JP2007325408A - 電動モータ制御装置及びこれを使用した電動パワーステアリング装置 - Google Patents

電動モータ制御装置及びこれを使用した電動パワーステアリング装置 Download PDF

Info

Publication number
JP2007325408A
JP2007325408A JP2006152536A JP2006152536A JP2007325408A JP 2007325408 A JP2007325408 A JP 2007325408A JP 2006152536 A JP2006152536 A JP 2006152536A JP 2006152536 A JP2006152536 A JP 2006152536A JP 2007325408 A JP2007325408 A JP 2007325408A
Authority
JP
Japan
Prior art keywords
command value
current command
motor
current
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152536A
Other languages
English (en)
Inventor
Lilit Kovudhikulrungsri
ゴーウッティクンランシー リリット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006152536A priority Critical patent/JP2007325408A/ja
Priority to EP06022063A priority patent/EP1777806A2/en
Priority to US11/584,532 priority patent/US20070107973A1/en
Publication of JP2007325408A publication Critical patent/JP2007325408A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/643

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】電流制御系での位相遅れや高調波成分の減衰を抑制して、トルク一定としながら安定性を確保することができる電動制御装置を提供する。
【解決手段】電流指令値とモータ電流に基づいて前記電動モータ12を制御する電流制御系を有するモータ制御手段20とを備えた電動制御装置であって、前記電動モータ12のモータ角速度を検出するモータ角速度検出手段34を備え、前記モータ制御手段20は、前記モータ角速度検出手段で検出したモータ角速度に基づいて前記電流制御系の特性を考慮してトルク一定となる電流指令値を演算するように構成されている。
【選択図】図3

Description

本発明は、電流指令値とモータ電流に基づいて電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置及びこれを使用した電動パワーステアリング装置に関する。
トルク変動を抑制する電動モータ制御装置としては、モータの誘起起電力波形の歪により生じる電気リップルを抑制するための補償電流の指令値を、単位トルク当たりの補償電流と電気角との関係を示す補償電流マップ及びモータの電流制御系の周波数特性を示す周波数特性マップに基づき、電流制御系での位相遅れを補うべく修正されたモータ電気角θmreに基づき単位トルク当たりの電流補償値Δiq0、Δid0を決定し、補償電流の振幅をモータ負荷に比例させるべくq軸基本電流指令値i q0に応じた係数をこれらの補償値に乗じることにより、電流補償値Δiq1,Δid1を算出し、さらに電流制御系でのゲイン低下を補うべく修正率Rmをそれらの補償値に乗じることにより、補償電流指令値としてq軸及びd軸電流値Δi、Δiを算出するようにした電動パワーステアリング装置が提案されている(例えば、特許文献1参照)。
また、検出したモータ電流を座標変換部によりn次dq軸信号とm次dq軸信号とに変換してから、ローパスフィルタによりそれらの直流成分を抽出し、これらの直流成分と指令値との偏差を再度、三相交流信号に変換してモータ電流制御を行うようにしたモータ制御装置も提案されている(例えば、特許文献2参照)。
特開2004−328814号公報 特開2005−328691号公報
しかしながら、上記特許文献1に記載の従来例にあっては、各相のパラメータがバランスした状態を前提として各相パラメータをdq座標上に変換するので、モータの各相の抵抗変動やバラツキなどがあるとトルクリップルが発生し、操舵フィーリングが悪化してしまうという未解決の課題がある。
また、上記特許文献2に記載の従来例にあっては、高調波の各次数成分のdq変換を行っているため、計算量が非常に多く、演算処理装置の負荷が大きくなると共に、ローパスフィルタを使用して各次成分の直流成分を抽出するので、ローパスフィルタで応答遅れを生じることから制御系の応答特性が低下し、電動モータを低速動作させる場合には安定性を保つことができるが、例えば電動パワーステアリング装置のように低速領域から高速領域までの広い動作範囲を有する場合には、安定性を保障することはできないという未解決の課題がある。
しかも、電流指令値とモータ電流検出値とに基づいてPI制御等を行う電流制御系の応答性による振幅低減及び位相遅れは避けることができず、特に高回転領域で相電流の高次高調波は減衰し、出力低減及びトルク変動の原因となるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、電流制御系での位相遅れや高調波成分の減衰を抑制して、トルク一定としながら安定性を確保することができる電動モータ制御装置及びこれを使用した電動パワーステアリング装置を提供することを目的としている。
上記目的を達成するために、請求項1に係る電動モータ制御装置は、電流指令値とモータ電流に基づいて電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、前記電動モータのモータ角速度を検出するモータ角速度検出手段を備え、前記モータ制御手段は、前記モータ角速度検出手段で検出したモータ角速度に基づいて前記電流制御系の特性を考慮してトルク一定となる電流指令値を演算するように構成されていることを特徴としている。
また、請求項2に係る電動モータ制御装置は、電流指令値とモータ電流に基づいて高次高調波が含まれた誘起電圧を持つ多相電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、前記モータ制御手段は、前記電流制御系の特性を考慮してトルク一定となるように前記各高調波成分の電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えていることを特徴としている。
この請求項2に係る発明では、電流指令値補償手段で、電流制御系の特性を考慮してトルク一定となるように前記各高調波成分の電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償するので、出力を設計値通りに制御すると共に、トルク変動及び作動音を低減することができる。
さらに、請求項3に係る電動モータ制御装置は、電流指令値とモータ電流に基づいて高次高調波が含まれた誘起電圧を持つ多相電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、前記電動モータのモータ角速度を検出するモータ角速度検出手段を備え、前記モータ制御手段は、前記モータ角速度に相当する周波数で回転するd−q座標上において、前記モータ角速度検出手段で検出したモータ角速度に基づいて前記電流制御系の特性を考慮してトルク一定になるように前記多相モータのd−q座標の各次高調波成分における電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えていることを特徴としている。
この請求項3に係る発明では、電流指令値補償手段で、モータ角速度に相当する周波数で回転するd−q座標上において、モータ角速度検出手段で検出したモータ角速度に基づいて電流制御系の特性を考慮してトルク一定になるように前記多相モータのd−q座標の各次高調波成分における電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えているので、d−q座標上で電流補償を行って、出力を設計値通りに制御すると共に、トルク変動及び作動音を低減することができる。
さらにまた、請求項4に係る電動モータ制御装置は、請求項2又は3に係る発明において、前記電流指令値補償手段は、電流制御系での高調波成分の減衰を抑制するモータ角速度と進角量及び振幅補償ゲインとの関係を表す制御マップを有し、前記モータ角速度をもとに前記制御マップを参照して進角量及び振幅補償ゲインを算出するように構成されていることを特徴としている。
なおさらに、請求項5に係る電動パワーステアリング装置は、操舵トルクに基づいてステアリング機構に対して操舵補助力を発生する電動モータを請求項1乃至4の何れかに記載の電動モータ制御装置で制御するようにしたことを特徴としている。
請求項1に係る発明によれば、モータ角速度に基づいて電流制御系の特性を考慮してトルク一定となる電流指令値を算出するので、実際に電動モータに供給する実モータ電流と理想電流とを略一致させて、期待する出力を得ることができると共に、トルク変動と作動音の低減を実現することができ、例えば電動パワーステアリング装置に適用した場合には良好な操舵性能及び操舵フィーリングを得ることができるという効果が得られる。
また、請求項2に係る発明によれば、電流指令値補償手段で、トルク一定となるように前記各高調波成分の電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償するので、出力を設計値通りに制御すると共に、トルク変動及び作動音を低減することができる。
さらに、請求項3に係る発明によれば、電流指令値補償手段で、モータ角速度に相当する周波数で回転するd−q座標上において、モータ角速度検出手段で検出したモータ角速度に基づいてトルク一定になるように前記多相モータのd−q座標の各次高調波成分における電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えているので、d−q座標上で電流補償を行って、出力を設計値通りに制御すると共に、トルク変動及び作動音を低減することができる。
さらにまた、請求項4に係る発明によれば、モータ角速度をもとに制御マップを参照して進角量及び振幅補償ゲインを算出するので、電流制御系の特性を考慮した進角量及び振幅補償ゲインを正確且つ容易に算出することができ、良好な電流補償制御を行うことができる。
なおさらに、請求項5に係る発明によれば、電動パワーステアリング装置の電動モータ制御装置として適用するので、期待する操舵補助力を発生させることができると共に、トルク変動と作動音の低減を実現することができ、良好な操舵性能及び操舵フィーリングを得ることができる。
以下、本発明を電動パワーステアリング装置に適用した場合の実施の形態を図面に基づいて説明する。
図1は、本発明を電動パワーステアリング装置に適用した場合の一実施形態を示す全体構成図であって、図中、1は、ステアリングホイールであり、このステアリングホイール1に運転者から作用される操舵力が入力軸2aと出力軸2bとを有するステアリングシャフト2に伝達される。このステアリングシャフト2は、入力軸2aの一端がステアリングホイール1に連結され、他端は操舵トルク検出手段としての操舵トルクセンサ3を介して出力軸2bの一端に連結されている。
そして、出力軸2bに伝達された操舵力は、ユニバーサルジョイント4を介してロアシャフト5に伝達され、さらに、ユニバーサルジョイント6を介してピニオンシャフト7に伝達される。このピニオンシャフト7に伝達された操舵力はステアリングギヤ8を介してタイロッド9に伝達され、図示しない転舵輪を転舵させる。ここで、ステアリングギヤ8は、ピニオンシャフト7に連結されたピニオン8aとこのピニオン8aに噛合するラック8bとを有するラックアンドピニオン形式に構成され、ピニオン8aに伝達された回転運動をラック8bで直進運動に変換している。
ステアリングシャフト2の出力軸2bには、操舵補助力を出力軸2bに伝達する操舵補助機構10が連結されている。この操舵補助機構10は、出力軸2bに連結した減速ギヤ11と、この減速ギヤ11に連結された操舵補助力を発生する3相ブラシレスモータ12とを備えている。
操舵トルクセンサ3は、ステアリングホイール1に付与されて入力軸2aに伝達された操舵トルクを検出するもので、例えば、操舵トルクを入力軸2a及び出力軸2b間に介挿した図示しないトーションバーの捩れ角変位に変換し、この捩れ角変位を抵抗変化や磁気変化に変換して検出するように構成されている。
また、3相ブラシレスモータ12は、図2に示すように、U相コイルLu、V相コイルLv及びW相コイルLwの一端が互いに接続されてスター結線とされ、各コイルLu、Lv及びLwの他端がモータ制御手段としての操舵補助制御装置20に接続されて個別にモータ駆動電流Iu、Iv及びIwが供給される。また、3相ブラシレスモータ12は、ロータの回転位置を検出するレゾルバ、エンコーダ等で構成されるロータ位置検出回路13を備えている。
操舵補助制御装置20は、図2に示すように、操舵トルクセンサ3で検出された操舵トルクT及び車速センサ21で検出された車速検出値Vsが入力されると共に、ロータ位置検出回路13で検出されたロータ回転角θが入力され、さらに3相ブラシレスモータ12の各相コイルLu、Lv及びLwに供給されるモータ駆動電流Iu、Iv及びIwを検出するモータ電流検出回路22から出力されるモータ駆動電流検出値Iud、Ivd及びIwdが入力されている。
この操舵補助制御装置20は、操舵トルクT及び車速検出値Vsとモータ電流検出値Iud、Ivd及びIwdとロータ回転角θとに基づいて操舵補助目標電流値を演算して、モータ電圧指令値Vu、Vv及びVwを出力する制御演算装置23と、3相ブラシレスモータ12を駆動する電界効果トランジスタ(FET)で構成されるモータ駆動回路24と、制御演算装置23から出力される相電圧指令値Vu、Vv及びVwに基づいてモータ駆動回路24の電界効果トランジスタのゲート電流を制御するFETゲート駆動回路25とを備えている。
制御演算装置23は、図3に示すように、ベクトル制御の優れた特性を利用して3相ブラシレスモータ12をトルク変動を生じることがないように駆動するために、電流制御系即ち電流制御部40での各次高調波成分の減衰を考慮して基本波成分を含めた各次高調波成分のベクトル制御d、q成分の進角と振幅補償とを行って目標電流値i′,i′を決定した後、これら目標電流値i′,i′を各励磁コイルLu〜Lwに対応した各相目標電流値Iu、Iv及びIwに変換して出力する目標電流設定部30と、この目標電流設定部30から出力される各相電流指令値Iu、Iv及びIwとモータ電流検出回路22で検出したモータ電流検出値Iud、Ivd及びIwdとで電流フィードバック処理を行って相電圧指令値Vu、Vv及びVwをFETゲート駆動回路25に出力する電流制御部40とを備えている。
目標電流設定部30は、図3に示すように構成されている。すなわち、目標電流設定部30は、操舵トルクセンサ3で検出した操舵トルクTと車速センサ21で検出した車速検出値Vsとが入力され、これらに基づいて操舵補助電流指令値Irefを算出する操舵補助電流指令値演算部31と、ロータ回転角検出回路13で検出したロータ回転角θを電気角θに変換する電気角変換部32と、この電気角変換部32から出力される電気角θを微分して電気角速度ωを算出する微分回路33と、この微分回路33から出力される電気角速度ωをモータ極対数pで除してモータ角速度ωを算出するモータ角速度検出手段としてのモータ角速度変換部34と、操舵補助電流指令値演算部31から出力される操舵補助電流指令値Irefとモータ角速度ωとに基づいて3相ブラシレスモータ12に流れる電流の励磁電流成分の方向をd軸に設定し、且つトルク電流成分の方向をd軸と直交するq軸に設定した回転するd−q軸直交座標系において、d軸電流指令値直流成分IdDC、6n次電流指令値成分の振幅id6〜id6nで構成されるd軸電流指令値Iと、q軸電流指令値直流成分IqDC、6n次電流指令値成分の振幅iq6〜iq6nで構成されるd軸電流指令値Iとを演算する電流指令値制限部35と、この電流指令値制限部35から出力されるd軸電流指令値I及びq軸電流指令値Iとモータ角速度ω及び電気角θとに基づいて基本波成分を含む各次高調波成分の進角及び振幅補償を行って補償後d軸電流指令値i′、補償後q軸電流指令値i′、進角後電気角θ′を算出する電流指令値補償手段としての各次高調波成分進角及び振幅補償演算部36と、この進角及び振幅補償演算部36で演算した進角後電気角θ′に基づいて補償後d軸電流指令値i′及び補償後q軸電流指令値i′を3相電流指令値Iu、Iv及びIwに変換する2相/3相変換部37とを備えている。
上述した操舵補助電流指令値演算部31は、操舵トルクT及び車速検出値Vsをもとに図4に示す操舵補助電流指令値算出マップを参照して操舵補助電流指令値Irefを算出する。ここで、操舵補助電流指令値算出マップは、図4に示すように、横軸に操舵トルクTをとり、縦軸に操舵補助電流指令値Irefをとると共に、車速検出値Vsをパラメータとした放物線状の曲線で表される特性線図で構成されている。そして、操舵トルクTが“0”からその近傍の設定値Ts1までの間は操舵補助電流指令値Irefが“0”を維持し、操舵トルクTが設定値Ts1を超えると最初は操舵補助電流指令値Irefが操舵トルクTの増加に対して比較的緩やかに増加するが、さらに操舵トルクTが増加すると、その増加に対して操舵補助電流指令値Irefが急峻に増加するように設定され、この特性曲線が、車速が増加するに従って傾きが小さくなるように複数本設定されている。
電流指令値制限部35は、図5に示すように、モータ角速度変換部34から出力されるモータ角速度ωと操舵補助電流指令値演算部31で算出した操舵補助電流指令値Irefとが入力され、モータ角速度ωに基づいて操舵補助電流指令値Irefの上限値を制限すると共に、モータトルクを一定とするd−q座標上のd軸指令値及びq軸指令値を生成する指令値制限部41を有する。
また、電流指令値制限部35は、指令値制限部41から出力される制限された指令値に基づいてd軸電流指令値直流成分IdDCを算出するd軸電流指令値直流成分演算部42と、同様に指令値制限部41から出力される制限された指令値に基づいてq軸電流指令値直流成分IqDCを算出するq軸電流指令値直流成分演算部43とを有する。
さらに、電流指令値制限部35は、d軸電流指令値直流成分演算部42で算出したd軸電流指令値直流成分IdDC及びq軸電流指令値直流成分演算部43で算出したq軸電流指令値直流成分IqDCに基づいてd軸電流指令値6n次成分の振幅id6〜id6nを算出するd軸電流指令値6n次成分振幅演算部44と、同様にd軸電流指令値直流成分IdDC及びq軸電流指令値直流成分IqDCに基づいてq軸電流指令値6n次成分の振幅iq6〜iq6nを算出するq軸電流指令値6n次成分振幅演算部45とを備えている。
そして、d軸電流指令値直流成分演算部42、d軸電流指令値6n次成分振幅演算部44から出力されるd軸指令値直流成分IdDC、d軸指令値6n次成分id6〜id6nが下記(1)式で表される形式でd軸電流指令値Iとして出力される。
また、q軸電流指令値直流成分演算部43、q軸電流指令値6n次成分振幅演算部45から出力されるq軸指令値直流成分IqDC、q軸指令値6n次成分iq6〜iq6nが下記(2)式で表される形式でq軸電流指令値Iとして出力される。
d=[IdDCd6 ……id6n ] …………(1)
q=[IqDCq6 ……iq6n ] …………(2)
ここで、電流指令値制限部35において、モータトルクを一定するd軸指令値直流成分IdDC、d軸指令値6n次成分id6〜id6n及びq軸指令値直流成分IqDC、q軸指令値6n次成分iq6〜iq6nの算出は以下のようにして行う。
すなわち、モータのエネルギバランス方程式からトルク一定の式は、下記(3)式で表すことができる。
(2/3)Ktrefωm =iqq +idd …………(3)
ただし、Kはトルク定数、Irefはトルク系からの電流指令値、ωはモータ回転速度(機械角)、iはq軸電流、iはd軸電流、eはq軸モータ誘起電圧、eはd軸モータ誘起電圧である。
ここで、モータ誘起電圧e及びeは速度感応であり、dq軸の1rad/secの時の誘起電圧をE及びEとすると、
q =Eqωm …………(4)
d =Edωm …………(5)
で表されるので、これらを(3)式に代入して書き換えると、
q={(2/3)Ktref − Edd }/Eq …………(6)
となる。
モータの例えばa相の誘起電圧eは、高次成分が含まれている場合は、下記(7)式で表される。
a=Eaωm=E1ωmsin(ωet)+E3ωmsin(3ωet)+E5ωmsin(5ωet)
+E7ωmsin(7ωet)+………… …………(7)
ただし、Eはa相の1rad/secの時の誘起電圧、E、E、E、E……は1rad/secのときの1、3、5、7、……成分の誘起電圧係数、ωはモータ電気角速度であり、b相及びc相については位相が120°ずれているだけであるので省略する。
上記(7)式の相誘起電圧eをdq変換すると、誘起電圧E及びEは、説明を簡単にするために、9次以上を省略すると、
d=(E5+E7)sin6ωet …………(8)
q=E1−(E5+E7)cos6ωet …………(9)
となる。
電流指令値Irefは前述したように操舵補助電流指令値演算部で算出され、d軸電流の直流成分IdDCは電流制限後の電流指令値Iref′に基づいて図6に示す直流成分算出マップを参照して算出される。
そして、交流d軸を考慮する場合は、d軸電流iは、説明を簡単にするために、12次以上を省略すると、
d=IdDC+(idc6cos6ωet−ids6sin6ωet) ……(10)
と表す。ただし、idc及びidsは余弦及び正弦成分6次d軸電流である。
そして、前記(8)〜(10)式を前記(6)式に代入し、1/Eをテイラー展開し、12次以上を省略すると、
q=IqDC+(iqc6cos6ωet−iqs6sin6ωet) …………(11)
が得られる。
ただし、IqDC=(2/3)Ktref ………(12)
qc6=(E5−E7)IqDC/E1 ………(13)
qs6=(E5+E7)IdDC/E1 ………(14)
6次d軸は6次q軸に依存するため、
dc6∝iqc6 …………(15)
ds6∝iqs6 …………(16)
となる。
したがって、d軸電流指令値直流成分演算部42で制限後電流指令値Iref′に基づいて図6の直流成分算出マップを参照してd軸電流指令値直流成分IdDCを算出し、q軸電流指令値直流成分演算部43で、前記(12)式の演算を行ってq軸電流指令値直流成分IqDCを算出し、d軸電流指令値6n次成分振幅演算部44及びq軸電流指令値6n次成分振幅演算部45では、前記(13)〜(16)式に基づいて6次成分振幅id6及びiq6を算出すると共に、12次以上の6n次成分振幅id12〜id6n及びiq12〜iq6nを算出する。
また、進角及び振幅補償演算部36は、図7に示すように、電気角θ及びモータ角速度ωに基づいて基本波成分の進角演算を行う基本波成分進角量演算部51を備えている。
さらに、進角及び振幅補償演算部36は、d軸電流指令値Id及びモータ角速度ωに基づいて、d軸電流指令値の進角量φd6〜φd6nを演算するd軸電流指令値進角量演算部52、6n次d軸電流指令値の振幅id6〜id6nの振幅補償ゲインGd6〜Gd6nを演算する6n次d軸電流指令値振幅補償ゲイン演算部53、q軸電流指令値Iqの進角量φq6〜φq6nを演算するq軸電流指令値進角演算部54及び6n次q軸電流指令値の振幅iq6〜iq6nの振幅補償ゲインGq6〜Gq6nを演算する6n次q軸電流指令値振幅補償ゲイン演算部55を備えている。
さらにまた、進角及び振幅補償演算部36は、モータ角速度ωに基づいて直流電流指令値振幅補償ゲインGdcを演算する直流電流指令値振幅補償ゲイン演算部56を備えている。
ここで、d軸電流指令値進角量演算部52は、d軸電流指令値Idに基づいてこれが“0”を継続する基本波成分のみを進角制御する基本波進角制御状態であるかd軸電流指令値Idが変化する基本波成分に6n次高調波成分を含めた全進角制御状態であるかを判断する。この判断結果が、d軸電流指令値Idが“0”を継続する基本波進角制御状態であるときには、6次d軸電流指令値の進角量を例にとると、図8(a)に示すように、モータ角速度ωが“0”を含む正値であるときにはモータ角速度ωの値に関わらず正の所定進角量φd1となり、モータ角速度ωが負値であるときにはモータ角速度ωの値に関わらず負の所定進角量−φd1となる進角量算出マップを使用し、モータ角速度ωをもとに進角量算出マップを参照して進角量Φd6を算出し、同様に6n次d軸電流の進角量φd12、φd18……φd6nについても図示しない進角量算出マップを参照して進角量を算出する。
また、上記判断結果が、d軸電流指令値Idが変化する全進角制御状態であるときには、6次d軸電流指令値の進角量を例にとると、図8(b)に示すように、モータ角速度ωが“0”から正値に増加する場合には、モータ角速度ωが“0”であるときには、前記正の所定進角量φd1となり、これからモータ角速度ωが所定値ωa1まで増加する間は比較的緩やかに減少し、次いでモータ角速度ωが所定値ωa2まで増加する間は比較的急峻に減少し、モータ角速度ωが所定値ωa2以上では、比較的緩やかに減少する特性曲線L1が設定され、モータ角速度ωが“0”から負値に増加する場合には、特性曲線L1に対して原点(進角量φd6=0,モータ角速度ω=0)を中心とする点対称形の特性曲線L2が設定された進角量算出用マップを使用し、モータ角速度ωをもとに進角量算出用マップを参照して進角量φd6を算出し、同様に6n次d軸電流指令値の進角量φd12、φd18……φd6nについても図示しない進角量算出マップを参照して進角量を算出する。
また、6n次d軸電流指令値振幅補償ゲイン演算部53でも、d軸電流指令値Idに基づいてこれが“0”を継続する基本波進角制御状態であるかd軸電流指令値Idが変化する全進角制御状態であるかを判断する。この判断結果が、d軸電流指令値Idが“0”を継続する基本波進角制御状態であるときには、6次d軸電流指令値の振幅補償ゲインGdを例にとると、図9(a)に示すように、モータ角速度ωの値に関わらず振幅補償ゲインGdは“0”を維持する6次電流指令値振幅補償ゲイン算出用マップを使用し、モータ角速度ωをもとに6次電流指令値振幅補償ゲイン算出用マップを参照して6次電流指令値振幅補償ゲインGd=0を算出し、同様に図示しないが6n次電流指令値振幅補償ゲイン算出用マップを参照して6n次電流指令値振幅補償ゲインGd12、Gd18……Gd6nを算出する。
また、上記判断結果が、d軸電流指令値Idが変化する基本波進角制御状態であるときには、6次d軸電流指令値の振幅ゲインGdを例にとると、図9(b)に示すように、モータ角速度ωが“0”から正値に増加する場合には、モータ角速度ωが“0”から正の所定値ωg1までの間は、振幅補償ゲインGdが“0”となり、モータ角速度ωが所定値ωg1を超えて所定値ωg2に達するまでの間でモータ角速度ωの増加に応じて比較的急峻に振幅補償ゲインが増加し、所定値ωg2を超えるとモータ角速度ωの増加に応じて比較的緩やかに振幅補償ゲインが増加する折れ線上の特性線L3が設定され、モータ角速度ωが“0”から負値に増加する場合には、特性曲線L3に対して原点(進角量φd6=0,モータ角速度ω=0)を中心とする点対称形の特性曲線L4が設定された6次電流指令値振幅補償ゲイン算出マップを参照して振幅補償ゲインGdを算出し、同様に図示しないが6n次電流指令値振幅補償ゲイン算出用マップを参照して6n次電流指令値振幅補償ゲインGd12、Gd18……Gd6nを算出する。
さらに、q軸電流指令値進角量演算部54は、d軸電流指令値Idに基づいてこれが“0”を継続する基本波進角制御状態であるかd軸電流指令値Idが変化する全進角制御状態であるかを判断する。この判断結果が、d軸電流指令値Idが“0”を継続する基本波進角制御状態であるときには、6次q軸電流指令値の進角量φq6を例にとると、図10(a)に示すように、モータ角速度ωの値に関わらず進角量Φq6は“0”を維持するd軸電流指令値進角量算出用マップを使用し、モータ角速度ωをもとに進角量算出用マップを参照してd軸電流指令値進角量Φq6を算出し、同様に6n次d軸電流の進角量Φq12、Φq18……Φq6nについても図示しない進角量算出マップを参照して進角量を算出する。
また、上記判断結果が、d軸電流指令値Idが変化する全進角制御状態であるときには、6次q軸電流指令値の進角量φq6を例にとると、図10(b)に示すように、モータ角速度ωが“0”から正値に増加する場合には、モータ角速度ωが“0”から正の所定値ωa3までの間は、進角量φq6が“0”となり、モータ角速度ωが所定値ωa3を超えるとモータ角速度ωの増加に応じてq軸進角量φq6が負方向に増加する放物線状の特性曲線L5が設定され、モータ角速度ωが“0”から負値に増加する場合には、特性曲線L5に対して原点(進角量φq6=0,モータ角速度ω=0)を中心とする点対称形の特性曲線L6が設定された進角量算出用マップを使用し、モータ角速度ωをもとに進角量算出用マップを参照してq軸進角量φq6を算出し、同様に6n次d軸電流の進角量φq12、φq18……φq6nについても図示しない進角量算出マップを参照して進角量を算出する。
さらにまた、6n次q軸電流指令値振幅補償ゲイン演算部55では、d軸電流指令値Idに基づいてこれが“0”を継続する基本波進角制御状態であるかd軸電流指令値Idが変化する全進角制御状態であるかを判断する。この判断結果が、d軸電流指令値Idが“0”を継続する基本波進角制御状態であるときには、6次q軸電流指令値の振幅補償ゲインを例にとると、図11(a)に示すように、モータ角速度ωの値が“0”であるときに振幅補償ゲインGq6が正の所定値Ga2となり、これよりモータ角速度ωの値が正方向に増加すると、その増加に応じて振幅補償ゲインGq6が非線形に増加する放物線状の特性曲線L7が設定され、モータ角速度ωが“0”から負方向に増加する場合には、特性曲線L7に対して振幅補償ゲイン軸を対称線とする線対称の特性曲線L8が設定された6次q軸電流指令値振幅補償ゲイン算出用マップを使用し、モータ角速度ωをもとに6次q軸電流指令値振幅補償ゲインGq6を算出し、同様に図示しないが6n次電流指令値振幅補償ゲイン算出用マップを参照して6n次電流指令値振幅補償ゲインGq12、Gq18……Gq6nを算出する。
また、上記判断結果が、d軸電流指令値Idが変化する全進角制御状態であるときには、6次q軸電流指令値の振幅補償ゲインを例にとると、図11(b)に示すように、図11(a)と同様の放物線状の特性曲線L9及びL10が設定された6n次q軸電流指令値振幅補償ゲイン算出用マップを使用し、モータ角速度ωをもとに振幅補償ゲイン算出用マップを参照して6n次q軸電流指令値振幅補償ゲインGq6を算出し、同様に図示しないが6n次電流指令値振幅補償ゲイン算出用マップを参照して6n次電流指令値振幅補償ゲインGq12、Gq18……Gq6nを算出する。
なおさらに、直流電流指令値振幅補償ゲイン演算部56は、図12に示すように、基本波進角制御状態及び全進角制御状態に関わらずモータ角速度ωが“0”であるときに、所定値GD1の振幅補償ゲインGDとなり、これからモータ角速度ωが正又は負方向に増加するとこれに応じて振幅補償ゲインGDが非線形に増加する放物線状の特性曲線L11及びL12が設定された振幅補償ゲイン算出用マップを有し、このモータ角速度ωをもとに振幅補償ゲイン算出用マップを参照して直流指令値振幅補償ゲインGDを算出する。
これら図8〜図12に示す制御マップは、電流制御系即ち電流制御部40での各次高調波成分の減衰を考慮して、これら減衰分を補償するように各特性線が設定されている。
そして、電気角変換部32からに入力され基本波成分進角量演算部51で進角された電気角θ′を乗算器57で6n倍してからd軸進角演算部58及びq軸進角演算部59に供給し、d軸進角演算部58で6n倍した基本波成分進角後電気角6θ′とd軸電流指令値進角量演算部52で演算したd軸進角量φd6〜φd6nとに基づいて進角演算を行い、sin(6θ′+φd6)、sin(12θ′+φd12)、……、sin(6nθ′+φd6n)を算出し、これらを個別に出力する。
同様に、q軸進角演算部58で6n倍した基本波成分進角後電気角6θ′とq軸電流指令値進角量演算部54で演算したq軸進角量φq6〜φq6nとに基づいて進角演算を行い、sin(6θ′+φq6)、sin(12θ′+φq12)、……、sin(6nθ′+φq6n)を算出する。
一方、6n次d軸電流指令値振幅補償ゲイン演算部53から出力されるd軸電流指令値6n次成分id6〜id6nは乗算器MULd1〜MULd16nに供給され、これら乗算器MULd1〜MULd16nで、d軸電流指令値6n次成分id6〜id6nに6n次d軸電流指令値振幅補償ゲイン演算部53から出力される6n次d軸電流指令値の振幅補償ゲインGdd6〜Gdd6nを乗算する。
そして、乗算器MULd1〜MULd16nから出力される乗算出力id6・Gdd6〜id6n・Gdd6nを乗算器MULd2〜MULd26nで、進角演算部58から出力される進角出力sin(6θ′+φd6)〜sin(6nθ′+φd6n)に乗算する。一方、電流指令値制限部35から出力されるd軸電流指令直流成分IdDCが乗算器MULd3に供給されて、この乗算器MULd3でd軸電流指令値直流成分IdDCに直流電流指令値振幅補償ゲイン演算部56で算出された振幅補償ゲインGDCが乗算され、この乗算値IdDC・GDCが加算器ADDdに供給されて乗算器MULd2〜MULd26nの乗算出力に加算されて下記(17)式で表される補償後d軸電流指令値i′が算出される。
d′=IdDC・GDC+id6・Gd6sin(6θe′+φd6
+id12・Gd12sin(12θe′+φd12)+……
+id6n・Gd6nsin(6nθe′+φd6n) …………(17)
同様に、補償後q軸電流指令値i′についても、乗算器MULq1〜MULq16n、MULq2〜MULq26n、MULq3及び加算器ADDqによって乗算及び加算が行われて、下記(18)式に示す補償後q軸電流指令値i′が算出される。
q′=IqDC・GDC+iq6・Gq6sin(6θe′+φq6
+iq12・Gq12sin(12θe′+φq12)+……
+iq6n・Gq6nsin(6nθe′+φd6n) …………(18)
そして、各次高調波成分進角及び振幅補償演算部36から出力される進角後電気角θ′、補償後d軸電流指令値i′及び補償後q軸電流指令値i′が2相/3相変換部37に供給されて、ブラシレスモータ12のU相、V相及びW相の電流指令値Iu,Iv及びIwに変換される。
電流制御部40は、目標電流設定部30から供給される電流指令値Iu,Iv,Iwから電流検出回路22で検出した各相コイルLu、Lv、Lwに流れるモータ相電流検出値Iud、Ivd、Iwdを減算して各相電流誤差ΔIu、ΔIv、ΔIwを求める減算器71u、71v及び71wと、求めた各相電流誤差ΔIu、ΔIv、ΔIwに対して比例積分制御を行って相電圧指令値Vu、Vv、Vwを算出するPI制御部72とを備えている。
そして、PI制御部72から出力される相電圧指令値Vu、Vv、VwがFETゲート駆動回路25に供給される。
モータ駆動回路24は、図2に示すように、各相コイルLu、Lv及びLwに対応して直列に接続されたNチャンネルMOSFETで構成されるスイッチング素子Qua,Qub、Qva,Qvb及びQwa,Qwbを並列に接続したインバータ構成を有し、スイッチング素子Qua,Qubの接続点、Qva,Qvbの接続点及びQwa,Qwbの接続点が夫々相コイルLu、Lv及びLwの中性点Pnとは反対側に接続されている。
そして、モータ駆動回路24を構成する各スイッチング素子Qua,Qub、Qva,Qvb及びQwa,QwbのゲートにFETゲート駆動回路25から出力されるPWM(パルス幅変調)信号が供給されている。
次に、上記実施形態の動作を説明する。
今、ステアリングホイール1を操舵すると、そのときの操舵トルクTが操舵トルクセンサ3で検出されると共に、車速検出値Vsが車速センサ21で検出される。そして、検出された操舵トルクT及び車速検出値Vsが制御演算装置23の目標電流設定部30における操舵補助電流指令値演算部31に入力されることにより、この操舵補助電流指令値演算部31で、図4の操舵補助電流指令値算出マップを参照して操舵補助電流指令値Irefを算出する。
そして、算出された操舵補助電流指令値Irefが電流指令値制限部35で、モータ角速度ωに基づいて上限値が制限されると共に、前述した(1)式で表されるd軸電流指令値直流成分IdDC及びd軸電流指令値6n次成分の振幅id6〜id6nで構成されるd軸電流指令値Iと、前述した(2)式で表されるq軸電流指令値直流成分IqDC及びq軸電流指令値6n次成分の振幅iq6〜iq6nで構成されるq軸電流指令値Iとが各次高調波成分進角及び振幅補償演算部36に出力される。
この各次高調波成分進角振幅補償演算部36では、基本波成分進角量演算部51で補償後基本波成分進角量θ′を算出し、且つd軸電流指令値進角量演算部52、6n次d軸電流指令値振幅補償ゲイン演算部53、q軸電流指令値進角量演算部54、6n次q軸電流指令値振幅補償ゲイン演算部55及び直流電流指令値振幅補償ゲイン演算部56で夫々モータ角速度ωに基づいて制御マップを参照してd軸進角量φd6〜φd6n、d軸振幅補償ゲインGd6〜Gd6n、q軸進角量φq6〜φq6n、q軸振幅補償ゲインGq6〜Gq6nを算出し、これらに基づいて前述した(17)式及び(18)式で表される補償後d軸電流指令値i′及び補償後q軸電流指令値i′を算出し、算出した補償後基本波成分進角量θ′と補償後d軸電流指令値i′及び補償後q軸電流指令値i′とを2相/3相変換部37に供給して、3相電流指令値Iu、Iv及びIwを算出する。
そして、算出された3相電流指令値Iu、Iv及びIwを電流制御部40に入力する。この電流制御部40では、3相電流指令値Iu、Iv及びIwとモータ電流検出回路22で検出した各相電流検出値Iud、Ivd及びIwdとの偏差ΔIu、ΔIv及びΔIwをPI制御部72でPI制御して電圧指令値Vu、Vv及びVwを算出し、これをFETゲート駆動回路25に供給することにより、電圧指令値Vu、Vv及びVwに応じたデューティ比のパルス幅変調信号をモータ駆動回路24に供給して、モータ駆動回路24からモータ駆動電流をブラシレスモータ12に供給する。
これによって、ブラシレスモータ12で操舵トルクTに応じた操舵補助力を発生し、この操舵補助力か減速ギヤ機構11を介してステアリングシャフト2に伝達されることにより、ステアリングホイール1を軽い操舵力で操舵することができる。
このとき、各次高調波成分進角及び振幅補償演算部36で、モータ角速度ωに基づいて制御マップを参照して、d軸進角量φd6〜φd6n、d軸振幅補償ゲインGd6〜Gd6n、q軸進角量φq6〜φq6n、q軸振幅補償ゲインGq6〜Gq6nを算出し、これらに基づいて前述した(17)式及び(18)式で表される補償後d軸電流指令値i′及び補償後q軸電流指令値i′を算出するが、d軸電流指令値Iが“0”である基本波進角制御時には、d軸進角量φd6〜φd6nはモータ角速度ωが零を含む正の値であるときにはその値にかかわらず所定値φd1を維持し、モータ角速度ωが負の値であるときにはその値に関わらずd軸の進角量φd6〜φd6nが所定値−φd1を維持する。しかしながら、6n次d軸電流指令値振幅補償ゲインGd6〜Gd6nが“0”となるので、d軸電流指令値6n次成分は“0”となり、d軸電流直流成分IdDCも“0”となるので、加算器ADDdから出力されるd軸電流指令値i′も零を維持する。
これに対してq軸電流指令値i′については、q軸進角量φq6〜φq6nは“0”に設定されるが、q軸6n次電流指令値振幅補償ゲインは、少なくともq軸6次電流指令値振幅補償ゲインGqが、図11の制御マップに示すように、モータ角速度ωが“0”のときに正の所定値Ga2となり、これからモータ角速度ωの絶対値が増加するに応じてq軸6次電流指令値振幅補償ゲインが正方向に比較的急峻に増加し、他のq軸6n次電流指令値振幅補償ゲインも同様の傾向となることにより、q軸電流指令値の6n次成分が増加補償された補償後d軸電流指令値i′を得ることができる。
また、d電流指令値Iが“0”ではない全進角制御時には、モータ角速度ωが増加するに応じてd軸進角量φd6〜φd6nが減少するが、d軸6n次成分の振幅補償ゲインGd6〜Gd6nは増加することにより、d軸電流指令値の6n次高調波成分が増加補償された補償後q軸電流補償値i′を得ることができる。
さらに、d軸電流指令値及びq軸電流指令値の直流成分IdDC及びIqDCについても、同様に、q軸電流指令値6n次成分と同様にモータ角速度ωが増加するにつれて補償ゲインGDが増加することにより、直流成分IdDC及びIqDCが増加補償されて、補償後d軸電流指令値i′及び補償後q軸電流指令値i′が増加される。
このため、トルク一定の状態を維持しながら、電流制御系の特性による各次高調波成分の減衰分を補償して、設計通りの理想電流をブラシレスモータ12に供給することができ、ブラシレスモータ12を高速回転制御する場合の高次高調波の減衰を確実に防止し、ブラシレスモータ12の出力低減及びトルク変動を確実に防止することができる。
また、高次高調波成分の補償をd−q座標上で行うようにしているので、三相電流指令値を夫々の高調波成分をフィルタ等を利用して分離する必要がなく、演算量を減少させることができ、演算処理装置の演算負荷を低減させることが可能となり、高価な演算処理装置を適用することなく、高次高調波成分の補償を行うことができる。しかも、d−q座標系では、3相電流の6n±1次(n=1,2,3,……)高調波を座標変換したときに、6n次(n=1,2,3,……)となるので、基本波を含めて各次成分の等価的な進角量及び振幅補償ゲインを予め計算又は実験によって容易に設定することができる。
さらに、d軸指令値進角量演算部52、6n次d軸電流指令値振幅補償ゲイン演算部53、q軸電流指令値進角量演算部54、6n次q軸電流指令値振幅補償ゲイン演算部55及び直流電流指令値振幅補償ゲイン演算部56で夫々電流制御系での高調波成分の減衰を考慮した制御マップを使用して、モータ角速度をもとに制御マップを参照して進角量及び振幅補償ゲインを算出するので、進角量及び振幅補償ゲインを正確に且つ容易に算出することができる。
さらに、上述したようにブラシレスモータ12を出力低減及びトルク変動を確実に防止して駆動することができるので、このブラシレスモータ12で発生する操舵補助力を、減速ギヤ機構11を介してステアリングシャフト2に伝達したときに、ステアリングホイールにトルク変動が発生することを確実に防止することができ、運転者に良好な操舵感覚を与えることができる。
なお、上記第1の実施形態においては、各次高調波成分進角及び振幅補償演算部36で、進角量φd6〜φd6n及びφq6〜φq6nと6n次成分補償ゲインGd6〜Gd6n及びGq6〜Gq6nと直流成分補償ゲインGDとを算出する場合について説明したが、これに限定されるものではなく、進角量及び6n次成分補償ゲインの何れか一方を省略するようにしてもよい。
また、上記第1の実施形態においては、補償後d軸電流指令値i′及び補償後q軸電流指令値i′を2相/3相変換部37で3相目標電流Iu、Iv及びIwに変換してから電流制御部40に供給する場合について説明したが、これに限定されるものではなく、2相/3相変換部37を省略し、これに代えて電流検出回路22で検出したモータ電流Idu、Idv及びIdwを3相/2相変換部に供給してd軸検出電流及びq軸検出電流に変換し、変換したd軸検出電流及びq軸検出電流と、目標電流設定部30で算出した補償後d軸電流指令値i′及びq軸電流指令値i′との偏差を算出した後、偏差を2相/3相変換して相制御電圧を算出するようにしてもよい。
さらに、上記第1の実施形態においては、電動モータが3相モータである場合について説明したが、これに限定されるものではなく、3を超える相数を有する多相モータにも本発明を適用することができる。
次に、本発明の第2の実施形態を図13について説明する。
この第2の実施形態では、d軸指令値及びq軸指令値から6n±1次高調波成分を抽出し、抽出した6n±1次高調波成分を個別に振幅補償してから加算することにより、m相ブラシレスモータの第1相目標電流〜第m相目標電流を算出するようにしたものである。
すなわち、第2の実施形態では、目標電流設定部30が、図13に示すように、構成されている。この目標電流設定部30は、前述した第1の実施形態と同様に、操舵補助電流指令値演算部31から出力される操舵補助電流指令値Irefを電流指令値制限32に入力して、この電流指令値制限部82で、下記(19)式及び(20)式で表される前述した(1)式及び(2)式と同様のベクトル形式のd軸電流指令値I及びq軸電流指令値Iを算出し、算出したd軸電流指令値I及びq軸電流指令値Iを各次数成分抽出器83に入力して、この各次数成分抽出器83で、基本波成分となる第1次相電流相当のdq軸電流指令値Id1,Iq1、第5次高調波相電流相当のdq軸電流指令値Id5,Iq5、第7次高調波相電流相当のdq軸電流指令値Id7,Iq7、……、第6n±1次高調波相電流相当のdq軸電流指令値Id6n±1,Iq6n±1を分離抽出する。
d=[Id1d5d7 ……Id(6n±1)] …………(19)
q=[Iq1q5q7 ……Iq(6n±1)] …………(20)
ここで、Id1〜Id(6n±1)は1次相電流相当d軸電流〜6n±1次相電流相当d軸電流、Iq1〜Iq(6n±1)は1次相電流相当q軸電流〜6n±1次相電流相当q軸電流である。
そして、分離抽出した各dq軸電流指令値Id1,Iq1;Id5,Iq5;Id7,Iq7;……;Id(6n±1),Iq(6n±1)を個別にdq2相信号をブラシレスモータ12のm相信号に変換する1次2相/m相変換器TR、5次2相/m相変換器TR、……、6n±1次2相/m相変換器TRに供給する。これら変換器TR〜TRには、電気角θ及びモータ角速度ωが入力されて各次の進角量φ〜φ6n±1を算出して各次成分電気角ωt〜(6n±1)ωtに加算した進角後各次電気角(ωt+φ)〜((6n±1)ωt+φ6n±1)を算出する進角量演算部84から出力される進角後各次電気角(ωt+φ)〜((6n±1)ωt+φ6n±1)が入力され、これら進角後各次電気角(ωt+φ)〜((6n±1)ωt+φ6n±1)に基づいて2相/m相変換を行って、下記(21)式に示す各相1次相電流i〜各相6n±1次相電流i6n±1を算出する。
Figure 2007325408
そして、算出した各相1次相電流i〜各相6n±1次相電流i6n±1を個別に1次成分振幅補償器AC〜6n±1次成分振幅補償器ACに供給して、これら1次成分振幅補償器AC〜6n±1次成分振幅補償器ACで、下記(22)式に示すように、電流制御系で生じる高調波成分の振幅減衰を補償する振幅ゲインg〜g6n±1を除して補償後各相1次相電流i′〜各相6n±1次相電流i6n±1′を算出する。
Figure 2007325408
そして、算出した補償後各相1次相電流I′〜各相6n±1次相電流I6n±1から各相電流を個別に抽出して、第1相成分加算器ADD〜第m相成分加算器ADDに入力することにより、第1相目標電流i 〜第m相目標電流i を算出し、これらを電圧制御部40に出力する。
ここで、進角量演算部84では、図14に示すように、横軸にモータ角速度ωをとり、縦軸に進角量をとり、各次進角量φ〜φ6n±1をパラメータとした特性直線が設定された制御マップを有する。この制御マップは、電流制御系での高調波成分の減衰を考慮して、1次進角量φについては比較的緩やかな傾斜の特性直線Lで表され、この1次進角量φより進角量の次数が増加するにつれて傾きが大きくなる特性直線L、L……が設定されている。そして、モータ角速度ωをもとに図14の制御マップを参照して1次進角量φ、5次進角量φ、7次進角量φ、……、6n±1次進角量φ6n±1を算出し、算出した1次進角量φ〜6n±1次進角量φ6n±1を各次電気角ωt〜(6n±1)ωtに加算することにより、補償後各次電気角θe1′〜θe6n±1′を算出し、算出した補償後各次電気角θe1′〜θe6n±1′を1次2相/m相変換器TR〜6n±1次2相/m変換器TRに供給する。
また、1次成分振幅補償器AC〜6n±1次成分振幅補償器ACでは、モータ角速度ωをもとに図15に示すモータ角速度ωと補償ゲインとの関係を表す制御マップを参照して1次〜6n±1次成分の補償ゲインg〜g6n±1を算出する。この制御マップは、図15に示すように、横軸にモータ角速度ωをとり、縦軸に補償ゲインの値をとり、次数をパラメータとした放物線上の特性曲線で設定され、電流制御系での高調波成分の減衰を考慮して次数が1次から大きくなるにつれて特性曲線の曲率が小さくなるように設定されている。
次に、上記第2の実施形態の動作を説明する。
操舵補助電流指令値演算部31で算出された操舵トルクTに応じた操舵補助電流指令値Irefを電流指令値制限部82で、前記(19)式及び(20)式で表されるd軸電流指令値I及びq軸電流指令値Iを算出し、算出したd軸電流指令値I及びq軸電流指令値Iを各成分抽出器83で1次相電流相当dq電流Id1,Iq1〜6n±1次相電流相当dq軸電流Id(6n±1),Iq(6n±1)を分離して抽出し、これら抽出したdq軸電流を1次2相/m相変換器TR〜6n±1次2相/m相変換器TRで進角量演算部84で算出された進角後各次電気角θe1′〜θe6n±1′に基づいて相変換を行って各相1次相電流〜各相6n±1次相電流を算出し、算出した各相1次相電流〜各相6n±1次相電流を個別に振幅補償部AC〜ACで振幅補償を行うようにしている。
このため、一般的には、ブラシレスモータ12の例えばA相(第1相)に対する電流指令値をi としたときに、このA相電流指令値i は下記(23)式で表すことができる。
1 =I1sinωet+I5sin5ωet+……+I6n±1sin(6n±1)ωe
………………(23)
但し、I、I、……I6n±1は各次成分の電流の振幅、ωはモータ電気角速度、tは時間、nは自然数である。
この(23)式はトルク一定の式から得られた電流波形、つまり理想的な電流波形であるが、実際にブラシレスモータ12に供給される実電流は、電流制御系の特性により、下記(24)式で表されるように減衰する。
1=g11sin(ωet−φ1)+g55sin(5ωet−φ5
+……+g6n±16n±1sin{(6n±1)ωet−φ6n±1}……(24)
但し、g〜g6n±1は各次成分の振幅低減率、φ〜φ6n±1は各次成分の位相遅れである。
この(24)式から実際にブラシレスモータ12に流れる実電流iは理想的な波形でないことが分かる。
しかしながら、本実施形態では、進角量演算部84で電流制御系の特性による位相遅れを解消する進角量を算出すると共に、各次成分振幅補償器AC〜ACで、振幅低減率g〜g6n±1を除算して振幅補償するので、加算器ADDから出力されるA相目標電流I は、下記(25)式のように表されることになり、電流制御系での位相遅れと振幅減少を補償してブラシレスモータ12に供給する実電流を前述した(23)式で表されるように理想電流とすることができる。
1=(1/g1)I1sin(ωet+φ1)+(1/g5)I5sin(5ωet+φ5
+……+(1/g6n±1)I6n±1sin{(6n±1)ωet+φ6n±1}……(25)
したがって、トルク一定の状態を維持しながら、電流制御系の特性による各次高調波成分の減衰分を補償して、設計通りの理想電流をブラシレスモータ12に供給することができ、ブラシレスモータを出力の低減及びトルクリップルを生じることを最適状態で駆動制御することができる。しかも、進角量及び振幅補償ゲインをモータ角速度をもとに制御マップを参照して算出するので、進角量及び振幅補償ゲインを正確且つ容易に算出することかできる。
このため、ブラシレスモータ12を操舵系に対して操舵補助力を発生する電動パワーステアリング装置の駆動モータとして適用することにより、高速操舵時の応答性を向上させることができると共に、トルクリップルを抑制して操舵感覚を向上させることができる。
なお、上記第2の実施形態においても、進角量及び振幅の双方を補償する場合について説明したが、これに限定されるものではなく、進角量及び振幅の何れか一方のみを補償するようにしてもよい。
また、上記第1及び第2の実施形態においては、本発明を電動パワーステアリング装置に適用した場合について説明したが、これに限定されるものではなく、電動チルト装置、電動テレスコ装置等に適用する車載用の電動モータ制御装置やその他の一般的な電動モータを備えた機器に適用する電動モータ制御装置に本発明を適用することができる。
本発明の一実施形態を示す全体構成図である。 操舵補助制御装置の一例を示すブロック図である。 図2の制御演算装置23の具体的構成を示すブロック図である。 操舵補助電流指令値算出マップを示す特性線図である。 図3の電流指令値制限部の具体的構成を示すブロック図である。 制限後電流指令値Iref′とd軸電流指令値直流成分idDCとの関係を表すd軸電流指令値直流成分算出マップを示す特性線図である。 図3の各時高調波成分進角及び振幅補償演算部の具体的構成を示すブロック図である。 d軸電流指令値進角量を算出する制御マップを示す特性線図である。 6次d軸電流指令値振幅補償ゲインを算出する制御マップを示す特性線図である。 q軸電流指令値進角量を算出する制御マップを示す特性線図である。 6n次q軸電流指令値振幅補償ゲインを算出する制御マップを示す特性線図である。 直流電流指令値振幅補償ゲインを算出する制御マップを示す特性線図である。 本発明の第2の実施形態を示す目標電流設定部の具体的構成を示すブロック図である。 第2の実施形態における各次成分の進角量を算出する制御マップを示す特性線図である。 第2の実施形態における振幅補償ゲインを算出する制御マップである。
符号の説明
1…ステアリングホイール、2…ステアリングシャフト、3…トルクセンサ、10…操舵補助機構、11…減速ギヤ、12…3相ブラシレスモータ、20…操舵補助制御装置、21…車速センサ、24…モータ駆動回路、25…FETゲート駆動回路、30…目標電流設定部、31…操舵補助電流指令値演算部、32…電気角変換部、33…微分回路、34…モータ角速度変換部、35…電流指令値制限部、36…各次高調波成分進角及び振幅補償演算部、37…2相/3相変換部、40…電流制御部、41指令値制限部、42…d軸電流指令値直流成分演算部、43…q軸電流指令値直流成分演算部、44…d軸電流指令値6n次成分振幅演算部、45…q軸電流指令値6n次成分振幅演算部、51…基本波成分進角量演算部、52…d軸電流指令値進角量演算部、53…6n次d軸電流指令値振幅補償ゲイン演算部、54…q軸電流指令値進角量演算部、55…6n次q軸電流指令値振幅補償ゲイン演算部、56…直流電流指令値振幅補償ゲイン演算部、58,59…進角演算部、MULd1〜MULd16n、MULd2〜MULd6n、MULq1〜MULq16n、MULq2〜MULq26n、MULd3、MULq3…乗算器、ADDd,ADDq…加算器、82…電流指令値制限部、83…各成分抽出器、TR〜TR…2相/m相変換器、AC〜AC…振幅補償器,ADD〜ADD…加算器

Claims (5)

  1. 電流指令値とモータ電流に基づいて電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、
    前記電動モータのモータ角速度を検出するモータ角速度検出手段を備え、前記モータ制御手段は、前記モータ角速度検出手段で検出したモータ角速度に基づいて前記電流制御系の特性を考慮してトルク一定となる電流指令値を演算するように構成されていることを特徴とする電動モータ制御装置。
  2. 電流指令値とモータ電流に基づいて高次高調波が含まれた誘起電圧を持つ多相電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、
    前記モータ制御手段は、前記電流制御系の特性を考慮してトルク一定となるように前記各高調波成分の電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えていることを特徴とする電動モータ制御装置。
  3. 電流指令値とモータ電流に基づいて高次高調波が含まれた誘起電圧を持つ多相電動モータを制御する電流制御系を有するモータ制御手段を備えた電動モータ制御装置であって、
    前記電動モータのモータ角速度を検出するモータ角速度検出手段を備え、前記モータ制御手段は、前記モータ角速度に相当する周波数で回転するd−q座標上において、前記モータ角速度検出手段で検出したモータ角速度に基づいて前記電流制御系の特性を考慮してトルク一定になるように前記多相モータのd−q座標の各次高調波成分における電流指令値の進角量及び振幅補償値を演算し、演算した進角量及び振幅補償値に基づいて前記多相電動モータの電流指令値を補償する電流指令値補償手段を備えていることを特徴とする電動モータ制御装置。
  4. 前記電流指令値補償手段は、電流制御系での高調波成分の減衰を抑制するモータ角速度と進角量及び振幅補償ゲインとの関係を表す制御マップを有し、前記モータ角速度をもとに前記制御マップを参照して進角量及び振幅補償ゲインを算出するように構成されていることを特徴とする請求項2又は3に記載の電動モータ制御装置。
  5. 操舵トルクに基づいてステアリング機構に対して操舵補助力を発生する電動モータを請求項1乃至4の何れかに記載の電動モータ制御装置で制御するようにしたことを特徴とする電動パワーステアリング装置。
JP2006152536A 2005-10-21 2006-05-31 電動モータ制御装置及びこれを使用した電動パワーステアリング装置 Pending JP2007325408A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006152536A JP2007325408A (ja) 2006-05-31 2006-05-31 電動モータ制御装置及びこれを使用した電動パワーステアリング装置
EP06022063A EP1777806A2 (en) 2005-10-21 2006-10-20 Motor drive control apparatus and electric power steering apparatus
US11/584,532 US20070107973A1 (en) 2005-10-21 2006-10-23 Motor drive control apparatus and electric power steering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152536A JP2007325408A (ja) 2006-05-31 2006-05-31 電動モータ制御装置及びこれを使用した電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
JP2007325408A true JP2007325408A (ja) 2007-12-13

Family

ID=38857708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152536A Pending JP2007325408A (ja) 2005-10-21 2006-05-31 電動モータ制御装置及びこれを使用した電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP2007325408A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104059A1 (ja) * 2009-03-09 2010-09-16 日本電気株式会社 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム
JP2011230604A (ja) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2013183620A (ja) * 2012-03-05 2013-09-12 Daihen Corp モータ駆動用インバータ回路の制御回路、および、当該制御回路を備えたインバータ装置
WO2017064946A1 (ja) * 2015-10-16 2017-04-20 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
CN106063112B (zh) * 2014-03-19 2018-10-02 日立汽车***株式会社 动力转向装置以及动力转向装置用控制装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104059A1 (ja) * 2009-03-09 2010-09-16 日本電気株式会社 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム
CN102349231A (zh) * 2009-03-09 2012-02-08 日本电气株式会社 三相电动机控制器、三相电动机***、三相电动机控制方法和程序
CN102349231B (zh) * 2009-03-09 2014-05-14 日本电气株式会社 三相电动机控制器、三相电动机***、三相电动机控制方法和程序
US8816617B2 (en) 2009-03-09 2014-08-26 Nec Corporation Three-phase motor controller, three-phase motor system, three-phase motor control method and program
JP2011230604A (ja) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp 電動パワーステアリング装置
US8670902B2 (en) 2010-04-26 2014-03-11 Mitsubishi Electric Corporation Electric power steering apparatus
JP2013183620A (ja) * 2012-03-05 2013-09-12 Daihen Corp モータ駆動用インバータ回路の制御回路、および、当該制御回路を備えたインバータ装置
CN106063112B (zh) * 2014-03-19 2018-10-02 日立汽车***株式会社 动力转向装置以及动力转向装置用控制装置
WO2017064946A1 (ja) * 2015-10-16 2017-04-20 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6191802B1 (ja) * 2015-10-16 2017-09-06 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
EP3300244A4 (en) * 2015-10-16 2018-12-12 NSK Ltd. Motor control device and electric power steering device equipped with same
US10177699B2 (en) 2015-10-16 2019-01-08 Nsk Ltd. Motor control unit and electric power steering apparatus equipped with the same

Similar Documents

Publication Publication Date Title
JP5130716B2 (ja) モータ制御装置および電気式動力舵取装置
EP1777806A2 (en) Motor drive control apparatus and electric power steering apparatus
EP1470988B2 (en) Electric power steering apparatus
US7843154B2 (en) Motor controller and electric power steering apparatus
US9979340B2 (en) Apparatus for controlling three phase rotary electric machine reducing peak value of phase current
EP2375564B1 (en) Motor drive device
US8710775B2 (en) Electric power steering apparatus
EP2916454A2 (en) Motor control device and electric power steering device
EP1722469A1 (en) Motor-driven power steering device control device
US10177699B2 (en) Motor control unit and electric power steering apparatus equipped with the same
WO2005035333A1 (ja) 電動パワーステアリング装置
JP2009165259A (ja) モータ制御装置および電動パワーステアリング装置
EP2048061A1 (en) Electric power steering system
EP2210795A1 (en) Electric power steering apparatus
KR20110103873A (ko) 모터 구동 장치
US20090009127A1 (en) Motor control device and electric power steering device using the same
JPWO2006109809A1 (ja) 電動パワーステアリング装置
JP2007325408A (ja) 電動モータ制御装置及びこれを使用した電動パワーステアリング装置
JP5719177B2 (ja) 電動パワーステアリング装置
JP2007069836A (ja) 電動パワーステアリング装置
JP5397664B2 (ja) モータ制御装置
JP2020005388A (ja) モータ制御方法およびモータ制御装置
JP2019047568A (ja) モータ制御装置
JP2008155683A (ja) 電気式動力舵取装置
JP2007118785A (ja) 車両の操舵アシスト装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090130