WO2006121100A1 - メタクリル酸製造用触媒の製造方法 - Google Patents

メタクリル酸製造用触媒の製造方法 Download PDF

Info

Publication number
WO2006121100A1
WO2006121100A1 PCT/JP2006/309452 JP2006309452W WO2006121100A1 WO 2006121100 A1 WO2006121100 A1 WO 2006121100A1 JP 2006309452 W JP2006309452 W JP 2006309452W WO 2006121100 A1 WO2006121100 A1 WO 2006121100A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
producing
antimony
methacrylic acid
slurry
Prior art date
Application number
PCT/JP2006/309452
Other languages
English (en)
French (fr)
Inventor
Atsushi Sudo
Tatsuhiko Kurakami
Toshitake Kojima
Shigeo Hayashimoto
Yasushi Kobayashi
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to KR1020077025709A priority Critical patent/KR101223589B1/ko
Priority to BRPI0609231-4A priority patent/BRPI0609231A2/pt
Priority to US11/919,911 priority patent/US8017547B2/en
Priority to EP06746261A priority patent/EP1880761A4/en
Priority to CA002608130A priority patent/CA2608130A1/en
Publication of WO2006121100A1 publication Critical patent/WO2006121100A1/ja
Priority to US13/155,863 priority patent/US8148291B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention uses a heteropolyacid catalyst having high activity, high selectivity, and sufficient mechanical strength to convert methacroleic acid, isobutyraldehyde or isobutyric acid into gas phase catalytic acid.
  • the present invention relates to a method for producing a catalyst for production.
  • catalysts have been proposed as a catalyst used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid. Most of these catalysts are mainly composed of molybdenum and phosphorus, and have a structure of heteropolyacid and Z or a salt thereof. Heteropolyacid catalysts have problems such as poor moldability and low mechanical strength of the molded catalyst.
  • Patent Document 1 proposes a method of mixing and molding heat-resistant fibers such as ceramic fibers as a strength improver.
  • Patent Document 2 proposes a method in which an oxide precursor and an oxide are mixed and molded in a catalyst containing molybdenum and phosphorus as essential components.
  • Patent Document 1 Japanese Patent Publication No. 2-36296
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-351297
  • the mechanical strength is not sufficient as an industrial catalyst, and the yield during production is poor due to the poor moldability. There is a problem that the manufacturing cost is increased. Further, if the mechanical strength is weak, the active component may be peeled off when the catalyst is filled in the reaction tube, and the required performance may not be obtained, so further improvement is required. ing. [0005] Further, the performance of the currently proposed catalyst for producing methacrylic acid is known as a reaction similar to the gas phase catalytic acid-catalyzed reaction of methacrolein, isobutyraldehyde or isobutyric acid.
  • a method for producing a catalyst for methacrylic acid production characterized in that the mixture obtained by drying and then calcining a mixture obtained by mixing the dry powder obtained in the above and a compound containing antimony, and molding the mixture,
  • a method for producing a catalyst for methacrylic acid production characterized by calcining the obtained dry powder and molding a mixture obtained by mixing the calcined powder and a compound containing antimony, (4) The method for producing a catalyst according to any one of (1) to (3) above, wherein the calcination temperature is 200 to 450 ° C,
  • Process power for molding powder after firing One of the above (1) to (4), characterized in that it is a process of coating on an inert carrier using S binder to form a coated catalyst.
  • a method for producing the catalyst described in item 1 is a method for producing the catalyst described in item 1,
  • a catalyst having high activity, high selectivity, high mechanical strength comprising molybdenum, phosphorus, vanadium, cesium, ammonia, copper, and antimony as essential components.
  • the production method of the present invention comprises an aqueous solution containing a compound containing an active component of a catalyst (molybdenum, phosphorus, vanadium, cesium, ammonia, copper and antimony; hereinafter referred to as essential components); It includes a step of preparing an aqueous dispersion (hereinafter referred to as “slurry together”), baking the dried powder obtained (hereinafter referred to as “pre-baking”), and then molding. It becomes. It should be noted that a firing step (main firing) may be provided after the molding step.
  • the compound containing an active ingredient in preparing the slurry is
  • a metal element other than essential components may be further contained as an active component.
  • Metal elements other than essential components include arsenic, silver, manganese, zinc, aluminum Group power consisting of nickel, cerium, thorium, potassium, rubidium, etc., and one or more selected from the group consisting of nickel, cerium, chromium, rhenium, bismuth, tungsten, iron, conoleto .
  • the active ingredient-containing compound is used in an atomic ratio such that vanadium is usually 0.1 or more and 6 or less, preferably 0.3 or more and 2.0 or less, with respect to molybdenum 10.
  • Lin is usually 0.5 or more and 6 or less, preferably 0.7 or more and 2.0 or less
  • cesium is usually 0.01 or more and 4.0 or less, preferably 0.1 or more and 2.0 or less
  • ammonia (Usually contained as an ammonium group) is usually 0.1 or more and 10.0 or less, preferably 0.5 or more and 5.0 or less
  • antimony is usually 0.01 or more and 5 or less, preferably 0. 05 or more and 2.0 or less.
  • the types of other active ingredients to be used and the use ratio thereof are appropriately determined according to the use conditions of the catalyst so that a catalyst exhibiting optimum performance can be obtained.
  • the atomic ratio (composition) of the catalyst described in the present invention is the value at the raw material charging stage, excluding oxygen.
  • examples of the active ingredient-containing compound used for catalyst preparation include chlorides, sulfates, nitrates, oxides or acetates of active ingredient elements.
  • Specific examples of preferred compounds include nitrates such as potassium nitrate and cobalt nitrate, molybdenum oxides, vanadium pentoxide, antimony trioxide, cerium oxide, zinc oxide, and acid oxides such as germanium oxide, orthophosphoric acid, Examples thereof include acids (or salts thereof) such as phosphoric acid, boric acid, aluminum phosphate or 12 tandulinic acid.
  • cesium acetate or cesium hydroxide and cesium weak acid salt as the cesium compound
  • ammonium acetate or ammonium hydroxide as the ammonium compound
  • copper acetate cuprous acetate, cupric acetate, basic copper acetate or cupric oxide, preferably cupric acetate
  • copper oxide cuprous oxide, cupric oxide
  • active ingredient-containing compounds may be used alone or in combination of two or more. The slurry can be obtained by uniformly mixing each active ingredient-containing compound and water.
  • the order of addition of the active ingredient-containing compound when preparing the slurry is that the compound containing molybdenum, vanadium, phosphorus and, if necessary, other metal elements is sufficiently dissolved, and then the cesium-containing compound and the ammonia-containing compound are contained. It is preferable to add a compound and a copper-containing compound.
  • an antimony-containing compound when adding an antimony-containing compound during slurry preparation, it is preferably added last among the essential active ingredient-containing compounds, but more preferably after obtaining a slurry containing an active ingredient other than the antimony-containing compound.
  • the powder is then dried and mixed with the antimony-containing compound and then fired, or the powder is fired and then the antimony-containing compound is mixed.
  • the slurry is preferably heated to a temperature at which the compound containing molybdenum, phosphorus, vanadium, and, if necessary, other metal elements can be sufficiently dissolved.
  • the temperature at which the cesium-containing compound and the ammonia-containing compound are added is usually 0 to 35 ° C, preferably 10 to 30 ° C. Therefore, it is preferable to cool to 10 to 30 ° C.
  • the amount of water used in the slurry is not particularly limited as long as it is capable of completely dissolving the total amount of the compound to be used or can be mixed uniformly. It is. Usually, it is about 200 to 2000 parts by mass with respect to 100 parts by mass of the total mass of the compound for slurry preparation. The amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there are many disadvantages such as the case where it cannot be completely dried.
  • the slurry obtained above is dried to obtain a dry powder.
  • the drying method is not particularly limited as long as the slurry can be completely dried. Examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present invention, spray drying is particularly preferable because the slurry state force can be dried into powders or granules in a short time.
  • the drying temperature of spray drying varies depending on the slurry concentration, liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Moreover, it is preferable to dry so that the average particle diameter of the dried slurry obtained at this time becomes 30 to 700 ⁇ m.
  • Pre-baking Preliminary firing of the obtained dry powder significantly improves the moldability, the shape of the molded catalyst, and the mechanical strength.
  • the preliminary firing atmosphere may be an air stream or an inert gas stream such as nitrogen, but industrially, an air stream is preferred.
  • the pre-baking temperature is 200 to 400 ° C, preferably 250 to 380 ° C, more preferably 290 to 310 ° C. Even if pre-calcined at a temperature lower than 200 ° C, the effect on moldability tends to be reduced, and if it exceeds 400 ° C, the catalyst performance may be adversely affected.
  • the pre-baking time is preferably 3 to 12 hours, more preferably 5 to LO time. Although it can be fired for more than 12 hours, it is difficult to obtain the appropriate effect.
  • the present inventors generally do not use the heteropolyacid partially neutralized salt such as the catalyst in the case where the slurry is only dried. This structure is called a Keggin-type structure when heated, and I believe that this transition may lead to improved moldability.
  • the obtained pre-fired granule is molded as follows, but it is preferable to mix molding aids such as silica gel, diatomaceous earth, alumina powder and the like to improve workability.
  • molding adjuvant is 1-30 mass parts normally with respect to 100 mass parts of prebaked granule.
  • inorganic fibers such as ceramic fibers and whiskers that are inert to the catalyst component as necessary.
  • fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred.
  • the amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the pre-fired granules.
  • the pre-fired granule obtained as described above or a mixture obtained by mixing this with a molding aid and a strength-improving material has a columnar shape, a tablet, a ring shape in order to reduce the pressure loss of the reaction gas. It is molded into a spherical shape and used. Among these, it is particularly preferable to coat the inert carrier with pre-calcined granules or a mixture to obtain a coated catalyst since improvement in selectivity and removal of reaction heat can be expected.
  • the rolling step is preferably the rolling granulation method described below.
  • a disk is rotated at high speed in an apparatus having a flat or uneven disk at the bottom in a fixed container.
  • the carrier in the container is vigorously agitated by repeated rotation and revolution, and the binder and the pre-fired granule or mixture are added thereto to coat the carrier with the pre-fired granule or mixture. .
  • the binder can be added by 1) pre-mixing the pre-baked granules or mixture 2) adding the pre-baked granules or mixture to the fixed container at the same time, 3) placing the pre-baked granules or mixture in the fixed container 4) Add before adding the pre-baked granule or mixture into the fixed container, 5) Divide the pre-baked granule or mixture and the binder, respectively, and combine 2) to 4) as appropriate.
  • a method of adding the whole amount can be arbitrarily adopted.
  • the pre-fired granule or mixture is added to the fixed container wall, and the pre-fired granule or mixture is not agglomerated and added using an auto feeder or the like so that a predetermined amount is supported on the carrier. I prefer to adjust the speed.
  • the binder is not particularly limited as long as it is at least one liquid selected from the group consisting of water and Z or an organic compound having a boiling point of 150 ° C or less at 1 atm. However, drying after coating is not limited. In view of the above, an organic compound having a boiling point of 150 ° C. or lower is preferable.
  • Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, ethyl acetate or butyl acetate.
  • binders examples thereof include ketones such as esters, acetone or methyl ethyl ketone, and aqueous solutions thereof. Ethanol is particularly preferable.
  • ethanol Z water 10 ZO to OZlO (mass ratio), preferably 10ZO to lZ9 (mass ratio) is preferable.
  • the amount of these binders used is usually 10 to 60 parts by mass, preferably 15 to 40 parts by mass with respect to 100 parts by mass of the dry powder.
  • the force to coat the pre-baked granules or the mixture on the carrier in this way is usually about 3 to 15 mm in diameter.
  • the coated catalyst obtained as described above can be directly used as a catalyst for a gas phase catalytic acid-oxidation reaction.
  • catalyst activity may be improved, which is preferable.
  • the firing temperature is usually 100 to 450 ° C, preferably 270 to 420 ° C, and the firing time is 1 to 20 hours.
  • the firing is usually performed in an air atmosphere, it may be performed in an inert gas atmosphere such as nitrogen, or after the firing in an inert gas atmosphere, if necessary, the air atmosphere may be further increased. Bake under the air.
  • the catalyst obtained as described above (hereinafter referred to as the catalyst of the present invention) is used for the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid.
  • molecular oxygen or a molecular oxygen-containing gas is used for the gas phase catalytic oxidation reaction.
  • the molar ratio of molecular oxygen to methacrolein is preferably in the range of 0.5 to 20, particularly preferably in the range of 1 to LO.
  • water is preferably added to the raw material gas in a molar ratio of 1 to 20 with respect to methacrolein.
  • the raw material gas may contain oxygen and, if necessary, water (usually included as water vapor), a gas inert to the reaction such as nitrogen, carbon dioxide, saturated hydrocarbon, and the like.
  • a gas obtained by acidifying isobutylene, tertiary butanol and methyl tertiary butyl ether may be supplied as it is.
  • the reaction temperature in the gas phase catalytic oxidation reaction is usually 200 to 400 ° C, preferably 250 to 360.
  • C the supply amount of the raw material gas in the space velocity (SV), usually 100 ⁇ 6000hr _1, preferably 3 00 ⁇ 3000hr _1.
  • the catalytic acid-acid reaction can be performed under pressure or under reduced pressure, but generally a pressure around atmospheric pressure is suitable.
  • the obtained coated catalyst was charged into a cylindrical rotary machine having a radius of 14 cm and having a single baffle plate inside, and rotated at 23 rpm for 10 minutes. Thereafter, the peeled powder was removed by sieving, and the remaining amount was measured to be 49.82 g.
  • the percentage of the exfoliated powder was 0.36% of the total, and this value is expressed as the degree of wear and is shown in Table 1 together with the shape of the catalyst.
  • Example 1 except that the pre-baking temperature was 290 ° C., a catalyst was prepared in the same manner as in Example 1, and methacroleic acid reaction and strength measurement were performed. The results are shown in Table 1.
  • Example 1 except that the pre-baking temperature was set to 270 ° C., a catalyst was prepared in the same manner as in Example 1, and methacroleic acid reaction and strength measurement were performed. The results are shown in Table 1.
  • Example 1 except that the pre-baking temperature was 250 ° C., a catalyst was prepared in the same manner as in Example 1, and methacroleic acid reaction and strength measurement were performed. The results are shown in Table 1.
  • Example 1 except that the pre-baking temperature was 380 ° C., a catalyst was prepared in the same manner as in Example 1, and methacroleic acid reaction and strength measurement were performed. The results are shown in Table 1.
  • Example 2 320 g of the granule after the drying step and 22.7 g of antimony trioxide antimony were pre-baked.
  • a catalyst was prepared in the same manner as in Example 2 except that it was mixed before synthesis, and methacrolein oxidation reaction and strength measurement were performed. The results are shown in Table 1.
  • Example 2 the same method as in Example 2 except that the strength-improving material (ceramic fiber) added during coating molding was 10 g and the spherical porous alumina support (particle size 3.5 mm) was 335 g.
  • a catalyst was prepared and subjected to methacroleic acid reaction and strength measurement. The results are shown in Table 1.
  • Example 1 a catalyst was prepared in the same manner as in Example 1 except that pre-calcination was not performed, and methacrolein oxidation reaction and strength measurement were performed. The results are shown in Table 1.
  • 320g of granules were calcined at 290 ° C for 5 hours under air flow to obtain pre-calcined granules.
  • 45 g of a strength improving material (ceramic fiber) was uniformly mixed, and 300 g of a spherical porous alumina support (particle size: 3.5 mm) was coated and molded using a 90 mass% aqueous ethanol solution as a binder.
  • the obtained molded product was subjected to main calcination at 310 ° C. for 5 hours under air flow to obtain a target coated catalyst.
  • Comparative Example 2 the methacrolein oxidation reaction and the strength measurement were performed in the same manner as in Comparative Example 2 except that pre-baking was not enough. The results are shown in Table 1.
  • Example 2 From Example 2 and Example 6, it can be seen that the same effect can be obtained by adding antimony trioxide antimony before or after the preliminary calcination, and that the catalyst performance is almost equivalent. .
  • a catalyst that does not use some of the essential components in the catalyst of the present invention as an active component may improve the friability by pre-calcination, but the performance may be greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
メタクリル酸製造用触媒の製造方法
技術分野
[0001] 本発明は、高活性、高選択性、充分な機械的強度を有するヘテロポリ酸触媒を使 用してメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸ィ匕してメタク リル酸を製造するための触媒の製造方法に関する。
背景技術
[0002] メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸ィ匕してメタクリル酸 を製造するために使用される触媒としては数多くの触媒が提案されている。これら触 媒の大部分はモリブデン、リンを主成分とするもので、ヘテロポリ酸及び Z又はその 塩の構造を有するものである。ヘテロポリ酸系触媒は成形性が悪ぐまた成型された 触媒の機械的強度も弱 、と 、う問題点がある。
[0003] ヘテロポリ酸系触媒の機械的強度の改良に関する提案は、触媒の性能、例えばメタ クリル酸収率の向上などに関する提案に比べて非常に少な 、。特許文献 1には強度 向上剤としてたとえばセラミックファイバーなどの耐熱性繊維を混合し、成型する方法 が提案されている。
特許文献 2にはモリブデン、リンを必須成分とする触媒においてその酸化物前駆体と 酸化物を混合し、成型する方法が提案されている。
特許文献 1:特公平 2— 36296号公報
特許文献 2:特開 2004 - 351297号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、本発明者らの知見ではこれら提案されている手段をもってしても工業 用触媒として十分な機械強度とならず、またその成形性の悪さから製造時の歩留まり が悪ぐ製造コストが高くなつてしまうという問題点がある。また、機械的強度が弱いと 触媒を反応管に充填する際に、活性成分が剥離してしまうことがあり、必要とされる性 能が出なくなってしまう場合があるため、さらなる改良が求められている。 [0005] さらに現時点で提案されているメタクリル酸製造用触媒の性能は、メタクロレイン、ィ ソブチルアルデヒドまたはイソ酪酸の気相接触酸ィ匕反応と同様の反応として知られて
V、るァクロレインの酸ィ匕によるアクリル酸を製造するために提案されて 、るモリブデン バナジウム系触媒と比較すると、反応活性、 目的物質の選択性とも低ぐ寿命も短 いため、提案されている触媒は一部工業ィ匕されているものの、これら触媒性能の改 良も求められている。
課題を解決するための手段
[0006] モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必須 成分とするヘテロポリ酸部分中和塩において、その機械的強度を向上させ、かつ高
V、メタクリル酸収率を実現させるベく鋭意検討した結果、その前駆体スラリーまたは水 溶液を乾燥して得られる顆粒を成型前に焼成することで成形性が著しく向上し、工業 的に満足な機械強度を持つ触媒を製造できることを見出し、本発明を完成させる〖こ 至った。すなわち本発明は、
[0007] (1)モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必 須の活性成分とする触媒の製造方法であって、これら必須成分を含有する化合物と 水を混合したスラリーを乾燥し、次いで得られた乾燥粉末を焼成し、これを成型する ことを特徴とするメタクリル酸製造用触媒およびその製造方法、
(2)モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必 須の活性成分とする触媒の製造方法であって、アンチモンを除くこれら必須成分を 含有する化合物と水を混合したスラリーを乾燥し、次 、で得られた乾燥粉末とアンチ モンを含有する化合物を混合した混合物を焼成し、これを成型することを特徴とする メタクリル酸製造用触媒の製造方法、
(3)
モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必須の 活性成分とする触媒の製造方法であって、アンチモンを除くこれら必須成分を含有 する化合物と水を混合したスラリーを乾燥し、次いで得られた乾燥粉末を焼成し、こ の焼成粉末とアンチモンを含有する化合物を混合した混合物を成型することを特徴 とするメタクリル酸製造用触媒の製造方法、 (4)焼成温度が 200〜450°Cであることを特徴とする上記(1)〜(3)の 、ずれか 1項 に記載の触媒の製造方法、
(5)焼成後、粉末を成型する工程力 Sバインダーを使用して不活性担体にコーティン グし、被覆触媒とする工程であることを特徴とする上記(1)〜 (4)の ヽずれか 1項に記 載の触媒の製造方法、
(6)バインダーが水及び/または 1気圧下での沸点が 150°C以下の有機化合物から なる群から選ばれる少なくとも 1種の液体である上記(5)記載の触媒の製造方法、
(7)成型工程後、成型物を 100〜450°Cで焼成する上記(1)〜(6)の 、ずれか 1項 に記載の触媒の製造方法、及び
(8)上記(1)〜(7)のいずれか 1項に記載の触媒を使用した、メタクロレイン、やノブ チルアルデヒドまたはイソ酪酸を気相接触酸ィ匕することによるメタクリル酸の製造方法 である。
発明の効果
[0008] 本発明によれば、モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびァ ンチモンを必須成分とする高活性、高選択率かつ高 、機械的強度を有する触媒の 製造が可能である。
発明を実施するための最良の形態
[0009] 本発明の製造方法は、触媒の活性成分 (モリブデン、リン、バナジウム、セシウム、 アンモニア、銅及びアンチモン;以下必須成分と!/、う)を含有する化合物を含む水溶 液または該化合物の水分散体 (以下、両者をあわせてスラリーという)を調製し、これ を乾燥して得られた乾燥粉末を焼成 (以降、この工程を予備焼成と称する)し、次い で成型する工程を含んでなる。なお、成型工程の後に更に焼成工程 (本焼成)を設 けることちでさる。
[0010] また、本発明において、前記スラリーを調製する際の活性成分を含有する化合物は
、必ずしも全ての活性成分を含んでいる必要はなぐ一部の成分を前記予備焼成の 後に添加してもよい。
[0011] 本発明にお ヽて、必須成分以外の金属元素を活性成分として更に含有させること もできる。必須成分以外の金属元素としては、砒素、銀、マンガン、亜鉛、アルミ-ゥ ム、ホウ素、ゲルマニウム、錫、鉛、チタン、ジルコニウム、クロム、レニウム、ビスマス、 タングステン、鉄、コノ レト、ニッケル、セリウム、トリウム、カリウム、ルビジウム等からな る群力 選ばれる 1種以上が挙げられる。必須成分以外の金属元素の添加方法は、 成分の局所的濃度分布が生じない限り特に制限は無ぐ(a)スラリー調製時、(b)予 備焼成前、(c)予備焼成工程後の成型工程前のいずれでもよいが、(b)または (c)が 好ましい。
[0012] 本発明において、活性成分含有化合物の使用割合は、その原子比がモリブデン 1 0に対して、バナジウムが通常 0. 1以上で 6以下、好ましくは 0. 3以上で 2. 0以下、リ ンが通常 0. 5以上で 6以下、好ましくは 0. 7以上で 2. 0以下、セシウムが通常 0. 01 以上で 4. 0以下、好ましくは 0. 1以上で 2. 0以下、アンモニア(通常アンモ-ゥム基 として含有される)が通常 0. 1以上で 10. 0以下、好ましくは 0. 5以上で 5. 0以下、ァ ンチモンが通常 0. 01以上で 5以下、好ましくは 0. 05以上で 2.0以下である。必要に より用いるその他の活性成分の種類及びその使用割合は、その触媒の使用条件等 に合わせて、最適な性能を示す触媒が得られるように、適宜決定される。なお本発明 中に記載される触媒の原子比 (組成)は原料仕込み段階のものであり、酸素を除いた 値である。
[0013] 以降、上記の工程に従って実施形態を説明する。
スラリー調製
本発明において、触媒調製用に用いられる活性成分含有化合物は、該化合物とし ては活性成分元素の、塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる 。好ましい化合物をより具体的に例示すると硝酸カリウム又は硝酸コバルト等の硝酸 塩、酸化モリブデン、五酸化バナジウム、三酸化アンチモン、酸化セリウム、酸化亜鉛 又は酸ィ匕ゲルマニウム等の酸ィ匕物、正リン酸、リン酸、硼酸、リン酸アルミニウム又は 12タンダストリン酸等の酸 (又はその塩)等が挙げられる。また、セシウム化合物として 酢酸セシウム又は水酸ィ匕セシウム及びセシウム弱酸塩を、また、アンモ-ゥム化合物 として酢酸アンモ-ゥム又は水酸ィ匕アンモ-ゥムを使用するのが好ま U、。銅化合物 としては酢酸銅 (酢酸第一銅、酢酸第二銅、塩基性酢酸銅又は酸化第二銅等、好ま しくは酢酸第二銅)または酸化銅 (酸化第一銅、酸化第二銅)を使用すると好まし ヽ。 これら活性成分含有化合物は単独で使用してもよ ヽし、 2種以上を混合して使用して もよい。スラリーは、各活性成分含有ィ匕合物と水とを均一に混合して得ることができる 。スラリーを調製する際の活性成分含有化合物の添加順序は、モリブデン、バナジゥ ム、リン及び必要により他の金属元素を含有する化合物を充分に溶解し、その後セシ ゥム含有化合物、アンモ-ゥム含有化合物、銅含有化合物を添加するのが好ましい 。スラリー調製時にアンチモン含有化合物を添加する場合は、必須の活性成分含有 化合物のうち、最後に添加するのが好ましいが、より好ましくは、アンチモン含有化合 物以外の活性成分を含有するスラリーを得た後、乾燥し、この粉末とアンチモン含有 化合物を混合した後焼成するか、この粉末を焼成したのちアンチモン含有ィ匕合物を 混合する。スラリーを調製する際の温度は、モリブデン、リン、バナジウム、及び必要 により他の金属元素を含有する化合物を充分溶解できる温度まで加熱することが好 ましい。また、セシウム含有化合物、アンモ-ゥム含有ィ匕合物を添加する際の温度は 、通常 0〜35°C、好ましくは 10〜30°C程度の範囲であるほうが、得られる触媒が高 活性になる傾向があるため、 10〜30°Cまで冷却することが好ましい。スラリーにおけ る水の使用量は、用いる化合物の全量を完全に溶解できる力、または均一に混合で きる量であれば特に制限はないが、乾燥方法や乾燥条件等を勘案して適宜決定さ れる。通常スラリー調製用化合物の合計質量 100質量部に対して、 200〜2000質 量部程度である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコスト が高くなり、また完全に乾燥できない場合も生ずるなどデメリットが多い。
[0014] 乾燥
次いで上記で得られたスラリーを乾燥し、乾燥粉体とする。乾燥方法は、スラリーが 完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、 噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、スラリー状態 力も短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。
[0015] 噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが概ね乾燥機 の出口における温度が 70〜150°Cである。また、この際得られるスラリー乾燥体の平 均粒径が 30〜700 μ mとなるよう乾燥するのが好ましい。
[0016] 予備焼成 得られた乾燥粉体を予備焼成することで成形性、成型触媒の形状および機械的強 度が著しく向上する。予備焼成雰囲気は空気気流中でも窒素などの不活性ガス気流 中でもよいが、工業的には空気気流中が好ましい。予備焼成の温度は 200〜400°C であるが、好ましくは 250〜380°Cで、より好ましくは 290〜310°Cである。 200°Cより 低 、温度で予備焼成しても成形性への影響が少なくなる傾向があり、 400°Cを超え ると触媒性能に悪影響を及ぼすことがある。予備焼成時間は 3〜12時間の間が好ま しぐより好ましくは 5〜: LO時間である。 12時間以上焼成しても差し支えないが、それ に見合った効果は得られにくい。
[0017] 予備焼成により成形性が向上する理由は特定できないが、本発明者らは、一般に 該触媒のようなヘテロポリ酸部分中和塩はスラリーを乾燥しただけの場合はほとんど 力 Sドーソン型と呼ばれる構造をとつており、加熱によりケギン型と呼ばれる構造に転移 するため、この転移が成形性の改良につながっているのではないかと考えている。
[0018] 成型
次いで、得られた予備焼成顆粒を下記のようにして成型するが、シリカゲル、珪藻 土、アルミナ粉末等の成型助剤を混合して力も成型すると作業性がよくなり好ま 、。 成型助剤の使用量は、予備焼成顆粒 100質量部に対して通常 1〜30質量部である 。また、更に必要により触媒成分に対して不活性な、セラミックス繊維、ウイスカ一等 の無機繊維を強度向上材として用いる事は、触媒の機械的強度の向上に有用であ る。しかし、チタン酸カリウムゥイスカーや塩基性炭酸マグネシウムゥイスカーの様な 触媒成分と反応する繊維は好ましくない。これら繊維の使用量は、予備焼成顆粒 10 0質量部に対して通常 1〜30質量部である。
[0019] 前記のようにして得られた予備焼成顆粒または、これと成型助剤、強度向上材を混 合した混合物は、反応ガスの圧力損失を少なくするために、柱状物、錠剤、リング状 、球状等に成型し使用する。このうち選択性の向上や反応熱の除去が期待できること から不活性担体を予備焼成顆粒または混合物で被覆し、被覆触媒とするのが特に 好ましい。
[0020] 被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内 の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転す ることにより、容器内の担体を自転運動と公転運動の繰り返しにより激しく撹拌させ、 ここにバインダーと予備焼成顆粒または混合物を添加することにより予備焼成顆粒ま たは混合物を担体に被覆する方法である。バインダーの添加方法は、 1)予備焼成 顆粒または混合物に予め混合しておぐ 2)予備焼成顆粒または混合物を固定容器 内に添加するのと同時に添加、 3)予備焼成顆粒または混合物を固定容器内に添カロ した後に添加、 4)予備焼成顆粒または混合物を固定容器内に添加する前に添加、 5 )予備焼成顆粒または混合物とバインダーをそれぞれ分割し、 2)〜4)を適宜組み合 わせて全量添加する等の方法が任意に採用しうる。このうち 5)においては、例えば 予備焼成顆粒または混合物の固定容器壁への付着、予備焼成顆粒または混合物同 士の凝集がなく担体上に所定量が担持されるようオートフィーダ一等を用いて添加速 度を調節して行うのが好ま 、。
[0021] バインダーは水及び Z又はその 1気圧下での沸点が 150°C以下の有機化合物か らなる群力も選ばれる少なくとも 1種の液体であれば特に制限はないが、被覆後の乾 燥等を考慮すると沸点 150°C以下の有機化合物が好ましい。水以外のバインダーの 具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコー ル、好ましくは炭素数 1乃至 4のアルコール、ェチルエーテル、ブチルエーテルまた はジォキサン等のエーテル、酢酸ェチル又は酢酸ブチル等のエステル、アセトン又 はメチルェチルケトン等のケトン等並びにそれらの水溶液等が挙げられ、特にエタノ ールが好ましい。バインダーとしてエタノールを使用する場合、エタノール Z水 = 10 ZO〜OZlO (質量比)、好ましくは 10ZO〜lZ9 (質量比)が好ましい。これらバイン ダ一の使用量は、乾燥粉体 100質量部に対して通常 10〜60質量部、好ましくは 15 〜40質量部である。
[0022] 本発明において用いうる担体の具体例としては、炭化珪素、アルミナ、シリカアルミ ナ、ムライト、アランダム等の直径 l〜15mm、好ましくは 2. 5〜: LOmmの球形担体等 が挙げられる。これら担体は通常は 10〜70%の空孔率を有するものが用いられる。 担体と被覆される予備焼成顆粒または混合物の割合は通常予備焼成顆粒または混 合物 Z (予備焼成顆粒または混合物 +担体) = 10〜75質量%、好ましくは 15〜60 質量%である。 [0023] このようにして予備焼成顆粒または混合物を担体に被覆する力 この際得られる被 覆品は通常直径が 3〜 15mm程度である。
[0024] 本焼成
前記のようにして得られた被覆触媒はそのまま触媒として気相接触酸ィ匕反応に供 することができるが、焼成すると触媒活性が向上する場合があり好ましい。この場合の 焼成温度は通常 100〜450°C、好ましくは 270〜420°C、焼成時間は 1〜20時間で ある。
[0025] なお、焼成は、通常空気雰囲気下に行われるが、窒素のような不活性ガス雰囲気 下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲 気下で焼成を行ってもょ ヽ。
[0026] 上記のようにして得られた触媒 (以下本発明の触媒という)は、メタクロレイン、イソブ チルアルデヒドまたはイソ酪酸を気相接触酸ィ匕することによるメタクリル酸の製造に用 いられる。
[0027] 以下、本発明で得られる触媒を使用するのに最も好ましい原料である、メタクロレイ ンを使用した気相接触反応につき説明する。
[0028] 気相接触酸化反応には分子状酸素又は分子状酸素含有ガスが使用される。メタク ロレインに対する分子状酸素の使用割合は、モル比で 0. 5〜20の範囲が好ましぐ 特に 1〜: LOの範囲が好ましい。反応を円滑に進行させることを目的として、原料ガス 中に水をメタクロレインに対しモル比で 1〜20の範囲で添加することが好ましい。
[0029] 原料ガスは酸素、必要により水 (通常水蒸気として含む)の他に窒素、炭酸ガス、飽 和炭化水素等の反応に不活性なガス等を含んで 、てもよ 、。
[0030] また、メタクロレインはイソブチレン、第三級ブタノール、及びメチルターシャリーブ チルエーテルを酸ィ匕して得られたガスをそのまま供給してもよい。
[0031] 気相接触酸化反応における反応温度は通常 200〜400°C、好ましくは 250〜360 。C、原料ガスの供給量は空間速度(SV)にして、通常 100〜6000hr_1、好ましくは 3 00〜3000hr_1である。
[0032] また、接触酸ィ匕反応は加圧下または減圧下でも可能であるが、一般的には大気圧 付近の圧力が適している。 実施例
[0033] 以下に本発明を実施例により更に具体的に説明するが、本発明は実施例に限定さ れるものではない。
[0034] なお以下において転化率、選択率及び収率は次の通りに定義される。
転化率 =反応したメタクロレインのモル数 Z供給したメタクロレインのモル数 X 100 選択率 =生成したメタクリル酸のモル数 Z反応したメタクロレインのモル数 X 100 収率 =生成したメタクリル酸のモル数 Z供給したメタクロレインのモル数 X 100
[0035] 実施例 1
1)触媒の調製
純水 5680mlに三酸ィ匕モリブデン 800gと五酸ィ匕バナジウム 40. 43g、及び 85質量 %正燐酸 73. 67gを添加し、 92°Cで 3時間加熱攪拌して赤褐色の透明溶液を得た。 続いて、この溶液を 15〜20°Cに冷却して、撹拌しながら 9. 1質量%の水酸化セシゥ ム水溶液 307. 9gと、 14. 3質量%の酢酸アンモ-ゥム水溶液 689. Ogを徐々に添 加し、 15〜20°Cで 1時間熟成させて黄色のスラリーを得た。
[0036] 続いて、さらにそのスラリーに 6. 3質量%の酢酸第二銅水溶液 709. 9gを徐々に 添加し、さらに 15〜20°Cで 30分熟成した。
[0037] 続ヽて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成は
Mo V P Cu Cs (NH )
10 0. 8 1. 15 0. 4 0. 3 4 2. 3
である。
[0038] この顆粒 320gを空気流通下 310°Cで 5時間かけて焼成し予備焼成顆粒を得た。
予備焼成により約 4質量%の質量減があった。これに三酸ィ匕アンチモン 22. 7gと強 度向上材 (セラミック繊維) 45gとを均一に混合して、球状多孔質アルミナ担体 (粒径 3. 5mm) 300gに 20質量%エタノール水溶液をバインダーとして、転動造粒法によ り被覆成型した。次 、で得られた成型物を空気流通下にお ヽて 380°Cで 5時間かけ て本焼成を行い目的とする被覆触媒を得た。
[0039] 得られた触媒の組成は
Mo V P Cu Cs (NH ) Sb
10 0. 8 1. 15 0. 4 0. 3 4 2. 3 1. 0
である。 [0040] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 10. 3mlを内径 18. 4mmのステンレス反応管に充填し、原料ガ ス組成 (モル比) メタクロレイン:酸素:水蒸気:窒素 = 1 : 2:4: 18. 6、空間速度(SV )
Figure imgf000012_0001
反応浴温度 310°Cで、メタクロレインの酸ィ匕反応を実施した。反応は、 最初反応浴温度 310°Cで 3時間反応を続け、次いで反応浴温度を 350°Cに上げ 15 時間反応を続けた (今後この処理を高温反応処理と ヽぅ) o次 ヽで反応浴温度を 310 °Cに下げて反応成績の測定を行った。
[0041] 結果を表 1に示す。
[0042] 強度測定
得られた被覆触媒 50gを、内部に一枚の邪魔板を備えた、半径 14cmの円筒型回 転機に仕込み 23rpmで 10分間回転させた。その後剥離した粉末をふるいで除去し 、残存量を測定したところ 49. 82gであった。すなわち剥離した粉末の割合は全体に 対して 0. 36%となり、以降この値を磨損度と表現し、触媒の形状と合わせて表 1に表 記する。
[0043] 実施例 2
実施例 1にお 、て予備焼成温度を 290°Cとした以外は実施例 1と同様の方法で触 媒を調製し、メタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1に示す。
[0044] 実施例 3
実施例 1にお 、て予備焼成温度を 270°Cとした以外は実施例 1と同様の方法で触 媒を調製し、メタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1に示す。
[0045] 実施例 4
実施例 1にお 、て予備焼成温度を 250°Cとした以外は実施例 1と同様の方法で触 媒を調製し、メタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1に示す。
[0046] 実施例 5
実施例 1にお 、て予備焼成温度を 380°Cとした以外は実施例 1と同様の方法で触 媒を調製し、メタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1に示す。
[0047] 実施例 6
実施例 2において、乾燥工程後の顆粒 320gと三酸ィ匕アンチモン 22. 7gを予備焼 成の前に混合したこと以外は実施例 2と同様の方法で触媒を調製し、メタクロレイン 酸化反応と強度測定を行なった。結果を表 1に示す。
[0048] 実施例 7
実施例 2において、被覆成型の際に添加する強度向上材 (セラミック繊維)を 10gと し球状多孔質アルミナ担体 (粒径 3. 5mm)を 335gとしたこと以外は実施例 2と同様 の方法で触媒を調製し、メタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1に 示す。
[0049] 比較例 1
実施例 1にお 、て予備焼成を行なわな力つたこと以外は実施例 1と同様の方法で 触媒を調製し、メタクロレイン酸化反応と強度測定を行なった。結果を表 1に示す。
[0050] 比較例 2
純水 7100mlに三酸化モリブデン lOOOgと五酸化バナジウム 75. 81g、 85質量0 /0 正燐酸 88. 08g、および酸化銅 11. 05gを添加し、 92°Cで 3時間加熱攪拌してスラリ 一を得た。
[0051] 続、て、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成は
Mo V P Cu
10 1. 2 1. 1 0. 2
である。
顆粒 320gを空気流通下 290°Cで 5時間焼成し予備焼成顆粒を得た。これに強度向 上材 (セラミック繊維) 45gとを均一に混合して、球状多孔質アルミナ担体 (粒径 3. 5 mm) 300gに 90質量%エタノール水溶液をバインダーとして被覆成型した。次いで 得られた成型物を空気流通下において 310°Cで 5時間の本焼成を行い目的とする 被覆触媒を得た。
[0052] 以降、実施例 1と同様にメタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 1 に示す。
[0053] 比較例 3
比較例 2において、予備焼成をしな力つたこと以外は比較例 2と同様にメタクロレイ ン酸化反応と強度測定を行なった。結果を表 1に示す。
[0054] [表 1] メタクロレイ 酸化反応結果と強度測定結果
Figure imgf000014_0001
[0055] 実施例 1〜6と比較例 1から、予備焼成により成形性、磨損度が向上されていること が分かる。
実施例 2と実施例 6から、三酸ィ匕アンチモンは予備焼成の前に添加しても、後に添加 しても同様の効果が得られ、触媒の性能もほぼ同等であることが分力る。
[0056] 比較例 2、 3から、本発明の触媒における必須成分の一部を活性成分としない触媒 は予備焼成により磨損度は向上するものの性能が大きく低下してしまう場合があるこ とが分力る。
[0057] 実施例 8
純水 5680mlに三酸化モリブデン 800gと五酸化バナジウム 40. 43g、及び 85質量 %正燐酸 73. 67gを添加し、 92°Cで 3時間加熱攪拌して赤褐色の透明溶液を得た。 続いて、この溶液を 15〜20°Cに冷却して、撹拌しながら 9. 1質量0 /0の水酸化セシゥ ム水溶液 307. 9gと、 14. 3質量%の酢酸アンモニゥム水溶液 689. Ogを徐々に添 加し、 15〜20°Cで 1時間熟成させて黄色のスラリーを得た。
[0058] 続いて、そのスラリーに 6. 3質量0 /0の酢酸第二銅水溶液 709. 9gを徐々に添加し 、さらに 15〜20。Cで 30分熟成した。続いて、スラリーに三酸ィ匕アンチモン 32. 4gを 添加し、 15〜20°Cで 30分熟成した。
続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成は
Mo V P Cu Cs (NH ) Sb
10 0. 8 1. 15 0. 4 0. 3 4 2. 3 0. 4
である。
[0059] この顆粒 320gを空気流通下 290°Cで 5時間かけて焼成し予備焼成顆粒を得た。
予備焼成により約 4質量%の質量減があった。これに強度向上材 (セラミック繊維) 45 gを均一に混合して、球状多孔質アルミナ担体 (粒径 3. 5mm) 300gに 20質量%ェ タノール水溶液をバインダーとして、転動造粒法により被覆成型した。次いで得られ た成型物を空気流通下において 380°Cで 5時間かけて本焼成を行い目的とする被 覆触媒を得た。
[0060] 以降、実施例 1と同様にメタクロレイン酸ィ匕反応と強度測定を行なった。結果を表 2 に示す。
[0061] [表 2]
表 2
メタクロレ メ夕クリル ヌタクリル 磨損度 (¾) 形状 ィン転化率 酸選択率 酸収率(¾)
(¾) (%)
反応初期 9 1 . 6 1 7 8 . 0 1 7 1 . 4 6 滑ら力、 宾施例 8 高温反応 0 . 3 6 な球状 処理後 9 2 . 4 5 8 0 .. 9 3 7 4 . S 2

Claims

請求の範囲
[1] モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必須 の活性成分とする触媒の製造方法であって、これら必須成分を含有する化合物と水 を混合したスラリーを乾燥し、次いで得られた乾燥粉末を焼成し、これを成型すること を特徴とするメタクリル酸製造用触媒の製造方法。
[2] モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必須 の活性成分とする触媒の製造方法であって、アンチモンを除くこれら必須成分を含 有する化合物と水を混合したスラリーを乾燥し、次 、で得られた乾燥粉末とアンチモ ンを含有する化合物を混合した混合物を焼成し、これを成型することを特徴とするメ タクリル酸製造用触媒の製造方法。
[3] モリブデン、リン、バナジウム、セシウム、アンモニア、銅、およびアンチモンを必須 の活性成分とする触媒の製造方法であって、アンチモンを除くこれら必須成分を含 有する化合物と水を混合したスラリーを乾燥し、次 、で得られた乾燥粉末を焼成し、 この焼成粉末とアンチモンを含有する化合物を混合した混合物を成型することを特 徴とするメタクリル酸製造用触媒の製造方法。
[4] 焼成温度が 200〜400°Cである請求項 1〜3のいずれか 1項に記載の触媒の製造 方法。
[5] 焼成後、粉末を成型する工程がバインダーを使用して不活性担体にコーティングし 、被覆触媒とする工程である請求項 1〜4の 、ずれか 1項に記載の触媒の製造方法
[6] ノ インダ一が水及び/または 1気圧下での沸点が 150°C以下の有機化合物力もな る群力 選ばれる少なくとも 1種の液体である請求項 5記載に記載の触媒の製造方法
[7] 成型工程後、成型物を 100〜450°Cで焼成する請求項 1〜6のいずれか 1項に記 載の触媒の製造方法。
[8] 請求項 1〜7のいずれか 1項に記載の触媒を使用した、メタクロレイン、イソブチルァ ルデヒドまたはイソ酪酸を気相接触酸化することによるメタクリル酸の製造方法。
PCT/JP2006/309452 2005-05-12 2006-05-11 メタクリル酸製造用触媒の製造方法 WO2006121100A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077025709A KR101223589B1 (ko) 2005-05-12 2006-05-11 메타크릴산 제조용 촉매의 제조방법
BRPI0609231-4A BRPI0609231A2 (pt) 2005-05-12 2006-05-11 método para manufaturação de catalisador para uso na produção de ácido metacrìlico
US11/919,911 US8017547B2 (en) 2005-05-12 2006-05-11 Method for manufacturing catalyst for use in production of methacrylic acid
EP06746261A EP1880761A4 (en) 2005-05-12 2006-05-11 PROCESS FOR PREPARING A CATALYST FOR THE PRODUCTION OF METHACRYLIC ACID
CA002608130A CA2608130A1 (en) 2005-05-12 2006-05-11 Method for preparing catalyst for production of methacrylic acid
US13/155,863 US8148291B2 (en) 2005-05-12 2011-06-08 Method for manufacturing catalyst for use in production of methacrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-140037 2005-05-12
JP2005140037A JP2006314923A (ja) 2005-05-12 2005-05-12 メタクリル酸製造用触媒の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/919,911 A-371-Of-International US8017547B2 (en) 2005-05-12 2006-05-11 Method for manufacturing catalyst for use in production of methacrylic acid
US13/155,863 Division US8148291B2 (en) 2005-05-12 2011-06-08 Method for manufacturing catalyst for use in production of methacrylic acid

Publications (1)

Publication Number Publication Date
WO2006121100A1 true WO2006121100A1 (ja) 2006-11-16

Family

ID=37396608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309452 WO2006121100A1 (ja) 2005-05-12 2006-05-11 メタクリル酸製造用触媒の製造方法

Country Status (10)

Country Link
US (2) US8017547B2 (ja)
EP (2) EP2540393A1 (ja)
JP (1) JP2006314923A (ja)
KR (1) KR101223589B1 (ja)
CN (1) CN101175569A (ja)
BR (1) BRPI0609231A2 (ja)
CA (1) CA2608130A1 (ja)
MY (2) MY148862A (ja)
TW (1) TWI394615B (ja)
WO (1) WO2006121100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574434B2 (ja) * 2008-11-06 2014-08-20 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756890B2 (ja) * 2005-03-29 2011-08-24 日本化薬株式会社 メタクリル酸製造用触媒及びその製造方法
JP2006314923A (ja) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
JP4848813B2 (ja) * 2006-03-29 2011-12-28 住友化学株式会社 メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法。
KR100982831B1 (ko) 2007-03-26 2010-09-16 주식회사 엘지화학 헤테로폴리산계 촉매의 제조방법
JP5570142B2 (ja) * 2009-05-26 2014-08-13 日本化薬株式会社 メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
KR101431578B1 (ko) 2009-11-30 2014-08-19 닛뽄 가야쿠 가부시키가이샤 메타크릴산 제조 촉매의 제조 방법 및 메타크릴산의 제조 방법
JP2012110806A (ja) * 2010-11-22 2012-06-14 Nippon Kayaku Co Ltd メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
SG11201602744RA (en) 2013-10-10 2016-05-30 Nippon Kayaku Kk Method for producing unsaturated carboxylic acid and supported catalyst
MY192057A (en) * 2017-02-17 2022-07-25 Mitsubishi Chem Corp Catalyst for production of methacrylic acid, catalyst precursor for production of methacrylic acid, method for producing said catalyst and catalyst precursor, method for producing methacrylic acid, and method for producing methacrylate ester
CN112439442B (zh) * 2019-09-05 2023-08-11 中石油吉林化工工程有限公司 一种丙烯氧化制丙烯醛的催化剂制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165040A (en) * 1981-04-03 1982-10-09 Sumitomo Chem Co Ltd Preparation of catalyst for preparing methacrylic acid
JPH0463139A (ja) * 1990-06-28 1992-02-28 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の製造方法
JPH09290162A (ja) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp 酸化触媒の製造方法及びメタクリル酸の製造方法
JP2004188231A (ja) * 2002-10-15 2004-07-08 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
WO2004073857A1 (ja) * 2003-02-20 2004-09-02 Nippon Kayaku Kabushiki Kaisha メタクリル酸製造用触媒及びその製法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225466A (en) * 1973-12-29 1980-09-30 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalytic oxide composition for preparing methacrylic acid
DE2626887B2 (de) * 1976-06-16 1978-06-29 Basf Ag, 6700 Ludwigshafen Katalysator für die Oxadation von (Methacrolein zu (Meth)Acrylsäure
DE68909658T2 (de) 1988-04-21 1994-02-10 Quantex Corp Photolumineszente Dünnschicht-Gegenstände und Methode zur Herstellung derselben.
US5198579A (en) * 1990-11-14 1993-03-30 Mitsui Toatsu Chemicals, Inc. Catalyst for oxidizing methacrolein and method for preparing methacrylic acid
JPH0631172A (ja) * 1992-07-15 1994-02-08 Daicel Chem Ind Ltd メタクリル酸製造用触媒
US5716895A (en) * 1993-04-01 1998-02-10 Nippon Kayaku Kabushiki Kaisha Process for regeneration of catalysts
JPH08157414A (ja) 1994-12-01 1996-06-18 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
JP3482476B2 (ja) * 1995-07-12 2003-12-22 住友化学工業株式会社 メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP3799660B2 (ja) * 1996-05-16 2006-07-19 三菱化学株式会社 酸化触媒及びその製造方法並びにメタクリル酸の製造方法
US6339037B1 (en) 1999-04-27 2002-01-15 Nippon Shokubai Co. Ltd Catalysts for methacrylic acid production and process for producing methacrylic acid
DE19922156A1 (de) * 1999-05-12 2000-08-10 Basf Ag Multimetalloxidmassen, Verfahren zu ihrer Herstellung, sowie Vorrichtungen zur Durchführung des Verfahrens
JP3883755B2 (ja) * 1999-09-17 2007-02-21 日本化薬株式会社 触媒の製造方法
CN1270824C (zh) 2000-09-21 2006-08-23 日本化药株式会社 生产甲基丙烯酸的催化剂、涂层催化剂及其制造方法
JP3797148B2 (ja) 2001-06-29 2006-07-12 住友化学株式会社 メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP4285084B2 (ja) 2003-05-28 2009-06-24 住友化学株式会社 メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
CN100518935C (zh) * 2003-05-30 2009-07-29 日本化药株式会社 制备甲基丙烯酸用的催化剂的制备方法
JP2005021727A (ja) * 2003-06-30 2005-01-27 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP2005058909A (ja) 2003-08-12 2005-03-10 Mitsubishi Rayon Co Ltd メタクリル酸合成用触媒の製造方法
JP4352856B2 (ja) 2003-10-31 2009-10-28 住友化学株式会社 メタクリル酸製造用触媒の製造方法、これにより得られるメタクリル酸製造用触媒、及びメタクリル酸の製造方法。
JP4745653B2 (ja) 2003-12-05 2011-08-10 三菱レイヨン株式会社 メタクリル酸の製造方法
JP4093194B2 (ja) 2004-03-23 2008-06-04 住友化学株式会社 メタクリル酸の製造方法
JP4756890B2 (ja) 2005-03-29 2011-08-24 日本化薬株式会社 メタクリル酸製造用触媒及びその製造方法
JP2006314923A (ja) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165040A (en) * 1981-04-03 1982-10-09 Sumitomo Chem Co Ltd Preparation of catalyst for preparing methacrylic acid
JPH0463139A (ja) * 1990-06-28 1992-02-28 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の製造方法
JPH09290162A (ja) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp 酸化触媒の製造方法及びメタクリル酸の製造方法
JP2004188231A (ja) * 2002-10-15 2004-07-08 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
WO2004073857A1 (ja) * 2003-02-20 2004-09-02 Nippon Kayaku Kabushiki Kaisha メタクリル酸製造用触媒及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1880761A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574434B2 (ja) * 2008-11-06 2014-08-20 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒

Also Published As

Publication number Publication date
KR20080005535A (ko) 2008-01-14
EP1880761A4 (en) 2012-04-04
EP1880761A1 (en) 2008-01-23
US8148291B2 (en) 2012-04-03
TWI394615B (zh) 2013-05-01
TW200704439A (en) 2007-02-01
MY157329A (en) 2016-05-31
CA2608130A1 (en) 2006-11-16
MY148862A (en) 2013-06-14
KR101223589B1 (ko) 2013-01-17
US20090036707A1 (en) 2009-02-05
US20110237829A1 (en) 2011-09-29
EP2540393A1 (en) 2013-01-02
BRPI0609231A2 (pt) 2010-03-09
CN101175569A (zh) 2008-05-07
US8017547B2 (en) 2011-09-13
JP2006314923A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
WO2006121100A1 (ja) メタクリル酸製造用触媒の製造方法
JP6363464B2 (ja) 不飽和カルボン酸の製造方法、及び担持触媒
JP4756890B2 (ja) メタクリル酸製造用触媒及びその製造方法
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP5574434B2 (ja) メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP6077533B2 (ja) メタクリル酸製造用触媒、その製造方法及び該触媒を用いるメタクリル酸の製造方法
JP4421558B2 (ja) メタクリル酸製造用触媒の製造方法
JP4478107B2 (ja) メタクリル酸製造用触媒及びその製法
WO2014157040A1 (ja) メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
JP5611977B2 (ja) メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
JP7375638B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
JP5269046B2 (ja) メタクリル酸製造用触媒の製造方法
JP7375639B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
JP7347283B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
JP7347282B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
JP7480672B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP7468292B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016315.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006746261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077025709

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2608130

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 5713/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11919911

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006746261

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0609231

Country of ref document: BR

Kind code of ref document: A2