WO2006109665A1 - ホログラム記録材料 - Google Patents

ホログラム記録材料 Download PDF

Info

Publication number
WO2006109665A1
WO2006109665A1 PCT/JP2006/307317 JP2006307317W WO2006109665A1 WO 2006109665 A1 WO2006109665 A1 WO 2006109665A1 JP 2006307317 W JP2006307317 W JP 2006307317W WO 2006109665 A1 WO2006109665 A1 WO 2006109665A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
recording material
hologram recording
monomer
visible light
Prior art date
Application number
PCT/JP2006/307317
Other languages
English (en)
French (fr)
Inventor
Yoshihide Kawaguchi
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US11/631,189 priority Critical patent/US7781124B2/en
Priority to CN2006800004237A priority patent/CN101061442B/zh
Priority to EP06731265A priority patent/EP1873593A1/en
Publication of WO2006109665A1 publication Critical patent/WO2006109665A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer

Definitions

  • the present invention relates to a hologram recording material comprising a refractive index modulation polymer composition that is highly sensitive over a wide wavelength region, chemically stable, and excellent in operability.
  • Holograms are capable of recording and reproducing three-dimensional stereoscopic images, and are used in covers such as books and magazines, displays such as POPs, and gifts, taking advantage of their excellent design and decorative effects. ing.
  • volume phase holograms can modulate light passing through the formed hologram by forming spatial interference fringes with different refractive indexes in the hologram recording medium.
  • HOE hologram optical elements
  • HUD head-up displays
  • volume phase hologram recording materials using photopolymers have been proposed so far.
  • a method for producing a hologram using a photopolymer there has been proposed a method in which a hologram recording medium having a photopolymer force is exposed to a radiation interference pattern and then subjected to a development treatment with a developer.
  • a photosensitive material in which a polyfunctional monomer having two or more ethylenically unsaturated bonds and a photopolymerization initiator are combined with a polymer serving as a carrier is exposed to a radiation interference pattern.
  • a method for producing a hologram using a polymer is disclosed (see Patent Document 1).
  • a hologram excellent in terms of diffraction efficiency, resolution, environmental resistance, and the like can be produced.
  • this method is inferior in sensitivity characteristics and photosensitive wavelength region characteristics, or, in some cases, adopts a wet processing step in the production of holograms.
  • production problems such as wrinkles and problems such as uneven development due to voids and cracks generated during the solvent immersion operation and reduced transparency due to whitening are caused.
  • the hologram manufacturing process does not require a complicated or cumbersome wet processing process! /
  • the only processing process is the use of a photopolymer capable of manufacturing a hologram with only interference exposure.
  • a hologram recording material and a method for producing the same are disclosed.
  • a photosensitive layer for hologram recording characterized by having an aliphatic polymer binder, an aliphatic acrylic monomer, and a photopolymerization initiator (see Patent Document 2).
  • the refractive index modulation obtained by hologram exposure is in the range of 0.001 to 0.003 because the refractive index of the polymer used and the aliphatic acrylic monomer are close.
  • high diffraction efficiency could not be obtained.
  • Patent Document 1 Japanese Patent Publication No. 62-22152
  • Patent Document 2 U.S. Pat.No. 3,658,526
  • Patent Document 3 Japanese Patent Laid-Open No. 7-92313
  • Patent Document 4 Japanese Patent Laid-Open No. 9-178901
  • Non-Patent Document 1 M. J. Bowden, E. A. Chandross, I. P. Kaminow, "Applied Opticsjvol. 13, p. 113 (1974)
  • Non-Patent Document 2 W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, "Applied Physics Letters jvol. 16, p. 486 (1970) Disclosure of Invention
  • the present invention can efficiently modulate (change) the refractive index by a visible light laser without requiring the complicated steps described above, and can improve the transparency after this modulation. It is another object of the present invention to provide an excellent hologram recording material.
  • the present inventors have found a method for efficiently obtaining a polymer having a radical polymerizable side chain vinyl group in the molecule by a specific polymerization method,
  • a specific photopolymerization initiation source is mixed with this polymer, the radical polymerizable side chain vinyl group undergoes a cross-linking reaction due to interference exposure of visible region laser light, resulting in a large density change, thereby efficiently increasing the refractive index.
  • the present invention provides the following formula (1);
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and may contain a hetero atom or a halogen atom in the molecule.
  • a polymer of a monomer having an acrylic vinyl monomer as an essential component and having a radically polymerizable side chain bur group in the molecule (A) and active by visible light A hologram recording material characterized in that it contains a photopolymerization initiation source (B) that generates seeds, in particular, the polymer (A) contains 20 mol% or more of an acrylic vinyl monomer represented by the formula (1)
  • a hologram recording material having the above-described structure which is a monomer polymer, a hologram recording material having the above-described structure having a stereoregularity of 70% or more in syndiotacticity (rr), and a polymer (A).
  • the present invention relates to the hologram recording material having the above structure having
  • the present invention provides the hologram recording material having the above structure, wherein the photopolymerization initiator (B) is a photopolymerization initiator that generates active species by absorbing visible light, the photopolymerization initiator (B) Is a hologram recording material having the above-described configuration comprising a visible light sensitizing dye and a photopolymerization initiator, and the amount of the photopolymerization initiator. It is possible to provide a hologram recording material having the above-described structure, in which the content of the visible light sensitizing dye is 0.1 to LO weight% in the entire hologram recording material.
  • the present invention relates to a hologram recording material having the above-described structure, which contains an ethylenically unsaturated bond-containing monomer (C) in addition to the polymer (A) and the photopolymerization initiation source (B), and an ethylenically unsaturated bond-containing monomer.
  • C is a hologram recording material, polymer (A) and photopolymerization initiation source (B) having the refractive index difference of 0.005 or more from polymer (A), or ethylenically unsaturated
  • a hologram recording material having the above-described structure containing a plasticizer and Z or a chain transfer agent can be provided.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and may contain a hetero atom or a halogen atom in the molecule.
  • a polymerization initiator a monomer containing an acrylic vinyl monomer represented by Using metal complex catalyst with earth metal as active center
  • a hologram recording material is produced by forming a polymer (A) having a radically polymerizable side chain vinyl group in the molecule and containing a photopolymerization initiation source (B) that generates active species by visible light.
  • the present invention relates to a method for manufacturing a hologram recording material.
  • the present invention provides a metal complex catalyst having a rare earth metal as an active center represented by the following formula (2):
  • Cpl and Cp2 are, independently of each other, unsubstituted cyclopentagel or substituted cyclopentagenyl, and Cp 1 and Cp 2 are bonded directly or via a linking group.
  • Mr is an r-valent rare earth metal atom and r is an integer of 2 to 4.
  • R is a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms
  • L is a solvent having a coordination ability.
  • a method for producing a hologram recording material having the above-described structure, which is a metal complex compound represented by formula (1), can be provided.
  • the present invention adds a specific photopolymerization initiation source to a specific polymer having a radical polymerizable side chain vinyl group in the molecule, and has high sensitivity and chemical over a wide wavelength range.
  • a refractive index modulation polymer composition that is stable and excellent in operability, the refractive index is efficiently modulated (changed) by a visible light laser that does not require complicated steps as in the past. It is possible to provide a transparent hologram recording material that is excellent in transparency after modulation, that is, has high diffraction efficiency by using a visible light laser.
  • FIG. 1 is a characteristic diagram showing a 1H-NMR chart of the polymer (A) obtained in Example 1 (polybule metatalylate: PVMA).
  • FIG. 2 is an enlarged view of the main chain methyl group used for calculating the tacticity in the 1H-NMR chart of FIG.
  • the hologram recording material of the present invention is irradiated with visible light in a wide wavelength range of 400 to 800 nm.
  • the main point is that the side chain vinyl group in (A) undergoes a polymerization reaction, and the refractive index is modulated (the refractive index is increased) due to the density change associated therewith.
  • PVMA polybulum methacrylate
  • the polymer (A) is co-polymerized with a polymer having a radically polymerizable side chain vinyl group in the molecule, such as a copolymer having PVMA as a constituent component.
  • a polymer having a radically polymerizable side chain vinyl group in the molecule such as a copolymer having PVMA as a constituent component.
  • the hologram recording material containing the photopolymerization initiation source (B) that generates active species by visible light in the polymer (A) is irradiated with a visible light laser.
  • the wavelength of the laser is not particularly limited as long as it is a wavelength that can change the structure of the polymer (A) and increase the density change.
  • the repulsive force is generally determined in relation to the irradiation intensity, etc., preferably 400 to 800 nm, particularly 400 to 650 nm.
  • the light source of the visible light laser is appropriately selected in consideration of the irradiation wavelength.
  • Specific examples include Kr (wavelengths 647 nm, 413 nm, 407 nm), He—Ne (wavelength 633 nm), Ar (wavelength 514.5 nm, 488 nm), YAG (wavelength 532 nm), He—Cd (wavelength 442 nm), etc. It is done.
  • a wavelength filter can be used to irradiate a specific wavelength.
  • the irradiation intensity of the visible light laser is too small, the photochemical reaction of the polymer (A) having a radically polymerizable side chain vinyl group in the molecule cannot be induced, and thus a refractive index change is obtained. It is unsuitable because it cannot be formed, and if it is too large, the molded product may become opaque or the strength of the molded product may be reduced. Specifically, it is appropriate that the force varies depending on the irradiation wavelength, and is about 0.001 to 3 WZcm 2 , particularly preferably 0.1 to 1 WZcm 2 . [0021] The irradiation time of the visible light laser is appropriately set in consideration of the refractive index difference to be obtained.
  • the refractive index of the molded body continuously increases by irradiation with a visible light laser, so that the refractive index can be adjusted by setting the irradiation time to an appropriate value. Can be controlled arbitrarily.
  • the specific irradiation time differs depending on the irradiation wavelength and intensity of the visible light laser. For example, by irradiating a PVMA compact with a YAG laser containing 532 nm at an intensity of 300 mW / cm 2 , The irradiation time when the refractive index is increased by about 0.005 is suitably about 0.5 to 2 minutes.
  • Irradiation with a visible light laser can be performed by raising the temperature of the molded body. Thereby, the reactivity of the polymer (A) having a radically polymerizable side chain vinyl group in the molecule is increased, and the refractive index can be changed more efficiently.
  • the specific temperature can be appropriately set within a range not exceeding the melting temperature of the molded body.
  • a molded body made of PVMA about 40 to 80 ° C. is appropriate.
  • the side chain vinyl groups of the polymer (A) are crosslinked, thereby increasing the density and increasing the refractive index of the molded article.
  • the cross-linking reaction can be effectively used as long as it is a reaction that increases the density, such as cross-linking a part of the molded body.
  • a maximum refractive index increase of 0.01 or more can be obtained by the above-described light irradiation, but in practice, if a refractive index difference of 0.005 or more can be obtained, the optical fiber can be obtained.
  • the value is sufficiently high for an optical device such as an optical diffraction grating.
  • the polymer (A) used in the present invention has the following formula (1):
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and may contain a hetero atom or a halogen atom in the molecule.
  • a polymer of a monomer having an acrylic vinyl monomer as an essential component and having a radically polymerizable side chain bur group in the molecule is a monomer having an acrylic vinyl monomer as an essential component and having a radically polymerizable side chain bur group in the molecule.
  • the acrylic bule monomer represented by the above formula (1) is not particularly limited, and examples thereof include bule metatalylate, bruetyl metatalylate, bruoctyl metatalylate, and beer. Hexyl methacrylate, butyl butyl methacrylate, butyl acrylate, binolec Forces such as Ruatalyrate are not limited to these. From the viewpoint of versatility and availability, it is particularly desirable to use bull metatarrate.
  • the polymer (A) of the present invention includes not only a homopolymer of an acrylic vinyl monomer such as PVMA, but also an acrylic vinyl monomer represented by the formula (1) and other single monomers.
  • an acrylic vinyl monomer such as PVMA
  • an acrylic vinyl monomer represented by the formula (1) and other single monomers By using a copolymer with the body, the heat resistance and compatibility with the thermosetting resin can be improved.
  • a copolymerization sequence of an acrylic vinyl monomer A represented by the formula (1) and another monomer B has a block chain such as AAAAAA-BBBBBB ...
  • the block copolymer or the random copolymer in which the sequence is a random chain such as ⁇ .
  • methyl metatalylate and ethyl metatalylate examples include methyl metatalylate and ethyl metatalylate.
  • a monomer containing a halogen atom such as trifluoroethyl methacrylate, or a monomer containing a hetero atom such as jetylaminoethyl methacrylate can also be used.
  • a monomer having a functional group that deactivates the catalyst can be used by capping the functional group.
  • hydroxyethyl metatalylates can be used when the hydroxyl group is reinforced and capped with a trimethylsilyl group or the like.
  • (meth) acrylic acids having a carboxyl group can also be used.
  • the use ratio of the acrylic vinyl monomer represented by the formula (1) and the other monomer is such that a desired refractive index change occurs before and after irradiation with visible light. In the range that can be obtained If there is, it will not be specifically limited. In general, the latter other monomers of the total monomer 10-80 mol 0/0, when so particularly 10-50 mole 0/0, the reaction of the side chain Bulle group of the former monomer The merit of copolymerization can be exhibited without lowering the responsiveness.
  • the polymer (A) used in the present invention contains 20% by mole or more of the acrylic bulle monomer represented by the formula (1), This makes it possible to obtain a desired refractive index change before and after irradiation with visible light.
  • the copolymer if the other monomer is 10 to 80 mol% of the total monomer, Guess!
  • the polymer (A) is specified as a polymerization catalyst using the acrylic-bulle monomer represented by the above formula (1) alone or a mixture thereof with another monomer. It can obtain by carrying out a polymerization reaction using the anion initiator.
  • radical initiators side chain vinyl groups are also consumed during the polymerization, so that the side chain vinyl groups used to change the refractive index cannot be left, and the solvent is insoluble in a network polymer (gel). turn into.
  • general-purpose key initiators such as organometallic compounds such as BuLi and Grignard reagents, a part of the side chain bur group undergoes a crosslinking reaction during the polymerization, and the yield and molecular weight of the resulting polymer are also increased. Is not preferable because of low.
  • a metal complex catalyst having a rare earth metal as an active center is used as a key-on initiator for obtaining the polymer.
  • the rare earth metal refers to a group 13 metal such as Sc, Y, a lanthanoid or an actinoid
  • the active center refers to a site where a polymerization reaction is directly initiated by coordination or bonding to a monomer.
  • a metal complex catalyst is called a so-called meta-catacene catalyst, which includes a complex of cyclopentagel and a metal ion, a complex of indur and a metal ion, or a combination of fluorolenyl and a metal ion. A complex etc. are mentioned.
  • a complex of cyclopentagenil and a metal ion, particularly a metal complex compound represented by the following formula (2) is preferably used.
  • Cpl and Cp2 are, independently of each other, unsubstituted cyclopentagel or substituted cyclopentagenyl, and Cp 1 and Cp 2 are bonded directly or via a linking group.
  • Mr is an r-valent rare earth metal atom and r is an integer from 2 to 4.
  • R is a hydrogen atom Or it is a C1-C3 linear alkyl group.
  • L is a solvent having coordination ability.
  • the substituent when Cpl or Cp2 is a substituted cyclopentagel, the substituent is preferably a methyl group or a trimethylsilyl group.
  • the number of substituents in Cpl or Cp2 is preferably 3-5.
  • Cpl or Cp2 includes C H, C (CH), C H (CH), C (CH CH), C H
  • Cpl and Cp2 may be bonded directly or via a linking group, particularly preferably via a linking group! /.
  • (M + n) is preferably 1 to 3, and particularly preferably a dimethylsilyl group (n force ⁇ and m is 1) and dimethylene (n is 2 and m is 0).
  • the linking group may be a group containing a hetero atom such as an etheric oxygen atom.
  • M is an r-valent rare earth metal atom serving as an active center, and yttrium (Y), ytterbium (Yb), samarium (Sm), and lutetium (Lu) are I like it! Its valence (r) is 2, 3 or 4, with 2 or 3 being particularly preferred.
  • R is a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, preferably a methyl group.
  • L is a solvent having a coordinating ability, and an ether-based solvent in which a solvent containing a hetero atom is preferred is preferable.
  • the ether solvent is preferably a cyclic ether solvent such as tetrahydrofuran or tetrahydropyran, jetyl ether or t-butyl methyl ether.
  • the metal complex compounds represented by the above formula (2) are particularly preferably used.
  • Cp * is 1, 2, 3, 4, 5 pentamethylcyclopentadenyl
  • THF is Tetrahydrofuran.
  • the above-mentioned metal complex catalyst having an active center of a rare earth metal used as an anion initiator is an acrylic bulle monomer represented by the formula (1) alone or another monomer thereof.
  • the amount used is preferably from 0.01 to 10 mol%, more preferably from 0.1 to 5 mol%.
  • the amount of the metal complex catalyst used is too small, it is difficult to proceed with the ion polymerization, and if too much, the polymer characteristics such as molecular weight and molecular weight distribution are hindered.
  • the ion polymerization is desirably performed under anhydrous and oxygen-free conditions, and is preferably performed in an atmosphere of an inert gas such as nitrogen or argon. Furthermore, it is desirable to carry out the ion polymerization in the presence of a solvent.
  • a solvent nonpolar solvents are preferred, and aromatic nonpolar solvents such as benzene, toluene and xylene are particularly preferred.
  • the amount of the monomer during polymerization is preferably 5 to 30% by weight in the solvent. If it is less than 5% by weight, the molecular weight may not be sufficiently increased, and if it exceeds 30% by weight, the viscosity of the system may increase during the polymerization, and the polymerization conversion rate may decrease.
  • the reaction temperature at the time of polymerization is preferably 100 ° C or less, particularly preferably about 95 ° C to + 30 ° C. More preferably, it is -95 ° C to -25 ° C. As the polymerization reaction is carried out at a lower temperature, the stereoregularity of the polymer produced tends to improve and syndiotacticity tends to improve.
  • the residual ratio of the unreacted radical polymerizable side chain bullet can be determined, for example, by 1H-NMR.
  • the area ratio between the peak attributed to the proton derived from the bur group (around 4.9 ppm) and the peak attributed to the proton derived from the methyl group at the ⁇ -position (1.3 to 0.6 ppm) Thus, it can be calculated.
  • the polymer (A) of the present invention obtained by the above-described anion polymerization method has a stereoregularity of 70% or more in syndiotacticity (rr) depending on the selection of the monomer. Is desirable.
  • the glass transition point (Tg) of the polymer (A) becomes much higher and the heat resistance is improved. That is, a polymer obtained by polymerization in the presence of a metal meta-cene complex catalyst having a rare earth metal as an active center, that is, a polymer (A) having a radically polymerizable side chain vinyl group in the molecule is syndiotactic. Ticity 1 (rr) can be over 70%.
  • syndiotacticity 1 the ratio of syndiotactic parts in the entire configuration in the polymer chain is referred to as syndiotacticity 1
  • isotacticity 1 the ratio of the isotactic part is referred to as isotacticity 1
  • tacticity 1 the ratio of the atactic part is referred to as tacticity 1.
  • Syndiotacticity 1 is an index representing the stereoregularity of a polymer.
  • the value of syndiotacticity one in the present invention, among the total amount of the polymerization unit derived from a monomer constituting the polymer, is a value that represents the percentage of polymerized units of Shinji O tactic a triad in mole 0/0 .
  • triad means a chain composed of three repeating units of a polymer.
  • the syndiotacticity is obtained from a nuclear magnetic resonance spectrum (NMR) method.
  • the polymer (A) of the present invention is dissolved or swollen with a deuterated solvent that dissolves the polymer (A) and measured by 1H-NMR method or 13C-NMR method, and syndiotacticity and isotacticity are obtained. It can be calculated by measuring the integrated value of the signal that reflects the tacticity and calculating the ratio of these values.
  • a deuterated solvent or a non-deuterated solvent may be added and used as necessary.
  • a solvent that is deuterated it does not affect the NMR measurement.
  • deuterium formaldehyde and deuterated benzene which do not affect the 1H—NMR ⁇ vector data, are preferred.
  • the selection of the measurement nucleus in NMR can be appropriately changed according to the spectral pattern of the polymer. Basically, it is preferable to use the 1H-NMR ⁇ vector.
  • the required peak force in 1H-NMR data If it overlaps with other unwanted peaks or cannot be measured by 1H-N MR, the 13C-NMR ⁇ vector. Is preferred.
  • the 1H-NMR signal derived therefrom is To determine the area ratio of these signals by utilizing different chemical shifts for hydrogen atoms in syndiotactic triads, hydrogen atoms in isotactic triads, and hydrogen atoms in atactic triads.
  • the ratio of syndiotactic triad (rr), atactic (both heterotactic! /, U) triad (mr), and isotactic triad (mm) (rrZmrZmm) is obtained.
  • the syndiotacticity when the substituent bonded to the a carbon of the carbonyl group of the vinyl (meth) acrylate monomer is a fluorine atom or a trifluoromethyl group is It is determined by the area ratio.
  • the 13C-NMR signal of the carbo group at carbon is different for carbon atoms in syndiotactic triads, carbon atoms in isotactic triads, and carbon atoms in atactic triads.
  • peak area ratio (rrZmrZmm) can be obtained.
  • the syndiotacticity 1 in the present invention is a value calculated as [rrZ (rr + mr + mm)] X 100 (%) from each tacticity determined in this way.
  • the polymer (A) obtained by the production method of the present invention has a syndiotacticity (rr) of 50% or more, and particularly takes a high value of 70% or more, so that it can be compared with atactic polymer. Therefore, it is excellent in terms of heat resistance and strength. The higher the syndiotactic city, the more These physical properties are improved.
  • the polymer (A) of the present invention has superior physical properties in terms of heat resistance and strength as compared with conventional polymers.
  • This polymer (A) is preferred from the viewpoints of strength and physical properties of a weight average molecular weight of 1,000 or more, preferably 2,000 or more.
  • the weight average molecular weight is 80,000 or less, preferably 70,000 or less, particularly preferably 50,000 or less, the reactivity of the side chain vinyl group can be increased, and the refractive index can be changed with a small exposure. This is preferable because it can be caused.
  • the weight average molecular weight the value in terms of standard polystyrene measured by the GPC method is used.
  • the photopolymerization initiation source (B) used in the present invention generates active species by visible light. More specifically, it absorbs visible light (400 to 800 nm), It generates active species (radio force, cation, cation, etc.).
  • the kind will not be specifically limited.
  • it is a photopolymerization initiator that absorbs visible light to generate active species, or a visible light sensitizing dye that absorbs visible light and a photopolymerization initiator (this photopolymerization initiator absorbs visible light. Or a photopolymerization initiator that does not absorb or may be a photopolymerization initiator).
  • the photopolymerization initiator is decomposed to generate active species by the energy from the visible light sensitized dye that absorbs the visible light or near infrared light energy or the electron transfer reaction.
  • photopolymerization initiator As a photopolymerization initiator to generate an active species by absorbing visible light, bis (5 2, 4 cyclopentadiene 1- I Le) - bis [2, 6 Jifuruoro 3 — (1H—Pyrrole—1—yl) —Fel] Titanium (“Irgacure 784” manufactured by Ciba Geigy Co., Ltd.), phenylbis (2, 4, 6 trimethylbenzoyl) phosphine oxide (Chipaga Gigi Company) "Irgacure 819").
  • photoinitiators that do not absorb visible light include bisimidazole compounds, 2,4,6-substituted 1,3,5 triazine compounds, form salt compounds, metal arene complexes.
  • the bisimidazole compound 2, 2 'bis (o black-mouthed) -4,4', 5,5'-tetraphenyl 1,1,1'-biimidazola 2 , 2 ′ —bis (o black mouth hue) — 4, 4 ′, 5, 5 ′ —tetrakis (2,3 dimethoxyphenyl) 1,1,1′—biimidazole, and the like.
  • Examples of the metal arene complex include titanocene and pheocene.
  • Examples of benzoin ether compounds include benzyl, benzoin, benzoin alkyl ether, 1-hydroxycyclohexyl phenol ketone, and the like.
  • Examples of the ketal compound include benzyl alkyl ketal.
  • acetophenone compound examples include 2,2′-dialkoxyacetophenone, 2-hydroxy-1,2-methylpropiophenone, p-t-butyltrichloroacetophenone, p-t-butylcycloacetophenone, and the like.
  • benzophenone compounds benzophenone, 4-benzophenenone, 4, 4 '— dibenzophenzonone, o methyl benzoylbenzoate, 3, 3' — dimethyl 4-methoxybenzophenone, 4-benzoyl 4 '— methyldiphene- Rusulfide, dibenzo Ron etc. are mentioned.
  • thixanthone compound examples include thixanthone, 2-chlorothioxanthone, 2 alkylthioxanthone, and 2,4 dialkylthioxanthone.
  • peroxide examples include 3,3 ′, 4,4′-tetra (t-butylperoxycarbol) benzophenone.
  • N-arylglycine compounds include: N-phenol glycine, N— (p-phlorophthalate) glycine, N-hydroxyethyl N-phenylglycine, N— (2-hydroxy-1-3-methacryloxypropyl) N-ferglycine and the like can be mentioned.
  • Visible light sensitizing dyes are azo dyes, anthraquinone dyes, benzoquinone dyes, naphthoquinone dyes, diarynole and triarylmethane dyes, cyanine dyes, which can absorb visible light or near-infrared light energy.
  • Merocyanine dyes fluoran dyes, scyllium dyes, chromium dyes, pyrylium dyes, thiopyrylium dyes, phthalocyanine derivatives, naphthalocyanine derivatives, indigo dyes, coumarin dyes, ketocmarin resins, quinacridone dyes Dyes, quinophthalone dyes, pyrrolopyrrole dyes, benzodifuranone dyes, atalidine dyes, oxazine dyes, thiazine dyes, xanthene dyes, thixanthene dyes, stili dyes, spiropyran dyes, spirooxazine dyes, organoruthenium complexes Etc. are used.
  • a visible light sensitizing dye used in combination with a photopolymerization initiator one of the above various dyes may be used alone so as to absorb light of a corresponding wavelength. You can use any combination of two or more.
  • the amount of the photopolymerization initiator (B) having the above-described configuration is not particularly limited, but in the photopolymerization initiator, the photorefractive index modulation polymer containing the polymer (A) is used.
  • the proportion is usually about 0.1 to 50% by weight, preferably about 2.0 to 20% by weight in the whole hologram recording material comprising the composition.
  • the proportion should be ⁇ 5% by weight.
  • the hologram recording material of the present invention contains an ethylenically unsaturated bond-containing monomer (C) in addition to the polymer (A) and a photopolymerization initiation source (B) that generates active species by visible light. Can be combined. By blending the ethylenically unsaturated bond-containing monomer (C), the refractive index can be changed with a small exposure amount.
  • the ethylenically unsaturated bond-containing monomer (C) used in the present invention is not particularly limited as long as it is a monomer having an ethylenically unsaturated bond in the molecule, but has a high radical polymerizability and (meth) acrylic.
  • a monomer or a styrene monomer can be preferably used. Also, it may be a monofunctional monomer having only one unsaturated bond in one molecule! /, Or even a polyfunctional monomer having a plurality of unsaturated bonds! /, .
  • the molecular weight of the monomer is not particularly limited, and may be several thousand having a molecular weight such as an oligomer.
  • Examples of such a monomer include, as (meth) acrylic monomers, tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) ateroyloxy shetyl succinate, (meth) Ataliloyloxetyl phthalate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopental (meth) acrylate, dicyclopentale (meth) acrylate, phosphazene skeleton (meta ) Atrelate.
  • acrylic monomers tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) ateroyloxy shetyl succinate, (meth) Ataliloyloxetyl phthalate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, di
  • Polyfunctional monomers or oligomers include, for example, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meta ) Bifunctional monomers such as attalylate, trifunctional monomers such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, aliphatic tri (meth) acrylate, pentaerythritol tetra (meth) Tetrafunctional monomers such as attalylate, ditrimethylolpropanetetra (meth) acrylate, aliphatic tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hex (meth) acrylate, etc. Of more than 5 functional items Over the
  • styrene butyltoluene, chlorostyrene, bromostyrene, divininolebenzene, 1-vininolenaphthalene, 2-vininolenaphthalene, N-vinylpyrrolidone and other butyl compounds, diethylene glycol bisallyl carbonate, It is also possible to use aryl compounds such as trimethylolpropane diallyl, diallyl phthalate, dimethacryl phthalate, and diallyl isophthalate.
  • the ethylenically unsaturated bond-containing monomer (C) preferably has a refractive index difference with respect to the polymer (A) of 0.005 or more.
  • a monomer (C) for example, for polyvinyl methacrylate (refractive index 1.49) as polymer (A), p-promostyrene (refractive index 1.59), 9, 9-bis [4- (2-acryloxyethoxy) phenol] fluorene (refractive index 1.62) can be used.
  • the refractive index of the polymer (A) is determined using the m-line method (prism coupling method), He-Ne laser (wavelength 633 nm), TE (transverse electric) mode (with the film surface of the material). It can be measured in parallel light polarization mode) and TM (transverse 'magnetic) mode (light polarization mode perpendicular to the film surface of the material).
  • the refractive index of the monomer can be measured with an Abbe refractometer.
  • the blending amount of such an ethylenically unsaturated bond-containing monomer (C) is 0.1 to 50 weight percent, preferably 0.5 to 20 weight percent per 100 weight percent of the polymer (A). Power! / If it is less than 0.1 part by weight, the effect of shortening the exposure time is difficult to obtain.
  • the hologram recording material of the present invention includes the polymer (A) and a photopolymerization initiation source (B) that generates active species by visible light, and these and an ethylenically unsaturated bond-containing monomer (C
  • a plasticizer and z or a chain transfer agent can be blended if necessary. These compounds improve the cross-linking reactivity of the side chain vinyl group and can cause a change (increase) in the refractive index.
  • plasticizer examples include triethylene glycol, triethylene glycol diacetate, triethylene glycol dipropionate, triethylene glycol dicaprylate, triethylene glycol dimethyl ether, triethylene glycol bis (2-ethinorehexanoate), tetra Ethylene glycol diheptanoate, poly (ethylene glycol), poly (ethylene glycol) methyl ether, isopropyl naphthalene, diisopropyl naphthalene, poly (propylene glycol), glyceryl tributyrate, jetyl adipate, jetyl sebacate, suberic acid Dibutyl, tributyl phosphate, trisphosphate (2-ethylhexyl) and the like can be mentioned.
  • chain transfer agent it is known that it is effective to constitute a photocuring system in combination with a photopolymerization initiator (for example, described in US Pat. No. 3,652,275).
  • a chain transfer agent is preferably used.
  • 2-mercaptobenzoxazole (2-MBO), 2-mercaptobenzoimidazole (2-MBI) are particularly preferable from the viewpoints of compatibility with polymers, reaction acceleration, and versatility.
  • the plasticizer includes a polymer (A) and a photopolymerization initiation source (B).
  • the total amount of the hologram recording material comprising the refractive index modulation polymer composition is usually about 2 to 25% by weight, preferably 5 to 15% by weight.
  • the chain transfer agent is usually about 2 to 25% by weight in the whole hologram recording material comprising a photorefractive index modulation polymer composition containing a polymer (A) and a photopolymerization initiator (B).
  • the amount used is preferably about 5 to 15% by weight.
  • a hologram recording material (Examples 1 to 10) using PVMA, that is, a homopolymer of bull methacrylate, as the polymer (A) will be described in more detail. To do.
  • a hologram recording material (Comparative Examples 1 and 2) using polymethylmetatalylate or polystyrene as a polymer is also described.
  • a coordination-on polymerization catalyst was synthesized as follows.
  • the polymerization was started.
  • the catalyst amount was set so that the monomer Z catalyst ratio was 446.
  • Polymerization temperature-After reacting at 78 ° C for 3 hours methanol was added to the reaction system to stop the polymerization reaction. Furthermore, the polymer (polyvinyl methacrylate) produced by adding methanol is precipitated and isolated, dissolved in ethyl acetate, and then reprecipitated with methanol for purification. did.
  • the number average molecular weight (Mn) determined by GPC (gel permeation chromatography) was 77,000, the weight average molecular weight (Mw) was 15,000, and the molecular weight distribution (MwZMn) was 1.49. It was.
  • FIG. 1 shows a 1H-NMR chart of the above polymer (polybule metatalylate).
  • FIG. 2 shows an enlarged view of the main chain methyl group used for calculating the tacticity in the 1H-NMR chart.
  • the methyl group in the main chain of polybutymetatalate detected at 1.2 to 0.9 ppm [around 1.19 ppm (mm), 1.07 ppm (mr), 0.92 ppm (rr)] integral curve was used.
  • PVMA polybule metatalylate
  • PVMA photopolymerization initiator
  • MBO mercaptobenzoxazole
  • MBO 2-tetrachloroethane
  • the above-mentioned TCE solution was spin-coated on a blue glass plate using “Spin Coater 1H-D X” (trade name, manufactured by MIKASA).
  • the spin coating conditions were set at 500 rpm for 5 seconds and then 750 rpm for 10 seconds, and then dried for about 1 hour in a dryer set at 100 ° C, and the glass plate was about 25 ⁇ m thick.
  • a film made of a holodaram recording material was prepared.
  • said blue plate glass plate was used without carrying out the washing process in particular.
  • a 532nm YAG laser having a single frequency with excellent coherence is equally divided by a polarization beam splitter, and each laser is crossed at 45 ° by a reflecting mirror on this blue glass plate.
  • a film was placed and hologram recording was performed.
  • the interference fringes formed at this time are incident from the back of the YAG laser with a 633 nm He-Ne laser that has no absorption to the photopolymerization initiator in the material, and the intensity of the diffracted light and transmitted light is measured by the photodetector.
  • the diffraction efficiency (%) [ diffracted light intensity Z (diffracted light intensity + transmitted light intensity) X 100] was determined.
  • the diffraction efficiency reached a maximum of 15.3% by irradiation with a light intensity of 25 mWZcm 2 , and the irradiation time was 479 seconds (exposure 12j / cm 2 ).
  • the part irradiated with the two-beam laser in the sample was transparent.
  • the diffraction efficiency reached a maximum of 12.5% by irradiation with a light intensity of 25 mWZcm 2 and the irradiation time at this time was 393 seconds (exposure amount 9.8j / cm 2 ) 0
  • the part of the sample that was irradiated with the two-beam laser was transparent.
  • a polymer (PVMA) was obtained in the same manner as in Example 1, except that the catalyst amount was changed to 0.0473 g (0.0933 mmol). The above catalyst amount was set so that the monomer Z catalyst ratio was 1,784.
  • the yield of the polymer produced was 18.8 g (yield> 99% by weight).
  • the number average molecular weight (Mn) determined by GPC (gel permeation chromatography) was 72,600, the weight average molecular weight (Mw) was 521,000, and the molecular weight distribution (MwZMn) was 7.17. It was.
  • the residual ratio of radically polymerizable side chain vinyl groups in the polymer determined by 1H-NMR [Bur group residual ratio (%) Bull group (4.9 ppm) Z methyl group (1.3 to (0.6 ppm) X 1 00] is 100%, and the stereoregularity of the main chain is 90% syndiotacticity (rr) o
  • each component was blended in the same manner as in Example 1, samples were prepared and evaluated.
  • the diffraction efficiency in irradiation light intensity 25MWZcm 2 reaches a maximum 13.2%, this and Kino irradiation time it is a 520 seconds ChikaraTsuta (exposure 13. 0j / cm 2) o
  • the part of the sample irradiated with the two-beam laser was transparent.
  • a polymer (PVMA) was obtained in the same manner as in Example 1, except that the amount of the catalyst was changed to 0.756 g (l, 492 mmol). The above catalyst amount was such that the monomer Z catalyst ratio was 112. The yield of the produced polymer was 18.6 g (yield> 99 wt%).
  • the number average molecular weight (Mn) determined by GPC (gel permeation chromatography) was 24,800, the weight average molecular weight (Mw) was 48,700, and the molecular weight distribution (MwZMn) was 1.96. It was.
  • each component was blended in the same manner as in Example 1, samples were prepared and evaluated.
  • the diffraction efficiency reached a maximum of 14.3% by irradiation with a light intensity of 25 mWZcm 2 , and the irradiation time at this time was 204 seconds (exposure 5. lj / cm 2 ) 0
  • the part of the sample that was irradiated with the two-beam laser was transparent.
  • each component was blended in the same manner as in Example 2, and samples were prepared and evaluated.
  • each component was blended in the same manner as in Example 3, samples were prepared and evaluated.
  • the diffraction efficiency reached a maximum of 12.6% by irradiation with a light intensity of 25 mWZcm 2 and the irradiation time at this time was 220 seconds (exposure amount 5.5j / cm 2 ) 0
  • the part of the sample that was irradiated with the two-beam laser was transparent.
  • Example 2 Using PVMA obtained in Example 1, each component was blended in the same manner as in Example 2, and p-bromostyrene (refractive index: 1.59) as an ethylenically unsaturated bond-containing monomer. 002 5g (manufactured by Tokyo Chemical Industry Co., Ltd.) was blended to prepare a sample and evaluated.
  • the diffraction efficiency reached a maximum of 15.1% by irradiation with a light intensity of 25 mWZcm 2 , and the irradiation time at this time was 185 seconds (exposure amount 4.6 j / cm 2 ) 0
  • the part of the sample that was irradiated with the two-beam laser was transparent.
  • Example 8 The ethylenically unsaturated bond-containing monomer described in Example 8 was replaced with 9, 9bis [4 (2-acryloxyethoxy) phenol] fluorene (trade name "AF400” manufactured by Kyoeisha Chemical Co., Ltd.) Evaluation was conducted in the same manner as in Example 8 except that the amount was changed to 0.0025 g.
  • the diffraction efficiency reached a maximum of 8.8% when the light intensity was 25 mWZcm 2 , and the irradiation time at this time was 222 seconds (exposure amount 5.6j / cm 2 ) 0
  • the part irradiated with the two-beam laser was transparent.
  • Example 2 Using the PVMA obtained in Example 1, each component was blended in the same manner as in Example 3, and P-bromostyrene (refractive index: 1.59) as an ethylenically unsaturated bond-containing monomer. 002 5g (manufactured by Tokyo Chemical Industry Co., Ltd.) was blended to prepare a sample and evaluated.
  • the diffraction efficiency was less than 0.1% even after irradiation with light intensity of 25 mWZcm 2 for about 400 seconds (exposure dose: 10.0 j / cm 2 ) o
  • exposure dose 10.0 j / cm 2
  • the part irradiated with the two-beam laser in the sample The minutes were transparent.
  • the diffraction efficiency was 0.67% at the maximum when irradiated with a light intensity of 25 mWZcm 2 , and the irradiation time at this time was 447 seconds (exposure dose: 11.2 j / cm 2 ) 0
  • the laser irradiated area was transparent.
  • the polymer (A) having a radically polymerizable side chain vinyl group in the molecule is used according to the present invention, and the photopolymerization initiation source (B) is added thereto.
  • the photopolymerization initiation source (B) is added thereto.
  • a monomer containing an ethylenically unsaturated bond by adding a monomer containing an ethylenically unsaturated bond, a transparent hologram having a high diffraction efficiency by a visible light laser as compared with a polymer having no photoreactive group in the molecule. It can be seen that a recording material can be obtained.
  • the present invention is based on a Japanese patent application filed on April 8, 2005 (Japanese Patent Application No. 2005-112136), the contents of which are incorporated herein by reference.
  • the present invention is highly sensitive and chemically stable over a wide wavelength region in addition to a photopolymerization initiation source specific to a specific polymer having a radically polymerizable side chain vinyl group in the molecule.
  • it is excellent in operability, and the refractive index can be efficiently modulated (changed) by a visible light laser without requiring a complicated process as in the prior art, and the transparency after the modulation is also excellent.
  • a transparent hologram recording material with high diffraction efficiency can be obtained with a visible light laser. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Holo Graphy (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 可視光レーザーにより屈折率を効率的に変調させることができ、この変調後の 透明性にも優れるホログラム記録材料を提供する。 CH2=C(R1)C(=O)O-R2=CH2  (式中、R1 は水素原子またはメチル基、R2 は炭素数1~20の飽和または不飽和炭化水素基であって、分子内にヘテロ原子やハロゲン原子を含んでいてもよい)で表されるアクリル・ビニル単量体を必須成分とした単量体の重合体であって、分子内にラジカル重合性の側鎖ビニル基を有する重合体(A)と、可視光により活性種を発生する光重合開始源(B)を含むことを特徴とするホログラム記録材料、特に上記の光重合開始源(B)が可視光を吸収して活性種を発生する光重合開始剤であるか、または可視光増感色素と光重合開始剤との混合系である上記構成のホログラム記録材料。

Description

明 細 書
ホログラム記録材料
技術分野
[0001] 本発明は、広い波長領域にわたり高感度で、化学的に安定であり、かつ操作性に 優れた屈折率変調重合体組成物からなるホログラム記録材料に関する。
背景技術
[0002] ホログラムは、三次元立体像の記録、再生が可能なため、その優れた意匠性、装飾 性効果を活かして、書籍、雑誌等の表紙、 POP等のディスプレイ、ギフト等に利用さ れている。また、サブミクロン単位での微細な情報記録が可能なため、有価証券、ク レジットカード、プリペイドカード等の偽造防止用のマーク等にも応用されている。 特に体積位相型ホログラムは、ホログラム記録媒体中に屈折率の異なる空間的な 干渉縞を形成することで、形成されたホログラムを通過する光を変調することが可能と なるため、ディスプレイ用途のほ力 POS用スキャナーやヘッドアップディスプレイ(H UD)に代表されるホログラム光学素子 (HOE)への応用が期待されて!、る。
[0003] このような体積位相型ホログラムへの要望から、フォトポリマーを利用した体積位相 型ホログラム記録材料の提案がこれまでになされている。
具体的には、フォトポリマーを使用したホログラムの製造方法として、フォトポリマー 力もなるホログラム記録媒体を輻射線の干渉パターンに露光したのち、現像液による 現像処理を施す方法が提案されて!ヽる。
[0004] 例えば、担体となる重合体に 2個以上のエチレン性不飽和結合を有する多官能単 量体と光重合開始剤を組み合わせた感材を、輻射線の干渉パターンに露出する第 1 の工程、この感材を第 1の溶剤で処理して膨潤させる第 2の工程、膨潤作用の乏しい 第 2の溶剤で処理して収縮させる第 3の工程とを具備することを特徴とした、フォトポリ マーを使ったホログラムの製造方法が開示されている (特許文献 1参照)。
この公知技術によると、回折効率、解像度および耐環境特性等の点において優れ たホログラムを製造することができる。し力しながら、この方法には、感度特性や感光 波長領域特性に劣る、ある ヽはホログラムの製造にぉ ヽて湿式処理工程を採用して ヽる等の製造上の煩雑性、また溶媒浸漬操作時に生じる空隙やひび割れに起因し た現像むらや白化による透明性の低下等の問題を生じる欠点があった。
[0005] 一方、ホログラムの製造工程にお 、て複雑なあるいは煩雑な湿式処理工程を必要 としな!/、、唯一の処理工程として干渉露光のみでホログラムを製造することが可能な フォトポリマーを使ったホログラム記録材料とその製造法が開示されて 、る。例えば、 脂肪族系高分子バインダーと脂肪族系アクリルモノマーおよび光重合開始剤力 な ることを特徴とするホログラム記録用感光性層が提案されている (特許文献 2参照)。 しかし、この公知技術は、使用される高分子重合体と脂肪族系アクリルモノマーとの 屈折率が近いため、ホログラム露光で得られる屈折率変調度は 0. 001から 0. 003 の範囲で、その結果、高い回折効率が得られないという欠点があった。
[0006] さらに、従来より、代表的な光学用ポリマーとして知られるポリメチルメタタリレート(P MMA)に関し、低分子を導入することなく光照射のみにより屈折率を高くする試みが なされている。し力し、この技術は、 325nmの光の照射により 0. 051という光デバイ スにとって十分に大きい屈折率差が得られるものの、 PMMAに反応性を付与するた め、モノマーであるメチルメタタリレートをあら力じめ酸ィ匕して力も重合させており、そ のため、作製に長時間を要し、工程も煩雑になる問題があった。
なお、モノマーであるメチルメタタリレートを酸化しないで重合した場合は、 PMMA の屈折率は上記光を照射しても全く増カロしな 、との報告がなされて 、る (非特許文献 1参照)。また、照射する光の波長をより短くした場合では、例えば、 0. 2537 /z mの 照射では、 PMMAの主鎖を切断して、密度を下げる傾向があるとされとされ (非特許 文献 2参照)、 Lorentz— Lorenzの式から屈折率を上げることは不可能であることが 示唆されている。
[0007] また、無機材料の場合は、ゲルマニウムをドープしたガラスに光照射し、屈折率を 変化させて光回折格子を作製する方法が知られている。また、ポリマー材料の場合 は、光化学反応活性な低分子をポリマー中に分散させた材料に対してレーザー光を 照射して、フォトクロミック反応 (フォトブリーチング)を誘起し、それに伴い屈折率を変 ィ匕させて光回折格子を作製する技術が開示されている (特許文献 3参照)。さらに、 上記フォトブリーチングを利用して、屈折率が材料中で連続的に変化した、いわゆる 屈折率分布型材料 (GRIN材料)を製造する技術も開示されて!ヽる (特許文献 4参照
) o
これらの公知技術では、低分子をドープする力、または低分子をポリマー分子中に 導入した材料を用いており、場合により、その低分子による光吸収が大きくなり、デバ イスの十分な透明'性が得られな ヽことがあった。
[0008] 特許文献 1 :特公昭 62— 22152号公報
特許文献 2 :米国特許第 3, 658, 526号公報
特許文献 3:特開平 7— 92313号公報
特許文献 4:特開平 9 - 178901号公報
非特許文献 1 : M. J. Bowden, E. A. Chandross, I. P. Kaminow, 「Applied O pticsjvol. 13, p. 113 (1974)
非特許文献 2 : W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. For k, W. T. Silfvast, 「Applied Physics Lettersjvol. 16, p. 486 (1970) 発明の開示
発明が解決しょうとする課題
[0009] このように、光の照射により屈折率を変調させることによりホログラムとする材料が、 今日まで、種々提案されてきたが、その作製に長時間を要したり工程が煩雑となった り、光照射後の透明性を満足できない等の問題があった。
本発明は、このような事情に照らし、上記従来のような煩雑な工程を要することなぐ 可視光レーザーにより屈折率を効率的に変調 (変化)させることができ、またこの変調 後の透明性にも優れるホログラム記録材料を提供することを課題とする。
課題を解決するための手段
[0010] 本発明者らは、上記の課題を解決するため、鋭意検討した結果、特定の重合方法 により分子内にラジカル重合性の側鎖ビニル基を有する重合体を効率良く得る方法 を見出し、この重合体に特定の光重合開始源を混合すると、可視領域レーザー光の 干渉露光により上記ラジカル重合性の側鎖ビニル基が架橋反応して密度変化が大き くなり、これにより屈折率を効率的に変化 (増加)させることができると共に、この変化 後の透明性にも優れるホログラム記録材料が得られることを知り、本発明を完成した。 [0011] すなわち、本発明は、つぎの式(1) ;
CH =C (R1) C ( = 0) 0-R2 = CH
2 … (1)
2
(式中、 R1は水素原子またはメチル基、 R2は炭素数 1〜20の飽和または不飽和炭 化水素基であって、分子内にヘテロ原子やハロゲン原子を含んで 、てもよ 、) で表されるアクリル'ビニル単量体を必須成分とした単量体の重合体であって、分子 内にラジカル重合性の側鎖ビュル基を有する重合体 (A)と、可視光により活性種を 発生する光重合開始源 (B)を含むことを特徴とするホログラム記録材料、特に重合体 (A)が、式(1)で表されるアクリル'ビニル単量体を 20モル%以上含む単量体の重合 体である上記構成のホログラム記録材料と、立体規則性が、シンジォタクティシティ一 (rr)で 70%以上である上記構成のホログラム記録材料と、さらに重合体 (A)の重量 平均分子量が 8万以下である上記構成のホログラム記録材料とに係るものである。
[0012] また、本発明は、光重合開始源 (B)が、可視光を吸収して活性種を発生する光重 合開始剤である上記構成のホログラム記録材料、光重合開始源 (B)が、可視光増感 色素と光重合開始剤とからなる上記構成のホログラム記録材料、光重合開始剤の量 力 ホログラム記録材料の全体中、 1〜50重量%である上記構成のホログラム記録 材料、可視光増感色素の含有量が、ホログラム記録材料の全体中、 0. 1〜: LO重量 %である上記構成のホログラム記録材料を提供できるものである。
さらに、本発明は、重合体 (A)および光重合開始源 (B)のほかに、エチレン性不飽 和結合含有モノマー(C)を含む上記構成のホログラム記録材料、エチレン性不飽和 結合含有モノマー(C)が、重合体 (A)との屈折率差が 0. 005以上である上記構成 のホログラム記録材料、重合体 (A)および光重合開始源 (B)あるいはこれらとェチレ ン性不飽和含有モノマー(C)のほかに、可塑剤および Zまたは連鎖移動剤を含む 上記構成のホログラム記録材料を提供できるものである。
[0013] また、本発明は、つぎの式(1) ;
CH =C (R1) C ( = 0) 0-R2 = CH
2 … (1)
2
(式中、 R1は水素原子またはメチル基、 R2は炭素数 1〜20の飽和または不飽和炭 化水素基であって、分子内にヘテロ原子やハロゲン原子を含んで 、てもよ 、) で表されるアクリル'ビニル単量体を必須成分とした単量体を、重合開始剤として、希 土類金属を活性中心とする金属錯体触媒を使用して、ァ-オン重合させることにより
、分子内にラジカル重合性の側鎖ビニル基を有する重合体 (A)を生成し、これに可 視光により活性種を発生する光重合開始源 (B)を含ませて、ホログラム記録材料を 製造することを特徴とするホログラム記録材料の製造方法に係るものである。
[0014] 特に、本発明は、希土類金属を活性中心とする金属錯体触媒が、つぎの式 (2);
(Cpl) (Cp2) Mr- (R) p - (L) q - (2)
(式中、 Cpl, Cp2は、相互に独立して、非置換のシクロペンタジェ-ルまたは置換 されたシクロペンタジェニルであり、 Cp 1と Cp2とは直接または連結基を介して結合し ていてもよい。 Mrは r価の希土類金属原子で rは 2〜4の整数である。 Rは水素原子 または炭素数 1〜3の直鎖アルキル基である。 Lは配位能を有する溶媒である。 pは R の数、 qは Lの数で、それぞれ 0〜2の整数であり、上記 rに対して r=p + 2となるように 選択される。 )
で表される金属錯体化合物である上記構成のホログラム記録材料の製造方法を提 供できるものである。
発明の効果
[0015] このように、本発明は、分子内にラジカル重合性の側鎖ビニル基を有する特定の重 合体に特定の光重合開始源を加えて、広い波長領域にわたり高感度で、化学的に 安定であり、かつ操作性に優れた屈折率変調重合体組成物を構成したことにより、従 来のような煩雑な工程を要することなぐ可視光レーザーにより屈折率を効率的に変 調 (変化)させることができると共に、この変調後の透明性にも優れる、つまり可視光レ 一ザ一により回折効率の高い透明なホログラム記録材料を提供することができる。 図面の簡単な説明
[0016] [図 1]実施例 1で得た重合体 (A) (ポリビュルメタタリレート: PVMA)の 1H— NMRチ ヤートを示す特性図である。
[図 2]図 1の 1H— NMRチャートにおけるタクティシティ一の算出に用いた主鎖メチル 基の拡大図である。
発明を実施するための最良の形態
[0017] 本発明のホログラム記録材料は、 400〜800nmの広い波長領域の可視光の照射 で光重合開始源 (B)を構成する光重合開始剤またはこれと可視光増感色素とから生 成するラジカル重合開始源にて、分子内にラジカル重合性の側鎖ビニル基を有する 重合体 (A)の上記側鎖ビニル基の重合反応が起こり、それに伴う密度変化により、屈 折率が変調する (屈折率が増加する)ことを骨子としたものである。
[0018] 上記の重合体 (A)としては、ポリビュルメタタリレート(以下、 PVMAという)が好適 に用いられる。 PVMAは、光学ポリマーの中でも優れた透明性を有すると共に、複屈 折が起こりにくぐまた成形性が良好で機械的強度もノランスしており、さらに可視光 の照射で得られる屈折率差も最も大きいため、本発明に特に好ましい。
また、本発明では、上記の重合体 (A)として、 PVMAを構成成分とした共重合体等 のように、分子内にラジカル重合性の側鎖ビニル基を有する重合体に対して、共重 合可能なモノマーを任意の組成比率で共重合させることにより、 PVMA等の単独重 合体よりも低い照度で大きな屈折率の増加を得ることができる。
[0019] 本発明においては、上記の重合体 (A)に可視光により活性種を発生する光重合開 始源 (B)を含ませたホログラム記録材料に、可視光レーザーを照射するが、このレー ザ一の波長は、上記重合体 (A)を構造変化させ、その密度変化を大きくできる波長 であれば、特に限定されることなく設定可能である。照射強度等との関係で一概には 決まらな ヽ力 好適に ίま 400〜800nm、特に 400〜650nmである。
可視光レーザの光源は、照射する波長を考慮して、適宜選択される。具体的には、 Kr (波長 647nm、 413nm、 407nm)、 He— Ne (波長 633nm)、 Ar (波長 514. 5n m、 488nm)、 YAG (波長 532nm)、 He— Cd (波長 442nm)等が挙げられる。また 、照射するにあたっては、特定の波長を照射するために、波長フィルターを用いるこ とがでさる。
[0020] 可視光レーザーの照射強度は、小さすぎると分子内にラジカル重合性の側鎖ビニ ル基を有する重合体 (A)の光化学反応を誘起することができず、したがって屈折率 変化を得ることができないため不適であり、また大きすぎると成形体が不透明になつ たり、成形体の強度が低下する場合があるため、これらを考慮して適宜設定される。 具体的には、照射する波長によっても異なる力 0. 001〜3WZcm2程度とするの が適当であり、特に好ましくは 0. l〜lWZcm2である。 [0021] 可視光レーザーを照射する時間は、得ようとする屈折率差を考慮して適宜設定され る。すなわち、本発明の屈折率変調重合体組成物によれば、その成形体の屈折率 は可視光レーザーの照射によって連続的に増加するので、照射時間を適当な値に 設定することにより、屈折率を任意に制御することができる。
具体的な照射時間は、可視光レーザーの照射波長,強度によって異なるが、一例と して PVMAの成形体に対して、 532nmを含む YAGレーザーを 300mW/cm2の強 度で照射することにより、屈折率を 0. 005程度増加させるときの照射時間としては、 約 0. 5〜2分程度とするのが適当である。
[0022] また、可視光レーザーを照射するにあたっては、成形体の温度を高くして行うことが できる。これにより分子内にラジカル重合性の側鎖ビニル基を有する重合体 (A)の反 応性が高まり、屈折率をより効率的に変化させることができる。
具体的な温度は、成形体の溶融温度を超えない範囲で適宜設定できるが、例えば 、 PVMAからなる成形体の場合は、約 40〜80°Cが適当である。
[0023] このような条件で可視光レーザーを照射すると重合体 (A)の側鎖ビニル基が架橋 し、これにより密度が上がり、成形体の屈折率が増加する。架橋反応は、成形体の一 部を架橋させる等、密度が大きくなる反応であれば、有効に利用できる。
なお、本発明においては、上記の光照射で最大 0. 01以上の屈折率の増加を得る ことができるが、実際には、 0. 005以上の屈折率差を得ることができれば、光フアイ ノ 、光回折格子等の光デバイスにとって、十分に高い値である。
[0024] 本発明に用いられる重合体 (A)は、つぎの式(1);
CH =C (R1) C ( = 0) 0-R2 = CH … (1)
2 2
(式中、 R1は水素原子またはメチル基、 R2は炭素数 1〜20の飽和または不飽和炭 化水素基であって、分子内にヘテロ原子やハロゲン原子を含んで 、てもよ 、) で表されるアクリル'ビニル単量体を必須成分とした単量体の重合体であって、分子 内にラジカル重合性の側鎖ビュル基を有する重合体である。
[0025] 上記式(1)で表されるアクリル 'ビュル単量体としては、特に限定されず、例えば、 ビュルメタタリレート、ビュルェチルメタタリレート、ビュルォクチルメタタリレート、ビ- ルへキシルメタタリレート、ビュルブチルメタタリレート、ビュルアタリレート、ビ-ノレェチ ルアタリレート等が挙げられる力 これらに限定されるものではない。汎用性や入手性 の面より、特にビュルメタタリレートを使用するのが望ましい。
[0026] 本発明の重合体 (A)は、 PVMAのようなアクリル.ビニル単量体の単独重合体だけ でなく、式( 1)で表されるアクリル ·ビニル単量体と他の単量体との共重合体とするこ とにより、耐熱特性や熱硬化性榭脂との相溶性を向上させることができる。
このような共重合体としては、例えば、式(1)で表されるアクリル'ビニル単量体 Aと 他の単量体 Bとの共重合配列が AAAAAA— BBBBBB…のようなブロック連鎖とな るブロック共重合体か、上記配列が ΑΒΑΑΒΑΒΑΒΒΑ· ··のようなランダム連鎖とな るランダム共重合体の 、ずれであってもよ 、。
[0027] 上記の共重合体にお!、て、可視光レーザーの低!、照射強度で大きな屈折率変化 を得るには、ランダム共重合体の方が望ましい。ブロック共重合体であっても、屈折率 の増加と所望する物性を勘案して、適宜利用することができる。
このように、式(1)で表されるアクリル'ビニル単量体と他の単量体との共重合体とす ると、成形体のフィルム物性、透明性、製造コスト等の観点より、ポリマー材料の種類 が最適化され、特にランダム共重合体では、側鎖ビニル基の初期反応性が向上する ため、より低い光量で屈折率の増加を可能とできる組み合せが存在する。
[0028] このような目的で用いられる他の単量体は、アクリル'ビニル単量体と共重合可能で 、ァ-オン重合用の触媒に対して、不活性または触媒を失活させないものであれば よい。共重合性の面より、(メタ)アタリレート類が好ましい。
具体的には、メチルメタタリレート、ェチルメタタリレート等が挙げられる。また、トリフ ルォロェチルメタタリレート等のハロゲン原子を含む単量体ゃジェチルアミノエチルメ タクリレート等のへテロ原子を含む単量体も使用できる。
また、触媒を失活させる官能基を有する単量体であっても、官能基をキャップするこ とで使用することができる。例えば、ヒドロキシェチルメタタリレート類等は、水酸基を あら力じめトリメチルシリル基等でキャップすると、使用できる。同様に、カルボキシル 基を有する (メタ)アクリル酸類も、使用できる。
[0029] このような共重合体において、式(1)で表されるアクリル'ビニル単量体と上記他の 単量体との使用割合は、可視光の照射前後で所望の屈折率変化が得られる範囲で あれば、特に限定されない。一般には、後者の他の単量体が単量体全体の 10〜80 モル0 /0、特に 10〜50モル0 /0となるようにすると、前者の単量体の側鎖ビュル基の反 応性を低下させることなく共重合ィ匕のメリットを発揮させることができる。
このように、本発明に用いられる重合体 (A)は、式(1)で表されるアクリル 'ビュル単 量体を単量体全体の 20モル%以上含むものであれば、側鎖ビュル基の反応性によ り可視光の照射前後で所望の屈折率変化が得られるのであり、共重合体では、他の 単量体が単量体全体の 10〜80モル%となるようにすればよ!、。
[0030] 本発明において、上記の重合体 (A)は、上記の式(1)で表されるアクリル ·ビュル 単量体単独またはこれと他の単量体との混合物を、重合触媒として特定のァニオン 開始剤を使用して重合反応させることにより、得ることができる。
ラジカル開始剤では、重合中に側鎖ビニル基も消費されてしまうため、屈折率の変 化に使用する側鎖ビニル基を残すことができず、また溶剤に不溶なネットワークポリ マー(ゲル)になってしまう。また、有機金属化合物である BuLiやグリニヤー試薬等の 汎用的なァ-オン開始剤では、側鎖ビュル基の一部が重合中に架橋反応してしま 、 、また得られる重合体の収率や分子量が低くなるため、好ましくない。
[0031] このため、本発明では、上記重合体を得るためのァ-オン開始剤として、希土類金 属を活性中心とする金属錯体触媒を使用する。
ここで、希土類金属とは、 Sc、 Y、ランタノイドまたはァクチノイド等の 13族金属を指 し、また活性中心とは、単量体に配位または結合して直接重合反応を開始する部位 をいう。このような金属錯体触媒は、いわゆるメタ口セン触媒と呼ばれており、これには 、シクロペンタジェ -ルと金属イオンとの錯体、インデュルと金属イオンとの錯体、フ ルォレニルと金属イオンとの錯体等が挙げられる。
[0032] このような金属錯体触媒の中でも、シクロペンタジェニルと金属イオンとの錯体、特 につぎの式(2)で表される金属錯体ィ匕合物が好ましく用いられる。
(Cpl) (Cp2) Mr- (R) p - (L) q - (2)
(式中、 Cpl, Cp2は、相互に独立して、非置換のシクロペンタジェ-ルまたは置換 されたシクロペンタジェニルであり、 Cp 1と Cp2とは直接または連結基を介して結合し ていてもよい。 Mrは r価の希土類金属原子で rは 2〜4の整数である。 Rは水素原子 または炭素数 1〜3の直鎖アルキル基である。 Lは配位能を有する溶媒である。 pは R の数、 qは Lの数で、それぞれ 0〜2の整数であり、上記 rに対して r=p + 2となるように 選択される。 )
[0033] 上記の式(2)おいて、 Cplまたは Cp2が置換されたシクロペンタジェ-ルである場 合、置換基としては、メチル基またはトリメチルシリル基が好ましい。 Cplまたは Cp2 中の置換基の数としては、 3〜5が好ましい。
Cplまたは Cp2には、 C H 、 C (CH ) 、 C H (CH ) 、 C (CH CH ) 、 C H
5 5 5 3 5 5 2 3 3 5 2 3 5 5
(CH CH ) 、 C H〔CH (CH )〕 、 C H〔Si (C H )〕 C H〔CH (CH )〕 等
2 2 3 3 5 2 3 2 3 5 2 3 3 3 5 2 3 2 3 がある。
[0034] Cplと Cp2とは、直接または連結基を介して結合していてもよぐ特に連結基を介し て結合して 、るのが望まし!/、。
連結基としては、―(CH ) n [Si (CH ) 〕 m—〔n、 mはそれぞれ 0〜3の整数であり
2 3 2
、(m+n)は 1〜3である〕が好ましぐ特にジメチルシリル基 (n力^で mが 1)、ジメチレ ン (nが 2で mが 0)であるのが好ましい。また、連結基は、エーテル性の酸素原子等の ヘテロ原子を含む基であってもよ 、。
[0035] また、上記の式(2)おいて、 Mは活性中心となる r価の希土類金属原子で、イツトリ ゥム(Y)、イッテルビウム(Yb)、サマリウム(Sm)、ルテチウム(Lu)が好まし!/、。その 価数 (r)は 2、 3または 4であり、特に 2または 3が好ましい。
Rは、水素原子または炭素数 1〜3の直鎖アルキル基であり、メチル基が好ましい。 Lは配位能を有する溶媒であり、ヘテロ原子を含む溶媒が好ましぐエーテル系溶媒 が好ましい。エーテル系溶媒は、テトラヒドロフラン、テトラヒドロピラン等の環状エーテ ル系溶媒、ジェチルエーテル、 t ブチルメチルエーテル等が好ましい。
[0036] 上記の式(2)で表される金属錯体化合物の中でも、つぎの式(3)〜(5)で表される 金属錯体化合物が特に好ましく用いられる。
(Cp-¾) Sm"'一(CH ) · (THF) - (3)
2 3
(Cp-¾) Yb'"一(CH ) · (THF) …(4)
2 3
(Cp-¾) Υ'" - (CH ) · (THF) · ·· (5)
2 3
(式中、 Cp※は 1, 2, 3, 4, 5 ペンタメチルシクロペンタジェニルであり、 THFは テトラヒドロフランである。 )
[0037] 本発明において、ァニオン開始剤として使用する上記した希土類金属を活性中心 とする金属錯体触媒は、式(1)で表されるアクリル 'ビュル単量体単独またはこれと他 の単量体との混合物に対して、 0. 01〜10モル%の使用量とするのが好ましぐ 0. 1 〜5モル%の使用量とするのがより好ましい。
上記金属錯体触媒の使用量が過少ではァ-オン重合を進めにくぐまた過多となる と分子量や分子量分布等の重合体の特性に支障をきたしゃすい。
[0038] ァ-オン重合は、無水かつ無酸素の条件下で行うのが望ましぐまた窒素、ァルゴ ン等の不活性ガス雰囲気下で実施するのが好ましい。さらに、ァ-オン重合は、溶媒 の存在下で実施するのが望ましい。溶媒としては非極性溶媒が好ましぐ特に、ベン ゼン、トルエン、キシレン等の芳香族系非極性溶媒が好ましい。
重合時の単量体の量は、溶媒中 5〜30重量%とするのが好ましい。 5重量%未満 では分子量を十分に大きくできなくなるおそれがあり、 30重量%を超えると重合中に 系の粘性が上がり、重合転ィ匕率が低下するおそれがある。
重合時の反応温度は、 100°C以下が好ましぐ特に— 95°C〜 + 30°C程度が好まし い。さらに好ましくは— 95°C〜― 25°Cである。低温で重合反応を行うほど、生成する 重合体の立体規則性が向上し、シンジオタクティシティ一が向上する傾向がある。
[0039] このようにして得られる重合体 (A)は、重合体分子内に未反応のラジカル重合性の 側鎖ビュル基が残存しており、その残存率は 90%以上であるのが好ましぐさらに 95 %以上であるのが望ましい。
ここで、未反応のラジカル重合性の側鎖ビュルの残存率は、例えば 1H— NMRに より求めることができる。例えば、 PVMAの場合、ビュル基由来のプロトンに帰属され るピーク(4. 9ppm付近)と、 α位のメチル基由来のプロトンに帰属されるピーク(1. 3 〜0. 6ppm)との面積比より、算出することができる。
[0040] また、上記のァニオン重合方法により得られる本発明の重合体 (A)は、単量体の選 択により、立体規則性がシンジオタクティシティ一 (rr)で 70%以上であるのが望まし い。そうであることにより、重合体 (A)のガラス転移点 (Tg)がはるかに高くなり、耐熱 性にすぐれたものとなる。 すなわち、希土類金属を活性中心とする金属メタ口セン錯体触媒の存在下に重合 して得られる重合体、つまり分子内にラジカル重合性の側鎖ビニル基を有する重合 体 (A)は、シンジオタクティシティ一 (rr)が 70%以上となりうる。
[0041] 一般に、シンジオタクティシティ一とは、以下のように説明される。
鎖状重合体分子の主鎖を形成する繰り返し単位の炭素原子に 2種の異なる原子ま たは原子団(置換基)が結合していると、この炭素原子を中心にして立体異性が生じ る。このとき、任意の繰り返し単位において、主鎖に沿って隣の単位が常に反対の立 体配置を採るものをシンジォタクティック、主鎖に沿って隣の単位が常に同じ立体配 置を採るものをァイソタクティック、主鎖に沿って隣の単位の立体配置が任意であるも のをァタクティック、とそれぞれいう。また、ポリマー鎖中の全立体配置のシンジオタク ティック部分の割合をシンジオタクティシティ一、ァイソタクティック部分の割合をァイソ タクティシティ一、ァタクティック部分の割合をァタクティシティ一、とそれぞれいう。
[0042] シンジオタクティシティ一は、ポリマーの立体規則性を表す指標である。
本発明におけるシンジオタクティシティ一の値は、重合体を構成する単量体由来の 重合単位の全量のうち、シンジォタクティックなトリアドの重合単位の割合をモル0 /0で 表した値である。本明細書において、トリアドとは、重合体の繰り返し単位の 3つから なる連鎖をいう。 3つの繰り返し単位のカルボニル基の 炭素(不斉炭素)の立体 配置の一方を d、他方を 1と表現した場合、 dddまたは 111で連なる連鎖をァイソタクティ ックなトリアド、 didまたは ldlで連なる連鎖をシンジォタクティックなトリアド、 ddl、 lld、 d 11、 lddで連なる連鎖をへテロタクティックなトリアドと 、う。
[0043] シンジオタクティシティ一は、核磁気共鳴スペクトル (NMR)法〖こより、求められる。
すなわち、本発明の重合体 (A)をこれを溶解する重水素化溶媒で溶解または膨潤さ せ、 1H— NMR法または 13C— NMR法により測定し、シンジオタクティシティ一、ァ イソタクティシティ一、ァタクティシティ一を反映するシグナルの積分値を測定し、これ らの比を求めることにより、算出できる。
[0044] 本発明の重合体が重水素化溶媒に難溶性である場合には、必要に応じて、重水 素化溶媒または重水素化されていない溶媒を追加して、用いてもよい。重水素化さ れて 、な 、溶媒を用いる場合は、 NMRの測定に影響を及ぼさな 、原子を含む溶媒 を選択するのが好ましぐたとえば 1H— NMR ^ベクトルデータに影響をおよぼさな い重クロ口ホルム、重ベンゼンが挙げられる。
なお、 NMRにおける測定核の選択は、重合体のスペクトルパターンに応じて適宜 変更することができる。基本的には、 1H— NMR ^ベクトルによるのが好ましぐ 1H - NMRデータにおける必要なピーク力 他の不要なピークと重なる場合または 1H— N MRでは測定できない場合には、 13C— NMR ^ベクトルによるのが好ましい。
[0045] 具体的には、ビュル (メタ)アタリレート単量体のカルボニル基の a 炭素に結合す る置換基 Xが水素原子またはメチル基である場合、この に由来する 1H— NMRの シグナルは、シンジォタクティックなトリアド中の水素原子、ァイソタクティックなトリアド 中の水素原子、ァタクティックなトリアド中の水素原子で異なるケミカルシフトを持つこ とを利用し、これらのシグナルの面積比を求めることにより、シンジォタクティックなトリ アド (rr)、ァタクティック(ヘテロタクティックとも!/、う)なトリアド (mr)、ァイソタクティック なトリアド(mm)の割合 (rrZmrZmm)が求められる。
なお、 NMR ^ベクトルの帰属の参考として、新版高分子分析ノヽンドブック、 日本分 析ィ匕学会編(1995)、 Mackromol. Chem. , Rapid. Commun. , 14, 719 ( 199 3)を使用した。
[0046] また、ビニル (メタ)アタリレート単量体のカルボニル基の a 炭素に結合する置換 基がフッ素原子またはトリフルォロオメチル基である場合のシンジオタクティシティ一 は、 13C— NMRピークの面積比によって求められる。
すなわち、カルボ-ル基の at 炭素の 13C— NMRシグナルが、シンジオタクティ ックなトリアド中の炭素原子、ァイソタクティックなトリアド中の炭素原子、ァタクティック なトリアド中の炭素原子で異なることを利用して、これらのピークの面積比を求めるこ とにより、(rrZmrZmm)が求められる。
[0047] 本発明におけるシンジオタクティシティ一は、このように求められる各タクティシティ 一から、〔rrZ (rr+mr+mm)〕 X 100 (%)として、算出される値である。本発明の製 造方法により得られる重合体 (A)は、このシンジォタクティシティ一 (rr)が、 50%以上 であり、特に 70%以上という高い値をとることにより、ァタクティックなポリマーと比べて 、耐熱性や強度の点ですぐれたものとなる。シンジオタクティシティ一が高いほど、こ れらの物性が向上する。
このように、本発明の重合体 (A)は、従来の重合体に比べて、耐熱性や強度の面 で、優位な物性を有している。この重合体 (A)は、重量平均分子量が 1, 000以上、 好ましくは 2, 000以上であるの力 強度および物 ¾面から、好ましい。一方、重量平 均分子量を 8万以下、好ましくは 7万以下、特に好ましくは 5万以下とすることで、側 鎖ビニル基の反応性を高くすることができ、少ない露光量で屈折率変化を引き起こ すことができるので、好ましい。なお、重量平均分子量は、 GPC法により測定した標 準ポリスチレン換算の値を用いる。
[0048] つぎに、本発明に用いられる光重合開始源 (B)は、可視光により活性種を発生す るものであり、さらに詳しくは、可視光 (400〜800nm)の光を吸収し、活性種 (ラジ力 ル、カチオン、ァ-オン等)を発生するものである。
このような特性を備えたものであれば、その種類は、特に限定されない。代表的に は、可視光を吸収して活性種を発生する光重合開始剤か、または可視光を吸収する 可視光増感色素と光重合開始剤 (この光重合開始剤は、可視光を吸収する光重合 開始剤であってもよ 、し、吸収しな 、光重合開始剤であってもよ 、)との混合系が挙 げられる。後者の場合、可視光または近赤外光エネルギーを吸収した可視光増感色 素からのエネルギーあるいは電子移動反応により、光重合開始剤が分解して活性種 を発生する。
[0049] 光重合開始剤のうち、可視光を吸収して活性種を発生する光重合開始剤としては 、ビス( 5 2, 4 シクロペンタジェン 1—ィル) -ビス〔2, 6 ジフルォロ 3— ( 1H—ピロール— 1—ィル)—フエ-ル〕チタニウム (チバガイギ一社製の「ィルガキュ ァ 784」)、フエニルビス(2, 4, 6 トリメチルベンゾィル)ホスフィンオキサイド(チパガ ィギ一社の「ィルガキュア 819」 )等が挙げられる。
また、光重合開始剤のうち、可視光を吸収しない光重合開始剤としては、ビスイミダ ゾール化合物、 2, 4, 6 置換 1, 3, 5 トリァジン化合物、ォ-ゥム塩化合物、金 属アレーン錯体、ベンゾインエーテル化合物、ケタール化合物、ァセトフエノン化合 物、ベンゾフエノン化合物、チォキサントン化合物、過酸化物、 N ァリールグリシン 化合物、アントラキノン化合物等を挙げることができる。 [0050] 具体的には、ビスイミダゾール化合物として、 2, 2' ビス(o クロ口フエ-ル)ー4 , 4' , 5, 5' —テトラフエ-ル一 1, 1' —ビイミダゾールゃ 2, 2' —ビス(o クロ口 フエ-)— 4, 4' , 5, 5' —テトラキス(2, 3 ジメトキシフエ-ル)一 1, 1' —ビイミダ ゾール等が挙げられる。
2, 4, 6 置換一 1, 3, 5 トリアジンィ匕合物として、 2, 4, 6 トリス(トリクロロメチノレ )—1, 3, 5 トリアジン、 2—メチル—4, 6ビス(トリクロロメチル)—1, 3, 5 トリアジ ン、 2 フエ-ル— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2, 4 ビス(ト リク メチノレ卜) 6—(p—メ卜キシフ ニノレビ二ノレ) 1, 3, 5 卜!;ァジン、 2—(4' メトキシ一 / —ナフチル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン等が 挙げられる。
[0051] ォ-ゥム塩化合物として、ジフエ-ルョードニゥム、 4, 4,ージシクロロジフエ-ルョ 一ドニゥム、 4, 4' ージメトキシジフエ-ルョードニゥム、 4, 4' ージ tーブチルジフ ェ-ルョードニゥム、 4ーメチノレー 4' イソプロピルジフエ-ルョードニゥム、 3, 3' ージニトロジフエ-ルョードニゥム等と、クロリド、ブロミド、テトラフルォロボレート、へキ サフルォロホスフェート、へキサフルォロアルセネート、へキサフルォロアンチモネ一 ト、テトラキス(ペンタフルォロフエ-ル)ボレート、トリフルォロメタンスルホン酸とを組 み合わせたジァリールョードニゥム塩ゃトリアリールスルホ-ゥム塩等のォ-ゥム塩ィ匕 含物が挙げられる。
金属アレーン錯体として、チタノセンおよびフエ口セン等が挙げられる。ベンゾイン エーテル化合物として、ベンジル、ベンゾイン、ベンゾインアルキルエーテル、 1—ヒド 口キシシクロへキシルフエ-ルケトン等が挙げられる。
[0052] ケタール化合物として、ベンジルアルキルケタール等が挙げられる。
ァセトフエノン化合物として、 2, 2' —ジアルコキシァセトフエノン、 2—ヒドロキシ一 2—メチルプロピオフエノン、 p—t—ブチルトリクロロアセトフエノン、 p—t—ブチルシク ロアセトフエノン等が挙げられる。
ベンゾフエノン化合物として、ベンゾフエノン、 4—クロ口べンゾフエノン、 4, 4' —ジ クロ口べンゾフエノン、 o ベンゾィル安息香酸メチル、 3, 3' —ジメチル一 4—メトキ シベンゾフエノン、 4—ベンゾィル 4' —メチルジフエ-ルスルフイド、ジベンゾスべ ロン等が挙げられる。
[0053] チォキサントン化合物として、チォキサントン、 2 クロ口チォキサントン、 2 アルキ ルチオキサントン、 2, 4 ジアルキルチオキサントン等が挙げられる。
過酸化物として、 3, 3' , 4, 4' ーテトラ(t ブチルパーォキシカルボ-ル)ベンゾ フエノン等が挙げられる。
N—ァリールグリシン化合物として、 N—フエ-ルグリシン、 N— (p クロ口フエ-ル) グリシン、 N ヒドロキシェチル一 N フエ-ルグリシン、 N— (2—ヒドロキシ一 3—メタ クリロキシプロピル) N—フエ-ルグリシン等が挙げられる。
[0054] 可視光増感色素は、可視光または近赤外光エネルギーを吸収しうる色素として、ァ ゾ色素、アントラキノン色素、ベンゾキノン色素、ナフトキノン色素、ジァリーノレおよびト リアリールメタン系色素、シァニン色素、メロシアニン色素、フルオラン系色素、スクヮ リリウム系色素、クロコ-ゥム系色素、ピリリウム系色素、チォピリリウム系色素、フタ口 シァニン誘導体、ナフタロシアニン誘導体、インジゴ系色素、クマリン色素、ケトクマリ ン系色素、キナクリドン系色素、キノフタロン系色素、ピロロピロール系色素、ベンゾジ フラノン系色素、アタリジン色素、ォキサジン色素、チアジン色素、キサンテン系色素 、チォキサンテン系色素、スチリ系色素、スピロピラン系色素、スピロォキサジン系色 素、有機ルテニウム錯体等が用いられる。
[0055] また、可視光増感色素には、上記色素のほか、既知の刊行物:大河原信ら著「機能 性色素」(1992年、講談社サイェンティフイク)、松岡賢著「色素の化学と応用」(199 4年、大日本図書)および大河原信ら著「色素ハンドブック」(1986年、講談社)等に 記載されて ヽる色素を使用することもできる。
本発明では、光重合開始剤と組み合わせて使用する可視光増感色素として、上記 の各種色素の中から、対応する波長の光を吸収するように、その 1種を単独で用いて もよ 、し、 2種以上を任意に組み合わせて使用してもょ 、。
[0056] 本発明において、上記構成の光重合開始源 (B)の使用量としては、特に限定する ものではないが、光重合開始剤では、重合体 (A)を含む光屈折率変調重合体組成 物からなるホログラム記録材料の全体中、通常約 0. 1〜50重量%、好ましくは約 2. 0〜20重量%となるような割合とするのがよい。 また、可視光増感色素では、重合体 (A)を含む光屈折率変調重合体組成物からな るホログラム記録材料の全体中、約 0. 1〜: LO重量%、好ましくは約 0. 2〜5重量%と なるような割合とするのがよい。
[0057] 本発明のホログラム記録材料は、上記の重合体 (A)および可視光により活性種を 発生する光重合開始源 (B)のほかに、エチレン性不飽和結合含有モノマー(C)を配 合することができる。エチレン性不飽和結合含有モノマー(C)を配合することで、少な い露光量で屈折率変化を引き起こすことができる。
本発明に用いられるエチレン性不飽和結合含有モノマー(C)としては、分子内にェ チレン性の不飽和結合を有するモノマーであれば、特に限定されないが、ラジカル 重合性の高 、(メタ)アクリル系モノマーやスチレン系モノマーを好適に用いることが できる。また、 1分子中に不飽和結合を 1個のみ有する単官能のモノマーであっても かまわな!/、し、複数の不飽和結合を有する多官能のモノマーであっても力まわな!/、。 さらに、モノマーの分子量も特に限定されず、オリゴマーのような分子量が数千のもの であってもよい。
[0058] このようなモノマーとしては、例えば、(メタ)アクリル系モノマーとして、テトラヒドロフ ルフリル (メタ)アタリレート、ヒドロキシェチル (メタ)アタリレート、(メタ)アタリロイルォキ シェチルサクシネート、(メタ)アタリロイルォキシェチルフタレート、イソボル-ル (メタ) アタリレート、シクロへキシル (メタ)アタリレート、ジシクロペンタ-ル (メタ)アタリレート 、ジシクロペンテ-ル (メタ)アタリレート、フォスファゼン骨格を有する (メタ)アタリレー ト等が挙げられる。
また、多官能のモノマーまたはオリゴマーとして、例えば、ポリエチレングリコールジ (メタ)アタリレート、ポリプロピレングリコールジ(メタ)アタリレート、ネオペンチルグリコ ールジ(メタ)アタリレート、 1, 6—へキサンジオールジ (メタ)アタリレート等の 2官能モ ノマー、またトリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールトリ(メタ )アタリレート、脂肪族トリ (メタ)アタリレート等の 3官能モノマー、ペンタエリスリトール テトラ (メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、脂肪族テト ラ (メタ)アタリレート等の 4官能モノマー、ジペンタエリスリトールペンタ (メタ)アタリレ ート、ジペンタエリスリトールへキサ (メタ)アタリレート等の 5官能以上のモノマーが挙 げられる。
さらに、その他のモノマーとして、スチレン、ビュルトルエン、クロルスチレン、ブロモ スチレン、ジビニノレベンゼン、 1ービニノレナフタレン、 2—ビニノレナフタレン、 N—ビニ ルピロリドン等のビュル化合物、ジエチレングリコールビスァリルカーボネート、トリメチ ロールプロパンジァリル、ジァリルフタレート、ジメタクリルフタレート、ジァリルイソフタ レート等のァリルイ匕合物を用いることもできる。
[0059] 特に、本発明にお 、て、エチレン性不飽和結合含有モノマー(C)は、重合体 (A)と の屈折率差が 0. 005以上であることが好ましい。このようなモノマー(C)として、例え ば重合体 (A)としてポリビニルメタタリレート (屈折率 1. 49)に対しては、 p—プロモス チレン(屈折率 1. 59)、 9, 9—ビス〔4— (2—アクリルォキシエトキシ)フエ-ル〕フル オレン (屈折率 1. 62)等を用いることができる。
ここで、重合体 (A)の屈折率は、 m— line法 (プリズムカップリング法)を用い、 He— Neレーザー(波長 633nm)、 TE (トランスバース ·エレクトリック)モード(材料のフィル ム面と平行方向の光の偏波モード)および TM (トランスバース 'マグネチック)モード( 材料のフィルム面と垂直方向の光の偏波モード)で測定することができる。また、モノ マーの屈折率は、アッベ屈折率計にて測定できる。
[0060] このようにエチレン性不飽和結合含有モノマー(C)を配合することで、少な 、露光 量で屈折率変化を引き起こすことができる理由は明確ではないが、モノマー自体、低 粘度で流動性が高いため、重合の反応性が高ぐ応答時間 (露光時間)が短縮され るためと考えられる。また、重合体 (A)との屈折率差が 0. 005以上のモノマーを配合 することで、屈折率を高くすることができ、短時間で一定レベルの回折効率を得ること ができるためと考えられる。
このようなエチレン性不飽和結合含有モノマー(C)の配合量としては、重合体 (A) 100重量咅に対し、 0. 1〜50重量咅、好ましくは 0. 5〜20重量咅とするの力よ!/、。 0 . 1重量部未満では露光時間短縮の効果が得にくぐ 50重量部を超えると回折効率 の低下や強度の低下が起こる場合がある。
[0061] 本発明のホログラム記録材料は、上記の重合体 (A)および可視光により活性種を 発生する光重合開始源 (B)ある 、はこれらとエチレン性不飽和結合含有モノマー(C )のほかに、必要に応じて、可塑剤および zまたは連鎖移動剤を配合することができ る。これらの配合により、側鎖ビニル基の架橋反応性が向上し、屈折率変化 (増加)を より良く引き起こすことができる。
[0062] 可塑剤としては、トリエチレングリコール、トリエチレングリコールジアセテート、トリエ チレングリコールジプロピオネート、トリエチレングリコールジカプリレート、トリエチレン グリコールジメチルエーテル、トリエチレングリコールビス(2—ェチノレへキサノエート) 、テトラエチレングリコールジヘプタノエート、ポリ(エチレングリコール)、ポリ(ェチレ ングリコール)メチルエーテル、イソプロピルナフタレン、ジイソプロピルナフタレン、ポ リ(プロピレングリコール)、トリ酪酸グリセリル、アジピン酸ジェチル、セバシン酸ジェ チル、スベリン酸ジブチル、燐酸トリブチル、燐酸トリス(2—ェチルへキシル)等を挙 げることができる。
[0063] 連鎖移動剤としては、光重合開始剤と併用して光硬化システムを構成させるのが有 効であることが知られている(例えば、米国特許第 3, 652, 275号公報に記載される )連鎖移動剤が好ましく用いられる。
具体的には、トリメチロールプロパントリス— 3—メルカプトプロピオネート、 N—フエ ニルグリシン、 1, 1 ジメチルー 3, 5 ジケトシクロへキセン、 2 メルカプトべンゾチ ァゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトべンズイミダゾール、ぺ ンタエリスリトールテトラキス (メルカプトアセテート)、 4—ァセトアミドチォフエノール、 メルカプトコハク酸、ドデカンチオール、 j8—メルカプトエタノール、 2—メルカプトエタ ンスルホン酸、 1 フエ二ルー 4H—テトラゾールー 5 チオール、 6 メルカプトプリ ンモノハイドレート、ビス一(5—メルカプト一 1, 3, 4 チォジァゾールー 2—ィル、 2 メルカプト 5 -トロベンズイミダゾール、 2 メルカプトー4 スルホ 6 クロ口 ベンズォキサゾール等が挙げられる。
これらの中でも、重合体との相溶性、反応促進性や汎用性の観点から、特に好まし いものは、 2—メルカプトべンズォキサゾール(2— MBO)、 2—メルカプトべンズイミダ ゾール(2— MBI)、 2—メルカプトべンゾチアゾール(2— MBT)、トリメチロールプロ パントリス— 3—メルカプトプロピオネート等である。
[0064] 本発明にお 、て、上記の可塑剤は、重合体 (A)および光重合開始源 (B)を含む光 屈折率変調重合体組成物からなるホログラム記録材料の全体中、通常約 2〜25重 量%、好ましくは 5〜15重量%の使用量とするのがよい。
同様に、上記の連鎖移動剤は、重合体 (A)および光重合開始源 (B)を含む光屈 折率変調重合体組成物からなるホログラム記録材料の全体中、通常約 2〜25重量 %、好ましくは約 5〜15重量%の使用量とするのがよい。
[0065] 以下に、本発明の実施例として、重合体 (A)として PVMAつまりビュルメタタリレー トの単独重合体を用いたホログラム記録材料 (実施例 1〜10)にっき、さらに具体的 に説明する。また、比較のため、重合体としてポリメチルメタタリレートやポリスチレンを 用いたホログラム記録材料 (比較例 1, 2)にっき、併せて記載する。
実施例 1
[0066] <触媒の合成 >
配位ァ-オン重合触媒を、以下のように合成した。
アルゴン置換した 1リットルのフラスコに、 Sml 3. 9616gと、テトラヒドロフラン 330
2
mlをカ卩えて、撹拌しながら、ペンタメチルシクロペンタジェ-ルカリウム塩〔(C Me )
5 5
K〕45. 858gをカ卩え、室温で反応させ、その後、 THFを減圧除去し、固形物にトルェ ンを加えて、上澄みを回収し、減圧乾燥させたのち、 THFとへキサンで〔(C Me ) S
5 5 2 m (THF) 〕の再結晶を行った。この〔(C Me ) Sm (THF) 〕 2. 5gを、トルエン 60
2 5 5 2 2
mlに溶解し、トリェチルアルミニウム 2. 2mlをカ卩え、撹拌して反応を行った。沈殿物 を除去したのち、再結晶を行い、(C Me ) SmMe (THF)を得た。
5 5 2
[0067] < PVMAの合成 >
十分に水分、空気を除いたシュレンク管に、十分に乾燥、脱気したトルエンを 80ml 加え、 CaH で乾燥後、蒸留精製したビュルメタタリレート 20ml (18. 7g/166. 4ミリ
2
モル)を加えた。内温を— 78°Cに調整したのち、前記の方法で合成した触媒である( C Me ) SmMe (THF) 0. 189g (0. 373ミリモル)を乾燥トルエン 5mlで希釈したも
5 5 2
のを仕込み、重合を開始した。触媒量は、単量体 Z触媒比が 446となるようにした。 重合温度— 78°Cで 3時間反応させたのち、反応系にメタノールを加えて重合反応を 停止した。さらに、メタノールをカ卩えて生成した重合体 (ポリビニルメタタリレート)を沈 降させて単離し、酢酸ェチルに溶解したのち、再度メタノールで再沈殿させて、精製 した。
[0068] 重合体の乾燥は、減圧乾燥により行った。生成した重合体の収量は 18. 7g (収率
> 99重量0 /0)であった。また、 GPC (ゲルパーミエイシヨンクロマトグラフィー)により求 めた数平均分子量(Mn)は 77, 000、重量平均分子量(Mw)は 115, 000で、分子 量分布(MwZMn)は 1. 49であった。
さらに、 1H— NMRにより求めた重合体中のラジカル重合性の側鎖ビュル基の残 存率〔ビュル基の残存率(o/0) =ビニル基 (4. 9ppm) Zメチル基(1. 3〜0. 6ppm) X 100〕は 100%であり、主鎖の立体規則性は、シンジオタクティシティ一 (rr)力 92 %であった。
[0069] 上記重合体(ポリビュルメタタリレート)の 1H—NMRチャートを、図 1に示した。また 、この 1H— NMRチャートにおけるタクティシティ一の算出に用いた主鎖メチル基の 拡大図を、図 2に示した。上記タクティシティ一の算出には、 1. 2〜0. 9ppmに検出 されるポリビュルメタタリレートの主鎖のメチル基〔1. 19ppm付近(mm)、 1. 07ppm (mr)、0. 92ppm (rr)〕の積分曲線を用いた。
つぎに、このようにして得たポリビュルメタタリレート(PVMA)約 0. lgを酢酸ェチル 50mlに浸漬し、 2日間振騰した。酢酸ェチル不溶成分を抽出し十分に乾燥させ、そ の重さを酢酸ェチル溶解前の全重合体量で割り、不溶成分の割合 (ゲル分率)を求 めたところ、 0重量%であった。
[0070] <ホログラム記録材料の作製 >
50mlのサンプル管瓶に、上記の PVMAを 0. 25g、光重合開始剤としてつぎの(ィ匕 1)で表されるビス(7? 5—2, 4—シクロペンタジェン一 1—ィル)ビス〔2, 6—ジフルォ 口— 3— (1H—ピロール— 1—ィル)—フエ-ル〕チタニウム(チバガイギ一社製の「ィ ルガキュア一 784」)を 0. 05g、可塑剤としてセバシン酸ジェチル (東京化成社製) ( 以下、 SEDという)を 0. 05g、連鎖移動剤としてメルカプトべンゾォキサゾール(アル ドリツチ社製)(以下、 MBOという)を 0. 05mg、溶媒として 1, 1, 2, 2—テトラクロロェ タン (東京化成社製)(以下、 TCEという)を 1. 40g入れ、撹拌して完全に溶解させ、 TCE溶液を得た。
[0071] [化 1]
Figure imgf000023_0001
[0072] つぎに、クリーンルーム内において、上記の TCE溶液を、「スピンコーター 1H— D X」(MIKASA社製の商品名)により、青板ガラス板上にスピンコートした。スピンコー トの条件は、 500rpmで 5秒、その後 750rpmで 10秒の設定で行い、その後、 100°C に設定した乾燥機で約 1時間乾燥させ、青板ガラス板に厚さが約 25 μ mのホロダラ ム記録材料からなるフィルムを作製した。
なお、上記の青板ガラス板は、特に洗浄処理せずに使用した。
[0073] ついで、コヒーレンス性に優れた単一周波数を有する 532nmの YAGレーザーを 偏光ビームスプリッダ一で等価に分け、反射ミラーにより夫々のレーザーが 45° で交 わる位置にこの青板ガラス板上のフィルムを設置し、ホログラム記録を行った。
このときに形成される干渉縞は、 YAGレーザーの背面から、材料中の光重合開始 剤に吸収のない波長である 633nmの He— Neレーザーを入射させ、回折光と透過 光の強度をそれぞれフォトディテクタ一により検出し、回折効率 (%)〔=回折光強度 Z (回折光強度 +透過光強度) X 100〕を求めた。
その結果、光強度 25mWZcm2の照射で回折効率は最大 15. 3%に達し、このと きの照射時間は 479秒となることがわ力つた (露光量 12j/cm2)。また、サンプル中の 2光束レーザーが照射された部分は透明であった。
実施例 2
[0074] 光重合開始剤である「ィルガキュア一 784」の使用量を、 0. 05gから 0. lgに変更し た以外は、実施例 1と同様にして、評価した。 その結果、光強度 25mWZcm2の照射で回折効率は最大 20. 5%に達し、このと きの照射時間は 439秒となることがわ力つた (露光量 11. 0j/cm2) oまた、サンプル 中の 2光束レーザーが照射された部分は透明であった。
実施例 3
[0075] 50mlのサンプル管瓶に、実施例 1で得た PVMAを 0. 25g、光重合開始剤として つぎの(ィ匕 2)で表される 2, 2' —ビス(2—クロ口フエ-ル)一 4, 4' , 5, 5' —テトラ フエ-ル— 1, 2' —ビイミダゾール(保土ケ谷化学社製の「: B— CIM」)を 0. 0375g、 増感色素としてつぎの(ィ匕 3)で表される 3—ェチル [2— {〔3—ェチルー 5—フエ-ル — 2 (3H)—ベンズォキサゾリデン〕メチル }— 1—ブテュル] - 5—フエ-ルペンズォ キサゾリゥム (林原生物化学研究所社製の「NK— 1538」)を 0. 002g、可塑剤として SEDを 0. 05g、連鎖移動剤として MBOを 0. 05mg、溶媒として TCEを lg入れ、撹 拌して完全に溶解させ、 TCE溶液を得た。
[0076] [化 2]
Figure imgf000024_0001
B-CIM
λ max=263nm
[0077] [化 3]
Figure imgf000025_0001
NK-1538
λ max=502nm
[0078] その後は、実施例 1と同様にサンプルを作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 12. 5%に達し、このと きの照射時間は 393秒となることがわ力つた (露光量 9. 8j/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。
実施例 4
[0079] 触媒量を 0. 0473g (0. 0933ミリモル)に変更した以外は、実施例 1と同様の方法 で重合体 (PVMA)を得た。上記の触媒量は、単量体 Z触媒比が 1, 784となるよう にした。
生成した重合体の収量は 18. 8g (収率 > 99重量%)であった。また、 GPC (ゲルパ 一ミエイシヨンクロマトグラフィー)により求めた数平均分子量(Mn)は 72, 600、重量 平均分子量(Mw)は 521, 000であり、分子量分布(MwZMn)は 7. 17であった。 さら〖こ、 1H— NMRにより求めた重合体中のラジカル重合性の側鎖ビニル基の残存 率〔ビュル基の残存率(%) =ビュル基 (4. 9ppm)Zメチル基(1. 3〜0. 6ppm) X 1 00〕は 100%であり、主鎖の立体規則性はシンジオタクティシティ一 (rr)が 90%であ つた o
つぎに、この PVMA約 0. lgを酢酸ェチル 50mlに浸漬し、 2日間沸騰させた。酢 酸ェチル不溶成分を抽出し十分に乾燥させ、その重さを酢酸ェチル溶解前の全ポリ マー量で割り、不溶成分の割合 (ゲル分率)を求めた結果、 0重量%であった。
[0080] 上記の PVMAを用い、これに実施例 1と同様に各成分を配合し、サンプルを作製 して、評価した。 その結果、光強度 25mWZcm2の照射で回折効率は最大 13. 2%に達し、このと きの照射時間は 520秒となることがわ力つた (露光量 13. 0j/cm2) oまた、サンプル 中の 2光束レーザーが照射された部分は透明であった。
実施例 5
[0081] 触媒量を 0. 756g (l, 492ミリモル)に変更した以外は、実施例 1と同様の方法で 重合体 (PVMA)を得た。上記の触媒量は、単量体 Z触媒比が 112となるようにした 生成した重合体の収量は 18. 6g (収率 > 99重量%)であった。また、 GPC (ゲルパ 一ミエイシヨンクロマトグラフィー)により求めた数平均分子量(Mn)は 24, 800、重量 平均分子量(Mw)は 48, 700であり、分子量分布(MwZMn)は 1. 96であった。さ らに、 1H— NMRにより求めた重合体中のラジカル重合性の側鎖ビュル基の残存率 〔ビュル基の残存率(%) =ビュル基(4. 9ppm)Zメチル基(1. 3〜0. 6ppm) X 10 0〕は 100%であり、主鎖の立体規則性はシンジオタクティシティ一 (rr)が 92%であつ た。
つぎに、この PVMA約 0. lgを酢酸ェチル 50mlに浸漬し、 2日間振騰させた。酢 酸ェチル不溶成分を抽出し十分に乾燥させ、その重さを酢酸ェチル溶解前の全ポリ マー量で割り、不溶成分の割合 (ゲル分率)を求めた結果、 0重量%であった。
[0082] 上記の PVMAを用い、これに実施例 1と同様に各成分を配合し、サンプルを作製 して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 14. 3%に達し、このと きの照射時間は 204秒となることがわ力つた (露光量 5. lj/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。
実施例 6
[0083] 実施例 5で得た PVMAを用い、これに実施例 2と同様に各成分を配合し、サンプル を作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 16. 7%に達し、このと きの照射時間は 176秒となることがわ力つた (露光量 4. j/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。 実施例 7
[0084] 実施例 5で得た PVMAを用い、これに実施例 3と同様に各成分を配合し、サンプル を作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 12. 6%に達し、このと きの照射時間は 220秒となることがわ力つた (露光量 5. 5j/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。
実施例 8
[0085] 実施例 1で得た PVMAを用い、これに実施例 2と同様に各成分を配合し、さらにェ チレン性不飽和結合含有モノマーとして p ブロモスチレン(屈折率: 1. 59) 0. 002 5g (東京化成社製)を配合し、サンプルを作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 15. 1%に達し、このと きの照射時間は 185秒となることがわ力つた (露光量 4. 6j/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。
実施例 9
[0086] 実施例 8に記載のエチレン性不飽和結合含有モノマーを、 9, 9 ビス〔4一(2 ァ クリルォキシエトキシ)フエ-ル〕フルオレン(共栄社化学社製の商品名「AF400」 ) 0 . 0025gに変更した以外は、実施例 8と同様にして、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 8. 8%に達し、このとき の照射時間は 222秒となることがわ力つた (露光量 5. 6j/cm2) 0また、サンプル中の 2光束レーザーが照射された部分は透明であった。
実施例 10
[0087] 実施例 1で得た PVMAを用い、これに実施例 3と同様に各成分を配合し、さらにェ チレン性不飽和結合含有モノマーとして P ブロモスチレン(屈折率: 1. 59) 0. 002 5g (東京化成社製)を配合し、サンプルを作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 12. 6%に達し、このと きの照射時間は 220秒となることがわ力つた (露光量 5. 5j/cm2) 0また、サンプル中 の 2光束レーザーが照射された部分は透明であった。 (比較例 1)
[0088] PVMAに代えて、光反応性基を持たな!、ポリメタクリル酸メチル(PMMA)を同量 使用した以外は、実施例 1と同様にサンプルを作製して、評価した。
その結果、光強度 25mWZcm2の照射を約 400秒照射しても回折効率は 0. 1% 未満であった (露光量 10. 0j/cm2) oサンプル中の 2光束レーザーが照射された部 分は透明であった。
(比較例 2)
[0089] PVMAに代えて、光反応性基を持たな!、ポリスチレン (PSt)を同量使用した以外 は、実施例 2と同様にサンプルを作製して、評価した。
その結果、光強度 25mWZcm2の照射で回折効率は最大 0. 67%であり、このとき の照射時間は 447秒であった(露光量 11. 2j/cm2) 0また、サンプル中の 2光束レー ザ一が照射された部分は透明であった。
[0090] 以上の実施例および比較例の結果から、本発明により分子内にラジカル重合性の 側鎖ビニル基を有する重合体 (A)を用い、これに光重合開始源 (B)を配合すること により、さらにはエチレン性不飽和結合含有モノマーを配合することにより、分子内に 光反応性基を持たない重合体を用いたものに比べて、可視光レーザーにより回折効 率の高い透明なホログラム記録材料が得られるものであることがわかる。
本発明を詳細にまた特定の実施態様を参照して説明してきたが、本発明の精神と 範囲を逸脱することなく様々な変更や修正を加えることができることは当事者にとって 明らかである。
本発明は 2005年 4月 8日出願の日本特許出願 (特願 2005— 112136号)に基づ くものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0091] 本発明は、分子内にラジカル重合性の側鎖ビニル基を有する特定の重合体に特 定の光重合開始源に加えて、広い波長領域にわたり高感度で、化学的に安定であり 、かつ操作性に優れ、従来のような煩雑な工程を要することなぐ可視光レーザーに より屈折率を効率的に変調 (変化)させることができると共に、この変調後の透明性に も優れる。つまり可視光レーザーにより回折効率の高い透明なホログラム記録材料を 提供することができる。

Claims

請求の範囲
[I] つぎの式(1) ;
CH =C (R1) C ( = 0) 0-R2 = CH
2 … (1)
2
(式中、 R1は水素原子またはメチル基、 R2は炭素数 1〜20の飽和または不飽和炭 化水素基であって、分子内にヘテロ原子やハロゲン原子を含んで 、てもよ 、) で表されるアクリル'ビニル単量体を必須成分とした単量体の重合体であって、分子 内にラジカル重合性の側鎖ビュル基を有する重合体 (A)と、可視光により活性種を 発生する光重合開始源 (B)を含むことを特徴とするホログラム記録材料。
[2] 重合体 (A)は、式(1)で表されるアクリル ·ビュル単量体を 20モル%以上含む単量 体の重合体である請求項 1に記載のホログラム記録材料。
[3] 重合体 (A)は、立体規則性力 シンジォタクティシティ一 (rr)で 70%以上である請 求項 1または 2に記載のホログラム記録材料。
[4] 重合体 (A)は、重量平均分子量が 8万以下である請求項 1〜3のいずれかに記載 のホログラム記録材料。
[5] 光重合開始源 (B)は、可視光を吸収して活性種を発生する光重合開始剤である請 求項 1〜4のいずれかに記載のホログラム記録材料。
[6] 光重合開始源 (B)は、可視光増感色素と光重合開始剤とからなる請求項 1〜4の
V、ずれかに記載のホログラム記録材料。
[7] 光重合開始剤の量は、ホログラム記録材料の全体中、 1〜50重量%である請求項
5または 6に記載のホログラム記録材料。
[8] 可視光増感色素の含有量は、ホログラム記録材料の全体中、 0. 1〜: L0重量%で ある請求項 6に記載のホログラム記録材料。
[9] 重合体 (A)および光重合開始剤源 (B)のほかに、エチレン性不飽和結合含有モノ マー(C)を含む請求項 1〜8の 、ずれかに記載のホログラム記録材料。
[10] エチレン性不飽和結合含有モノマー(C)は、重合体 (A)との屈折率差が 0. 005以 上である請求項 9に記載のホログラム記録材料。
[I I] 重合体 (A)および光重合開始源 (B)ある ヽはこれらとエチレン性不飽和結合含有 モノマー(C)のほかに、可塑剤および Zまたは連鎖移動剤を含む請求項 1〜10のい ずれかに記載のホログラム記録材料。
[12] つぎの式(1) ;
CH =C (R1) C ( = 0) 0-R2 = CH … (1)
2 2
(式中、 R1は水素原子またはメチル基、 R2は炭素数 1〜20の飽和または不飽和炭 化水素基であって、分子内にヘテロ原子やハロゲン原子を含んで 、てもよ 、) で表されるアクリル'ビニル単量体を必須成分とした単量体を、重合開始剤として、希 土類金属を活性中心とする金属錯体触媒を使用して、ァ-オン重合させることにより 、分子内にラジカル重合性の側鎖ビニル基を有する重合体 (A)を生成し、これに可 視光により活性種を発生する光重合開始源 (B)を含ませて、ホログラム記録材料を 製造することを特徴とするホログラム記録材料の製造方法。
[13] 希土類金属を活性中心とする金属錯体触媒は、つぎの式 (2);
(Cpl) (Cp2) Mr- (R) p - (L) q - (2)
(式中、 Cpl, Cp2は、相互に独立して、非置換のシクロペンタジェ-ルまたは置換 されたシクロペンタジェニルであり、 Cp 1と Cp2とは直接または連結基を介して結合し ていてもよい。 Mrは r価の希土類金属原子で rは 2〜4の整数である。 Rは水素原子 または炭素数 1〜3の直鎖アルキル基である。 Lは配位能を有する溶媒である。 pは R の数、 qは Lの数で、それぞれ 0〜2の整数であり、上記 rに対して r=p + 2となるように 選択される。 )
で表される金属錯体ィ匕合物である請求項 12に記載のホログラム記録材料の製造方 法。
PCT/JP2006/307317 2005-04-08 2006-04-06 ホログラム記録材料 WO2006109665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/631,189 US7781124B2 (en) 2005-04-08 2006-04-06 Hologram recording material
CN2006800004237A CN101061442B (zh) 2005-04-08 2006-04-06 全息图记录材料
EP06731265A EP1873593A1 (en) 2005-04-08 2006-04-06 Hologram recording material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-112136 2005-04-08
JP2005112136A JP4248020B2 (ja) 2005-04-08 2005-04-08 ホログラム記録材料

Publications (1)

Publication Number Publication Date
WO2006109665A1 true WO2006109665A1 (ja) 2006-10-19

Family

ID=37086941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307317 WO2006109665A1 (ja) 2005-04-08 2006-04-06 ホログラム記録材料

Country Status (7)

Country Link
US (1) US7781124B2 (ja)
EP (1) EP1873593A1 (ja)
JP (1) JP4248020B2 (ja)
KR (1) KR20070118940A (ja)
CN (1) CN101061442B (ja)
TW (1) TW200702344A (ja)
WO (1) WO2006109665A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257295B2 (ja) * 2005-01-07 2009-04-22 日東電工株式会社 光屈折率変調重合体組成物、ホログラム記録材料および屈折率制御方法
JP5925686B2 (ja) * 2009-11-03 2016-05-25 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG ホログラフィックフィルムの製造方法
CN102754026B (zh) * 2010-02-02 2015-10-07 拜耳知识产权有限责任公司 具有酯基书写单体的光聚合物制剂
DE102010000559A1 (de) * 2010-02-25 2011-08-25 Bundesdruckerei GmbH, 10969 Verfahren zur Verifikation von Sicherheits- oder Wertdokumenten mit einem Anthrachinon-Farbstoff
US8778568B2 (en) * 2010-12-14 2014-07-15 General Electric Company Optical data storage media and methods for using the same
CN102344504B (zh) * 2011-07-29 2013-03-13 华中科技大学 一种制备高衍射效率全息光聚合物材料的可见光光引发体系
JP5998722B2 (ja) * 2011-08-03 2016-09-28 三菱化学株式会社 ホログラム記録媒体用組成物及びこれを用いたホログラム記録媒体
EP2766902A1 (de) * 2011-10-12 2014-08-20 Bayer Intellectual Property GmbH Schwefelhaltige kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
JP6048078B2 (ja) * 2011-11-08 2016-12-21 三菱化学株式会社 ホログラム記録媒体用組成物及びこれを用いたホログラム記録媒体並びにそれらの製造方法
KR102309427B1 (ko) * 2018-09-27 2021-10-05 주식회사 엘지화학 홀로그램 매체
KR102426756B1 (ko) 2019-01-25 2022-07-27 주식회사 엘지화학 포토폴리머 조성물
US11733647B2 (en) * 2019-05-08 2023-08-22 Meta Platforms Technologies, Llc Light-activated controlled radical polymerization
KR102384288B1 (ko) * 2019-07-02 2022-04-06 주식회사 엘지화학 포토폴리머 조성물
CN112759701B (zh) * 2019-10-21 2022-12-30 杭州光粒科技有限公司 光致聚合物组合物、反射式衍射光栅及其制备方法
CN112778444B (zh) * 2021-01-25 2022-11-08 南京工业大学 一种光诱导有机催化制备聚烯烃的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273505A (ja) * 1997-03-27 1998-10-13 Mitsubishi Rayon Co Ltd ポリ(メタ)アクリル酸エステルの製造法
JPH11249298A (ja) * 1998-03-04 1999-09-17 Mitsubishi Chemical Corp 感光性組成物及び感光性平版印刷版
JP2002322207A (ja) * 2001-04-24 2002-11-08 Fuji Photo Film Co Ltd 光重合性組成物及び記録材料
WO2005033153A1 (ja) * 2003-10-03 2005-04-14 Nitto Denko Corporation 光屈折率変調重合体、光屈折率変調重合体組成物および屈折率制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755251A (fr) * 1969-08-25 1971-02-25 Du Pont Enregistrement holographique dans des couches photopoly- merisables
US3652275A (en) * 1970-07-09 1972-03-28 Du Pont HEXAARYLBIIMIDAZOLE BIS (p-DIALKYL-AMINOPHENYL-{60 ,{62 -UNSATURATED) KETONE COMPOSITIONS
JPS5315152A (en) 1976-07-27 1978-02-10 Canon Inc Hologram
US4293674A (en) 1980-06-03 1981-10-06 E. I. Du Pont De Nemours And Company Dienyl methacrylates
US4415651A (en) * 1981-03-30 1983-11-15 E. I. Du Pont De Nemours And Company Aqueous processable, positive-working photopolymer compositions
JPS6222152A (ja) 1985-07-22 1987-01-30 Toshiba Corp ハ−ドウエアシミユレ−シヨン装置
DE3719871A1 (de) * 1987-06-13 1988-12-29 Basf Ag Durch photopolymerisation vernetzbare heisspraegeplatten
US4942102A (en) * 1988-01-15 1990-07-17 E. I. Du Pont De Nemours And Company Holographic optical elements having a reflection hologram formed in a photopolymer
US5886101A (en) * 1988-03-02 1999-03-23 E. I. Du Pont De Nemours And Company Solvent dispersible interpenetrating polymer networks
EP0501433B1 (en) * 1991-02-28 1997-05-07 E.I. Du Pont De Nemours And Company Photosensitive compositions using solvent dispersible interpenetrating polymer networks
JPH0792313A (ja) 1993-09-20 1995-04-07 Toshiba Corp 光ファイバー型回折格子
JP2914486B2 (ja) 1995-12-26 1999-06-28 清藏 宮田 光ファイバ、及びその製造方法
JPH11228327A (ja) * 1998-02-18 1999-08-24 Gc Corp 歯科用ペースト系グラスアイオノマーセメント組成物
GB0030675D0 (en) * 2000-12-15 2001-01-31 Rue De Int Ltd Methods of creating high efficiency diffuse back-reflectors based on embossed surface relief
US6515067B2 (en) 2001-01-16 2003-02-04 Chevron Phillips Chemical Company Lp Oxygen scavenging polymer emulsion suitable as a coating, an adhesive, or a sealant
JP4257295B2 (ja) * 2005-01-07 2009-04-22 日東電工株式会社 光屈折率変調重合体組成物、ホログラム記録材料および屈折率制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273505A (ja) * 1997-03-27 1998-10-13 Mitsubishi Rayon Co Ltd ポリ(メタ)アクリル酸エステルの製造法
JPH11249298A (ja) * 1998-03-04 1999-09-17 Mitsubishi Chemical Corp 感光性組成物及び感光性平版印刷版
JP2002322207A (ja) * 2001-04-24 2002-11-08 Fuji Photo Film Co Ltd 光重合性組成物及び記録材料
WO2005033153A1 (ja) * 2003-10-03 2005-04-14 Nitto Denko Corporation 光屈折率変調重合体、光屈折率変調重合体組成物および屈折率制御方法

Also Published As

Publication number Publication date
US7781124B2 (en) 2010-08-24
EP1873593A1 (en) 2008-01-02
TW200702344A (en) 2007-01-16
KR20070118940A (ko) 2007-12-18
JP2006292933A (ja) 2006-10-26
CN101061442B (zh) 2011-02-02
US20080305404A1 (en) 2008-12-11
CN101061442A (zh) 2007-10-24
JP4248020B2 (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2006109665A1 (ja) ホログラム記録材料
JP3737306B2 (ja) 光学製品およびその製造法
EP0672953B1 (en) Photosensitive recording material, photosensitive recording medium, and process for producing hologram using this photosensitive recording medium
KR101024744B1 (ko) 체적 위상형 홀로그램 기록용 감광성 수지 조성물 및그것을 사용한 광정보기록매체
EP0697631B1 (en) Photosensitive recording material, photosensitive recording medium, and process for producing hologram using this photosensitive recording medium
JP4536275B2 (ja) 体積型ホログラム記録用感光性組成物及び体積型ホログラム記録用感光性媒体
JP4976373B2 (ja) 体積位相型ホログラム記録用感光性樹脂組成物及びそれを用いた光情報記録媒体
EP1376268A1 (en) Composition for hologram-recording material, hologram-recording medium, and process for producing the same
KR101094551B1 (ko) 광 굴절률 변조 중합체 조성물, 홀로그램 기록 재료 및굴절률 제어 방법
WO2021006012A1 (ja) 感光性組成物、及びこれを用いたホログラム記録媒体、ホログラム光学素子並びにホログラム回折格子の形成方法
KR20220101613A (ko) 홀로그램 기록용 조성물, 홀로그램 기록 매체, 홀로그램, 및 이를 사용한 광학장치, 광학부품
JP3532621B2 (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
US20070066705A1 (en) Photochemically refractive-index-changing polymer, photochemically refractive-index-changing polymer composition, and method of refractive index regulation
JP4232001B2 (ja) ホログラム記録材料用組成物、ホログラム記録媒体およびその製造方法
JPH06202543A (ja) 体積位相型ホログラムの製造方法
JP2005140852A (ja) 体積ホログラム記録用感光性組成物およびそれを用いる体積ホログラム記録媒体の製造方法
CN117700744A (zh) 一种聚倍半硅氧烷及包含其的光致聚合物型全息记录介质
JPH07199777A (ja) ホログラム記録用感光性樹脂組成物及びホログラム記録用媒体
EP0980025A1 (en) Hologram recording material composition, hologram recording medium, and process for producing the same.
JPH06130879A (ja) ホロク゛ラム記録材料及びそれを用いた体積位相型ホログラムの製造方法
KR20050027566A (ko) 광반응성 고분자 바인더를 이용한 홀로그램 기록용포토폴리머 제조 방법
JPH0713472A (ja) ホログラム記録用媒体およびそれに使用する感光材料
JPH06202541A (ja) 体積位相型ホログラムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000423.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11631189

Country of ref document: US

Ref document number: 2006731265

Country of ref document: EP

Ref document number: 1020067027810

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731265

Country of ref document: EP