WO2006119953A1 - Batteriestromsensor für ein kraftfahrzeug - Google Patents

Batteriestromsensor für ein kraftfahrzeug Download PDF

Info

Publication number
WO2006119953A1
WO2006119953A1 PCT/EP2006/004299 EP2006004299W WO2006119953A1 WO 2006119953 A1 WO2006119953 A1 WO 2006119953A1 EP 2006004299 W EP2006004299 W EP 2006004299W WO 2006119953 A1 WO2006119953 A1 WO 2006119953A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
current sensor
sleeves
battery current
sensor according
Prior art date
Application number
PCT/EP2006/004299
Other languages
English (en)
French (fr)
Inventor
Heinrich-Wilhelm Dreiskemper
Holger Lenhard
Original Assignee
Leopold Kostal Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leopold Kostal Gmbh & Co. Kg filed Critical Leopold Kostal Gmbh & Co. Kg
Publication of WO2006119953A1 publication Critical patent/WO2006119953A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries

Definitions

  • the invention relates to a battery current sensor for a motor vehicle, with a measuring resistor inserted into the battery circuit.
  • a battery current sensor which is arranged mechanically directly on a pole terminal of the battery, is known from DE 199 61 311 A1.
  • the measuring sensor is designed as a measuring resistor and connected via solder connections to a printed circuit board.
  • the contact surfaces of the measuring sensor are made of copper, while the actual measuring resistor consists of manganin;
  • the measuring sensor thus formed should be the same
  • the non-prepublished German patent application DE 10 2004 053 650 shows a battery current sensor with a strip-shaped measuring resistor which has integrally formed cylindrical end sections.
  • the cylindrical end portions are used for power supply in or Stromabtechnisch from the measuring resistor, and are contacted by connecting means designed as a pivot joints.
  • a middle, strip-shaped region with a small cross-section relative to the end sections forms the resistance region of the measuring sensor.
  • the task arose to provide a battery sensor with a particularly simple and inexpensive measuring resistor, which can be easily coupled to the environment.
  • the measuring resistor comprises a core of a first material having a uniform cross section and two sleeves connected to the core of a second material, wherein the second material is lower resistance than the first material.
  • the resistance region thus consists of a first material with a constant cross-section over its length, which can be square, rectangular and preferably round, for example.
  • This can be dispensed with a complex shape of the resistance region in this measuring resistor; instead, this section can be made by simply cutting a rod-shaped blank from the resistor material.
  • this resistance area with two particularly good conductive sleeves made of a low-resistance material is firmly connected. Due to the solid connection, which can be produced by crimping in an advantageous manner, contact resistance between the sleeves and the core are avoided.
  • this plastic injection molding can advantageously form part of a sensor housing which, for example, has a housing
  • FIG. 1 shows a pre-assembled measuring resistor
  • FIG. 2 shows a sectional view of the measuring resistor
  • FIG. 3 shows a final mounted measuring resistor
  • Figure 4 shows an alternative embodiment of a measuring resistor in one
  • Sectional view, Figure 5 shows a battery sensor with a measuring resistor.
  • FIG. 1 shows the assembled but not yet finally mounted elements of a measuring resistor (1) for a battery sensor of a motor vehicle.
  • the measuring resistor (1) has a cylindrical core (4) made of a resistance material, preferably manganin.
  • On the end portions of the core (4) are sleeve-shaped connecting elements, hereinafter referred to briefly as sleeves (5), postponed. Since the sleeves (5) form the terminal regions of the measuring resistor (1), they are made of a material which conducts as well as possible, preferably made of copper, in order to minimize the contact resistances to be attached to the connecting means.
  • the core (4) forms the resistance region of the measuring resistor (1) and is therefore made of a material which, compared to the Sleeve material, specifically higher resistance.
  • the core (4) consists of manganin.
  • the core (4) has in its longitudinal direction a uniform cross section, ie a cross section with a constant shape and dimension. This results in advantages that the core (4) forms a simple compact component, which is easy to manufacture and also distributes occurring in a motor vehicle, sometimes quite high battery currents to a relatively large cross-section.
  • the core (4) instead of a circular cross-sectional area also have an oval, square, rectangular or other polygonal cross-sectional shape.
  • FIG. 2 shows in a sectional view the sleeves (5) plugged onto the end sections of the core (4).
  • a preferred way to do this is to press the sleeves (5) and the core (4) under high mechanical pressure with each other.
  • This process also referred to as crimping, causes the peripheral surfaces (6) of the sleeves (5) to be acted upon in sections with a very high force, as a result of which the sleeves (5) are compressed in the radial direction and compressed inseparably with the core material.
  • a good electrical coupling to the core (4) is thereby simultaneously achieved.
  • FIG. 3 shows, the shape of the sections (6) acted on can change in this production step as a result of the action of force.
  • Previously circular sections (6) of the sleeves (5) have, for example, a hexagonal shape after the crimping operation.
  • the recesses (8) in the sleeves (5) are made slightly smaller in diameter than the diameter of the core (4). Only after a strong heating of the sleeves (5), due to the associated thermal expansion, the core (4) in the sleeve recesses (8) can be used. After cooling the sleeves (5) a solid connection to the core (4) is made.
  • the electrical connection of the measuring resistor with the vehicle battery or with the consumers of the vehicle electrical system can be carried out in an advantageous manner via connecting elements, as described in DE 10 2004 053 650.
  • the connecting elements shown therein are first mounted rotatably on the end portions of the sleeves, whereby their mechanical position can be aligned according to the course of the conductor guide of the electrical system. If this is done, the connecting elements, preferably also by crimping, mechanically fixed to the sleeves.
  • FIG. 5 shows a completely constructed battery current sensor in a sectional view.
  • the battery current sensor has a measuring resistor (1), which consists of a core (4) and the associated sleeves (5).
  • the measuring resistor (1) is provided with a plastic extrusion (3) which forms part of a housing (2).
  • the housing (2) has as a further housing part a housing cover (9), which is connected to the plastic extrusion (3), preferably by means of a laser welding.
  • the sleeves (5) advantageously have projections (11), such as along the circumference grooves, which produce a positive connection with the plastic extrusion (3) and thereby secure the position of the housing (2) relative to the measuring resistor (1).
  • a measuring circuit arrangement on a circuit substrate (10), which may be designed in particular as a printed circuit board or ceramic substrate constructed.
  • the measuring circuit receives the evaluation signal to be evaluated via connecting means (7), which are electrically connected both to the circuit carrier (10) and with the sleeves (5) of the measuring resistor (1).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Beschrieben wird ein Batteriestromsensor fur ein Kraftfahrzeug, mit einem in den Batteriestromkreis eingefÍgten Meβwiderstand (1), wobei der Meβwiderstan einen Kern (4) aus einem ersten Material mit einem gleichmaβigen Querschnitt und zwei mit dem Kern fest verbundene Hülsen (5) aus einem zweiten Material aufweist, wobei das zweite Material niederohmiger ist als das erste Material

Description

Batteriestromsensor für ein Kraftfahrzeug
Die Erfindung betrifft einen Batteriestromsensor für ein Kraftfahrzeug, mit einem in den Batteriestromkreis eingefügten Meßwiderstand.
Ein Batteriestromsensor, der mechanisch unmittelbar an einer Polklemme der Batterie angeordnet ist, ist aus der DE 199 61 311 A1 bekannt. Bei dem hierin beschriebenen Batteriestromsensor ist der Meßsensor als Meßwiderstand ausgebildet und über Lötverbindungen mit einer Leiterplatte verbunden. Hierbei sind die Kontaktflächen des Meßsensors aus Kupfer gefertigt, während der eigentliche Meßwiderstand aus Manganin besteht; der so gebildete Meßsensor soll dadurch den gleichen
Temperaturausdehnungskoeffizienten wie das verwendete Platinenmaterial aufweisen.
Die nicht vorveröffentlichte deutsche Patentanmeldung DE 10 2004 053 650 zeigt einen Batteriestromsensor mit einem streifenförmigen Meßwiderstand, der einstückig angeformte zylinderförmige Endabschnitte aufweist. Die zylinderförmigen Endabschnitte dienen zur Stromzuleitung in bzw. Stromableitung aus dem Meßwiderstand, und werden durch als Drehgelenke ausgebildete Verbindungsmittel kontaktiert. Ein mittlerer, streifenförmige Bereich mit einem gegenüber den Endabschnitten kleinem Querschnitt bildet den Widerstandsbereich des Meßsensors aus. Vorteilhaft an diesem Meßwiderstand ist, daß er einstückig ausgebildet ist und damit einen einfachen Aufbau aufweist. Nachteilig ist allerdings, daß die Herstellung einer Querschnittsverjüngung zur Realisierung des Widerstandsbereiches recht aufwendig ist.
Daher ergab sich die Aufgabe, einen Batteriesensor mit einem besonders einfachen und kostengünstigen Meßwiderstand zu schaffen, der auf einfache Weise an die Umgebung angekoppelt werden kann. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Meßwiderstand einen Kern aus einem ersten Material mit einem gleichmäßigen Querschnitt und zwei mit dem Kern verbundene Hülsen aus einem zweiten Material aufweist, wobei das zweite Material niederohmiger ist als das erste Material.
Bei dem erfindungsgemäßen Batteriesensor besteht somit der Widerstandsbereich aus einem ersten Material mit einem über seine Länge konstanten Querschnitt, der beispielsweise quadratisch, rechteckig und vorzugsweise rund ausgebildet sein kann. Damit kann bei diesem Meßwiderstand auf eine aufwendige Formgebung des Widerstandsbereiches verzichtet werden; statt dessen kann dieser Abschnitt durch einfaches Zuschneiden eines stabförmigen Rohlings aus dem Widerstandsmaterial gefertigt werden.
Um besonders gut leitende Bereiche für die Stromzuführung zu realisieren, wird dieser Widerstandsbereich mit zwei besonders gut leitenden Hülsen aus einem niederohmigen Material fest verbunden. Durch die feste Verbindung, die auf vorteilhafte Weise durch Crimpen hergestellt werden kann, werden Übergangswiderstände zwischen den Hülsen und dem Kern vermieden.
Um eine Abdichtung des Meßwiderstands gegen äußere Einflüsse zu erreichen, ist es vorteilhaft insbesondere den Überlappungsbereich zwischen dem Kern und den Hülsen mit einer Kunststoffumspritzung zu versehen. Diese Kunststoff u mspritzung kann wiederum vorteilhaft ein Teil eines Sensorgehäuses ausbilden, welches beispielsweise eine
Schaltungsanordnung zur Verarbeitung der am Meßwiderstand abfallenden Signalspannung aufnehmen kann. Weitere vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Batteriesensors sind in den Unteransprüchen beschrieben.
Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung dargestellt und näher erläutert.
Es zeigen
Figur 1 einen vormontierten Meßwiderstands,
Figur 2 eine Schnittansicht des Meßwiderstands,
Figur 3 einen endmontierten Meßwiderstand,
Figur 4 eine alternative Ausführung eines Meßwiderstands in einer
Schnittansicht, Figur 5 einen Batteriesensor mit einem Meßwiderstand.
Die Figur 1 zeigt die zusammengefügten, aber noch nicht endmontierten Elemente eines Meßwiderstands (1 ) für einen Batteriesensor eines Kraftfahrzeugs. Der Meßwiderstand (1 ) besitzt einen zylinderförmigen Kern (4) aus einem Widerstandsmaterial, vorzugsweise aus Manganin. Auf die Endabschnitte des Kerns (4) sind hülsenförmige Anschlußelemente, im folgenden kurz als Hülsen (5) bezeichnet, aufgeschoben. Da die Hülsen (5) die Anschlußbereiche des Meßwiderstands (1 ) bilden, sind sie aus einem möglichst gut leiten Material, vorzugsweise aus Kupfer gefertigt, um die Übergangswiderstände zu anzufügenden Anschlußmitteln möglichst gering zu halten.
Der Kern (4) bildet den Widerstandsbereich des Meßwiderstands (1 ) aus und ist daher aus einem Material gefertigt, welches einen, verglichen mit dem Hülsenmaterial, spezifisch höheren Widerstand aufweist. Bevorzugt besteht der Kern (4) aus Manganin.
Der Kern (4) weist in seiner Längsrichtung einen gleichmäßigen Querschnitt, also einen Querschnitt mit konstanter Form und Abmessung auf. Hieraus ergeben sich als Vorteile, daß der Kern (4) ein einfaches kompaktes Bauteil bildet, welches einfach zu fertigen ist und zudem die in einem Kraftfahrzeug auftretenden, teilweise recht hohen Batterieströme auf einen relativ großen Querschnitt verteilt.
Selbstverständlich kann der Kern (4) statt einer kreisförmigen Querschnittsfläche auch eine ovale, quadratische, rechteckige oder sonstige vieleckige Querschnittsform aufweisen.
Die Figur 2 zeigt in einer Schnittdarstellung die auf die Endabschnitte des Kerns (4) aufgesteckten Hülsen (5). Durch ein einfaches Aufstecken bleibt aber sowohl die mechanische als auch die elektrische Verbindung zwischen dem Kern (4) und den Hülsen (5) qualitativ unzureichend. Daher werden in einem weiteren Fertigungsschritt feste, das heißt nicht oder nur bedingt lösbare Verbindungen zwischen dem Kern (4) und den Hülsen (5) hergestellt.
Eine hierzu bevorzugte Möglichkeit besteht darin, die Hülsen (5) und den Kern (4) unter hohem mechanischen Druck miteinander zu verpressen. Dieser auch als Crimpen bezeichnete Vorgang bewirkt, daß die Umfangsflächen (6) der Hülsen (5) abschnittsweise mit einer sehr hohen Kraft beaufschlagt werden, wodurch die Hülsen (5) in radialer Richtung gestaucht und mit dem Kernmaterial untrennbar verpreßt werden. Neben der festen mechanischen Verbindung wird hierdurch gleichzeitig eine gute elektrische Ankopplung an den Kern (4) erreicht. Wie die Figur 3 zeigt, kann sich bei diesem Fertigungsschritt durch die Krafteinwirkung die Form der beaufschlagten Abschnitte (6) ändern. Vormals kreisförmige Abschnitte (6) der Hülsen (5) weisen nach dem Crimpvorgang beispielsweise eine Sechskantform auf.
Ein alternative Möglichkeit zum Verbinden von Kern (4) und Hülsen (5) besteht darin, die Hülsen (5) auf den Kern (4) aufzuschrumpfen. Dies ist in der Figur 4 angedeutet.
Die Ausnehmungen (8) in den Hülsen (5) sind hierzu im Durchmesser etwas geringer ausgeführt als der Durchmesser des Kerns (4). Erst nach einer starken Erwärmung der Hülsen (5) ist, aufgrund der damit einhergehenden thermischen Ausdehnung, der Kern (4) in die Hülsenausnehmungen (8) einsetzbar. Nach dem Abkühlen der Hülsen (5) ist eine feste Verbindung zum Kern (4) hergestellt.
Eine weitere, in den Figuren nicht dargestellte Möglichkeit zur Herstellung einer festen Verbindung zwischen dem Kern und den Hülsen besteht darin, diese miteinander zu verschrauben. Hierzu sind die Endabschnitte des Kerns und die Ausnehmungen der Hülsen jeweils mit einem Gewinde zu versehen.
Die elektrische Verbindung des Meßwiderstands mit der Fahrzeugbatterie bzw. mit den Verbrauchern des Fahrzeugbordnetz kann auf vorteilhafte Weise über Anschlußelemente erfolgen, wie sie in der DE 10 2004 053 650 beschrieben sind. Die darin dargestellten Anschlußelemente sind zunächst drehbar auf die Endabschnitte der Hülsen aufgesteckt, wodurch ihre mechanische Lage dem Verlauf der Leiterführung des Bordnetzes entsprechend ausgerichtet werden kann. Ist dies geschehen, so werden die Anschlußelemente, vorzugsweise ebenfalls durch Crimpen, an den Hülsen mechanisch festgelegt. In der Figur 5 ist ein vollständig aufgebauter Batteriestromsensor in einer Schnittansicht dargestellt. Der Batteriestromsensor weist einen Meßwiderstand (1 ) auf, der aus einem Kern (4) und den damit verbundenen Hülsen (5) besteht. In seinem mittleren Bereich, der die Überlappungsbereiche des Kerns mit den Hülsen (5) einschließt, ist der Meßwiderstand (1 ) mit einer Kunststoffumspritzung (3) versehen, die ein Teil eines Gehäuses (2) ausbildet. Das Gehäuse (2) besitzt als ein weiteres Gehäuseteil einen Gehäusedeckel (9), der mit der Kunststoffumspritzung (3), vorzugsweise mittels einer Laserschweißung, verbunden ist.
Die Hülsen (5) weisen vorteilhafterweise Anformungen (11 ) auf, wie beispielsweise entlang des Umfangs verlaufende Nuten, welche eine formschlüssige Verbindung mit der Kunststoffumspritzung (3) herstellen und dadurch die Lage des Gehäuses (2) relativ zum Meßwiderstand (1) sichern.
Innerhalb des Gehäuses (2) ist eine Meßschaltungsanordnung auf einen Schaltungsträger (10), der insbesondere als Leiterplatte oder Keramiksubstrat ausgeführt sein kann, aufgebaut. Die Meßschaltungsanordnung erhält das auszuwertende Meßsignal über Verbindungsmittel (7) zugeführt, die sowohl mit dem Schaltungsträger (10) als auch mit den Hülsen (5) des Meßwiderstands (1 ) elektrisch verbunden sind.
Im Betrieb des Kraftfahrzeugs fließt dessen gesamter Batteriestrom über den Meßwiderstand (1 ), wobei die innerhalb des Gehäuses (2) angeordnete Meßschaltungsanordnung den Spannungsabfall an dem umspritzten Abschnitt des Meßwiderstand (1 ) auswertet. Ein dem Stromfluß durch den Meßwiderstand (1 ) entsprechendes Meßsignal kann an einem nichtdargestellten Steckverbinder abgenommen werden, der an den Deckel (9) des Gehäuses (2) angeformt ist. Bezugszeichen
1 Meßwiderstand
2 Gehäuse 3 Kunststoffumspritzung
4 Kern
5 Hülse(n)
6 Umfangsflächen (Abschnitte)
7 Verbindungsmittel 8 Ausnehmungen (in den Hülsen)
9 Gehäusedeckel
10 Schaltungsträger
11 Anformungen

Claims

Patentansprüche
1. Batteriestromsensor für ein Kraftfahrzeug, mit einem in den Batteriestromkreis eingefügten Meßwiderstand,
dadurch gekennzeichnet,
daß der Meßwiderstand (1 ) einen Kern (4) aus einem ersten Material mit einem gleichmäßigen Querschnitt und zwei mit dem Kern (4) fest verbundene Hülsen (5) aus einem zweiten Material aufweist, wobei das zweite Material niederohmiger ist als das erste Material.
2. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß die Hülsen (5) entlang des Umfangs des Kerns (4) angeordnet sind.
3. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß der Kern (4) zylinderförmig ausgebildet ist.
4. Batteriestromsensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Hülsen (5) die Endabschnitte des Kerns (4) umfassen.
5. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß der Kern (4) und die Hülsen (5) durch Verpressen elektrisch miteinander verbunden sind.
6. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß der Kern (4) und die Hülsen (5) durch Verschrauben elektrisch miteinander verbunden sind.
7. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß die Hülsen (5) auf den Kern (4) aufgeschrumpft sind.
8. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß das erste Material Manganin ist.
9. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß das zweite Material Kupfer ist.
10. Batteriestromsensor nach Anspruch 1 , dadurch gekennzeichnet, daß die Hülsen (5) abschnittsweise mit einer Kunststoffumspritzung (3) versehen sind.
11. Batteriestromsensor nach Anspruch 10, dadurch gekennzeichnet, daß die Kunststoffumspritzung (3) einen Teil eines Gehäuses (2) ausbildet.
12. Batteriestromsensor nach Anspruch 11 , dadurch gekennzeichnet, daß innerhalb des Gehäuses (2) ein Schaltungsträger (10) angeordnet ist, der über Verbindungsmittel (7) mit beiden Hülsen (5) elektrisch verbunden ist.
PCT/EP2006/004299 2005-05-12 2006-05-09 Batteriestromsensor für ein kraftfahrzeug WO2006119953A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005021959.4 2005-05-12
DE200510021959 DE102005021959A1 (de) 2005-05-12 2005-05-12 Batteriestromsensor für ein Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2006119953A1 true WO2006119953A1 (de) 2006-11-16

Family

ID=36675973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004299 WO2006119953A1 (de) 2005-05-12 2006-05-09 Batteriestromsensor für ein kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102005021959A1 (de)
WO (1) WO2006119953A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936388A1 (de) 2006-12-22 2008-06-25 Wieland-Werke Ag Elektrisches Leitermaterial mit Messwiderstand
EP2068402A1 (de) * 2007-10-30 2009-06-10 Magneti Marelli S.p.A. Vorrichtung zum Erfassen des Stroms einer Fahrzeugsbatterie und Zusammenbauverfahren dieser Vorrichtung
WO2013037548A1 (de) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Messwiderstand für stromsensor und stromsensoreinheit
CN103487763A (zh) * 2013-10-10 2014-01-01 成都西可科技有限公司 一种手机电池引脚测试连接装置
WO2014000854A1 (de) * 2012-06-29 2014-01-03 Isabellenhütte Heusler Gmbh & Co. Kg Widerstand, insbesondere niederohmiger strommesswiderstand
EP3640650A1 (de) * 2018-10-15 2020-04-22 Continental Automotive GmbH Verfahren zur herstellung einer widerstandsbaugruppe für einen batteriesensor und widerstandsbaugruppe

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688022B2 (en) 2006-02-17 2010-03-30 Lear Corporation Energy management system for a vehicle
DE102007013806B4 (de) * 2007-03-22 2009-02-19 Wieland-Werke Ag Elektrischer Leiter mit Messwiderstand
US8476864B2 (en) 2007-06-13 2013-07-02 Lear Corporation Battery monitoring system
AT11846U1 (de) * 2010-06-07 2011-05-15 Fronius Int Gmbh Vorrichtung zur lösbaren befestigung eines widerstandes, sowie halbschale und hülse für eine solche vorrichtung
EP3168935A1 (de) * 2015-11-11 2017-05-17 HOPPECKE Batterien GmbH & Co. KG. Anschlusseinrichtung und batterieanordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708701A (en) * 1953-05-12 1955-05-17 James A Viola Direct current shunt
DE1236645B (de) * 1963-01-21 1967-03-16 Siemens Ag Praezisionswiderstand mit kleiner Temperatur-abhaengigkeit seines Widerstandswertes und Verfahren zu seiner Herstellung
DE8510187U1 (de) * 1985-02-21 1985-05-23 Isabellenhütte Heusler GmbH KG, 6340 Dillenburg Elektrischer Widerstand
JPH0973891A (ja) * 1995-09-01 1997-03-18 Nichifu Co Ltd 電極接続用シャント線
EP1278069A1 (de) * 2001-07-20 2003-01-22 ENSECO GmbH Niederohmiger Messwiderstand
DE20318266U1 (de) * 2003-11-26 2004-02-19 Hella Kg Hueck & Co. Vorrichtung zur Strommessung
WO2005008265A1 (de) * 2003-07-16 2005-01-27 Auto Kabel Managementgesellschaft Mbh Fahrzeugbordnetzsensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4123361C2 (de) * 1991-07-15 1998-04-23 Vhb Industriebatterien Gmbh Akkumulatorenbatterie
DE59913509D1 (de) * 1998-04-17 2006-07-20 Systemtechnik Ag Ak Batteriemessklemme
DE19961311A1 (de) * 1999-12-18 2001-07-26 Bayerische Motoren Werke Ag Batteriesensorvorrichtung
DE10031249C2 (de) * 2000-06-27 2002-11-28 Huf Huelsbeck & Fuerst Gmbh Betätigungsvorrichtung für ein Schloß, insbesondere an einem Fahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708701A (en) * 1953-05-12 1955-05-17 James A Viola Direct current shunt
DE1236645B (de) * 1963-01-21 1967-03-16 Siemens Ag Praezisionswiderstand mit kleiner Temperatur-abhaengigkeit seines Widerstandswertes und Verfahren zu seiner Herstellung
DE8510187U1 (de) * 1985-02-21 1985-05-23 Isabellenhütte Heusler GmbH KG, 6340 Dillenburg Elektrischer Widerstand
JPH0973891A (ja) * 1995-09-01 1997-03-18 Nichifu Co Ltd 電極接続用シャント線
EP1278069A1 (de) * 2001-07-20 2003-01-22 ENSECO GmbH Niederohmiger Messwiderstand
WO2005008265A1 (de) * 2003-07-16 2005-01-27 Auto Kabel Managementgesellschaft Mbh Fahrzeugbordnetzsensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung
DE20318266U1 (de) * 2003-11-26 2004-02-19 Hella Kg Hueck & Co. Vorrichtung zur Strommessung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07 31 July 1997 (1997-07-31) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936388A1 (de) 2006-12-22 2008-06-25 Wieland-Werke Ag Elektrisches Leitermaterial mit Messwiderstand
EP2068402A1 (de) * 2007-10-30 2009-06-10 Magneti Marelli S.p.A. Vorrichtung zum Erfassen des Stroms einer Fahrzeugsbatterie und Zusammenbauverfahren dieser Vorrichtung
WO2013037548A1 (de) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Messwiderstand für stromsensor und stromsensoreinheit
WO2013037552A1 (de) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Messwiderstand für stromsensor und stromsensoreinheit
WO2013037549A1 (de) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Messwiderstand für stromsensor und stromsensoreinheit
WO2014000854A1 (de) * 2012-06-29 2014-01-03 Isabellenhütte Heusler Gmbh & Co. Kg Widerstand, insbesondere niederohmiger strommesswiderstand
CN104520944A (zh) * 2012-06-29 2015-04-15 伊莎贝尔努特·霍伊斯勒两合公司 电阻器特别是低电阻电流测量电阻器
US9437353B2 (en) 2012-06-29 2016-09-06 Isabellenhuette Heusler Gmbh & Co. Kg Resistor, particularly a low-resistance current-measuring resistor
CN103487763A (zh) * 2013-10-10 2014-01-01 成都西可科技有限公司 一种手机电池引脚测试连接装置
CN103487763B (zh) * 2013-10-10 2015-09-02 成都西可科技有限公司 一种手机电池引脚测试连接装置
EP3640650A1 (de) * 2018-10-15 2020-04-22 Continental Automotive GmbH Verfahren zur herstellung einer widerstandsbaugruppe für einen batteriesensor und widerstandsbaugruppe

Also Published As

Publication number Publication date
DE102005021959A1 (de) 2006-11-23

Similar Documents

Publication Publication Date Title
WO2006119953A1 (de) Batteriestromsensor für ein kraftfahrzeug
EP2301115B1 (de) Elektrische anschlussvorrichtung
EP2274749B1 (de) Elektronisches bauelement und entsprechendes herstellungsverfahren
EP1644749B1 (de) Fahrzeugbordnetzsensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung
DE102005010392B4 (de) Elektronische Vorrichtung zum Herstellen eines elektrischen Kontakts
WO2008000537A1 (de) Batteriesensoreinheit und verfahren zur herstellung der batteriesensoreinheit
WO2007020129A1 (de) Batteriesensoreinheit
DE102007009569B4 (de) Anschlusseinrichtung und Verfahren zu deren Herstellung
WO2013037552A1 (de) Messwiderstand für stromsensor und stromsensoreinheit
DE102004055847B4 (de) Verfahren zur Fertigung einer Batteriesensorvorrichtung
DE102020003458A1 (de) Verfahren zur Herstellung einer Vorrichtung zur Messung von Stromstärken und Vorrichtung zur Messung von Stromstärken
EP1858034A1 (de) Elektrisches Potentiometer
DE102004046855B3 (de) Batteriepolklemmenanordnung
EP2085785B1 (de) Vorrichtung zur Strommessung
WO2006048231A1 (de) Batteriestromsensor für ein kraftfahrzeug
DE102006029731B4 (de) Batterieanschluss
EP0594807B1 (de) Vorrichtung zum ein- und ausschalten elektrischer verbraucher, insbesondere für anzeigeinstrumente im armaturenbrett von kraftfahrzeugen
WO2004040702A1 (de) Verfahren zur elektrischen verbindung eines leiters mit einem kontaktelement
DE102004001899A1 (de) Sperrkreisanordnung
DE102015218796A1 (de) Batteriesensoreinheit mit integriertem Widerstandselement
WO2006048233A1 (de) Batteriestromsensor für ein kraftfahrzeug
DE102006020045B4 (de) Zwischenstecker und Verfahren zur Herstellung eines Zwischensteckers
DE202006011953U1 (de) Anschlusseinrichtung
DE102006036247A1 (de) Anschlusseinrichtung
DE69831861T2 (de) Wechselstromsteckereinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06742838

Country of ref document: EP

Kind code of ref document: A1