WO2006109809A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2006109809A1
WO2006109809A1 PCT/JP2006/307680 JP2006307680W WO2006109809A1 WO 2006109809 A1 WO2006109809 A1 WO 2006109809A1 JP 2006307680 W JP2006307680 W JP 2006307680W WO 2006109809 A1 WO2006109809 A1 WO 2006109809A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
value
voltage
phase
motor
Prior art date
Application number
PCT/JP2006/307680
Other languages
English (en)
French (fr)
Inventor
Masahiko Sakamaki
Original Assignee
Jtekt Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Corporation filed Critical Jtekt Corporation
Priority to EP06731627A priority Critical patent/EP1871001A1/en
Priority to US11/918,242 priority patent/US20090069980A1/en
Priority to JP2007513018A priority patent/JPWO2006109809A1/ja
Publication of WO2006109809A1 publication Critical patent/WO2006109809A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/048Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC supply for only the rotor circuit or only the stator circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/026Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power fluctuation

Definitions

  • the present invention detects a steering torque applied to a steering member, determines a two-phase current in a dq coordinate of the motor based on the detected steering torque, and flows the determined two-phase current to the motor.
  • the present invention relates to an electric power steering device that assists steering by driving a motor by determining a two-phase voltage based on a power supply voltage and applying a three-phase voltage obtained by converting the determined two-phase voltage into a three-phase.
  • An electric power steering device that reduces the burden on the driver while driving a motor to assist steering is provided by an input shaft connected to a steering member (steering wheel, steering wheel), a pion, a rack, and the like.
  • An output shaft connected to the steered wheel and a connecting shaft that connects the input shaft and the output shaft.
  • the torque sensor detects the steering torque value applied to the input shaft by the torsion angle generated on the connecting shaft, and the detected steering torque value Based on the above, the steering assist motor linked to the output shaft is driven and controlled.
  • a brushless DC motor has recently been used.
  • the field current is controlled to be sinusoidal with respect to the position of the magnetic pole of the rotating permanent magnet, and each phase voltage applied to the motor is also sinusoidal. (When rotating at a constant speed).
  • the maximum value of the amplitude must be 1Z2 or less of the power supply voltage Ed.
  • V * v ⁇ (2/3) (V * dcos (0 re one (2 ⁇ / 3)) one V * q sin ( ⁇ re one (2 ⁇ / 3))) (1)
  • V * w -V * u -V * v
  • the limit values Vdmax and Vqmax of the d-axis and q-axis voltage command values have been made constant.
  • Patent Document 1 discloses electric power steering equipped with limiter means for limiting each phase voltage command value of a brushless motor for assisting steering to a range of -Ed / 2 to Ed / 2 (Ed: power supply voltage). An apparatus is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-304697
  • the conventional electric power steering apparatus has constant values Vdmax and Vqmax of the d-axis and q-axis voltage command values of the brushless DC motor.
  • Vdmax and Vqmax of the d-axis and q-axis voltage command values of the brushless DC motor.
  • the q-axis voltage command value can be taken up to Vqa, but in reality it is limited to the q-axis limit value Vqmax or less. Is done.
  • the power supply voltage cannot be used to the maximum extent except in a limited case where the voltage command values of the d-axis and q-axis take the respective limit values Vd max and Vqmax.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an electric power steering apparatus that can make maximum use of a power supply voltage of a motor. Means for solving the problem
  • a torque sensor for detecting a steering torque applied to the steering member
  • Voltage determining means for determining the q-axis voltage Vq and the d-axis voltage Vd based on the power supply voltage Ed so that the q-axis current and the d-axis current determined by the current determining means flow to the motor;
  • Limiting means for limiting the q-axis voltage Vq to satisfy
  • Conversion means for three-phase converting the q-axis voltage Vq restricted by the restriction means and the d-axis voltage Vd determined by the voltage determination means to output a three-phase voltage
  • Electric power steering apparatus comprising: driving means for driving a motor based on the output three-phase voltage.
  • the limiting means includes
  • Vq value is obtained by linear interpolation based on the given Vd value and the pair. Further, the q-axis voltage Vq is limited to the Vq value or less.
  • the steering torque applied to the steering member is detected, and the q-axis current and the d-axis current in the dq coordinate of the motor are determined based on the detected steering torque.
  • the power supply voltage so that the defined q-axis current and d-axis current flow to the motor.
  • the q-axis voltage Vq and d-axis voltage Vd are determined, and the motor is driven to assist steering by applying the three-phase voltage obtained by converting the determined q-axis voltage Vq and d-axis voltage Vd to three-phase.
  • Z3 is the case where the voltage command value for each phase is always limited so that the third harmonic is superimposed on the sine wave.
  • the limiting means indicates a circle in the dq coordinates.
  • Vq value is obtained by linear interpolation based on given Vd value and those pairs, and q-axis voltage is less than the obtained Vq value Since Vq is limited, it is possible to realize an electric power steering device that can make the most of the power supply voltage of the motor.
  • FIG. 1 is a schematic diagram showing the configuration of an embodiment of an electric power steering apparatus according to the present invention.
  • FIG. 2 is a block diagram showing a main configuration of the electric power steering device shown in FIG. 1.
  • FIG. 3 is a flowchart showing an operation example of the electric power steering apparatus according to the present invention.
  • FIG. 4 is an explanatory view showing an operation example of the electric power steering apparatus according to the present invention.
  • FIG. 5 is a characteristic diagram showing an example of a characteristic curve of a brushless DC motor used in the electric power steering apparatus.
  • FIG. 6 is an explanatory view showing another operation example of the electric power steering apparatus according to the present invention.
  • FIG. 7 is an explanatory view showing an operation example of a conventional electric power steering apparatus. (Detailed description of preferred embodiments)
  • FIG. 1 is a schematic diagram showing a configuration of an embodiment of an electric power steering apparatus according to the present invention.
  • This electric power steering apparatus includes, for example, a steering wheel 1 for steering (steering member), a brushless DC motor 6 for assisting steering driven according to steering of the steering wheel 1, and a reduction gear mechanism 7 for rotating the motor 6.
  • the transmission means 13 for transmitting to the steering mechanisms 12 and 12 via the ECU 13 and the ECU (controller) 5 for driving and controlling the motor 6 are provided.
  • the ECU 5 is provided with a vehicle speed signal output from a vehicle speed sensor 4 that detects the traveling speed of the vehicle.
  • the transmission means 13 includes an output shaft 8 connected to an input shaft 2 connected to the handle 1 via a torsion bar (not shown), and a connecting shaft 9 connected to the output shaft 8 via a universal joint.
  • the pinion shaft 10 is connected to the connection shaft 9 via a universal joint, and the rack teeth mesh with the pinion of the pinion shaft 10, and the left and right steered wheels A and A have steering mechanisms 1 2 and 12 and a rack shaft 11 connected to each other.
  • the input shaft 2 and the transmission means 13 constitute a steering shaft 14.
  • a torque sensor 3 that detects a steering torque generated by the operation of the handle 1 by the twist generated in the torsion bar when the handle 1 is operated is disposed.
  • the ECU 5 is configured to drive and control the motor 6 based on the steering torque.
  • the reduction gear mechanism 7 includes a worm connected to the output shaft of the motor 6 and a worm wheel fitted in the middle of the output shaft 8, and transmits the rotation of the motor 6 to the worm and worm wheel force output shaft 8. It is constituted as follows.
  • the steering operation force generated by the operation of the handle 1 is racked via the input shaft 2, the torsion bar (not shown), the output shaft 8, the connecting shaft 9, and the pinion shaft 10. Is transmitted to the shaft 11, the rack shaft 11 is moved in the axial direction, and the steering mechanism 12, 1 Operate 2.
  • the ECU 5 controls the drive of the motor 6, and transmits the driving force of the motor 6 to the output shaft 8, thereby assisting the steering operation force and steering. To reduce the labor burden on the driver.
  • FIG. 2 is a block diagram showing a main configuration of the electric power steering apparatus shown in FIG.
  • the steering torque value Ts detected by the torque sensor 3 is given to the phase compensator 31, and the steering torque value phase-compensated by the phase compensator 31 is stored in the torque-current table 33 of the EC U5.
  • the vehicle speed value V s 1S detected by the vehicle speed sensor 4 is provided to the torque-current table 33 and the convergence correction unit 27.
  • the target value of the motor current increases proportionally as the steering torque value increases, and when the steering torque value exceeds a predetermined value, the target value is reached.
  • a function that saturates the value is variably determined according to the vehicle speed value Vs. The function is determined so that the ratio of the target value of the motor current to the steering torque value decreases as the vehicle speed value Vs increases, and the saturation value of the target value decreases.
  • the target value It of the motor current determined by the torque-current table 33 is given to the adding means 20 and the command current direction specifying unit 29.
  • the target value It of the motor current is a signed value indicating the target value of the d-axis current in the motor control using the dq coordinate transformation, and its positive / negative indicates the steering assist direction.
  • the command current direction designating unit 29 creates a direction signal Sdir indicating the direction of steering assistance based on the sign of the given target value It of the motor current, and gives it to the convergence correction unit 27.
  • the motor 6 that is a brushless motor for assisting steering includes a position sensor 25 that detects the rotational position of the rotor, and the position signal detected and output by the position sensor 25 is a rotor angle sensor in the ECU 5. 62, converted into an electrical angle of 0 re, and supplied to the sine wave ROM table 40 and the rotor angular velocity calculation unit 42.
  • the sine wave ROM table 40 outputs a sine wave value sin ⁇ re according to the given electrical angle 0 re and supplies it to the three-phase AC Zdq coordinate conversion unit 38 and the dqZ three-phase AC conversion unit 32.
  • the rotor angular velocity calculation unit 42 calculates the rotor angular velocity core based on the given electrical angle ⁇ re and gives it to the convergence correction unit 27.
  • the convergence correction unit 27 calculates a compensation current value ic for ensuring vehicle convergence based on the given vehicle speed value Vs, direction signal Sdir, and rotor angular speed core. Create and give to addition means 20.
  • the adding means 20 adds the compensation current value ic to the motor current target value It, and gives the result to the subtracting means 24 as the q-axis current command value i * q.
  • the V-phase current detector 54 and the u-phase current detector 56 in the ECU 5 detect the current values iv and iu flowing in the v-phase field coil and u-phase field coil of the motor 6, respectively, and AC Zdq is given to the coordinate converter 38.
  • the three-phase AC Zdq coordinate conversion unit 38 converts the q-axis current value iq into the q-axis current value iq and the d-axis current value id based on the given current values iv and iu and the sine wave value sin ⁇ re.
  • Subtraction means 2 converts the q-axis current value iq into the q-axis current value iq and the d-axis current value id based on the given current values iv and iu and the sine wave value sin ⁇ re.
  • the subtraction means 24 calculates a deviation eq between the q-axis current command value i * q and the q-axis current value iq, and gives the deviation eq to the q-axis current PI control unit 28.
  • the subtracting means 22 calculates a deviation ed between the d-axis current command value i * d and the d-axis current value id which is 0 because it is not involved in the torque, and gives the deviation ed to the d-axis current PI control unit 26.
  • q-axis current PI control unit 28 and d-axis current PI control unit 26 calculate q-axis voltage Vq and d-axis voltage Vd for PI control based on the given deviation eq and deviation ed.
  • Restriction processing unit (restriction means) 30 provides the given d-axis voltage Vd to dqZ three-phase AC conversion unit 32 as d-axis voltage command value V * d.
  • Ed power supply voltage
  • the dqZ three-phase AC converter 32 performs the dq reverse conversion (three-phase conversion) based on the given q-axis voltage command value V * q and d-axis voltage command value V * d, and the three-phase u-phase voltage command
  • the value V * u and V-phase voltage command value V are calculated and given to the subtracting means 34 and the three-phase PWM modulation unit 50.
  • the three-phase PWM modulation unit 50 performs pulse width modulation on the given three-phase voltage command values V * u, V * v, V * w, and drives the motor as three-phase PWM signals Su, Sv, Sw.
  • the motor drive circuit 52 performs PWM drive of the motor 6 by switching between a field coil of each phase (not shown) and a power supply and a ground terminal by each given PWM signal Su, Sv, Sw (pulse signal). Motor 6 outputs torque Tm.
  • the dqZ three-phase AC converter 32, the subtractor 24, the subtractor 22, the q-axis current PI controller 28, the d-axis current PI controller 26, the limit processor 30 and the subtractor 34 are realized by the microcomputer 21. Speak.
  • the ECU 5 reads the position signal of the magnetic pole detected and output by the position sensor 25, converts it to the electrical angle ⁇ re by the rotor angle sensor 62, and converts the sine wave value sin ⁇ re by the electrical angle ⁇ re in the sine wave ROM table 40. Output (S10).
  • the v-phase current detector 54 and the u-phase current detector 56 detect the current values iv and iu flowing in the V-phase field coil and u-phase field coil of the motor 6, respectively (S12).
  • the ECU 5 performs the dq conversion to the q-axis current value iq and the d-axis current value id based on the current values iv and iu and the sine wave value si ⁇ ⁇ re in the three-phase AC Zdq coordinate conversion unit 38 (S14). .
  • the ECU 5 calculates the deviation eq between the q-axis current command value i * q and the q-axis current value iq by the subtracting means 24, and the subtracting means 22 calculates the d-axis current command value i that is 0.
  • the deviation ed between * d and d-axis current value id is calculated (S16).
  • the q-axis current PI control unit 28 and the d-axis current PI control unit 26 calculate the q-axis voltage Vq and the d-axis voltage Vd for PI control based on the deviation e q and the deviation ed (S18).
  • the ECU 5 sets the d-axis voltage Vd to the d-axis voltage command value V * d, and the q-axis voltage so that the voltage command value of each phase is always a sine wave.
  • Vq The q-axis voltage command value V * q restricted to the following is created and restricted (S20). This As shown in Fig. 4, for example, when the d-axis voltage command value is Vdc, the q-axis voltage command value is The voltage value Vqc that can make maximum use of the power supply voltage indicated by can be taken.
  • the ECU 5 uses the dqZ three-phase AC converter 32 and the subtracting means 34 to perform dq reverse conversion (three-phase conversion) based on the q-axis voltage command value V * q and the d-axis voltage command value V * d.
  • the three-phase u-phase voltage command value V * u, V-phase voltage command value V * v, and w-phase voltage command value V * w are then calculated (S22).
  • the three-phase PWM modulation section 50 modulates the three-phase voltage command values V * u, V * v, and V * w to change the pulse width to PWM signals Su, Sv, Sw, and the motor drive circuit
  • the PWM signals Su, Sv, Sw are used to switch between the field coil of each phase and the power source and the ground terminal to output each phase voltage (S24) and return.
  • the motor 6 is PWM driven by the output phase voltages.
  • Fig. 5 is an example of a characteristic curve of the brushless DC motor 6.
  • V * d and the q-axis voltage command value V * q are limited as in the conventional case, and FIG. This is a comparison with the case of restriction.
  • the motor current and the motor applied voltage increase, the output torque increases, and the efficiency improves even at the same rotation speed.
  • Vq values are obtained by linear interpolation based on the given Vd values and stored pairs. If the q-axis voltage Vq is limited below the Vq value, the computational load can be reduced.
  • Vdl Vdl
  • Vdl Vd2
  • Vq (Vq2-Vql) (Vd Vdl) Z (Vd2— Vdl) + Vql

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 操舵部材に加えられた操舵トルクTs を検出し、検出した操舵トルクTs に基づき、モータのdq座標におけるq軸電流i* q 及びd軸電流i* d を定め、定めたq軸電流i* q 及びd軸電流i* d がモータに流れるように、電源電圧Ed に基づきq軸電圧V* q 及びd軸電圧V* d を定め、定めたq軸電圧V* q 及びd軸電圧V* d を三相変換して三相電圧V* u ,V* v ,V* w を定め、定めた三相電圧V* u ,V* v ,V* w を印加することによりモータを駆動して操舵補助する電動パワーステアリング装置。q軸電圧V* q を√(3n2Ed 2 /8-Vd 2 )(n=1,2又は2/√3)以下に制限する制限手段を備える構成である。

Description

電動パワーステアリング装置
技術分野
[0001] 本発明は、操舵部材に加えられた操舵トルクを検出し、検出した操舵トルクに基づ き、モータの dq座標における二相電流を定め、定めた二相電流がモータに流れるよ うに、電源電圧に基づき二相電圧を定め、定めた二相電圧を三相変換した三相電圧 を印加することにより、モータを駆動して操舵補助する電動パワーステアリング装置に 関するものである。
背景技術
[0002] モータを駆動して操舵補助を行な ヽ、運転者の負担を軽減する電動パワーステアリ ング装置は、操舵部材 (ステアリングホイール、ハンドル)に繋がる入力軸と、ピ-オン 及びラック等により操向車輪に繋がる出力軸と、入力軸及び出力軸を連結する連結 軸とを備え、連結軸に生じる捩れ角度によって、トルクセンサが入力軸に加わる操舵 トルク値を検出し、検出した操舵トルク値に基づき、出力軸に連動する操舵補助用の モータを駆動制御するものである。
[0003] このような電動パワーステアリング装置では、最近、ブラシレス DCモータが使用され るようになっている。電動パワーステアリング装置用のブラシレス DCモータでは、回 転する永久磁石の磁極の位置に対して、界磁電流が正弦波状となるように制御して おり、モータに印加する各相電圧も正弦波状となる(一定速度で回転している場合)。 各相の電圧指令値が常に正弦波となるように制限するには、振幅の最大値を電源電 圧 Edの 1Z2以下とする必要がある。
また、特許文献 1に記載されているように、各相の電圧指令値が常に台形波となる ように制限するには、振幅の最大値を電源電圧 Ed以下とする必要があり、各相の電 圧指令値が常に正弦波に第三次高調波が重畳するように制限するには、振幅の最 大値を電源電圧 Edの 1Z 3以下とする必要がある。
[0004] dq座標変換を用いて正弦波でブラシレス DCモータを制御する場合、座標変換の 式は(1)式のようになる。 V* u = ^(2/3) (V* d cos Θ re-V* q sin Θ re)
V* v =^(2/3) (V* dcos(0 re一 (2π/3))一 V*q sin( Θ re一 (2π/3))) (1)
V*w =-V*u -V*v
(V*u , V*v , V*w; u, v, w相の電圧指令値、 V*d , V*q; d軸、 q軸の電圧指令値 、 0 re;電気角)
[0005] 従って、 d軸、 q軸の各電圧指令値につ!、て、 (2)式の関係を満足する必要がある。
^ (V*d 2 +V* q 2)≤Ed 1^/212 (2)
従来は、処理を簡易にする為、 d軸、 q軸の電圧指令値の各制限値 Vdmax, Vqma xを一定にしていた。例えば、
Vdmax = Vqmax = Ed 3/4 (3)
とすれば、(2)式は常に満足する。
[0006] 特許文献 1には、操舵補助用のブラシレスモータの各相電圧指令値を—Ed /2〜 Ed /2(Ed;電源電圧)の範囲に制限するリミッタ手段を備えた電動パワーステアリ ング装置が記載されている。
特許文献 1:特開 2003-304697号公報
発明の開示
発明が解決しょうとする課題
[0007] 従来の電動パワーステアリング装置は、上述したように、ブラシレス DCモータの d軸 、 q軸の電圧指令値の各制限値 Vdmax, Vqmaxを一定にしており、これを dq座標に 図示すると、 図 7に示すようになる。ここで、例えば、 d軸の電圧指令値力 dbをとる 場合、本来は、 q軸の電圧指令値は Vqa迄とることが可能であるが、実際には、 q軸の 制限値 Vqmax以下に制限される。つまり、 d軸、 q軸の各電圧指令値が各制限値 Vd max, Vqmaxをとるという限られた場合以外は、電源電圧を最大限利用することがで きないという問題がある。
本発明は、上述したような事情に鑑みてなされたものであり、モータの電源電圧を 最大限利用することが可能な電動パワーステアリング装置を提供することを目的とす る。 課題を解決するための手段
[0008] 第 1発明に係るモータを駆動して操舵補助する電動パワーステアリング装置であつ て、
操舵部材に加えられた操舵トルクを検出するトルクセンサと、
前記トルクセンサにより検出された操舵トルクに基づき、該モータの dq座標における q軸電流及び d軸電流を定める電流決定手段と、
前記電流決定手段により定められた q軸電流及び d軸電流がモータに流れるように 、電源電圧 Edに基づき q軸電圧 Vq及び d軸電圧 Vdを決定する電圧決定手段と、前 記 q軸電圧
[0009] , 2又は 2ZV"3)
Figure imgf000004_0001
[0010] を満たすように前記 q軸電圧 Vqを制限する制限手段;
前記制限手段により制限された q軸電圧 Vq及び前記電圧決定手段により定められ た d軸電圧 Vdを三相変換して三相電圧を出力する変換手段と、
変換手段力 出力された三相電圧を基にモータを駆動する駆動手段と、 を備える電動パワーステアリング装置。
[0011] 第 2発明に係る電動パワーステアリング装置において、前記制限手段は、
Figure imgf000004_0002
[0012] により定義される dq座標における円について、所定角度毎の Vq値及び Vd値の 対を記憶してあり、与えられた Vd値及び前記対に基づく線形補間により Vq値を求 め、求めた該 Vq値以下に前記 q軸電圧 Vqを制限するように構成してある。
(発明の効果)
[0013] 第 1発明に係る電動パワーステアリング装置によれば、操舵部材に加えられた操舵 トルクを検出し、検出した操舵トルクに基づき、モータの dq座標における q軸電流及 び d軸電流を定め、定めた q軸電流及び d軸電流がモータに流れるように、電源電圧 Edに基づき q軸電圧 Vq及び d軸電圧 Vdを定め、定めた q軸電圧 Vq及び d軸電圧 Vdを三相変換した三相電圧を印加することによりモータを駆動して操舵補助し、制 限手段が、 q軸電圧 Vqを
Figure imgf000005_0001
[0014] 以下に制限するので、モータの電源電圧を最大限利用することが可能な電動パワー ステアリング装置を実現することができる。
[0015] ここで、 n= 1は、各相の電圧指令値が常に正弦波となるように制限する場合であり
、 n= 2は、各相の電圧指令値が常に台形波となるように制限する場合であり、 n= 2
Z 3は、各相の電圧指令値が常に正弦波に第三次高調波が重畳するように制限 する場合である。
[0016] 第 2発明に係る電動パワーステアリング装置によれば、制限手段は、 dq座標におけ る円を示す
Figure imgf000005_0002
[0017] の所定角度毎の Vq値及び Vd値の対を記憶してあり、与えられた Vd値及びそれら の対に基づく線形補間により Vq値を求め、求めたその Vq値以下に q軸電圧 Vqを 制限するので、モータの電源電圧を略最大限利用することが可能な電動パワーステ ァリング装置を実現することができる。
図面の簡単な説明
[0018] [図 1]本発明に係る電動パワーステアリング装置の実施の形態の構成を示す模式図 である。
[図 2]図 1に示す電動パワーステアリング装置の要部構成を示すブロック図である。
[図 3]本発明に係る電動パワーステアリング装置の動作例を示すフローチャートであ る。
[図 4]本発明に係る電動パワーステアリング装置の動作例を示す説明図である。 [図 5]電動パワーステアリング装置に使用されるブラシレス DCモータの特性曲線の例 を示す特性図である。
[図 6]本発明に係る電動パワーステアリング装置の他の動作例を示す説明図である。
[図 7]従来の電動パワーステアリング装置の動作例を示す説明図である。(好適な実 施例の詳細な説明)
[0019] 以下に、本発明をその実施の形態を示す図面に基づいて説明する。
図 1は、本発明に係る電動パワーステアリング装置の実施の形態の構成を示す模 式図である。この電動パワーステアリング装置は、例えば舵取りの為のハンドル 1 (操 舵部材)と、ハンドル 1の操舵に応じて駆動される操舵補助用のブラシレス DCモータ 6と、モータ 6の回転を減速歯車機構 7を介して舵取機構 12, 12に伝える伝動手段 1 3と、モータ 6を駆動制御する ECU (コントローラ) 5とを備えている。 ECU5には、車 両の走行速度を検出する車速センサ 4が出力した車速信号が与えられている。
[0020] 伝動手段 13は、ハンドル 1に連結された入力軸 2に図示しないトーシヨンバーを介 して連結される出力軸 8と、出力軸 8にユニバーサルジョイントを介して連結される連 結軸 9と、連結軸 9にユニバーサルジョイントを介して連結されるピ-オン軸 10と、ピ ユオン軸 10のピ-オンに嚙合するラック歯を有し、左右の操向輪 A, Aに舵取機構 1 2, 12を介して連結されるラック軸 11とを備えている。入力軸 2及び伝動手段 13は操 舵軸 14を構成している。
[0021] 入力軸 2の周りには、ハンドル 1を操作することにより入力軸 2にカ卩わる操舵トルクを 、トーシヨンバーに生じる捩れによって検出するトルクセンサ 3が配置されており、トル クセンサ 3が検出した操舵トルクに基づいて、 ECU5がモータ 6を駆動制御するように 構成してある。
減速歯車機構 7は、モータ 6の出力軸に繋がるウォームと、出力軸 8の途中に嵌合さ れるウォームホイールとを備えており、モータ 6の回転をウォーム及ウォームホイール 力 出力軸 8に伝達するように構成してある。
[0022] このような構成の電動パワーステアリング装置では、ハンドル 1の操作による舵取り 操作力を入力軸 2、トーシヨンバー(図示せず)、出力軸 8、連結軸 9、及びピニオン軸 10を介してラック軸 11に伝達し、ラック軸 11を軸長方向へ移動させ、舵取機構 12, 1 2を作動させる。また、それと共に、トルクセンサ 3が検出した操舵トルクに基づき、 EC U5がモータ 6を駆動制御し、モータ 6の駆動力を出力軸 8に伝達することにより、舵 取り操作力を補助し、舵取りの為の運転者の労力負担を軽減する。
[0023] 図 2は、図 1に示す電動パワーステアリング装置の要部構成を示すブロック図であ る。この電動パワーステアリング装置は、トルクセンサ 3が検出した操舵トルク値 Tsが 、位相補償器 31に与えられ、位相補償器 31で位相補償された操舵トルク値が、 EC U5のトルク-電流テーブル 33に与えられる。また、車速センサ 4が検出した車速値 V s 1S トルク-電流テーブル 33及び収斂性補正部 27に与えられている。
[0024] トルク-電流テーブル 33では、操舵トルク値が所定の不感帯を超えると、操舵トルク 値の増加に従ってモータ電流の目標値が比例的に増加し、さらに操舵トルク値が所 定値以上になると目標値が飽和するような関数が、車速値 Vsに応じて可変的に定 められている。前記関数は車速値 Vsが大となるに従って操舵トルク値に対するモー タ電流の目標値の比が小となると共に、目標値の飽和値が小となるように定められて いる。トルク-電流テーブル 33が定めたモータ電流の目標値 Itは、加算手段 20及び 指令電流方向指定部 29へ与えられる。
[0025] モータ電流の目標値 Itは、 dq座標変換を用いたモータ制御における d軸電流の目 標値を示す符号付きの値であり、その正負は、操舵補助の方向を示している。
指令電流方向指定部 29は、与えられたモータ電流の目標値 Itの正負符号に基づ き、操舵補助の方向を示す方向信号 Sdirを作成し、収斂性補正部 27に与える。
[0026] 操舵補助を行うブラシレスモータであるモータ 6には、そのロータの回転位置を検出 する位置センサ 25が内蔵され、位置センサ 25が検出し出力した位置信号は、 ECU 5内のロータ角度センサ 62に与えられ、電気角 0 reに換算されて、正弦波 ROMテ 一ブル 40及びロータ角速度演算部 42に与えられる。
正弦波 ROMテーブル 40は、与えられた電気角 0 reにより正弦波値 sin Θ reを出力 し、三相交流 Zdq座標変換部 38及び dqZ三相交流変換部 32に与える。
[0027] ロータ角速度演算部 42は、与えられた電気角 Θ reによりロータ角速度 co reを算出し 、収斂性補正部 27に与える。収斂性補正部 27は、与えられた車速値 Vs、方向信号 Sdir及びロータ角速度 co reに基づき、車両収斂性を確保する為の補償電流値 icを 作成し、加算手段 20に与える。
加算手段 20は、モータ電流の目標値 Itに補償電流値 icを加算し、その結果を q軸 電流指令値 i*qとして減算手段 24に与える。
[0028] ECU5内の V相電流検出器 54及び u相電流検出器 56が、モータ 6の v相界磁コィ ル及び u相界磁コイルにそれぞれ流れる電流値 iv及び iuを検出し、三相交流 Zdq 座標変換部 38に与える。
三相交流 Zdq座標変換部 38は、与えられた電流値 iv , iu及び正弦波値 sin Θ re に基づき、 q軸電流値 iq及び d軸電流値 idへ dq変換し、 q軸電流値 iqを減算手段 2
4へ、 d軸電流値 idを減算手段 22へそれぞれ与える。
[0029] 減算手段 24は、 q軸電流指令値 i*qと q軸電流値 iqとの偏差 eqを演算し、その偏 差 eqを q軸電流 PI制御部 28へ与える。
減算手段 22は、トルクに関与しないので 0である d軸電流指令値 i*dと d軸電流値 id との偏差 edを演算し、その偏差 edを d軸電流 PI制御部 26へ与える。
q軸電流 PI制御部 28及び d軸電流 PI制御部 26は、与えられた偏差 eq及び偏差 e dに基づき、 PI制御の為の q軸電圧 Vq及び d軸電圧 Vdを演算して、制限処理部 3
0に与える。
[0030] 制限処理部(制限手段) 30は、与えられた d軸電圧 Vdを d軸電圧指令値 V* dとし て dqZ三相交流変換部 32に与える。また、各相の電圧指令値が常に正弦波となる ように、 q軸電圧 Vqを (3Ed 2 /8— Vd 2 ) (Ed;電源電圧)以下に制限した q軸電 圧指令値 V*qを作成して、 dqZ三相交流変換部 32に与える。
dqZ三相交流変換部 32は、与えられた q軸電圧指令値 V*q及び d軸電圧指令値 V*dに基づき、 dq逆変換 (三相変換)して、三相の u相電圧指令値 V*u及び V相電 圧指令値 V を演算し、減算手段 34及び三相 PWM変調部 50へ与える。
[0031] 減算手段 34は、 V*w = -V* u -V*vを演算し、演算した w相電圧指令値 V* wを 三相 PWM変調部 50へ与える。
三相 PWM変調部 50は、与えられた三相の各電圧指令値 V*u , V*v , V*wをパ ルス幅変調し、三相の各 PWM信号 Su , Sv , Swとしてモータ駆動回路 52へ与え る。 モータ駆動回路 52は、与えられた各 PWM信号 Su , Sv , Sw (パルス信号)により 、図示しない各相の界磁コイルと電源及び接地端子との間をスイッチングして、モー タ 6を PWM駆動し、モータ 6はトルク Tmを出力する。
[0032] 尚、上述したトルク-電流テーブル 33、収斂性補正部 27、加算手段 20、指令電流 方向指定部 29、ロータ角速度演算部 42、正弦波 ROMテーブル 40、三相交流 Zdq 座標変換部 38、 dqZ三相交流変換部 32、減算手段 24、減算手段 22、 q軸電流 PI 制御部 28、 d軸電流 PI制御部 26、制限処理部 30及び減算手段 34は、マイクロコン ピュータ 21により実現されて ヽる。
[0033] 以下に、このような構成の電動パワーステアリング装置の電流制御演算の動作を、 それを示す図 3のフローチャートを参照しながら説明する。
ECU5は、位置センサ 25が検出し出力した磁極の位置信号を読込み、ロータ角度 センサ 62で電気角 Θ reに換算し、正弦波 ROMテーブル 40で電気角 Θ reにより正 弦波値 sin Θ reを出力させる(S10)。一方、 v相電流検出器 54及び u相電流検出器 5 6で、モータ 6の V相界磁コイル及び u相界磁コイルにそれぞれ流れる電流値 iv及び i uを検出する(S12)。
ECU5は、次に、三相交流 Zdq座標変換部 38で、電流値 iv , iu及び正弦波値 si η Θ reに基づき、 q軸電流値 iq及び d軸電流値 idへ dq変換する(S14)。
[0034] ECU5は、次に、減算手段 24で、 q軸電流指令値 i* qと q軸電流値 iqとの偏差 eq を演算し、減算手段 22で、 0である d軸電流指令値 i*dと d軸電流値 idとの偏差 edを 演算する(S16)。次いで、 q軸電流 PI制御部 28及び d軸電流 PI制御部 26で、偏差 e q及び偏差 edに基づき、 PI制御の為の q軸電圧 Vq及び d軸電圧 Vdを演算する(S 18)。
[0035] ECU5は、次に、制限処理部 30で、 d軸電圧 Vdを d軸電圧指令値 V*dとし、また、 各相の電圧指令値が常に正弦波となるように、 q軸電圧 Vqを
Figure imgf000009_0001
以下に制限した q軸電圧指令値 V*qを作成して、制限処理を行う(S20)。これにより 、図 4に示すように、例えば、 d軸の電圧指令値が Vdcをとる場合、 q軸の電圧指令値 は、
Figure imgf000010_0001
で示される電源電圧を最大限利用することが可能な電圧値 Vqcをとることができる。
[0036] ECU5は、次に、 dqZ三相交流変換部 32及び減算手段 34で、 q軸電圧指令値 V* q及び d軸電圧指令値 V*dに基づき、 dq逆変換 (三相変換)して、三相の u相電圧指 令値 V*u、 V相電圧指令値 V*v及び w相電圧指令値 V*wを演算する(S22)。次い で、三相 PWM変調部 50で、三相の各電圧指令値 V* u , V*v , V*wをパルス幅変 調して、 PWM信号 Su , Sv , Swとし、モータ駆動回路 52で、 PWM信号 Su , Sv , Swにより、各相の界磁コイルと電源及び接地端子との間をスイッチングして各相電 圧を出力し (S24)リターンする。モータ 6は、出力された各相電圧により PWM駆動さ れる。
[0037] 図 5は、ブラシレス DCモータ 6の特性曲線の例であり、 d軸電圧指令値 V*d及び q軸 電圧指令値 V*qを従来通りに制限した場合と、本実施の形態のように制限した場合 とを比較したものである。本実施の形態のように制限した場合、同一回転数であって も、モータ電流及びモータ印加電圧が増大し、出力トルクが増加して、効率が向上す ることが分力ゝる。
[0038] 尚、制限処理部 30は、
Figure imgf000010_0002
により定義される dq座標における円について、例えば 10度毎の Vq値及び Vd値の 対を記憶しておき、与えられた Vd値及び記憶している対に基づく線形補間により Vq 値を求め、求めた Vq値以下に q軸電圧 Vqを制限するようにすると、演算負荷を軽 減できる。
例えば、図 6に示すように、与えられた Vd値の前後に当たる Vdl, Vd2の対 (Vql , Vdl)、 (Vq2, Vd2)を使用して、
Vq = (Vq2-Vql) (Vd Vdl) Z (Vd2— Vdl) +Vql
を演算して線形補間を行う。
[0039] この場合、例えば、図 6において、電気角が 5° , 15° , 25° , ·'··85° の何れか である記憶してある対、例えば (Vqf, Vdf)に d軸電圧指令値 V*d及び q軸電圧指令 値 V*qが該当する場合は、電源電圧利用率は 100%である。また、電源電圧利用率 が最も不利となる、電気角が 0° , 10° , 20° , ·'··90° の何れかである例えば (V qd, Vdd)に d軸電圧指令値 V*d及び q軸電圧指令値 V*qが該当する場合でも、電 源電圧利用率は、理論上 cos5° より求まり、 99.6%まで確保できる。
[0040] 尚、上述した実施の形態 1は、各相の電圧指令値が常に正弦波となるように振幅の 最大値を制限する場合 (n=l)であるが、各相の電圧指令値が常に台形波となるよう に振幅の最大値を制限する場合 (n=2)、及び各相の電圧指令値が常に正弦波に 第三次高調波が重畳するように振幅の最大値を制限する場合 (n=2/^3)でも同 様にすることができる。

Claims

請求の範囲
モータを駆動して操舵補助する電動パワーステアリング装置であって、
操舵部材に加えられた操舵トルクを検出するトルクセンサと、
前記トルクセンサにより検出された操舵トルクに基づき、該モータの dq座標における q軸電流及び d軸電流を定める電流決定手段と、
前記電流決定手段により定められた q軸電流及び d軸電流がモータに流れるように 、電源電圧 Edに基づき q軸電圧 Vq及び d軸電圧 Vdを決定する電圧決定手段と、前 記 q軸電圧
(n = 1 , 2又は 2ZV3)
Figure imgf000012_0001
を満たすように前記 q軸電圧 Vqを制限する制限手段;
前記制限手段により制限された q軸電圧 Vq及び前記電圧決定手段により定められ た d軸電圧 Vdを三相変換して三相電圧を出力する変換手段と、
変換手段力 出力された三相電圧を基にモータを駆動する駆動手段と、 を備える電動パワーステアリング装置。
前記制限手段は、
Figure imgf000012_0002
により定義される dq座標における円について、所定角度毎の Vq値及び Vd値の対 を記憶してあり、与えられた Vd値及び前記対に基づく線形補間により Vq値を求め 、求めた該 Vq値以下に前記 q軸電圧 Vqを制限するように構成してある請求項 1記 載の電動パワーステアリング装置。
PCT/JP2006/307680 2005-04-12 2006-04-11 電動パワーステアリング装置 WO2006109809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06731627A EP1871001A1 (en) 2005-04-12 2006-04-11 Electric power steering system
US11/918,242 US20090069980A1 (en) 2005-04-12 2006-04-11 Electric Power Steering System
JP2007513018A JPWO2006109809A1 (ja) 2005-04-12 2006-04-11 電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005115038 2005-04-12
JP2005-115038 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006109809A1 true WO2006109809A1 (ja) 2006-10-19

Family

ID=37087080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307680 WO2006109809A1 (ja) 2005-04-12 2006-04-11 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20090069980A1 (ja)
EP (1) EP1871001A1 (ja)
JP (1) JPWO2006109809A1 (ja)
CN (1) CN101156313A (ja)
WO (1) WO2006109809A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022074A (ja) * 2007-07-10 2009-01-29 Jtekt Corp モータ制御装置
JP2009044822A (ja) * 2007-08-07 2009-02-26 Jtekt Corp モータ制御装置
WO2009123113A1 (ja) 2008-03-31 2009-10-08 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
US7960940B2 (en) 2007-07-10 2011-06-14 Jtekt Corporation Motor control device
JP2015042017A (ja) * 2013-08-20 2015-03-02 株式会社デンソー 交流電動機の制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090240389A1 (en) * 2006-05-31 2009-09-24 Nsk Ltd Electric power steering apparatus
CN101934814B (zh) * 2009-06-30 2011-11-23 上海联盛汽车电子有限公司 采用pwm变频策略驱动pmsm的电动助力转向***
CN103001579B (zh) * 2012-11-16 2015-04-22 上海交通大学 基于双向dc-dc变换器的直流有源滤波器
US10088546B2 (en) * 2013-08-09 2018-10-02 Eaton Intelligent Power Limited Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
CN108768236A (zh) * 2018-06-07 2018-11-06 深圳市道通智能航空技术有限公司 电机控制方法、装置、电子调速器和无人飞行器
DE102018218587A1 (de) * 2018-10-30 2020-04-30 Audi Ag Verfahren zum Betreiben eines Lenksystems für ein Kraftfahrzeug sowie entsprechendes Lenksystem
JP2020090168A (ja) * 2018-12-05 2020-06-11 株式会社デンソー 電動パワーステアリング装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358393A (ja) * 1999-06-11 2000-12-26 Toyota Motor Corp 電動機制御装置およびその方法
JP2003009598A (ja) * 2001-04-16 2003-01-10 Sanken Electric Co Ltd 交流電動機のベクトル制御装置及び制御方法
JP2003304697A (ja) * 2002-04-09 2003-10-24 Koyo Seiko Co Ltd 電動パワーステアリング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658335B2 (en) * 2001-10-11 2003-12-02 Delphi Technologies, Inc. Method and apparatus for motor velocity measurement compensation in electric power steering damping
JP5055741B2 (ja) * 2005-11-01 2012-10-24 日本精工株式会社 電動パワーステアリング装置の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358393A (ja) * 1999-06-11 2000-12-26 Toyota Motor Corp 電動機制御装置およびその方法
JP2003009598A (ja) * 2001-04-16 2003-01-10 Sanken Electric Co Ltd 交流電動機のベクトル制御装置及び制御方法
JP2003304697A (ja) * 2002-04-09 2003-10-24 Koyo Seiko Co Ltd 電動パワーステアリング装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022074A (ja) * 2007-07-10 2009-01-29 Jtekt Corp モータ制御装置
US7960940B2 (en) 2007-07-10 2011-06-14 Jtekt Corporation Motor control device
JP2009044822A (ja) * 2007-08-07 2009-02-26 Jtekt Corp モータ制御装置
WO2009123113A1 (ja) 2008-03-31 2009-10-08 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
JP2009247147A (ja) * 2008-03-31 2009-10-22 Jtekt Corp モータ制御装置および電動パワーステアリング装置
US8541965B2 (en) 2008-03-31 2013-09-24 Jtekt Corporation Motor controller and electronic power steering apparatus
JP2015042017A (ja) * 2013-08-20 2015-03-02 株式会社デンソー 交流電動機の制御装置

Also Published As

Publication number Publication date
EP1871001A1 (en) 2007-12-26
CN101156313A (zh) 2008-04-02
US20090069980A1 (en) 2009-03-12
JPWO2006109809A1 (ja) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2006109809A1 (ja) 電動パワーステアリング装置
US9979340B2 (en) Apparatus for controlling three phase rotary electric machine reducing peak value of phase current
JP5282376B2 (ja) 電動パワーステアリング装置
JP3480843B2 (ja) 電動パワーステアリング制御装置及び制御方法
US8710775B2 (en) Electric power steering apparatus
US20100250067A1 (en) Vehicular steering control apparatus and method
JP2006335252A (ja) 電動パワーステアリング装置
WO2009123113A1 (ja) モータ制御装置および電動パワーステアリング装置
US20090240389A1 (en) Electric power steering apparatus
WO2005035333A1 (ja) 電動パワーステアリング装置
WO2009087991A1 (ja) モータ制御装置および電動パワーステアリング装置
JP4715919B2 (ja) 電動パワーステアリング装置
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2008015856A1 (fr) Système de direction assistée électrique
JP4899611B2 (ja) 電動パワーステアリング装置
JP2007099066A (ja) 電動パワーステアリング装置
JP5719177B2 (ja) 電動パワーステアリング装置
JP2007325408A (ja) 電動モータ制御装置及びこれを使用した電動パワーステアリング装置
JP2020005388A (ja) モータ制御方法およびモータ制御装置
JP2019047568A (ja) モータ制御装置
JP4622593B2 (ja) 電動パワーステアリング装置
JP2011051410A (ja) 電動パワーステアリング装置
JP2007089287A (ja) モータ制御装置
JP5345433B2 (ja) 操舵制御装置
JP2013005624A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011885.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007513018

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11918242

Country of ref document: US

Ref document number: 2006731627

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731627

Country of ref document: EP