of silicon and tin, for example, when it is made of silicon stannate.
  • the shapes of the transmission spectrum and the reflection spectrum of the first transparent planar body 1 and the second transparent planar body 2 are made transparent. Since the electromembranes 12 and 22 are formed, it can be approximated to the formed portion, and the portion can be approximated, and the difference in color (shading) can be reduced. As a result, in the first transparent planar body 1 and the second transparent planar body 2, the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
  • the shape of the transmission spectrum (or reflection spectrum) where the transparent conductive films 12 and 22 are not formed is as the thickness of the overcoat layers 14 and 24 increases. Then, it gradually approaches the shape of the transmission spectrum (or reflection spectrum) where the transparent conductive films 12 and 22 are formed. Therefore, good visibility can be obtained by appropriately setting the thicknesses of the overcoat layers 14 and 24 so that the spectral shapes of the two substantially coincide. For example, when the overcoat layers 14 and 24 are made of silicon stannate (refractive index: about 1.7), the thickness of the overcoat layers 14 and 24 is set to 70 to 80 nm as shown in the experimental results described later. I prefer to!
  • the refractive index of the overcoat layers 14 and 24 is preferably smaller than the refractive index of the transparent conductive films 12 and 22 as described above, but if the difference in refractive index is too small, the overcoat layers While the effects of providing 14 and 24 cannot be obtained sufficiently, if the difference in refractive index is too large, reflection at the interface tends to increase and the transmittance tends to decrease.
  • the force is preferably 0.03 to 0.4, more preferably 0.1 to 0.3.
  • overcoat layers 14 and 24 examples include dry coating methods such as a sputtering method, a resistance vapor deposition method, and an electron beam vapor deposition method.
  • Overcoat layers 14 and 24 can be formed with substantially the same thickness on the exposed surface of undercoat layers 13 and 23 and the surfaces of transparent conductive films 12 and 22 in body 1 and second transparent planar body 2. .
  • the first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed therebetween so that an air layer does not intervene.
  • the adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin.
  • the thickness of the adhesive layer 15 is usually 25 to 75. m and the refractive index is 1.4 to 1.6.
  • the refractive index of the pressure-sensitive adhesive layer 15 is preferably smaller than the refractive indexes of the overcoat layers 14 and 24.
  • the transparent conductive film 12 (or 22), the overcoat layer 14 (or 24) and the adhesive layer 15 can be configured so that the refractive index gradually decreases in the order in which the transparent conductive film 12 (or 22), the overcoat layer 14 (or 24) and the adhesive layer 15 are laminated.
  • the shape of the transmission spectrum and the reflection spectrum can be approximated between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed, so that the difference in color (shading) can be reduced.
  • the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
  • the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is set to a finger or the like.
  • the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done.
  • the surface resistance value of the overcoat layers 14 and 24 is preferably large enough to ensure insulation that operates normally as a capacitive touch switch, for example, 1 ⁇ 10 12 ( ⁇ ⁇ ) or more .
  • a linearly polarizing plate may be provided on the side opposite to the surface on which the transparent conductive film 12 is formed.
  • the transparent substrates 11 and 21 must be made of a light isotropic material.
  • the linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film are coated with triacetyl as a protective film. You may use what was pasted together so that it may be pinched with an acetate (TAC) film.
  • PVA polyvinyl alcohol
  • TAC acetate
  • the optically isotropic material is a material that is not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefin.
  • PC polycarbonate
  • PES polyethersulfone
  • PAC polyacrylic
  • amorphous polyolefin examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like.
  • a cast or extrusion method can be used as a method for forming the transparent substrates 11 and 21 using these materials.
  • the amount of reflected light caused by visible light incident on the inside of the touch switch Can be suppressed to about half or less compared to the case where the linear polarizing plate is not provided.
  • the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
  • the ⁇ ⁇ 4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • PVA polybialcohol
  • PC polycarbonate
  • norbornene-based thermoplastic resin cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • Adhering the ⁇ 4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • the ⁇ 4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • V preferably done.
  • each ⁇ ⁇ 4 phase difference plate is preferably arranged so that the optical axis of one ⁇ 4 phase difference plate is orthogonal to the optical axis of the other ⁇ / 4 phase difference plate.
  • the reflected light is circularly polarized, and the internal reflection of the touch switch in the portion sandwiched between the two ⁇ ⁇ 4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as ⁇ 4 phase difference plates and linear polarizing plates are laminated thereon.
  • Sample A shown in FIG. 6 (a) is a laminate in which a transparent substrate 11, an undercoat layer 13, an overcoat layer 14, and an adhesive layer 15 are laminated in this order and do not have a transparent conductive film. Is the body.
  • the transparent substrate 11 is obtained by forming hard coat layers 112 and 112 having a thickness of 3 to 5 111 on the front and back surfaces of a base material layer 111 having a PET film force having a thickness of 200 m.
  • the undercoat layer 13 is configured by laminating a silicon oxide layer having a thickness of 30 nm and a silicon tin oxide layer having a thickness of 70 nm on the transparent substrate 11 in this order.
  • the overcoat layer 14 is formed by sputtering a silicon stannate to a thickness of 70 nm, and has a refractive index of 1.7.
  • the adhesive layer 15 is formed of an acrylic adhesive “P043FP” manufactured by Lintec Corporation, and has a thickness of 20 to 30 ⁇ m.
  • sample B shown in FIG. 6 (b) is made of ITO between the undercoat layer 13 and the overcoat layer 14 in the sample A shown in FIG. 6 (a).
  • a transparent conductive film 12 having a thickness of 30 nm is formed.
  • the refractive index of the transparent conductive film 12 is 1.95.
  • samples C and D in which the overcoat layer 14 was not provided were manufactured in accordance with the configurations of the samples A and B in FIGS. 6 (a) and 6 (b). Then, the spectral transmission spectra of samples C and D were measured in the same manner as in the above example. As shown in FIG. 8, the shape of the transmission spectrum resulted in a large difference especially on the low wavelength side. [0075] Further, as a result of the visual inspection with the touch switch, the sample without the transparent conductive film had a purple color and the sample D with the transparent conductive film had a transparent conductive film. However, it was clearly recognized as a difference in the color of the reflected light.
  • FIG. 9 is a schematic cross-sectional view showing a second embodiment of the transparent touch switch according to the present invention.
  • the transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a transparent conductive film 12 is formed on a transparent substrate 11 via an undercoat layer 13, and an undercoat on the transparent substrate 21. And a second transparent planar body 2 having a transparent conductive film 22 formed thereon via a coat layer 23.
  • the first transparent planar body 1 and the second transparent planar body 2 are bonded via an adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
  • the transparent substrate 11, 21 and the substrate layers 111, 211 are provided with front and back surfaces [node coat layers 112, 112; 212, 212].
  • the base material layers 111 and 211 are highly transparent and have a material strength. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), Polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC), epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin Examples thereof include flexible films such as fats and siloxane-crosslinked acrylic silicone resins, laminates of these two or more, and glass plates.
  • the thickness of the substrate layers 111 and 211 is preferably about 20 to 500 111, and the thickness of the node coat layers 112 and 212 is preferably about 3 to 5 m.
  • the base material layers 111 and 211 may be attached with a support in order to impart rigidity.
  • the hard coat layers 112 and 212 are preferably provided on the front and back surfaces of the base material layers 111 and 211 in order to improve durability and adhesion of the undercoat layers 13 and 23. Furthermore, the transparent substrates 11 and 21 can be configured without providing the hard coat layers 112 and 212 at all. [0079]
  • the undercoat layers 13 and 23 also have a laminate strength of the low-refractive index layers 13a and 23a and the high-refractive index layers 13b and 23b having a higher optical refractive index than the low-refractive index layers 13a and 23a, respectively. Further, the transparent conductive films 12 and 22 are arranged on the low refractive index layers 13a and 23a side to improve the transparency.
  • the undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
  • the thickness of the high refractive index layers 13b and 23b is smaller than the thickness of the low refractive index layers 13a and 23a. Visibility can be improved by making the pattern shape of the transparent conductive films 12 and 22 formed on the surfaces of the undercoat layers 13 and 23 inconspicuous.
  • the thickness of the high refractive index layers 13b and 23b is preferably 10 to 25 nm.
  • the thickness of the low refractive index layers 13a and 23a is preferably 25 to 45 nm.
  • the transparent conductive films 12 and 22 are made of indium tin oxide (ITO), zinc oxide, indium oxide, indium oxide, antimony-added acid tin, fluorine-added acid tin, aluminum-added acid zinc.
  • ITO indium tin oxide
  • Examples include metal oxides such as zinc-doped zinc oxide, silicon-doped zinc oxide, zinc oxide tin monoxide, indium tin oxide, zinc oxide, indium oxide, and magnesium oxide. You may form combining the above.
  • Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing.
  • the transparent conductive films 12 and 22 are each formed as an aggregate of a plurality of strip-like conductive portions 12a and 22a extending in parallel as in the first embodiment described above.
  • the strip-like conductive portions 12a and 22a of the transparent conductive films 12 and 22 are arranged so as to be orthogonal to each other. Yes.
  • the transparent conductive films 12 and 22 are connected to an external drive circuit (not shown) through a drawing circuit (not shown) that has a force such as conductive ink.
  • the pattern shape of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, and may be any shape as long as a contact point such as a finger can be detected. For example, as shown in FIGS.
  • the transparent conductive films 12 and 22 are configured by connecting a plurality of rhombus-shaped conductive portions 12b and 22b in a straight line, and the rhombus shapes in the transparent conductive films 12 and 22 are formed.
  • the conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhombus-shaped conductive portions 12b and 22b do not overlap in plan view.
  • the patterning of the transparent conductive films 12 and 22 has a desired pattern shape on the surface of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21 via the undercoat layers 13 and 23, respectively.
  • the mask portion can be dissolved with an alkali solution or the like.
  • the method of performing the patterning of the transparent conductive films 12 and 22 by etching can remove the unnecessary transparent conductive films 12 and 22, while leaving all the undercoat layers 13 and 23 to remain.
  • the patterning method is not limited to this, and other known methods may be used.
  • the thickness of the transparent conductive films 12, 22 is usually about 10 to 50 nm. From the standpoint of improving the visibility by making the transparent shape of the transparent conductive films 12, 22 conspicuous, the thickness of the transparent conductive films 12, 22 is preferably as small as possible.
  • the crystallinity and the required durability are preferably about 10 to 25 nm because it becomes difficult to obtain weather resistance.
  • the first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed entirely so that no air layer is interposed.
  • the adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin.
  • the thickness of the adhesive layer 15 is usually 25 to 75 m, and the refractive index is 1.4 to 1.6.
  • Transparent substrates 11, 21 have PET film strength
  • a hard coat layer (each thickness: 5 ⁇ m, refractive index: 1.52) is formed on the front and back of the base material layer (thickness: 188 ⁇ m, refractive index: 1.65), and the undercoat layer 13 and 23 are high refractive index layer strength S silicon stannate film (thickness: 25nm, refractive index: 1.7), low refractive index layer is silicon oxide film (thickness: 30nm, refractive index: 1. 43).
  • the transparent conductive films 12 and 22 were ITO films (thickness: 30 ⁇ m, refractive index: 1.95).
  • the thickness of the adhesive layer 15 was 25 m.
  • the refractive index of the adhesive layer 15 is taken as a parameter, and the value is changed to change the portion where the transparent conductive films 12, 22 are formed and the portion where the transparent conductive films 12, 22 are not formed (cover layers 16, 26).
  • the difference in reflectivity (%) from the part where the is formed was obtained by simulation.
  • the reflectance was calculated using the thin film design software (OPTAS-FILM) manufactured by Cybernet System.
  • Figure 10 shows the absolute value of the difference in reflectance (%) calculated by this simulation.
  • the transparent substrates 11, 21 and the adhesive layer 15, etc. which are extremely thick members compared to the undercoat layers 13, 23, the transparent conductive films 12, 22, etc. having a nano-order thickness, etc.
  • the reflectance was calculated with the thickness of ⁇ as ⁇ (infinity).
  • the inconspicuousness of the non-turn shape of the transparent conductive films 12 and 22 has a correlation with the difference in reflectance between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed.
  • the absolute value of the difference in reflectivity is smaller as the refractive index of the adhesive layer 15 is higher. From the viewpoint of visibility, it is better that the refractive index of the adhesive layer 15 is larger. Recognize.
  • the transparent conductive films 12 and 22 are formed by changing the value of the refractive index of the adhesive layer 15 as a parameter.
  • the absolute value of the difference in reflectance (%) between the formed portion and the portion where the transparent conductive films 12 and 22 are not formed (the portion where the coating layers 16 and 26 are formed) was obtained by simulation.
  • Figs. 11 shows the results when the transparent conductive films 12 and 22 are set to a thickness of 15 nm
  • FIG. 12 shows the results when the thickness is set to 20 nm
  • FIG. 13 shows the results when the thickness is set to 25 nm.
  • Table 1 shows the absolute value of the difference in reflectance at each refractive index of the adhesive layer 15 when the input light wavelength is 550 nm in the simulation results shown in Figs.
  • the transparent touch switch 101 having the configuration shown in FIG. 9, the transparent conductive films 12 and 22 are made to have a thickness of 20 nm to 25 nm and the adhesive layer 15 having a refractive index of 1.6 or more is used. The transparent touch switch 101 with good visibility can be obtained.
  • the adhesive layer 15 having a refractive index of 1.7 or more is obtained. It can be seen that the absolute value of the difference in reflectance can be made smaller than about 0.5 by using it. Therefore, in the transparent touch switch 101 having the configuration shown in FIG. 9, the transparent conductive films 12 and 22 are made to have a thickness of 25 ⁇ m to 30 nm and a refractive index of 1.7 or more.
  • the transparent touch switch 101 with good visibility while ensuring the durability of the transparent conductive films 12 and 22 while keeping the pattern shape of the transparent conductive films 12 and 22 inconspicuous.
  • the method for detecting the touch position is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is indicated by a finger or the like.
  • the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done.
  • a linearly polarizing plate may be provided on the side opposite to the surface on which the transparent conductive film 12 is formed.
  • the transparent substrates 11 and 21 must be made of a light isotropic material.
  • the linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film are coated with triacetyl as a protective film. You may use what was pasted together so that it may be pinched with an acetate (TAC) film.
  • PVA polyvinyl alcohol
  • TAC acetate
  • the optically isotropic material is a material that is not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefin.
  • PC polycarbonate
  • PES polyethersulfone
  • PAC polyacrylic
  • amorphous polyolefin examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like.
  • a cast or extrusion method can be used as a method for forming the transparent substrates 11 and 21 using these materials.
  • the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided. Further, the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
  • the ⁇ ⁇ 4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • Adhering the ⁇ 4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • each ⁇ ⁇ 4 phase difference plate is adhered to the back side of the planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. V ,.
  • each ⁇ ⁇ 4 phase difference plate is preferably arranged so that the optical axis of one ⁇ 4 phase difference plate is orthogonal to the optical axis of the other ⁇ / 4 phase difference plate.
  • the reflected light is circularly polarized, and the internal reflection of the touch switch at the portion sandwiched between the two ⁇ ⁇ 4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as ⁇ 4 phase difference plates and linear polarizing plates are laminated thereon.
  • the present invention is applied to a capacitive transparent touch switch in which two transparent planar bodies are bonded via an adhesive layer. It is also possible to apply the present invention to a resistance type matrix type touch switch to which the transparent sheet is attached via an air layer.
  • the transparent conductive film is directly formed on the transparent substrate without an undercoat layer!
  • the difference in reflectance (%) between the portion where the transparent conductive film was formed and the portion where the transparent conductive film was not formed was determined by simulation.
  • the transparent substrate has a hard coat layer (each thickness: 5 m, refractive index: 1.52) on the front and back surfaces of the base material layer (thickness: 188 ⁇ m, refractive index: 1.65) that also has PET film strength.
  • the transparent conductive film was an ITO film (refractive index: 1.95).
  • An adhesive layer (thickness: 25 m, refractive index: 1.52) made of acrylic resin was formed on the transparent conductive film side of the transparent substrate.
  • the reflectivity was calculated using the Cybernet System Co., Ltd. thin film design software (OPTAS-FILM) (however, it was calculated assuming that there was no absorption in the PET layer, etc.). In this configuration, the difference in reflectance (%) calculated using the thickness of the transparent conductive film as a parameter is shown in FIG. Shown in
  • the inconspicuousness of the pattern shape of the transparent conductive film is formed with the portion where the transparent conductive film is formed, and has a correlation with the difference in reflectance from the portion, and the entire visible region ( The smaller the absolute value and the change rate of the difference in reflectance at a wavelength of about 400 to 800 nm), the better the visibility of the pattern shape becomes less noticeable.
  • the absolute value and the change rate of the reflectance difference both decrease as the thickness of the transparent conductive film decreases, and the visibility from the viewpoint of visibility decreases as the thickness of the transparent conductive film decreases. I know it ’s good.
  • the thickness of the transparent conductive film is preferably about 15 nm, preferably 10 to 25 nm. It is optimal.
  • the optimum thickness of the low refractive index layer and the high refractive index layer constituting the undercoat layer was examined.
  • the thickness of the transparent substrate ′ and the refractive index of the transparent conductive film were the same as in Test 1, and the thickness of the transparent conductive film was 15 nm as a result of Test 1.
  • An adhesive layer was formed on the surface side of the transparent conductive film, and the thickness and refractive index of this adhesive layer were the same as in Test 1.
  • the undercoat layer was a laminate of a low refractive index layer made of silicon oxide having a refractive index of 1.43 and a high refractive index layer having a refractive index of 1.7 and having silicon stannate strength.
  • the thickness of the low refractive index layer is set to 30 nm, and the thickness of the high refractive index layer is used as a parameter, and the difference in reflectance from the portion where the transparent conductive film is not formed. was obtained by simulation. The result is shown in FIG.
  • Thickness of the high refractive index layer When the thickness is larger than 30 nm, which is the thickness of the low refractive index layer, the absolute value of the reflectance difference and the change rate tend to increase again, and the visibility tends to deteriorate.
  • the thickness of the high refractive index layer was set to 15 nm, and the thickness of the low refractive index layer was used as a parameter, and the difference in reflectance from the portion where the transparent conductive film was not formed was obtained by simulation. . The result is shown in FIG.
  • the thickness of the low-refractive index layer is 0 (that is, when the low-refractive index layer is not present), on the low wavelength side (approximately 400 to 500 nm) in the visible region.
  • the absolute value and change rate of the reflectance difference are increasing, and good visibility is not obtained.
  • the thickness of the low refractive index layer increases, the absolute value and change rate of the reflectance difference tend to decrease, and the thickness of the low refractive index layer is greater than 15 nm, which is the thickness of the high refractive index layer.
  • both the absolute value and the change rate of the difference in reflectance are sufficiently small, and good visibility is obtained.
  • the thickness of the low refractive index layer is 50 nm, the absolute value of the reflectance difference is small, but the change rate of the reflectance difference on the low wavelength side in the visible region is large, and the visibility tends to gradually deteriorate. .
  • the thickness of the high refractive index layer in the undercoat layer is preferably smaller than the thickness of the low refractive index layer. More specifically, the thickness of the high refractive index layer is preferably 10 to 25 nm. In this case, the thickness of the low refractive index layer is preferably 25 to 45 nm.
  • the preferred thicknesses of the low refractive index layer and the high refractive index layer in the undercoat layer obtained in Test 2 tend to be almost the same even if the thickness of other layers other than the undercoat layer changes.
  • the thickness of the transparent conductive film is increased in Test 2
  • the low refractive index layer and the high refractive index layer are preferred, and the numerical range of the thickness is hardly changed, but the visibility when the condition is not satisfied is preferred. The deterioration becomes more prominent.
  • the thickness of the transparent conductive film is changed from 15 nm to 20 nm in the configuration of Test 2 (thickness of the low refractive index layer: 30 nm)
  • the difference in reflectance with the thickness of the high refractive index layer as a parameter is shown in FIG. Shown in [0113]
  • preferred thicknesses of the high refractive index layer and the low refractive index layer in the undercoat layer The range tends to be wider than the numerical range in Test 2. For example, even when an undercoat layer is formed with only a low refractive index layer without providing a high refractive index layer, a certain degree of visibility can be obtained. it can.
  • FIG. 18 is a schematic cross-sectional view showing a third embodiment of the transparent touch switch according to the present invention.
  • the transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a patterned transparent conductive film 12 is formed on one surface of the transparent substrate 11, and one surface of the transparent substrate 21. And a second transparent planar body 2 on which a patterned transparent conductive film 22 is formed.
  • the first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
  • the transparent substrate 11, 21 and the substrate layers 111, 211 are provided with front and back surfaces [node coat layers 112, 112; 212, 212].
  • the base material layers 111 and 211 are highly transparent and have a material strength. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), Polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC), epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic plastic transparent resin Examples thereof include a flexible film such as fat, a laminate of two or more of these, or a glass plate.
  • the thickness of the base material layer 111, 211 is preferably about 20 to 500 m.
  • the thickness of the nod coat layer 112, 212 is about 3 to 5 111, and the base layer 111, 211 is about 1 to 0 . You may stick a support body in order to provide rigidity.
  • the materials of the transparent conductive films 12 and 22 are indium tin oxide ( ⁇ ), indium oxide, antimony-added acid ⁇ tin, fluorine-added acid ⁇ tin, aluminum-added acid ⁇ zinc, potassium-added oxidation Zinc, silicon-doped zinc oxide, zinc oxide tin monoxide, indium oxide Examples thereof include metal oxides such as tin oxide, zinc oxide, indium magnesium oxide, and zinc oxide, and two or more of these may be formed in combination.
  • a composite material in which ultrafine conductive carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils are dispersed in a polymer material functioning as a binder is used for the transparent conductive films 12 and 22. It can also be used as a material.
  • polymer materials include polyaniline, polypyrrole, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly p-phenylene, polyheterocyclic vinylene, PEDOT: poly (3,4-ethylenedioxythiophene), etc.
  • the conductive polymer can be used.
  • Non-conductive polymers such as polyimide, epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin can be employed.
  • a carbon nanotube is generally 0.8 nm in diameter when carbon nanotube composite material in which carbon nanotubes are dispersed in a non-conductive polymer material is adopted. ⁇ L. 4nm (around lnm) is extremely thin, so that the carbon nanotubes are less likely to inhibit light transmission by being dispersed in the non-conductive polymer material one or one bundle at a time. Preferred for ensuring transparency of 22
  • Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing.
  • the thickness of the transparent conductive films 12 and 22 is usually about 10 to 50 nm.
  • the transparent conductive films 12 and 22 are each formed as an assembly of a plurality of strip-like conductive portions 12a and 22a extending in parallel as shown in FIGS.
  • the strip-like conductive portions 12a and 22a of the transparent conductive films 12 and 22 are arranged so as to be orthogonal to each other.
  • the transparent conductive films 12 and 22 are connected to an external drive circuit (not shown) through a drawing circuit (not shown) that has a force such as conductive ink.
  • the pattern shape of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, as long as a contact point such as a finger can be detected. Any shape can be used. For example, as shown in FIGS.
  • the transparent conductive films 12 and 22 are configured by connecting a plurality of rhombus-shaped conductive portions 12b and 22b in a straight line, and the rhombus shapes in the transparent conductive films 12 and 22 are formed.
  • the conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhombus-shaped conductive portions 12b and 22b do not overlap in plan view.
  • the patterning of the transparent conductive films 12 and 22 is performed by forming a mask portion having a desired pattern shape on the surface of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21, respectively. After the etching is removed with an acid solution or the like, the mask portion is dissolved with an alkali solution or the like.
  • the patterning method is not limited to this, and other known methods may be used!
  • One surface of the transparent substrates 11, 21 of the first transparent planar body 1 and the second transparent planar body 2 in the transparent touch switch of the third embodiment (surface on which the transparent conductive films 12, 22 are formed) ),
  • the exposed portions 11a, 21a where the transparent conductive films 12, 22 are not formed are provided with coating layers 16, 26 covering the exposed portions 11a, 21a.
  • the covering layers 16 and 26 are formed so that the surfaces thereof are substantially flush with the surfaces of the transparent conductive films 12 and 22.
  • the material for the coating layers 16 and 26 include silicon tin oxide, silicon oxide, titanium oxide, tin oxide, cerium oxide, pentoxide-ob, tantalum pentoxide, zirconium oxide, and zirconium oxide as a composite oxide.
  • Examples of the material include silicon, zirconium oxide tin oxide, acid oxide zirconium monoacid oxide titanium, and the like. In particular, silicon stannate oxide can be preferably used.
  • the refractive index of the coating layers 16 and 26 is equivalent to the refractive index of the transparent conductive films 12 and 22, and for example, when the silicon stannate is strong, the component ratio of silicon and tin is changed. Can be adjusted as needed.
  • the refractive indexes of the coating layers 16 and 26 and the transparent conductive films 12 and 22 are equivalent only when the refractive indexes of the coating layers 16 and 26 and the transparent conductive films 12 and 22 are completely the same.
  • the concept includes a case where there is a difference in refractive index between the coating layers 16 and 26 and the transparent conductive films 12 and 22 as long as the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous.
  • the absolute value of the difference between the refractive index of the coating layers 16 and 26 and the refractive index of the transparent conductive films 12 and 22 is preferably within 0.08 and within 0.03. It is more preferable.
  • the refractive index of carbon nanotube composite is lower than that of indium stannate (ITO) (the refractive index of carbon nanotube composite is about 1.6, for example, indium tin
  • ITO indium stannate
  • the refractive index of the oxide is 1.9-1.20
  • the material of the covering layers 16, 26 having a refractive index equivalent to that of the transparent conductive films 12, 22 can be easily selected.
  • the shapes of the transmission spectrum and the reflection spectrum of the first transparent planar body 1 and the second transparent planar body 2 are obtained. Since the transparent conductive films 12 and 22 are formed, they can be made substantially identical to each other, and the difference in color (lightness) can be reduced. As a result, in the first transparent planar body 1 and the second transparent planar body 2, the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
  • Examples of the method for forming the coating layers 16 and 26 include dry coating methods such as sputtering, resistance vapor deposition, and electron beam evaporation.
  • the method for forming the coating layers 16 and 26 using this dry coating method will be specifically described.
  • the transparent conductive film 12 A mask portion 50 having a desired pattern shape is formed on the surface of 22.
  • the exposed portion 11a (21a) is formed by etching away the exposed portion 51 of the transparent conductive film 12 (22) where the mask portion 50 is not formed (see FIG. 19B).
  • the material constituting the coating layer is coated on the exposed portion 11a (21a) and the mask portion 50 by a dry coating method.
  • the thickness of the coating layer coated on the exposed portion 1 la (21a) is set to be substantially the same as the thickness of the transparent conductive film 12 (22) (see FIG. 19 (c)). Thereafter, by removing the mask portion 50, a coating layer 16 (26) substantially flush with the surface of the transparent conductive film 12 (22) can be formed on the exposed portion 1 la (21a) (FIG. 19 (d) )reference). Also, the coating layer is formed so that the transparent conductive films 12, 22 and the exposed portions 11a, 21a are buried by wet coating methods such as screen printing, gravure printing, bar coating, spin coating, die coating, and spray coating.
  • etching is performed so that the surfaces of the coating layers 16 and 26 in the first transparent planar body 1 and the second transparent planar body 2 are substantially the same as the surfaces of the transparent conductive films 12 and 22. Form it so that it is flush.
  • the first transparent planar body 1 and the second transparent planar body 2 are adhered so that an air layer is not interposed between them. It is preferable to carry out by interposing the adhesive layer 15 throughout.
  • the adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin. The thickness of the adhesive layer 15 is usually 25-100 ⁇ m.
  • the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is indicated by a finger or the like.
  • the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done.
  • the surface resistance values of the covering layers 16 and 26 are preferably large enough to ensure insulation that operates normally as a capacitive touch switch, for example, 1 to 10 12 ( ⁇ opening) or more.
  • the third embodiment according to the present invention has been described above, the specific mode of the present invention is not limited to the third embodiment.
  • the overcoat layers 14, 22 covering the surfaces of the transparent conductive films 12, 22 and the covering layers 16, 26, respectively.
  • a configuration further comprising 24 may be adopted.
  • the surfaces 14a and 24a of the overcoat layers 14 and 24 are formed to be flat throughout.
  • the membranes 12, 22 can be protected.
  • the surface resistance value of the overcoat layers 14 and 24 is preferably sufficiently large so as to ensure insulation that operates normally as a capacitance type touch switch, for example, 1 ⁇ 10 12 ( ⁇ ⁇ ) or more .
  • the overcoat layers 14 and 24 can be formed by dry coating methods such as sputtering, resistance vapor deposition, and electron beam vapor deposition, or screen printing, gravure printing, bar coating, and spin coating. And wet coating methods such as a coating method, a die coating method, and a spray coating method.
  • the coating layers 16 and 26 and the overcoat layers 14 and 24 are formed by screen printing. It can be formed at the same time, making it possible to produce transparent sheet 1 and 2 efficiently.
  • a material different from the material for the coating layers 16 and 26 can be used.
  • the thickness of the overcoat layers 14 and 24 is 30 nm from lOnm, which is a lower limit film thickness that is practically possible as a film forming condition when formed as a sputtered thin film. Preferably, it is about 1 m or more. This stain variation will be explained below.
  • Transparent substrates 11 and 21 have hard coat layers (each thickness: 5 m, refractive index: 1.52) formed on the front and back surfaces of the base layer (thickness: 188 m, refractive index: 1.65) that also has PET film strength It was assumed.
  • the transparent conductive films 12 and 22 are ITO films (thickness: 30 ⁇ m, refractive index: 1.95), and the coating layers 16 and 26 are silicon stannate (thickness: 30nm, refractive index: 1.9). It was.
  • the adhesive layer 15 was an acrylic resin (thickness: 25 m, refractive index: 1.52).
  • the refractive index of the overcoat layer is 1.9, the thickness of this overcoat layer is taken as a parameter, and the value is changed to form the transparent conductive films 12, 22 and the transparent conductive films 12, 22 formed.
  • the difference in reflectivity (%) from the glazed part was determined by simulation.
  • the reflectance was calculated using the thin film design software (OPTAS-FILM) manufactured by Cybernet System.
  • Figures 21 and 22 show the difference in reflectance (%) calculated by this simulation.
  • Fig. 21 shows the results when the thickness of the overcoat layers 14 and 24 is in the nm order
  • Fig. 22 shows the results when the thickness is in the / zm order.
  • the inconspicuousness of the pattern shape of the transparent conductive film correlates with the difference in reflectance between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed.
  • the absolute value of the difference in reflectance is smaller than about 0.5, the nonturn shape becomes conspicuous.
  • the thickness of the overcoat layers 14 and 24 is 45 nm or more, the change rate of the reflectance difference is large, whereas when the thickness is 30 nm, the change rate is small. From this, it can be said that the thickness of the overcoat layers 14, 24 is preferably 30 nm or less from the viewpoint of visibility.
  • Figure 22 shows the results when the thickness of the overcoat layers 14, 24 is on the order of ⁇ m. In view of this, it can be seen that if the thickness of the overcoat layers 14 and 24 is 1 ⁇ m or more, the absolute value of the difference in reflectance is as small as about 0.5, and the visibility from the viewpoint of visibility is preferable.
  • the first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15, so that the capacitance type transparent touch switch 101.
  • a resistive film type transparent touch switch can also be configured as follows. That is, the first transparent planar body 1 and the second transparent planar body 2 are arranged at a predetermined interval through a spacer so that the transparent conductive films 12 and 22 face each other. Thus, a resistive film type transparent touch switch can be formed.
  • the method of detecting the touch position in this resistive film type transparent touch switch is the same as that of the conventional resistive film type touch switch, and any position on the surface side of the first transparent planar body 1 can be detected with a finger or the like.
  • the transparent conductive films 12 and 22 come into contact with each other, and the coordinates of the contact position are calculated by measuring the contact resistance in the horizontal and vertical directions in a time-sharing manner.
  • an underlayer composed of a laminate including a low refractive index layer and a high refractive index layer having a higher refractive index than that of the low refractive index layer.
  • a configuration further including coat layers 13 and 23 may be employed.
  • the undercoat layers 13 and 23 are formed of the transparent conductive films 12 and 22 and the cover layers 16 and 26 and the transparent substrate 11 so that the transparent conductive films 12 and 22 and the cover layers 16 and 26 are formed on the low refractive index layer side. , 21. With such a configuration, the transparency of the transparent touch switch 101 can be improved.
  • Examples of the material of each layer constituting the laminate of the undercoat layers 13 and 23 include a silicon stannate film, silicon oxide, titanium oxide, and oxide tin. Examples include tin oxide hafnium oxide, silicon oxide tin oxide, zinc oxide tin oxide, and acid-tin-tin oxide-titanium.
  • the undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
  • a linearly polarizing plate is provided on the surface side of the first transparent planar body 1 (the side opposite to the surface on which the transparent conductive film 12 is formed). May be.
  • the transparent substrates 11 and 21 must be made of an optically isotropic material.
  • the linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented. You may use what was bonded so that it might be pinched
  • PVA polyvinyl alcohol
  • TAC triacetyl acetate
  • the optically isotropic material is a material that is not polarized with respect to all incident light.
  • PC polycarbonate
  • PES polyethersulfone
  • PAC polyacrylic
  • amorphous polyolefinic materials examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like.
  • a casting or extrusion method can be used as a method of forming the transparent substrates 11 and 21 using these materials.
  • the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided. Further, the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
  • the ⁇ ⁇ 4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • PVA polybialcohol
  • PC polycarbonate
  • norbornene-based thermoplastic resin cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • Adhering the ⁇ 4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • the ⁇ 4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • V preferably done.
  • each ⁇ ⁇ 4 phase difference plate is preferably arranged so that the optical axis of one ⁇ 4 phase difference plate is orthogonal to the optical axis of the other ⁇ / 4 phase difference plate.
  • the reflected light is circularly polarized, and the internal reflection of the portion of the touch switch sandwiched between the two ⁇ ⁇ 4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as ⁇ 4 phase difference plates and linear polarizing plates are laminated thereon.
  • FIG. 24 is a schematic cross-sectional view showing a fourth embodiment of the touch switch according to the present invention.
  • This transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 having a plurality of strip-shaped transparent conductive portions 32 arranged at intervals on one surface of the transparent substrate 11, and a transparent substrate. And a second transparent planar body 2 having a strip-shaped transparent conductive portion 42 arranged on one side of the 21 at intervals.
  • the first transparent planar body 1 and the second transparent planar body 2 are adhered via the adhesive layer 15 so that the respective strip-shaped transparent conductive portions 32 and 42 face each other.
  • the transparent substrates 11 and 21 preferably have high transparency and material strength.
  • the materials are polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), and polyethersal. Phon (PES), Polyetheretherketone (PEEK), Polycarbonate (PC), Polypropylene (PP), Polyamide (PA), Polyacrylic (PAC), Acrylic, Amorphous Polyolefin Fins, Cyclic Polyolefin Fins Flexible films such as fat, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, and laminates of two or more of these, or glass plates such as soda glass, alkali-free glass, borosilicate glass, and quartz glass And so on.
  • the thickness of the transparent substrates 11 and 21 is preferably about 20 to 500 m. Also, on the one or both sides of the transparent substrates 11 and 21, when pens or fingers may come into contact with the surface, it is necessary to improve the transparency, scratch resistance, wear resistance, non-glare properties, etc. It may be coated.
  • a support may be attached to the transparent substrates 11 and 21 in order to impart rigidity.
  • the support include a glass plate and a resin material having hardness equivalent to that of glass, and the thickness is preferably 100 m or more. More preferably, it is 0.5 mm.
  • Each of the first and second transparent planar bodies 1, 2 has a plurality of strip-shaped transparent conductive portions 32, 42 arranged on the one surface of the transparent substrates 11, 21 at intervals as described above. It is made of the same material as the strip transparent conductive portions 32 and 42, and is disposed between the strip transparent conductive portions 32 and 42.
  • the belt-like transparent adjusting portions 33 and 43 are provided. In this way, in the first and second transparent planar bodies 1, 2, the strip-shaped transparent adjustment portions 33, 43 made of the same material as the strip-shaped transparent conductive portions 32, 42 are provided between the respective strip-shaped transparent conductive portions 32, 42. Therefore, the shape of the strip-shaped transparent conductive portions 32 and 42 can be made inconspicuous, and the visibility can be improved.
  • the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 are each formed in a rectangular shape and the transparent substrates 11, 21 are exposed. They are arranged in such a way that they are alternately non-contact with each other with interposing liters 34 and 44 therebetween.
  • An external drive circuit (not shown) is connected to the belt-like transparent conductive portions 32 and 42 through a drawing circuit (not shown) that has a force such as conductive ink, and a voltage is applied.
  • the band-shaped transparent conductive portion 32 (band-shaped transparent adjustment portion 33) of the first transparent planar body 1 and the band-shaped transparent conductive portion 42 (band-shaped transparent adjustment portion 43) of the second transparent plane body 2 are mutually connected. Arranged to go straight to the pass.
  • each of the strip-shaped transparent adjustment sections 33, 43 extends along the adjacent direction of the strip-shaped transparent conductive sections 32, 42 and the strip-shaped transparent adjustment sections 33, 43, and adjacent to each other.
  • a plurality of resistance slits 35 and 45 are provided.
  • the respective strip-like transparent adjusting portions 33 and 43 are provided with separation slits 36 and 46 for separating the respective strip-like transparent adjusting portions 33 and 43 along the slits 34 and 44.
  • the shape of the strip-shaped transparent conductive portions 32, 42 is not limited to that of the present embodiment, and may be any shape as long as a contact point such as a finger can be detected.
  • the strip-shaped transparent conductive portions 32, 42 are configured by connecting a plurality of rhombus-shaped conductive portions in a straight line, and the rhombo-shaped conductive portions in the respective strip-shaped transparent conductive portions 32, 42 The connecting directions may be perpendicular to each other, and the upper and lower rhombus-shaped conductive portions may not be overlapped in plan view.
  • the strip-shaped transparent conductive portions 32 and 42 do not exist. It is better to adopt a configuration that reduces the area. From this point of view, it is preferable that the strip-shaped transparent conductive portions 32 and 42 have a configuration in which a plurality of diamond-shaped conductive portions are connected in a straight line rather than a rectangular configuration.
  • the upper and lower rhombus-shaped conductive portions are arranged so as not to overlap with each other, and the number of portions without the conductive portions is reduced, so that the transparent touch switch 101 can be divided. Performance such as resolution can be improved, and the touch position can be detected more accurately.
  • separation slits 36 and 46 are formed in the belt-like transparent adjusting portions 33 and 43, and the form is shown!
  • the materials of the strip-shaped transparent conductive portions 32 and 42 and the strip-shaped transparent adjustment portions 33 and 43 include indium stannate (ITO), indium oxide, antimony-added acid tin, fluorine-added acid tin, Aluminum-added acid-zinc, potassium-added acid-zinc, silicon-added acid-zinc, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide indium monoxide oxide-magnesium oxide, zinc oxide
  • ITO indium stannate
  • indium oxide antimony-added acid tin, fluorine-added acid tin, Aluminum-added acid-zinc, potassium-added acid-zinc, silicon-added acid-zinc, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide indium monoxide oxide-magnesium oxide, zinc oxide
  • transparent conductive materials such as stannate film, metal materials such as tin, copper, aluminum, nickel, and chromium, and metal oxide materials. Also good
  • Zinc oxide (ZnO) has a lower cost than that of ITO, which is currently most frequently used for touch switches, transparent conductors for liquid crystals, and the like. 4 2 and the strip-shaped transparent adjusting portions 33 and 43 are preferable.
  • an adhesive layer 15 exists between the first transparent planar body 1 and the second transparent planar body 2, and an air layer is interposed. Therefore, the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 made of zinc oxide (ZnO) do not come into direct contact with air. As a result, it is possible to prevent zinc oxide (ZnO) from deteriorating due to the oxidizing action, and to manufacture a product (touch switch) at a low cost.
  • a band-shaped transparent conductive portion 32, 42 and a band-shaped composite material in which ultra-fine conductive carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils are dispersed in a non-conductive polymer material are used. It can also be used as a material for the transparent adjustment sections 33 and 43. Further, before forming the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43, an undercoat layer may be provided on the surface of the transparent substrates 11, 21 to improve transparency and adhesion. good.
  • a conductive film having a predetermined thickness is formed on one surface of the transparent substrates 11, 21 using the above-described materials.
  • sputtering method, vacuum deposition method, ion Examples include PVD methods such as plating methods, CVD methods, coating methods, and printing methods.
  • the thickness of the conductive film is usually about 5 to: LOOnm.
  • the transparent substrates 11 and 21 or the laser light is moved to peel off the conductive film, thereby removing the transparent strip Separated into conductive portions 32 and 42 and strip-shaped transparent adjustment portions 33 and 43.
  • the portions where the conductive film is peeled off by the laser light correspond to the insulating slits 34 and 44.
  • the apparatus for irradiating laser light include a YAG laser apparatus and a carbon laser apparatus.
  • the width of the insulating slits 34 and 44 is set to, for example, 5 ⁇ to 400 / ⁇ ⁇ , and the boundary between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 can be made inconspicuous, and the visibility can be improved.
  • the width of the insulating slits 34 and 44 is formed to be, for example, 20 / zm or less, it becomes difficult to identify the absolute lits 34 and 44 by visual observation, so the viewpoint power of improving visibility is preferable. .
  • the resistance slits 35, 45 and the separation slits 36, 46 have a width similar to that described above by irradiating the surface of the respective strip-like transparent adjustment portions 33, 43 with laser light to peel off the conductive film. It can be formed as a slit of 5 m to 400 m. As a result, in the band-like transparent adjusting portions 33 and 43, it becomes possible to make the boundary between the portions where the resistance slits 35 and 45 and the separation slits 36 and 46 are formed and the portions where they are not formed inconspicuous.
  • the width of the resistance slits 35 and 45 and the separation slits 36 and 46 is also set to 20 m or less from the viewpoint of improving visibility.
  • the resistance slits 35 and 45 and the separation slit 36 it is preferable that a large number of 46 is formed, and the strip-like transparent adjusting portions 33 and 43 are divided by the resistance slits 35 and 45 and the separation slits 36 and 46 in a thin manner.
  • resistance slits with a width of 5 ⁇ m are formed at intervals of 5 ⁇ m, for example, for the strip-shaped transparent adjusting portions 33 and 43 having a length in the longitudinal direction of 60581.8 m and a width force of 880 ⁇ m.
  • a maximum of 6058 resistance slits can be formed.
  • the width of the resistance slit is 9 m, and 9 to 3366 resistance slits can be formed. preferable.
  • a maximum of 486 separation slits can be formed.
  • the width of the separation slit is preferably 9 ⁇ m, and preferably 0 to 269 separation slits are formed.
  • the strip-shaped transparent adjustment portions 33 and 43 can be divided into a maximum of 2,949,759 regions. In addition, it is preferable to divide the band-shaped transparent adjusting portions 33 and 43 into 8 to 908,550 regions.
  • the first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed therebetween so that no air layer is present.
  • the adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin.
  • the thickness of the adhesive layer 15 is preferably, for example, 500 m / z m or less, particularly preferably 20 m to 80 m. Further, 50 ⁇ to 80 / ⁇ ⁇ is more preferable.
  • an adhesive layer may be formed by stacking a plurality of sheet-like adhesive materials, and a plurality of types of sheet-like adhesive materials may be overlaid.
  • the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and any position on the surface side of the first transparent planar body 1 is used. Touching with a finger or the like, the strip-shaped transparent conductive parts 32 and 42 are grounded through the capacitance of the human body at the contact position, and by detecting the current value flowing through the strip-shaped transparent conductive parts 32 and 42, the coordinates of the contact position Is calculated.
  • the belt-like transparent adjusting portions 33, 43 are provided with a plurality of resistance slits 35, 45, a touch to the surface side of the first transparent planar body 1 is performed.
  • capacitive coupling occurs between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 adjacent to the strip-shaped transparent conductive portions 32, 42, and current flows in the strip-shaped transparent adjustment portions 33, 43.
  • the impedance becomes high in the middle of the strip-shaped transparent adjusting sections 33 and 43, and current hardly flows to the strip-shaped transparent adjusting sections 33 and 43.
  • the resistance slits 35, 45 are configured to connect the end slits 34, 44 adjacent to the respective strip-shaped transparent adjusting portions 33, 43, so It is possible to reliably prevent a current from flowing in the longitudinal direction of the light adjustment sections 33 and 43. As a result, the amount of current flowing through the strip-shaped transparent conductive portions 32 and 42 can be further secured, so that the strip-shaped transparent when the first transparent planar body 1 is touched to the surface side and when it is not touched is used. The difference between the currents flowing through the conductive parts 32 and 42 can be detected more reliably, and the coordinates of the touch position can be detected with high accuracy.
  • the strip-shaped transparent adjustment portions 33, 43 include separation slits 36, 46 that separate the strip-shaped transparent adjustment portions 33, 43 along the insulating slits 34, 44. Therefore, it is possible to prevent the current flow in the adjacent direction between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 in the strip-shaped transparent adjustment portions 33, 43. The impedance state can be further increased, and the touch position can be detected with high accuracy.
  • the fourth embodiment of the present invention has been described above, the specific mode of the present invention is not limited to the above-described embodiment.
  • the first transparent planar body 1 and the second transparent planar body 2 are configured to form resistance slits 35, 45 and separation slits 36, 46 in the respective strip-shaped transparent adjustment portions 33, 43.
  • a configuration is adopted in which the formation of the resistance slit 25 and the separation slit 26 in the strip-shaped transparent adjusting body 23 in the second transparent planar body 2 is omitted.
  • the band-shaped transparent adjusting body 13 Since the resistance slit 15 and the separation slit 16 are formed in the band-shaped transparent adjusting body 13 of the first transparent planar body 1 that can be touched by a finger or the like, the band-shaped transparent adjusting body 13 It becomes a high impedance state, and it becomes difficult for current to flow through the band-shaped transparent adjusting body 13. As a result, it is possible to secure the amount of current flowing in the strip-shaped transparent conductive portions 32, 42 used to detect the touch position, and when touching with the finger or the like to the surface side of the first transparent planar body 1, It is possible to reliably detect the difference in current flowing through the band-shaped transparent conductive parts 32 and 42 when not touched. The coordinates of the H position can be detected with high accuracy.
  • the shape of the resistance slits 35 and 45 in the fourth embodiment is not particularly limited to the above-described shape, and is from (a) to (c) in Fig. 30 or (a) in Fig. 31. Or, as shown in the enlarged view of the main part of (b), various shapes can be adopted.
  • 30 shows a case where the strip-shaped transparent conductive portions 32, 42 are configured in a rectangular shape
  • the strip-shaped transparent conductive portions 32, 42 are formed of a plurality of rhombus-shaped conductive portions in a straight line shape. It shows the case where it is configured to be connected to the shape.
  • the shape of the separation slits 36 and 46 is not particularly limited to the above-mentioned shape. Various shapes are adopted as shown in the enlarged view of the main part of Fig. 32 (a) or (b). You can also.
  • the shape of the strip-shaped transparent conductive portions 32 and 42 is a shape in which a plurality of rhombus-shaped conductive portions are linearly connected. Further, it is possible to adopt a configuration in which the separation slits 36 and 46 are not formed.
  • the first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15, whereby the capacitance type touch switch 101 is provided. It is possible to construct a resistive touch switch as follows. That is, the first transparent planar body 1 and the second transparent planar body 2 are arranged at a predetermined interval via a spacer so that the respective strip-shaped transparent conductive portions 32 and 42 face each other. Thus, a resistive film type touch switch can be configured.
  • the method for detecting the touch position of this resistive film type touch switch is the same as that of the conventional resistive film type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is pressed with a finger or the like.
  • the strip-shaped transparent conductive portions 32 and 42 are in contact with each other, and the coordinates of the contact position are calculated by measuring the resistance value of the contact in the horizontal and vertical directions in a time-sharing manner.
  • a linearly polarizing plate is provided on the surface side of the first transparent planar body 1 (the side opposite to the surface on which the strip-shaped transparent conductor 12 is formed). May be provided.
  • a linear polarizing plate is provided, it is necessary to make the transparent substrates 11 and 21 of an optically isotropic material.
  • the linear polarizing plate can be exemplified by a stretched film of polyalcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film can be used as protective films.
  • PVA polyalcohol
  • TAC triacetyl acetate
  • Optical isotropic materials are materials that are not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefins. Examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like. As a method of forming the transparent substrates 11 and 21 using these materials, a casting or extrusion method can be used.
  • the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided.
  • the band-shaped transparent conductive portion can be made more conspicuous, and the visibility can be further improved.
  • ⁇ ⁇ 4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • PVA polybialcohol
  • PC polycarbonate
  • norbornene-based thermoplastic resin cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to.
  • Adhering the ⁇ 4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • the ⁇ 4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed.
  • V preferably done.
  • each ⁇ ⁇ 4 phase difference plate is preferably arranged so that the optical axis of one ⁇ 4 phase difference plate is orthogonal to the optical axis of the other ⁇ / 4 phase difference plate.
  • the reflected light is circularly polarized, and the internal reflection of the portion of the touch switch sandwiched between the two ⁇ ⁇ 4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the strip-shaped transparent conductive portions 32 and 42 can be made more conspicuous, and the visibility can be further improved.
  • the transparent substrates 11 and 21 themselves can be a ⁇ 4 phase difference plate, and a linear polarizing plate can be laminated thereon.
  • a plurality of strip-shaped transparent conductive portions 32, 42 are arranged on both surfaces of one transparent substrate 31 with predetermined intervals, and a plurality of resistance slits 35, 45
  • the strip-shaped transparent adjustment portions 33, 43 having a plurality of separation slits 36, 46 are disposed between the respective strip-shaped transparent conductive portions 32, 42, and the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 are
  • the transparent planar body 30 can also be configured so as to be adjacent to each other by interposing the ends 34 and 44.
  • the strip-shaped transparent conductive portions 32 and 42 and the strip-shaped transparent adjustment portions 33 and 43 formed on both surfaces of the transparent substrate 31 are arranged so that their longitudinal directions are orthogonal to each other.
  • two transparent sheets first transparent sheet 1 and second transparent sheet 1 and 2 are formed through an adhesive layer 15. This eliminates the need to attach a transparent planar body 2) and improves the workability in manufacturing.
  • the thickness of the touch switch can be reduced.
  • a conductive film is formed on both surfaces of a single transparent substrate 31. Thereafter, while irradiating one surface of the transparent substrate 31 with laser light, the conductive film is peeled off to form the strip-shaped transparent conductive portion 32 and the strip-shaped transparent adjustment portion 33. Then, while irradiating the other surface of the transparent substrate 31 with laser light in the same manner, the conductive film is peeled off to form the strip-shaped transparent conductive portion 42 and the strip-shaped transparent adjustment portion 43.
  • the transparent conductive parts 32, 42, etc. on both sides of the transparent substrate 31, it is necessary to pay attention to the handling of the transparent substrate in the film forming process and the processing process so as not to damage the conductive film formed on both surfaces. is there.

Abstract

Disclosed are a transparent planar body improved in visibility and a transparent touch switch. Specifically disclosed is a transparent planar body (1) having a patterned transparent conductive film (12) on at least one side of a transparent substrate (11). This transparent planar body (1) comprises a transmittance-adjusting layer for approximating the transmission spectrum of light transmitted through a region with pattern, wherein the transparent conductive film (12) is formed, via the transparent substrate (11) with the transmission spectrum of light transmitted through a region without pattern, wherein the transparent conductive film (12) is not formed, via the transparent substrate (11).

Description

明 細 書  Specification
透明面状体及び透明タツチスィッチ  Transparent sheet and transparent touch switch
技術分野  Technical field
[0001] 本発明は、透明面状体及び透明タツチスィッチに関する。  [0001] The present invention relates to a transparent planar body and a transparent touch switch.
背景技術  Background art
[0002] 入力位置を検出するための透明タツチスィッチの構成は、従来力 種々検討されて いるが、一例として静電容量式の透明タツチスィッチが知られている。例えば、特許 文献 1に開示された透明タツチスィッチは、それぞれ所定のパターン形状を有する透 明導電膜を備えた一対の透明面状体の間に誘電体層が介在されて構成されており 、指などが操作面に触れると、人体を介して接地されることによる静電容量の変化を 利用して、タツチ位置を検出することができる。  Conventionally, various studies have been made on the configuration of a transparent touch switch for detecting an input position. As an example, a capacitive transparent touch switch is known. For example, the transparent touch switch disclosed in Patent Document 1 is configured such that a dielectric layer is interposed between a pair of transparent planar bodies each having a transparent conductive film having a predetermined pattern shape, such as a finger. When touching the operation surface, the touch position can be detected using the change in capacitance caused by grounding through the human body.
[0003] この透明タツチスィッチは、液晶表示装置や CRTなどの表面に装着して用いられる 力 透明面状体に形成された透明導電膜のパターン形状が目立ってしまい、視認性 の低下を招いていた。  [0003] This transparent touch switch is used by being mounted on the surface of a liquid crystal display device, a CRT, etc. The pattern shape of the transparent conductive film formed on the transparent sheet is conspicuous, leading to a decrease in visibility. .
[0004] また、従来の透明面状体としては、特許文献 2に開示された透明導電性フィルムが 知られている。この透明導電性フィルムは、導電層形成フィルムと導電層との間にァ ンダーコート層が形成されている。アンダーコート層は、屈折率が異なる 2つの層から 構成されており、具体例として、導電層形成フィルム側に、厚みが 600 Aで高屈折率 の酸化亜鉛一酸化錫系の膜を配し、導電層側に、厚み力 50Aで低屈折率の酸ィ匕 珪素の膜を配した構成が開示されている。  [0004] As a conventional transparent sheet, a transparent conductive film disclosed in Patent Document 2 is known. In this transparent conductive film, an undercoat layer is formed between the conductive layer forming film and the conductive layer. The undercoat layer is composed of two layers having different refractive indexes. As a specific example, a zinc oxide tin monoxide film having a thickness of 600 A and a high refractive index is disposed on the conductive layer forming film side. A configuration is disclosed in which a silicon oxide film having a thickness of 50 A and a low refractive index is disposed on the conductive layer side.
[0005] ところが、この透明導電性フィルムを静電容量式の透明タツチスィッチに用いた場 合、やはり導電層のパターン形状が目立ってしまい、この点で改良の余地があった。 特許文献 1 :特開 2003— 173238号公報(図 1、図 5) [0005] However, when this transparent conductive film is used in a capacitance type transparent touch switch, the pattern shape of the conductive layer becomes conspicuous, and there is room for improvement in this respect. Patent Document 1: Japanese Unexamined Patent Publication No. 2003-173238 (Figs. 1 and 5)
特許文献 2:特開 2003— 197035号公報 (表 1)  Patent Document 2: Japanese Patent Laid-Open No. 2003-197035 (Table 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] そこで、本発明は、視認性を向上させることができる透明面状体及び透明タツチス イッチの提供を目的とする。 Therefore, the present invention provides a transparent planar body and a transparent touch that can improve visibility. The purpose is to provide a switch.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の前記目的は、透明基板の少なくとも一方面にパターユングされた透明導 電膜を有する透明面状体であって、前記透明基板を介して前記透明導電膜が形成 されて ヽるパターン形成領域を透過した光の透過スペクトルと、前記透明基板を介し て前記透明導電膜が形成されて ヽな 、非パターン形成領域を透過した光の透過ス ベクトルとを近似させる透過率調節層を備えている透明面状体により達成される。  [0007] The object of the present invention is a transparent planar body having a transparent conductive film patterned on at least one surface of a transparent substrate, and the transparent conductive film is formed through the transparent substrate. A transmittance adjustment layer that approximates a transmission spectrum of light transmitted through the pattern formation region and a transmission vector of light transmitted through the non-pattern formation region, the transparent conductive film being formed through the transparent substrate. This is achieved by a transparent sheet comprising:
[0008] この透明面状体において、前記透過率調節層は、前記透明基板の一方面を略均 一な厚みで覆うオーバコート層を有しており、前記オーバコート層は、厚みが前記透 明導電膜の厚みよりも大きぐ且つ、屈折率が前記透明導電膜の屈折率よりも小さい ことが好ましい。  [0008] In this transparent planar body, the transmittance adjusting layer has an overcoat layer that covers one surface of the transparent substrate with a substantially uniform thickness, and the overcoat layer has a thickness of the transparent substrate. It is preferable that it is larger than the thickness of the bright conductive film and the refractive index is smaller than the refractive index of the transparent conductive film.
[0009] また、前記オーバコート層は、シリコン錫酸ィ匕物からなることが好ましい。  [0009] The overcoat layer is preferably made of silicon stannate.
[0010] また、前記オーバコート層は、厚みが 70〜80nmであることが好ましい。 [0010] The overcoat layer preferably has a thickness of 70 to 80 nm.
[0011] また、前記透明導電膜の屈折率と、前記オーバコート層の屈折率との差が、 0. 03[0011] The difference between the refractive index of the transparent conductive film and the refractive index of the overcoat layer is 0.03.
〜0. 4であることが好ましい。 It is preferably ~ 0.4.
[0012] また、前記透明基板と前記透明導電膜との間にアンダーコート層が介在されており 、前記アンダーコート層は、光屈折率が異なる 2以上の層の積層体力 構成され、低 屈折率層側に前記透明導電膜が形成されていることが好ましい。 [0012] Further, an undercoat layer is interposed between the transparent substrate and the transparent conductive film, and the undercoat layer has a laminate strength of two or more layers having different optical refractive indexes, and has a low refractive index. The transparent conductive film is preferably formed on the layer side.
[0013] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 粘着層を介して貼着された静電容量式の透明タツチスィッチであって、前記粘着層 は、屈折率が前記透明導電膜の屈折率よりも小さ 、ことを特徴とする透明タツチスィ ツチにより達成される。 [0013] Further, the object of the present invention is provided with a plurality of the transparent sheet, each transparent sheet is a capacitance-type transparent touch switch attached via an adhesive layer, The adhesive layer is achieved by a transparent touch switch characterized by having a refractive index smaller than that of the transparent conductive film.
[0014] この透明タツチスィッチにおいて、表面側に直線偏光板を備えることが好ましい。  [0014] In this transparent touch switch, it is preferable that a linearly polarizing plate is provided on the surface side.
[0015] また、表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位 相差板を備えることが好まし 、。 [0015] Further, it is preferable that a linearly polarizing plate and a λ 位相 4 phase difference plate are provided on the front surface side, and a λΖ4 phase difference plate is provided on the back surface side.
[0016] また、前記透明基板は、 λ Ζ4位相差板であることが好ま 、。 [0016] Preferably, the transparent substrate is a λ で 4 phase difference plate.
[0017] また、前記透明面状体において、前記透過率調節層は、低屈折率層と、該低屈折 率層よりも光屈折率が高い高屈折率層とを含む積層体力ゝら構成されたアンダーコー ト層を備え、前記アンダーコート層は、前記低屈折率層側に前記透明導電膜が形成 されるように、前記透明基板と前記透明導電膜との間に介在されており、前記高屈折 率層の厚みは、前記低屈折率層の厚みよりも小さいことが好ましい。 [0017] Further, in the transparent planar body, the transmittance adjusting layer includes a low refractive index layer and a laminated body force including a high refractive index layer having a higher optical refractive index than the low refractive index layer. Underco The undercoat layer is interposed between the transparent substrate and the transparent conductive film so that the transparent conductive film is formed on the low refractive index layer side, and the high refractive index The thickness of the layer is preferably smaller than the thickness of the low refractive index layer.
[0018] また、前記高屈折率層の厚みは、 10〜25nmであり、前記低屈折率層の厚みは、 2 [0018] The high refractive index layer has a thickness of 10 to 25 nm, and the low refractive index layer has a thickness of 2
5〜45nmであることが好まし!/、。 5 ~ 45nm is preferred!
[0019] また、前記高屈折率層は、シリコン錫酸ィ匕物からなり、前記低屈折率層は、酸ィ匕珪 素からなることが好ましい。 [0019] The high refractive index layer is preferably made of silicon stannate and the low refractive index layer is preferably made of acid silicate silicon.
[0020] また、前記透明導電膜の厚みは、 10〜25nmであることが好ましい。 [0020] The transparent conductive film preferably has a thickness of 10 to 25 nm.
[0021] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 粘着層を介して貼着された静電容量式の透明タツチスィッチにより達成される。 [0021] Further, the object of the present invention is achieved by a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, each transparent planar body being bonded via an adhesive layer.
[0022] また、本発明の前記目的は、前記透明面状体を複数備える静電容量式の透明タツ チスィッチであって、前記各透明面状体は、前記透明導電膜が互いに対向するよう に配置され、粘着層を介して貼着されており、前記透明導電膜の厚みは、 20ηπ!〜 2[0022] Further, the object of the present invention is a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, wherein the transparent conductive films are opposed to each other. The transparent conductive film has a thickness of 20ηπ! ~ 2
5nmであり、前記粘着層の屈折率は、 1. 6以上である静電容量式の透明タツチスィ ツチにより達成される。 It is 5 nm, and the refractive index of the adhesive layer is achieved by a capacitive transparent touch switch that is 1.6 or more.
[0023] また、本発明の前記目的は、前記透明面状体を複数備える静電容量式の透明タツ チスィッチであって、 前記各透明面状体は、前記透明導電膜が互いに対向するよう に配置され、粘着層を介して貼着されており、前記透明導電膜の厚みは、 25ηπ!〜 3 Onmであり、前記粘着層の屈折率は、 1. 7以上である静電容量式の透明タツチスィ ツチにより達成される。  [0023] Further, the object of the present invention is a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, wherein the transparent conductive films are opposed to each other. It is arranged and stuck via an adhesive layer, and the thickness of the transparent conductive film is 25ηπ! ˜3 Onm, and the refractive index of the adhesive layer is achieved by a capacitive transparent touch switch that is 1.7 or more.
[0024] これらの透明タツチスィッチにお 、て、表面側に直線偏光板を備えることが好ま ヽ  [0024] In these transparent touch switches, it is preferable to provide a linear polarizing plate on the surface side.
[0025] また、表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位 相差板を備えることが好まし 、。 [0025] In addition, it is preferable that a linear polarizing plate and a λλ4 phase difference plate are provided on the front surface side, and a λΖ4 phase difference plate is provided on the back surface side.
[0026] また、前記透明基板は、 λ Ζ4位相差板であることが好ま 、。 [0026] Further, it is preferable that the transparent substrate is a λ 4 phase difference plate.
[0027] また、前記透明面状体において、前記透過率調節層は、前記透明基板の一方面 における前記透明導電膜が形成されていない露出部を覆う被覆層を備えており、前 記被覆層は、表面が前記透明導電膜の表面と略面一になるように形成されており、 且つ、屈折率が前記透明導電膜の屈折率と同等であることが好ましい。 [0027] In the transparent planar body, the transmittance adjusting layer includes a covering layer that covers an exposed portion on one surface of the transparent substrate where the transparent conductive film is not formed. Is formed so that the surface is substantially flush with the surface of the transparent conductive film, And it is preferable that a refractive index is equivalent to the refractive index of the said transparent conductive film.
[0028] また、前記被覆層は、シリコン錫酸ィ匕物からなることが好ましい。  [0028] The covering layer is preferably made of silicon stannate.
[0029] また、前記透明導電膜は、カーボンナノチューブ複合材からなることが好ま ヽ。 [0029] The transparent conductive film is preferably made of a carbon nanotube composite material.
[0030] また、低屈折率層と、該低屈折率層よりも光屈折率が高い高屈折率層とを含む積 層体力も構成されたアンダーコート層を更に備え、前記アンダーコート層は、前記低 屈折率層側に前記透明導電膜および前記被覆層が形成されるように、前記透明導 電膜および前記被覆層と、前記透明基板との間に介在されていることが好ましい。 [0030] Further, the undercoat layer further comprising an undercoat layer including a low refractive index layer and a high refractive index layer having a higher optical refractive index than the low refractive index layer, the undercoat layer comprising: It is preferable that the transparent conductive film and the coating layer are interposed between the transparent substrate and the transparent conductive film so that the transparent conductive film and the coating layer are formed on the low refractive index layer side.
[0031] また、前記透明導電膜および被覆層の表面を覆うオーバコート層を更に備えており[0031] The method further comprises an overcoat layer covering the surfaces of the transparent conductive film and the coating layer.
、前記オーバコート層の表面は、平坦に形成されていることが好ましい。 The surface of the overcoat layer is preferably formed flat.
[0032] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 粘着層を介して貼着された静電容量式の透明タツチスィッチにより達成される。 [0032] Further, the object of the present invention is achieved by a capacitance-type transparent touch switch comprising a plurality of the transparent planar bodies, each transparent planar body being bonded via an adhesive layer.
[0033] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 前記透明導電膜が互いに対向するように、スぺーサーを介して所定間隔を空けて配 置された抵抗膜式の透明タツチスィッチにより達成される。 [0033] Further, the object of the present invention is to provide a plurality of the transparent sheet-like bodies, and each of the transparent sheet-like bodies is spaced at a predetermined interval via a spacer so that the transparent conductive films face each other. This is achieved by a resistive touch transparent touch switch placed in the position.
[0034] これらの透明タツチスィッチにお 、て、表面側に直線偏光板を備えることが好ま ヽ [0034] In these transparent touch switches, it is preferable to provide a linear polarizing plate on the surface side.
[0035] また、表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位 相差板を備えることが好まし 、。 [0035] Further, it is preferable that a linearly polarizing plate and a λΖ4 phase difference plate are provided on the front surface side, and a λΖ4 phase difference plate is provided on the back surface side.
[0036] また、前記透明基板は、 λ Ζ4位相差板であることが好ま 、。  [0036] Preferably, the transparent substrate is a λ 4 phase difference plate.
[0037] また、前記透明導電膜は、間隔をあけて複数配置される帯状透明導電部を備えて おり、前記透過率調節層は、隣接する前記各帯状透明導電部の間に絶縁スリットを 介して配置される帯状透明調整部を備え、前記帯状透明調整部は、前記帯状透明 導電部と同一材料力もなると共に、複数の抵抗スリットを備えていることが好ましい。  [0037] Further, the transparent conductive film includes a plurality of strip-shaped transparent conductive portions arranged at intervals, and the transmittance adjusting layer includes an insulating slit between the adjacent strip-shaped transparent conductive portions. It is preferable that the belt-like transparent adjusting portion has the same material force as the belt-like transparent conductive portion and has a plurality of resistance slits.
[0038] また、前記複数の抵抗スリットは、前記各帯状透明調整部に隣接する前記絶縁スリ ット同士を接続するように構成されて 、ることが好ま U、。  [0038] In addition, it is preferable that the plurality of resistance slits are configured to connect the insulating slits adjacent to the respective strip-shaped transparent adjusting portions.
[0039] また、前記絶縁スリットに沿って、前記各帯状透明調整部を分離する分離スリットを 更に備えて 、ることが好ま 、。  [0039] In addition, it is preferable that a separation slit for separating the respective strip-shaped transparent adjusting portions is further provided along the insulating slit.
[0040] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 粘着層を介して貼着された静電容量式の透明タツチスィッチにより達成される。 [0040] Further, the object of the present invention is provided with a plurality of the transparent sheet, each transparent sheet is, This is achieved by a capacitance-type transparent touch switch attached via an adhesive layer.
[0041] また、本発明の前記目的は、前記透明面状体を複数備え、前記各透明面状体は、 前記帯状透明導電体が互いに対向するように、スぺーサーを介して所定間隔を空け て配置された抵抗膜式の透明タツチスィッチにより達成される。  [0041] Further, the object of the present invention is provided with a plurality of the transparent sheet-like bodies, and each of the transparent sheet-like bodies has a predetermined interval through a spacer so that the strip-like transparent conductors face each other. This is achieved by a resistive touch transparent touch switch placed at a distance.
[0042] これらの透明タツチスィッチにお 、て、表面側に直線偏光板を備えることが好ま ヽ  [0042] In these transparent touch switches, it is preferable to provide a linear polarizing plate on the surface side.
[0043] また、表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位 相差板を備えることが好まし 、。 [0043] In addition, it is preferable to provide a linear polarizing plate and a λΖ4 phase difference plate on the front surface side and a λΖ4 phase difference plate on the back surface side.
[0044] また、前記透明基板は、 λ Ζ4位相差板であることが好ま 、。 [0044] Further, it is preferable that the transparent substrate is a λ 4 phase difference plate.
発明の効果  The invention's effect
[0045] 本発明によれば、視認性を向上させることができる透明面状体及び透明タツチスィ ツチを提供することができる。  [0045] According to the present invention, it is possible to provide a transparent planar body and a transparent touch switch that can improve visibility.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]本発明に係る透明タツチスィッチの第 1実施形態を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing a first embodiment of a transparent touch switch according to the present invention.
[図 2]図 1に示す透明タツチスィッチの一部を示す平面図である。  2 is a plan view showing a part of the transparent touch switch shown in FIG.
[図 3]図 1に示す透明タツチスィッチの他の一部を示す平面図である。  FIG. 3 is a plan view showing another part of the transparent touch switch shown in FIG. 1.
[図 4]図 1に示す透明タツチスィッチの変形例の一部を示す平面図である。  FIG. 4 is a plan view showing a part of a modification of the transparent touch switch shown in FIG. 1.
[図 5]図 1に示す透明タツチスィッチの変形例の他の一部を示す平面図である。  FIG. 5 is a plan view showing another part of the modification of the transparent touch switch shown in FIG. 1.
[図 6]本発明の実施例に係る測定用サンプルの概略構成を示す断面図である。  FIG. 6 is a cross-sectional view showing a schematic configuration of a measurement sample according to an example of the present invention.
[図 7]図 6に示す測定用サンプルの分光透過スペクトルを示す図である。  7 is a diagram showing a spectral transmission spectrum of the measurement sample shown in FIG.
[図 8]本発明の比較例の分光透過スペクトルを示す図である。  FIG. 8 is a diagram showing a spectral transmission spectrum of a comparative example of the present invention.
[図 9]本発明に係る透明タツチスィッチの第 2実施形態を示す概略断面図である。  FIG. 9 is a schematic cross-sectional view showing a second embodiment of a transparent touch switch according to the present invention.
[図 10]透明導電膜の厚みを 30nmとした場合における、透明導電膜の有無による反 射率差のシミュレーション結果を示す図である。  FIG. 10 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 30 nm.
[図 11]透明導電膜の厚みを 15nmとした場合における、透明導電膜の有無による反 射率差のシミュレーション結果を示す図である。  FIG. 11 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 15 nm.
[図 12]透明導電膜の厚みを 20nmとした場合における、透明導電膜の有無による反 射率差のシミュレーション結果を示す図である。 圆 13]透明導電膜の厚みを 25nmとした場合における、透明導電膜の有無による反 射率差のシミュレーション結果を示す図である。 FIG. 12 is a diagram showing a simulation result of a difference in reflectivity with and without a transparent conductive film when the thickness of the transparent conductive film is 20 nm. FIG. 13 is a diagram showing a simulation result of a difference in reflectivity depending on the presence or absence of a transparent conductive film when the thickness of the transparent conductive film is 25 nm.
圆 14]透明導電膜の有無による反射率差のシミュレーション結果を示す図である。 圆 15]透明導電膜の有無による反射率差の他のシミュレーション結果を示す図であ る。 [14] FIG. 14 is a diagram showing a simulation result of a difference in reflectance with and without a transparent conductive film. FIG. 15 is a diagram showing another simulation result of the difference in reflectance depending on the presence or absence of a transparent conductive film.
[図 16]透明導電膜の有無による反射率差の更に他のシミュレーション結果を示す図 である。  FIG. 16 is a diagram showing still another simulation result of the difference in reflectance with and without the transparent conductive film.
[図 17]透明導電膜の有無による反射率差の更に他のシミュレーション結果を示す図 である。  FIG. 17 is a diagram showing still another simulation result of the difference in reflectance with and without the transparent conductive film.
圆 18]本発明に係る透明タツチスィッチの第 3実施形態を示す概略断面図である。 圆 19]ドライコーティング法を用いた被覆層の形成方法を説明する説明図である。 圆 20]図 18に示す透明タツチスィッチの変形例を示す概略断面図である。 FIG. 18 is a schematic sectional view showing a third embodiment of the transparent touch switch according to the present invention. [19] FIG. 19 is an explanatory diagram for explaining a method of forming a coating layer using a dry coating method. [20] FIG. 20 is a schematic sectional view showing a modification of the transparent touch switch shown in FIG.
圆 21]透明導電膜の有無による反射率差のシミュレーション結果を示す図である。 圆 22]透明導電膜の有無による反射率差の他のシミュレーション結果を示す図であ る。 [21] FIG. 21 is a diagram showing a simulation result of a difference in reflectance with and without a transparent conductive film. FIG. 22 is a view showing another simulation result of the difference in reflectance depending on the presence or absence of the transparent conductive film.
圆 23]図 18に示す透明タツチスィッチの変形例を示す概略断面図である。 圆 23] It is a schematic cross-sectional view showing a modification of the transparent touch switch shown in FIG.
圆 24]本発明に係る静電容量式のタツチスィッチの第 4実施形態を示す概略断面図 である。 24] A schematic cross-sectional view showing a fourth embodiment of a capacitance-type touch switch according to the present invention.
[図 25]図 24に示す静電容量式のタツチスィッチの一部を示す平面図である。  FIG. 25 is a plan view showing a part of the capacitance type touch switch shown in FIG. 24.
[図 26]図 24に示す静電容量式のタツチスィッチの他の一部を示す平面図である。 FIG. 26 is a plan view showing another part of the capacitance type touch switch shown in FIG. 24.
[図 27]図 24に示す静電容量式のタツチスィッチの変形例の一部を示す平面図である FIG. 27 is a plan view showing a part of a modification of the capacitance-type touch switch shown in FIG. 24.
[図 28]図 24に示す静電容量式のタツチスィッチの変形例の他の一部を示す平面図 である。 FIG. 28 is a plan view showing another part of the modified example of the capacitance type touch switch shown in FIG. 24.
[図 29]図 24に示す静電容量式のタツチスィッチの変形例を示す概略断面図である。  FIG. 29 is a schematic cross-sectional view showing a modified example of the capacitance type touch switch shown in FIG. 24.
[図 30]抵抗スリットの種々の変形例を示す要部拡大平面図である。 FIG. 30 is an enlarged plan view of an essential part showing various modifications of the resistance slit.
[図 31]抵抗スリットの種々の変形例を示す要部拡大平面図である。 FIG. 31 is an enlarged plan view of an essential part showing various modified examples of the resistance slit.
[図 32]分離スリットの種々の変形例を示す要部拡大平面図である。 [図 33]透明面状体の変形例を示す概略断面図である。 FIG. 32 is an enlarged plan view of an essential part showing various modifications of the separation slit. FIG. 33 is a schematic sectional view showing a modified example of the transparent planar body.
符号の説明  Explanation of symbols
101 透明タツチスィッチ  101 Transparent touch switch
1 第 1の透明面状体  1 First transparent sheet
2 第 2の透明面状体  2 Second transparent sheet
11, 21 透明基板  11, 21 Transparent substrate
12, 22 透明導電膜  12, 22 Transparent conductive film
13, 23 アンダーコート層  13, 23 Undercoat layer
14, 24 ォーノ コート層  14, 24 phono coat layer
15 粘着層  15 Adhesive layer
16, 26 被覆層  16, 26 Coating layer
32, 42 帯状透明導電部  32, 42 Strip-shaped transparent conductive part
33, 43 帯状透明調整部  33, 43 Band-shaped transparency adjustment section
34, 44 絶 リット  34, 44
35, 45 抵抗スリット  35, 45 Resistance slit
36, 46 分離スリット  36, 46 Separation slit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] (第 1実施形態)  [0048] (First embodiment)
以下、本発明の第 1実態形態について添付図面を参照して説明する。尚、各図面 は、構成の理解を容易にするため、模式的に表すと共に、実寸比ではなく部分的に 拡大又は縮小されている。  Hereinafter, a first actual mode of the present invention will be described with reference to the accompanying drawings. Each drawing is schematically shown for easy understanding of the configuration, and is partially enlarged or reduced, not an actual size ratio.
[0049] 図 1は、本発明に係る透明タツチスィッチの第 1実施形態を示す概略断面図である 。この透明タツチスィッチ 101は、静電容量式のタツチスィッチであり、透明基板 11に アンダーコート層 13を介して透明導電膜 12が形成された第 1の透明面状体 1と、透 明基板 21にアンダーコート層 23を介して透明導電膜 22が形成された第 2の透明面 状体 2とを備えている。第 1の透明面状体 1と第 2の透明面状体 2とは、それぞれの透 明導電膜 12, 22が対向するようにして、粘着層 15を介して貼着されている。  FIG. 1 is a schematic cross-sectional view showing a first embodiment of a transparent touch switch according to the present invention. The transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a transparent conductive film 12 is formed on a transparent substrate 11 via an undercoat layer 13, and an undercoat on the transparent substrate 21. And a second transparent planar body 2 having a transparent conductive film 22 formed thereon via a coat layer 23. The first transparent planar body 1 and the second transparent planar body 2 are bonded via an adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
[0050] 透明基板 11, 21ίま、基材層 111, 211の表裏面【こノヽードコート層 112, 112 ; 212 , 212を備えて構成されている。基材層 111, 211は、透明性が高い材料力もなるこ と力 子ましく、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレ ート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK) 、ポリカーボネイト(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC)、 エポキシ榭脂、フエノール榭脂、脂肪族環状ポリオレフイン、ノルボルネン系の熱可塑 性透明榭脂などの可撓性フィルムやこれら 2種以上の積層体、或いは、ガラス板など を挙げることができる。基材層 111, 211の厚みは、 20〜500 m程度が好ましぐ ノヽードコー卜層 112, 212の厚み ίま、 3〜5 111程度カ好まし1ヽ0基材層 111, 211ίま 、剛性を付与するために支持体を貼着してもよい。 [0050] Transparent substrate 11, 21ί, front and back surfaces of base material layer 111, 211 [node coat layer 112, 112; 212 , 212. The base material layers 111 and 211 are highly transparent and have a material strength. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), Polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC), epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin Examples thereof include a flexible film such as fat, a laminate of two or more of these, and a glass plate. The thickness of the base material layer 111, 211 is preferably about 20 to 500 m. The thickness of the nod coat layer 112, 212 is about 3 to 5 111, and the base layer 111, 211 is about 1 to 0 . You may stick a support body in order to provide rigidity.
[0051] アンダーコート層 13, 23は、光屈折率が異なる 2以上の層の積層体から構成され ており、低屈折率層側に透明導電膜 12, 22が形成されるように配置され、透明性を 向上させている。 [0051] The undercoat layers 13 and 23 are composed of a laminate of two or more layers having different optical refractive indexes, and are arranged so that the transparent conductive films 12 and 22 are formed on the low refractive index layer side. Transparency is improved.
[0052] アンダーコート層 13, 23の積層体を構成する各層の材料としては、酸化珪素、酸 化チタン、酸ィ匕錫などを例示することができ、好ましい組み合わせとして、酸化錫— 酸化ハフニウム系、酸化珪素一酸化錫系、酸化亜鉛一酸化錫系、酸化錫一酸化チ タン系などを挙げることができる。アンダーコート層 13, 23は、スパッタリング法、抵抗 蒸着法、電子ビーム蒸着法などにより形成することができる。  [0052] Examples of the material of each layer constituting the laminate of the undercoat layers 13 and 23 include silicon oxide, titanium oxide, and tin oxide, and a preferable combination is tin oxide-hafnium oxide. And silicon oxide tin monoxide system, zinc oxide tin monoxide system, and tin oxide titanium oxide system. The undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
[0053] 透明導電膜 12, 22の材料としては、インジウム錫酸化物 (ΙΤΟ)、酸化亜鉛、酸ィ匕 インジウム、アンチモン添加酸ィ匕錫、フッ素添加酸ィ匕錫、アルミニウム添加酸ィ匕亜鉛 、カリウム添加酸化亜鉛、シリコン添加酸化亜鉛や、酸化亜鉛一酸化錫系、酸化イン ジゥム 酸化錫系、酸化亜鉛 酸化インジウム 酸ィ匕マグネシウム系などの金属酸 化物を例示することができ、これら 2種以上を複合して形成してもよい。透明導電膜 1 2, 22の形成方法は、スパッタリング法、真空蒸着法、イオンプレーティング法などの PVD法や、 CVD法、塗工法、印刷法などを例示することができる。透明導電膜 12, 22の厚みは、通常 10〜50nm程度である。  The materials of the transparent conductive films 12 and 22 are indium tin oxide (酸化 物), zinc oxide, acid indium, antimony-added acid tin, fluorine-added acid tin, aluminum-added acid zinc Examples include metal oxides such as zinc-doped zinc oxide, silicon-doped zinc oxide, zinc oxide tin monoxide, indium tin oxide, zinc oxide, indium oxide, and magnesium oxide. You may form combining the above. Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing. The thickness of the transparent conductive films 12 and 22 is usually about 10 to 50 nm.
[0054] 透明導電膜 12, 22は、図 2及び図 3に示すように、平行に延びる複数の帯状導電 部 12a, 22aの集合体としてそれぞれ形成されており、各透明導電膜 12, 22の帯状 導電部 12a, 22aは、互いに直交するように配置されている。透明導電膜 12, 22は、 導電性インクなど力もなる引き廻し回路(図示せず)を介して外部の駆動回路(図示 せず)に接続される。透明導電膜 12, 22のノターン形状は、本実施形態のものに限 定されず、指などの接触ポイントを検出可能である限り、任意の形状とすることが可能 である。例えば、図 4及び図 5に示すように、透明導電膜 12, 22を、複数の菱形状導 電部 12b, 22bが直線状に連結された構成とし、各透明導電膜 12, 22における菱形 状導電部 12b, 22bの連結方向が互いに直交し、且つ、平面視において上下の菱形 状導電部 12b, 22bが重なり合わないように配置してもよい。 As shown in FIGS. 2 and 3, the transparent conductive films 12 and 22 are each formed as an aggregate of a plurality of strip-like conductive parts 12a and 22a extending in parallel. The strip-shaped conductive portions 12a and 22a are arranged so as to be orthogonal to each other. Transparent conductive films 12, 22 It is connected to an external drive circuit (not shown) through a drawing circuit (not shown) that also has a force such as conductive ink. The pattern of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, and any shape can be used as long as a contact point such as a finger can be detected. For example, as shown in FIG. 4 and FIG. 5, the transparent conductive films 12 and 22 have a configuration in which a plurality of rhombus-shaped conductive portions 12b and 22b are linearly connected, and the rhombus shape in each transparent conductive film 12 and 22 The conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhomboid conductive portions 12b and 22b do not overlap in plan view.
[0055] 透明導電膜 12, 22のパターユングは、透明基板 11, 21にアンダーコート層 13, 2 3を介してそれぞれ形成された透明導電膜 12, 22の表面に、所望のパターン形状を 有するマスク部を形成して露出部分を酸液などでエッチング除去した後、アルカリ液 などによりマスク部を溶解させて、行うことができる。このように透明導電膜 12, 22の パター-ングをエッチングにより行う方法は、不要な透明導電膜 12, 22は除去できる 一方、アンダーコート層 13, 23は全て残存させることができる。但し、パター-ングの 方法はこれに限定されるものではなぐ他の公知の方法で行ってもよい。また、不要 な透明導電膜 12, 22を除去する際に、アンダーコート層 13, 23も併せて除去するこ とも可能である。 The patterning of the transparent conductive films 12 and 22 has a desired pattern shape on the surfaces of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21 via the undercoat layers 13 and 23, respectively. After the mask portion is formed and the exposed portion is etched away with an acid solution or the like, the mask portion can be dissolved with an alkali solution or the like. Thus, the method of performing the patterning of the transparent conductive films 12 and 22 by etching can remove the unnecessary transparent conductive films 12 and 22, while leaving all the undercoat layers 13 and 23 to remain. However, the patterning method is not limited to this, and other known methods may be used. Further, when the unnecessary transparent conductive films 12 and 22 are removed, the undercoat layers 13 and 23 can also be removed together.
[0056] 本実施形態の透明タツチスィッチにおける第 1の透明面状体 1及び第 2の透明面状 体 2は、それぞれの対向面 (透明導電膜 12, 22が形成された面)に、オーバコート層 14, 24が形成されている。オーバコート層 14, 24の材料としては、酸化珪素、酸ィ匕 チタン、酸ィ匕錫などを例示することができる力 特に、シリコン錫酸ィ匕物(silicon-tin ox ide)を好ましく用いることができる。オーバコート層 14, 24の厚みは、通常 10〜500n m程度であり、屈折率は 1. 3〜2. 3程度である。  [0056] The first transparent planar body 1 and the second transparent planar body 2 in the transparent touch switch of the present embodiment are overcoated on the respective opposing surfaces (surfaces on which the transparent conductive films 12 and 22 are formed). Layers 14 and 24 are formed. Examples of materials for the overcoat layers 14 and 24 include silicon oxide, titanium oxide, and tin oxide. In particular, silicon-tin oxide is preferably used. Can do. The thickness of the overcoat layers 14 and 24 is usually about 10 to 500 nm, and the refractive index is about 1.3 to 2.3.
[0057] 第 1の透明面状体 1におけるオーバコート層 14の厚みは、透明導電膜 12の厚みよ りも大きいことが好ましぐオーバコート層 14の屈折率は、透明導電膜 12の屈折率よ りも小さいことが好ましい。第 2の透明面状体 2におけるオーバコート層 24についても 同様であり、透明導電膜 22よりも厚みが大きぐ且つ、透明導電膜 22よりも屈折率が 小さいことが好ましい。オーバコート層 14の屈折率は、例えばシリコン錫酸ィ匕物から なる場合に、シリコンと錫の成分比を変えることにより適宜調整可能である。オーバコ ート層 14, 24の厚み及び屈折率を上記のように設定することにより、第 1の透明面状 体 1及び第 2の透明面状体 2の透過スペクトル及び反射スペクトルの形状を、透明導 電膜 12, 22が形成されて 、る部分と形成されて!ヽな!、部分とで近似させることが可 能になり、色目(濃淡)の差異を小さくすることができる。この結果、第 1の透明面状体 1及び第 2の透明面状体 2において、透明導電膜 12, 22のパターン形状を目立たな くすることができ、視認性を向上させることができる。 [0057] The thickness of the overcoat layer 14 in the first transparent planar body 1 is preferably larger than the thickness of the transparent conductive film 12, and the refractive index of the overcoat layer 14 is the refractive index of the transparent conductive film 12. Preferably less than the rate. The same applies to the overcoat layer 24 in the second transparent planar body 2, and it is preferable that the thickness is larger than the transparent conductive film 22 and the refractive index is smaller than that of the transparent conductive film 22. The refractive index of the overcoat layer 14 can be adjusted as appropriate by changing the component ratio of silicon and tin, for example, when it is made of silicon stannate. Overco By setting the thicknesses and refractive indexes of the gate layers 14 and 24 as described above, the shapes of the transmission spectrum and the reflection spectrum of the first transparent planar body 1 and the second transparent planar body 2 are made transparent. Since the electromembranes 12 and 22 are formed, it can be approximated to the formed portion, and the portion can be approximated, and the difference in color (shading) can be reduced. As a result, in the first transparent planar body 1 and the second transparent planar body 2, the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
[0058] より具体的に説明すると、透明導電膜 12, 22が形成されていない部分の透過スぺ タトル (又は反射スペクトル)の形状は、オーバコート層 14, 24の厚みが増加するに つれて、透明導電膜 12, 22が形成されている部分の透過スペクトル (又は反射スぺ タトル)の形状に徐々に近づいていく。したがって、両者のスペクトル形状が略一致す るように、オーバコート層 14, 24の厚みを適宜設定することにより、良好な視認性を 得ることができる。例えば、オーバコート層 14, 24がシリコン錫酸ィ匕物(屈折率:約 1. 7)からなる場合、後述する実験結果に示すように、オーバコート層 14, 24の厚みを 7 0〜80nmとすることが好まし!/、。  More specifically, the shape of the transmission spectrum (or reflection spectrum) where the transparent conductive films 12 and 22 are not formed is as the thickness of the overcoat layers 14 and 24 increases. Then, it gradually approaches the shape of the transmission spectrum (or reflection spectrum) where the transparent conductive films 12 and 22 are formed. Therefore, good visibility can be obtained by appropriately setting the thicknesses of the overcoat layers 14 and 24 so that the spectral shapes of the two substantially coincide. For example, when the overcoat layers 14 and 24 are made of silicon stannate (refractive index: about 1.7), the thickness of the overcoat layers 14 and 24 is set to 70 to 80 nm as shown in the experimental results described later. I prefer to!
[0059] また、オーバコート層 14, 24の屈折率は、上述したように透明導電膜 12, 22の屈 折率よりも小さいことが好ましいが、この屈折率の差が小さすぎるとオーバコート層 14 , 24を設けた効果が十分得られない一方、屈折率の差が大きすぎると、界面での反 射が大きくなり透過率が低下する傾向にあることから、両者の屈折率の差は、 0. 03 〜0. 4であること力 S好ましく、 0. 1〜0. 3であることがより好ましい。  [0059] The refractive index of the overcoat layers 14 and 24 is preferably smaller than the refractive index of the transparent conductive films 12 and 22 as described above, but if the difference in refractive index is too small, the overcoat layers While the effects of providing 14 and 24 cannot be obtained sufficiently, if the difference in refractive index is too large, reflection at the interface tends to increase and the transmittance tends to decrease. The force is preferably 0.03 to 0.4, more preferably 0.1 to 0.3.
[0060] オーバコート層 14, 24の形成方法としては、スパッタリング法、抵抗蒸着法、電子ビ ーム蒸着法などのドライコーティング法を挙げることができ、これによつて、第 1の透明 面状体 1及び第 2の透明面状体 2におけるアンダーコート層 13, 23の露出面、及び、 透明導電膜 12, 22の表面に、オーバコート層 14, 24を略同じ厚みで形成することが できる。  [0060] Examples of the method for forming the overcoat layers 14 and 24 include dry coating methods such as a sputtering method, a resistance vapor deposition method, and an electron beam vapor deposition method. Overcoat layers 14 and 24 can be formed with substantially the same thickness on the exposed surface of undercoat layers 13 and 23 and the surfaces of transparent conductive films 12 and 22 in body 1 and second transparent planar body 2. .
[0061] 第 1の透明面状体 1と第 2の透明面状体 2との貼着は、空気層が介在しないように、 粘着層 15を全体に介在させて行うことが好ましい。粘着層 15は、エポキシ系やアタリ ル系など、一般的な透明接着剤を用いることができ、ノルボルネン系榭脂の透明性フ イルムからなる芯材を含むものであってもよい。粘着層 15の厚みは、通常 25〜75 mであり、屈折率は、 1. 4〜1. 6である。 [0061] The first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed therebetween so that an air layer does not intervene. The adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin. The thickness of the adhesive layer 15 is usually 25 to 75. m and the refractive index is 1.4 to 1.6.
[0062] 粘着層 15の屈折率は、オーバコート層 14, 24の屈折率よりも小さいことが好ましい 。これにより、透明導電膜 12 (又は 22)、オーバコート層 14 (又は 24)及び粘着層 15 が積層された順序で、屈折率が徐々に小さくなるように構成することができ、透明タツ チスィッチ全体の透過スペクトル及び反射スペクトルの形状を、透明導電膜 12, 22 が形成されている部分と形成されていない部分とで近似させて、色目(濃淡)の差異 を小さくすることができる。この結果、透明導電膜 12, 22のパターン形状を目立たな くすることができ、視認性を向上させることができる。  [0062] The refractive index of the pressure-sensitive adhesive layer 15 is preferably smaller than the refractive indexes of the overcoat layers 14 and 24. As a result, the transparent conductive film 12 (or 22), the overcoat layer 14 (or 24) and the adhesive layer 15 can be configured so that the refractive index gradually decreases in the order in which the transparent conductive film 12 (or 22), the overcoat layer 14 (or 24) and the adhesive layer 15 are laminated. The shape of the transmission spectrum and the reflection spectrum can be approximated between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed, so that the difference in color (shading) can be reduced. As a result, the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
[0063] 以上の構成を備える透明タツチスィッチにおいて、タツチ位置の検出方法は、従来 の静電容量式のタツチスィッチと同様であり、第 1の透明面状体 1の表面側における 任意の位置を指などで触れると、透明導電膜 12, 22は接触位置において人体の静 電容量を介して接地され、このときに透明導電膜 12, 22を流れる電流値を検出する ことにより、接触位置の座標が演算される。オーバコート層 14, 24の表面抵抗値は、 静電容量式タツチスィッチとして正常に作動する絶縁性を確保できるように十分大き いことが好ましぐ例えば、 1 Χ 1012( ΩΖ口)以上である。 [0063] In the transparent touch switch having the above-described configuration, the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is set to a finger or the like. When touched with, the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done. The surface resistance value of the overcoat layers 14 and 24 is preferably large enough to ensure insulation that operates normally as a capacitive touch switch, for example, 1 Χ 10 12 (ΩΖ 口) or more .
[0064] 本第 1実施形態の透明タツチスィッチ 101において、第 1の透明面状体 1の表面側  [0064] In the transparent touch switch 101 of the first embodiment, the surface side of the first transparent planar body 1
(透明導電膜 12が形成された面と反対側)には、直線偏光板を設けてもよい。直線偏 光板を設ける場合は、透明基板 11, 21を光等方性材料で構成する必要がある。直 線偏光板は、ヨウ素や二色性染料などの二色性色素を吸着配向させたポリビニルァ ルコール(PVA)の延伸フィルムを例示することができ、このフィルムの両面を、保護 フィルムとしてのトリァセチルアセテート(TAC)フィルムで挟持するように貼り合わせ たものを使用してもよい。光等方性材料は、入射する全ての光に対して、偏光性を有 しない材料で、例えば、ポリカーボネート(PC)、ポリエーテルサルフォン(PES)、ポリ アクリル (PAC)、非晶質ポリオリフィン系榭脂、環状ポリオリフィン系榭脂、脂肪族環 状ポリオレフイン、ノルボルネン系の熱可塑性透明榭脂、ガラス材料などを例示する ことができる。これらの材料を用いて透明基板 11, 21を形成する方法としては、キヤ ストや押し出しと!/、う手法を用いることができる。  A linearly polarizing plate may be provided on the side opposite to the surface on which the transparent conductive film 12 is formed. When a linear polarizing plate is provided, the transparent substrates 11 and 21 must be made of a light isotropic material. The linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film are coated with triacetyl as a protective film. You may use what was pasted together so that it may be pinched with an acetate (TAC) film. The optically isotropic material is a material that is not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefin. Examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like. As a method for forming the transparent substrates 11 and 21 using these materials, a cast or extrusion method can be used.
[0065] このような構成により、タツチスィッチ内部へ入射される可視光に起因する反射光量 を当該直線偏光板を設けていない場合に比べて約半分以下に抑制することができる[0065] With such a configuration, the amount of reflected light caused by visible light incident on the inside of the touch switch Can be suppressed to about half or less compared to the case where the linear polarizing plate is not provided.
。また、透明導電膜 12, 22をより目立ちに《することができ、視認性をより向上させ ることがでさる。 . Further, the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
[0066] 更に、直線偏光板と λ Ζ4位相差板とを全面貼りし、タツチスィッチ 101の反対面( 第 2の透明面状体 2の裏面側)に λ Ζ4位相差板を全面貼りすることにより、円偏光 構成を形成してもよ 、。 λ Ζ4位相差板は、ポリビュルアルコール (PVA)やポリカー ボネート (PC)、ノルボルネン系の熱可塑性榭脂、環状ポリオレフイン榭脂などのフィ ルムを延伸して複屈曲性を付与したものを例示することができる。直線偏光板への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料カゝらなる粘着層を介して、 空気層が介在しないように全面貼着により行われることが好ましい。また、第 2の透明 面状体裏面側への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料から なる粘着層を介して、空気層が介在しないように全面貼着により行われることが好まし V、。この場合、各 λ Ζ4位相差板は、一方の λ Ζ4位相差板の光学軸が他方の λ / 4位相差板の光学軸に対して直交するように配置されることが好ま 、。  [0066] Further, the whole surface of the linear polarizing plate and the λ 4 phase difference plate is pasted, and the entire surface of the λ 4 phase difference plate is pasted on the opposite surface of the touch switch 101 (the back side of the second transparent planar body 2). You may form a circular polarization configuration. The λ Ζ4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to. Adhering the λλ4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. In addition, the λΖ4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. V, preferably done. In this case, each λ は 4 phase difference plate is preferably arranged so that the optical axis of one λΖ4 phase difference plate is orthogonal to the optical axis of the other λ / 4 phase difference plate.
[0067] このように、円偏光構成を形成することにより、反射光を円偏光化し、 2つの λ Ζ4 位相差板で挟まれた部分のタツチスィッチの内面反射をカットして良好な低反射性を 付与することが可能である。これにより、透明導電膜 12, 22をより目立ちにくくするこ とができ、視認性をより向上させることができる。尚、透明基板 11, 21自体を λ Ζ4位 相差板として、これに直線偏光板を積層した構成にすることも可能である。  [0067] In this way, by forming the circularly polarized light structure, the reflected light is circularly polarized, and the internal reflection of the touch switch in the portion sandwiched between the two λ Ζ4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as λΖ4 phase difference plates and linear polarizing plates are laminated thereon.
実施例  Example
[0068] 以下、実施例及び比較例に基づき本発明をより詳細に説明する。但し、本発明が、 以下の実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, the present invention is not limited to the following examples.
[0069] (実施例) [0069] (Example)
まず、実施例として、図 1に示す構成の透明タツチスィッチにおいて、透明導電膜 1 2が形成された部分と、透明導電膜 12が形成されていない部分との透過率の差を調 ベるため、図 6 (a)及び (b)に示す 2種類の測定用サンプル (サイズ:縦 5cm、横 7cm )を作製した。図 6 (a)に示すサンプル Aは、透明基板 11と、アンダーコート層 13と、 オーバコート層 14と、粘着層 15とがこの順で積層され、透明導電膜を有しない積層 体である。透明基板 11は、厚みが 200 mの PETフィルム力 なる基材層 111の表 裏面に、厚みが 3〜5 111のハードコート層 112, 112が形成されたものである。アン ダーコート層 13は、厚み 30nmの酸化シリコン層と、厚み 70nmのシリコン錫酸化物 層とが透明基板 11にこの順で積層されて構成されている。オーバコート層 14は、シリ コン錫酸ィ匕物をスパッタリング法により厚みが 70nmとなるように形成されており、屈折 率は 1. 7である。粘着層 15は、リンテック (株)製のアクリル系粘着剤「P043FP」で形 成され、厚みは 20〜30 μ mである。 First, as an example, in the transparent touch switch having the configuration shown in FIG. 1, in order to investigate the difference in transmittance between the portion where the transparent conductive film 12 is formed and the portion where the transparent conductive film 12 is not formed, Two types of measurement samples (size: 5 cm long, 7 cm wide) shown in Figs. 6 (a) and (b) were prepared. Sample A shown in FIG. 6 (a) is a laminate in which a transparent substrate 11, an undercoat layer 13, an overcoat layer 14, and an adhesive layer 15 are laminated in this order and do not have a transparent conductive film. Is the body. The transparent substrate 11 is obtained by forming hard coat layers 112 and 112 having a thickness of 3 to 5 111 on the front and back surfaces of a base material layer 111 having a PET film force having a thickness of 200 m. The undercoat layer 13 is configured by laminating a silicon oxide layer having a thickness of 30 nm and a silicon tin oxide layer having a thickness of 70 nm on the transparent substrate 11 in this order. The overcoat layer 14 is formed by sputtering a silicon stannate to a thickness of 70 nm, and has a refractive index of 1.7. The adhesive layer 15 is formed of an acrylic adhesive “P043FP” manufactured by Lintec Corporation, and has a thickness of 20 to 30 μm.
[0070] 一方、図 6 (b)に示すサンプル Bは、図 6 (a)に示すサンプル Aにお!/、て、アンダー コート層 13と、オーバコート層 14との間に、 ITOからなる厚みが 30nmの透明導電膜 12が形成されたものである。透明導電膜 12の屈折率は、 1. 95である。  On the other hand, sample B shown in FIG. 6 (b) is made of ITO between the undercoat layer 13 and the overcoat layer 14 in the sample A shown in FIG. 6 (a). A transparent conductive film 12 having a thickness of 30 nm is formed. The refractive index of the transparent conductive film 12 is 1.95.
[0071] これら 2種類のサンプル A, Bに対して、透明基板 11の表面側から分光透過スぺク トルを測定した。分光透過率の測定には、(株)日立製作所の分光光度計 (U— 331 0)を用いた。サンプル A及び Bの分光透過スペクトルは、図 7 (a)に示すように、両者 が近似する結果となった。  [0071] With respect to these two types of samples A and B, spectral transmission spectra were measured from the surface side of the transparent substrate 11. A spectrophotometer (U-331O) manufactured by Hitachi, Ltd. was used for the measurement of the spectral transmittance. The spectral transmission spectra of Samples A and B were similar to each other as shown in Fig. 7 (a).
[0072] また、図 1に示す透明タツチスィッチにおいて、オーバコート層 14の厚みを上記のよ うに 70nmとして、 24Wの 3波長形蛍光灯を照射し、照射角度を変えながら目視検査 を行ったところ、導電パターンの形状はほとんど視認できず、良好な結果が得られた  [0072] Further, in the transparent touch switch shown in FIG. 1, when the thickness of the overcoat layer 14 was set to 70 nm as described above, a 24-W three-wavelength fluorescent lamp was irradiated, and a visual inspection was performed while changing the irradiation angle. The shape of the conductive pattern was hardly visible, and good results were obtained.
[0073] 次に、サンプル A, Bにおけるオーバコート層 14の厚みを 80nmとして、上記と同様 の試験を行った。分光透過スペクトルは、図 7 (b)に示すように、高波長側で若干の 差があるものの、低波長側では略一致しており、視認性に影響を与えやすい波長 55 Onm付近においても、透過率の差は小さカゝつた。この場合も、タツチスィッチでの目 視検査の結果は良好であった。 [0073] Next, a test similar to the above was performed with the thickness of the overcoat layer 14 in Samples A and B being 80 nm. As shown in Fig. 7 (b), the spectral transmission spectrum has a slight difference on the high wavelength side, but it is almost the same on the low wavelength side, and even near the wavelength of 55 Onm, which tends to affect visibility. The difference in transmittance was small. In this case, the result of the visual inspection with the touch switch was also good.
[0074] (比較例)  [0074] (Comparative example)
上記実施例に対する比較例として、図 6 (a)及び (b)のサンプル A, Bの構成にぉ ヽ て、オーバコート層 14を設けないサンプル C, Dを作製した。そして、上記実施例と同 様に、サンプル C, Dの分光透過スペクトルの測定を行った。透過スペクトルの形状は 、図 8に示すように、特に低波長側において大きな差が生じる結果となった。 [0075] また、タツチスィッチでの目視検査の結果は、透明導電膜を有しな 、サンプル こ 対し、透明導電膜を有するサンプル Dは、紫色がかった色目を有しており、透明導電 膜の有無が、反射光の色目の違いとしてはっきり認識された。 As a comparative example with respect to the above example, samples C and D in which the overcoat layer 14 was not provided were manufactured in accordance with the configurations of the samples A and B in FIGS. 6 (a) and 6 (b). Then, the spectral transmission spectra of samples C and D were measured in the same manner as in the above example. As shown in FIG. 8, the shape of the transmission spectrum resulted in a large difference especially on the low wavelength side. [0075] Further, as a result of the visual inspection with the touch switch, the sample without the transparent conductive film had a purple color and the sample D with the transparent conductive film had a transparent conductive film. However, it was clearly recognized as a difference in the color of the reflected light.
(第 2実施形態)  (Second embodiment)
次に、本発明の第 2実態形態について添付図面を参照して説明する。尚、各図面 は、構成の理解を容易にするため、模式的に表すと共に、実寸比ではなく部分的に 拡大又は縮小されている。  Next, a second actual form of the present invention will be described with reference to the accompanying drawings. Each drawing is schematically shown for easy understanding of the configuration, and is partially enlarged or reduced, not an actual size ratio.
[0076] 図 9は、本発明に係る透明タツチスィッチの第 2実施形態を示す概略断面図である 。この透明タツチスィッチ 101は、静電容量式のタツチスィッチであり、透明基板 11に アンダーコート層 13を介して透明導電膜 12が形成された第 1の透明面状体 1と、透 明基板 21にアンダーコート層 23を介して透明導電膜 22が形成された第 2の透明面 状体 2とを備えている。第 1の透明面状体 1と第 2の透明面状体 2とは、それぞれの透 明導電膜 12, 22が対向するようにして、粘着層 15を介して貼着されている。  FIG. 9 is a schematic cross-sectional view showing a second embodiment of the transparent touch switch according to the present invention. The transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a transparent conductive film 12 is formed on a transparent substrate 11 via an undercoat layer 13, and an undercoat on the transparent substrate 21. And a second transparent planar body 2 having a transparent conductive film 22 formed thereon via a coat layer 23. The first transparent planar body 1 and the second transparent planar body 2 are bonded via an adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
[0077] 透明基板 11, 21ίま、基材層 111, 211の表裏面【こノヽードコート層 112, 112 ; 212 , 212を備えて構成されている。基材層 111, 211は、透明性が高い材料力もなるこ と力 子ましく、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレ ート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK) 、ポリカーボネイト(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC)、 エポキシ榭脂、フエノール榭脂、脂肪族環状ポリオレフイン、ノルボルネン系の熱可塑 性透明榭脂、シロキサン架橋型アクリルシリコン榭脂などの可撓性フィルムやこれら 2 種以上の積層体、或いは、ガラス板などを挙げることができる。基材層 111, 211の 厚み ίま、 20〜500 111程度カ^好ましく、ノヽードコート層112, 212の厚み ίま、 3〜5 m程度が好ましい。基材層 111, 211は、剛性を付与するために支持体を貼着しても よい。  [0077] The transparent substrate 11, 21 and the substrate layers 111, 211 are provided with front and back surfaces [node coat layers 112, 112; 212, 212]. The base material layers 111 and 211 are highly transparent and have a material strength. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), Polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC), epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin Examples thereof include flexible films such as fats and siloxane-crosslinked acrylic silicone resins, laminates of these two or more, and glass plates. The thickness of the substrate layers 111 and 211 is preferably about 20 to 500 111, and the thickness of the node coat layers 112 and 212 is preferably about 3 to 5 m. The base material layers 111 and 211 may be attached with a support in order to impart rigidity.
[0078] ハードコート層 112, 212は、耐久性及びアンダーコート層 13, 23の密着性を高め るために、基材層 111, 211の表裏面に設けることが好ましいが、いずれか一方であ つてもよぐ更には、ハードコート層 112, 212を全く設けずに透明基板 11, 21を構 成することも可能である。 [0079] アンダーコート層 13, 23は、それぞれ低屈折率層 13a, 23aと、低屈折率層 13a, 23aよりも光屈折率が高い高屈折率層 13b, 23bとの積層体力も構成されており、低 屈折率層 13a, 23a側に透明導電膜 12, 22が形成されるように配置され、透明性を 向上させている。 [0078] The hard coat layers 112 and 212 are preferably provided on the front and back surfaces of the base material layers 111 and 211 in order to improve durability and adhesion of the undercoat layers 13 and 23. Furthermore, the transparent substrates 11 and 21 can be configured without providing the hard coat layers 112 and 212 at all. [0079] The undercoat layers 13 and 23 also have a laminate strength of the low-refractive index layers 13a and 23a and the high-refractive index layers 13b and 23b having a higher optical refractive index than the low-refractive index layers 13a and 23a, respectively. Further, the transparent conductive films 12 and 22 are arranged on the low refractive index layers 13a and 23a side to improve the transparency.
[0080] アンダーコート層 13, 23の積層体を構成する各層の材料としては、酸化珪素、酸 化チタン、酸ィ匕錫などを例示することができ、好ましい組み合わせとして、酸化錫— 酸化ハフニウム系、酸化珪素一酸化錫系、酸化亜鉛一酸化錫系、酸化錫一酸化チ タン系などを挙げることができる。視認性向上の観点力も特に好ましいのは、低屈折 率層 13a, 23aが酸化珪素(SiOn、n= 1.7〜2.0)力 なり、高屈折率層 13b, 23b力 S シリコン錫酸化物(silicon- tin oxide)からなる組み合わせである。アンダーコート層 13 , 23は、スパッタリング法、抵抗蒸着法、電子ビーム蒸着法などにより形成することが できる。  [0080] Examples of the material of each layer constituting the laminate of the undercoat layers 13 and 23 include silicon oxide, titanium oxide, and tin oxide, and a preferable combination is tin oxide-hafnium oxide. And silicon oxide tin monoxide system, zinc oxide tin monoxide system, and tin oxide titanium oxide system. From the viewpoint of improving visibility, the low refractive index layers 13a and 23a have a silicon oxide (SiOn, n = 1.7 to 2.0) force, and the high refractive index layers 13b and 23b have a strong force. oxide). The undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
[0081] 後述する本発明者らのシミュレーション結果によれば、高屈折率層 13b, 23bの厚 みは、低屈折率層 13a, 23aの厚みよりも小さいことが好ましぐこれによつて、アンダ 一コート層 13, 23の表面に形成した透明導電膜 12, 22のパターン形状を目立ちに くくして、視認性を高めることができる。高屈折率層 13b, 23bの厚みは、 10〜25nm であることが好ましぐこの場合において、低屈折率層 13a, 23aの厚みは、 25〜45 nmであることが好ましい。  [0081] According to the simulation results of the inventors described later, it is preferable that the thickness of the high refractive index layers 13b and 23b is smaller than the thickness of the low refractive index layers 13a and 23a. Visibility can be improved by making the pattern shape of the transparent conductive films 12 and 22 formed on the surfaces of the undercoat layers 13 and 23 inconspicuous. In this case, the thickness of the high refractive index layers 13b and 23b is preferably 10 to 25 nm. In this case, the thickness of the low refractive index layers 13a and 23a is preferably 25 to 45 nm.
[0082] 透明導電膜 12, 22の材料としては、インジウム錫酸化物 (ITO)、酸化亜鉛、酸ィ匕 インジウム、アンチモン添加酸ィ匕錫、フッ素添加酸ィ匕錫、アルミニウム添加酸ィ匕亜鉛 、カリウム添加酸化亜鉛、シリコン添加酸化亜鉛や、酸化亜鉛一酸化錫系、酸化イン ジゥム 酸化錫系、酸化亜鉛 酸化インジウム 酸ィ匕マグネシウム系などの金属酸 化物を例示することができ、これら 2種以上を複合して形成してもよい。透明導電膜 1 2, 22の形成方法は、スパッタリング法、真空蒸着法、イオンプレーティング法などの PVD法や、 CVD法、塗工法、印刷法などを例示することができる。  The transparent conductive films 12 and 22 are made of indium tin oxide (ITO), zinc oxide, indium oxide, indium oxide, antimony-added acid tin, fluorine-added acid tin, aluminum-added acid zinc. Examples include metal oxides such as zinc-doped zinc oxide, silicon-doped zinc oxide, zinc oxide tin monoxide, indium tin oxide, zinc oxide, indium oxide, and magnesium oxide. You may form combining the above. Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing.
[0083] 透明導電膜 12, 22は、上述の第 1実施形態と同様に図 2及び図 3に示すように、平 行に延びる複数の帯状導電部 12a, 22aの集合体としてそれぞれ形成されており、 各透明導電膜 12, 22の帯状導電部 12a, 22aは、互いに直交するように配置されて いる。透明導電膜 12, 22は、導電性インクなど力もなる引き廻し回路(図示せず)を 介して外部の駆動回路(図示せず)に接続される。透明導電膜 12, 22のパターン形 状は、本実施形態のものに限定されず、指などの接触ポイントを検出可能である限り 、任意の形状とすることが可能である。例えば、図 4及び図 5に示すように、透明導電 膜 12, 22を、複数の菱形状導電部 12b, 22bが直線状に連結された構成とし、各透 明導電膜 12, 22における菱形状導電部 12b, 22bの連結方向が互いに直交し、且 つ、平面視において上下の菱形状導電部 12b, 22bが重なり合わないように配置し てもよい。 As shown in FIGS. 2 and 3, the transparent conductive films 12 and 22 are each formed as an aggregate of a plurality of strip-like conductive portions 12a and 22a extending in parallel as in the first embodiment described above. The strip-like conductive portions 12a and 22a of the transparent conductive films 12 and 22 are arranged so as to be orthogonal to each other. Yes. The transparent conductive films 12 and 22 are connected to an external drive circuit (not shown) through a drawing circuit (not shown) that has a force such as conductive ink. The pattern shape of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, and may be any shape as long as a contact point such as a finger can be detected. For example, as shown in FIGS. 4 and 5, the transparent conductive films 12 and 22 are configured by connecting a plurality of rhombus-shaped conductive portions 12b and 22b in a straight line, and the rhombus shapes in the transparent conductive films 12 and 22 are formed. The conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhombus-shaped conductive portions 12b and 22b do not overlap in plan view.
[0084] 透明導電膜 12, 22のパターユングは、透明基板 11, 21にアンダーコート層 13, 2 3を介してそれぞれ形成された透明導電膜 12, 22の表面に、所望のパターン形状を 有するマスク部を形成して露出部分を酸液などでエッチング除去した後、アルカリ液 などによりマスク部を溶解させて、行うことができる。このように透明導電膜 12, 22の パター-ングをエッチングにより行う方法は、不要な透明導電膜 12, 22は除去できる 一方、アンダーコート層 13, 23は全て残存させることができる。但し、パター-ングの 方法はこれに限定されるものではなぐ他の公知の方法で行ってもよい。  [0084] The patterning of the transparent conductive films 12 and 22 has a desired pattern shape on the surface of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21 via the undercoat layers 13 and 23, respectively. After the mask portion is formed and the exposed portion is removed by etching with an acid solution or the like, the mask portion can be dissolved with an alkali solution or the like. Thus, the method of performing the patterning of the transparent conductive films 12 and 22 by etching can remove the unnecessary transparent conductive films 12 and 22, while leaving all the undercoat layers 13 and 23 to remain. However, the patterning method is not limited to this, and other known methods may be used.
[0085] 透明導電膜 12, 22の厚みは、通常 10〜50nm程度である。透明導電膜 12, 22の ノターン形状を目立ちに《して視認性を向上させる観点力もは、透明導電膜 12, 2 2の厚みはできる限り小さいことが好ましいが、薄くなりすぎると膜の良好な結晶性や 必要な耐久性 '耐候性を得ることが困難になることから、好ましくは 10〜25nm程度 である。  [0085] The thickness of the transparent conductive films 12, 22 is usually about 10 to 50 nm. From the standpoint of improving the visibility by making the transparent shape of the transparent conductive films 12, 22 conspicuous, the thickness of the transparent conductive films 12, 22 is preferably as small as possible. The crystallinity and the required durability are preferably about 10 to 25 nm because it becomes difficult to obtain weather resistance.
[0086] 第 1の透明面状体 1と第 2の透明面状体 2との貼着は、空気層が介在しないように、 粘着層 15を全体に介在させて行うことが好ましい。粘着層 15は、エポキシ系やアタリ ル系など、一般的な透明接着剤を用いることができ、ノルボルネン系榭脂の透明性フ イルムからなる芯材を含むものであってもよい。粘着層 15の厚みは、通常 25〜75 mであり、屈折率は、 1. 4〜1. 6である。  [0086] The first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed entirely so that no air layer is interposed. The adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin. The thickness of the adhesive layer 15 is usually 25 to 75 m, and the refractive index is 1.4 to 1.6.
[0087] また、本発明者らのシミュレーション結果によれば、粘着層 15の屈折率を適宜変更 することにより、透明タツチスィッチ 101の視認性を更に向上させることができる。この シミュレーションについて以下に説明する。透明基板 11, 21は、 PETフィルム力もな る基材層(厚み: 188 μ m、屈折率: 1. 65)の表裏面にハードコート層(各厚み: 5 μ m、屈折率: 1. 52)が形成されたものとし、アンダーコート層 13, 23は、高屈折率層 力 Sシリコン錫酸ィ匕物膜 (厚み : 25nm、屈折率: 1. 7)、低屈折率層が酸化珪素膜 (厚 み: 30nm、屈折率: 1. 43)とした。また、透明導電膜 12, 22は、 ITO膜 (厚み: 30η m、屈折率: 1. 95)とした。粘着層 15の厚みは、 25 mとした。この粘着層 15の屈 折率をパラメータにとり、その値を変化させて、透明導電膜 12, 22が形成された部分 と、透明導電膜 12, 22が形成されていない部分 (被覆層 16, 26が形成されている部 分)との反射率 (%)の差をシミュレーションにより求めた。反射率の算出は、サイバネ ットシステム (株)製薄膜設計ソフトウェア(OPTAS-FILM)を用いて行った。このシミュ レーシヨンによって算出した反射率(%)の差の絶対値を図 10に示す。なお、このシミ ユレーシヨンにおいては、ナノオーダーの厚みを有するアンダーコート層 13, 23や透 明導電膜 12, 22等に比べて、極めて厚みの大きい部材である透明基板 11, 21や 粘着層 15等の部材については、その厚みを∞ (無限大)として反射率の算出を行つ た。 Further, according to the simulation results of the present inventors, the visibility of the transparent touch switch 101 can be further improved by appropriately changing the refractive index of the adhesive layer 15. This simulation is described below. Transparent substrates 11, 21 have PET film strength A hard coat layer (each thickness: 5 μm, refractive index: 1.52) is formed on the front and back of the base material layer (thickness: 188 μm, refractive index: 1.65), and the undercoat layer 13 and 23 are high refractive index layer strength S silicon stannate film (thickness: 25nm, refractive index: 1.7), low refractive index layer is silicon oxide film (thickness: 30nm, refractive index: 1. 43). The transparent conductive films 12 and 22 were ITO films (thickness: 30 ηm, refractive index: 1.95). The thickness of the adhesive layer 15 was 25 m. The refractive index of the adhesive layer 15 is taken as a parameter, and the value is changed to change the portion where the transparent conductive films 12, 22 are formed and the portion where the transparent conductive films 12, 22 are not formed (cover layers 16, 26). The difference in reflectivity (%) from the part where the is formed was obtained by simulation. The reflectance was calculated using the thin film design software (OPTAS-FILM) manufactured by Cybernet System. Figure 10 shows the absolute value of the difference in reflectance (%) calculated by this simulation. In this simulation, the transparent substrates 11, 21 and the adhesive layer 15, etc., which are extremely thick members compared to the undercoat layers 13, 23, the transparent conductive films 12, 22, etc. having a nano-order thickness, etc. The reflectance was calculated with the thickness of ∞ as ∞ (infinity).
[0088] 透明導電膜 12, 22のノターン形状の目立ちにくさは、透明導電膜 12, 22が形成 されている部分と形成されていない部分との反射率差と相関性を有しており、可視領 域全体 (波長:約 400〜800nm)における反射率差の絶対値が小さいほど、パター ン形状が目立ちにくぐ視認性を良好にすることができる。図 10に示すように、反射 率差の絶対値は、いずれも粘着層 15の屈折率が高くなるほど小さくなつており、視認 性の観点からは粘着層 15の屈折率を大きくするほど良いことがわかる。  [0088] The inconspicuousness of the non-turn shape of the transparent conductive films 12 and 22 has a correlation with the difference in reflectance between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed. The smaller the absolute value of the reflectance difference in the entire visible region (wavelength: about 400 to 800 nm), the better the visibility that the pattern shape becomes less noticeable. As shown in FIG. 10, the absolute value of the difference in reflectivity is smaller as the refractive index of the adhesive layer 15 is higher. From the viewpoint of visibility, it is better that the refractive index of the adhesive layer 15 is larger. Recognize.
[0089] また、透明導電膜 12, 22の厚みをそれぞれ 15nm、 20nm及び 25nmとした場合 において、粘着層 15の屈折率をパラメータにとりその値を変化させて、透明導電膜 1 2, 22が形成された部分と、透明導電膜 12, 22が形成されていない部分 (被覆層 16 , 26が形成されている部分)との反射率(%)の差の絶対値をシミュレーションにより 求めた。これらのシミュレーション結果を図 11〜図 13に示す。なお、図 11は、透明導 電膜 12, 22の厚みを 15nmに設定した場合の結果、図 12は、同厚みを 20nmに設 定した場合、図 13は、同厚みを 25nmとした場合におけるシミュレーション結果である [0090] また、図 10〜図 13において示す各シミュレーション結果において、入力光波長え = 550nmでの粘着層 15の各屈折率における反射率差の絶対値を抽出したものを 表 1に示す。 Further, when the thickness of the transparent conductive films 12 and 22 is 15 nm, 20 nm, and 25 nm, respectively, the transparent conductive films 12 and 22 are formed by changing the value of the refractive index of the adhesive layer 15 as a parameter. The absolute value of the difference in reflectance (%) between the formed portion and the portion where the transparent conductive films 12 and 22 are not formed (the portion where the coating layers 16 and 26 are formed) was obtained by simulation. These simulation results are shown in Figs. 11 shows the results when the transparent conductive films 12 and 22 are set to a thickness of 15 nm, FIG. 12 shows the results when the thickness is set to 20 nm, and FIG. 13 shows the results when the thickness is set to 25 nm. It is a simulation result [0090] Table 1 shows the absolute value of the difference in reflectance at each refractive index of the adhesive layer 15 when the input light wavelength is 550 nm in the simulation results shown in Figs.
[0091] [表 1]  [0091] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
[0092] 図 11〜図 13および表 1から、透明導電膜 12, 22の厚みを 15nm、 20nmまたは 25 nmとした場合であっても、透明導電膜 12, 22の厚みが 30nmの場合のシミュレーシ ヨン結果と同様に、反射率差の絶対値は、いずれも粘着層 15の屈折率が高くなるほ ど小さくなつており、視認性の観点からは粘着層 15の屈折率を大きくするほど良いこ とがわかる。  [0092] From FIGS. 11 to 13 and Table 1, even when the thickness of the transparent conductive films 12 and 22 is 15 nm, 20 nm, or 25 nm, the simulation is performed when the thickness of the transparent conductive films 12 and 22 is 30 nm. As in the case results, the absolute value of the difference in reflectivity is smaller as the refractive index of the adhesive layer 15 is higher. From the viewpoint of visibility, the absolute value of the adhesive layer 15 is better. You can see this.
[0093] また、表 1のデータから、透明導電膜 12, 22の厚みが 20nm〜25nmである場合に は、屈折率が 1. 6以上の粘着層 15を用いることにより、反射率差の絶対値を 0. 5程 度よりも小さくできることがわ力る。したがって、図 9に示す構成の透明タツチスィッチ 1 01において、透明導電膜 12, 22の厚みを 20nm〜25nmとし、屈折率が 1. 6以上 の粘着層 15を用いることにより、透明導電膜 12, 22のパターン形状が目立ちにくい 視認性が良好な透明タツチスィッチ 101を得ることが可能になる。  [0093] Further, from the data in Table 1, when the thickness of the transparent conductive films 12 and 22 is 20 nm to 25 nm, by using the adhesive layer 15 having a refractive index of 1.6 or more, the absolute difference in reflectance can be obtained. It can be said that the value can be made smaller than about 0.5. Accordingly, in the transparent touch switch 101 having the configuration shown in FIG. 9, the transparent conductive films 12 and 22 are made to have a thickness of 20 nm to 25 nm and the adhesive layer 15 having a refractive index of 1.6 or more is used. The transparent touch switch 101 with good visibility can be obtained.
[0094] 更に、表 1のデータから、透明導電膜 12, 22の厚みが、耐久性の観点力も好ましい 厚みである 25nm〜30nmであっても、屈折率が 1. 7以上の粘着層 15を用いること により、反射率差の絶対値を 0. 5程度よりも小さくできることがわかる。したがって、図 9に示す構成の透明タツチスィッチ 101において、透明導電膜 12, 22の厚みを 25η m〜30nmとし、屈折率が 1. 7以上の粘着層 15を用いることにより、透明導電膜 12, 22の耐久性を確保しつつ、透明導電膜 12, 22のパターン形状が目立ちにくい視認 性が良好な透明タツチスィッチ 101を得ることが可能になる。 [0095] 以上の構成を備える透明タツチスィッチにおいて、タツチ位置の検出方法は、従来 の静電容量式のタツチスィッチと同様であり、第 1の透明面状体 1の表面側における 任意の位置を指などで触れると、透明導電膜 12, 22は接触位置において人体の静 電容量を介して接地され、このときに透明導電膜 12, 22を流れる電流値を検出する ことにより、接触位置の座標が演算される。 [0094] Further, from the data in Table 1, even if the thickness of the transparent conductive films 12 and 22 is 25 nm to 30 nm which is a preferable thickness from the viewpoint of durability, the adhesive layer 15 having a refractive index of 1.7 or more is obtained. It can be seen that the absolute value of the difference in reflectance can be made smaller than about 0.5 by using it. Therefore, in the transparent touch switch 101 having the configuration shown in FIG. 9, the transparent conductive films 12 and 22 are made to have a thickness of 25 ηm to 30 nm and a refractive index of 1.7 or more. It is possible to obtain the transparent touch switch 101 with good visibility while ensuring the durability of the transparent conductive films 12 and 22 while keeping the pattern shape of the transparent conductive films 12 and 22 inconspicuous. In the transparent touch switch having the above-described configuration, the method for detecting the touch position is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is indicated by a finger or the like. When touched with, the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done.
[0096] 本第 2実施形態の透明タツチスィッチ 101において、第 1の透明面状体 1の表面側  [0096] In the transparent touch switch 101 of the second embodiment, the surface side of the first transparent planar body 1
(透明導電膜 12が形成された面と反対側)には、直線偏光板を設けてもよい。直線偏 光板を設ける場合は、透明基板 11, 21を光等方性材料で構成する必要がある。直 線偏光板は、ヨウ素や二色性染料などの二色性色素を吸着配向させたポリビニルァ ルコール(PVA)の延伸フィルムを例示することができ、このフィルムの両面を、保護 フィルムとしてのトリァセチルアセテート(TAC)フィルムで挟持するように貼り合わせ たものを使用してもよい。光等方性材料は、入射する全ての光に対して、偏光性を有 しない材料で、例えば、ポリカーボネート(PC)、ポリエーテルサルフォン(PES)、ポリ アクリル (PAC)、非晶質ポリオリフィン系榭脂、環状ポリオリフィン系榭脂、脂肪族環 状ポリオレフイン、ノルボルネン系の熱可塑性透明榭脂、ガラス材料などを例示する ことができる。これらの材料を用いて透明基板 11, 21を形成する方法としては、キヤ ストや押し出しと!/、う手法を用いることができる。  A linearly polarizing plate may be provided on the side opposite to the surface on which the transparent conductive film 12 is formed. When a linear polarizing plate is provided, the transparent substrates 11 and 21 must be made of a light isotropic material. The linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film are coated with triacetyl as a protective film. You may use what was pasted together so that it may be pinched with an acetate (TAC) film. The optically isotropic material is a material that is not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefin. Examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like. As a method for forming the transparent substrates 11 and 21 using these materials, a cast or extrusion method can be used.
[0097] このような構成により、タツチスィッチ内部へ入射される可視光に起因する反射光量 を当該偏光板を設けていない場合に比べて約半分以下に抑制することができる。ま た、透明導電膜 12, 22をより目立ちに《することができ、視認性をより向上させるこ とがでさる。  [0097] With such a configuration, the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided. Further, the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
[0098] 更に、直線偏光板と λ Ζ4位相差板とを全面貼りし、タツチスィッチ 101の反対面( 第 2の透明面状体 2の裏面側)に λ Ζ4位相差板を全面貼りすることにより、円偏光 構成を形成してもよ 、。 λ Ζ4位相差板は、ポリビュルアルコール (PVA)やポリカー ボネート (PC)、ノルボルネン系の熱可塑性榭脂、環状ポリオレフイン榭脂などのフィ ルムを延伸して複屈曲性を付与したものを例示することができる。直線偏光板への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料カゝらなる粘着層を介して、 空気層が介在しないように全面貼着により行われることが好ましい。また、第 2の透明 面状体裏面側への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料から なる粘着層を介して、空気層が介在しないように全面貼着により行われることが好まし V、。この場合、各 λ Ζ4位相差板は、一方の λ Ζ4位相差板の光学軸が他方の λ / 4位相差板の光学軸に対して直交するように配置されることが好ま 、。 [0098] Further, by sticking the entire surface of the linear polarizing plate and the λΖ4 phase difference plate, and attaching the λΖ4 phase difference plate to the entire opposite surface of the touch switch 101 (the back side of the second transparent planar body 2). You may form a circular polarization configuration. The λ Ζ4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to. Adhering the λλ4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. The second transparent It is preferable that the λλ4 phase difference plate is adhered to the back side of the planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. V ,. In this case, each λ は 4 phase difference plate is preferably arranged so that the optical axis of one λΖ4 phase difference plate is orthogonal to the optical axis of the other λ / 4 phase difference plate.
[0099] このように、円偏光構成を形成することにより、反射光を円偏光化し、 2つの λ Ζ4 位相差板で挟まれた部分のタツチスィッチの内面反射をカットして良好な低反射性を 付与することが可能である。これにより、透明導電膜 12, 22をより目立ちにくくするこ とができ、視認性をより向上させることができる。尚、透明基板 11, 21自体を λ Ζ4位 相差板として、これに直線偏光板を積層した構成にすることも可能である。  [0099] In this way, by forming the circularly polarized light structure, the reflected light is circularly polarized, and the internal reflection of the touch switch at the portion sandwiched between the two λ Ζ4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as λΖ4 phase difference plates and linear polarizing plates are laminated thereon.
[0100] また、本第 2実施形態においては、 2つの透明面状体が粘着層を介して貼着された 静電容量式の透明タツチスィッチに本発明を適用した場合について説明したが、 2つ の透明面状体が空気層を介して貼着される抵抗膜式のマトリクス式タツチスィッチに 本発明を適用することも可能である。  [0100] In the second embodiment, the case where the present invention is applied to a capacitive transparent touch switch in which two transparent planar bodies are bonded via an adhesive layer has been described. It is also possible to apply the present invention to a resistance type matrix type touch switch to which the transparent sheet is attached via an air layer.
 Example
[0101] 以下、実施例に基づき本発明をより詳細に説明する。但し、本発明が、以下の実施 例に限定されるものではない。  [0101] Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
[0102] (試験 1)  [0102] (Exam 1)
まず、透明導電膜の最適な厚みを検討するため、透明基板にアンダーコート層を 介さずに直接透明導電膜を形成した構成にお!、て、透明導電膜が形成された部分 と、透明導電膜が形成されていない部分との反射率 (%)の差を、シミュレーションに より求めた。  First, in order to study the optimum thickness of the transparent conductive film, the transparent conductive film is directly formed on the transparent substrate without an undercoat layer! The difference in reflectance (%) between the portion where the transparent conductive film was formed and the portion where the transparent conductive film was not formed was determined by simulation.
[0103] 透明基板は、 PETフィルム力もなる基材層(厚み: 188 μ m、屈折率: 1. 65)の表 裏面にハードコート層(各厚み: 5 m、屈折率: 1. 52)が形成されたものとし、透明 導電膜は、 ITO膜 (屈折率: 1. 95)とした。また、透明基板における透明導電膜側に は、アクリル系榭脂からなる粘着層(厚み:25 m、屈折率: 1. 52)を形成した。反射 率の算出は、サイバネットシステム (株)製薄膜設計ソフトウェア(OPTAS— FILM)を用 いて行った (ただし、 PET層等での吸収は無いものと仮定して計算している)。この構 成において、透明導電膜の厚みをパラメータとして算出した反射率 (%)の差を図 14 に示す。 [0103] The transparent substrate has a hard coat layer (each thickness: 5 m, refractive index: 1.52) on the front and back surfaces of the base material layer (thickness: 188 μm, refractive index: 1.65) that also has PET film strength. The transparent conductive film was an ITO film (refractive index: 1.95). An adhesive layer (thickness: 25 m, refractive index: 1.52) made of acrylic resin was formed on the transparent conductive film side of the transparent substrate. The reflectivity was calculated using the Cybernet System Co., Ltd. thin film design software (OPTAS-FILM) (however, it was calculated assuming that there was no absorption in the PET layer, etc.). In this configuration, the difference in reflectance (%) calculated using the thickness of the transparent conductive film as a parameter is shown in FIG. Shown in
[0104] 透明導電膜のパターン形状の目立ちにくさは、透明導電膜が形成された部分と形 成されて 、な 、部分との反射率差と相関性を有しており、可視領域全体 (波長:約 40 0〜800nm)における反射率差の絶対値及び変化率が小さいほど、パターン形状が 目立ちにくぐ視認性を良好にすることができる。図 14に示すように、反射率差の絶 対値及び変化率は、いずれも透明導電膜の厚みが薄くなるほど小さくなつており、視 認性の観点力 は透明導電膜の厚みを小さくするほど良いことがわかる。但し、透明 導電膜の結晶性や耐久性,耐候性を高めるためには、ある程度の厚みが必要になる ことから、透明導電膜の厚みは、 10〜25nmが好ましぐ約 15nmとするのが最適で ある。  [0104] The inconspicuousness of the pattern shape of the transparent conductive film is formed with the portion where the transparent conductive film is formed, and has a correlation with the difference in reflectance from the portion, and the entire visible region ( The smaller the absolute value and the change rate of the difference in reflectance at a wavelength of about 400 to 800 nm), the better the visibility of the pattern shape becomes less noticeable. As shown in FIG. 14, the absolute value and the change rate of the reflectance difference both decrease as the thickness of the transparent conductive film decreases, and the visibility from the viewpoint of visibility decreases as the thickness of the transparent conductive film decreases. I know it ’s good. However, in order to increase the crystallinity, durability, and weather resistance of the transparent conductive film, a certain amount of thickness is required. Therefore, the thickness of the transparent conductive film is preferably about 15 nm, preferably 10 to 25 nm. It is optimal.
[0105] (試験 2)  [0105] (Exam 2)
次に、透明基板と透明導電膜との間にアンダーコート層が形成された構成(図 9参 照)において、アンダーコート層を構成する低屈折率層及び高屈折率層の最適厚み を検討した。透明基板の厚み'屈折率及び透明導電膜の屈折率は、試験 1と同様と し、透明導電膜の厚みは、試験 1の結果力も 15nmとした。また、透明導電膜の表面 側には粘着層を形成し、この粘着層の厚み及び屈折率も、試験 1と同様とした。アン ダーコート層は、屈折率が 1. 43の酸化珪素からなる低屈折率層と、屈折率が 1. 7の シリコン錫酸ィ匕物力もなる高屈折率層との積層体とした。  Next, in the configuration in which an undercoat layer was formed between the transparent substrate and the transparent conductive film (see Fig. 9), the optimum thickness of the low refractive index layer and the high refractive index layer constituting the undercoat layer was examined. . The thickness of the transparent substrate ′ and the refractive index of the transparent conductive film were the same as in Test 1, and the thickness of the transparent conductive film was 15 nm as a result of Test 1. An adhesive layer was formed on the surface side of the transparent conductive film, and the thickness and refractive index of this adhesive layer were the same as in Test 1. The undercoat layer was a laminate of a low refractive index layer made of silicon oxide having a refractive index of 1.43 and a high refractive index layer having a refractive index of 1.7 and having silicon stannate strength.
[0106] この構成にぉ 、て、まず、低屈折率層の厚みを 30nmに設定し、高屈折率層の厚 みをパラメータとして、透明導電膜が形成されていない部分との反射率の差を、シミュ レーシヨンにより求めた。この結果を図 15に示す。  In this configuration, first, the thickness of the low refractive index layer is set to 30 nm, and the thickness of the high refractive index layer is used as a parameter, and the difference in reflectance from the portion where the transparent conductive film is not formed. Was obtained by simulation. The result is shown in FIG.
[0107] 図 15に示すように、高屈折率層の厚みが 0の場合 (即ち、高屈折率層が存在しな い場合)には、可視領域の低波長側 (約 400〜500nm)において反射率差の絶対値 及び変化率が大きくなつており、良好な視認性が得られていない。これに対し、高屈 折率層の厚みが 10〜20nmの場合には、可視領域の全体において反射率差の絶 対値及び変化率がいずれも小さぐ良好な視認性が得られている。高屈折率層の厚 み力 低屈折率層の厚みである 30nmよりも大きくなると、反射率差の絶対値及び変 化率は再び増加する傾向にあり、視認性が悪化する傾向にある。 [0108] 次に、高屈折率層の厚みを 15nmに設定し、低屈折率層の厚みをパラメータとして 、透明導電膜が形成されていない部分との反射率の差を、シミュレーションにより求 めた。この結果を図 16に示す。 [0107] As shown in FIG. 15, when the thickness of the high refractive index layer is 0 (that is, when the high refractive index layer is not present), on the low wavelength side (about 400 to 500 nm) in the visible region. The absolute value and change rate of the difference in reflectance are increasing, and good visibility is not obtained. On the other hand, when the thickness of the high refractive index layer is 10 to 20 nm, good visibility is obtained in which the absolute value and the change rate of the reflectance difference are both small in the entire visible region. Thickness of the high refractive index layer When the thickness is larger than 30 nm, which is the thickness of the low refractive index layer, the absolute value of the reflectance difference and the change rate tend to increase again, and the visibility tends to deteriorate. Next, the thickness of the high refractive index layer was set to 15 nm, and the thickness of the low refractive index layer was used as a parameter, and the difference in reflectance from the portion where the transparent conductive film was not formed was obtained by simulation. . The result is shown in FIG.
[0109] 図 16に示すように、低高屈折率層の厚みが 0の場合 (即ち、低屈折率層が存在し ない場合)には、可視領域の低波長側 (約 400〜500nm)において反射率差の絶対 値及び変化率が大きくなつており、良好な視認性が得られていない。これに対し、低 屈折率層の厚みが大きくなるにつれて、反射率差の絶対値及び変化率は小さくなる 傾向にあり、低屈折率層の厚みが、高屈折率層の厚みである 15nmよりも大きくなる と、反射率差の絶対値及び変化率はいずれも十分小さくなり、良好な視認性が得ら れている。低屈折率層の厚みが、 50nmになると、反射率差の絶対値は小さい一方 で、可視領域の低波長側における反射率差の変化率が大きくなり、視認性が徐々に 悪化する傾向にある。  [0109] As shown in FIG. 16, when the thickness of the low-refractive index layer is 0 (that is, when the low-refractive index layer is not present), on the low wavelength side (approximately 400 to 500 nm) in the visible region. The absolute value and change rate of the reflectance difference are increasing, and good visibility is not obtained. In contrast, as the thickness of the low refractive index layer increases, the absolute value and change rate of the reflectance difference tend to decrease, and the thickness of the low refractive index layer is greater than 15 nm, which is the thickness of the high refractive index layer. When it is increased, both the absolute value and the change rate of the difference in reflectance are sufficiently small, and good visibility is obtained. When the thickness of the low refractive index layer is 50 nm, the absolute value of the reflectance difference is small, but the change rate of the reflectance difference on the low wavelength side in the visible region is large, and the visibility tends to gradually deteriorate. .
[0110] このようなシミュレーション結果から、アンダーコート層における高屈折率層の厚み は、低屈折率層の厚みよりも小さいことが好ましいことがわ力つた。より具体的には、 高屈折率層の厚みは、 10〜25nmであることが好ましぐこの場合において、低屈折 率層の厚みは、 25〜45nmであることが好ましい。  [0110] From the simulation results, it was found that the thickness of the high refractive index layer in the undercoat layer is preferably smaller than the thickness of the low refractive index layer. More specifically, the thickness of the high refractive index layer is preferably 10 to 25 nm. In this case, the thickness of the low refractive index layer is preferably 25 to 45 nm.
[0111] このシミュレーション結果に基づき、高屈折率層の厚みを 15nm、低屈折率層の厚 みを 35nmとして実際に透明面状体を試作したところ、導電層のパターン形状を視認 することができず良好な視認性が得られており、上記シミュレーション結果の有効性 を確認した。  [0111] Based on the simulation results, when a transparent planar body was actually prototyped with the thickness of the high refractive index layer being 15 nm and the thickness of the low refractive index layer being 35 nm, the pattern shape of the conductive layer could be visually confirmed. Good visibility was obtained, confirming the effectiveness of the simulation results.
[0112] (試験 3)  [0112] (Exam 3)
試験 2で求めたアンダーコート層における低屈折率層及び高屈折率層の好ま Uヽ 厚みは、アンダーコート層以外の他の層の厚みなどが変化しても、ほぼ同様の傾向 にある。例えば、試験 2において透明導電膜の厚みが大きくなると、低屈折率層及び 高屈折率層の好まし 、厚みの数値範囲はほとんど変化しな 、が、好まし 、条件から 外れた場合の視認性の悪化がより顕著となる。一例として、試験 2の構成 (低屈折率 層の厚み:30nm)において、透明導電膜の厚みを 15nmから 20nmに変えた場合に 、高屈折率層の厚みをパラメータとした反射率差を図 17に示す。 [0113] また、透明基板において基材層の表裏面に形成したハードコート層の一方又は双 方を設けない構成の場合には、アンダーコート層における高屈折率層及び低屈折率 層の好ましい厚み範囲は、試験 2における数値範囲よりも拡がる傾向にあり、例えば 、高屈折率層を設けずに低屈折率層のみカゝらアンダーコート層を構成した場合でも 、ある程度の視認性を得ることができる。 The preferred thicknesses of the low refractive index layer and the high refractive index layer in the undercoat layer obtained in Test 2 tend to be almost the same even if the thickness of other layers other than the undercoat layer changes. For example, when the thickness of the transparent conductive film is increased in Test 2, the low refractive index layer and the high refractive index layer are preferred, and the numerical range of the thickness is hardly changed, but the visibility when the condition is not satisfied is preferred. The deterioration becomes more prominent. As an example, when the thickness of the transparent conductive film is changed from 15 nm to 20 nm in the configuration of Test 2 (thickness of the low refractive index layer: 30 nm), the difference in reflectance with the thickness of the high refractive index layer as a parameter is shown in FIG. Shown in [0113] Further, in the case where one or both of the hard coat layers formed on the front and back surfaces of the base material layer are not provided in the transparent substrate, preferred thicknesses of the high refractive index layer and the low refractive index layer in the undercoat layer The range tends to be wider than the numerical range in Test 2. For example, even when an undercoat layer is formed with only a low refractive index layer without providing a high refractive index layer, a certain degree of visibility can be obtained. it can.
(第 3実施形態)  (Third embodiment)
次に、本発明の第 3実態形態について添付図面を参照して説明する。尚、各図面 は、構成の理解を容易にするため、模式的に表すと共に、実寸比ではなく部分的に 拡大又は縮小されている。  Next, a third actual form of the present invention will be described with reference to the accompanying drawings. Each drawing is schematically shown for easy understanding of the configuration, and is partially enlarged or reduced, not an actual size ratio.
[0114] 図 18は、本発明に係る透明タツチスィッチの第 3実施形態を示す概略断面図であ る。この透明タツチスィッチ 101は、静電容量式のタツチスィッチであり、透明基板 11 の一方面にパターユングされた透明導電膜 12が形成された第 1の透明面状体 1と、 透明基板 21の一方面にパターユングされた透明導電膜 22が形成された第 2の透明 面状体 2とを備えている。第 1の透明面状体 1と第 2の透明面状体 2とは、それぞれの 透明導電膜 12, 22が対向するようにして、粘着層 15を介して貼着されている。  FIG. 18 is a schematic cross-sectional view showing a third embodiment of the transparent touch switch according to the present invention. The transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 in which a patterned transparent conductive film 12 is formed on one surface of the transparent substrate 11, and one surface of the transparent substrate 21. And a second transparent planar body 2 on which a patterned transparent conductive film 22 is formed. The first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15 so that the transparent conductive films 12 and 22 face each other.
[0115] 透明基板 11, 21ίま、基材層 111, 211の表裏面【こノヽードコート層 112, 112 ; 212 , 212を備えて構成されている。基材層 111, 211は、透明性が高い材料力もなるこ と力 子ましく、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレ ート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK) 、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC) 、エポキシ榭脂、フエノール榭脂、脂肪族環状ポリオレフイン、ノルボルネン系の熱可 塑性透明榭脂などの可撓性フィルムやこれら 2種以上の積層体、或いは、ガラス板な どを挙げることができる。基材層 111, 211の厚みは、 20〜500 m程度が好ましぐ ノヽードコー卜層 112, 212の厚み ίま、 3〜5 111程度カ好まし1ヽ0基材層 111, 211ίま 、剛性を付与するために支持体を貼着してもよい。 [0115] The transparent substrate 11, 21 and the substrate layers 111, 211 are provided with front and back surfaces [node coat layers 112, 112; 212, 212]. The base material layers 111 and 211 are highly transparent and have a material strength. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), Polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC), epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic plastic transparent resin Examples thereof include a flexible film such as fat, a laminate of two or more of these, or a glass plate. The thickness of the base material layer 111, 211 is preferably about 20 to 500 m. The thickness of the nod coat layer 112, 212 is about 3 to 5 111, and the base layer 111, 211 is about 1 to 0 . You may stick a support body in order to provide rigidity.
[0116] 透明導電膜 12, 22の材料としては、インジウム錫酸化物 (ΙΤΟ)、酸化インジウム、 アンチモン添加酸ィ匕錫、フッ素添加酸ィ匕錫、アルミニウム添加酸ィ匕亜鉛、カリウム添 加酸化亜鉛、シリコン添加酸化亜鉛や、酸化亜鉛一酸化錫系、酸化インジウム 酸 化錫系、酸化亜鉛一酸化インジウム一酸化マグネシウム系、酸化亜鉛などの金属酸 化物を例示することができ、これら 2種以上を複合して形成してもよ 、。 [0116] The materials of the transparent conductive films 12 and 22 are indium tin oxide (ΙΤΟ), indium oxide, antimony-added acid 匕 tin, fluorine-added acid 匕 tin, aluminum-added acid 匕 zinc, potassium-added oxidation Zinc, silicon-doped zinc oxide, zinc oxide tin monoxide, indium oxide Examples thereof include metal oxides such as tin oxide, zinc oxide, indium magnesium oxide, and zinc oxide, and two or more of these may be formed in combination.
[0117] また、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボン ナノファイバー、グラフアイトフイブリルなどの極細導電炭素繊維をバインダーとして機 能するポリマー材料に分散させた複合材を透明導電膜 12, 22の材料として用いるこ ともできる。ここでポリマー材料としては、ポリア二リン、ポリピロール、ポリアセチレン、 ポリチォフェン、ポリフエ二レンビニレン、ポリフエ二レンスルフイド、ポリ p—フエ二レン 、ポリ複素環ビ-レン、 PEDOT: poly(3,4- ethylenedioxythiophene)などの導電性ポリ マーを採用することができる。また、ポリエチレンテレフタレート(PET)、ポリエチレン ナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン( PEEK)、ポリカーボネート (PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル (PAC)、ポリイミド、エポキシ榭脂、フエノール榭脂、脂肪族環状ポリオレフイン、ノル ボルネン系の熱可塑性透明榭脂などの非導電性ポリマーを採用することができる。 [0117] In addition, a composite material in which ultrafine conductive carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils are dispersed in a polymer material functioning as a binder is used for the transparent conductive films 12 and 22. It can also be used as a material. Here, examples of polymer materials include polyaniline, polypyrrole, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly p-phenylene, polyheterocyclic vinylene, PEDOT: poly (3,4-ethylenedioxythiophene), etc. The conductive polymer can be used. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC) Non-conductive polymers such as polyimide, epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin can be employed.
[0118] 透明導電膜 12, 22の材料として、特にカーボンナノチューブを非導電性ポリマー 材料に分散させたカーボンナノチューブ複合材を採用した場合、カーボンナノチュー ブは、直径が一般的には 0. 8nm〜l. 4nm(lnm前後)と極めて細いので、 1本或い は 1束ずつ非導電性ポリマー材料中に分散することでカーボンナノチューブが光透 過を阻害することが少なくなり透明導電膜 12, 22の透明性を確保する上で好ましい [0118] As a material of the transparent conductive films 12 and 22, a carbon nanotube is generally 0.8 nm in diameter when carbon nanotube composite material in which carbon nanotubes are dispersed in a non-conductive polymer material is adopted. 〜L. 4nm (around lnm) is extremely thin, so that the carbon nanotubes are less likely to inhibit light transmission by being dispersed in the non-conductive polymer material one or one bundle at a time. Preferred for ensuring transparency of 22
[0119] 透明導電膜 12, 22の形成方法は、スパッタリング法、真空蒸着法、イオンプレーテ イング法などの PVD法や、 CVD法、塗工法、印刷法などを例示することができる。透 明導電膜 12, 22の厚みは、通常 10〜50nm程度である。 [0119] Examples of the method for forming the transparent conductive films 12 and 22 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing. The thickness of the transparent conductive films 12 and 22 is usually about 10 to 50 nm.
[0120] 透明導電膜 12, 22は、上述の第 1実施形態と同様に図 2及び図 3に示すように、平 行に延びる複数の帯状導電部 12a, 22aの集合体としてそれぞれ形成されており、 各透明導電膜 12, 22の帯状導電部 12a, 22aは、互いに直交するように配置されて いる。透明導電膜 12, 22は、導電性インクなど力もなる引き廻し回路(図示せず)を 介して外部の駆動回路(図示せず)に接続される。透明導電膜 12, 22のパターン形 状は、本実施形態のものに限定されず、指などの接触ポイントを検出可能である限り 、任意の形状とすることが可能である。例えば、図 4及び図 5に示すように、透明導電 膜 12, 22を、複数の菱形状導電部 12b, 22bが直線状に連結された構成とし、各透 明導電膜 12, 22における菱形状導電部 12b, 22bの連結方向が互いに直交し、且 つ、平面視において上下の菱形状導電部 12b, 22bが重なり合わないように配置し てもよい。 [0120] As in the first embodiment, the transparent conductive films 12 and 22 are each formed as an assembly of a plurality of strip-like conductive portions 12a and 22a extending in parallel as shown in FIGS. The strip-like conductive portions 12a and 22a of the transparent conductive films 12 and 22 are arranged so as to be orthogonal to each other. The transparent conductive films 12 and 22 are connected to an external drive circuit (not shown) through a drawing circuit (not shown) that has a force such as conductive ink. The pattern shape of the transparent conductive films 12 and 22 is not limited to that of the present embodiment, as long as a contact point such as a finger can be detected. Any shape can be used. For example, as shown in FIGS. 4 and 5, the transparent conductive films 12 and 22 are configured by connecting a plurality of rhombus-shaped conductive portions 12b and 22b in a straight line, and the rhombus shapes in the transparent conductive films 12 and 22 are formed. The conductive portions 12b and 22b may be arranged so that the connecting directions thereof are orthogonal to each other and the upper and lower rhombus-shaped conductive portions 12b and 22b do not overlap in plan view.
[0121] 透明導電膜 12, 22のパターユングは、透明基板 11, 21にそれぞれ形成された透 明導電膜 12, 22の表面に、所望のパターン形状を有するマスク部を形成して露出部 分を酸液などでエッチング除去した後、アルカリ液などによりマスク部を溶解させて、 行うことができる。但し、パターユングの方法はこれに限定されるものではなぐ他の 公知の方法で行ってもよ!、。  [0121] The patterning of the transparent conductive films 12 and 22 is performed by forming a mask portion having a desired pattern shape on the surface of the transparent conductive films 12 and 22 formed on the transparent substrates 11 and 21, respectively. After the etching is removed with an acid solution or the like, the mask portion is dissolved with an alkali solution or the like. However, the patterning method is not limited to this, and other known methods may be used!
[0122] 本第 3実施形態の透明タツチスィッチにおける第 1の透明面状体 1及び第 2の透明 面状体 2の透明基板 11, 21の一方面 (透明導電膜 12, 22が形成された面)におい て、透明導電膜 12, 22が形成されていない露出部 11a, 21aには、当該露出部 11a , 21aを覆う被覆層 16, 26が設けられている。この被覆層 16, 26は、表面が透明導 電膜 12, 22の表面と略面一になるように形成されている。被覆層 16, 26の材料とし ては、シリコン錫酸化物、酸化珪素、酸化チタン、酸化錫、酸化セリウム、五酸化-ォ ブ、五酸化タンタル、酸化ジルコニウム、また複合酸化物として酸化ジルコニウム 酸 化珪素、酸化ジルコニウム一酸化錫、酸ィ匕ジルコニウム一二酸ィ匕チタンなどを例示 することができるが、特に、シリコン錫酸ィ匕物を好ましく用いることができる。  [0122] One surface of the transparent substrates 11, 21 of the first transparent planar body 1 and the second transparent planar body 2 in the transparent touch switch of the third embodiment (surface on which the transparent conductive films 12, 22 are formed) ), The exposed portions 11a, 21a where the transparent conductive films 12, 22 are not formed are provided with coating layers 16, 26 covering the exposed portions 11a, 21a. The covering layers 16 and 26 are formed so that the surfaces thereof are substantially flush with the surfaces of the transparent conductive films 12 and 22. Examples of the material for the coating layers 16 and 26 include silicon tin oxide, silicon oxide, titanium oxide, tin oxide, cerium oxide, pentoxide-ob, tantalum pentoxide, zirconium oxide, and zirconium oxide as a composite oxide. Examples of the material include silicon, zirconium oxide tin oxide, acid oxide zirconium monoacid oxide titanium, and the like. In particular, silicon stannate oxide can be preferably used.
[0123] また、被覆層 16, 26の屈折率は、透明導電膜 12, 22の屈折率と同等であり、例え ばシリコン錫酸ィ匕物力もなる場合に、シリコンと錫の成分比を変えることにより適宜調 整可能である。ここで、被覆層 16, 26と透明導電膜 12, 22との屈折率が同等である とは、被覆層 16, 26と透明導電膜 12, 22との屈折率が完全に一致する場合のみな らず、透明導電膜 12, 22のパターン形状を目立たなくできる範囲で、被覆層 16, 26 と透明導電膜 12, 22との屈折率に差がある場合をも含む概念である。具体的には、 例えば、被覆層 16, 26の屈折率と透明導電膜 12, 22の屈折率との差の絶対値が、 0. 08以内であることが好ましぐ 0. 03以内であることがより好ましい。  [0123] In addition, the refractive index of the coating layers 16 and 26 is equivalent to the refractive index of the transparent conductive films 12 and 22, and for example, when the silicon stannate is strong, the component ratio of silicon and tin is changed. Can be adjusted as needed. Here, the refractive indexes of the coating layers 16 and 26 and the transparent conductive films 12 and 22 are equivalent only when the refractive indexes of the coating layers 16 and 26 and the transparent conductive films 12 and 22 are completely the same. In other words, the concept includes a case where there is a difference in refractive index between the coating layers 16 and 26 and the transparent conductive films 12 and 22 as long as the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous. Specifically, for example, the absolute value of the difference between the refractive index of the coating layers 16 and 26 and the refractive index of the transparent conductive films 12 and 22 is preferably within 0.08 and within 0.03. It is more preferable.
[0124] また、透明導電膜 12, 22の材料としてカーボンナノチューブ複合材を選択した場 合、カーボンナノチューブ複合材の屈折率は、インジウム錫酸ィヒ物 (ITO)の屈折率 よりも低いため(カーボンナノチューブ複合材の屈折率は例えば約 1. 6程度であるの に対し、インジウム錫酸ィ匕物の屈折率は 1. 9〜2. 0)、透明導電膜 12, 22の屈折率 と同等な屈折率を有する被覆層 16, 26の材料の選定が容易となる。 [0124] Also, when a carbon nanotube composite material is selected as the material of the transparent conductive films 12 and 22, Because the refractive index of carbon nanotube composite is lower than that of indium stannate (ITO) (the refractive index of carbon nanotube composite is about 1.6, for example, indium tin The refractive index of the oxide is 1.9-1.20), and the material of the covering layers 16, 26 having a refractive index equivalent to that of the transparent conductive films 12, 22 can be easily selected.
[0125] 被覆層 16, 26の形状及び屈折率を上記のように設定することにより、第 1の透明面 状体 1及び第 2の透明面状体 2の透過スペクトル及び反射スペクトルの形状を、透明 導電膜 12, 22が形成されて 、る部分と形成されて!、な 、部分とで略同一にすること が可能になり、色目(濃淡)の差異を小さくすることが可能となる。この結果、第 1の透 明面状体 1及び第 2の透明面状体 2において、透明導電膜 12, 22のパターン形状を 目立たなくすることができ、視認性を向上させることができる。  [0125] By setting the shape and refractive index of the coating layers 16 and 26 as described above, the shapes of the transmission spectrum and the reflection spectrum of the first transparent planar body 1 and the second transparent planar body 2 are obtained. Since the transparent conductive films 12 and 22 are formed, they can be made substantially identical to each other, and the difference in color (lightness) can be reduced. As a result, in the first transparent planar body 1 and the second transparent planar body 2, the pattern shape of the transparent conductive films 12 and 22 can be made inconspicuous, and the visibility can be improved.
[0126] 被覆層 16, 26の形成方法としては、スパッタリング法、抵抗蒸着法、電子ビーム蒸 着法などのドライコーティング法を挙げることができる。このドライコーティング法を用 いた被覆層 16, 26の形成方法について具体的に説明すると、まず、図 19 (a)に示 すように、透明基板 11 (21)に形成された透明導電膜 12 (22)の表面に所望のバタ ーン形状を有するマスク部 50を形成する。そして、マスク部 50が形成されていない透 明導電膜 12 (22)の露出部分 51をエッチング除去することにより露出部 11a (21a)を 形成する(図 19 (b)参照)。次に、被覆層を構成する材料をドライコーティング法によ つて、露出部 11a (21a)およびマスク部 50上にコーティングする。このとき、露出部 1 la (21a)上にコーティングされる被覆層の厚みが透明導電膜 12 (22)の厚みと略同 一となるようにする(図 19 (c)参照)。その後、マスク部 50を除去することにより、透明 導電膜 12 (22)の表面と略面一なる被覆層 16 (26)を露出部 1 la (21a)に形成する ことができる(図 19 (d)参照)。また、スクリーン印刷法、グラビア印刷法、バーコート法 、スピンコート法、ダイコート法、スプレーコート法などのウエットコーティング法により、 透明導電膜 12, 22及び露出部 11a, 21aを埋没するように被覆層の材料でコーティ ングした後、エッチングを行い、第 1の透明面状体 1及び第 2の透明面状体 2におけ る被覆層 16, 26の表面を透明導電膜 12, 22の表面と略面一になるように形成する ことちでさる。  [0126] Examples of the method for forming the coating layers 16 and 26 include dry coating methods such as sputtering, resistance vapor deposition, and electron beam evaporation. The method for forming the coating layers 16 and 26 using this dry coating method will be specifically described. First, as shown in FIG. 19 (a), the transparent conductive film 12 ( A mask portion 50 having a desired pattern shape is formed on the surface of 22). Then, the exposed portion 11a (21a) is formed by etching away the exposed portion 51 of the transparent conductive film 12 (22) where the mask portion 50 is not formed (see FIG. 19B). Next, the material constituting the coating layer is coated on the exposed portion 11a (21a) and the mask portion 50 by a dry coating method. At this time, the thickness of the coating layer coated on the exposed portion 1 la (21a) is set to be substantially the same as the thickness of the transparent conductive film 12 (22) (see FIG. 19 (c)). Thereafter, by removing the mask portion 50, a coating layer 16 (26) substantially flush with the surface of the transparent conductive film 12 (22) can be formed on the exposed portion 1 la (21a) (FIG. 19 (d) )reference). Also, the coating layer is formed so that the transparent conductive films 12, 22 and the exposed portions 11a, 21a are buried by wet coating methods such as screen printing, gravure printing, bar coating, spin coating, die coating, and spray coating. After coating with the above material, etching is performed so that the surfaces of the coating layers 16 and 26 in the first transparent planar body 1 and the second transparent planar body 2 are substantially the same as the surfaces of the transparent conductive films 12 and 22. Form it so that it is flush.
[0127] 第 1の透明面状体 1と第 2の透明面状体 2との貼着は、空気層が介在しないように、 粘着層 15を全体に介在させて行うことが好ましい。粘着層 15は、エポキシ系やアタリ ル系など、一般的な透明接着剤を用いることができ、ノルボルネン系榭脂の透明性フ イルムからなる芯材を含むものであってもよい。粘着層 15の厚みは、通常 25〜100 μ mであ 。 [0127] The first transparent planar body 1 and the second transparent planar body 2 are adhered so that an air layer is not interposed between them. It is preferable to carry out by interposing the adhesive layer 15 throughout. The adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin. The thickness of the adhesive layer 15 is usually 25-100 μm.
[0128] 以上の構成を備える透明タツチスィッチにおいて、タツチ位置の検出方法は、従来 の静電容量式のタツチスィッチと同様であり、第 1の透明面状体 1の表面側における 任意の位置を指などで触れると、透明導電膜 12, 22は接触位置において人体の静 電容量を介して接地され、このときに透明導電膜 12, 22を流れる電流値を検出する ことにより、接触位置の座標が演算される。被覆層 16, 26の表面抵抗値は、静電容 量式タツチスィッチとして正常に作動する絶縁性を確保できるように十分大き 、ことが 好ましぐ例えば、 1 Χ 1012( ΩΖ口)以上である。 [0128] In the transparent touch switch having the above-described configuration, the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is indicated by a finger or the like. When touched with, the transparent conductive films 12 and 22 are grounded through the electrostatic capacity of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 12 and 22 at this time. Is done. The surface resistance values of the covering layers 16 and 26 are preferably large enough to ensure insulation that operates normally as a capacitive touch switch, for example, 1 to 10 12 (Ω opening) or more.
[0129] 以上、本発明に係る第 3実施形態について説明したが、本発明の具体的な態様は 上記第 3実施形態に限定されない。例えば、図 20に示すように、第 1の透明面状体 1 および第 2の透明面状体 2において、それぞれ透明導電膜 12, 22及び被覆層 16, 26の表面を覆うオーバコート層 14, 24を更に備える構成を採用してもよい。このォー バコート層 14, 24の表面 14a, 24aは、全体にわたって平坦となるように形成されて いる。このような構成を採用することにより、透明導電膜 12, 22のパターン形状を目 立たなくする効果を維持しつつ、第 1の透明面状体 1及び第 2の透明面状体 2の透明 導電膜 12, 22を保護することができる。オーバコート層 14, 24の表面抵抗値は、静 電容量式タツチスィッチとして正常に作動する絶縁性を確保できるように十分大き ヽ ことが好ましぐ例えば、 1 Χ 1012( ΩΖ口)以上である。 [0129] Although the third embodiment according to the present invention has been described above, the specific mode of the present invention is not limited to the third embodiment. For example, as shown in FIG. 20, in the first transparent planar body 1 and the second transparent planar body 2, the overcoat layers 14, 22 covering the surfaces of the transparent conductive films 12, 22 and the covering layers 16, 26, respectively. A configuration further comprising 24 may be adopted. The surfaces 14a and 24a of the overcoat layers 14 and 24 are formed to be flat throughout. By adopting such a configuration, the transparent conductive films of the first transparent planar body 1 and the second transparent planar body 2 are maintained while maintaining the effect of making the pattern shape of the transparent conductive films 12 and 22 inconspicuous. The membranes 12, 22 can be protected. The surface resistance value of the overcoat layers 14 and 24 is preferably sufficiently large so as to ensure insulation that operates normally as a capacitance type touch switch, for example, 1 Χ 10 12 (Ω Ζ) or more .
[0130] オーバコート層 14, 24の形成方法としては、スパッタリング法、抵抗蒸着法、電子ビ ーム蒸着法などのドライコーティング法、或いは、スクリーン印刷法、グラビア印刷法、 バーコート法、スピンコート法、ダイコート法、スプレーコート法などのウエットコーティ ング法を挙げることができる。  [0130] The overcoat layers 14 and 24 can be formed by dry coating methods such as sputtering, resistance vapor deposition, and electron beam vapor deposition, or screen printing, gravure printing, bar coating, and spin coating. And wet coating methods such as a coating method, a die coating method, and a spray coating method.
[0131] オーバコート層 14, 24の材料として、例えば、被覆層 16, 26の材料と同じものを使 用する場合、スクリーン印刷法などにより被覆層 16, 26およびオーバコート層 14, 2 4を同時に形成することができ、効率的に透明面状体 1, 2を製造することが可能とな る。なお、オーバコート層 14, 24の材料として、被覆層 16, 26の材料と異なる材料を 使用することちできる。 [0131] For example, when the same material as that of the coating layers 16 and 26 is used as the material of the overcoat layers 14 and 24, the coating layers 16 and 26 and the overcoat layers 14 and 24 are formed by screen printing. It can be formed at the same time, making it possible to produce transparent sheet 1 and 2 efficiently. The As the material for the overcoat layers 14 and 24, a material different from the material for the coating layers 16 and 26 can be used.
[0132] また、本発明者らのシミュレーション結果によれば、オーバコート層 14, 24の厚み は、スパッタ薄膜として形成する場合における製膜条件として現実的に可能な下限 膜厚である lOnmから 30nm程度、或いは、 1 m以上であることが好ましい。このシミ ユレーシヨンについて以下に説明する。透明基板 11, 21は、 PETフィルム力もなる基 材層(厚み: 188 m、屈折率: 1. 65)の表裏面にハードコート層(各厚み: 5 m、 屈折率: 1. 52)が形成されたものとした。透明導電膜 12, 22は、 ITO膜 (厚み:30η m、屈折率: 1. 95)とし、被覆層 16, 26は、シリコン錫酸ィ匕物 (厚み: 30nm、屈折率 : 1. 9)とした。粘着層 15は、アクリル系榭脂 (厚み:25 m、屈折率: 1. 52)とした。 オーバコート層の屈折率は 1. 9とし、このオーバコート層の厚みをパラメータにとり、 その値を変化させて、透明導電膜 12, 22が形成された部分と、透明導電膜 12, 22 が形成されて ヽな ヽ部分 (被覆層 16, 26が形成されて ヽる部分)との反射率 (%)の 差をシミュレーションにより求めた。反射率の算出は、サイバネットシステム (株)製薄 膜設計ソフトウェア(OPTAS-FILM)を用いて行った。このシミュレーションによって算 出した反射率(%)の差を図 21及び図 22に示す。図 21は、オーバコート層 14, 24の 厚みを nmオーダーとした場合、図 22は、その厚みを/ z mオーダーとした場合の結果 である。  [0132] Further, according to the simulation results of the present inventors, the thickness of the overcoat layers 14 and 24 is 30 nm from lOnm, which is a lower limit film thickness that is practically possible as a film forming condition when formed as a sputtered thin film. Preferably, it is about 1 m or more. This stain variation will be explained below. Transparent substrates 11 and 21 have hard coat layers (each thickness: 5 m, refractive index: 1.52) formed on the front and back surfaces of the base layer (thickness: 188 m, refractive index: 1.65) that also has PET film strength It was assumed. The transparent conductive films 12 and 22 are ITO films (thickness: 30ηm, refractive index: 1.95), and the coating layers 16 and 26 are silicon stannate (thickness: 30nm, refractive index: 1.9). It was. The adhesive layer 15 was an acrylic resin (thickness: 25 m, refractive index: 1.52). The refractive index of the overcoat layer is 1.9, the thickness of this overcoat layer is taken as a parameter, and the value is changed to form the transparent conductive films 12, 22 and the transparent conductive films 12, 22 formed. The difference in reflectivity (%) from the glazed part (the part where the coating layers 16 and 26 are formed) was determined by simulation. The reflectance was calculated using the thin film design software (OPTAS-FILM) manufactured by Cybernet System. Figures 21 and 22 show the difference in reflectance (%) calculated by this simulation. Fig. 21 shows the results when the thickness of the overcoat layers 14 and 24 is in the nm order, and Fig. 22 shows the results when the thickness is in the / zm order.
[0133] 透明導電膜のパターン形状の目立ちにくさは、透明導電膜 12, 22が形成された部 分と形成されていない部分との反射率差と相関性を有しており、可視領域全体 (波長 :約 400〜800nm)における反射率差の絶対値及び変化率が小さいほど、パターン 形状が目立ちにくぐ視認性を良好にすることができる。なお、一般的に、反射率差 の絶対値が 0. 5程度よりも小さいと、ノターン形状が目立ちに《なる。図 21におい ては、オーバコート層 14, 24の厚みが 45nm以上の場合には、反射率差の変化率 が大きいのに対し、厚みが 30nmの場合には、変化率が小さいことがわかる。このこと から、オーバコート層 14, 24の厚みを 30nm以下とすることが視認性の観点からは好 ましいことがわ力る。  [0133] The inconspicuousness of the pattern shape of the transparent conductive film correlates with the difference in reflectance between the portion where the transparent conductive films 12 and 22 are formed and the portion where the transparent conductive films 12 and 22 are not formed. The smaller the absolute value and the change rate of the difference in reflectance at (wavelength: about 400 to 800 nm), the better the visibility that the pattern shape is less noticeable. In general, when the absolute value of the difference in reflectance is smaller than about 0.5, the nonturn shape becomes conspicuous. In FIG. 21, when the thickness of the overcoat layers 14 and 24 is 45 nm or more, the change rate of the reflectance difference is large, whereas when the thickness is 30 nm, the change rate is small. From this, it can be said that the thickness of the overcoat layers 14, 24 is preferably 30 nm or less from the viewpoint of visibility.
[0134] また、オーバコート層 14, 24の厚みが μ mオーダーの場合の結果を示す図 22に おいては、オーバコート層 14, 24の厚みが 1 μ m以上であれば反射率差の絶対値 が 0. 5程度と小さぐ視認性の観点力も好ましいことがわかる。 [0134] Figure 22 shows the results when the thickness of the overcoat layers 14, 24 is on the order of μm. In view of this, it can be seen that if the thickness of the overcoat layers 14 and 24 is 1 μm or more, the absolute value of the difference in reflectance is as small as about 0.5, and the visibility from the viewpoint of visibility is preferable.
[0135] また、本実施形態においては、第 1の透明面状体 1および第 2の透明面状体 2を粘 着層 15を介して貼着することにより、静電容量式の透明タツチスィッチ 101を構成し ているが、以下のようにして抵抗膜式の透明タツチスィッチを構成することもできる。 すなわち、第 1の透明面状体 1および第 2の透明面状体 2を、それぞれの透明導電膜 12, 22が互いに対向するように、スぺーサーを介して所定間隔を空けて配置するこ とにより抵抗膜式の透明タツチスィッチを構成することもできる。  Further, in the present embodiment, the first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15, so that the capacitance type transparent touch switch 101. However, a resistive film type transparent touch switch can also be configured as follows. That is, the first transparent planar body 1 and the second transparent planar body 2 are arranged at a predetermined interval through a spacer so that the transparent conductive films 12 and 22 face each other. Thus, a resistive film type transparent touch switch can be formed.
[0136] この抵抗膜式の透明タツチスィッチにおけるタツチ位置の検出方法は、従来の抵抗 膜式のタツチスィッチと同様であり、第 1の透明面状体 1の表面側における任意の位 置を指などで押圧することで、透明導電膜 12, 22は接触し、その接点の抵抗値を横 方向と縦方向に時分割的測定をすることで接触位置の座標が演算される。  [0136] The method of detecting the touch position in this resistive film type transparent touch switch is the same as that of the conventional resistive film type touch switch, and any position on the surface side of the first transparent planar body 1 can be detected with a finger or the like. By pressing, the transparent conductive films 12 and 22 come into contact with each other, and the coordinates of the contact position are calculated by measuring the contact resistance in the horizontal and vertical directions in a time-sharing manner.
[0137] また、本実施形態において、図 23に示すように、低屈折率層と、この低屈折率層よ りも光屈折率が高い高屈折率層とを含む積層体から構成されたアンダーコート層 13 , 23を更に備える構成を採用してもよい。アンダーコート層 13, 23は、低屈折率層側 に透明導電膜 12, 22および被覆層 16, 26が形成されるように、透明導電膜 12, 22 および被覆層 16, 26と、透明基板 11, 21との間に介在されている。このような構成 により、透明タツチスィッチ 101の透明性を向上させることができる。  Further, in this embodiment, as shown in FIG. 23, an underlayer composed of a laminate including a low refractive index layer and a high refractive index layer having a higher refractive index than that of the low refractive index layer. A configuration further including coat layers 13 and 23 may be employed. The undercoat layers 13 and 23 are formed of the transparent conductive films 12 and 22 and the cover layers 16 and 26 and the transparent substrate 11 so that the transparent conductive films 12 and 22 and the cover layers 16 and 26 are formed on the low refractive index layer side. , 21. With such a configuration, the transparency of the transparent touch switch 101 can be improved.
[0138] アンダーコート層 13, 23の積層体を構成する各層の材料としては、シリコン錫酸ィ匕 膜、酸化珪素、酸化チタン、酸ィ匕錫などを例示することができ、好ましい組み合わせ として、酸化錫一酸化ハフニウム系、酸化珪素一酸化錫系、酸化亜鉛一酸化錫系、 酸ィ匕錫一酸ィ匕チタン系などを挙げることができる。アンダーコート層 13, 23は、スパッ タリング法、抵抗蒸着法、電子ビーム蒸着法などにより形成することができる。  [0138] Examples of the material of each layer constituting the laminate of the undercoat layers 13 and 23 include a silicon stannate film, silicon oxide, titanium oxide, and oxide tin. Examples include tin oxide hafnium oxide, silicon oxide tin oxide, zinc oxide tin oxide, and acid-tin-tin oxide-titanium. The undercoat layers 13 and 23 can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, or the like.
[0139] また、本第 3実施形態の透明タツチスィッチ 101において、第 1の透明面状体 1の表 面側 (透明導電膜 12が形成された面と反対側)には、直線偏光板を設けてもよい。直 線偏光板を設ける場合は、透明基板 11, 21を光等方性材料で構成する必要がある 。直線偏光板は、ヨウ素や二色性染料などの二色性色素を吸着配向させたポリビニ ルアルコール(PVA)の延伸フィルムを例示することができ、このフィルムの両面を、 保護フィルムとしてのトリァセチルアセテート (TAC)フィルムで挟持するように貼り合 わせたものを使用してもよい。光等方性材料は、入射する全ての光に対して、偏光性 を有しない材料で、例えば、ポリカーボネート(PC)、ポリエーテルサルフォン(PES) 、ポリアクリル (PAC)、非晶質ポリオリフィン系榭脂、環状ポリオリフィン系榭脂、脂肪 族環状ポリオレフイン、ノルボルネン系の熱可塑性透明榭脂、ガラス材料などを例示 することができる。これらの材料を用いて透明基板 11, 21を形成する方法としては、 キャストや押し出しと 、う手法を用いることができる。 [0139] Also, in the transparent touch switch 101 of the third embodiment, a linearly polarizing plate is provided on the surface side of the first transparent planar body 1 (the side opposite to the surface on which the transparent conductive film 12 is formed). May be. When a linear polarizing plate is provided, the transparent substrates 11 and 21 must be made of an optically isotropic material. The linear polarizing plate can be exemplified by a stretched film of polyvinyl alcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented. You may use what was bonded so that it might be pinched | interposed with the triacetyl acetate (TAC) film as a protective film. The optically isotropic material is a material that is not polarized with respect to all incident light. For example, polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), amorphous polyolefinic materials Examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like. As a method of forming the transparent substrates 11 and 21 using these materials, a casting or extrusion method can be used.
[0140] このような構成により、タツチスィッチ内部へ入射される可視光に起因する反射光量 を当該偏光板を設けていない場合に比べて約半分以下に抑制することができる。ま た、透明導電膜 12, 22をより目立ちに《することができ、視認性をより向上させるこ とがでさる。 [0140] With such a configuration, the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided. Further, the transparent conductive films 12 and 22 can be made more conspicuous, and the visibility can be further improved.
[0141] 更に、直線偏光板と λ Ζ4位相差板とを全面貼りし、タツチスィッチ 101の反対面( 第 2の透明面状体 2の裏面側)に λ Ζ4位相差板を全面貼りすることにより、円偏光 構成を形成してもよ 、。 λ Ζ4位相差板は、ポリビュルアルコール (PVA)やポリカー ボネート (PC)、ノルボルネン系の熱可塑性榭脂、環状ポリオレフイン榭脂などのフィ ルムを延伸して複屈曲性を付与したものを例示することができる。直線偏光板への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料カゝらなる粘着層を介して、 空気層が介在しないように全面貼着により行われることが好ましい。また、第 2の透明 面状体裏面側への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料から なる粘着層を介して、空気層が介在しないように全面貼着により行われることが好まし V、。この場合、各 λ Ζ4位相差板は、一方の λ Ζ4位相差板の光学軸が他方の λ / 4位相差板の光学軸に対して直交するように配置されることが好ま 、。  [0141] Further, the whole surface of the linear polarizing plate and the λ 4 phase difference plate is pasted, and the entire surface of the λ 4 phase difference plate is pasted on the opposite surface of the touch switch 101 (the back side of the second transparent planar body 2). You may form a circular polarization configuration. The λ Ζ4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to. Adhering the λλ4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. In addition, the λΖ4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. V, preferably done. In this case, each λ は 4 phase difference plate is preferably arranged so that the optical axis of one λΖ4 phase difference plate is orthogonal to the optical axis of the other λ / 4 phase difference plate.
[0142] このように、円偏光構成を形成することにより、反射光を円偏光化し、 2つの λ Ζ4 位相差板で挟まれた部分のタツチスィッチの内面反射をカットして良好な低反射性を 付与することが可能である。これにより、透明導電膜 12, 22をより目立ちにくくするこ とができ、視認性をより向上させることができる。尚、透明基板 11, 21自体を λ Ζ4位 相差板として、これに直線偏光板を積層した構成にすることも可能である。  [0142] Thus, by forming a circularly polarized light structure, the reflected light is circularly polarized, and the internal reflection of the portion of the touch switch sandwiched between the two λ Ζ4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the transparent conductive films 12 and 22 can be made less noticeable, and the visibility can be further improved. It is also possible to adopt a configuration in which the transparent substrates 11 and 21 themselves are used as λΖ4 phase difference plates and linear polarizing plates are laminated thereon.
(第 4実施形態) 次に、本発明の第 4実態形態について添付図面を参照して説明する。尚、各図面 は、構成の理解を容易にするため、模式的に表すと共に、実寸比ではなく部分的に 拡大又は縮小されている。 (Fourth embodiment) Next, a fourth actual form of the present invention will be described with reference to the accompanying drawings. Each drawing is schematically shown for easy understanding of the configuration, and is partially enlarged or reduced, not an actual size ratio.
[0143] 図 24は、本発明に係るタツチスィッチの第 4実施形態を示す概略断面図である。こ の透明タツチスィッチ 101は、静電容量式のタツチスィッチであり、透明基板 11の一 方面に間隔をあけて複数配置される帯状透明導電部 32を有する第 1の透明面状体 1と、透明基板 21の一方面に間隔をあけて複数配置される帯状透明導電部 42を有 する第 2の透明面状体 2とを備えている。第 1の透明面状体 1と第 2の透明面状体 2と は、それぞれの帯状透明導電部 32, 42が互いに対向するようにして、粘着層 15を 介して貼着されている。 FIG. 24 is a schematic cross-sectional view showing a fourth embodiment of the touch switch according to the present invention. This transparent touch switch 101 is a capacitive touch switch, and includes a first transparent planar body 1 having a plurality of strip-shaped transparent conductive portions 32 arranged at intervals on one surface of the transparent substrate 11, and a transparent substrate. And a second transparent planar body 2 having a strip-shaped transparent conductive portion 42 arranged on one side of the 21 at intervals. The first transparent planar body 1 and the second transparent planar body 2 are adhered via the adhesive layer 15 so that the respective strip-shaped transparent conductive portions 32 and 42 face each other.
[0144] 透明基板 11, 21は、透明性が高い材料力もなることが好ましぐ具体的には、ポリ エチレンテレフタレート(PET)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポ リエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネ ート(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC)、アクリル、非晶 質ポリオリフィン系榭脂、環状ポリオリフィン系榭脂、脂肪族環状ポリオレフイン、ノル ボルネン系の熱可塑性透明榭脂などの可撓性フィルムやこれら 2種以上の積層体、 或いは、ソーダガラス、無アルカリガラス、ホウケィ酸ガラス、石英ガラスなどのガラス 板などを挙げることができる。透明基板 11, 21の厚みは、 20〜500 m程度が好ま しい。また、透明基板 11, 21の片面又は両面には、ペンや指が前記表面に接触す ることがある場合には、透明性、耐擦傷性、耐摩耗性、ノングレア性等向上のため、 ハードコート加工を施してもよ ヽ。  [0144] The transparent substrates 11 and 21 preferably have high transparency and material strength. Specifically, the materials are polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), and polyethersal. Phon (PES), Polyetheretherketone (PEEK), Polycarbonate (PC), Polypropylene (PP), Polyamide (PA), Polyacrylic (PAC), Acrylic, Amorphous Polyolefin Fins, Cyclic Polyolefin Fins Flexible films such as fat, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, and laminates of two or more of these, or glass plates such as soda glass, alkali-free glass, borosilicate glass, and quartz glass And so on. The thickness of the transparent substrates 11 and 21 is preferably about 20 to 500 m. Also, on the one or both sides of the transparent substrates 11 and 21, when pens or fingers may come into contact with the surface, it is necessary to improve the transparency, scratch resistance, wear resistance, non-glare properties, etc. It may be coated.
[0145] また、可撓性を有する材料カゝら透明基板 11, 21を形成した場合、当該透明基板 1 1, 21に剛性を付与するために支持体を貼着してもよい。支持体としては、ガラス板 や、ガラスに準ずる硬度を有する榭脂材料を例示することができ、その厚さは 100 m以上であることが好ましぐ 0. 2mn!〜 0. 5mmであることがより好ましい。 [0145] When the transparent substrates 11 and 21 are formed from a flexible material, a support may be attached to the transparent substrates 11 and 21 in order to impart rigidity. Examples of the support include a glass plate and a resin material having hardness equivalent to that of glass, and the thickness is preferably 100 m or more. More preferably, it is 0.5 mm.
[0146] 第 1及び第 2の透明面状体 1, 2は、それぞれ上述のように透明基板 11, 21の一方 面に間隔をあけて複数配置される帯状透明導電部 32, 42を有すると共に、帯状透 明導電部 32, 42と同一材料からなり、各帯状透明導電部 32, 42の間に配置される 帯状透明調整部 33, 43を備えている。このように、第 1及び第 2の透明面状体 1, 2 において、各帯状透明導電部 32, 42の間に帯状透明導電部 32, 42と同一材料か らなる帯状透明調整部 33, 43を配置しているので、帯状透明導電部 32, 42の形状 を目立たなくすることができ、視認性を向上させることができる。 [0146] Each of the first and second transparent planar bodies 1, 2 has a plurality of strip-shaped transparent conductive portions 32, 42 arranged on the one surface of the transparent substrates 11, 21 at intervals as described above. It is made of the same material as the strip transparent conductive portions 32 and 42, and is disposed between the strip transparent conductive portions 32 and 42. The belt-like transparent adjusting portions 33 and 43 are provided. In this way, in the first and second transparent planar bodies 1, 2, the strip-shaped transparent adjustment portions 33, 43 made of the same material as the strip-shaped transparent conductive portions 32, 42 are provided between the respective strip-shaped transparent conductive portions 32, 42. Therefore, the shape of the strip-shaped transparent conductive portions 32 and 42 can be made inconspicuous, and the visibility can be improved.
[0147] 帯状透明導電部 32, 42および帯状透明調整部 33, 43は、図 25及び図 26の平面 図に示すように、それぞれ矩形状に形成されると共に、透明基板 11, 21が露出する 絶 リット 34, 44を介在させて両者が非接触で交互に隣接するように配置されて いる。帯状透明導電部 32, 42には、導電性インクなど力もなる引き廻し回路(図示せ ず)を介して外部の駆動回路(図示せず)が接続されて電圧が印加される。第 1の透 明面状体 1の帯状透明導電部 32 (帯状透明調整部 33)と、第 2の透明面状体 2の帯 状透明導電部 42 (帯状透明調整部 43)とは、互 ヽに直行するように配置されて 、る。  [0147] As shown in the plan views of Figs. 25 and 26, the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 are each formed in a rectangular shape and the transparent substrates 11, 21 are exposed. They are arranged in such a way that they are alternately non-contact with each other with interposing liters 34 and 44 therebetween. An external drive circuit (not shown) is connected to the belt-like transparent conductive portions 32 and 42 through a drawing circuit (not shown) that has a force such as conductive ink, and a voltage is applied. The band-shaped transparent conductive portion 32 (band-shaped transparent adjustment portion 33) of the first transparent planar body 1 and the band-shaped transparent conductive portion 42 (band-shaped transparent adjustment portion 43) of the second transparent plane body 2 are mutually connected. Arranged to go straight to the pass.
[0148] また、各帯状透明調整部 33, 43は、帯状透明導電部 32, 42と帯状透明調整部 33 , 43との隣接方向に沿って延びると共に、隣接する絶& ^リット 34, 44同士を接続す る複数の抵抗スリット 35, 45を備えている。更に、各帯状透明調整部 33, 43は、絶 リット 34, 44に沿って各帯状透明調整部 33, 43を分離する分離スリット 36, 46 とを備えている。  [0148] Further, each of the strip-shaped transparent adjustment sections 33, 43 extends along the adjacent direction of the strip-shaped transparent conductive sections 32, 42 and the strip-shaped transparent adjustment sections 33, 43, and adjacent to each other. A plurality of resistance slits 35 and 45 are provided. Further, the respective strip-like transparent adjusting portions 33 and 43 are provided with separation slits 36 and 46 for separating the respective strip-like transparent adjusting portions 33 and 43 along the slits 34 and 44.
[0149] 帯状透明導電部 32, 42の形状は、本実施形態のものに限定されず、指などの接 触ポイントを検出可能である限り、任意の形状とすることが可能である。例えば、図 27 及び図 28に示すように、帯状透明導電部 32, 42を、複数の菱形状導電部が直線状 に連結された構成とし、各帯状透明導電部 32, 42における菱形状導電部の連結方 向が互いに直交し、且つ、平面視において上下の菱形状導電部が重なり合わないよ うに配置してもよい。なお、透明タツチスィッチ 101の分解能などの動作性能につい ては、第 1の透明面状体 1と第 2の透明面状体 2とを重ね合わせた場合に、帯状透明 導電部 32, 42が存在しない領域を少なくする構成を採用する方が優れている。この ような観点から、帯状透明導電部 32, 42の形状として、矩形状の構成よりも、複数の 菱形状導電部が直線状に連結された構成の方が望ましい。  [0149] The shape of the strip-shaped transparent conductive portions 32, 42 is not limited to that of the present embodiment, and may be any shape as long as a contact point such as a finger can be detected. For example, as shown in FIG. 27 and FIG. 28, the strip-shaped transparent conductive portions 32, 42 are configured by connecting a plurality of rhombus-shaped conductive portions in a straight line, and the rhombo-shaped conductive portions in the respective strip-shaped transparent conductive portions 32, 42 The connecting directions may be perpendicular to each other, and the upper and lower rhombus-shaped conductive portions may not be overlapped in plan view. Regarding the operation performance such as the resolution of the transparent touch switch 101, when the first transparent planar body 1 and the second transparent planar body 2 are overlapped, the strip-shaped transparent conductive portions 32 and 42 do not exist. It is better to adopt a configuration that reduces the area. From this point of view, it is preferable that the strip-shaped transparent conductive portions 32 and 42 have a configuration in which a plurality of diamond-shaped conductive portions are connected in a straight line rather than a rectangular configuration.
[0150] このように、平面視において、上下の菱形状導電部が重なり合わないように配置し、 且つ、導電部のない部分を少なくする構成とすることで、透明タツチスィッチ 101の分 解能などの性能を向上させることができ、より精度よくタツチ位置を検出することがで きる。なお、図 27及び図 28においては、帯状透明調整部 33, 43に分離スリット 36, 46を形成して 、な 、形態を示して!/、る。 In this way, in the plan view, the upper and lower rhombus-shaped conductive portions are arranged so as not to overlap with each other, and the number of portions without the conductive portions is reduced, so that the transparent touch switch 101 can be divided. Performance such as resolution can be improved, and the touch position can be detected more accurately. In FIGS. 27 and 28, separation slits 36 and 46 are formed in the belt-like transparent adjusting portions 33 and 43, and the form is shown!
[0151] 帯状透明導電部 32, 42および帯状透明調整部 33, 43の材料としては、インジウム 錫酸ィ匕物 (ITO)、酸化インジウム、アンチモン添加酸ィ匕錫、フッ素添加酸ィ匕錫、アル ミニゥム添加酸ィ匕亜鉛、カリウム添加酸ィ匕亜鉛、シリコン添加酸ィ匕亜鉛や、酸化亜鉛 一酸化錫系、酸化インジウム一酸化錫系、酸化亜鉛一酸化インジウム一酸化マグネ シゥム系、酸化亜鉛、スズ酸ィ匕膜等の透明導電材料、或いは、スズ、銅、アルミニウム 、ニッケル、クロムなどの金属材料、金属酸化物材料を例示することができ、これら 2 種以上を複合して形成してもよい。また、酸やアルカリに弱い金属単体でも導電材料 として使用できる。 [0151] The materials of the strip-shaped transparent conductive portions 32 and 42 and the strip-shaped transparent adjustment portions 33 and 43 include indium stannate (ITO), indium oxide, antimony-added acid tin, fluorine-added acid tin, Aluminum-added acid-zinc, potassium-added acid-zinc, silicon-added acid-zinc, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide indium monoxide oxide-magnesium oxide, zinc oxide Examples include transparent conductive materials such as stannate film, metal materials such as tin, copper, aluminum, nickel, and chromium, and metal oxide materials. Also good. In addition, simple metals that are sensitive to acids and alkalis can be used as conductive materials.
[0152] また、酸化亜鉛 (ZnO)は、タツチスィッチや液晶用透明導電体等にぉ 、て、現在、 一番多く使用されている ITOに比べて、コストが低いことから、帯状透明導電部 32, 4 2および帯状透明調整部 33, 43の材料として好ましい。特に、静電容量式のタツチ スィッチに使用する場合、第 1の透明面状体 1と第 2の透明面状体 2との間には、粘 着層 15が存在し、空気層が介在していないため、酸化亜鉛 (ZnO)により構成した帯 状透明導電部 32, 42および帯状透明調整部 33, 43が直接空気に触れることはな い。これにより、酸化亜鉛 (ZnO)が酸化作用によって劣化することを防止することが でき、低コストで製品(タツチスィッチ)を製造することができる。  [0152] Zinc oxide (ZnO) has a lower cost than that of ITO, which is currently most frequently used for touch switches, transparent conductors for liquid crystals, and the like. 4 2 and the strip-shaped transparent adjusting portions 33 and 43 are preferable. In particular, when used in a capacitive touch switch, an adhesive layer 15 exists between the first transparent planar body 1 and the second transparent planar body 2, and an air layer is interposed. Therefore, the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 made of zinc oxide (ZnO) do not come into direct contact with air. As a result, it is possible to prevent zinc oxide (ZnO) from deteriorating due to the oxidizing action, and to manufacture a product (touch switch) at a low cost.
[0153] また、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボン ナノファイバー、グラフアイトフイブリルなどの極細導電炭素繊維を非導電性ポリマー 材料に分散させた複合材を帯状透明導電部 32, 42および帯状透明調整部 33, 43 の材料として用いることもできる。また、帯状透明導電部 32, 42および帯状透明調整 部 33, 43を形成する前に、透明基板 11, 21の表面に透明性や密着性等を向上さ せる為のアンダーコート層を設けても良い。  [0153] Further, a band-shaped transparent conductive portion 32, 42 and a band-shaped composite material in which ultra-fine conductive carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils are dispersed in a non-conductive polymer material are used. It can also be used as a material for the transparent adjustment sections 33 and 43. Further, before forming the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43, an undercoat layer may be provided on the surface of the transparent substrates 11, 21 to improve transparency and adhesion. good.
[0154] 帯状透明導電部 32, 42および帯状透明調整部 33, 43の形成方法について説明 すると、まず、上述の材料を用いて、透明基板 11, 21の一方面に所定厚さの導電膜 を形成する。この導電膜の形成方法としては、スパッタリング法、真空蒸着法、イオン プレーティング法などの PVD法や、 CVD法、塗工法、印刷法などを例示することが できる。導電膜の厚みは、通常 5〜: LOOnm程度である。 [0154] The method for forming the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 will be described. First, a conductive film having a predetermined thickness is formed on one surface of the transparent substrates 11, 21 using the above-described materials. Form. As a method of forming this conductive film, sputtering method, vacuum deposition method, ion Examples include PVD methods such as plating methods, CVD methods, coating methods, and printing methods. The thickness of the conductive film is usually about 5 to: LOOnm.
[0155] 次に、透明基板 11 , 21にそれぞれ形成された導電膜の表面にレーザー光を照射 しながら、透明基板 11 , 21又はレーザー光を移動し、導電膜を剥離することにより、 帯状透明導電部 32, 42および帯状透明調整部 33, 43に分離する。レーザー光に より導電膜が剥離された部分が、絶縁スリット 34, 44に相当する。レーザー光を照射 する装置として YAGレーザー装置や炭素レーザー装置などを例示することができる 。このようにレーザー光により帯状透明導電部 32, 42と帯状透明調整部 33, 43とを 分離する絶縁スリット 34, 44を形成した場合、絶縁スリット 34, 44の幅を例えば、 5 μ πι〜400 /ζ πιとすることができ、帯状透明導電部 32, 42と帯状透明調整部 33, 43と の境界を目立たなくすることが可能となり、視認性を向上させることができる。特に、 絶縁スリット 34, 44の幅を例えば、 20 /z m以下に形成することにより、目視によって 絶^リット 34, 44を識別することが困難になるため、視認性を向上させるという観点 力 は好ましい。 Next, while irradiating the surface of the conductive film formed on each of the transparent substrates 11 and 21 with laser light, the transparent substrates 11 and 21 or the laser light is moved to peel off the conductive film, thereby removing the transparent strip Separated into conductive portions 32 and 42 and strip-shaped transparent adjustment portions 33 and 43. The portions where the conductive film is peeled off by the laser light correspond to the insulating slits 34 and 44. Examples of the apparatus for irradiating laser light include a YAG laser apparatus and a carbon laser apparatus. In this way, when the insulating slits 34 and 44 for separating the strip-shaped transparent conductive portions 32 and 42 and the strip-shaped transparent adjusting portions 33 and 43 are formed by the laser beam, the width of the insulating slits 34 and 44 is set to, for example, 5 μπι to 400 / ζ πι, and the boundary between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 can be made inconspicuous, and the visibility can be improved. In particular, by forming the width of the insulating slits 34 and 44 to be, for example, 20 / zm or less, it becomes difficult to identify the absolute lits 34 and 44 by visual observation, so the viewpoint power of improving visibility is preferable. .
[0156] また、抵抗スリット 35, 45および分離スリット 36, 46も、上記と同様に、各帯状透明 調整部 33, 43の表面にレーザー光を照射して導電膜を剥離することにより、幅が 5 m〜400 mのスリットとして形成することができる。この結果、帯状透明調整部 33 , 43において、抵抗スリット 35, 45及び分離スリット 36, 46が形成されている部分と、 形成されていない部分との境界を目立たなくすることが可能になる。なお、抵抗スリツ ト 35, 45および分離スリット 36, 46の幅についても、視認性を向上させるという観点 力もは 20 m以下に形成することが特に好ましい。また、後述のように、帯状透明調 整部 33, 43を高インピーダンス状態とし、帯状透明調整部 33, 43に電流が流れにく くするという観点から、抵抗スリット 35, 45及び分離スリット 36, 46の数を多く形成し、 帯状透明調整部 33, 43を抵抗スリット 35, 45及び分離スリット 36, 46により細力ゝく分 割することが好ましい。例えば、長手方向の長さが 60581. 8 mであり、幅力 880 μ mの帯状透明調整部 33, 43に対して、例えば、幅が 5 μ mの抵抗スリットを 5 μ m 間隔で形成した場合、最大で 6058個の抵抗スリットを形成することができる。なお、 抵抗スリットの幅としては 9 mとし、 9個から 3366個の抵抗スリットを形成することが 好ましい。また、同一寸法の帯状透明調整部 33, 43に対して、例えば、幅が 5 mの 分離スリットを 5 μ m間隔で形成した場合、最大で 486個の分離スリットを形成するこ とができる。なお、分離スリットの幅としては 9 μ mとし、 0個から 269個の分離スリットを 形成することが好ましい。 [0156] Also, the resistance slits 35, 45 and the separation slits 36, 46 have a width similar to that described above by irradiating the surface of the respective strip-like transparent adjustment portions 33, 43 with laser light to peel off the conductive film. It can be formed as a slit of 5 m to 400 m. As a result, in the band-like transparent adjusting portions 33 and 43, it becomes possible to make the boundary between the portions where the resistance slits 35 and 45 and the separation slits 36 and 46 are formed and the portions where they are not formed inconspicuous. Note that it is particularly preferable that the width of the resistance slits 35 and 45 and the separation slits 36 and 46 is also set to 20 m or less from the viewpoint of improving visibility. In addition, as described later, from the viewpoint of making the strip-shaped transparent adjustment sections 33 and 43 in a high impedance state and making it difficult for current to flow through the strip-shaped transparent adjustment sections 33 and 43, the resistance slits 35 and 45 and the separation slit 36, It is preferable that a large number of 46 is formed, and the strip-like transparent adjusting portions 33 and 43 are divided by the resistance slits 35 and 45 and the separation slits 36 and 46 in a thin manner. For example, resistance slits with a width of 5 μm are formed at intervals of 5 μm, for example, for the strip-shaped transparent adjusting portions 33 and 43 having a length in the longitudinal direction of 60581.8 m and a width force of 880 μm. In this case, a maximum of 6058 resistance slits can be formed. The width of the resistance slit is 9 m, and 9 to 3366 resistance slits can be formed. preferable. For example, when separation slits having a width of 5 m are formed at intervals of 5 μm for the strip-shaped transparent adjusting portions 33 and 43 having the same dimensions, a maximum of 486 separation slits can be formed. The width of the separation slit is preferably 9 μm, and preferably 0 to 269 separation slits are formed.
[0157] このように、 6058個の抵抗スリットを形成し、 486個の分離スリットを形成することに より、帯状透明調整部 33, 43を最大 2,949,759個の領域に分割することができる。 なお、帯状透明調整部 33, 43を 8個から 908,550個の領域に分割することが好まし い。 In this way, by forming 6058 resistance slits and 486 separation slits, the strip-shaped transparent adjustment portions 33 and 43 can be divided into a maximum of 2,949,759 regions. In addition, it is preferable to divide the band-shaped transparent adjusting portions 33 and 43 into 8 to 908,550 regions.
[0158] 第 1の透明面状体 1と第 2の透明面状体 2との貼着は、空気層が介在しないように、 粘着層 15を全体に介在させて行うことが好ましい。粘着層 15は、エポキシ系やアタリ ル系など、一般的な透明接着剤を用いることができ、ノルボルネン系榭脂の透明性フ イルムからなる芯材を含むものであってもよい。粘着層 15の厚みは、例えば 500 /z m 以下であることが好ましぐ特に、 20 m〜80 mであることが好ましい。更に、 50 πι〜80 /ζ πιであることがより好ましい。また、シート状粘着材を複数枚重ね合わせるこ とにより粘着層を形成してもよぐ更に、複数種類のシート状粘着材を重ね合わせて 形成してちょい。  [0158] The first transparent planar body 1 and the second transparent planar body 2 are preferably attached with the adhesive layer 15 interposed therebetween so that no air layer is present. The adhesive layer 15 can be made of a general transparent adhesive such as epoxy or attalyl, and may include a core material made of a norbornene-based transparent resin. The thickness of the adhesive layer 15 is preferably, for example, 500 m / z m or less, particularly preferably 20 m to 80 m. Further, 50 πι to 80 / ζ πι is more preferable. Alternatively, an adhesive layer may be formed by stacking a plurality of sheet-like adhesive materials, and a plurality of types of sheet-like adhesive materials may be overlaid.
[0159] 以上の構成を備える透明タツチスィッチ 101において、タツチ位置の検出方法は、 従来の静電容量式のタツチスィッチと同様であり、第 1の透明面状体 1の表面側にお ける任意の位置を指などで触れると、帯状透明導電部 32, 42は接触位置において 人体の静電容量を介して接地され、帯状透明導電部 32, 42を流れる電流値を検出 することにより、接触位置の座標が演算される。  [0159] In the transparent touch switch 101 having the above-described configuration, the touch position detection method is the same as that of the conventional electrostatic capacitance type touch switch, and any position on the surface side of the first transparent planar body 1 is used. Touching with a finger or the like, the strip-shaped transparent conductive parts 32 and 42 are grounded through the capacitance of the human body at the contact position, and by detecting the current value flowing through the strip-shaped transparent conductive parts 32 and 42, the coordinates of the contact position Is calculated.
[0160] 本実施形態に係る透明タツチスィッチ 101においては、帯状透明調整部 33, 43が 複数の抵抗スリット 35, 45を備えているので、第 1の透明面状体 1の表面側へのタツ チ時において、帯状透明導電部 32, 42と当該帯状透明導電部 32, 42に隣接する 帯状透明調整部 33, 43との間で容量結合が発生し、帯状透明調整部 33, 43に電 流が流れたとしても、帯状透明調整部 33, 43の途中で高インピーダンスとなり、帯状 透明調整部 33, 43に電流が流れにくくなる。この結果、タツチ位置の検出に用いら れる帯状透明導電部 32, 42に流れる電流量を十分に確保できるため、第 1の透明 面状体 1の表面側への指などによるタツチ時と、非タツチ時とにおける帯状透明導電 部 32, 42を流れる電流の差を確実に検知でき、タツチ位置の座標を精度よく検出す ることがでさる。 [0160] In the transparent touch switch 101 according to the present embodiment, since the belt-like transparent adjusting portions 33, 43 are provided with a plurality of resistance slits 35, 45, a touch to the surface side of the first transparent planar body 1 is performed. At this time, capacitive coupling occurs between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 adjacent to the strip-shaped transparent conductive portions 32, 42, and current flows in the strip-shaped transparent adjustment portions 33, 43. Even if it flows, the impedance becomes high in the middle of the strip-shaped transparent adjusting sections 33 and 43, and current hardly flows to the strip-shaped transparent adjusting sections 33 and 43. As a result, it is possible to secure a sufficient amount of current flowing in the strip-shaped transparent conductive parts 32, 42 used for the detection of the touch position. The difference in the current flowing through the band-shaped transparent conductive parts 32 and 42 can be reliably detected when touching with a finger on the surface side of the planar body 1 and when not touching, and the coordinates of the touch position can be detected accurately. It is out.
[0161] 特に、本第 4実施形態においては、抵抗スリット 35, 45が、各帯状透明調整部 33, 43に隣接する絶 リット 34, 44同士を接続するように構成されているため、帯状透 明調整部 33, 43の長手方向に電流が流れることを確実に防止することができる。こ れにより、帯状透明導電部 32, 42に流れる電流量をより一層確保することができるた め、第 1の透明面状体 1の表面側へのタツチ時と、非タツチ時とにおける帯状透明導 電部 32, 42を流れる電流の差をより確実に検知でき、タツチ位置の座標を精度よく 検出することができる。  [0161] In particular, in the present fourth embodiment, the resistance slits 35, 45 are configured to connect the end slits 34, 44 adjacent to the respective strip-shaped transparent adjusting portions 33, 43, so It is possible to reliably prevent a current from flowing in the longitudinal direction of the light adjustment sections 33 and 43. As a result, the amount of current flowing through the strip-shaped transparent conductive portions 32 and 42 can be further secured, so that the strip-shaped transparent when the first transparent planar body 1 is touched to the surface side and when it is not touched is used. The difference between the currents flowing through the conductive parts 32 and 42 can be detected more reliably, and the coordinates of the touch position can be detected with high accuracy.
[0162] また、本第 4実施形態においては、帯状透明調整部 33, 43が、絶縁スリット 34, 44 に沿って当該帯状透明調整部 33, 43を分離する分離スリット 36, 46を備えているた め、帯状透明調整部 33, 43における帯状透明導電部 32, 42と帯状透明調整部 33 , 43との隣接方向への電流の流れを防止することができ、帯状透明調整部 33, 43を より一層高インピーダンス状態とすることができ、タツチ位置を精度よく検出することが できる。  [0162] Further, in the fourth embodiment, the strip-shaped transparent adjustment portions 33, 43 include separation slits 36, 46 that separate the strip-shaped transparent adjustment portions 33, 43 along the insulating slits 34, 44. Therefore, it is possible to prevent the current flow in the adjacent direction between the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 in the strip-shaped transparent adjustment portions 33, 43. The impedance state can be further increased, and the touch position can be detected with high accuracy.
[0163] 以上、本発明の第 4実施形態について説明したが、本発明の具体的な態様は上記 実施形態に限定されない。本実施形態においては、第 1の透明面状体 1および第 2 の透明面状体 2において、それぞれの帯状透明調整部 33, 43に抵抗スリット 35, 45 および分離スリット 36, 46を形成する構成を採用しているが、例えば、図 29に示すよ うに、第 2の透明面状体 2における帯状透明調整体 23に抵抗スリット 25および分離ス リット 26を形成することを省略した構成を採用することもできる。このような構成であつ ても、指などが触れられる第 1の透明面状体 1の帯状透明調整体 13において、抵抗 スリット 15および分離スリット 16が形成されているので、帯状透明調整体 13は高イン ピーダンス状態となり、当該帯状透明調整体 13に電流が流れにくくなる。その結果、 タツチ位置を検出するために用いられる帯状透明導電部 32, 42に流れる電流量を 確保することができ、第 1の透明面状体 1の表面側への指などによるタツチ時と、非タ ツチ時とにおける帯状透明導電部 32, 42を流れる電流の差を確実に検知でき、タツ チ位置の座標を精度よく検出することができる。 [0163] Although the fourth embodiment of the present invention has been described above, the specific mode of the present invention is not limited to the above-described embodiment. In the present embodiment, the first transparent planar body 1 and the second transparent planar body 2 are configured to form resistance slits 35, 45 and separation slits 36, 46 in the respective strip-shaped transparent adjustment portions 33, 43. For example, as shown in FIG. 29, a configuration is adopted in which the formation of the resistance slit 25 and the separation slit 26 in the strip-shaped transparent adjusting body 23 in the second transparent planar body 2 is omitted. You can also Even in such a configuration, since the resistance slit 15 and the separation slit 16 are formed in the band-shaped transparent adjusting body 13 of the first transparent planar body 1 that can be touched by a finger or the like, the band-shaped transparent adjusting body 13 It becomes a high impedance state, and it becomes difficult for current to flow through the band-shaped transparent adjusting body 13. As a result, it is possible to secure the amount of current flowing in the strip-shaped transparent conductive portions 32, 42 used to detect the touch position, and when touching with the finger or the like to the surface side of the first transparent planar body 1, It is possible to reliably detect the difference in current flowing through the band-shaped transparent conductive parts 32 and 42 when not touched. The coordinates of the H position can be detected with high accuracy.
[0164] また、本第 4実施形態における抵抗スリット 35, 45の形状は、上述した形状に特に 限定されるものではなぐ図 30の(a)から(c)、あるいは、図 31の(a)又は(b)の要部 拡大図に示すように種々の形状を採用することができる。なお、図 30においては、帯 状透明導電部 32, 42を矩形状に構成した場合を示しており、図 31においては、帯 状透明導電部 32, 42を複数の菱形状導電部が直線状に連結された形状に構成し た場合を示している。  [0164] Further, the shape of the resistance slits 35 and 45 in the fourth embodiment is not particularly limited to the above-described shape, and is from (a) to (c) in Fig. 30 or (a) in Fig. 31. Or, as shown in the enlarged view of the main part of (b), various shapes can be adopted. 30 shows a case where the strip-shaped transparent conductive portions 32, 42 are configured in a rectangular shape, and in FIG. 31, the strip-shaped transparent conductive portions 32, 42 are formed of a plurality of rhombus-shaped conductive portions in a straight line shape. It shows the case where it is configured to be connected to the shape.
[0165] また、分離スリット 36, 46の形状も、上述した形状に特に限定されるものではなぐ 図 32の(a)又は (b)の要部拡大図に示すように種々の形状を採用することもできる。 なお、図 32においては、帯状透明導電部 32, 42の形状を複数の菱形状導電部が 直線状に連結された形状としている。また、分離スリット 36, 46を形成しない構成を 採用することちできる。  [0165] Further, the shape of the separation slits 36 and 46 is not particularly limited to the above-mentioned shape. Various shapes are adopted as shown in the enlarged view of the main part of Fig. 32 (a) or (b). You can also. In FIG. 32, the shape of the strip-shaped transparent conductive portions 32 and 42 is a shape in which a plurality of rhombus-shaped conductive portions are linearly connected. Further, it is possible to adopt a configuration in which the separation slits 36 and 46 are not formed.
[0166] また、本実施形態においては、第 1の透明面状体 1および第 2の透明面状体 2を粘 着層 15を介して貼着することにより、静電容量式のタツチスィッチ 101を構成して!/、る 力 以下のようにして抵抗膜式のタツチスィッチを構成することもできる。すなわち、第 1の透明面状体 1および第 2の透明面状体 2を、それぞれの帯状透明導電部 32, 42 が互いに対向するように、スぺーサーを介して所定間隔を空けて配置することにより 抵抗膜式のタツチスィッチを構成することもできる。  [0166] In the present embodiment, the first transparent planar body 1 and the second transparent planar body 2 are bonded via the adhesive layer 15, whereby the capacitance type touch switch 101 is provided. It is possible to construct a resistive touch switch as follows. That is, the first transparent planar body 1 and the second transparent planar body 2 are arranged at a predetermined interval via a spacer so that the respective strip-shaped transparent conductive portions 32 and 42 face each other. Thus, a resistive film type touch switch can be configured.
[0167] この抵抗膜式のタツチスィッチにおけるタツチ位置の検出方法は、従来の抵抗膜式 のタツチスィッチと同様であり、第 1の透明面状体 1の表面側における任意の位置を 指などで押圧することで、帯状透明導電部 32, 42は接触し、その接点の抵抗値を横 方向と縦方向に時分割的測定をすることで接触位置の座標が演算される。  [0167] The method for detecting the touch position of this resistive film type touch switch is the same as that of the conventional resistive film type touch switch, and an arbitrary position on the surface side of the first transparent planar body 1 is pressed with a finger or the like. Thus, the strip-shaped transparent conductive portions 32 and 42 are in contact with each other, and the coordinates of the contact position are calculated by measuring the resistance value of the contact in the horizontal and vertical directions in a time-sharing manner.
[0168] また、本第 4実施形態の透明タツチスィッチ 101において、第 1の透明面状体 1の表 面側 (帯状透明導電体 12が形成された面と反対側)には、直線偏光板を設けてもよ い。直線偏光板を設ける場合は、透明基板 11, 21を光等方性材料で構成する必要 力ある。直線偏光板は、ヨウ素や二色性染料などの二色性色素を吸着配向させたポ リビュルアルコール(PVA)の延伸フィルムを例示することができ、このフィルムの両 面を、保護フィルムとしてのトリァセチルアセテート(TAC)フィルムで挟持するように 貼り合わせたものを使用してもよい。光等方性材料は、入射する全ての光に対して、 偏光性を有しない材料で、例えば、ポリカーボネート (PC)、ポリエーテルサルフォン( PES)、ポリアクリル (PAC)、非晶質ポリオリフィン系榭脂、環状ポリオリフィン系榭脂 、脂肪族環状ポリオレフイン、ノルボルネン系の熱可塑性透明榭脂、ガラス材料など を例示することができる。これらの材料を用いて透明基板 11, 21を形成する方法とし ては、キャストや押し出しと 、う手法を用いることができる。 [0168] In the transparent touch switch 101 of the fourth embodiment, a linearly polarizing plate is provided on the surface side of the first transparent planar body 1 (the side opposite to the surface on which the strip-shaped transparent conductor 12 is formed). May be provided. When a linear polarizing plate is provided, it is necessary to make the transparent substrates 11 and 21 of an optically isotropic material. The linear polarizing plate can be exemplified by a stretched film of polyalcohol (PVA) in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented, and both sides of this film can be used as protective films. To be clamped with triacetyl acetate (TAC) film You may use what was bonded together. Optical isotropic materials are materials that are not polarized with respect to all incident light, such as polycarbonate (PC), polyethersulfone (PES), polyacrylic (PAC), and amorphous polyolefins. Examples thereof include resin, cyclic polyolefin-based resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin, glass material, and the like. As a method of forming the transparent substrates 11 and 21 using these materials, a casting or extrusion method can be used.
[0169] このような構成により、タツチスィッチ内部へ入射される可視光に起因する反射光量 を当該偏光板を設けていない場合に比べて約半分以下に抑制することができる。ま た、帯状透明導電部をより目立ちに《することができ、視認性をより向上させることが できる。 [0169] With such a configuration, the amount of reflected light caused by visible light incident on the inside of the touch switch can be suppressed to about half or less compared to the case where the polarizing plate is not provided. In addition, the band-shaped transparent conductive portion can be made more conspicuous, and the visibility can be further improved.
[0170] 更に、直線偏光板と λ Ζ4位相差板とを全面貼りし、タツチスィッチ 101の反対面( 第 2の透明面状体 2の裏面側)に λ Ζ4位相差板を全面貼りすることにより、円偏光 構成を形成してもよ 、。 λ Ζ4位相差板は、ポリビュルアルコール (PVA)やポリカー ボネート (PC)、ノルボルネン系の熱可塑性榭脂、環状ポリオレフイン榭脂などのフィ ルムを延伸して複屈曲性を付与したものを例示することができる。直線偏光板への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料カゝらなる粘着層を介して、 空気層が介在しないように全面貼着により行われることが好ましい。また、第 2の透明 面状体裏面側への λ Ζ4位相差板の貼着についても、粘着層 15と同様の材料から なる粘着層を介して、空気層が介在しないように全面貼着により行われることが好まし V、。この場合、各 λ Ζ4位相差板は、一方の λ Ζ4位相差板の光学軸が他方の λ / 4位相差板の光学軸に対して直交するように配置されることが好ま 、。  [0170] Further, by attaching a linear polarizing plate and a λΖ4 phase difference plate over the entire surface, and attaching the λλ4 phase difference plate over the entire opposite surface of the touch switch 101 (the back side of the second transparent planar body 2). You may form a circular polarization configuration. The λ Ζ4 phase difference plate is exemplified by polybialcohol (PVA), polycarbonate (PC), norbornene-based thermoplastic resin, cyclic polyolefin resin, etc. that have been stretched to give biflexibility. be able to. Adhering the λλ4 retardation plate to the linear polarizing plate is also preferably performed by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. In addition, the λΖ4 phase difference plate is adhered to the back surface of the second transparent planar body by adhering the entire surface through an adhesive layer made of the same material as the adhesive layer 15 so that no air layer is interposed. V, preferably done. In this case, each λ は 4 phase difference plate is preferably arranged so that the optical axis of one λΖ4 phase difference plate is orthogonal to the optical axis of the other λ / 4 phase difference plate.
[0171] このように、円偏光構成を形成することにより、反射光を円偏光化し、 2つの λ Ζ4 位相差板で挟まれた部分のタツチスィッチの内面反射をカットして良好な低反射性を 付与することが可能である。これにより、帯状透明導電部 32, 42をより目立ちに《す ることができ、視認性をより向上させることができる。尚、透明基板 11, 21自体を λ Ζ 4位相差板として、これに直線偏光板を積層した構成にすることも可能である。  [0171] In this way, by forming the circularly polarized light structure, the reflected light is circularly polarized, and the internal reflection of the portion of the touch switch sandwiched between the two λ Ζ4 phase difference plates is cut to achieve good low reflectivity. It is possible to grant. Thereby, the strip-shaped transparent conductive portions 32 and 42 can be made more conspicuous, and the visibility can be further improved. The transparent substrates 11 and 21 themselves can be a λΖ4 phase difference plate, and a linear polarizing plate can be laminated thereon.
[0172] また、図 33の概略断面図に示すように、一つの透明基板 31の両面にそれぞれ所 定間隔をあけて帯状透明導電部 32, 42を複数配置し、複数の抵抗スリット 35, 45及 び複数の分離スリット 36, 46を備える帯状透明調整部 33, 43を各帯状透明導電部 32, 42の間に配置すると共に、帯状透明導電部 32, 42と帯状透明調整部 33, 43と が絶& ^リット 34, 44を介在させて隣接するように透明面状体 30を構成することもで きる。透明基板 31の両面にそれぞれ形成される帯状透明導電部 32, 42および帯状 透明調整部 33, 43は、その長手方向が互いに直交するよう配置される。このような構 成の透明面状体 30を用いて静電容量式のタツチスィッチを形成した場合、粘着層 1 5を介して 2つの透明面状体 (第 1の透明面状体 1及び第 2の透明面状体 2に相当)を 貼り合わせる必要が無くなり、製造上の作業性を高めることができる。また、タツチスィ ツチが備える透明基板 31は一枚だけであると共に、粘着層 15を必要としないので、 タツチスィッチの厚みを薄くすることが可能になる。 In addition, as shown in the schematic cross-sectional view of FIG. 33, a plurality of strip-shaped transparent conductive portions 32, 42 are arranged on both surfaces of one transparent substrate 31 with predetermined intervals, and a plurality of resistance slits 35, 45 And The strip-shaped transparent adjustment portions 33, 43 having a plurality of separation slits 36, 46 are disposed between the respective strip-shaped transparent conductive portions 32, 42, and the strip-shaped transparent conductive portions 32, 42 and the strip-shaped transparent adjustment portions 33, 43 are The transparent planar body 30 can also be configured so as to be adjacent to each other by interposing the ends 34 and 44. The strip-shaped transparent conductive portions 32 and 42 and the strip-shaped transparent adjustment portions 33 and 43 formed on both surfaces of the transparent substrate 31 are arranged so that their longitudinal directions are orthogonal to each other. When a capacitive touch switch is formed using the transparent sheet 30 having such a structure, two transparent sheets (first transparent sheet 1 and second transparent sheet 1 and 2) are formed through an adhesive layer 15. This eliminates the need to attach a transparent planar body 2) and improves the workability in manufacturing. In addition, since only one transparent substrate 31 is provided in the touch switch and the adhesive layer 15 is not required, the thickness of the touch switch can be reduced.
このような透明面状体 30を形成するには、まず、一枚の透明基板 31の両面に、導 電膜を形成する。その後、透明基板 31の一方面にレーザー光を照射しながら、導電 膜を剥離し、帯状透明導電部 32と帯状透明調整部 33とを形成する。そして、透明基 板 31の他方面にも同様にしてレーザー光を照射しながら、導電膜を剥離し、帯状透 明導電部 42と帯状透明調整部 43とを形成する。なお、透明基板 31の両面に帯状透 明導電部 32, 42等を形成する場合、両面に形成した導電膜を傷つけないよう、成膜 工程、加工工程での透明基板の取り扱いに注意する必要がある。  In order to form such a transparent sheet 30, first, a conductive film is formed on both surfaces of a single transparent substrate 31. Thereafter, while irradiating one surface of the transparent substrate 31 with laser light, the conductive film is peeled off to form the strip-shaped transparent conductive portion 32 and the strip-shaped transparent adjustment portion 33. Then, while irradiating the other surface of the transparent substrate 31 with laser light in the same manner, the conductive film is peeled off to form the strip-shaped transparent conductive portion 42 and the strip-shaped transparent adjustment portion 43. When forming the transparent conductive parts 32, 42, etc. on both sides of the transparent substrate 31, it is necessary to pay attention to the handling of the transparent substrate in the film forming process and the processing process so as not to damage the conductive film formed on both surfaces. is there.

Claims

請求の範囲 The scope of the claims
[1] 透明基板の少なくとも一方面にパターニングされた透明導電膜を有する透明面状 体であって、  [1] A transparent planar body having a transparent conductive film patterned on at least one surface of a transparent substrate,
前記透明基板を介して前記透明導電膜が形成されているパターン形成領域を透 過した光の透過スペクトルと、前記透明基板を介して前記透明導電膜が形成されて A transmission spectrum of light that has passed through the pattern formation region where the transparent conductive film is formed through the transparent substrate, and the transparent conductive film is formed through the transparent substrate.
Vヽな 、非パターン形成領域を透過した光の透過スペクトルとを近似させる透過率調 節層を備えている透明面状体。 A transparent sheet having a transmittance adjusting layer that approximates a transmission spectrum of light transmitted through a non-patterned region.
[2] 前記透過率調節層は、前記透明基板の一方面を略均一な厚みで覆うオーバコート 層を有しており、  [2] The transmittance adjusting layer has an overcoat layer that covers one surface of the transparent substrate with a substantially uniform thickness,
前記オーバコート層は、厚みが前記透明導電膜の厚みよりも大きぐ且つ、屈折率 が前記透明導電膜の屈折率よりも小さいことを特徴とする請求項 1に記載の透明面 状体。  2. The transparent sheet according to claim 1, wherein the overcoat layer has a thickness larger than that of the transparent conductive film and a refractive index smaller than that of the transparent conductive film.
[3] 前記オーバコート層は、シリコン錫酸ィ匕物力 なる請求項 2に記載の透明面状体。  [3] The transparent planar body according to [2], wherein the overcoat layer has silicon stannate strength.
[4] 前記オーバコート層は、厚みが 70〜80nmである請求項 3に記載の透明面状体。 4. The transparent planar body according to claim 3, wherein the overcoat layer has a thickness of 70 to 80 nm.
[5] 前記透明導電膜の屈折率と、前記オーバコート層の屈折率との差が、 0. 03〜0. 4 である請求項 2から 4のいずれかに記載の透明面状体。 5. The transparent sheet according to any one of claims 2 to 4, wherein a difference between a refractive index of the transparent conductive film and a refractive index of the overcoat layer is 0.03 to 0.4.
[6] 前記透明基板と前記透明導電膜との間にアンダーコート層が介在されており、 前記アンダーコート層は、光屈折率が異なる 2以上の層の積層体力 構成され、低 屈折率層側に前記透明導電膜が形成されている請求項 2から 5のいずれかに記載 の透明面状体。 [6] An undercoat layer is interposed between the transparent substrate and the transparent conductive film, and the undercoat layer is composed of a laminate strength of two or more layers having different optical refractive indexes, and is on the low refractive index layer side. The transparent planar body according to any one of claims 2 to 5, wherein the transparent conductive film is formed on the surface.
[7] 請求項 2から 6のいずれかに記載の透明面状体を複数備え、  [7] A plurality of the transparent planar bodies according to any one of claims 2 to 6,
前記各透明面状体は、粘着層を介して貼着された静電容量式の透明タツチスイツ チであって、  Each of the transparent planar bodies is a capacitance type transparent touch switch attached via an adhesive layer,
前記粘着層は、屈折率が前記透明導電膜の屈折率よりも小さいことを特徴とする透 明タツチスィッチ。  A transparent touch switch, wherein the adhesive layer has a refractive index smaller than that of the transparent conductive film.
[8] 表面側に直線偏光板を備えることを特徴とする請求項 7に記載の透明タツチスイツ チ。  8. The transparent touch switch according to claim 7, further comprising a linear polarizing plate on the surface side.
[9] 表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位相差 板を備えることを特徴とする請求項 7に記載の透明タツチスィッチ。 [9] A linearly polarizing plate and a λΖ4 phase difference plate are provided on the front side, and λΖ4 phase difference is provided on the back side. The transparent touch switch according to claim 7, further comprising a plate.
[10] 前記透明基板は、 λ Ζ4位相差板である請求項 8に記載の透明タツチスィッチ。 10. The transparent touch switch according to claim 8, wherein the transparent substrate is a λ で 4 phase difference plate.
[11] 前記透過率調節層は、低屈折率層と、該低屈折率層よりも光屈折率が高い高屈折 率層とを含む積層体力も構成されたアンダーコート層を備え、 [11] The transmittance adjusting layer includes an undercoat layer including a low refractive index layer and a laminated body force including a high refractive index layer having a higher optical refractive index than the low refractive index layer,
前記アンダーコート層は、前記低屈折率層側に前記透明導電膜が形成されるよう に、前記透明基板と前記透明導電膜との間に介在されており、  The undercoat layer is interposed between the transparent substrate and the transparent conductive film so that the transparent conductive film is formed on the low refractive index layer side,
前記高屈折率層の厚みは、前記低屈折率層の厚みよりも小さいことを特徴とする請 求項 1に記載の透明面状体。  2. The transparent planar body according to claim 1, wherein a thickness of the high refractive index layer is smaller than a thickness of the low refractive index layer.
[12] 前記高屈折率層の厚みは、 10〜25nmであり、前記低屈折率層の厚みは、 25〜4[12] The high refractive index layer has a thickness of 10 to 25 nm, and the low refractive index layer has a thickness of 25 to 4
5nmである請求項 11に記載の透明面状体。 12. The transparent sheet according to claim 11, which is 5 nm.
[13] 前記高屈折率層は、シリコン錫酸ィ匕物力 なり、前記低屈折率層は、酸化珪素から なる請求項 12に記載の透明面状体。 13. The transparent planar body according to claim 12, wherein the high refractive index layer is made of silicon stannate and the low refractive index layer is made of silicon oxide.
[14] 前記透明導電膜の厚みは、 10〜25nmである請求項 11から 13のいずれかに記載 の透明面状体。 14. The transparent planar body according to any one of claims 11 to 13, wherein the transparent conductive film has a thickness of 10 to 25 nm.
[15] 請求項 11から 14のいずれかに記載の透明面状体を複数備え、  [15] A plurality of the transparent planar bodies according to any one of claims 11 to 14,
前記各透明面状体は、粘着層を介して貼着された静電容量式の透明タツチスイツ チ。  Each of the transparent planar bodies is a capacitance type transparent touch switch attached via an adhesive layer.
[16] 請求項 11から 14のいずれかに記載の透明面状体を複数備える静電容量式の透 明タツチスィッチであって、  [16] A capacitance-type transparent touch switch comprising a plurality of transparent planar bodies according to any one of claims 11 to 14,
前記各透明面状体は、前記透明導電膜が互いに対向するように配置され、粘着層を 介して貼着されており、  Each of the transparent planar bodies is disposed so that the transparent conductive films face each other, and is attached via an adhesive layer,
前記透明導電膜の厚みは、 20nm〜25nmであり、  The transparent conductive film has a thickness of 20 nm to 25 nm,
前記粘着層の屈折率は、 1. 6以上である静電容量式の透明タツチスィッチ。  A capacitive transparent touch switch having a refractive index of 1.6 or more.
[17] 請求項 11から 14のいずれかに記載の透明面状体を複数備える静電容量式の透 明タツチスィッチであって、 [17] A capacitance-type transparent touch switch comprising a plurality of transparent planar bodies according to any one of claims 11 to 14,
前記各透明面状体は、前記透明導電膜が互いに対向するように配置され、粘着層 を介して貼着されており、  Each of the transparent planar bodies is disposed so that the transparent conductive films face each other, and is attached via an adhesive layer,
前記透明導電膜の厚みは、 25nm〜30nmであり、 前記粘着層の屈折率は、 1. 7以上である静電容量式の透明タツチスィッチ。 The transparent conductive film has a thickness of 25 nm to 30 nm, A capacitive transparent touch switch having a refractive index of 1.7 or more.
[18] 表面側に直線偏光板を備えることを特徴とする請求項 15から 17にいずれかに記載 の透明タツチスィッチ。 [18] The transparent touch switch according to any one of [15] to [17], wherein a linearly polarizing plate is provided on the surface side.
[19] 表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位相差 板を備えることを特徴とする請求項 15から 17のいずれかに記載の透明タツチスイツ チ。  [19] The transparent touch switch according to any one of [15] to [17], wherein a linear polarizing plate and a λλ4 phase difference plate are provided on the front side, and a λΖ4 phase difference plate is provided on the back side.
[20] 前記透明基板は、 λ Ζ4位相差板である請求項 18に記載の透明タツチスィッチ。  20. The transparent touch switch according to claim 18, wherein the transparent substrate is a λ 4 phase difference plate.
[21] 前記透過率調節層は、前記透明基板の一方面における前記透明導電膜が形成さ れていない露出部を覆う被覆層を備えており、 [21] The transmittance adjusting layer includes a covering layer that covers an exposed portion where the transparent conductive film is not formed on one surface of the transparent substrate,
前記被覆層は、表面が前記透明導電膜の表面と略面一になるように形成されてお り、且つ、屈折率が前記透明導電膜の屈折率と同等である請求項 1に記載の透明面 状体。  The transparent coating according to claim 1, wherein the coating layer is formed so that a surface thereof is substantially flush with a surface of the transparent conductive film, and a refractive index is equal to a refractive index of the transparent conductive film. Planar body.
[22] 前記被覆層は、シリコン錫酸ィ匕物力もなる請求項 21に記載の透明面状体。  22. The transparent planar body according to claim 21, wherein the coating layer also has silicon stannate strength.
[23] 前記透明導電膜は、カーボンナノチューブ複合材カもなる請求項 21又は 22に記 載の透明面状体。 23. The transparent sheet according to claim 21 or 22, wherein the transparent conductive film is also a carbon nanotube composite material.
[24] 低屈折率層と、該低屈折率層よりも光屈折率が高い高屈折率層とを含む積層体か ら構成されたアンダーコ一ト層を更に備え、  [24] It further comprises an undercoat layer composed of a laminate including a low refractive index layer and a high refractive index layer having a higher refractive index than the low refractive index layer,
前記アンダーコート層は、前記低屈折率層側に前記透明導電膜および前記被覆 層が形成されるように、前記透明導電膜および前記被覆層と、前記透明基板との間 に介在されている請求項 21から 23のいずれかに記載の透明面状体。  The undercoat layer is interposed between the transparent conductive film and the coating layer and the transparent substrate so that the transparent conductive film and the coating layer are formed on the low refractive index layer side. Item 24. The transparent sheet according to any one of Items 21 to 23.
[25] 前記透明導電膜および被覆層の表面を覆うオーバコート層を更に備えており、前 記オーバコート層の表面は、平坦に形成されている請求項 21から 24のいずれかに 記載の透明面状体。 [25] The transparent film according to any one of [21] to [24], further comprising an overcoat layer covering surfaces of the transparent conductive film and the coating layer, wherein the surface of the overcoat layer is formed flat. Planar body.
[26] 請求項 21から 25のいずれかに記載の透明面状体を複数備え、 [26] A plurality of the transparent planar bodies according to any one of claims 21 to 25,
前記各透明面状体は、粘着層を介して貼着された静電容量式の透明タツチスイツ チ。  Each of the transparent planar bodies is a capacitance type transparent touch switch attached via an adhesive layer.
[27] 請求項 21から 24のいずれかに記載の透明面状体を複数備え、  [27] A plurality of the transparent planar bodies according to any one of claims 21 to 24,
前記各透明面状体は、前記透明導電膜が互いに対向するように、スぺーサーを介 して所定間隔を空けて配置された抵抗膜式の透明タツチスィッチ。 Each of the transparent planar bodies has a spacer so that the transparent conductive films face each other. And a resistive film type transparent touch switch arranged at a predetermined interval.
[28] 表面側に直線偏光板を備えることを特徴とする請求項 26又は 27に記載の透明タツ チスィッチ。  [28] The transparent touch switch according to [26] or [27], further comprising a linearly polarizing plate on the surface side.
[29] 表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位相差 板を備えることを特徴とする請求項 26又は 27に記載の透明タツチスィッチ。  [29] The transparent touch switch according to [26] or [27], wherein a linear polarizing plate and a λλ4 phase difference plate are provided on the front surface side, and a λΖ4 phase difference plate is provided on the back surface side.
[30] 前記透明基板は、 λ Ζ4位相差板である請求項 28に記載の透明タツチスィッチ。 30. The transparent touch switch according to claim 28, wherein the transparent substrate is a λΖ4 phase difference plate.
[31] 前記透明導電膜は、間隔をあけて複数配置される帯状透明導電部を備えており、 前記透過率調節層は、隣接する前記各帯状透明導電部の間に絶縁スリットを介し て配置される帯状透明調整部を備え、 [31] The transparent conductive film includes a plurality of strip-shaped transparent conductive portions arranged at intervals, and the transmittance adjusting layer is disposed via an insulating slit between the adjacent strip-shaped transparent conductive portions. Equipped with a belt-like transparent adjustment unit,
前記帯状透明調整部は、前記帯状透明導電部と同一材料からなると共に、複数の 抵抗スリットを備えて ヽる請求項 1に記載の透明面状体。  2. The transparent planar body according to claim 1, wherein the strip-shaped transparent adjusting portion is made of the same material as the strip-shaped transparent conductive portion and includes a plurality of resistance slits.
[32] 前記複数の抵抗スリットは、前記各帯状透明調整部に隣接する前記絶縁スリット同 士を接続するように構成されて ヽる請求項 31に記載の透明面状体。 [32] The transparent planar body according to [31], wherein the plurality of resistance slits are configured to connect the insulating slits adjacent to each of the strip-shaped transparent adjustment portions.
[33] 前記絶 リットに沿って、前記各帯状透明調整部を分離する分離スリットを更に 備えている請求項 31又は 32に記載の透明面状体。 [33] The transparent planar body according to [31] or [32], further comprising a separation slit that separates each of the strip-shaped transparent adjustment portions along the absolute slit.
[34] 請求項 31から 33のいずれかに記載の透明面状体を複数備え、 [34] A plurality of the transparent planar bodies according to any one of claims 31 to 33,
前記各透明面状体は、粘着層を介して貼着された静電容量式の透明タツチスイツ チ。  Each of the transparent planar bodies is a capacitance type transparent touch switch attached via an adhesive layer.
[35] 請求項 31から 33のいずれかに記載の透明面状体を複数備え、  [35] A plurality of the transparent planar bodies according to any one of claims 31 to 33,
前記各透明面状体は、前記帯状透明導電体が互いに対向するように、スぺーサー を介して所定間隔を空けて配置された抵抗膜式の透明タツチスィッチ。  Each of the transparent planar bodies is a resistance type transparent touch switch arranged at a predetermined interval through a spacer so that the strip-shaped transparent conductors face each other.
[36] 表面側に直線偏光板を備えることを特徴とする請求項 34又は 35に記載の透明タツ チスィッチ。 [36] The transparent touch switch according to [34] or [35], wherein a linearly polarizing plate is provided on the surface side.
[37] 表面側に直線偏光板と λ Ζ4位相差板とを備えると共に、裏面側に λ Ζ4位相差 板を備えることを特徴とする請求項 34又は 35に記載の透明タツチスィッチ。  [37] The transparent touch switch according to [34] or [35], wherein a linear polarizing plate and a λλ4 phase difference plate are provided on the front side, and a λΖ4 phase difference plate is provided on the back side.
[38] 前記透明基板は、 λ Ζ4位相差板である請求項 36に記載の透明タツチスィッチ。 38. The transparent touch switch according to claim 36, wherein the transparent substrate is a λΖ4 phase difference plate.
PCT/JP2006/310383 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch WO2006126604A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06746812A EP1892609A4 (en) 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch
KR1020117025372A KR101196342B1 (en) 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch
US11/795,009 US8603611B2 (en) 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch
KR1020077018336A KR101192391B1 (en) 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch
JP2007517871A JP4055019B2 (en) 2005-05-26 2006-05-24 Transparent sheet and transparent touch switch

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005153356 2005-05-26
JP2005-153356 2005-05-26
JP2005-178310 2005-06-17
JP2005178310 2005-06-17
JP2006073705 2006-03-17
JP2006-073705 2006-03-17
JP2006-096980 2006-03-31
JP2006096980 2006-03-31

Publications (1)

Publication Number Publication Date
WO2006126604A1 true WO2006126604A1 (en) 2006-11-30

Family

ID=37452028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310383 WO2006126604A1 (en) 2005-05-26 2006-05-24 Transparent planar body and transparent touch switch

Country Status (6)

Country Link
US (1) US8603611B2 (en)
EP (1) EP1892609A4 (en)
JP (2) JP4055019B2 (en)
KR (2) KR101192391B1 (en)
TW (1) TW200705247A (en)
WO (1) WO2006126604A1 (en)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243622A (en) * 2007-03-27 2008-10-09 Gunze Ltd Transparent planar body and transparent touch switch
JP2009050868A (en) * 2007-08-24 2009-03-12 Gunze Ltd Substrate manufacturing method, and capacitance type touch panel using substrate
JP2009076432A (en) * 2007-01-18 2009-04-09 Nitto Denko Corp Transparent conductive film, method for production thereof and touch panel therewith
JP2009104576A (en) * 2007-10-23 2009-05-14 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Touch panel
JP2009146419A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel and display device using the same
JP2009151779A (en) * 2007-12-21 2009-07-09 Qinghua Univ Touch panel and display using the same
JP2009157923A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009157927A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009157925A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009205321A (en) * 2008-02-27 2009-09-10 Hitachi Displays Ltd Display panel
JP2010009439A (en) * 2008-06-30 2010-01-14 Hitachi Displays Ltd Display apparatus with touch panel
US20100013784A1 (en) * 2008-07-16 2010-01-21 Nitto Denko Corporation Transparent conductive film, transparent conductive laminate, touch panel, and method for producing transparent conductive film
US20100015417A1 (en) * 2008-07-16 2010-01-21 Nitto Denko Corporation Transparent conductive film and touch panel
JP2010015575A (en) * 2008-07-04 2010-01-21 Qinghua Univ Liquid crystal display panel using touch panel
JP2010020749A (en) * 2008-07-11 2010-01-28 Samsung Mobile Display Co Ltd Touch screen panel and method of fabricating the same
JP2010027391A (en) * 2008-07-18 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel
JP2010061425A (en) * 2008-09-04 2010-03-18 Hitachi Displays Ltd Touch panel and display device using the same
JP2010076232A (en) * 2008-09-25 2010-04-08 Gunze Ltd Transparent planar body and transparent touch switch
JP2010086498A (en) * 2008-10-03 2010-04-15 Hitachi Displays Ltd Display device
JP2010086684A (en) * 2008-09-30 2010-04-15 Kuramoto Seisakusho Co Ltd Optical thin film with transparent conductive wiring film
JP2010113498A (en) * 2008-11-06 2010-05-20 Hitachi Displays Ltd Display device
JP2010153210A (en) * 2008-12-25 2010-07-08 Nissha Printing Co Ltd Conductive nanofiber sheet and its manufacturing method
JP2010165460A (en) * 2009-01-13 2010-07-29 Nissha Printing Co Ltd Conductive nanofiber sheet and method of manufacturing the same
JP2010165336A (en) * 2009-01-16 2010-07-29 Samsung Mobile Display Co Ltd Touch screen panel and method for manufacturing the same
JP2010192186A (en) * 2009-02-17 2010-09-02 Toray Ind Inc Transparent conductive laminate
JP2010208169A (en) * 2009-03-11 2010-09-24 Gunze Ltd Transparent planar article and transparent touch switch
JP2010250424A (en) * 2009-04-13 2010-11-04 Polymatech Co Ltd Touch pad and touch panel
JP2010262529A (en) * 2009-05-08 2010-11-18 Gunze Ltd Planar element and touch switch
WO2011001561A1 (en) * 2009-06-30 2011-01-06 シャープ株式会社 Touch panel device and method for producing same, display device and method for producing same
JP4640535B1 (en) * 2009-10-19 2011-03-02 東洋紡績株式会社 Transparent conductive film and touch panel using the same
JP2011048827A (en) * 2009-08-26 2011-03-10 Chi Mei Electronics Corp Touch panel and method of locating touch point of the same
JP2011054208A (en) * 2010-12-03 2011-03-17 Dainippon Printing Co Ltd Touch panel sensor, laminated body for manufacturing the same and production method for the same
WO2011048648A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent laminate film
JP4683164B1 (en) * 2009-11-27 2011-05-11 凸版印刷株式会社 Transparent conductive laminate, method for producing the same, and capacitive touch panel
JP2011516960A (en) * 2008-04-04 2011-05-26 メルファス インコーポレイテッド Contact detection device with improved edge position recognition characteristics
JP2011134482A (en) * 2009-12-22 2011-07-07 Nof Corp Transparent conductive film
JP2011194679A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Transparent and conductive laminate, method for manufacturing same, and touch panel
WO2011148429A1 (en) * 2010-05-28 2011-12-01 信越ポリマー株式会社 Transparent conductive film and conductive substrate using the same
JP2011258578A (en) * 2011-09-12 2011-12-22 Shin Etsu Polymer Co Ltd Transparent conductive film and conductive substrate using the same
WO2012005205A1 (en) 2010-07-05 2012-01-12 Dic株式会社 Substrate with a transparent conductive layer, manufacturing method for said substrate, transparent conductive film laminate for use in a touch panel, and touch panel
JP4862969B1 (en) * 2011-02-07 2012-01-25 ソニー株式会社 Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
JP2012027894A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Electrostatic capacitance system touch panel
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
JP2012508937A (en) * 2008-11-15 2012-04-12 アトメル・コーポレイション Touch screen sensor
JP2012074220A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Transparent conductive film, pointing device and production method of transparent conductive film
WO2012057409A1 (en) * 2010-10-26 2012-05-03 Samwon St Touch panel sensor
WO2012057244A1 (en) 2010-10-27 2012-05-03 日東電工株式会社 Display panel device with touch input function, optical unit for said display panel device, and production method for same
EP2450909A1 (en) 2010-11-04 2012-05-09 Sony Corporation Conductive ink, method of preparing the same, and method of preparing transparent conductive film
WO2012073964A1 (en) 2010-11-30 2012-06-07 日東電工株式会社 Display panel device having touch-input function
WO2012074059A1 (en) * 2010-12-02 2012-06-07 日東電工株式会社 Transparent conductive film and touch panel
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
JP2012118936A (en) * 2010-12-03 2012-06-21 Dainippon Printing Co Ltd Touch panel sensor with transparent sheet
JP2012146211A (en) * 2011-01-13 2012-08-02 Dainippon Printing Co Ltd Touch panel sensor with transparent sheet
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
WO2012111519A1 (en) * 2011-02-15 2012-08-23 シャープ株式会社 Touch panel and display device provided with touch panel
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
JP2012178193A (en) * 2012-06-22 2012-09-13 Japan Display East Co Ltd Display device
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
JP2012243289A (en) * 2011-05-24 2012-12-10 Geomatec Co Ltd Electrode substrate for capacitance type input device and capacitance type input device
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
TWI397926B (en) * 2009-10-20 2013-06-01 Toyo Boseki Transparent electrically conductive film and touch panel using the same
JP2013178593A (en) * 2011-04-28 2013-09-09 Nissha Printing Co Ltd Mutual-capacitance type touch panel
JP2013180556A (en) * 2012-03-05 2013-09-12 Lintec Corp Transparent electroconductive film and method for manufacturing the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8550991B2 (en) 2009-03-04 2013-10-08 Dong Sik Nam Touch panel sensor
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
KR101329638B1 (en) * 2008-07-31 2013-11-14 군제 가부시키가이샤 Planar element, and touch switch
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
JP2013235600A (en) * 2013-07-08 2013-11-21 Japan Display Inc Capacitive type touch panel
WO2014007050A1 (en) * 2012-07-03 2014-01-09 富士フイルム株式会社 Transparent layered body, electrostatic capacitance input device, and image display device
JP2014017010A (en) * 2013-09-19 2014-01-30 Japan Display Inc Display device
JP2014032707A (en) * 2008-04-30 2014-02-20 Toppoly Optoelectronics Corp Display device
WO2014041880A1 (en) * 2012-09-11 2014-03-20 富士フイルム株式会社 Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device provided with same
KR20140090244A (en) * 2011-11-04 2014-07-16 캄브리오스 테크놀로지즈 코포레이션 Methods for reducing diffuse reflection of nanostructure-based transparent conductive films and touch panels made of the same
JP2014235684A (en) * 2013-06-05 2014-12-15 グンゼ株式会社 Transparent planar body and transparent touch panel
JP2015015032A (en) * 2014-08-13 2015-01-22 日東電工株式会社 Transparent conductive film and touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
JP2015518518A (en) * 2012-03-30 2015-07-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Transparent body used in touch panel and manufacturing method and apparatus thereof
JP2015518596A (en) * 2012-03-30 2015-07-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Transparent body used in touch screen panel manufacturing method and system
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
KR20150095770A (en) * 2012-12-07 2015-08-21 캄브리오스 테크놀로지즈 코포레이션 Conductive films having low-visibility patterns and methods of producing the same
WO2015125853A1 (en) * 2014-02-19 2015-08-27 富士フイルム株式会社 Transfer film, method for manufacturing transfer film, transparent laminate, method for manufacturing transparent laminate, capacitance-type input device, and image display device
CN104966551A (en) * 2015-05-30 2015-10-07 汕头万顺包装材料股份有限公司 ITO conductive film with copper-plated surface
WO2015166724A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Transparent electroconductive film
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
JP2016153963A (en) * 2015-02-20 2016-08-25 大日本印刷株式会社 Touch panel
JP2016177556A (en) * 2015-03-20 2016-10-06 富士フイルム株式会社 Touch panel member, touch panel, and touch panel display device
JP2016189224A (en) * 2011-06-30 2016-11-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Touch screen panel
US9513747B2 (en) 2010-11-04 2016-12-06 Nitto Denko Corporation Transparent conductive film and touch panel
US9632640B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
JPWO2019077891A1 (en) * 2017-10-16 2020-12-03 富士フイルム株式会社 Transfer material, touch sensor and its manufacturing method, and image display device
JP2022142384A (en) * 2021-03-16 2022-09-30 Nissha株式会社 capacitive touch panel

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9722766D0 (en) 1997-10-28 1997-12-24 British Telecomm Portable computers
TWI393938B (en) * 2007-03-28 2013-04-21 Thin, high-visibility anti-reflective touch panel
CN101676832B (en) * 2008-09-19 2012-03-28 清华大学 Desktop computer
CN101620454A (en) * 2008-07-04 2010-01-06 清华大学 Potable computer
TWI412962B (en) * 2007-12-21 2013-10-21 Hon Hai Prec Ind Co Ltd Touch panel and displaying device using the same
TW200928931A (en) * 2007-12-25 2009-07-01 Cando Corp Capacitive overcoat structure of touch panel and touch panel having the same
TWI408575B (en) * 2007-12-31 2013-09-11 Hon Hai Prec Ind Co Ltd Touch panel and displaying device using the same
WO2009108765A2 (en) 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor having varying sheet resistance
JP2011517367A (en) 2008-02-28 2011-06-02 スリーエム イノベイティブ プロパティズ カンパニー Method for patterning a conductor on a substrate
TWI378377B (en) 2008-06-23 2012-12-01 Au Optronics Corp Capacitive touch panel and manufacturing method thereof
JP2010009456A (en) * 2008-06-30 2010-01-14 Micro Gijutsu Kenkyusho:Kk Electrostatic capacity type touch panel
JP2010020730A (en) * 2008-07-14 2010-01-28 Fujitsu Component Ltd Input detection circuit, input detection method, input detection program, and input detection apparatus
WO2010011779A2 (en) 2008-07-23 2010-01-28 Flextronics Ap, Llc Integration design for capacitive touch panels and liquid crystal displays
JP5123774B2 (en) * 2008-07-25 2013-01-23 株式会社ジャパンディスプレイイースト Input device and display device including the same
US9128568B2 (en) 2008-07-30 2015-09-08 New Vision Display (Shenzhen) Co., Limited Capacitive touch panel with FPC connector electrically coupled to conductive traces of face-to-face ITO pattern structure in single plane
JP5178379B2 (en) * 2008-07-31 2013-04-10 株式会社ジャパンディスプレイイースト Display device
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
CA2742985A1 (en) * 2008-11-06 2010-05-14 Uico, Inc. Capacitive touch screen and strategic geometry isolation patterning method for making touch screens
US8209861B2 (en) 2008-12-05 2012-07-03 Flextronics Ap, Llc Method for manufacturing a touch screen sensor assembly
JP5287201B2 (en) * 2008-12-12 2013-09-11 東洋紡株式会社 Transparent conductive laminated film
JP5315037B2 (en) * 2008-12-17 2013-10-16 株式会社ジャパンディスプレイ Capacitive touch panel
US8274486B2 (en) 2008-12-22 2012-09-25 Flextronics Ap, Llc Diamond pattern on a single layer
TW201025095A (en) * 2008-12-31 2010-07-01 Giantplus Technology Co Ltd Touch-control LCD device
JP5832065B2 (en) * 2009-02-05 2015-12-16 凸版印刷株式会社 Transparent conductive film
JP5396916B2 (en) * 2009-03-03 2014-01-22 コニカミノルタ株式会社 Method for producing transparent electrode, transparent electrode and organic electroluminescence element
CN101833184A (en) * 2009-03-13 2010-09-15 宸鸿光电科技股份有限公司 Integrated structure of capacitive touch pad and liquid crystal display panel
JP4958020B2 (en) * 2009-03-31 2012-06-20 大日本印刷株式会社 Touch panel sensor, laminate for manufacturing touch panel sensor, and method for manufacturing touch panel sensor
EP2415591A4 (en) * 2009-03-31 2013-11-20 Teijin Ltd Transparent conductive laminate and transparent touch panel
KR101091744B1 (en) * 2009-04-15 2011-12-08 한국과학기술연구원 Method for fabrication of conductive film using metal wire and conductive film
JP5335534B2 (en) * 2009-04-22 2013-11-06 日本写真印刷株式会社 Conductive molded product and manufacturing method thereof
CN101943966B (en) * 2009-07-08 2012-07-18 群康科技(深圳)有限公司 Touch control device
US8237068B2 (en) * 2009-08-07 2012-08-07 OpeanPeak Inc. Projected capacitive touch-sensitive panel
JP2011076932A (en) * 2009-09-30 2011-04-14 Nitto Denko Corp Transparent conductive film and touch panel
JP5408075B2 (en) * 2009-10-06 2014-02-05 日油株式会社 Transparent conductive film
KR101049182B1 (en) * 2009-11-05 2011-07-14 한화엘앤씨 주식회사 Transparent conductive substrate for touch panel and manufacturing method thereof
KR20110061422A (en) 2009-12-01 2011-06-09 엘지이노텍 주식회사 Capacitance touch panel
TWI477845B (en) * 2009-12-25 2015-03-21 Hon Hai Prec Ind Co Ltd Touch panel
JP5606093B2 (en) * 2010-02-17 2014-10-15 アルプス電気株式会社 Input device
US9285929B2 (en) 2010-03-30 2016-03-15 New Vision Display (Shenzhen) Co., Limited Touchscreen system with simplified mechanical touchscreen design using capacitance and acoustic sensing technologies, and method therefor
WO2011126709A2 (en) * 2010-03-30 2011-10-13 First Solar, Inc. Doped buffer layer
CN102822829B (en) * 2010-03-31 2015-10-21 富士胶片株式会社 The manufacture method of conductive film and manufacturing installation and conductive film
JP5866765B2 (en) 2010-04-28 2016-02-17 ソニー株式会社 Conductive element and manufacturing method thereof, wiring element, information input device, display device, and electronic apparatus
KR101785652B1 (en) 2010-05-06 2017-10-16 엘지전자 주식회사 Touch panel and mobile terminal comprising the same
KR101056264B1 (en) * 2010-05-14 2011-08-11 삼성모바일디스플레이주식회사 Touch screen panel
KR101093651B1 (en) * 2010-05-25 2011-12-15 전자부품연구원 Touch panel using metallic thin-film and manufacture method thereof
JP5568398B2 (en) * 2010-07-13 2014-08-06 株式会社カネカ Substrate with transparent electrode and method for producing the same
TWI425398B (en) * 2010-07-23 2014-02-01 Elan Microelectronics Corp A transparent touchpad that improves the bonding process
JP5659601B2 (en) * 2010-07-26 2015-01-28 日油株式会社 Transparent conductive film
KR20110118065A (en) * 2010-07-27 2011-10-28 삼성전기주식회사 Capacitive touch screen
CN103052931A (en) * 2010-07-30 2013-04-17 Lg伊诺特有限公司 Touch panel
JP5472858B2 (en) * 2010-08-19 2014-04-16 グンゼ株式会社 Touch switch
JP2012058956A (en) * 2010-09-08 2012-03-22 Sony Corp Electrode film and coordinate detector
JP5458443B2 (en) 2010-09-14 2014-04-02 株式会社ジャパンディスプレイ Display device with touch detection function and electronic device
WO2012043189A1 (en) 2010-09-29 2012-04-05 大日本印刷株式会社 Touch panel sensor film and method for manufacturing same
KR101314411B1 (en) * 2010-10-19 2013-10-04 주식회사 엘지화학 Touch panel comprising conducting pattern and method for manufacturing the same
EP2543634A4 (en) * 2010-10-29 2017-05-31 Toray Industries, Inc. Transparent electrically conductive laminate and process for production thereof
JP5699352B2 (en) 2010-11-11 2015-04-08 北川工業株式会社 Transparent conductive film
CN103210453B (en) * 2010-11-17 2016-11-02 乐金显示有限公司 It is formed with conducting film and the manufacture method thereof of oxide-film
TWI451317B (en) * 2010-11-26 2014-09-01 Innolux Corp Touch panel
KR101860604B1 (en) * 2011-01-18 2018-05-23 후지필름 가부시키가이샤 Transparent electrode sheets, manufacturing method for transparent electrode sheets, and capacitive touch panel using transparent electrode sheets
CN102681707A (en) * 2011-03-16 2012-09-19 智盛全球股份有限公司 Transparent conducting structure applied to touch panel and manufacturing method thereof
WO2012144323A1 (en) * 2011-04-20 2012-10-26 積水ナノコートテクノロジー株式会社 Optical adjustment film, and transparent conductive film using same
EP2515217A1 (en) * 2011-04-21 2012-10-24 Innovation & Infinity Global Corp. Transparent conductive structure applied to a touch panel and method of making the same
CN102789827A (en) * 2011-05-19 2012-11-21 智盛全球股份有限公司 Conductive thin film
EP2718792A4 (en) * 2011-06-09 2015-06-17 3M Innovative Properties Co Touch sensitive device with multilayer electrode and underlayer
JP5797025B2 (en) * 2011-06-20 2015-10-21 日東電工株式会社 Capacitive touch panel
KR101304163B1 (en) 2011-07-04 2013-09-04 (주)엘지하우시스 Capacitive touch panel improving visibility
JP5542752B2 (en) * 2011-07-06 2014-07-09 信越ポリマー株式会社 Insulating part forming method and manufacturing method of conductive pattern forming substrate
JP5808966B2 (en) * 2011-07-11 2015-11-10 富士フイルム株式会社 Conductive laminate, touch panel and display device
KR20130010637A (en) * 2011-07-19 2013-01-29 삼성전기주식회사 Touch panel
EP2549304A1 (en) * 2011-07-22 2013-01-23 Innovation & Infinity Global Corp. Conductive film
EP2549305A1 (en) * 2011-07-22 2013-01-23 Innovation & Infinity Global Corp. Conductive film
EP2551756A1 (en) * 2011-07-26 2013-01-30 Innovation & Infinity Global Corp. Conductive film
JP5706271B2 (en) 2011-08-24 2015-04-22 日東電工株式会社 Method for producing transparent conductive film
JP5833863B2 (en) 2011-08-24 2015-12-16 日東電工株式会社 Transparent conductive film and method for producing the same
TWI465796B (en) * 2011-09-01 2014-12-21 Shih Hua Technology Ltd Touch panel panel
TWI465822B (en) * 2011-09-02 2014-12-21 Shih Hua Technology Ltd Touch-control e-paper display
JP5757843B2 (en) * 2011-10-21 2015-08-05 日東電工株式会社 Touch panel sensor
JP5264979B2 (en) * 2011-11-25 2013-08-14 日東電工株式会社 Touch panel sensor
CN103975376A (en) * 2011-12-01 2014-08-06 住友电木株式会社 Image display device
KR101284595B1 (en) * 2011-12-23 2013-07-15 한국생산기술연구원 Touch Screen Panel and its Manufacturing Method
TWI477860B (en) * 2012-01-04 2015-03-21 Tpk Holding Co Ltd Touch panel
US8525955B2 (en) 2012-01-31 2013-09-03 Multek Display (Hong Kong) Limited Heater for liquid crystal display
CN104093561A (en) * 2012-02-03 2014-10-08 木本股份有限公司 Direct electric heating system for heating a subsea pipeline
US9471185B2 (en) * 2012-02-21 2016-10-18 Atmel Corporation Flexible touch sensor input device
WO2013130787A1 (en) * 2012-02-29 2013-09-06 Touchsensor Technologies, Llc User interface having universal sensing electrode structure
TWI475574B (en) * 2012-02-29 2015-03-01 Far Eastern New Century Coprration Structure of wet-coating transparent conductive film and the application thereof
JP5292492B2 (en) * 2012-04-24 2013-09-18 株式会社ジャパンディスプレイ Touch panel and display device using the same
JP5988671B2 (en) * 2012-04-24 2016-09-07 グンゼ株式会社 Conductive substrate, touch panel, and method of manufacturing conductive substrate
JP5224203B1 (en) 2012-07-11 2013-07-03 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
CN104520789B (en) * 2012-07-31 2017-04-26 夏普株式会社 Touch panel substrate and display device
TW201409092A (en) * 2012-08-17 2014-03-01 Chunghwa Picture Tubes Ltd Polarizing plates, touch liquid crystal panel and touch display
US20140049271A1 (en) * 2012-08-20 2014-02-20 Matthew Trend Self-shielding co-planar touch sensor
JP5813598B2 (en) * 2012-08-27 2015-11-17 大日本印刷株式会社 Touch panel sensor substrate and method for manufacturing touch panel sensor substrate
WO2014033058A1 (en) * 2012-08-28 2014-03-06 Oc Oerlikon Balzers Ag Patterned conductor touch screen
CN103677386B (en) * 2012-08-31 2017-06-20 群康科技(深圳)有限公司 Electrically-conductive backing plate and touch control display apparatus
TWI548908B (en) * 2012-08-31 2016-09-11 群創光電股份有限公司 Touch display device
US20140071533A1 (en) * 2012-09-07 2014-03-13 Ting-Ching Kuo Transparent Conductive FILM And Touch Panel Provided With Same
JP6127251B2 (en) * 2012-09-24 2017-05-17 グンゼ株式会社 Touch panel
CN104641332A (en) * 2012-09-24 2015-05-20 凸版印刷株式会社 Transparent conductive film, method for manufacturing transparent conductive film, and touch panel
JP2014073642A (en) * 2012-10-05 2014-04-24 Nippon Electric Glass Co Ltd Transparent conductive glass substrate, and touch panel
US9099222B2 (en) * 2012-10-10 2015-08-04 Carestream Health, Inc. Patterned films and methods
JP5754739B2 (en) * 2012-12-17 2015-07-29 日本写真印刷株式会社 Touch sensor
KR102111484B1 (en) * 2013-01-28 2020-05-18 엘지디스플레이 주식회사 Touch Panel And Method Of Manufacturing The Same
CN103187119B (en) * 2013-02-06 2014-08-06 南昌欧菲光科技有限公司 Conductive film, preparation method for conductive film and touch screen comprising conductive film
CN105009050B (en) * 2013-02-27 2018-09-21 未来奈米科技股份有限公司 Using the touch harden structure of the electrostatic capacitance Touch Screen of dummy pattern
WO2014139592A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Transparent body with single substrate and anti-reflection and/or anti-fingerprint coating and method of manufacturing thereof
US9201551B2 (en) * 2013-03-28 2015-12-01 Nanchang O-Film Tech. Co., Ltd. Capacitive touch screen
KR101879220B1 (en) 2013-03-29 2018-07-17 동우 화인켐 주식회사 Transparent electrode pattern structure and touch screen panel having the same
US20140300831A1 (en) * 2013-04-08 2014-10-09 Young Fast Optoelectronics Co., Ltd. Transparent capacitive touch panel
JP5867446B2 (en) * 2013-04-15 2016-02-24 デクセリアルズ株式会社 Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master
TWI483158B (en) * 2013-05-14 2015-05-01 Innolux Corp Touch panel and touch display panel using the same
KR101865685B1 (en) 2013-05-23 2018-06-08 동우 화인켐 주식회사 Transparent electrode pattern structure and touch screen panel having the same
KR102077548B1 (en) 2013-05-24 2020-04-07 동우 화인켐 주식회사 Transparent electrode pattern structure and touch screen panel having the same
JP5964273B2 (en) * 2013-05-27 2016-08-03 日東電工株式会社 Touch panel sensor
JP6014551B2 (en) * 2013-05-27 2016-10-25 日東電工株式会社 Touch panel sensor
KR102090601B1 (en) * 2013-05-28 2020-03-19 엘지디스플레이 주식회사 Display device having touch sensors
JP6081881B2 (en) * 2013-07-22 2017-02-15 日本写真印刷株式会社 Touch panel
KR101401050B1 (en) * 2013-08-09 2014-06-27 동우 화인켐 주식회사 Touch sensing electrode and touch screen panel comprising the same
KR101443689B1 (en) * 2013-08-23 2014-09-23 동우 화인켐 주식회사 Touch sensing electrode combined with polarization plate
EP2863290B1 (en) * 2013-10-18 2017-12-06 Applied Materials, Inc. Layer stack for a touch panel and method for forming a layer stack
CN109309114B (en) * 2013-11-12 2023-05-26 宸鸿光电科技股份有限公司 Touch display device of organic light emitting diode
JP2014038661A (en) * 2013-11-15 2014-02-27 Dainippon Printing Co Ltd Touch panel sensor, and laminate for manufacturing touch panel sensor
KR101444132B1 (en) * 2013-11-20 2014-11-04 동우 화인켐 주식회사 Touch sensing electrode combined with complexed polarization plate and touch screen panel comprising the same
KR101372525B1 (en) * 2013-12-03 2014-03-11 에스맥 (주) Method for manufacturing touch screen panel
KR102262548B1 (en) 2014-02-05 2021-06-09 엘지이노텍 주식회사 Touch window
JP5549966B1 (en) * 2014-03-18 2014-07-16 大日本印刷株式会社 Conductive film and touch panel sensor
JP5859597B2 (en) * 2014-04-24 2016-02-10 日東電工株式会社 Transparent conductive film and touch panel
KR102224824B1 (en) * 2014-05-30 2021-03-08 삼성전자 주식회사 Electronic device having ito electrode pattern and method for manufacturing the same
CN105260043A (en) * 2014-06-13 2016-01-20 宸鸿科技(厦门)有限公司 Touch panel with fingerprint identification function
CN105468187A (en) * 2014-06-18 2016-04-06 宸鸿科技(厦门)有限公司 Touch panel with fingerprint recognition function
JP5683734B1 (en) * 2014-07-01 2015-03-11 グンゼ株式会社 Transparent conductive laminate, touch panel, and method for producing transparent conductive laminate
CN104182110B (en) * 2014-09-12 2017-10-24 业成光电(深圳)有限公司 Electric resistance touch-control panel
KR102218718B1 (en) * 2014-10-10 2021-02-19 엘지전자 주식회사 Conductive film and method for manufacturing the same, and touch panel and display apparatus including the conductive film
KR101942294B1 (en) 2014-12-09 2019-01-25 동우 화인켐 주식회사 Touch screen panel and image display comprising the same
KR101728329B1 (en) * 2015-11-19 2017-05-02 현대자동차주식회사 Touch control device, vehicle comprising the same, and manufacturing method thereof
JP6532105B2 (en) * 2015-12-17 2019-06-19 株式会社ワコム Touch panel, signal processing apparatus and ground coupling method
CN106998201B (en) * 2016-01-22 2020-06-09 清华大学 Optical identification switch device
KR102630207B1 (en) 2016-04-13 2024-01-26 택토텍 오와이 Multilayer structure with embedded multilayer electronics
TWI746603B (en) * 2016-08-09 2021-11-21 南韓商東友精細化工有限公司 Transparent electrode, touch sensor and image display device including the same
US10289889B2 (en) * 2017-05-19 2019-05-14 Semiconductor Components Industries, Llc Pattern layout of touch sensor
US10860133B1 (en) * 2019-11-27 2020-12-08 Young Fast Optoelectronics Co., Ltd. Three-dimensional touch knob
KR20220022516A (en) * 2020-08-18 2022-02-28 삼성디스플레이 주식회사 Display device and method of manufacturing the same
KR102608978B1 (en) * 2022-02-17 2023-12-01 주식회사 루미디아 Transparent antenna substrate manufacturing method and transparent antenna manufactured therefrom
KR102490508B1 (en) * 2022-07-18 2023-01-19 주식회사 루미디아 Transparent glass display substrate manufacturiing method and transparent glass display substrate manufactured therefrom
KR102497891B1 (en) * 2022-09-29 2023-02-09 주식회사 루미디아 Transparent glass display substrate manufacturing method and transparent glass display substrate manufactured therefrom

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230024A (en) * 1988-06-25 1990-01-31 Gunze Ltd Transparent touch panel
JP2003136625A (en) * 2001-08-24 2003-05-14 Sony Corp Film for display, touch panel and method for manufacturing them

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154647A (en) 1990-10-16 1992-05-27 Asahi Glass Co Ltd Transparent electrically conductive laminate
JPH07242442A (en) 1994-03-01 1995-09-19 Nippon Soda Co Ltd Glass with transparent conductive film and production of transparent conductive film
JP3590530B2 (en) * 1998-09-10 2004-11-17 グンゼ株式会社 Touch panel
JP2000238178A (en) * 1999-02-24 2000-09-05 Teijin Ltd Transparent conductive laminate
JP3626624B2 (en) 1999-04-19 2005-03-09 帝人株式会社 Transparent conductive laminate and transparent tablet
JP2001324707A (en) 2000-05-15 2001-11-22 Gunze Ltd Touch panel for liquid crystal display
KR100810484B1 (en) 2000-07-07 2008-03-07 후지필름 가부시키가이샤 Phase difference plate constituted of one sheet of polymer film
US20020086188A1 (en) * 2000-10-12 2002-07-04 Eugene Halsey Reduced contrast improved transmission conductively coated transparent substrate
WO2003001539A1 (en) * 2001-06-21 2003-01-03 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
JP4217862B2 (en) * 2001-06-27 2009-02-04 日本ゼオン株式会社 Laminated body and light reflecting sheet
JP2003173238A (en) 2001-12-05 2003-06-20 Sharp Corp Touch sensor and display device with touch sensor
CN101544075B (en) * 2001-09-03 2012-12-05 帝人株式会社 Transparent conductive laminate, and transparent touch panel using the same
JP3922109B2 (en) 2001-10-17 2007-05-30 東洋紡績株式会社 Method for producing transparent conductive film roll
JP4517218B2 (en) 2002-05-31 2010-08-04 グンゼ株式会社 Touch panel
US20040071889A1 (en) * 2002-08-07 2004-04-15 Hoya Corporation Method of producing an antireflection-coated substrate
JP3859569B2 (en) 2002-09-24 2006-12-20 グンゼ株式会社 Transparent conductive film
JP2004152727A (en) 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
US8068186B2 (en) * 2003-10-15 2011-11-29 3M Innovative Properties Company Patterned conductor touch screen having improved optics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230024A (en) * 1988-06-25 1990-01-31 Gunze Ltd Transparent touch panel
JP2003136625A (en) * 2001-08-24 2003-05-14 Sony Corp Film for display, touch panel and method for manufacturing them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892609A4 *

Cited By (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161190B1 (en) * 2007-01-18 2012-07-02 닛토덴코 가부시키가이샤 Transparent conductive film, method for fabricating the same and touch panel with it
US8467005B2 (en) 2007-01-18 2013-06-18 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
EP2312426A3 (en) * 2007-01-18 2012-10-31 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
EP2312423A3 (en) * 2007-01-18 2012-10-31 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
JP2011136562A (en) * 2007-01-18 2011-07-14 Nitto Denko Corp Transparent conductive film and touch panel
TWI449627B (en) * 2007-01-18 2014-08-21 Nitto Denko Corp A transparent conductive film, a method for manufacturing the same, and a touch panel provided with the same
TWI449626B (en) * 2007-01-18 2014-08-21 Nitto Denko Corp Transparent conductive film and its touch panel
TWI448386B (en) * 2007-01-18 2014-08-11 Nitto Denko Corp A transparent conductive film, a method for manufacturing the same, and a touch panel provided with the same
JP2011142089A (en) * 2007-01-18 2011-07-21 Nitto Denko Corp Transparent conductive film, its manufacturing method, and touch panel
EP1947551A3 (en) * 2007-01-18 2012-10-17 Nitto Denko Corporation Transparent conductive film , method for production thereof and touch panel therewith
US8467006B2 (en) 2007-01-18 2013-06-18 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
KR101161191B1 (en) * 2007-01-18 2012-07-02 닛토덴코 가부시키가이샤 Transparent conductive film, method for fabricating the same and touch panel with it
US8462278B2 (en) 2007-01-18 2013-06-11 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
CN102184065A (en) * 2007-01-18 2011-09-14 日东电工株式会社 Transparent conductive film, method for fabricating the same and touch panel with it
CN102184754A (en) * 2007-01-18 2011-09-14 日东电工株式会社 Transparent conductive film and touch panel therewith
EP2312425A3 (en) * 2007-01-18 2012-10-31 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
JP2009076432A (en) * 2007-01-18 2009-04-09 Nitto Denko Corp Transparent conductive film, method for production thereof and touch panel therewith
KR101075575B1 (en) * 2007-01-18 2011-10-21 닛토덴코 가부시키가이샤 Transparent conductive film, method for fabricating the same and touch panel with it
KR101161192B1 (en) * 2007-01-18 2012-07-02 닛토덴코 가부시키가이샤 Transparent conductive film, method for fabricating the same and touch panel with it
JP2011116128A (en) * 2007-01-18 2011-06-16 Nitto Denko Corp Method for manufacturing transparent conductive film
JP2008243622A (en) * 2007-03-27 2008-10-09 Gunze Ltd Transparent planar body and transparent touch switch
JP2009050868A (en) * 2007-08-24 2009-03-12 Gunze Ltd Substrate manufacturing method, and capacitance type touch panel using substrate
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
JP2011170899A (en) * 2007-10-23 2011-09-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Touch panel
JP2009104576A (en) * 2007-10-23 2009-05-14 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Touch panel
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
JP2009146419A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
JP2009151779A (en) * 2007-12-21 2009-07-09 Qinghua Univ Touch panel and display using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
JP2009157923A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009157925A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009157927A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
JP2009205321A (en) * 2008-02-27 2009-09-10 Hitachi Displays Ltd Display panel
JP2011516960A (en) * 2008-04-04 2011-05-26 メルファス インコーポレイテッド Contact detection device with improved edge position recognition characteristics
JP2014032707A (en) * 2008-04-30 2014-02-20 Toppoly Optoelectronics Corp Display device
US10042451B2 (en) 2008-04-30 2018-08-07 Innolux Corporation Touch display device comprising sense electrode with sub-electrodes extending along a first direction defining a pitch between sub-electrodes
JP2010009439A (en) * 2008-06-30 2010-01-14 Hitachi Displays Ltd Display apparatus with touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
JP2010015575A (en) * 2008-07-04 2010-01-21 Qinghua Univ Liquid crystal display panel using touch panel
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8237680B2 (en) 2008-07-04 2012-08-07 Tsinghua University Touch panel
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8279201B2 (en) 2008-07-11 2012-10-02 Samsung Display Co., Ltd. Touch screen panel and method of fabricating the same
JP2010020749A (en) * 2008-07-11 2010-01-28 Samsung Mobile Display Co Ltd Touch screen panel and method of fabricating the same
US8673429B2 (en) * 2008-07-16 2014-03-18 Nitto Denko Corporation Transparent conductive film, transparent conductive laminate, touch panel, and method for producing transparent conductive film
US8530041B2 (en) * 2008-07-16 2013-09-10 Nitto Denko Corporation Transparent conductive film and touch panel
US20100015417A1 (en) * 2008-07-16 2010-01-21 Nitto Denko Corporation Transparent conductive film and touch panel
US20100013784A1 (en) * 2008-07-16 2010-01-21 Nitto Denko Corporation Transparent conductive film, transparent conductive laminate, touch panel, and method for producing transparent conductive film
US9910545B2 (en) 2008-07-18 2018-03-06 Nitto Denko Corporation Transparent conductive film and touch panel
JP2010027391A (en) * 2008-07-18 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel
KR101329638B1 (en) * 2008-07-31 2013-11-14 군제 가부시키가이샤 Planar element, and touch switch
US8717332B2 (en) 2008-07-31 2014-05-06 Gunze Limited Planar element, and touch switch
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2010061425A (en) * 2008-09-04 2010-03-18 Hitachi Displays Ltd Touch panel and display device using the same
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
JP2010076232A (en) * 2008-09-25 2010-04-08 Gunze Ltd Transparent planar body and transparent touch switch
JP2010086684A (en) * 2008-09-30 2010-04-15 Kuramoto Seisakusho Co Ltd Optical thin film with transparent conductive wiring film
JP2010086498A (en) * 2008-10-03 2010-04-15 Hitachi Displays Ltd Display device
JP2010113498A (en) * 2008-11-06 2010-05-20 Hitachi Displays Ltd Display device
JP2012508937A (en) * 2008-11-15 2012-04-12 アトメル・コーポレイション Touch screen sensor
JP2010153210A (en) * 2008-12-25 2010-07-08 Nissha Printing Co Ltd Conductive nanofiber sheet and its manufacturing method
JP2010165460A (en) * 2009-01-13 2010-07-29 Nissha Printing Co Ltd Conductive nanofiber sheet and method of manufacturing the same
JP2010165336A (en) * 2009-01-16 2010-07-29 Samsung Mobile Display Co Ltd Touch screen panel and method for manufacturing the same
US8847893B2 (en) 2009-01-16 2014-09-30 Samsung Display Co., Ltd. Touch screen panel and method of fabricating the same
JP2010192186A (en) * 2009-02-17 2010-09-02 Toray Ind Inc Transparent conductive laminate
US8550991B2 (en) 2009-03-04 2013-10-08 Dong Sik Nam Touch panel sensor
JP2010208169A (en) * 2009-03-11 2010-09-24 Gunze Ltd Transparent planar article and transparent touch switch
JP2010250424A (en) * 2009-04-13 2010-11-04 Polymatech Co Ltd Touch pad and touch panel
JP2010262529A (en) * 2009-05-08 2010-11-18 Gunze Ltd Planar element and touch switch
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
WO2011001561A1 (en) * 2009-06-30 2011-01-06 シャープ株式会社 Touch panel device and method for producing same, display device and method for producing same
JP2011048827A (en) * 2009-08-26 2011-03-10 Chi Mei Electronics Corp Touch panel and method of locating touch point of the same
JP4640535B1 (en) * 2009-10-19 2011-03-02 東洋紡績株式会社 Transparent conductive film and touch panel using the same
JP4844692B2 (en) * 2009-10-19 2011-12-28 東洋紡績株式会社 Transparent conductive laminated film
WO2011048647A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent film, and touch panel comprising same
WO2011048648A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent laminate film
TWI397926B (en) * 2009-10-20 2013-06-01 Toyo Boseki Transparent electrically conductive film and touch panel using the same
WO2011065032A1 (en) * 2009-11-27 2011-06-03 凸版印刷株式会社 Transparent conductive laminate, method for producing same, and electrostatic capacitance type touch panel
JP4683164B1 (en) * 2009-11-27 2011-05-11 凸版印刷株式会社 Transparent conductive laminate, method for producing the same, and capacitive touch panel
JP2011134482A (en) * 2009-12-22 2011-07-07 Nof Corp Transparent conductive film
JP2011194679A (en) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd Transparent and conductive laminate, method for manufacturing same, and touch panel
WO2011148429A1 (en) * 2010-05-28 2011-12-01 信越ポリマー株式会社 Transparent conductive film and conductive substrate using the same
US8269108B2 (en) 2010-05-28 2012-09-18 Shin Etsu Polymer Co., Ltd. Transparent conductive film and conductive substrate using the same
JP4882027B2 (en) * 2010-05-28 2012-02-22 信越ポリマー株式会社 Transparent conductive film and conductive substrate using the same
US8664533B2 (en) 2010-07-05 2014-03-04 Dic Corporation Substrate having transparent conductive layer, method for producing same, transparent conductive film laminate for touch panel, and touch panel
WO2012005205A1 (en) 2010-07-05 2012-01-12 Dic株式会社 Substrate with a transparent conductive layer, manufacturing method for said substrate, transparent conductive film laminate for use in a touch panel, and touch panel
JP2012027894A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Electrostatic capacitance system touch panel
JP2012074220A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Transparent conductive film, pointing device and production method of transparent conductive film
WO2012057409A1 (en) * 2010-10-26 2012-05-03 Samwon St Touch panel sensor
JP2012093985A (en) * 2010-10-27 2012-05-17 Nitto Denko Corp Display panel device with touch input function, optical unit for display panel device and manufacturing method thereof
US9223165B2 (en) 2010-10-27 2015-12-29 Nitto Denko Corporation Display panel device with touch input function, optical unit for said display panel device, and production method for same
KR20150002875A (en) 2010-10-27 2015-01-07 닛토덴코 가부시키가이샤 Display panel device with touch input function, optical unit for said display panel device, and production method for same
WO2012057244A1 (en) 2010-10-27 2012-05-03 日東電工株式会社 Display panel device with touch input function, optical unit for said display panel device, and production method for same
EP2450909A1 (en) 2010-11-04 2012-05-09 Sony Corporation Conductive ink, method of preparing the same, and method of preparing transparent conductive film
US9513747B2 (en) 2010-11-04 2016-12-06 Nitto Denko Corporation Transparent conductive film and touch panel
KR20150005653A (en) 2010-11-30 2015-01-14 닛토덴코 가부시키가이샤 Capacitive touch sensor laminate for display panel device
US9207482B2 (en) 2010-11-30 2015-12-08 Nitto Denko Corporation Capacitive touch sensor laminate for display panel device
JPWO2012073990A1 (en) * 2010-11-30 2014-05-19 日東電工株式会社 Capacitive touch sensor laminate for display panel device
KR20150002877A (en) 2010-11-30 2015-01-07 닛토덴코 가부시키가이샤 Capacitive touch sensor laminate for display panel device
US9116380B2 (en) 2010-11-30 2015-08-25 Nitto Denko Corporation Display panel device having touch input function
WO2012073964A1 (en) 2010-11-30 2012-06-07 日東電工株式会社 Display panel device having touch-input function
KR20140139126A (en) 2010-11-30 2014-12-04 닛토덴코 가부시키가이샤 Display panel device having touch input function
WO2012073990A1 (en) 2010-11-30 2012-06-07 日東電工株式会社 Capacitive touch sensor laminate for display panel device
WO2012074059A1 (en) * 2010-12-02 2012-06-07 日東電工株式会社 Transparent conductive film and touch panel
US9392685B2 (en) 2010-12-02 2016-07-12 Nitto Denko Corporation Transparent conductive film and touch panel
JP2011054208A (en) * 2010-12-03 2011-03-17 Dainippon Printing Co Ltd Touch panel sensor, laminated body for manufacturing the same and production method for the same
JP2012118936A (en) * 2010-12-03 2012-06-21 Dainippon Printing Co Ltd Touch panel sensor with transparent sheet
JP2012146211A (en) * 2011-01-13 2012-08-02 Dainippon Printing Co Ltd Touch panel sensor with transparent sheet
US9119305B2 (en) 2011-02-07 2015-08-25 Dexerials Corporation Transparent conductive element, input device, electronic device, and master for fabrication of transparent conductive element
JP4862969B1 (en) * 2011-02-07 2012-01-25 ソニー株式会社 Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master
US8741424B2 (en) 2011-02-07 2014-06-03 Dexerials Corporation Transparent conductive element, input device, electronic device, and master for fabrication of transparent conductive element
WO2012111519A1 (en) * 2011-02-15 2012-08-23 シャープ株式会社 Touch panel and display device provided with touch panel
JP2013178593A (en) * 2011-04-28 2013-09-09 Nissha Printing Co Ltd Mutual-capacitance type touch panel
JP2012243289A (en) * 2011-05-24 2012-12-10 Geomatec Co Ltd Electrode substrate for capacitance type input device and capacitance type input device
JP2016189224A (en) * 2011-06-30 2016-11-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Touch screen panel
US9791964B2 (en) 2011-06-30 2017-10-17 Samsung Display Co., Ltd. Touch screen panel
US10599253B2 (en) 2011-06-30 2020-03-24 Samsung Dosplay Co., Ltd. Touch screen panel
JP2011258578A (en) * 2011-09-12 2011-12-22 Shin Etsu Polymer Co Ltd Transparent conductive film and conductive substrate using the same
KR20190020162A (en) * 2011-11-04 2019-02-27 캄브리오스 필름 솔루션스 코포레이션 Methods for reducing diffuse reflection of nanostructure-based transparent conductive films and touch panels made of the same
JP2015504546A (en) * 2011-11-04 2015-02-12 カンブリオス テクノロジーズ コーポレイション Method for reducing diffuse reflection of transparent conductive film based on nanostructure, and touch panel made by the same method
KR20140090244A (en) * 2011-11-04 2014-07-16 캄브리오스 테크놀로지즈 코포레이션 Methods for reducing diffuse reflection of nanostructure-based transparent conductive films and touch panels made of the same
KR101958887B1 (en) * 2011-11-04 2019-03-15 캄브리오스 필름 솔루션스 코포레이션 Methods for reducing diffuse reflection of nanostructure-based transparent conductive films and touch panels made of the same
KR102044449B1 (en) * 2011-11-04 2019-12-02 캄브리오스 필름 솔루션스 코포레이션 Methods for reducing diffuse reflection of nanostructure-based transparent conductive films and touch panels made of the same
JP2013180556A (en) * 2012-03-05 2013-09-12 Lintec Corp Transparent electroconductive film and method for manufacturing the same
KR20130101462A (en) * 2012-03-05 2013-09-13 린텍 코포레이션 Transparent conductive film and method of producing the same
KR102035168B1 (en) 2012-03-05 2019-11-08 린텍 코포레이션 Transparent conductive film and method of producing the same
US10281616B2 (en) 2012-03-30 2019-05-07 Applied Materials, Inc. Transparent body for use in a touch panel having structured transparent conductive film directly between first and second transparent layer stacks, method of making, and apparatus for making
JP2015518596A (en) * 2012-03-30 2015-07-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Transparent body used in touch screen panel manufacturing method and system
JP2015518518A (en) * 2012-03-30 2015-07-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Transparent body used in touch panel and manufacturing method and apparatus thereof
JP2012178193A (en) * 2012-06-22 2012-09-13 Japan Display East Co Ltd Display device
WO2014007050A1 (en) * 2012-07-03 2014-01-09 富士フイルム株式会社 Transparent layered body, electrostatic capacitance input device, and image display device
JP2014010814A (en) * 2012-07-03 2014-01-20 Fujifilm Corp Transparent laminate, capacitance type input device and image display device
US9632639B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
US9632640B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
CN104412207A (en) * 2012-09-11 2015-03-11 富士胶片株式会社 Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device provided with same
JP2014056311A (en) * 2012-09-11 2014-03-27 Fujifilm Corp Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device provided with the same
CN104412207B (en) * 2012-09-11 2018-04-10 富士胶片株式会社 Transfer materials, capacitive input device and its manufacture method and the image display device for possessing these
US9710117B2 (en) 2012-09-11 2017-07-18 Fujifilm Corporation Transfer material, manufacturing method of electrostatic capacitance type input device, electrostatic capacitance type input device, and image display device including the same
WO2014041880A1 (en) * 2012-09-11 2014-03-20 富士フイルム株式会社 Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device provided with same
KR20150095770A (en) * 2012-12-07 2015-08-21 캄브리오스 테크놀로지즈 코포레이션 Conductive films having low-visibility patterns and methods of producing the same
KR102097998B1 (en) * 2012-12-07 2020-04-08 캄브리오스 필름 솔루션스 코포레이션 Conductive films having low-visibility patterns and methods of producing the same
JP2014235684A (en) * 2013-06-05 2014-12-15 グンゼ株式会社 Transparent planar body and transparent touch panel
JP2013235600A (en) * 2013-07-08 2013-11-21 Japan Display Inc Capacitive type touch panel
JP2014017010A (en) * 2013-09-19 2014-01-30 Japan Display Inc Display device
US10031631B2 (en) 2014-02-19 2018-07-24 Fujifilm Corporation Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device
JPWO2015125853A1 (en) * 2014-02-19 2017-03-30 富士フイルム株式会社 Transfer film, transfer film manufacturing method, transparent laminate, transparent laminate manufacturing method, capacitive input device, and image display device
WO2015125853A1 (en) * 2014-02-19 2015-08-27 富士フイルム株式会社 Transfer film, method for manufacturing transfer film, transparent laminate, method for manufacturing transparent laminate, capacitance-type input device, and image display device
US10186346B2 (en) 2014-04-30 2019-01-22 Nitto Denko Corporation Transparent conductive film
WO2015166724A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Transparent electroconductive film
JP2015015032A (en) * 2014-08-13 2015-01-22 日東電工株式会社 Transparent conductive film and touch panel
JP2016153963A (en) * 2015-02-20 2016-08-25 大日本印刷株式会社 Touch panel
US9971433B2 (en) 2015-03-20 2018-05-15 Fujifilm Corporation Touch panel member, touch panel, and touch panel display device
JP2016177556A (en) * 2015-03-20 2016-10-06 富士フイルム株式会社 Touch panel member, touch panel, and touch panel display device
CN104966551A (en) * 2015-05-30 2015-10-07 汕头万顺包装材料股份有限公司 ITO conductive film with copper-plated surface
JPWO2019077891A1 (en) * 2017-10-16 2020-12-03 富士フイルム株式会社 Transfer material, touch sensor and its manufacturing method, and image display device
JP2022142384A (en) * 2021-03-16 2022-09-30 Nissha株式会社 capacitive touch panel
JP7282117B2 (en) 2021-03-16 2023-05-26 Nissha株式会社 capacitive touch panel

Also Published As

Publication number Publication date
US20080138589A1 (en) 2008-06-12
EP1892609A1 (en) 2008-02-27
JP4055019B2 (en) 2008-03-05
EP1892609A4 (en) 2013-03-27
TWI333218B (en) 2010-11-11
KR101196342B1 (en) 2012-11-01
TW200705247A (en) 2007-02-01
KR20080010384A (en) 2008-01-30
JPWO2006126604A1 (en) 2008-12-25
KR20110127284A (en) 2011-11-24
JP2008098169A (en) 2008-04-24
US8603611B2 (en) 2013-12-10
KR101192391B1 (en) 2012-10-17
JP5078534B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4055019B2 (en) Transparent sheet and transparent touch switch
JP4874145B2 (en) Transparent sheet and transparent touch switch
CN100552606C (en) Transparent planar body and transparent touch switch
JP5131628B1 (en) Transparent sheet and transparent touch switch
US10481743B2 (en) High-performance touch sensor and manufacturing method thereof
JP5512624B2 (en) Capacitive touch sensor and display device having the same
KR101879220B1 (en) Transparent electrode pattern structure and touch screen panel having the same
TW201523386A (en) Composite polarizing plate-integrated touch sensing electrode and touch screen panel including the same
JP2006011523A (en) Touch panel sensor
KR101865685B1 (en) Transparent electrode pattern structure and touch screen panel having the same
WO2005098585A1 (en) Transparent touch switch
JP2010208169A (en) Transparent planar article and transparent touch switch
KR102047504B1 (en) Touch Sensor and Display Device Including the Same
KR20150058028A (en) Hibride touch sensing electrode and touch screen panel comprising the same
JP5305807B2 (en) Transparent sheet and transparent touch switch
KR102077548B1 (en) Transparent electrode pattern structure and touch screen panel having the same
US20190278399A1 (en) Input sensor and display device including the same
JP2015035173A (en) Display device with input function
KR101942294B1 (en) Touch screen panel and image display comprising the same
JP6127251B2 (en) Touch panel
JP2016194746A (en) Intermediate member for touch panel sensor, and manufacturing method of touch panel sensor
TWI606382B (en) Touch screen panel
US20140353020A1 (en) Touch panel
JP2014134924A (en) Touch panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007517871

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018336

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680004693.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11795009

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006746812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020117025372

Country of ref document: KR