WO2006118215A1 - 基板処理装置および半導体デバイスの製造方法 - Google Patents

基板処理装置および半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2006118215A1
WO2006118215A1 PCT/JP2006/308893 JP2006308893W WO2006118215A1 WO 2006118215 A1 WO2006118215 A1 WO 2006118215A1 JP 2006308893 W JP2006308893 W JP 2006308893W WO 2006118215 A1 WO2006118215 A1 WO 2006118215A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reaction tube
processing apparatus
plasma
main surface
Prior art date
Application number
PCT/JP2006/308893
Other languages
English (en)
French (fr)
Inventor
Kenmei Ko
Rui Nomura
Kazuyuki Toyoda
Yuji Takebayashi
Takashi Koshimizu
Takeshi Itoh
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to JP2007514819A priority Critical patent/JPWO2006118215A1/ja
Priority to US11/887,350 priority patent/US20090137128A1/en
Publication of WO2006118215A1 publication Critical patent/WO2006118215A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to a substrate processing apparatus and a semiconductor device manufacturing method, and in particular, a plasma processing apparatus that performs a predetermined process on an object to be processed using plasma generated by high-frequency power and a semiconductor device using the plasma processing apparatus. It is related with the manufacturing method.
  • Background art
  • plasma is used to promote ionization, chemical reaction, and the like of process gas in CVD, etching, ashing, and sputtering processes.
  • methods for generating plasma in a semiconductor manufacturing apparatus include a parallel plate method, a high frequency induction method, a helicon wave method, and an ECR method.
  • the parallel plate method is a method in which one of a pair of parallel plate electrodes is grounded and the other is capacitively coupled to a high frequency power source to generate plasma between the electrodes.
  • the high frequency induction method is a method of generating plasma by applying a high frequency to a spiral or spiral antenna to create a high frequency electromagnetic field, and causing electrons flowing in the electromagnetic field space to collide with neutral particles in the gas.
  • the helicon wave method generates a special electromagnetic field (helicon wave) that travels parallel to the magnetic field by a specially shaped antenna within a uniform magnetic field made of coils, and the Landau damping effect associated with this helicon wave.
  • a microwave with a frequency equal to the cyclotron frequency (2.45 GHz) of the electron flow that can be controlled in speed is guided through the waveguide, causing a resonance phenomenon and allowing the electron to absorb the microwave power.
  • a method for generating plasma As a method of processing an object to be processed using these plasma generation methods, there are a single-wafer method in which the objects to be processed are processed one by one and a method in which a plurality of objects to be processed are processed batchwise.
  • the main object of the present invention is to solve the non-uniformity of the in-plane processing of the plasma due to the influence of the high energy generated at the edge portion of the object to be processed and the short-lived plasma.
  • Another object of the present invention is to provide a substrate processing apparatus and a semiconductor device manufacturing method capable of performing in-plane processing.
  • a reaction tube containing at least one substrate, and at least a pair of electrodes provided outside the reaction tube;
  • a plasma generation region is formed at least in a space between the inner wall of the reaction tube and the outer peripheral edge of the substrate;
  • a dielectric force member having a principal surface extending in a diametrical direction of the substrate and substantially the entire circumferential direction of the substrate in a horizontal plane parallel to the principal surface of the substrate is provided in an outer peripheral region of the substrate;
  • a substrate processing apparatus in which the gas activated in the plasma generation region is supplied to the substrate through the surface region of the main surface of the member.
  • reaction tube containing at least one substrate
  • At least a pair of electrodes provided outside the reaction tube;
  • a dielectric force member having a main surface extending in a diametrical direction of the substrate and in a substantially entire circumferential direction of the substrate within a horizontal plane parallel to the main surface of the substrate, wherein the member is formed in an outer peripheral region of the substrate.
  • a substrate processing apparatus comprising: the member provided; and
  • a method for manufacturing a semiconductor device comprising: a step of passing a surface region of a surface and supplying the substrate to the substrate; and a step of performing a desired process on the substrate with the processing gas after the passage.
  • FIG. 1 is a schematic view for explaining a processing furnace of a plasma processing apparatus according to Embodiments 1 and 2 of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view for explaining a processing furnace of the plasma processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining a processing furnace of the plasma processing apparatus according to the first and second embodiments of the present invention.
  • FIG. 4 is a schematic longitudinal sectional view for explaining a processing furnace of a plasma processing apparatus in Example 2 of the present invention.
  • FIG. 5 is a diagram showing an oxide film thickness distribution when an overlap amount force Omm between a semiconductor wafer and a ring-shaped dielectric material 17 in Example 2 of the present invention.
  • FIG. 6 is a diagram showing an oxide film thickness distribution when the overlap amount of the semiconductor wafer and the ring-shaped dielectric material 17 is 10 mm in Example 2 of the present invention.
  • FIG. 7 is a diagram showing an oxide film thickness distribution when the overlap amount of a semiconductor wafer and a ring-shaped dielectric material 17 is 20 mm in Example 2 of the present invention.
  • FIG. 8 is a schematic oblique view for explaining the plasma processing apparatus according to the first and second embodiments of the present invention.
  • FIG. 9 is a schematic cross-sectional view schematically showing a plasma distribution state when a ring-shaped dielectric 17 is provided.
  • FIG. 10 is a schematic longitudinal sectional view schematically showing the distribution state of plasma when a ring-shaped dielectric 17 is provided.
  • FIG. 11 is a schematic cross-sectional view schematically showing a plasma distribution state when no ring-shaped dielectric 17 is provided.
  • FIG. 12 is a schematic longitudinal sectional view schematically showing a plasma distribution state when no ring-shaped dielectric 17 is provided.
  • FIG. 13 is a diagram showing a plasma density between a wafer edge portion and a wafer central portion when no ring-shaped dielectric 17 is provided.
  • FIG. 14 is a view showing a film thickness distribution in the wafer when no ring-shaped dielectric 17 is provided.
  • FIG. 15 is a view showing the film thickness in the radial direction of the wafer 8 when the ring-shaped dielectric 17 is not provided. is there.
  • FIG. 17 Film thickness distributions when no ring is used and when a half ring is used.
  • FIG. 18 This shows the effect of improving the film thickness distribution by the quartz ring.
  • FIG. 19 is a schematic view for explaining a processing furnace of a plasma processing apparatus for comparison.
  • FIG. 20 is a schematic longitudinal sectional view for explaining a processing furnace of a plasma processing apparatus for comparison.
  • FIG. 21 is a schematic cross-sectional view for explaining a processing furnace of a plasma processing apparatus for comparison.
  • a reaction tube containing at least one substrate, and at least a pair of electrodes provided outside the reaction tube;
  • a plasma generation region is formed at least in a space between the inner wall of the reaction tube and the outer peripheral edge of the substrate;
  • a dielectric force member having a principal surface extending in a diametrical direction of the substrate and substantially the entire circumferential direction of the substrate in a horizontal plane parallel to the principal surface of the substrate is provided in an outer peripheral region of the substrate;
  • a substrate processing apparatus in which the gas activated in the plasma generation region is supplied to the substrate through the surface region of the main surface of the member.
  • the member is a ring-shaped flat plate.
  • the ring-shaped flat plate also has a quartz force.
  • the main surface of the member and the main surface of the substrate are provided on different horizontal planes in a direction perpendicular to the main surface of the substrate.
  • each substrate is The main surfaces of the substrates are stacked so as to overlap each other in the vertical direction through a space, and the members are provided so as to be positioned between the adjacent substrates.
  • At least a part of the main surface of the member extends to the center side of the substrate from the outer peripheral edge of the substrate and overlaps a part of the substrate when viewed from the vertical direction. It can be installed as follows.
  • the range in which the main surface of the member and the substrate overlap in the vertical direction is
  • the adjacent substrates are stacked at an interval of 6 to 13 mm, and the width of the main surface of the member in the substrate diameter direction is 10 to 40 mm.
  • reaction tube containing at least one substrate
  • At least a pair of electrodes provided outside the reaction tube;
  • a dielectric force member having a main surface extending in a diametrical direction of the substrate and in a substantially entire circumferential direction of the substrate within a horizontal plane parallel to the main surface of the substrate, wherein the member is formed in an outer peripheral region of the substrate.
  • a method for manufacturing a semiconductor device comprising: a step of passing a surface region of a surface and supplying the substrate to the substrate; and a step of performing a desired process on the substrate with the processing gas after the passage.
  • Example 1 of the present invention an obstacle made of a ring-shaped dielectric material having a width of 10 to 40 mm is formed on the outer periphery of the object to be processed to weaken the plasma having a large energy at the edge of the object to be processed.
  • the steep plasma distribution at the edge of the workpiece was relaxed, and the in-plane film thickness uniformity of the treatment of the workpiece was improved.
  • the ring-shaped dielectric is fixed to the boat loaded with the object to be processed, and the ring-shaped dielectric is disposed in order to prevent interference with the transfer tool when the object to be processed is transported. I made it different from my body.
  • Embodiment 1 of the present invention will be described in more detail with reference to the drawings.
  • FIG. 1 is a schematic diagram for explaining the processing furnace of the plasma processing apparatus of Example 1 of the present invention, and is for explaining the configuration of the electrodes placed on the outer surface of the reaction chamber 1.
  • FIG. 2 is a schematic longitudinal sectional view for explaining the processing furnace of the plasma processing apparatus of Example 1 of the present invention, and
  • FIG. 3 is for explaining the processing furnace of the plasma processing apparatus of Example 1 of the present invention.
  • the reaction chamber 1 is hermetically configured with a reaction tube 2 and a seal cap 3, and a heater 4 is provided around the reaction tube 2 so as to surround the reaction chamber 1.
  • the reaction tube 2 is made of a dielectric material such as quartz, and a first electrode 6 connected to the high frequency power source 5 and a second electrode 7 connected to the ground are arranged on the outer periphery of the reaction tube 2.
  • the electrode 6 includes striped portions 6a to 6h
  • the electrode 7 includes striped portions 7a to 7h
  • the striped portions 6a to 6h and the striped portions 7a to 7h are formed on the workpiece 8 such as a semiconductor silicon wafer. They are arranged alternately so that they are perpendicular to each other.
  • the high frequency (RF) power can be applied between the electrodes 6 and 7 through the matching unit 9 with AC power output from the high frequency power source 5.
  • the reaction chamber 1 is connected to a pump 12 via an exhaust pipe 10 and a pressure adjustment valve 11, and has a structure capable of exhausting the gas inside the reaction chamber 1.
  • the reaction chamber 1 is provided with a gas introduction port 13, and the gas introduction port 13 rises vertically along the side wall of the reaction tube 2.
  • a plurality of gas supply pores 14 whose sizes are adjusted so as to be supplied uniformly in the vertical direction are provided. In FIG. 2, four gas supply pores 14 are not shown, but a plurality of gas supply pores 14 are provided in the vertical portion of the gas introduction port 13.
  • a ring boat that can be horizontally mounted, for example, about 100 to 150 sheets, each of which is an object to be processed 8, such as a semiconductor wafer having a diameter of 200 mm, can be batch-processed. 16 is provided.
  • a ring-shaped dielectric 17 is installed integrally with the ring boat 16.
  • the dielectric 17 is installed in the outer peripheral space of the workpiece 8 and has a ring shape with a width of 10 to 40 mm.
  • a quartz ring is preferably used as the ring-shaped dielectric 17.
  • the ring-shaped dielectric 17 is provided with a support, and the object to be processed 8 is respectively supported by the support. Supported. The positional relationship between the ring-shaped dielectric 17 and the workpiece 8 is different.
  • Electric power is applied to the heater 4 to heat the members inside the reaction chamber 1 such as the object 8 to a predetermined temperature. If the heater temperature is too low during transport of the workpiece, a considerable amount of time is required to stabilize the temperature within the reaction chamber by raising the temperature to the specified value after the transport of the workpiece 8 is completed. Normally, the temperature is lowered to a temperature that does not hinder the transfer of the object to be processed, and the transfer is performed with the temperature maintained.
  • the gas inside the reaction tube 1 is also exhausted by the pump 12 through the exhaust pipe 10 through the exhaust port force not shown.
  • a reactive gas is introduced into the reaction chamber 1 from the gas introduction port 13, and the pressure in the reaction chamber 1 is maintained at a constant value by the pressure adjustment valve 11.
  • the AC power output from the high-frequency power source 5 is supplied to the first electrode 6 through the matching device 9, and the second electrode 7 is grounded to the ground. Plasma is generated between the seven.
  • the ring-shaped dielectric 17 is arranged around the object 8 to be processed, the plasma is kept away from the object 8 because of the energy level of the edge of the object 8 to be processed. Since only plasma having a low energy and a long lifetime exists between the objects to be processed 8 evenly, it is possible to perform a uniform film forming process on the object to be processed 8.
  • the transfer tool see the wafer transfer machine 112 in FIG. 4 is significantly different from the transfer tool when the ring-shaped dielectric 17 is not provided. The workpiece 8 can be transported without modification.
  • FIG. 1 is a schematic diagram for explaining a processing furnace of a plasma processing apparatus according to a second embodiment of the present invention, and is for explaining a configuration of electrodes placed on the outer surface of a reaction chamber 1.
  • FIG. 4 is a schematic longitudinal sectional view for explaining the processing furnace of the plasma processing apparatus of Example 2 of the present invention, and FIG. 3 is for explaining the processing furnace of the plasma processing apparatus of Example 2 of the present invention. Overview of FIG.
  • Example 1 In Example 1 described above, a semiconductor wafer having a diameter of 200 mm is used as the object 8 to be processed, whereas in this Example, a semiconductor wafer having a diameter of 300 mm is used, and the above-described example.
  • the range (overlap amount) where the outer peripheral edge of the semiconductor wafer as the object to be processed 8 overlaps with the inner peripheral edge of the ring-shaped dielectric 17 is Omm when viewed from the vertical direction.
  • the three values of Omm, 10 mm, and 20 mm are different, but the other points are the same.
  • the effect is obtained when the ring-shaped dielectric 17 is extended (Omm, 10mm, 20mm) inside the semiconductor wafer as the workpiece 8 and processed (oxidized)! I will explain.
  • the diameter of the object 8 is 300 mm
  • the examples of the oxide film thickness distribution shown in FIGS. 5 to 7 show the diameter cross-section of the object 8, and the process conditions are set as follows.
  • Figures 5, 6, and 7 show the oxide film thickness distribution when the overlap amount between the semiconductor wafer as the workpiece 8 and the ring-shaped dielectric 17 is SOmm, 10mm, and 20mm, respectively.
  • the difference in film thickness (maximum and minimum) is smaller when the overlap amount is 20 mm than 10 mm, and there is a maximum and minimum around the object 8 to be processed.
  • the optimum process uniformity can be obtained by overlapping the ring-shaped dielectric 17 and the semiconductor wafer as the workpiece 8 by 20 mm. In this way, it is possible to obtain the optimum hardware by determining the amount of overlap on the inside according to the process processing conditions.
  • FIG. 8 is a schematic oblique view for explaining the plasma processing apparatus according to the first and second embodiments of the present invention.
  • a cassette stage 105 is provided as a holder transfer member for transferring and receiving all cassettes 100.
  • a cassette elevator 115 is provided as a lifting means on the rear side of the cassette stage 105, and the cassette elevator 115 is provided as a conveying means.
  • Cassette transfer machine 114 is installed.
  • a cassette shelf 109 as a means for placing the cassette 100 is provided on the rear side of the cassette elevator 115, and a spare cassette shelf 110 is also provided above the cassette stage 105.
  • a clean unit 118 is provided above the spare cassette shelf 110 and is configured to distribute clean air through the inside of the casing 101.
  • a processing furnace 202 is provided above the rear portion of the casing 101, and a ring boat 16 serving as a substrate holding means for holding wafers 5 as substrates in a multi-stage in a horizontal posture is provided below the processing furnace 202.
  • a boat elevator 121 is provided as an elevating means for raising and lowering the processing furnace 202, and a seal cap 3 as a lid is attached to the tip of the elevating member 122 attached to the boat elevator 121 to support the ring boat 16 vertically.
  • a transfer elevator 113 as an elevating means is provided between the boat elevator 121 and the cassette shelf 109, and a wafer transfer machine 112 as a transfer means is attached to the transfer elevator 113.
  • a furnace opening shirt 116 as a closing means having an opening / closing mechanism and hermetically closing the wafer loading / unloading opening 131 on the lower side of the processing furnace 202.
  • the cassette 100 loaded with the wafer 5 is rotated by 90 ° in the cassette stage 105 so that the wafer 5 is loaded into the cassette stage 105 in an upward posture and the wafer 5 is in a horizontal posture by an external transfer device force (not shown). It is done. Further, the cassette 100 is transported from the force setting stage 105 to the cassette shelf 109 or the spare cassette shelf 110 by cooperation of the raising / lowering operation of the cassette elevator 115, the transverse operation, the advance / retreat operation of the cassette transfer machine 114, and the rotation operation.
  • the cassette shelf 109 has a transfer shelf 123 in which the cassette 100 to be transferred by the wafer transfer device 112 is stored.
  • the cassette 100 to which the wafer 5 is transferred is a cassette elevator 115, and a cassette transfer It is transferred to the transfer shelf 123 by the machine 114.
  • the wafer transfer machine 112 moves forward and backward, rotates, and the transfer elevator 113 moves up and down to cooperate with the lowered state. Wafer 5 is transferred to Root 22.
  • the boat elevator 121 When a predetermined number of wafers 5 are transferred to the boat 22, the boat elevator 121 The seat 16 is inserted into the processing furnace 202, and the processing furnace 202 is hermetically closed by the seal cap 3. The wafer 5 is heated and the processing gas is supplied into the processing furnace 202 in the hermetically closed processing furnace 202, and the wafer 5 is processed.
  • the wafer 5 is transferred from the ring boat 16 to the cassette 100 of the transfer shelf 123 by the reverse procedure of the above-described operation, and the cassette 100 is transferred to the cassette transfer machine 11.
  • the furnace logo 116 hermetically closes the wafer loading / unloading port 131 of the processing furnace 202 when the ring boat 16 is in the lowered state, thereby preventing outside air from being caught in the processing furnace 202.
  • the transport operation of the cassette transfer machine 114 and the like is controlled by the transport control means 124.
  • FIGS. 9 and 10 are a schematic cross-sectional view and a schematic cross-sectional view, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is provided.
  • FIG. 9 By providing the ring-shaped dielectric 17, an obstacle is formed in the peripheral portion of the wafer having a high wafer density, the plasma in the portion is weakened, and the formation of a steep film thickness distribution at the wafer edge portion can be suppressed.
  • FIG. 11 and FIG. 12 are a schematic cross-sectional view and a schematic longitudinal section, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is not provided.
  • FIG. 11 and FIG. 12 are a schematic cross-sectional view and a schematic longitudinal section, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is not provided.
  • FIG. 11 and FIG. 12 are a schematic cross-sectional view and a schematic longitudinal section, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is not provided.
  • FIG. 11 and FIG. 12 are a schematic cross-sectional view and a schematic longitudinal section, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is not provided.
  • FIG. 11 and FIG. 12 are a schematic cross-sectional view and a schematic longitudinal section, respectively, schematically drawn for easy understanding of the plasma distribution state when the ring-shaped dielectric 17 is not provided.
  • FIG. 14 is a diagram showing a film thickness distribution in the wafer when the ring-shaped dielectric 17 is not provided
  • FIG. 15 is a schematic diagram of the Ueno and 8 radial directions when the ring-shaped dielectric 17 is not provided. It is a figure which shows the film thickness of (1). It can be seen that the film thickness increases with a steep slope in the range of about 20 mm at the wafer edge.
  • the deposition conditions are as follows: H and O are used as the processing gas, and H concentration is 85.
  • FIGS. 16 to 18 illustrate the influence on the film thickness distribution due to the presence or absence of the ring-shaped dielectric 17. It is meant to clarify.
  • a 200 mm diameter semiconductor wafer was used. As shown in Fig. 16, a half ring was used as the ring, and a quartz ring was provided only in the portion corresponding to half of the semiconductor wafer. A ring with a width of 10 mm was used. The amount of overlap between the semiconductor wafer and the quartz ring was Omm.
  • the deposition conditions are: H and O are used as the processing gas, and H concentration is 8
  • FIG. 17 shows the film thickness distribution
  • FIG. 18 shows the effect of improving the film thickness distribution by the quartz ring. According to FIGS. 17 and 18, it can be said that the provision of the quartz ring improves the film thickness distribution in the wafer surface.
  • FIG. 19 is a schematic diagram for explaining a processing furnace of a plasma processing apparatus for comparison, and is for explaining the configuration of the electrodes placed on the outer surface of the reaction chamber 1.
  • FIG. 20 and FIG. 21 are a schematic longitudinal sectional view and a schematic transverse sectional view for explaining a processing furnace of a plasma processing apparatus for comparison, respectively.
  • the reaction chamber 1 is hermetically configured with a reaction tube 2 and a seal cap 3.
  • a heater 4 is provided around the reaction tube 2 so as to surround the reaction chamber 1.
  • the reaction tube 2 is composed of an induction body such as quartz, and a first electrode 6 connected to the high-frequency power source 5 and a second electrode 7 connected to the ground are connected to the electrode body 8 to be processed on the outer periphery of the reaction tube 2. On the other hand, they are arranged alternately in a vertical stripe.
  • the supply of high-frequency power enables application of AC power output from the high-frequency power source 5 via the matching unit 9.
  • the reaction chamber 1 is connected to a pump 12 via an exhaust pipe 10 and a pressure adjusting valve 11 so that the gas inside the reaction chamber 1 can be exhausted.
  • the reaction chamber 1 is provided with a gas introduction port 13 for supplying a plurality of gas whose sizes are adjusted so that the processing gas is supplied to the side surface of the reaction chamber 1 evenly in the height direction. It is possible to introduce evenly through the pores 14.
  • a boat 15 that can be horizontally mounted, for example, about 100 to 150, is provided so that batch processing of semiconductor wafers that are also the workpieces 8 is possible.
  • the workpiece 8 is supported by a number of grooves present in the pillars of the boat 15.
  • the AC power output from the high-frequency power source 5 is supplied to the first electrode 6 through the matching device 9, and the second electrode 7 is installed on the ground.
  • the processing object 8 is plasma-treated by the generated plasma.
  • the electrodes 6 and 7 are arranged on the outer periphery of the reaction tube 1, plasma is mainly generated in the space between the reaction tube 2 and the object 8 to be processed. For this reason, the processing speed of the edge of the object to be processed is extremely accelerated under the influence of a factor having a high energy and a short life, and the in-plane film thickness uniformity in the process is remarkably deteriorated. This phenomenon appears more prominently by increasing the high frequency output and increasing the density.
  • the non-uniformity of the in-plane processing of the plasma due to the strong and plasma effects generated at the edge of the object to be processed is solved, and the object to be processed is It is possible to perform uniform in-plane processing.
  • the present invention can be particularly suitably used for a substrate processing apparatus and a semiconductor device manufacturing method for processing a substrate such as a semiconductor wafer using plasma generated by high-frequency power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 少なくとも1つの基板8を収容する反応管2と、反応管2の外部に設けられた少なくとも一対の電極3、7と、を備え、少なくとも、反応管2の内壁と基板8の外周縁との間の空間にプラズマ生成領域が形成され、基板8の主面と平行な水平面内で、基板8の直径方向と、基板の略全周方向に亘って拡がりを持つ主面を有する誘電体からなる部材17を、基板8の外周領域に設け、プラズマ生成領域にて活性化されたガスは、部材17の主面の表面領域を通過して基板8へ供給される基板処理装置が開示されている。

Description

明 細 書
基板処理装置および半導体デバイスの製造方法
技術分野
[0001] 本発明は、基板処理装置および半導体デバイスの製造方法に関し、特に、高周波 電力によって発生させたプラズマを利用して被処理体に所定の処理を行うプラズマ 処理装置およびそれを使用した半導体デバイスの製造方法に関するものである。 背景技術
[0002] 例えば、半導体集積回路の製造にっ 、ては、 CVD、エッチング、アツシング、スパ ッタリング工程で、処理ガスのイオン化や化学反応等を促進するためにプラズマが利 用されている。従来より、半導体製造装置においてプラズマを発生させる方法には、 平行平板方式、高周波誘導方式、ヘリコン波方式、 ECR方式等がある。平行平板方 式は、一対の平行平板型電極の一方を接地し他方を高周波電源に容量結合して両 電極間にプラズマを生成する方法である。高周波誘導方式は、螺旋状又は渦巻き状 のアンテナに高周波を印加して高周波電磁場を作り、その電磁場空間内で流れる電 子を気体中の中性粒子に衝突させてプラズマを生成する方法である。へリコン波方 式は、コイルで作った一様な磁場内で特殊な形状のアンテナにより磁場に平行に進 む特殊な電磁場 (ヘリコン波)を発生させ、このへリコン波に伴うランダウダンピング効 果を利用して速度制御可能な電子流のサイクロトロン周波数に等しい周波数(2. 45 GHz)のマイクロ波を導波管を通じて導くことにより共鳴現象を起こさせ、電子にマイ クロ波のパワーを吸収させてプラズマを生成する方法である。これらのプラズマ生成 方法を利用して被処理体を処理する方法には、被処理体を一枚毎に処理をする枚 葉方式と複数の被処理体をバッチ的に処理する方法がある。
[0003] ノツチ式のプラズマ処理装置の場合、反応管外周に電極が配置されるため、ブラ ズマは主に反応管と被処理体との間の空間に生成され、被処理体エッジ部から中心 部に向力つて拡散する。このため、エネルギーが大きく且つ寿命の短い因子の影響 を受け被処理体エッジ部の処理速度が極端に加速され、プロセス処理の面内均一 性を著しく悪化させるという問題がある。この現象は高周波出力を上げ、エネルギー の大き!/、因子の密度が高くなる条件では、より顕著に現れる。
[0004] 従って、本発明の主な目的は、被処理体のエッジ部に発生するエネルギーが高く 短寿命のプラズマの影響によるプラズマの面内処理の不均一性を解決し、被処理体 の均一な面内処理を行える基板処理装置および半導体デバイスの製造方法を提供 することにある。
発明の開示
[0005] 本発明の一態様によれば、
少なくとも 1つの基板を収容する反応管と、前記反応管の外部に設けられた少なく とも一対の電極と、を備え、
少なくとも、前記反応管の内壁と前記基板の外周縁との間の空間にプラズマ生成 領域が形成され、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材を、前記基板の外周 領域に設け、
前記プラズマ生成領域にて活性ィ匕されたガスは、前記部材の主面の表面領域を通 過して前記基板へ供給される基板処理装置が提供される。
[0006] 本発明の他の態様によれば、
少なくとも 1つの基板を収容する反応管と、
前記反応管の外部に設けられた少なくとも一対の電極と、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材であって、前記基板 の外周領域に設けられた前記部材と、を備える基板処理装置を使用し、
少なくとも前記反応管の内壁と前記基板の外周縁との間の空間にプラズマを生成 する工程と、前記プラズマにて処理ガスを活性ィ匕する工程と、前記活性化されたガス を前記部材の主面の表面領域を通過させて前記基板へ供給する工程と、前記通過 後の処理ガスにより前記基板に所望の処理を行う工程と、を備える半導体デバイスの 製造方法が提供される。
図面の簡単な説明 [図 1]本発明の実施例 1、 2のプラズマ処理装置の処理炉を説明するための概略図で ある。
[図 2]本発明の実施例 1のプラズマ処理装置の処理炉を説明するための概略縦断面 図である。
[図 3]本発明の実施例 1、 2のプラズマ処理装置の処理炉を説明するための概略横断 面図である。
[図 4]本発明の実施例 2のプラズマ処理装置の処理炉を説明するための概略縦断面 図である。
[図 5]本発明の実施例 2において、半導体ウェハとリング状の誘電体 17とのオーバー ラップ量力 Ommのときの酸ィ匕膜厚分布を示す図である。
[図 6]本発明の実施例 2において、半導体ウェハとリング状の誘電体 17とのオーバー ラップ量が 10mmのときの酸ィ匕膜厚分布を示す図である。
[図 7]本発明の実施例 2において、半導体ウェハとリング状の誘電体 17とのオーバー ラップ量が 20mmのときの酸ィ匕膜厚分布を示す図である。
[図 8]本発明の実施例 1、 2のプラズマ処理装置を説明するための概略斜示図である
[図 9]リング状の誘電体 17を設けた場合のプラズマの分布状態を模式的に描いた模 式的横断面図である。
[図 10]リング状の誘電体 17を設けた場合のプラズマの分布状態を模式的に描いた 模式的縦断面図である。
[図 11]リング状の誘電体 17を設けない場合のプラズマの分布状態を模式的に描いた 模式的横断面図である。
[図 12]リング状の誘電体 17を設けない場合のプラズマの分布状態を模式的に描いた 模式的縦断面図である。
[図 13]リング状の誘電体 17を設けない場合のウェハエッジ部とウェハ中心部とのプラ ズマ密度を示す図である。
[図 14]リング状の誘電体 17を設けない場合のウェハ内膜厚分布を示す図である。
[図 15]リング状の誘電体 17を設けない場合のウェハ 8の半径方向の膜厚を示す図で ある。
[図 16]リング状の誘電体 17の有無による膜厚分布に与える影響を調べるために、リン グは半リングを使用し、半導体ウェハの半分に該当する部分のみに石英リングを設け た状態を示す図である。
[図 17]リングを使用しない場合と、半リングを使用した場合の膜厚分布をそれぞれ示 したものである。
[図 18]石英リングによる膜厚分布の改善効果を示すものである。
[図 19]比較のためのプラズマ処理装置の処理炉を説明するための概略図である。
[図 20]比較のためのプラズマ処理装置の処理炉を説明するための概略縦断面図で ある。
[図 21]比較のためのプラズマ処理装置の処理炉を説明するための概略横断面図で ある。
発明を実施するための好ましい形態
[0008] 本発明の好ま ヽ実施の形態によれば、
少なくとも 1つの基板を収容する反応管と、前記反応管の外部に設けられた少なく とも一対の電極と、を備え、
少なくとも、前記反応管の内壁と前記基板の外周縁との間の空間にプラズマ生成 領域が形成され、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材を、前記基板の外周 領域に設け、
前記プラズマ生成領域にて活性ィ匕されたガスは、前記部材の主面の表面領域を通 過して前記基板へ供給される基板処理装置が提供される。
[0009] 好ましくは、前記部材はリング状平板である。
[0010] また、好ましくは、前記リング状平板は石英力も成る。
[0011] また、好ましくは、前記部材の主面と前記基板の主面とは、前記基板の主面と垂直 な方向において、異なる水平面に設けられる。
[0012] また、好ましくは、複数枚の基板が前記反応管内に収容され、それぞれの基板は、 前記基板の主面が垂直方向で空間を介して重なるように積層され、前記部材はそれ ぞれ隣り合う前記基板の間に位置するように設けられる。
[0013] また、好ましくは、前記部材の主面の少なくとも一部は、前記基板の外周縁よりも前 記基板の中心側に延在し、前記垂直方向から見て前記基板の一部と重なるように設 けられる。
[0014] また、好ましくは、前記部材の主面と前記基板とが前記垂直方向にて重なる範囲は
、基板の直径方向において、 0〜50mmである。
[0015] また、好ましくは、それぞれ隣り合う基板は 6〜13mmの間隔で積層され、前記部材 の主面の基板直径方向の幅は 10〜40mmである。
[0016] また、本発明の好ましい形態によれば、
少なくとも 1つの基板を収容する反応管と、
前記反応管の外部に設けられた少なくとも一対の電極と、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材であって、前記基板 の外周領域に設けられた前記部材と、を備える基板処理装置を使用して、
少なくとも前記反応管の内壁と前記基板の外周縁との間の空間にプラズマを生成 する工程と、前記プラズマにて処理ガスを活性ィ匕する工程と、前記活性化されたガス を前記部材の主面の表面領域を通過させて前記基板へ供給する工程と、前記通過 後の処理ガスにより前記基板に所望の処理を行う工程と、を備える半導体デバイスの 製造方法が提供される。
実施例 1
[0017] 本発明の実施例 1では、被処理体外周に幅 10〜40mmのリング状の誘電体で構 成された障害物をつくることで被処理体エッジ部のエネルギーの大きいプラズマを弱 め遠ざけることで、被処理体エッジにおける急勾配なプラズマ分布を緩和して、被処 理体の処理の面内膜厚均一性向上を図った。
[0018] なお、リング状の誘電体は被処理体が装填されるボートに固定され、また、被処理 体の搬送時に搬送器具との干渉を防止するためリング状の誘電体の配置は被処理 体と段違いにした。 [0019] 次に、図面を参照して、本発明の実施例 1について、より詳細に説明する。
図 1は、本発明の実施例 1のプラズマ処理装置の処理炉を説明するための概略図 であり、反応室 1外面に載置された電極の構成を説明するためのものである。図 2は 、本発明の実施例 1のプラズマ処理装置の処理炉を説明するための概略縦断面図 であり、図 3は、本発明の実施例 1のプラズマ処理装置の処理炉を説明するための概 略横断面図である。
[0020] 反応室 1は、反応管 2及びシールキャップ 3で気密に構成され、反応管 2の周囲に は、加熱ヒータ 4が反応室 1を取り囲むように設けてある。反応管 2は石英などの誘電 体で構成され、反応管 2の外周には高周波電源 5に接続される第 1の電極 6とアース に接続される第 2の電極 7が配置されて ヽる。電極 6はストライプ状部 6a〜6hを備え、 電極 7はストライプ状部 7a〜7hを備え、ストライプ状部 6a〜6hとストライプ状部 7a〜7 hは、半導体シリコンウェハ等の被処理体 8に対し垂直になるように交互に配置され ている。また、高周波 (RF)電力は、高周波電源 5の出力する交流電力を整合器 9を 介して電極 6、 7間に印加できるようになって 、る。
[0021] 反応室 1は排気管 10、圧力調整バルブ 11を介してポンプ 12に接続され、反応室 1 内部のガスを排気できる構造となっている。また、反応室 1にはガス導入ポート 13が 設けてあり、ガス導入ポート 13は反応管 2の側壁に沿って垂直に立ち上がっており、 その垂直部分には、反応室 1には処理ガスを高さ方向均等に供給するよう大きさが 調整された複数のガス供給用細孔 14が設けられている。なお、図 2には、ガス供給 用細孔 14が 4つし力示されていないが、ガス導入ポート 13の垂直部分には、複数の ガス供給用細孔 14が設けられている。
[0022] 反応室 1内部には、被処理体 8である例えば、直径 200mmの半導体ウェハをバッ チ処理できるように、例えば 100〜150枚程度、それぞれ一枚ずつ水平に搭載置で きるリングボート 16が設けられる。リングボート 16には、リング状の誘電体 17をリング ボート 16と一体構造で設置する。誘電体 17は、被処理体 8の外周空間に設置され、 幅 10〜40mmのリング状である。リング状の誘電体 17としては、例えば、石英リング が好ましく使用される。
[0023] リング状の誘電体 17には、支持部を設け、支持部によって被処理体 8がそれぞれ 支持される。リング状の誘電体 17と被処理体 8の位置関係は段違 、である。
[0024] 次に本装置の動作を説明する。
[0025] 反応室 1が大気圧の状態でエレベータ機構(図 8の昇降部材 122参照)で被処理 体 8をリングボート 16に装填するため、シールキャップ 3を下げて被処理体搬送用口 ボット(図 8のウェハ移載機 112参照)により所用の数の被処理体 8をリングボート 16 に載置した後、シールキャップ 3を上昇させて反応室 1内部に挿入する。
[0026] 加熱ヒータ 4に電力を投入し、被処理体 8等の反応室 1内部の部材を所定の温度に 加熱する。被処理体搬送時、ヒータ温度を下げ過ぎてしまうと、被処理体 8の搬送終 了後、反応室内部で温度を所定の値まで上昇させて安定させるのに相当の時間が 力かってしまうため、通常は被処理体の搬送に支障がない温度まで下げて、その値 で保持した状態で搬送を行う。
[0027] 同時に反応管 1内部の気体を図示しない排気口力も排気管 10を通じてポンプ 12 で排気する。被処理体 8が所定の温度になった時点で反応室 1にガス導入ポート 13 から反応性ガスを導入し、圧力調整バルブ 11によって反応室 1内の圧力を一定の値 に保持する。反応室 1内部が所定の圧力になったら高周波電源 5の出力する交流電 力を整合器 9を介入して第 1の電極 6に供給し、第 2の電極 7をアースに接地させ電 極 6、 7間にプラズマを生成する。
[0028] 被処理体 8の周辺にリング状の誘電体 17が配置してあるため、被処理体 8のエッジ 部のエネルギーの大き 、プラズマは被処理体 8から遠ざけられる。エネルギーの小さ く且つ寿命の長いプラズマだけほぼ均等に被処理体 8の間に存在するため、被処理 体 8に均一な成膜等の処理を行える。また、リング状の誘電体 17と被処理体 8は段違 いのため、搬送器具(図 4のウェハ移載機 112参照)を、リング状の誘電体 17を設け ない場合の搬送器具から大幅に改造することなく被処理体 8の搬送が実現できる。 実施例 2
[0029] 図 1は、本発明の実施例 2のプラズマ処理装置の処理炉を説明するための概略図 であり、反応室 1外面に載置された電極の構成を説明するためのものである。図 4は 、本発明の実施例 2のプラズマ処理装置の処理炉を説明するための概略縦断面図 であり、図 3は、本発明の実施例 2のプラズマ処理装置の処理炉を説明するための概 略横断面図である。
[0030] 上述した実施例 1では、被処理体 8として直径 200mmの半導体ウェハを使用して いるのに対して、本実施例では、直径 300mmの半導体ウェハを使用している点、お よび上述した実施例 1では、被処理体 8としての半導体ウェハの外周端と、リング状の 誘電体 17の内周端とが重なる範囲 (オーバーラップ量)を垂直方向からみて Ommと しているのに対して、本実施例では、 Omm、 10mm, 20mmの 3つの値としている点 が異なるが、他の点は同じである。
[0031] 本実施例 2では、被処理体 8としての半導体ウェハの内側にリング状の誘電体 17を 延長(Omm、 10mm, 20mm)してプロセス処理(酸化処理)した場合の効果につ!ヽ て説明する。
[0032] 誘電体 17として、オーバーラップ量力 Ommのときは、幅 17mmのリングを使用し、 オーバーラップ量が 10mmのときは、幅 27mmのリングを使用し、オーバーラップ量 力 S20mmのときは、幅 37mmのリングを使用した。
[0033] 被処理体 8の直径は 300mmであり、図 5乃至 7に示す酸ィ匕膜厚分布の例は、被処 理体 8の直径断面を示したもので、プロセス処理条件は、処理ガス:酸素と水素、圧 力: 35Pa、温度: 900°C、 RF電力: 1KW、時間: 8. 5分である。図 5、図 6、図 7は、 それぞれ、被処理体 8としての半導体ウェハとリング状の誘電体 17とのオーバーラッ プ量カ SOmmのとき、 10mmのとき、 20mmのときの酸化膜厚分布を示す図である。
[0034] これらの図 5乃至 7によると、オーバーラップ量が 10mmより 20mmの方が膜厚差( 最大 最小)は小さく又、被処理体 8周辺に最大、最小が存在することより、上記プロ セス条件においては、リング状の誘電体 17と被処理体 8としての半導体ウェハを 20 mmオーバラップさせることで最適なプロセス処理均一性が得られると考えられる。こ のように、プロセス処理条件に応じて内側にオーバラップさせる量を求め最適なハー ドを提供することが可能となる。
[0035] 次に、図 8を参照して本発明の実施例 1、 2のプラズマ処理装置の概略を説明する 。図 8は、本発明の実施例 1、 2のプラズマ処理装置を説明するための概略斜示図で ある。
[0036] 筐体 101内部の前面側には、図示しない外部搬送装置との間で基板収納容器とし てのカセット 100の授受を行う保持具授受部材としてのカセットステージ 105が設けら れ、カセットステージ 105の後側には昇降手段としてのカセットエレベータ 115が設け られ、カセットエレベータ 115には搬送手段としてのカセット移載機 114が取りつけら れている。又、カセットエレベータ 115の後側には、カセット 100の載置手段としての カセット棚 109が設けられると共にカセットステージ 105の上方にも予備カセット棚 11 0が設けられて 、る。予備カセット棚 110の上方にはクリーンユニット 118が設けられ クリーンエアを筐体 101の内部を流通させるように構成されて 、る。
[0037] 筐体 101の後部上方には、処理炉 202が設けられ、処理炉 202の下方には基板と してのウェハ 5を水平姿勢で多段に保持する基板保持手段としてのリングボート 16を 処理炉 202に昇降させる昇降手段としてのボートエレベータ 121が設けられ、ボート エレベータ 121に取りつけられた昇降部材 122の先端部には蓋体としてのシールキ ヤップ 3が取りつけられリングボート 16を垂直に支持している。ボートエレベータ 121 とカセット棚 109との間には昇降手段としての移載エレベータ 113が設けられ、移載 エレベータ 113には搬送手段としてのウェハ移載機 112が取りつけられて 、る。又、 ボートエレベータ 121の横には、開閉機構を持ち処理炉 202の下側のウェハ搬入出 口 131を気密に閉塞する閉塞手段としての炉口シャツタ 116が設けられて 、る。
[0038] ウェハ 5が装填されたカセット 100は、図示しない外部搬送装置力もカセットステー ジ 105にウェハ 5が上向き姿勢で搬入され、ウェハ 5が水平姿勢となるようカセットス テージ 105で 90° 回転させられる。更に、カセット 100は、カセットエレベータ 115の 昇降動作、横行動作及びカセット移載機 114の進退動作、回転動作の協働により力 セットステージ 105からカセット棚 109又は予備カセット棚 110に搬送される。
[0039] カセット棚 109にはウェハ移載機 112の搬送対象となるカセット 100が収納される 移載棚 123があり、ウェハ 5が移載に供されるカセット 100はカセットエレベータ 115、 カセット移載機 114により移載棚 123に移載される。
[0040] カセット 100が移載棚 123に移載されると、ウェハ移載機 112の進退動作、回転動 作及び移載エレベータ 113の昇降動作の協働により移載棚 123から降下状態のボ ート 22にウェハ 5を移載する。
[0041] ボート 22に所定枚数のウェハ 5が移載されるとボートエレベータ 121によりリングボ ート 16が処理炉 202に挿入され、シールキャップ 3により処理炉 202が気密に閉塞さ れる。気密に閉塞された処理炉 202内ではウェハ 5が加熱されると共に処理ガスが 処理炉 202内に供給され、ウェハ 5に処理がなされる。
[0042] ウェハ 5への処理が完了すると、ウェハ 5は上記した作動の逆の手順により、リング ボート 16から移載棚 123のカセット 100に移載され、カセット 100はカセット移載機 11
4により移載棚 123からカセットステージ 105に移載され、図示しない外部搬送装置 により筐体 101の外部に搬出される。
[0043] 炉ロシャツタ 116は、リングボート 16が降下状態の際に処理炉 202のウェハ搬入出 口 131を気密に閉塞し、外気が処理炉 202内に巻き込まれるのを防止している。
[0044] カセット移載機 114等の搬送動作は、搬送制御手段 124により制御される。
実施例 3
[0045] 図 9、図 10は、それぞれ、リング状の誘電体 17を設けた場合のプラズマの分布状 態を、理解の容易のために、模式的に描いた模式的横断面図および模式的縦断面 図である。リング状の誘電体 17を設けることによって、ウェハ密度の高いウェハ周辺 部に障害物が作られ、その部分のプラズマが弱められ、ウェハエッジ部に急勾配な 膜厚分布が生じるのを抑制できる。
[0046] 図 11、図 12は、それぞれ、リング状の誘電体 17を設けない場合のプラズマの分布 状態を、理解の容易のために、模式的に描いた模式的横断面図および模式的縦断 面図である。プラズマは主にウェハ 8と反応管 2との間に生成され、ウェハエッジ部か ら拡散するので、ウェハ面内においてプラズマ分布は不均一となる。それにより、図 1 3に示すように、ウェハエッジ部とウェハ中心部とのプラズマ密度の差が大きくなつて しまう。
[0047] 図 14は、リング状の誘電体 17を設けない場合のウェハ内膜厚分布を示す図であり 、図 15は、リング状の誘電体 17を設けない場合のウエノ、 8の半径方向(1)の膜厚を 示す図である。ウェハエッジ部の約 20mmの範囲において、急勾配で膜厚が厚くな つていることがわかる。なお、成膜条件は、処理ガスは Hと Oを使用し、 H濃度 85
2 2 2
%、 O濃度 15%、圧力 60Pa、温度 800°C、 RF電力 lkW、時間 8. 5分である。
2
[0048] 図 16乃至図 18は、リング状の誘電体 17の有無による膜厚分布に与える影響を説 明するためのものである。直径 200mmの半導体ウェハを使用した。図 16に示すよう に、リングは半リングを使用し、半導体ウェハの半分に該当する部分のみに石英リン グを設けた。リングの幅は 10mmのものを使用した。半導体ウェハと石英リングのォ 一バーラップ量は Ommとした。成膜条件は、処理ガスは Hと Oを使用し、 H濃度 8
2 2 2
5%、 O濃度 15%、圧力 60Pa、温度 800°C、 RF電力 lkW、時間 8. 5分である。
2
[0049] 図 17は膜厚分布を示したものであり、図 18は石英リングによる膜厚分布の改善効 果を示すものである。図 17、図 18によれば、石英リングを設けることによって、ウェハ 面内の膜厚分布が改善されて 、ることがわ力る。
[0050] 次に、図 19、 20、 21を参照して、比較例について説明する。
[0051] 図 19は、比較のためのプラズマ処理装置の処理炉を説明するための概略図でり、 反応室 1外面に載置された電極の構成を説明するためののである。図 20、図 21、そ れぞれ比較のためのプラズマ処理装置の処理炉を説明するための概略縦断面図お よび概略横断面図である。
[0052] 反応室 1は、反応管 2及びシールキャップ 3で気密に構成され、反応管 2の周囲に は、加熱ヒータ 4が反応室 1を取り囲むように設けてある。反応管 2は石英などの誘導 体で構成され、反応管 2の外周には高周波電源 5に接続される第 1の電極 6とアース に接続される第 2の電極 7が被処理電極体 8に対し垂直なストライプ状に交互になる よう配置されている。又、高周波電力の供給は、高周波電源 5の出力する交流電力を 整合器 9を介して印加できるようになつている。反応室 1は排気管 10、圧力調整バル ブ 11を介してポンプ 12に接続され、反応室 1内部のガスを排気できる構造となつて いる。又、反応室 1にはガス導入ポート 13が設けてあり、反応室 1内部の側面には処 理ガスを高さ方向均等に反応ガスを供給するよう大きさが調整された複数のガス供給 用細孔 14により均等に導入することが可能となっている。
[0053] また、反応室 1内部には、被処理体 8でもある半導体ウェハをバッチ処理できるよう に、例えば 100〜150枚程度、それぞれ一枚ずつ水平に搭載置できるボート 15が設 けられる。ボート 15の柱に存在する多数の溝によって被処理体 8を支持している。
[0054] 反応室 1内部が所定の圧力になったら高周波電源 5の出力する交流電力を整合器 9を介入して第 1の電極 6に供給し、第 2の電極 7をアースに設置させ電極間にプラズ マを生成する。生成されるプラズマによって処理体 8をプラズマ処理する。
[0055] 反応管 1外周に電極 6、 7が配置されるため、プラズマは主に反応管 2と被処理体 8 との間の空間に生成される。このため、エネルギーが高く且つ寿命の短い因子の影 響を受け被処理体エッジ部の処理速度が極端に加速されプロセスにおける面内膜 厚均一性を著しく悪化させてしまう。この現象は高周波出力を上げて密度が高くなる ことでより顕著に現れる。
[0056] 明細書、特許請求の範囲、図面および要約書を含む 2005年 4月 28日提出の日本 国特許出願 2005— 132706号および 2005年 9月 27日提出の日本国特許出願 20 05— 280164号の開示内容全体は、本国際出願で指定した指定国、又は選択した 選択国の国内法令の許す限り、そのまま引用してここに組み込まれる。
[0057] 種々の典型的な実施の形態を示しかつ説明してきたが、本発明はそれらの実施の 形態に限定されない。従って、本発明の範囲は、次の請求の範囲によってのみ限定 されるちのである。
産業上の利用可能性
[0058] 以上説明したように、本発明の好ま 、形態によれば、被処理体のエッジ部に発生 する強 、プラズマの影響によるプラズマの面内処理の不均一性を解決し、被処理体 の均一な面内処理を行うことができる。
[0059] その結果、本発明は、高周波電力によって発生させたプラズマを使用して半導体ゥ ェハ等の基板の処理を行う基板処理装置および半導体デバイスの製造方法に特に 好適に利用できる。

Claims

請求の範囲
[1] 少なくとも 1つの基板を収容する反応管と、前記反応管の外部に設けられた少なく とも一対の電極と、を備え、
少なくとも、前記反応管の内壁と前記基板の外周縁との間の空間にプラズマ生成 領域が形成され、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材を、前記基板の外周 領域に設け、
前記プラズマ生成領域にて活性ィ匕されたガスは、前記部材の主面の表面領域を通 過して前記基板へ供給される基板処理装置。
[2] 前記部材はリング状平板である請求項 1記載の基板処理装置。
[3] 前記部材の主面と前記基板の主面とは、前記基板の主面と垂直な方向において、 異なる水平面に設けられる請求項 1記載の基板処理装置。
[4] 複数枚の基板が前記反応管内に収容され、それぞれの基板は、前記基板の主面 が垂直方向で空間を介して重なるように積層され、前記部材はそれぞれ隣り合う前記 基板の間に位置するように設けられる請求項 3記載の基板処理装置。
[5] 前記部材の主面の少なくとも一部は、前記基板の外周縁よりも前記基板の中心側 に延在し、前記垂直方向から見て前記基板の一部と重なるように設けられる請求項 4 記載の基板処理装置。
[6] 少なくとも 1つの基板を収容する反応管と、
前記反応管の外部に設けられた少なくとも一対の電極と、
前記基板の主面と平行な水平面内で、前記基板の直径方向と、前記基板の略全 周方向に亘つて拡がりを持つ主面を有する誘電体力 なる部材であって、前記基板 の外周領域に設けられた前記部材と、を備える基板処理装置を使用し、
少なくとも前記反応管の内壁と前記基板の外周縁との間の空間にプラズマを生成 する工程と、前記プラズマにて処理ガスを活性ィ匕する工程と、前記活性化されたガス を前記部材の主面の表面領域を通過させて前記基板へ供給する工程と、前記通過 後の処理ガスにより前記基板に所望の処理を行う工程と、を備える半導体デバイスの 製造方法。
PCT/JP2006/308893 2005-04-28 2006-04-27 基板処理装置および半導体デバイスの製造方法 WO2006118215A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007514819A JPWO2006118215A1 (ja) 2005-04-28 2006-04-27 基板処理装置および半導体デバイスの製造方法
US11/887,350 US20090137128A1 (en) 2005-04-28 2006-04-27 Substrate Processing Apparatus and Semiconductor Device Producing Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005132706 2005-04-28
JP2005-132706 2005-04-28
JP2005-280164 2005-09-27
JP2005280164 2005-09-27

Publications (1)

Publication Number Publication Date
WO2006118215A1 true WO2006118215A1 (ja) 2006-11-09

Family

ID=37308013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308893 WO2006118215A1 (ja) 2005-04-28 2006-04-27 基板処理装置および半導体デバイスの製造方法

Country Status (3)

Country Link
US (1) US20090137128A1 (ja)
JP (1) JPWO2006118215A1 (ja)
WO (1) WO2006118215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108831A (ko) * 2016-03-18 2017-09-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795434B2 (en) * 2010-09-01 2014-08-05 Jaw Tian Lin Method and apparatus for mass production of graphene and carbon tubes by deposition of carbon atoms, on flat surfaces and inside walls of tubes, generated from dissociation of a carbon-containing gas stimulated by a tunable high power pulsed laser
JP6966402B2 (ja) * 2018-09-11 2021-11-17 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および基板処理装置の電極

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108735A (ja) * 1981-12-23 1983-06-28 Fujitsu Ltd 縦型反応管用バスケツト
JPH0247029U (ja) * 1988-09-28 1990-03-30
JPH02159027A (ja) * 1988-12-13 1990-06-19 Tel Sagami Ltd プラズマ処理装置
JPH065553A (ja) * 1992-06-17 1994-01-14 Tokyo Electron Ltd プラズマ処理装置
JPH06260438A (ja) * 1993-03-09 1994-09-16 Tokyo Electron Tohoku Ltd 熱処理用ボート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029295B2 (ja) * 1979-08-16 1985-07-10 舜平 山崎 非単結晶被膜形成法
US5383984A (en) * 1992-06-17 1995-01-24 Tokyo Electron Limited Plasma processing apparatus etching tunnel-type
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108735A (ja) * 1981-12-23 1983-06-28 Fujitsu Ltd 縦型反応管用バスケツト
JPH0247029U (ja) * 1988-09-28 1990-03-30
JPH02159027A (ja) * 1988-12-13 1990-06-19 Tel Sagami Ltd プラズマ処理装置
JPH065553A (ja) * 1992-06-17 1994-01-14 Tokyo Electron Ltd プラズマ処理装置
JPH06260438A (ja) * 1993-03-09 1994-09-16 Tokyo Electron Tohoku Ltd 熱処理用ボート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108831A (ko) * 2016-03-18 2017-09-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램
KR101998463B1 (ko) * 2016-03-18 2019-07-09 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램
US10774421B2 (en) 2016-03-18 2020-09-15 Kokusai Electric Corporation Semiconductor device manufacturing method, substrate processing apparatus and recording medium

Also Published As

Publication number Publication date
JPWO2006118215A1 (ja) 2008-12-18
US20090137128A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
TWI469238B (zh) 電漿蝕刻處理裝置及電漿蝕刻處理方法
TWI763653B (zh) 基板處理裝置
CN107808828B (zh) 用于基于uv抑制等离子体不稳定性的***和方法
TW201028804A (en) Substrate processing method
JP2011049570A (ja) 基板処理装置及び半導体装置の製造方法
JP2011061037A (ja) 基板処理装置及び半導体装置の製造方法
TW201511091A (zh) 基板處理裝置
JP2008300444A (ja) 半導体製造装置
JP2012054399A (ja) 半導体製造装置及び半導体製造方法
JP4948088B2 (ja) 半導体製造装置
WO2006118215A1 (ja) 基板処理装置および半導体デバイスの製造方法
JP2006278652A (ja) 基板処理装置
JPH10284291A (ja) プラズマ処理装置及び処理方法
JP5171584B2 (ja) 基板処理装置の基板載置台、基板処理装置及び半導体デバイスの製造方法
JP2009059900A (ja) 基板処理装置
JP4838552B2 (ja) 基板処理装置および半導体集積回路の製造方法
KR20100101544A (ko) 반도체 제조 장치
KR20230124008A (ko) 기판 처리 방법 및 기판 처리 장치
JP2009283794A (ja) 基板処理装置
WO2007077718A1 (ja) 基板処理方法および基板処理装置
JP2006049367A (ja) プラズマ処理装置
JP2009152233A (ja) 半導体製造装置
KR101435866B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP2007115883A (ja) 基板処理装置
TW202228208A (zh) 基板處理裝置、半導體裝置之製造方法及程式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514819

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11887350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732444

Country of ref document: EP

Kind code of ref document: A1