WO2006106907A1 - 露光装置、露光方法及びデバイス製造方法 - Google Patents

露光装置、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
WO2006106907A1
WO2006106907A1 PCT/JP2006/306809 JP2006306809W WO2006106907A1 WO 2006106907 A1 WO2006106907 A1 WO 2006106907A1 JP 2006306809 W JP2006306809 W JP 2006306809W WO 2006106907 A1 WO2006106907 A1 WO 2006106907A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
exposure apparatus
space
exposure
Prior art date
Application number
PCT/JP2006/306809
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/887,565 priority Critical patent/US20090253083A1/en
Priority to EP06730757A priority patent/EP1873815A4/en
Publication of WO2006106907A1 publication Critical patent/WO2006106907A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method that expose a substrate through a liquid.
  • an exposure apparatus that projects and exposes a pattern formed on a mask onto a photosensitive substrate is used.
  • This exposure apparatus has a mask stage that can move while holding a mask, and a substrate stage that can move while holding a substrate, and projects an image of the mask pattern while sequentially moving the mask stage and the substrate stage. Project onto the substrate via the optical system.
  • miniaturization of patterns formed on a substrate is required to increase the density of devices.
  • immersion exposure as disclosed in Patent Document 1 below, fills the optical path space of exposure light with a liquid and exposes the substrate through the liquid. The device is devised!
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • an exposure apparatus is required to have a high moving speed of a substrate (substrate stage) for the purpose of improving device productivity.
  • the substrate (substrate stage) is moved at high speed, it may be difficult to fill the optical path space of the exposure light with the liquid to the desired state, and the exposure accuracy and measurement accuracy via the liquid may deteriorate.
  • the substrate (substrate stage) moves at a high speed, there is a problem that the optical path space of the exposure light cannot be sufficiently filled with the liquid or bubbles are generated in the liquid.
  • the exposure light does not reach the substrate satisfactorily, and the pattern is not formed on the substrate, or the pattern formed on the substrate is defective.
  • the movement of the substrate (substrate stage) is fast As a result, liquid filled in the optical path space may leak out. If the liquid leaks, the peripheral parts' equipment will be corroded or broken.
  • the remaining liquid (droplet) is vaporized, so that the liquid adheres to the substrate (so-called water). Mark) may be formed.
  • the substrate, substrate stage, etc. are thermally deformed by the heat of vaporization of the leaked liquid, and the environment (humidity, cleanliness, etc.) in which the exposure device is placed fluctuates. This may cause deterioration of exposure accuracy 1 and various measurement accuracy using interferometers.
  • the liquid may also adhere to the transport system that holds the substrate, which may increase the damage. Further, as the substrate (substrate stage) moves at a high speed, the immersion area filled with the liquid may become enormous, and the entire exposure apparatus may become enormous.
  • the present invention has been made in view of such circumstances, and provides an exposure apparatus, an exposure method, and a device manufacturing method using them that can fill the optical path space of exposure light with a liquid to a desired state.
  • the purpose is to do.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with exposure light (EL), the optical path of the exposure light (EL)
  • the liquid (LQ) supplied from the liquid supply device (11) is held between the object (P) and the optical path space (K1) of the exposure light (EL) so as to face each other.
  • the optical path space of the exposure light can be filled with a desired state even when the substrate is exposed while moving in a predetermined direction.
  • an exposure apparatus that exposes the substrate (P) by irradiating the substrate) with exposure light (EL) via a liquid (LQ), wherein the exposure light A member (70) facing the surface of the object (P) disposed at a position where (EL) can be irradiated and capable of holding the liquid (LQ) between the object (P) and the object (P) and the recovery part (22) for recovering the liquid (LQ) held between the member (70) and the surface of the object between the optical path (K1) and the recovery part (22) And a space forming region (72, 76) formed in the member to provide a space (SP) between the liquid (LQ) on the object (P) and the member (70).
  • An optical device is provided.
  • the second aspect of the present invention it is possible to fill a predetermined portion of the optical path of the exposure light with the liquid while suppressing leakage of the liquid and enlargement of the liquid immersion area.
  • an exposure method in which the substrate (P) is exposed to the substrate (P) by irradiating the substrate (P) with exposure light (EL) via the liquid (LQ).
  • LQ between the member (70) and the substrate (P) arranged to face the substrate, and the liquid (LQ) and the member (70) on the substrate (P).
  • the substrate can be exposed in a state where a predetermined portion of the optical path of the exposure light is filled with the liquid while suppressing leakage of the liquid and enlarging of the liquid immersion area.
  • the substrate (P) is exposed using the exposure apparatus (EX) of the first or second aspect (204), and the exposed substrate is developed.
  • a device manufacturing method comprising: (204) and processing (205) the developed substrate.
  • the substrate (P) is exposed using the exposure method of the third aspect (204), and the exposed substrate (P) is developed ( 204) and processing the developed substrate (205).
  • the optical path space of the exposure light is filled with a liquid in a desired state.
  • a device can be manufactured using the exposure apparatus and exposure method that can be used.
  • the optical path space of the exposure light can be filled with the liquid in a desired state, and the exposure process and the measurement process via the liquid can be performed satisfactorily.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a partially cutaway schematic perspective view showing the vicinity of a nozzle member 70 according to the first embodiment.
  • FIG. 3 is a perspective view of the nozzle member 70 according to the first embodiment as viewed from below.
  • FIG. 4 is a side sectional view parallel to the XZ plane of FIG.
  • FIG. 5 is a side sectional view parallel to the YZ plane of FIG.
  • FIG. 6 is a diagram for explaining the principle of the liquid recovery operation by the liquid immersion mechanism.
  • FIGS. 7A and 7B are schematic diagrams for explaining the behavior of the liquid accompanying the movement of the substrate.
  • FIG. 8 is a view for explaining the behavior of the liquid accompanying the movement of the substrate according to the first embodiment.
  • FIG. 9 is a diagram for explaining the behavior of the liquid accompanying the movement of the substrate according to the first embodiment.
  • FIG. 10 is a view for explaining the behavior of the liquid accompanying the movement of the substrate according to the second embodiment.
  • FIG. 11 is a perspective view of a nozzle member 70 according to a third embodiment as viewed from below.
  • FIG. 12 is a side cross-sectional view parallel to the YZ plane of FIG.
  • FIG. 13 is a flowchart showing an example of a microdevice manufacturing process. Explanation of symbols
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to the first embodiment.
  • an exposure apparatus EX is configured to move a mask stage MST that can move while holding a mask M, a substrate stage PST that can move while holding a substrate P, and a mask M that is held by the mask stage MST!
  • Illumination optical system IL that illuminates with exposure light EL
  • projection optical system PL that projects an image of the pattern of mask M illuminated with exposure light EL onto substrate P that is held by substrate stage PST
  • an exposure device It has a control device CONT that controls the overall operation of EX.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus.
  • the exposure apparatus EX includes an immersion mechanism 1 for filling the optical path space K1 of the exposure light EL near the image plane of the projection optical system PL with the liquid LQ.
  • the liquid immersion mechanism 1 is provided in the vicinity of the optical path space K1, and is provided in the nozzle member 70 having the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ, the supply pipe 13, and the nozzle member 70.
  • a flow path (supply flow path) 14 for connecting the supply port 12 and the supply pipe 13 is provided inside the nozzle member 70, and the recovery port 22, the recovery pipe 23, A flow path (recovery flow path) 24 for connecting the two is provided.
  • the supply port, the recovery port, the supply channel, and the recovery channel are not shown.
  • the nozzle member 70 is formed in an annular shape so as to surround the final optical element LSI closest to the image plane of the projection optical system PL among a plurality of optical elements constituting the projection optical system PL.
  • the exposure apparatus EX of the present embodiment includes an immersion region of a liquid LQ that is larger than the projection region AR and smaller than the substrate P on a part of the substrate P including the projection region AR of the projection optical system PL.
  • the local liquid immersion method is used to form LR locally.
  • the exposure apparatus EX must be at least While the pattern image of the disk M is projected onto the substrate P, it is closest to the image plane of the projection optical system PL! ⁇ ⁇
  • the optical path space K1 of the exposure light EL between the final optical element LSI and the substrate P arranged on the image plane side of the projection optical system PL is filled with the liquid LQ, and the projection optical system PL and the optical path space K1 are filled.
  • the pattern of the mask M is transferred to the substrate P by irradiating the substrate P with the exposure light EL that has passed through the mask M through the liquid LQ.
  • the control device CONT supplies a predetermined amount of liquid LQ using the liquid supply device 11 of the liquid immersion mechanism 1 and collects a predetermined amount of liquid LQ using the liquid recovery device 21, thereby converting the optical path space K1 into the liquid LQ.
  • the liquid LQ immersion area LR is locally formed on the substrate P.
  • the optical path space K1 is liquid while an object other than the substrate P (for example, the upper surface 94 of the substrate stage PST) faces the projection optical system PL. The same is true if LQ is met.
  • exposure apparatus EX a scanning exposure apparatus (so-called scanning stepper) that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction.
  • scanning direction the synchronous movement direction between the mask M and the substrate P in the horizontal plane
  • the direction orthogonal to the Y-axis direction (non-scanning direction) in the horizontal plane is the X-axis direction and X-axis.
  • the direction perpendicular to the Y-axis direction and coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are defined as 0 X, ⁇ Y, and ⁇ Z directions, respectively.
  • the “substrate” includes a substrate such as a semiconductor wafer coated with a photosensitive material (photoresist) and a film such as a protective film, and the “mask” is a device pattern that is reduced and projected onto the substrate. Including a reticle formed.
  • the exposure apparatus EX includes a base BP provided on the floor surface, and a main column 9 installed on the base BP.
  • the main column 9 is formed with an upper step 7 and a lower step 8 that protrude inward.
  • the illumination optical system IL illuminates the mask M held on the mask stage MST with the exposure light EL, and is supported by a support frame 10 fixed to the upper part of the main column 9.
  • the illumination optical system IL is an optical integrator that uniformizes the illuminance of a light beam emitted from an exposure light source, a condenser lens that emits exposure light from an optical integrator, a relay lens system, and a mask that uses exposure light EL. It has a field stop to set the illumination area on M.
  • a predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
  • Illumination optical system IL force
  • the emitted exposure light EL includes, for example, bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) and other ultraviolet light (DUV light).
  • Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm) is used.
  • ArF excimer laser light is used.
  • pure water is used as the liquid LQ. Pure water transmits not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248 nm). Is possible.
  • DUV light far ultraviolet light
  • Mask stage MST is movable while holding mask M.
  • the mask stage MST holds the mask M by vacuum suction (or electrostatic suction).
  • a plurality of gas bearings (air bearings) 85 which are non-contact bearings are provided on the lower surface of the mask stage MST.
  • the mask stage MST is supported in a non-contact manner on the upper surface (guide surface) of the mask stage surface plate 2 by the air bearing 85.
  • an opening through which the pattern image of the mask M passes is formed.
  • the mask stage surface plate 2 is supported on the upper step 7 of the main column 9 via a vibration isolator 86.
  • the mask stage MST is supported by the upper step portion 7 of the main column 9 via the vibration isolator 86 and the mask stage surface plate 2.
  • the anti-vibration device 86 vibrationally separates the mask stage base plate 2 and the main column 9 so that the vibration of the main column 9 is not transmitted to the mask stage base plate 2 that supports the mask stage MST.
  • the mask stage MST is a projection optical system on the mask stage surface plate 2 in a state where the mask M is held by driving a mask stage driving device MSTD including a linear motor controlled by the control device CONT. It can move two-dimensionally in a plane perpendicular to the optical axis AX of the PL, that is, in the XY plane, and can rotate slightly in the ⁇ Z direction.
  • a movable mirror 81 is fixed on the mask stage MST.
  • the laser A total of 82 is provided. The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction are measured by the laser interferometer 82 in real time.
  • the laser interferometer 82 may measure the rotation angle in the ⁇ and 0 ⁇ directions.
  • the measurement result of the laser interferometer 82 is output to the control device CONT.
  • the control device CONT drives the mask stage driving device MSTD, and controls the position of the mask mask held by the mask stage MST.
  • Projection optical system PL projects an image of the pattern of mask M onto substrate ⁇ at a predetermined projection magnification ⁇ .
  • Projection optical system PL includes a plurality of optical elements, and these optical elements are held by lens barrel PK.
  • the projection optical system PL is a reduction system in which the projection magnification j8 is 1Z4, 1Z5, or 1Z8, for example.
  • the projection optical system PL may be either an equal magnification system or an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the final optical element LS1 is exposed from the lens barrel PK closest to the image plane of the projection optical system PL.
  • a flange PF is provided on the outer periphery of the lens barrel PK that holds the projection optical system PL, and the projection optical system PL is supported by the lens barrel surface plate 5 via the flange PF.
  • the lens barrel surface plate 5 is supported on the lower step portion 8 of the main column 9 via a vibration isolator 87. That is, the projection optical system PL is supported by the lower step portion 8 of the main column 9 via the vibration isolator 87 and the lens barrel surface plate 5. Further, the lens barrel base plate 5 and the main column 9 are vibrationally separated by the vibration isolator 87 so that the vibration of the main column 9 is not transmitted to the lens barrel base plate 5 supporting the projection optical system PL. .
  • the substrate stage PST has a substrate holder PH that holds the substrate P, and is movable while holding the substrate P on the substrate holder PH.
  • the substrate holder PH holds the substrate P by, for example, vacuum suction.
  • a concave portion 93 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the concave portion 93.
  • the upper surface 94 around the recess 93 of the substrate stage PST is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. If the optical path space K1 can continue to be filled with the liquid LQ, it is held by the upper surface 94 of the substrate stage PST and the substrate holder PH. Even if there is a step on the surface of the substrate P,
  • a plurality of gas bearings (air bearings) 88 which are non-contact bearings are provided on the lower surface of the substrate stage PST.
  • the substrate stage PST is supported in a non-contact manner on the upper surface (guide surface) of the substrate stage base 6 by an air bearing 88.
  • the substrate stage surface plate 6 is supported on the base BP via a vibration isolator 89.
  • the vibration isolator 89 prevents the vibration of the base BP (floor surface), the main column 9 and the like from being transmitted to the substrate stage surface plate 6 that supports the substrate stage PST.
  • BP floor surface
  • the substrate stage PST is mounted on the substrate stage surface plate 6 in a state where the substrate P is held via the substrate holder PH by driving the substrate stage driving device PSTD including a linear motor controlled by the control device CONT. It can move two-dimensionally in the XY plane and can rotate in the ⁇ Z direction. Furthermore, the substrate stage PST can also move in the Z-axis direction, 0 X direction, and ⁇ Y direction. Therefore, the surface of the substrate P held by the substrate stage PST can move in the directions of six degrees of freedom in the X axis, Y axis, Z axis, 0 X, ⁇ Y, and ⁇ Z directions.
  • a movable mirror 83 is fixed on the side surface of the substrate stage PST.
  • a laser interferometer 84 is provided at a position facing the movable mirror 83.
  • the position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 84.
  • the exposure apparatus EX detects surface position information on the surface of the substrate P held by the substrate stage PST as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-207710.
  • a focus / leveling detection system is provided.
  • the measurement result of the laser interferometer 84 is output to the control device CONT.
  • the detection result of the focus' repelling detection system is also output to the control device CONT.
  • the control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus leveling detection system, and adjusts the focus position (Z position) and tilt angle ( ⁇ X, ⁇ ⁇ ) of the substrate P.
  • the surface of the substrate P is controlled to be aligned with the image plane formed via the projection optical system PL and the liquid LQ, and the X-axis direction of the substrate P based on the measurement result of the laser interferometer 84, Y Performs position control in the axial direction and ⁇ Z direction.
  • the liquid supply device 11 of the liquid immersion mechanism 1 fills the optical path space K1 of the exposure light EL with the liquid LQ.
  • the liquid supply device 11 includes a tank for storing the liquid LQ, a pressure pump, a temperature adjusting device for adjusting the temperature of the supplied liquid LQ, a filter unit for removing foreign matter in the liquid LQ, and the like.
  • One end of a supply pipe 13 is connected to the liquid supply apparatus 11, and the other end of the supply pipe 13 is connected to a nozzle member 70.
  • the liquid supply operation of the liquid supply device 11 is controlled by the control device CONT.
  • the tank, pressure pump, temperature adjustment mechanism, filter unit, etc. of the liquid supply device 11 are not necessarily equipped with the exposure apparatus EX. Good
  • a flow rate controller called a mass flow controller that controls the amount of liquid per unit time that is sent from the liquid supply device 11 and supplied to the image plane side of the projection optical system PL. 19 is provided. Control of the liquid supply amount by the flow controller 19 is performed based on the command signal of the control device CONT.
  • the liquid recovery device 21 of the liquid immersion mechanism 1 recovers the liquid LQ filled in the optical path space K1 of the exposure light EL.
  • the liquid recovery apparatus 21 includes a vacuum system such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ.
  • One end of a recovery pipe 23 is connected to the liquid recovery apparatus 21, and the other end of the recovery pipe 23 is connected to a nozzle member 70.
  • the liquid recovery operation of the liquid recovery device 21 is controlled by the control device CONT.
  • the vacuum system, gas-liquid separator, tank, etc. of the liquid recovery device 21 may be replaced with facilities such as a factory where the exposure apparatus EX is installed.
  • the nozzle member 70 is supported by the support mechanism 91.
  • the support mechanism 91 is connected to the lower step 8 of the main column 9.
  • the main column 9 that supports the nozzle member 70 via the support mechanism 91 and the lens barrel surface plate 5 that supports the lens barrel PK of the projection optical system PL via the flange PF are the vibration isolator 87. Is separated vibrationally. Therefore, the vibration generated in the nozzle member 70 is prevented from being transmitted to the projection optical system PL.
  • the main column 9 and the substrate stage surface plate 6 supporting the substrate stage PST are vibrationally separated through a vibration isolator 89. Therefore, the vibration force generated in the nozzle member 70 is prevented from being transmitted to the substrate stage PST via the main column 9 and the base BP.
  • the main column 9 and the mask stage surface plate 2 supporting the mask stage MST are vibrationally separated via a vibration isolator 86. Therefore, vibration generated in the nozzle member 70 is prevented from being transmitted to the mask stage MST via the main column 9.
  • FIGS. 2 is a partially cutaway view of the schematic perspective view showing the vicinity of the nozzle member 70
  • FIG. 3 is a perspective view of the nozzle member 70 viewed from below
  • FIG. 4 is a side sectional view parallel to the XZ plane
  • FIG. It is side sectional drawing parallel to a YZ plane.
  • the nozzle member 70 is provided in the vicinity of the final optical element LSI closest to the image plane of the projection optical system PL.
  • the nozzle member 70 is an annular member provided so as to surround the final optical element LSI above the substrate P (substrate stage PST), and the projection optical system PL (final optical element LSI) can be disposed at the center thereof. It has a hole 70H.
  • the nozzle member 70 is a combination of a plurality of members, and the outer shape of the nozzle member 70 has a substantially rectangular shape in plan view.
  • the outer shape of the nozzle member 70 is not limited to a square shape in plan view, and may be, for example, a circular shape in plan view.
  • the nozzle member 70 may be made of one material (such as titanium), or may be made of, for example, aluminum, titanium, stainless steel, dial-lumin, or an alloy containing these.
  • the nozzle member 70 faces the side plate portion 70A, the inclined plate portion 70B, the top plate portion 70C provided at the upper ends of the side plate portion 70A and the inclined plate portion 70B, and the substrate P (substrate stage PST). And a bottom plate portion 70D.
  • the inclined plate portion 70B is formed in a mortar shape, and the final optical element LS1 is disposed inside the hole 70H formed by the inclined plate portion 70B.
  • the inner surface of the inclined plate portion 70B (that is, the inner surface of the hole 70H of the nozzle member 70) 70T and the side surface LT of the final optical element LSI of the projection optical system PL are opposed to each other, and the inner surface 70T of the inclined plate portion 70B is final.
  • a predetermined gap G1 is provided between the side surface LT of the optical element LSI.
  • the fact that the gap G1 is provided prevents the vibration generated by the nozzle member 70 from being directly transmitted to the projection optical system PL (final optical element LSI).
  • the inner surface 70T of the inclined plate portion 70B is liquid repellent (water repellent) with respect to the liquid LQ, and the side surface LT of the final optical element LSI of the projection optical system PL and the inner surface of the inclined plate portion 70B. Intrusion of liquid LQ into gap G1 between 70T is suppressed.
  • a fluorine-based resin material such as polytetrafluoroethylene (Teflon (registered trademark)), an acrylic resin material, a silicon-based resin material, or the like is attached. And the like.
  • a part of the bottom plate portion 70D is provided between the lower surface T1 of the final optical element LSI of the projection optical system PL and the substrate P (substrate stage PST) in the Z-axis direction. Further, an opening 74 through which the exposure light EL passes is formed at the center of the bottom plate portion 70D.
  • the exposure light EL that has passed through the final optical element (optical member) LS 1 of the projection optical system PL passes through the aperture 74.
  • the projection area AR irradiated with the exposure light EL is provided in a slit shape (substantially rectangular shape) whose longitudinal direction is the X-axis direction (non-scanning direction), and the opening 74 is formed in the projection area AR.
  • the opening 74 is formed larger than the projection area AR, and the exposure light EL that has passed through the projection optical system PL can reach the substrate P that is blocked by the bottom plate portion 70D.
  • the lower surface of the nozzle member 70 facing the substrate P has a first surface 75 facing the surface of the substrate P disposed at a position where the exposure light EL can be irradiated.
  • the first surface 75 is a flat surface parallel to the XY plane.
  • the first surface 75 is the optical path space K1 of the exposure light EL (exposure light that has passed through this space is projected onto the substrate P to form a projection area AR:
  • the optical path space Kl passes through the exposure light.
  • a space is intended, and in this embodiment and the following embodiments, it is provided so as to surround a space through which exposure light passes between the final optical element LSI and the substrate substrate.
  • the first surface 75 is a surface provided so as to surround the opening 74 through which the exposure light EL of the bottom plate portion 70D passes.
  • the position where the exposure light EL can be irradiated includes a position facing the projection optical system PL. Since the first surface 75 is provided so as to surround the optical path space K1 of the exposure light EL that has passed through the projection optical system PL, the control device C ONT places the substrate P at a position where the exposure light EL can be irradiated. Thus, the first surface 75 and the surface of the substrate P can be opposed to each other.
  • the first surface 75 of the nozzle member 70 faces the surface of the substrate P held by the substrate stage PST. And provided so as to be substantially parallel to the surface (XY plane) of the substrate P.
  • the first surface 75 can hold the liquid LQ supplied from the liquid supply device 11 with the substrate P so as to fill the optical path space K1 of the exposure light EL.
  • the nozzle member 70 is provided so as to face the surface of the substrate P held by the substrate stage PST and surround the optical path space K1 of the exposure light EL, and the surface of the substrate P
  • the first surface (flat surface) 75 formed so as to be substantially parallel to the (XY plane) is appropriately referred to as a “first land surface 75”.
  • the first land surface 75 is provided at a position of the nozzle member 70 closest to the substrate P held by the substrate stage PST. That is, the first land surface 75 is a portion where the distance (interval) from the surface of the substrate P held on the substrate stage PST is the smallest. Accordingly, the liquid immersion region LR can be formed while holding the liquid LQ well between the first land surface 75 and the substrate P.
  • the distance (interval) W1 between the surface of the substrate P and the first land surface 75 is set to about 1 mm.
  • the first land surface 75 is provided between the lower surface T1 of the projection optical system PL and the substrate P so as to surround the optical path space K1 (projection area AR) of the exposure light EL.
  • the first land surface 75 is provided in a partial region of the lower surface of the nozzle member 70 (bottom plate portion 70D). As described above, the first land surface 75 is provided so as to surround the opening 74 through which the exposure light EL passes.
  • the first land surface 75 has a shape corresponding to the opening 74, and the outer shape of the first land surface 75 in this embodiment is a rectangular shape whose longitudinal direction is the X-axis direction (non-scanning direction). .
  • the opening 74 is provided at substantially the center of the first land surface 75.
  • the width D1 of the first land surface 75 in the Y-axis direction (scanning direction) is smaller than the width D2 of the opening 74 in the Y-axis direction.
  • the width D1 of the first land surface 75 in the Y-axis direction is the + Y side ( ⁇ Y side) end (edge) E of the first land surface 75 and the + Y side ( ⁇ Y side) of the opening 74. ) End (edge).
  • the opening 74 is provided at substantially the center of the first land surface 75, the + Y side end E of the first land surface 75 and the + Y side end of the opening 74 The distance between the first land surface 75—the Y-side end E of the first land surface 75 and the opening 74—the Y-side end is approximately equal.
  • the width D1 of the first land surface 75 in the Y-axis direction is smaller than the width D3 of the first land surface 75 in the X-axis direction.
  • the width D3 of the first land surface 75 in the X-axis direction is the + X side ( ⁇ X side) end (edge) and opening of the first land surface 75. It is the distance from the edge (edge) of 74 on the + X side (one X side).
  • the opening 74 is provided substantially at the center of the first land surface 75, the + X side end of the first land surface 75 and the + X side end of the opening 74 are provided. And the distance between the end of the first land surface 75 on the ⁇ X side and the end of the opening 74 on the ⁇ X side are approximately equal.
  • the distance between the surface of the substrate P and the lower surface T1 of the final optical element LSI is longer than the distance between the surface of the substrate P and the first land surface 75. That is, the lower surface T1 of the final optical element LSI is formed at a position higher than the first land surface 75.
  • the bottom plate portion 70D is provided so as not to contact the lower surface T1 of the final optical element LS1 and the substrate P (substrate stage PST). As shown in FIG. 5 and the like, a space having a predetermined gap G2 is formed between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D.
  • the upper surface 77 of the bottom plate portion 70D is provided so as to surround the opening 74 through which the exposure light EL passes. That is, the upper surface 77 of the bottom plate portion 70D is provided so as to surround the optical path space K1 of the exposure light EL, and is opposed to the final optical element LSI with a predetermined gap G2.
  • the space inside the nozzle member 70 including the space between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D is appropriately referred to as “internal space G2.”
  • a recess 72 space formation region
  • the recess 72 is recessed so as to be separated from the surface of the substrate P held by the substrate stage PST.
  • a second surface 76 that faces the substrate P held by the substrate stage PST is formed inside the recess 72.
  • the second surface 76 is disposed outside the first land surface 75 with respect to the optical path space K1 of the exposure light EL. Second surface 76 is separated from first land surface 75 with respect to the surface of substrate P held by substrate stage PST.
  • the nozzle member 70 is disposed so as to face the surface of the substrate P held by the substrate stage PST and outside the first land surface 75 with respect to the optical path space K1 of the exposure light EL.
  • the second surface 76 that is further away from the first land surface 75 than the surface of the substrate P is appropriately referred to as a “second land surface 76”.
  • the second land surface 76 is a flat surface that is substantially parallel to the surface of the substrate P held by the substrate stage PST.
  • the distance (interval) W2 between the surface of the substrate P and the second land surface 76 is set to about 3 mm. See the drawings For the sake of simplicity, the scale and the like in each drawing are different from the actual ones.
  • the second land surface 76 is provided on each of both sides of the first land surface 75 in the Y-axis direction (scanning direction).
  • the outer shape of the second land surface 76 is a rectangular shape whose longitudinal direction is the X-axis direction (non-scanning direction), and the X-axis direction of the second land surface 76
  • the overall size of the first land surface 75 in the X-axis direction are substantially the same value D4.
  • the + Y side edge E of the first land surface 75 is formed in a straight line so as to extend in the X-axis direction in plan view, and the Y side edge E is also a plane. It is formed in a straight line so that it extends in the X-axis direction.
  • each of the first land surface 75 of the nozzle member 70 and the lower surface T1 of the final optical element LSI is a liquid contact surface in contact with the liquid LQ.
  • the second land surface 76 is formed so that the film of the liquid LQ existing between the surface of the substrate P and the second land surface 76 is not in contact with the second land surface 76. It is provided. That is, even when the liquid LQ is brought into contact with the first land surface 75 and the liquid LQ is held between the first land surface 75 and the substrate P in order to fill the optical path space K1 with the liquid LQ, the surface of the substrate P The liquid LQ film existing between the two land surfaces 76 is not in contact with the second land surface 76.
  • the liquid LQ surface of the liquid LQ
  • the second land surface present on the substrate P facing the second land surface 76 due to the presence of the recess 72 (space forming region) that partitions the second land surface 76.
  • a space with no liquid present between 76 and 76 is provided.
  • the first land surface 75 is lyophilic with respect to the liquid LQ.
  • the bottom plate portion 70D forming the first land surface 75 is made of titanium. Since the titanium material has a passive film with photocatalytic action formed on the surface and can maintain the lyophilicity (hydrophilicity) of the surface, the contact angle of the liquid LQ on the first land surface 75 is, for example, 20 °. The following can be maintained.
  • the first land surface 75 and the second land surface 76 are formed of stainless steel (for example, SUS316), and the surface treatment for suppressing the elution of impurities into the liquid LQ or the lyophilic property is enhanced on the surface.
  • a surface treatment may be applied.
  • the first land For example, the treatment of attaching chromium oxide to each of the surface 75 and the second land surface 76, such as “GOLDEP” treatment or “GOLDEP WHITEJ treatment” by Shinko Environmental Solution Co., Ltd.
  • the second land surface 76 has liquid repellency with respect to the liquid LQ.
  • the second land surface 76 is subjected to a surface treatment (liquid repellency treatment) that imparts liquid repellency to the liquid LQ.
  • a surface treatment for example, a liquid-repellent material such as a fluorine-based resin material such as polytetrafluoroethylene (Teflon (registered trademark)), an acrylic resin material, or a silicon-based resin material is attached. Processing.
  • the nozzle member 70 includes a supply port 12 for supplying the liquid LQ for filling the optical path space K1 of the exposure light EL, and a recovery port 22 for collecting the liquid LQ for filling the optical path space K1 of the exposure light EL. It has. Further, the nozzle member 70 includes a supply channel 14 connected to the supply port 12 and a recovery channel 24 connected to the collection rod 22. Although not shown or simplified in FIGS. 2 to 5, the supply flow path 14 is connected to the other end of the supply pipe 13, and the recovery flow path 24 is connected to the other end of the recovery pipe 23. Is done.
  • the supply flow path 14 is formed by a slit-shaped through hole that penetrates the inside of the inclined plate portion 70B of the nozzle member 70 along the inclination direction.
  • the supply flow paths 14 are provided on both sides in the Y-axis direction with respect to the optical path space K1 (projection area AR). Then, the upper end portion of the supply flow path (through hole) 14 and the other end portion of the supply pipe 13 are connected, whereby the supply flow path 14 is connected to the liquid supply apparatus 11 via the supply pipe 13.
  • the lower end portion of the supply channel 14 is provided in the vicinity of the internal space G2 between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D, and the lower end portion of the supply channel 14 is the supply port.
  • the supply port 12 is provided in the vicinity of the internal space G2 between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D, and is connected to the internal space G2.
  • the supply ports 12 are provided at respective predetermined positions on both sides in the Y-axis direction across the optical path space K1, outside the optical path space K1 of the exposure light EL.
  • the supply port 12 supplies the liquid LQ for filling the optical path space K1.
  • the liquid LQ is also supplied to the supply port 12 by the liquid supply device 11 and the supply port 12 is located between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D, that is, the internal space G2.
  • Liquid L Q can be supplied.
  • the nozzle member 70 has an exhaust port 16 for allowing the internal space G2 and the external space K3 to communicate with each other.
  • An exhaust passage 15 is connected to the exhaust port 16.
  • the exhaust passage 15 is formed by a slit-like through hole that penetrates the inside of the inclined plate portion 70B of the nozzle member 70 along the inclination direction.
  • the exhaust flow path 15 is provided on both sides in the X-axis direction with respect to the optical path space K1 (projection area AR).
  • the upper end portion of the exhaust flow path (through hole) 15 is connected to the external space (atmospheric space) K3 and is in an open state.
  • the lower end portion of the exhaust passage 15 is connected to the internal space G2 between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D, and the lower end portion of the exhaust passage 15 is connected to the exhaust port. It is 16. That is, the exhaust port 16 is provided in the vicinity of the internal space G2 between the lower surface T1 of the final optical element LSI and the upper surface 77 of the bottom plate portion 70D, and is connected to the internal space G2. In the present embodiment, the exhaust ports 16 are provided outside the optical path space K1 of the exposure light EL and at respective predetermined positions on both sides in the X-axis direction across the optical path space K1.
  • a recess 78 is provided in the vicinity of the exhaust port 16 on the upper surface 77 of the bottom plate portion 70D. Since the exhaust port 16 communicates the internal space G2 and the external space K3 via the exhaust flow path 15, the gas in the internal space G2 flows from the upper end of the exhaust flow path 15 via the exhaust port 16. It can be discharged (exhaust) into the external space K3.
  • the nozzle member 70 has a space 24 that opens downward between the side plate portion 70A and the inclined plate portion 70B.
  • the recovery port 22 is provided in the opening of the space 24. Further, the space 24 constitutes at least a part of the recovery channel in the nozzle member 70. Then, the other end of the recovery pipe 23 is connected to a part of the recovery flow path (space) 24.
  • the recovery port 22 recovers the liquid LQ for filling the optical path space K1.
  • the recovery port 22 is provided above the substrate P held by the substrate stage PST at a position facing the surface of the substrate P.
  • the collection port 22 and the surface of the substrate P are separated by a predetermined distance.
  • the collection rod 22 is provided outside the supply port 12 with respect to the optical path space K1 near the image plane of the projection optical system PL.
  • the recovery port 22 is provided outside the second land surface 76 with respect to the optical path space K1.
  • the recovery port 22 is provided in an annular shape in plan view so as to surround the first land surface 75 and the second land surface 76.
  • the nozzle member 70 includes a porous member 25 having a plurality of holes disposed so as to cover the recovery port 22.
  • the porous member 25 can be composed of a mesh member having a plurality of holes.
  • the porous member 25 can be composed of a mesh member having a plurality of substantially hexagonal hole cam patterns.
  • the porous member 25 can be formed by drilling a plate member that is a base material of a porous member such as titanium or stainless steel (for example, SUS316).
  • a porous member made of ceramics can be used as the porous member 25.
  • the porous member 25 of the present embodiment is formed in a thin plate shape, and has a thickness of about 100 m, for example.
  • the porous member 25 has a lower surface 26 facing the substrate P held by the substrate stage PST.
  • the lower surface 26 of the porous member 25 is a part of the lower surface of the nozzle member 70, and the lower surface 26 of the porous member 25 facing the substrate P is substantially flat.
  • the porous member 25 is provided at the recovery port 22 so that its lower surface 26 is substantially parallel to the surface of the substrate P held by the substrate stage PST (ie, the XY plane).
  • the distance between the lower surface 26 of the porous member 25 and the surface of the substrate P is substantially equal to the distance between the first land surface 75 and the surface of the substrate P. That is, the lower surface 26 and the first land surface 75 of the porous member 25 provided at the recovery port 22 are provided at substantially the same position (height) with respect to the surface of the substrate P.
  • the porous member 25 provided in the recovery port 22 contacts the liquid LQ when recovering the liquid LQ.
  • the recovery port 22 can recover the liquid LQ that has contacted the porous member 25.
  • the recovery port 22 and the porous member 25 disposed in the recovery port 22 are formed in a rectangular ring shape in plan view.
  • the porous member 25 is lyophilic (hydrophilic) with respect to the liquid LQ.
  • the lyophilic treatment (surface treatment) for making the porous member 25 lyophilic include a treatment of attaching acid chrome to the porous member 25. Specifically, as described above, “GOLDEP” process or “GOLDEP WHITE” process. Further, by performing such a surface treatment, elution of impurities from the porous member 25 to the liquid LQ can be suppressed.
  • the porous member 25 may be formed of the lyophilic material itself.
  • FIG. 6 is an enlarged cross-sectional view of a part of the porous member 25, and is a schematic diagram for explaining the liquid recovery operation performed through the porous member 25.
  • the liquid immersion mechanism 1 is provided so as to recover only the liquid LQ via the recovery port 22. Therefore, the liquid immersion mechanism 1 can satisfactorily recover the liquid LQ without causing gas to flow into the space 24 via the recovery port 22.
  • the recovery port 22 is provided with a porous member 25.
  • a substrate P is disposed below the porous member 25.
  • a gas space and a liquid space are formed between the porous member 25 and the substrate P. More specifically, a gas space is formed between the first hole 25Ha of the porous member 25 and the substrate P, and a liquid space is formed between the second hole 25Hb of the porous member 25 and the substrate P. Yes.
  • a recovery flow path (flow path space) 24 is formed above the porous member 25.
  • the interface between the liquid LQ and the gas can be maintained inside the first hole 25Ha of the porous member 25, and gas can be prevented from entering the channel space 24 from the space K3 via the first hole 25Ha. Can do.
  • a liquid space is formed on the lower side (substrate P side) of the second hole 25Hb of the porous member 25. Therefore, only the liquid LQ can be recovered through the second hole 25Hb.
  • the surface tension ⁇ of the LQ is almost constant, and the liquid immersion mechanism 1 controls the suction force of the liquid recovery device 21 to satisfy the above condition so that the pressure Pc in the flow path space 24 above the porous member 25 is satisfied. Adjust.
  • the contact angle ⁇ of the porous member 25 with the liquid LQ is It is desirable to be as small as possible.
  • the porous member 25 is lyophilic with respect to the liquid LQ and has a sufficiently small contact angle ⁇ .
  • the pressure difference between the upper space 24 and the lower space K3 of the porous member 25 (the pressure between the upper surface and the lower surface of the porous member 25) in a state where the porous member 25 is wet.
  • the hole 25H force of the porous member 25 also recovers only the liquid LQ. As a result, it is possible to suppress the occurrence of vibration caused by sucking the liquid LQ and gas together.
  • the control device CONT drives each of the liquid supply device 11 and the liquid recovery device 21.
  • the liquid LQ delivered from the liquid supply device 11 under the control of the control device CONT flows through the supply pipe 13 and then through the supply flow path 14 of the nozzle member 70 from the supply port 12 to the projection optical system PL.
  • Supply to internal space G2 from supply port 12 The liquid LQ thus applied flows so as to spread over the upper surface 77 of the bottom plate portion 70D and reaches the opening 74.
  • the gas portion existing in the internal space G2 is discharged to the external space K1 through the exhaust ports 16 and Z or the opening 74. Therefore, when the supply of the liquid LQ to the internal space G2 is started, it is possible to prevent a problem that gas remains in the internal space G2, and a gas part (bubble) is generated in the liquid LQ of the optical path space K1. Can be prevented.
  • a recess 78 is provided in the vicinity of the exhaust port 16 on the upper surface 77 of the bottom plate portion 70D.
  • the upper end of the exhaust passage 15 is connected to the atmospheric space (external space) K3 and is open to the atmosphere, but the upper end of the exhaust passage 15 is vacuumed. It may be connected to a suction device such as a system to forcibly exhaust the gas in the internal space G2.
  • liquid LQ is supplied to the internal space G2 from the openings (exhaust ports) 16 provided on both sides in the X-axis direction with respect to the optical path space K1, and in the Y-axis direction with respect to the optical path space K1.
  • the gas part of the internal space G2 may be discharged to the external space K3 from the ports (supply ports) 12 provided on both sides.
  • the liquid LQ supplied to the internal space G2 flows into the space between the first land surface 75 and the substrate P (substrate stage PST) via the opening 74, and is exposed. Fills the optical path K1 of the optical EL.
  • the final optical element LSI projection optical system PL
  • the optical path space K1 of the exposure light EL is filled with the liquid LQ.
  • the liquid recovery device 21 driven under the control of the control device CONT recovers a predetermined amount of the liquid LQ per unit time.
  • the liquid recovery device 21 including the vacuum system recovers the liquid LQ existing between the recovery port 22 (the porous member 25) and the substrate P through the recovery port 22 by setting the space 24 to a negative pressure. Can do.
  • the liquid LQ filled in the optical path space K1 of the exposure light EL flows into the recovery flow path 24 through the recovery port 22 of the nozzle member 70, and After flowing through the recovery pipe 23, it is recovered by the liquid recovery device 21.
  • the control device CONT uses the liquid immersion mechanism 1 to supply a predetermined amount of liquid LQ per unit time to the optical path space K1 and to supply the liquid LQ in the optical path space K1 for a unit time.
  • the liquid LQ that fills the optical path space K1 of the exposure light EL between the projection optical system PL and the substrate P and the liquid LQ that fills the space between the nozzle member 70 and the substrate P are collected by collecting a predetermined amount per hit.
  • the immersion region LR can be locally formed on the substrate P.
  • the control device CONT fills the optical path space K1 of the exposure light EL with the liquid LQ, and moves the pattern image of the mask M while projecting the optical system PL and the optical path space K1 while relatively moving the projection optical system PL and the substrate P. Project onto the substrate P through the liquid LQ.
  • the control device CONT controls the substrate stage PST to place the substrate P in the Y-axis direction. The substrate P is exposed by irradiating the exposure light EL onto the substrate P while moving to.
  • the liquid LQ is supplied via the recovery port 22 as the scanning speed (movement speed) of the substrate P increases.
  • the liquid LQ that cannot be sufficiently collected and filled in the optical path space K1 leaks outside the collection port 22 (outside the space between the nozzle member 70 and the substrate P) with respect to the optical path space K1. there's a possibility that.
  • the position where the liquid LQ is separated from the lower surface of the nozzle member 70 in contact with the lower surface of the nozzle member 70 with the movement of the substrate P is appropriately referred to as “film”. It is referred to as “occurrence position Fp”.
  • the formed liquid LQ film is separated from the recovery port 22 (porous member 25), there is a possibility that the liquid LQ film cannot be recovered by the recovery port 22. That is, Since the formed liquid LQ film does not come into contact with the porous member 25 disposed in the recovery port 22, there is a possibility that the recovery port 22 cannot recover the liquid LQ. Then, there is a possibility that the liquid LQ leaks to the outside of the recovery port 22 and that the Z or liquid LQ film remains as droplets on the substrate P. As the moving speed of the substrate P increases, the liquid LQ film is more likely to be formed on the substrate P, and the film size Lw is also more likely to increase.
  • the film size Lw indicates the distance between the film generation position Fp and the front end H of the film of the liquid LQ on the front side in the movement direction of the substrate P (here, the Y side).
  • the liquid LQ film can be formed on the inner side of the recovery port 22 with respect to the optical path space K1, the liquid LQ can be recovered through the recovery port 22. I found out.
  • the inventor has moved the substrate P in the ⁇ Y direction as shown in FIG. 7 (particularly when the substrate P moving in the Y direction is given acceleration in the + Y direction). ) And found that the thickness (film thickness) near the tip H of the liquid LQ film increases due to the surface tension of the liquid LQ (see Fig. 7 (B)).
  • the leading end H of the liquid LQ is formed inside the outer edge 22A of the recovery port 22 with respect to the optical path space K1, in other words, the recovery port 22 (the porous member 25) and the liquid LQ If the front end H of the membrane can be made to face, the porous member 25 of the recovery port 22 can be brought into contact with the liquid LQ (tip H), and the liquid LQ can be recovered via the recovery port 22 Can do. Further, if the tip H of the liquid LQ is formed on the inner side of the inner edge 22B of the recovery port 22 with respect to the optical path space K1, the direction opposite to the direction in which the liquid LQ film is formed on the optical path space K1. By moving the substrate P in the direction (here, the + Y direction), the formed liquid LQ film can be recovered together with the liquid LQ in the immersion region LR via the recovery port 22.
  • the liquid LQ film is recovered through the recovery port 22. If this is the case, it is necessary to provide the recovery port 22 at a position far away from the optical path space K1 (projection optical system PL optical axis AX), so that the nozzle member 70 becomes larger and the exposure apparatus EX as a whole becomes larger. Inconvenience arises.
  • the film generation position Fp is separated from the optical path space K1 (optical axis AX) force, Since the distance Ls between the optical path space Kl (optical axis AX) and the tip H of the liquid LQ film increases and the liquid immersion area LR becomes enormous, the liquid LQ should be recovered through the recovery port 22. Then, it is necessary to enlarge the nozzle member 70, which leads to enlargement of the exposure apparatus EX.
  • the enlargement of the liquid immersion region LR and the enlargement of the nozzle member 70 are suppressed, and the optical path space K1 is made to be the liquid LQ.
  • the first land surface 75 and the second land surface 76 are formed on the lower surface of the nozzle member 70 facing the substrate P. Is provided.
  • FIG. 8 is a schematic diagram for explaining an example of the behavior of the immersion region LR when the substrate P is moved in the Y direction.
  • the first land surface 75 is a flat surface substantially parallel to the surface of the substrate P and has lyophilicity, and exists between the surface of the substrate P and the first land surface 75.
  • the liquid LQ is in close contact with the first land surface 75, and the liquid LQ is well held between the surface of the substrate P and the first land surface 75.
  • the second land surface 76 is further away from the first land surface 75 than the surface of the substrate P, and a step is formed between the second land surface 76 at the edge E of the first land surface 75. Because it is provided, the interface of the liquid LQ held between the surface of the substrate P and the first land surface 75 LG force Exposure light Outside the first land surface 75 with respect to the optical path space K1 of the EL The liquid LQ force that has been in contact with the first land surface 75 when moving in the direction of the force is separated from the second land surface 76 at the edge E of the first land surface 75.
  • the liquid LQ existing between the surface of the substrate P and the second land surface 76 is a film thinner than the distance (interval) W1 between the surface of the substrate P and the first land surface 75.
  • the liquid LQ film existing between the surface of the first land surface 76 and the second land surface 76 is not in contact with the second land surface 76.
  • a space SP in which no liquid exists is formed between the second land surface 76 and the liquid LQ film on the substrate P facing the second land surface 76.
  • This space SP is caused by a recess 76 that defines the second land surface 76.
  • the film generation position Fp is located at the edge E of the first land surface 75. Is set.
  • the nozzle member 70 of the present embodiment includes the first land surface 75 and the second land surface 76 (concave portion 72). Defines the film generation position Fp.
  • the width D1 of the first land surface 75 in the Y-axis direction (scanning direction) is sufficiently small, so that the optical path space K1 (optical axis AX) is formed.
  • the distance Ls from the tip H of the liquid LQ film can be reduced.
  • the liquid LQ film generated at the edge E which is the boundary between the first land surface 75 and the second land surface 76, is collected with respect to the optical path space K1 of the exposure light EL.
  • the position of the edge E of the first land surface 75 and the position (size) of the recovery port 22 are set so as to be formed on the inner side of 22.
  • the liquid LQ film (tip H) is formed on the edge E of the first land surface 75 so as to be formed on the inner side of the inner edge 22B of the recovery port 22 with respect to the optical path space K1.
  • the positional relationship (distance) with the recovery port 22 is set.
  • the recess 72 which is a space forming region, is formed between the optical path space K1 and the recovery port 22 so as to be formed inside the inner edge 22B of the recovery port 22 with respect to the optical path space K1.
  • the second land surface 76 is provided so that the liquid LQ existing between the surface of the substrate P and the second land surface 76 is thinner than the distance W1, and the liquid LQ is formed on the second land surface 76. The film is not in contact. Then, by separating the second land surface 76 from the first land surface 75 with respect to the surface of the substrate P, it is possible to prevent the liquid LQ from adhering to or remaining on the second land surface 76.
  • the film of the liquid LQ (tip portion H) does not change the optical path even if the film size Lw increases as the moving speed of the substrate P increases.
  • the position of the edge E of the first land surface 75 and the position of the collection rod 22 are set so as to be formed inside the outer edge 22A of the recovery port 22 with respect to the space K1. That is, a recess 72, which is a space formation region, is formed between the optical path space K1 and the recovery port 22 so as to be formed inside the inner edge 22A of the recovery port 22 with respect to the optical path space K1. . Therefore, leakage and residual liquid LQ can be prevented.
  • the distance between the lower surface 26 of the porous member 25 and the surface of the substrate P is substantially the same as the distance between the first land 75 and the surface of the substrate P.
  • the porous member 25 is the film thickness of the formed liquid LQ film. Is provided at a position where it can come into contact with the liquid LQ at the tip H, which is a thick portion. Therefore, as shown in FIG. 9, the recovery port 22 (the porous member 25) and the front end H of the liquid LQ film face each other, that is, the liquid LQ film (the front end H) faces the outer edge of the recovery port 22. twenty two
  • the liquid LQ can be recovered by setting the position of the edge E of the first land surface 75 and the position of the recovery port 22 (outer edge 22A) so as to be formed inside A.
  • the liquid LQ in the immersion area formed on the substrate P is a space between the second land surface 76 and the liquid LQ (a space below the space defined in the recess 72). ) It is recovered from the recovery port 22 while forming the SP.
  • the size Lw of the liquid LQ film changes according to the moving speed of the substrate P when the substrate P is exposed, and therefore the liquid LQ film is formed in the recovery port 22.
  • the size D5 of the second land surface 76 (or the recess 72) in the Y-axis direction is set according to the moving speed of the substrate P in the Y-axis direction when exposing the substrate P so that it is formed inside. be able to. Since the maximum speed of the substrate stage PST is divided in advance, the size D5 of the second land surface 76 (or the recess 72) can be set according to this maximum speed. For example, when exposure is performed while moving the substrate P at a high speed, the size Lw of the liquid LQ film is likely to increase.
  • the size D5 of the second land surface 76, and hence the first land surface 75 By increasing the distance between the edge E and the recovery port 22, a liquid LQ film can be formed inside the recovery port 22. Therefore, leakage and residual liquid LQ can be prevented.
  • the size Lw of the liquid LQ film is likely to be small. Therefore, the size D5 of the second land surface 76 and thus the first land surface Even if the distance between the edge E of 75 and the recovery port 22 is reduced, the liquid LQ film can be formed inside the recovery port 22. Accordingly, it is possible to reduce the size of the nozzle member 70, and hence the overall size of the exposure apparatus EX.
  • the film size Lw of the liquid LQ may change depending not only on the moving speed but also on the acceleration, moving distance, moving direction (moving locus), etc. when moving the substrate P. Therefore, the position of the edge E of the first land surface 75 and the second land surface according to the movement condition including at least one of the movement speed, acceleration, movement distance, and movement direction (movement locus) of the substrate P.
  • the size of 76 (concave portion 72) can be set.
  • the film size Lw of the liquid LQ may change depending on the contact angle between the substrate P and the liquid LQ. For example, if the contact angle between the substrate P and the liquid LQ is small, in other words, the substrate When the surface of P is lyophilic, when the substrate P is exposed while moving, the liquid LQ film size Lw formed on the substrate P is likely to increase. Therefore, in such a case, by increasing the size D5 of the second land surface 76 (or the recess 72), and by increasing the distance between the edge E of the first land surface 75 and the recovery port 22, the liquid LQ This film can be formed inside the recovery port 22.
  • the contact angle between the substrate P and the liquid LQ is large, in other words, when the surface of the substrate P is liquid-repellent, it is formed when the substrate P is exposed while moving.
  • the liquid LQ film size Lw is likely to be small. Therefore, in such a case, even if the size D 5 of the second land surface 76 (or the concave portion 72), and hence the distance between the edge E of the first land surface 75 and the recovery port 22 is reduced, the liquid LQ A membrane can be formed inside the collection port 22. Accordingly, it is possible to reduce the size of the nozzle member 70, and hence the overall size of the exposure apparatus EX.
  • the position of the edge E of the first land surface 75 and the size D5 of the second land surface 76 in the Y-axis direction can be set according to the contact angle between the substrate P and the liquid LQ.
  • the film size Lw of the liquid LQ may also vary depending on the liquid immersion conditions when forming the liquid immersion region LR.
  • the immersion condition includes at least one of the supply condition of the liquid LQ to the optical path space K1 and the recovery condition of the liquid LQ in the optical path space K1.
  • the liquid Q supply conditions include the amount of liquid supplied per unit time, the supply position of the liquid LQ with respect to the optical path space K1, the supply direction, and the like.
  • the liquid LQ recovery conditions include the amount of liquid recovered per unit time, the liquid LQ recovery position with respect to the optical path space K1, the recovery direction, and the like.
  • the size Lw of the liquid LQ film that is formed may change due to such a difference in the immersion conditions, so the position of the edge E of the first land surface 75 depends on these immersion conditions. You can also set the size of the second land surface 76 (recess 72)!
  • the second land surface 76 is formed so that the film of the liquid LQ existing between the surface of the substrate P and the second land surface 76 (concave portion 72) does not contact the second land surface 76. Since the (concave portion 72) is provided, even when the substrate P is exposed while being moved, inconveniences such as leakage or remaining of the liquid LQ can be prevented. Then, the liquid LQ can be satisfactorily held by the first land surface 75, and the optical path space K1 of the exposure light EL can be filled with the liquid LQ in a desired state.
  • the film generation position Fp is set in the optical path space. Since the distance can be close to Kl (optical axis AX), it is possible to reduce the size of the liquid immersion region LR and the size of the nozzle member 70. For this reason, the width D1 of the first land surface 75 in the Y-axis direction is such that, for example, when the substrate P is moved in the Y direction after moving in the Y direction, bubbles are generated in the optical path space K1. It is desirable that it is as small as possible within a range that does not cause a phenomenon in which a gas part is generated (for example, a liquid-out phenomenon in which the liquid LQ in the optical path space K1 is cut).
  • the first land surface 75 is located between the first land surface 75 and the substrate P. It is desirable that the body LQ is as small as possible within the range where the LQ can be well maintained. Similarly, the width D3 of the first land surface 75 in the X-axis direction can be within a range without causing inconvenience such as generation of bubbles in the optical path space K1 even when the substrate P is stepped in the X-axis direction. It is desirable to be as small as possible.
  • the first land surface 75 has a rectangular shape with the X-axis direction as the longitudinal direction, and the width D1 of the first land surface 75 in the Y-axis direction is equal to the width D3 in the X-axis direction and the opening. It is provided sufficiently smaller than the width D2 of 74, and the optical path space K1 can be satisfactorily filled with the liquid LQ while suppressing the enlargement of the liquid immersion area LR.
  • the second land surface 76 is provided on each side of the first land surface 75 in the Y-axis direction, when exposing the substrate P while moving in the Y-axis direction, the + Y direction It is possible to correspond to each movement in the Y direction and one movement in the Y direction.
  • the second land surface 76 is a force that is a flat surface substantially parallel to the surface of the substrate P held by the substrate stage PST, and the surface of the substrate P held by the substrate stage PST. It does not have to be parallel or flat. If it is possible to prevent the liquid LQ film existing between the surface of the substrate P and the second land surface 76 from coming into contact with the second land surface 76, the uneven shape of the second land surface 76 and The surface state including the angle with respect to the substrate P may be arbitrary.
  • the second land surface 76 is provided so as to be the recess 72 with respect to the first land surface 75.
  • the first land surface 76 is provided.
  • the inclination and Z or the shape of the land surface 75 may be changed so that a space is formed between the liquid on the substrate P and the lower surface of the nozzle member 70.
  • the first land surface 75 is gradually moved toward the recovery port 22 You may incline continuously or in steps so that it may approach the board P side.
  • the height of the outer edge E (position in the Z direction) of the first land surface 75 becomes lower than the height of the inner edge (edge on the optical path space K1 side), and the height of the second land surface 76 is increased. Is higher than the height of the edge E on the outer side of the first land surface 75. Therefore, even if the second land surface 76 is the same height as the inner edge of the first land surface 75, the movement of the substrate P is prevented. Accordingly, when the liquid LQ moves outside the first land surface 75 with respect to the optical path space K1, the space above the liquid LQ is outside the edge E (between the second land surface 76 and the substrate P). SP can be formed.
  • a protrusion projecting toward the substrate P may be provided between the first land surface 75 and the second land surface, with the first land surface 75 and the second land surface having the same height.
  • the space forming region maintains the liquid in the optical path space K1 in a desired state, for example, has a V-shaped structure and shape that does not generate a gas portion (including bubbles) in the liquid in the optical path region K1! / ,.
  • the second land surface 76 is subjected to the liquid repellent treatment. Even if the second land surface 76 is not subjected to the liquid repellent treatment, the second land surface 76 is subjected to the liquid repellent treatment. Is provided at a position away from the first land surface 75 with respect to the surface of the substrate P, so that the liquid LQ existing between the surface of the substrate P and the second land surface 76 does not contact the second land surface 76. Therefore, the second land surface 76 does not necessarily have liquid repellency.
  • the process is performed at a predetermined position of the nozzle member 70 including the second land surface 76.
  • "GOLDEP” processing or “GOLDEP WHITE” processing can be performed.
  • the lyophilic liquid with respect to the first land surface 75 can be obtained. Processing may be omitted. That is, the first land surface 75 may not be lyophilic.
  • the surface of the substrate P and the second land surface 76 are provided by providing the second land surface 76 at a position farther from the first land surface 75 than the surface of the substrate P.
  • the liquid LQ film existing between the second land surface 76 and the second land surface 76 is prevented from coming into contact with the second land surface 76.
  • the liquid LQ film existing between the surface of the substrate P and the second land surface 76 is not brought into contact with the second land surface 76 even if it is not provided at a position farther than the first land surface 75 with respect to the surface. Can be. That is, in this embodiment, as shown in FIG.
  • the position (height) of the first land surface 75 with respect to the surface of the substrate P and the position (height) of the second land surface 76 are substantially the same.
  • the second land surface 76 liquid-repellent, the liquid LQ film existing between the surface of the substrate P and the second land surface 76 is prevented from contacting the second land surface 76.
  • the second land surface 76 having liquid repellency is a space forming region, and the liquid LQ and the second land surface are formed on the substrate P below the second land surface 76 by the space forming region.
  • a space SP is formed between
  • the first land surface 75 and the second land surface 76 are substantially flush, and the second land surface 76 has a liquid repellent property that imparts liquid repellency to the liquid LQ.
  • the process is applied.
  • a fluorine-based resin material such as polytetrafluoroethylene (Teflon (registered trademark)), an acrylic resin material, a silicon-based resin material, or the like is attached. Processing.
  • the liquid LQ film existing between the surface of the substrate P and the second land surface 76 is made to be the second land surface as in the first embodiment. This can be done without touching 76. Then, the liquid LQ existing between the surface of the substrate P and the second land surface 76 is The distance Wl between the surface of the substrate P and the first land surface 75 can be made thinner. When the interface L of the liquid LQ between the surface of the substrate P and the first land surface 75 moves toward the outside of the first land surface 75 with respect to the optical path space K1 of the exposure light EL, the first land surface 75 The liquid LQ that has been in contact with the land surface 75 can be separated from the second land surface 76.
  • the liquid LQ film generated at the boundary E ′ between the first land surface 75 and the second land surface 76 is more than the edge outside the recovery port 22 with respect to the optical path space K1 of the exposure light EL.
  • the positional relationship between the edge E of the first land surface 75 and the collection port 22, the size of the collection port 22 and the like are set so as to be formed inside.
  • the size of the second land surface 76 in the Y-axis direction is such that the first land surface 76 in the Y-axis direction is formed inward of the outer edge of the recovery port 22 with respect to the optical path space K1 of the exposure light EL.
  • the height (position in the Z direction) of the first land surface 75 and the lower surface 26 of the porous member 25 may be different. That is, the height (position in the Z direction) of the lower surface 26 of the porous member 25 should be arranged so that the tip H of the thin film of the liquid LQ formed on the substrate P touches! /.
  • the recovery port 22 is provided with a fin member 50.
  • the fin member 50 is provided on the lower surface 26 of the porous member 25 of the collection rod 22.
  • the fin member 50 is provided in the vicinity of the outer edge 22A of the recovery port 22 on the lower surface 26 of the porous member 25.
  • a plurality of fin members 50 are provided radially with respect to the optical path space K1.
  • the distance W3 between the lower surface 26 of the porous member 25 disposed in the recovery port 22 and the surface of the substrate P is larger than the distance W1 between the first land surface 75 and the surface of the substrate P. large.
  • the distance W1 is about lmm and the distance W3 is about 1.5 mm.
  • the position (height) of the first land surface 75 with respect to the surface of the substrate P and the position (height) of the lower end portion of the side plate portion 70A of the nozzle member 70 with respect to the surface of the substrate P are provided approximately the same.
  • the distance between the lower end portion of the side plate portion 70A and the surface of the substrate P is about 1 mm, and the vicinity of the lower end portion of the side plate portion 70A protrudes below the lower surface 26 of the porous member 25 arranged in the recovery port 22. Yes.
  • the side plate portion 70A protruding downward from the lower surface 26 of the porous member 25 A wall 51 for preventing leakage of the liquid LQ is formed by the inner surface facing the optical path space Kl. Therefore, the size W4 of the wall 51 in the Z-axis direction is about 0.5 mm.
  • the wall 51 is provided at the peripheral edge (outer edge 22A) of the recovery port 22 and prevents leakage of the liquid LQ filled in the optical path space K1.
  • a plurality of fin members 50 are provided along the wall portion 51.
  • the distance between the lower end of the fin member 50 and the surface of the substrate P is about lmm. That is, the size of the fin member 50 in the Z-axis direction is substantially the same value as the size W4 of the wall 51 in the Z-axis direction, and the distance between the lower end of the fin member 50 and the surface of the substrate P is The distance W1 between the first land surface 75 and the surface of the substrate P is almost the same value.
  • the tip portion H of the liquid LQ film can be brought into contact with the fin member 50 provided in the recovery port 22, and the liquid LQ can be recovered well through the recovery port 22. Further, the wall 51 can prevent the liquid LQ from leaking outside the recovery port 22.
  • the fin member 50 is a force provided at the periphery of the annular collection port 22 (porous member 25).
  • the fin member 50 is applied to the entire region of the lower surface 26 of the porous member 25. It may be provided at intervals, or may be provided only in each predetermined region on both sides in the Y-axis direction with respect to the optical path space K1 of the lower surface 26 of the porous member 25.
  • the second land surface 76 is applied to the first land surface 75 on both sides in the Y-axis direction. It may be installed.
  • the outer shape of the first land surface 75 is a rectangular shape whose longitudinal direction is the X-axis direction. As long as the distance Ls between the optical path space K1 (optical axis AX) and the tip L of the liquid LQ film can be reduced, the shape can be any shape such as a circular shape.
  • the second land surface 76 (space forming region) and the recovery port 22 may be separated from each other.
  • the nozzle member 70 and the substrate P are disposed on the lower surface of the nozzle member 70 on the inner side of the recovery port 22 with respect to the optical path space K1 and on the outer side of the second land surface 76.
  • a buffer space where the liquid LQ between them can freely enter and exit may be formed.
  • an annular opening is formed in the vicinity of the inner edge 22B of the recovery port 22 so as to surround the optical path of the exposure light EL, and the upper end is connected to the external space (atmospheric space). Yes.
  • the buffer space in the vicinity of the inner edge 22B of the recovery port 22, a part of the liquid LQ that flows toward the outside of the optical path space K1 flows into the buffer space and reaches the recovery port 22.
  • the amount of liquid LQ can be reduced. Therefore, leakage of liquid LQ can be suppressed more reliably.
  • the opening at the lower end of the buffer space may be arranged near the outer edge 22A of the recovery port 22. In this case, since the liquid LQ that has not been recovered at the recovery port 22 of the liquid LQ that flows toward the outside of the optical path space K1 flows into the buffer space, leakage of the liquid LQ can be suppressed.
  • annular opening may be formed in both the vicinity of the inner edge 22B and the outer edge 22A of the recovery port 22, and a notch space in which the liquid LQ can freely enter and exit may be formed in each opening.
  • the member having the second land surface 76 (space forming region) and the member having the recovery port 22 may be separated.
  • the size D5 of the second land surface 76 in the Y-axis direction depends on the moving speed of the substrate P, the contact angle between the substrate P and the liquid LQ, and the like.
  • the movement conditions movement speed, acceleration, movement direction, movement distance, etc.
  • immersion conditions liquid supply amount, recovery amount
  • the film conditions contact angle, etc. on the surface of the substrate P that can be exposed by the exposure apparatus EX may be determined! ⁇
  • the liquid immersion mechanism 1 such as the nozzle member 70 used in the above embodiment is not limited to the above-described structure.
  • European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004Z057589 Those described in Japanese Patent Laid-Open No. 2004/057590 and International Publication No. 2005Z029559 can also be used.
  • a part of the nozzle member 70 (bottom plate portion 70D) is a force disposed between the projection optical system PL and the substrate P.
  • a part of the nozzle member 70 is the projection optical system PL.
  • the substrate P may not be disposed.
  • the final optical element of the projection optical system PL The entire lower surface Tl of the sub LSI may face the substrate P.
  • the lower surface T1 of the final optical element L S1 and the lower surface of the nozzle member 70 may be substantially flush.
  • the supply port 12 may be provided on the lower surface of the force nozzle member 70 connected to the internal space G2.
  • the optical path space K1 of the exposure light EL is filled with the liquid LQ with the substrate P disposed at a position where the exposure light EL can be irradiated.
  • the exposure light EL can be irradiated.
  • the optical path space K1 of the exposure light EL may be filled with the liquid LQ in a state where, for example, the upper surface 94 of the substrate stage PST or an object different from the substrate stage PST is arranged.
  • pure water was used as the liquid LQ in the present embodiment.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and has no adverse effect on the photoresist, optical elements (lenses), etc. on the substrate P.
  • pure water has no adverse effects on the environment, and the impurity content is extremely low. it can. If the purity of pure water supplied by the factory is low, the exposure apparatus may have an ultrapure water production device.
  • the refractive index n of pure water (water) for exposure light EL with a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of exposure light EL.
  • lZn that is, the wavelength is shortened to about 134 nm to obtain a high resolution.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be increased further, and the resolution is improved in this respect as well.
  • an optical element LSI is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma aberration, etc.) are adjusted by this lens. be able to.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass having parallel plane plate force is attached to the surface of the substrate P. It may be configured to fill liquid LQ in a wet state.
  • the optical path space on the image plane side of the optical element at the tip is filled with the liquid, but as disclosed in International Publication No. 2004Z019128, the tip optical system.
  • the tip optical system By adopting a projection optical system that fills the optical path space on the mask side of the optical element with liquid.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not transmit water. So
  • Liquid LQ can transmit F laser light such as perfluorinated polyether (PFPE),
  • PFPE perfluorinated polyether
  • the part that comes into contact with the liquid LQ may be a fluorine-based fluid such as fluorine-based oil.
  • the part that comes into contact with the liquid LQ for example, has a small polarity including fluorine!
  • the film is made lyophilic by forming a thin film with a molecular structure.
  • the liquid LQ is stable to the projection optical system PL that is transmissive to the exposure light EL and has a refractive index as high as possible, and a photoresist that is coated on the surface of the substrate P (for example, seder). Oil) can also be used.
  • the liquid LQ may have a refractive index of about 1.6 to 1.8.
  • the optical element LSI may be formed of a material having a refractive index higher than that of quartz and fluorite (eg, 1.6 or more).
  • Various fluids such as a supercritical fluid can be used as the liquid LQ.
  • the substrate P in each of the above embodiments is used not only for a semiconductor wafer for manufacturing a semiconductor device but also for a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an exposure apparatus.
  • Mask or reticle master synthetic quartz, silicon wafer, etc. are applied.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the mask M pattern by synchronously moving the mask M and the substrate P, the mask A step-and-repeat projection exposure system (STEP) that exposes the pattern of the mask M in a state where M and the substrate P are stationary and moves the substrate P in steps. B).
  • scanning stepper scanning stepper
  • STEP step-and-repeat projection exposure system
  • a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary (for example, a refractive type that does not include a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus.
  • the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the force projection optical system PL, which has been described by taking an exposure apparatus including the projection optical system PL as an example. Even when the projection optical system PL is not used in this way, the exposure light is irradiated onto the substrate via an optical member such as a lens, and the immersion area is placed in a predetermined space between the optical member and the substrate. Is formed.
  • the present invention can be applied to an exposure apparatus that forms a line “and” space pattern on a substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to a twin stage type exposure apparatus.
  • the structure and exposure operation of a twin stage type exposure apparatus are described in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6). , 590,634), Special Table 2000-505958 (corresponding U.S. Pat. No. 5,969,441) or U.S. Pat.No. 6,208,407, and is permitted by the laws of the country specified or selected in this international application. As far as they are accepted, their disclosure is incorporated herein by reference.
  • a reference stage on which a substrate stage for holding the substrate and a reference mark are formed, and Z or various types can also be applied to an exposure apparatus provided with a measurement stage equipped with a photoelectric sensor.
  • a force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on the electronic data of the pattern to be exposed is used. Use it.
  • an exposure apparatus (lithography system) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. ) Can also be applied to the present invention.
  • the exposure apparatus EX provides various mechanical systems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, Step 203 for manufacturing a substrate as a base material, substrate processing (exposure processing) step 204 for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, and exposing the exposed substrate, device assembly step (dicing process) (Including processing processes such as bonding process and knocking process) 205, inspection step 206, etc.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, and is used for manufacturing a liquid crystal display element or a display.
  • the present invention can be widely applied to an exposure apparatus, a thin film magnetic head, an imaging device (CCD), an exposure apparatus for manufacturing a reticle or mask, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 露光装置は、露光光の光路空間K1を満たす液体を供給する液体供給装置と、露光位置に配置された基板の表面と対向し、且つ露光光の光路空間K1を囲む第1ランド面75と、第1ランド面75の外側に配置された第2ランド面76とを備えている。第1ランド面75は、基板の表面との間で液体を保持できる。第2ランド面76は、基板の表面との間に存在する液体の膜と接触しないように設けられている。これによって、基板を移動しつつ露光するときにも、露光光の光路空間を液体で所望状態に満たすことができる露光装置が提供される。

Description

明 細 書
露光装置、露光方法及びデバイス製造方法
技術分野
[0001] 本発明は、液体を介して基板を露光する露光装置、露光方法及びデバイス製造方 法に関する。
背景技術
[0002] 半導体デバイス、液晶表示デバイス等のマイクロデバイスの製造工程の一つである フォトリソグラフイエ程では、マスク上に形成されたパターンを感光性の基板上に投影 露光する露光装置が用いられる。この露光装置は、マスクを保持して移動可能なマス クステージと、基板を保持して移動可能な基板ステージとを有し、マスクステージ及び 基板ステージを逐次移動しながらマスクのパターンの像を投影光学系を介して基板 に投影する。マイクロデバイスの製造においては、デバイスの高密度化のために、基 板上に形成されるパターンの微細化が要求されている。この要求に応えるために露 光装置の更なる高解像度化が望まれている。その高解像度化を実現するための手 段の一つとして、下記特許文献 1に開示されているような、露光光の光路空間を液体 で満たし、その液体を介して基板を露光する液浸露光装置が案出されて!ヽる。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] ところで、露光装置においては、デバイスの生産性向上等を目的として、基板 (基板 ステージ)の移動速度の高速ィ匕が要求される。ところが、基板 (基板ステージ)を高速 で移動した場合、露光光の光路空間を液体で所望状態に満たすことが困難となる可 能性があり、液体を介した露光精度及び計測精度が劣化する可能性がある。例えば 、基板 (基板ステージ)の移動の高速ィ匕に伴って、露光光の光路空間を液体で十分 に満たすことができな力つたり、液体中に気泡が生成される等の不都合が生じると、 露光光が基板上に良好に到達せず、基板上にパターンが形成されなカゝつたり、基板 上に形成されるパターンに欠陥が生じる。また、基板 (基板ステージ)の移動の高速 ィ匕に伴って、光路空間に満たされた液体が漏出する可能性もある。液体が漏出する と、周辺部材'機器の腐食、故障等が生じる。また、漏出した液体、回収しきれなかつ た液体などが、例えば液滴となって基板上に残留した場合、その残留した液体 (液滴 )が気化することによって基板に液体の付着跡 (所謂ウォーターマーク)が形成される 可能性もある。また、漏出した液体の気化熱により基板、基板ステージなどが熱変形 したり、露光装置の置かれている環境 (湿度、クリーン度等)が変動し、基板上でのパ ターン重ね合わせ精度等を含む露光精度の劣化を招 1、たり、干渉計等を使った各 種計測精度の劣化を招く虞がある。また、液体が残留 (付着)した基板を基板ステー ジ力 搬出すると、その基板を保持する搬送系にも液体が付着し、被害が拡大する 虞がある。また、基板 (基板ステージ)の移動の高速ィ匕に伴って、液体で満たされる液 浸領域が巨大化する可能性もあり、それに伴って露光装置全体が巨大化する可能 '性がある。
[0004] 本発明はこのような事情に鑑みてなされたものであって、露光光の光路空間を液体 で所望状態に満たすことができる露光装置、露光方法及びそれらを使ったデバイス 製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)上に露光光 (EL)を照射して基板 (P)を露 光する露光装置であって、露光光 (EL)の光路空間 (K1)を液体 (LQ)で満たすため に液体 (LQ)を供給する液体供給装置(11)と、露光光 (EL)が照射可能な位置に配 置された物体 (P)の表面と対向するように、且つ露光光 (EL)の光路空間 (K1)を囲 むように設けられ、液体供給装置(11)から供給された液体 (LQ)を物体 (P)との間で 保持可能な第 1面 (75)と、物体 (P)の表面と対向するように、且つ露光光 (EL)の光 路空間 (K1)に対して第 1面 (75)の外側に配置された第 2面 (76)とを備え、第 2面( 76)は、物体 (P)の表面と第 2面(75)との間に存在する液体 (LQ)の膜が第 2面(76 )と接触しな ヽように設けられて ヽる露光装置 (EX)が提供される。 [0007] 本発明の第 1の態様によれば、基板を所定方向に移動しつつ露光した場合にも、 露光光の光路空間を液体で所望状態に満たすことができる。
[0008] 本発明の第 2の態様に従えば、基板 )に液体 (LQ)を介して露光光 (EL)を照射 して前記基板 (P)を露光する露光装置であって、前記露光光 (EL)が照射可能な位 置に配置される物体 (P)の表面と対向し、且つ前記液体 (LQ)を前記物体 (P)との間 で保持可能な部材 (70)と、前記物体 (P)と部材 (70)の間で保持された液体 (LQ) を回収する回収部(22)と、前記光路 (K1)と前記回収部(22)との間に前記物体の 表面と対向するように位置し、且つ前記物体 (P)上の液体 (LQ)と前記部材(70)の 間に空間(SP)をもたらす空間形成領域 (72、 76)が前記部材に形成されている露 光装置が提供される。
[0009] 本発明の第 2の態様によれば、液体の漏出及び液浸領域の巨大化を抑制しつつ、 前記露光光の光路の所定部分を液体で満たすことができる。
[0010] 本発明の第 3の態様に従えば、基板 )に液体 (LQ)を介して露光光 (EL)を照射 して前記基板 (P)を露光する露光方法であって、前記液体 (LQ)を、前記基板と対 向するように配置された部材 (70)と前記基板 (P)との間に供給することと、前記基板 (P)上の液体 (LQ)と前記部材(70)との間に空間(SP)をもたらしつつ液体 (LQ)を 回収することと、前記基板 (P)に液体 (LQ)を介して露光光を照射して前記基板を露 光することを含む露光方法が提供される。
[0011] 本発明の第 3の態様によれば、液体の漏出及び液浸領域の巨大化を抑制しつつ、 前記露光光の光路の所定部分を液体で満たした状態で基板を露光することができる
[0012] 本発明の第 4の態様に従えば、第 1または第 2の態様の露光装置 (EX)を用いて基 板 (P)を露光すること (204)と、露光された基板を現像すること (204)と、現像された 基板を加工すること (205)を含むデバイス製造方法が提供される。
[0013] 本発明の第 5の態様に従えば、第 3の態様の露光方法を用いて基板 (P)を露光す ること (204)と、露光された基板 (P)を現像すること (204)と、現像された基板を加工 すること (205)を含むデバイス製造方法が提供される。
[0014] 本発明の第 4及び 5の態様によれば、露光光の光路空間を液体で所望状態に満た すことができる前記露光装置及び露光方法を使ってデバイスを製造することができる 発明の効果
[0015] 本発明によれば、露光光の光路空間を液体で所望状態に満たすことができ、液体 を介した露光処理及び計測処理を良好に行うことができる。
図面の簡単な説明
[0016] [図 1]図 1は第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]図 2は第 1実施形態に係るノズル部材 70近傍を示す概略斜視図の一部破断図 である。
[図 3]図 3は第 1実施形態に係るノズル部材 70を下側から見た斜視図である。
[図 4]図 4は図 2の XZ平面と平行な側断面図である。
[図 5]図 5は図 2の YZ平面と平行な側断面図である。
[図 6]図 6は液浸機構による液体回収動作の原理を説明するための図である。
[図 7]図 7 (A)及び (B)は基板の移動に伴う液体の挙動を説明するための模式図で ある。
[図 8]図 8は第 1実施形態に係る基板の移動に伴う液体の挙動を説明するための図 である。
[図 9]図 9は第 1実施形態に係る基板の移動に伴う液体の挙動を説明するための図 である。
[図 10]図 10は第 2実施形態に係る基板の移動に伴う液体の挙動を説明するための 図である。
[図 11]図 11は第 3実施形態に係るノズル部材 70を下側から見た斜視図である。
[図 12]図 12は図 11の YZ平面と平行な側断面図である。
[図 13]図 13はマイクロデバイスの製造工程の一例を示すフローチャート図である。 符号の説明
[0017] 1…液浸機構、 11…液体供給装置、 12…供給口、 16…排気口、 22…回収口、 25 …多孔部材、 50· ··フィン部材、 51· ··壁部、 75…第 1ランド面、 76…第 2ランド面、 77 …上面、 EL…露光光、 EX…露光装置、 G2 '内部空間、 K1…光路空間、 Κ3· ··外 部空間、 LSI…最終光学素子、 P…基板、 PL…投影光学系
発明を実施するための最良の形態
[0018] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0019] <第 1実施形態 >
図 1は第 1実施形態に係る露光装置を示す概略構成図である。図 1において、露光 装置 EXは、マスク Mを保持して移動可能なマスクステージ MSTと、基板 Pを保持し て移動可能な基板ステージ PSTと、マスクステージ MSTに保持されて!、るマスク M を露光光 ELで照明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパター ンの像を基板ステージ PSTに保持されて ヽる基板 Pに投影する投影光学系 PLと、露 光装置 EX全体の動作を統括制御する制御装置 CONTとを備えている。
[0020] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置である。露 光装置 EXは、投影光学系 PLの像面近傍における露光光 ELの光路空間 K1を液体 LQで満たすための液浸機構 1を備えている。液浸機構 1は、光路空間 K1の近傍に 設けられ、液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22を有する ノズル部材 70と、供給管 13、及びノズル部材 70に設けられた供給口 12を介して液 体 LQを供給する液体供給装置 11と、ノズル部材 70に設けられた回収口 22、及び 回収管 23を介して液体 LQを回収する液体回収装置 21とを備えている。後に詳述す るように、ノズル部材 70の内部には、供給口 12と供給管 13とを接続する流路 (供給 流路) 14が設けられているとともに、回収口 22と回収管 23とを接続する流路(回収流 路) 24が設けられている。なお図 1には、供給口、回収口、供給流路、及び回収流路 は図示されていない。ノズル部材 70は、投影光学系 PLを構成する複数の光学素子 の、投影光学系 PLの像面に最も近い最終光学素子 LSIを囲むように環状に形成さ れている。
[0021] また、本実施形態の露光装置 EXは、投影光学系 PLの投影領域 ARを含む基板 P 上の一部に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液体 LQの液浸領域 L Rを局所的に形成する局所液浸方式を採用している。露光装置 EXは、少なくともマ スク Mのパターン像を基板 Pに投影して 、る間、投影光学系 PLの像面に最も近!ヽ最 終光学素子 LSIと、投影光学系 PLの像面側に配置された基板 Pとの間の露光光 EL の光路空間 K1を液体 LQで満たし、投影光学系 PLと光路空間 K1に満たされた液 体 LQとを介してマスク Mを通過した露光光 ELを基板 Pに照射することによって、マス ク Mのパターンを基板 Pに転写する。制御装置 CONTは、液浸機構 1の液体供給装 置 11を使って液体 LQを所定量供給するとともに、液体回収装置 21を使って液体 L Qを所定量回収することで、光路空間 K1を液体 LQで満たし、基板 P上に液体 LQの 液浸領域 LRを局所的に形成する。
[0022] なお、以下の説明にお 、ては、露光光 ELが照射可能な位置に基板 Pを配置した 状態で、すなわち投影光学系 PLと基板 Pとが対向している状態で光路空間 K1が液 体 LQで満たされて 、る場合にっ 、て説明する力 基板 P以外の物体 (例えば基板ス テージ PSTの上面 94)が投影光学系 PLと対向している状態で光路空間 K1が液体 LQで満たされて 、る場合も同様である。
[0023] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、水平 面内においてマスク Mと基板 Pとの同期移動方向(走査方向)を Y軸方向、水平面内 において Y軸方向と直交する方向(非走査方向)を X軸方向、 X軸及び Y軸方向に垂 直で投影光学系 PLの光軸 AXと一致する方向を Z軸方向とする。また、 X軸、 Y軸、 及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 Θ Y,及び Θ Z方向とする。なお 、ここでいう「基板」は半導体ウェハ等の基材上に感光材 (フォトレジスト)、保護膜の ような膜を塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパター ンを形成されたレチクルを含む。
[0024] 露光装置 EXは、床面上に設けられたベース BPと、そのベース BP上に設置された メインコラム 9とを備えている。メインコラム 9には、内側に向けて突出する上側段部 7 及び下側段部 8が形成されている。照明光学系 ILは、マスクステージ MSTに保持さ れているマスク Mを露光光 ELで照明するものであって、メインコラム 9の上部に固定 された支持フレーム 10により支持されている。 [0025] 照明光学系 ILは、露光用光源力 射出された光束の照度を均一化するォプティカ ルインテグレータ、オプティカルインテグレータカゝらの露光光 光するコンデン サレンズ、リレーレンズ系、及び露光光 ELによるマスク M上の照明領域を設定する視 野絞り等を有している。マスク M上の所定の照明領域は照明光学系 ILにより均一な 照度分布の露光光 ELで照明される。照明光学系 IL力 射出される露光光 ELとして は、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ 光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193nm) 及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本実
2
施形態にぉ 、ては ArFエキシマレーザ光が用いられる。
[0026] 本実施形態にぉ 、ては、液体 LQとして純水が用いられる。純水は ArFエキシマレ 一ザ光のみならず、例えば水銀ランプ力 射出される輝線 (g線、 h線、 i線)及び KrF エキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。
[0027] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST は、マスク Mを真空吸着 (又は静電吸着)により保持する。マスクステージ MSTの下 面には非接触軸受である気体軸受(エアベアリング) 85が複数設けられている。マス クステージ MSTは、エアベアリング 85によりマスクステージ定盤 2の上面(ガイド面) に対して非接触支持されて ヽる。マスクステージ MST及びマスクステージ定盤 2の中 央部にはマスク Mのパターン像を通過させる開口がそれぞれ形成されている。マスク ステージ定盤 2は、メインコラム 9の上側段部 7に防振装置 86を介して支持されている 。すなわち、マスクステージ MSTは、防振装置 86及びマスクステージ定盤 2を介して メインコラム 9の上側段部 7に支持されている。防振装置 86によって、メインコラム 9の 振動がマスクステージ MSTを支持するマスクステージ定盤 2に伝わらな 、ように、マ スクステージ定盤 2とメインコラム 9とが振動的に分離されている。
[0028] マスクステージ MSTは、制御装置 CONTにより制御されるリニアモータ等を含むマ スクステージ駆動装置 MSTDの駆動により、マスク Mを保持した状態で、マスクステ 一ジ定盤 2上において、投影光学系 PLの光軸 AXに垂直な平面内、すなわち XY平 面内で 2次元移動可能及び θ Z方向に微少回転可能である。マスクステージ MST 上には移動鏡 81が固設されている。また、移動鏡 81に対向する位置にはレーザ干 渉計 82が設けられている。マスクステージ MST上のマスク Mの 2次元方向の位置、 及び θ Z方向の回転角はレーザ干渉計 82によりリアルタイムで計測される。なおレー ザ干渉計 82で Θ Χ、 0 Υ方向の回転角を計測するようにしてもよい。レーザ干渉計 8 2の計測結果は制御装置 CONTに出力される。制御装置 CONTは、レーザ干渉計 82の計測結果に基づ 、てマスクステージ駆動装置 MSTDを駆動し、マスクステージ MSTに保持されて!ヽるマスク Μの位置制御を行う。
[0029] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率 βで基板 Ρに投影 する。投影光学系 PLは、複数の光学素子を備え、それら光学素子は鏡筒 PKで保持 されている。本実施形態において、投影光学系 PLは、投影倍率 j8が例えば 1Z4、 1 Z5、あるいは 1Z8の縮小系である。なお、投影光学系 PLは等倍系及び拡大系の いずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光 学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のい ずれであってもよい。投影光学系 PLを構成する複数の光学素子のうち、投影光学系 PLの像面に最も近 、最終光学素子 LS 1は鏡筒 PKより露出して 、る。
[0030] 投影光学系 PLを保持する鏡筒 PKの外周にはフランジ PFが設けられており、投影 光学系 PLはフランジ PFを介して鏡筒定盤 5に支持されている。鏡筒定盤 5は、メイン コラム 9の下側段部 8に防振装置 87を介して支持されている。すなわち、投影光学系 PLは、防振装置 87及び鏡筒定盤 5を介してメインコラム 9の下側段部 8に支持されて いる。また、防振装置 87によって、メインコラム 9の振動が投影光学系 PLを支持する 鏡筒定盤 5に伝わらないように、鏡筒定盤 5とメインコラム 9とが振動的に分離されて いる。
[0031] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを有しており、基板ホルダ P Hに基板 Pを保持して移動可能である。基板ホルダ PHは、例えば真空吸着等により 基板 Pを保持する。基板ステージ PST上には凹部 93が設けられており、基板 Pを保 持するための基板ホルダ PHは凹部 93に配置されている。そして、基板ステージ PS Tの凹部 93周囲の上面 94は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ 高さ(面一)になるような平坦面となっている。なお、光路空間 K1に液体 LQを満たし 続けることができるならば、基板ステージ PSTの上面 94と基板ホルダ PHに保持され た基板 Pの表面とに段差があってもょ 、。
[0032] 基板ステージ PSTの下面には非接触軸受である気体軸受(エアベアリング) 88が 複数設けられている。基板ステージ PSTは、エアベアリング 88により基板ステージ定 盤 6の上面 (ガイド面)に対して非接触支持されている。基板ステージ定盤 6は、ベー ス BP上に防振装置 89を介して支持されている。また、防振装置 89によって、ベース BP (床面)、メインコラム 9等の振動が基板ステージ PSTを支持する基板ステージ定 盤 6に伝わらないように、基板ステージ定盤 6とメインコラム 9及びベース BP (床面)と が振動的に分離されている。
[0033] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDの駆動により、基板 Pを基板ホルダ PHを介して保持した 状態で、基板ステージ定盤 6上で XY平面内で 2次元移動可能及び θ Z方向に微小 回転可能である。更に基板ステージ PSTは、 Z軸方向、 0 X方向、及び Θ Y方向にも 移動可能である。したがって、基板ステージ PSTに保持された基板 Pの表面は、 X軸 、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度の方向に移動可能である。基板ス テージ PSTの側面には、移動鏡 83が固設されている。また、移動鏡 83に対向する 位置にはレーザ干渉計 84が設けられて 、る。基板ステージ PST上の基板 Pの 2次元 方向の位置、及び回転角はレーザ干渉計 84によりリアルタイムで計測される。また、 不図示ではあるが、露光装置 EXは、例えば特開 2004— 207710号公報に開示さ れて 、るような、基板ステージ PSTに保持されて 、る基板 Pの表面の面位置情報を 検出するフォーカス ·レべリング検出系を備えて 、る。
[0034] レーザ干渉計 84の計測結果は制御装置 CONTに出力される。フォーカス'レペリ ング検出系の検出結果も制御装置 CONTに出力される。制御装置 CONTは、フォ 一カス'レべリング検出系の検出結果に基づいて、基板ステージ駆動装置 PSTDを 駆動し、基板 Pのフォーカス位置 (Z位置)及び傾斜角( Θ X、 Θ Υ)を制御して、基板 Pの表面を投影光学系 PL及び液体 LQを介して形成される像面に合わせ込むととも に、レーザ干渉計 84の計測結果に基づいて、基板 Pの X軸方向、 Y軸方向、及び Θ Z方向における位置制御を行う。
[0035] 液浸機構 1の液体供給装置 11は、露光光 ELの光路空間 K1を液体 LQで満たす ために液体 LQを供給する。液体供給装置 11は、液体 LQを収容するタンク、加圧ポ ンプ、供給する液体 LQの温度を調整する温度調整装置、及び液体 LQ中の異物を 取り除くフィルタユニット等を備えている。液体供給装置 11には供給管 13の一端が 接続されており、供給管 13の他端はノズル部材 70に接続されている。液体供給装置 11の液体供給動作は制御装置 CONTにより制御される。なお、液体供給装置 11の タンク、加圧ポンプ、温度調整機構、フィルタユニット等は、その全てを露光装置 EX が備えている必要はなぐ露光装置 EXが設置される工場等の設備を代用してもよい
[0036] また、供給管 13の途中には、液体供給装置 11から送出され、投影光学系 PLの像 面側に供給される単位時間当たりの液体量を制御するマスフローコントローラと呼ば れる流量制御器 19が設けられている。流量制御器 19による液体供給量の制御は制 御装置 CONTの指令信号のもとで行われる。
[0037] 液浸機構 1の液体回収装置 21は、露光光 ELの光路空間 K1に満たされている液 体 LQを回収する。液体回収装置 21は、真空ポンプ等の真空系、回収された液体 L Qと気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備え ている。液体回収装置 21には回収管 23の一端が接続されており、回収管 23の他端 はノズル部材 70に接続されて 、る。液体回収装置 21の液体回収動作は制御装置 C ONTにより制御される。なお、液体回収装置 21の真空系、気液分離器、タンク等は 、その全てを露光装置 EXが備えている必要はなぐ露光装置 EXが設置される工場 等の設備を代用してもよい。
[0038] ノズル部材 70は、支持機構 91に支持されている。支持機構 91は、メインコラム 9の 下側段部 8に接続されている。ノズル部材 70を支持機構 91を介して支持しているメイ ンコラム 9と、投影光学系 PLの鏡筒 PKをフランジ PFを介して支持して ヽる鏡筒定盤 5とは、防振装置 87を介して振動的に分離されている。したがって、ノズル部材 70で 発生した振動が投影光学系 PLに伝達されることは防止されている。また、メインコラ ム 9と、基板ステージ PSTを支持している基板ステージ定盤 6とは、防振装置 89を介 して振動的に分離されている。したがって、ノズル部材 70で発生した振動力 メインコ ラム 9及びベース BPを介して基板ステージ PSTに伝達されることが防止されている。 また、メインコラム 9と、マスクステージ MSTを支持しているマスクステージ定盤 2とは 、防振装置 86を介して振動的に分離されている。したがって、ノズル部材 70で発生 した振動がメインコラム 9を介してマスクステージ MSTに伝達されることが防止されて いる。
[0039] 次に、図 2〜図 5を参照しながら、ノズル部材 70について説明する。図 2はノズル部 材 70近傍を示す概略斜視図の一部破断図、図 3はノズル部材 70を下側から見た斜 視図、図 4は XZ平面と平行な側断面図、図 5は YZ平面と平行な側断面図である。
[0040] ノズル部材 70は、投影光学系 PLの像面に最も近い最終光学素子 LSIの近傍に 設けられている。ノズル部材 70は、基板 P (基板ステージ PST)の上方において最終 光学素子 LSIを囲むように設けられた環状部材であって、その中央部に投影光学系 PL (最終光学素子 LSI)を配置可能な穴 70Hを有している。また、本実施形態にお いては、ノズル部材 70は複数の部材を組み合わされており、ノズル部材 70の外形は 平面視略四角形状である。ノズル部材 70の外形は、平面視四角形状に限られず、 例えば、平面視円形状であってもよい。なお、ノズル部材 70は一つの材料 (チタンな ど)で構成されていてもよいし、例えばアルミニウム、チタン、ステンレス鋼、ジユラルミ ン、及びこれらを含む合金によって構成されていてもよい。
[0041] ノズル部材 70は、側板部 70Aと、傾斜板部 70Bと、側板部 70 A及び傾斜板部 70B の上端部に設けられた天板部 70Cと、基板 P (基板ステージ PST)と対向する底板部 70Dとを有している。傾斜板部 70Bはすり鉢状に形成されており、最終光学素子 LS 1は、傾斜板部 70Bによって形成された穴 70Hの内側に配置される。傾斜板部 70B の内側面(すなわちノズル部材 70の穴 70Hの内側面) 70Tと投影光学系 PLの最終 光学素子 LSIの側面 LTとは対向しており、傾斜板部 70Bの内側面 70Tと最終光学 素子 LSIの側面 LTとの間には所定のギャップ G1が設けられている。ギャップ G1が 設けられていること〖こより、ノズル部材 70で発生した振動が、投影光学系 PL (最終光 学素子 LSI)に直接的に伝達することが防止されている。また、傾斜板部 70Bの内側 面 70Tは、液体 LQに対して撥液性 (撥水性)となっており、投影光学系 PLの最終光 学素子 LSIの側面 LTと傾斜板部 70Bの内側面 70Tとの間のギャップ G1への液体 L Qの浸入が抑制されている。なお、傾斜板部 70Bの内側面 70Tを撥液性にするため の撥液化処理としては、例えば、ポリ四フッ化工チレン (テフロン (登録商標))等のフ ッ素系榭脂材料、アクリル系榭脂材料、シリコン系榭脂材料等の撥液性材料を付着 する処理等が挙げられる。
[0042] 底板部 70Dの一部は、 Z軸方向に関して、投影光学系 PLの最終光学素子 LSIの 下面 T1と基板 P (基板ステージ PST)との間に設けられる。また、底板部 70Dの中央 部には、露光光 ELが通過する開口 74が形成されている。開口 74には、投影光学系 PLの最終光学素子(光学部材) LS 1を通過した露光光 ELが通過するようになって 、 る。本実施形態においては、露光光 ELが照射される投影領域 ARは X軸方向(非走 查方向)を長手方向とするスリット状 (略矩形状)に設けられ、開口 74は、投影領域 A Rに応じた形状を有しており、本実施形態においては X軸方向(非走査方向)を長手 方向とするスリット状 (略矩形状)に形成されて ヽる。開口 74は投影領域 ARよりも大き く形成されており、投影光学系 PLを通過した露光光 ELは、底板部 70Dに遮られるこ となぐ基板 P上に到達できる。
[0043] ノズル部材 70の基板 P (基板ステージ PST)と対向する下面は、露光光 ELが照射 可能な位置に配置された基板 Pの表面と対向する第 1面 75を有している。第 1面 75 は、 XY平面と平行な平坦面となっている。第 1面 75は、露光光 ELの光路空間 K1 ( この空間を通過した露光光が基板 P上に投影されて投影領域 ARを形成する:本明 細書では「光路空間 Kl」は露光光が通る空間を意図しており、この実施形態及び以 下の実施形態では、最終光学素子 LSIと基板 Ρとの間における露光光が通る空間を 意味する)を囲むように設けられている。すなわち、第 1面 75は、底板部 70Dの露光 光 ELが通過する開口 74を囲むように設けられた面である。ここで、露光光 ELが照射 可能な位置とは、投影光学系 PLと対向する位置を含む。第 1面 75は、投影光学系 P Lを通過した露光光 ELの光路空間 K1を囲むように設けられているため、制御装置 C ONTは、露光光 ELが照射可能な位置に基板 Pを配置することにより、第 1面 75と基 板 Pの表面とを対向させることができる。
[0044] そして、基板ステージ PSTに保持された基板 Pの表面は XY平面とほぼ平行である ため、ノズル部材 70の第 1面 75は、基板ステージ PSTに保持された基板 Pの表面と 対向するように、且つ基板 Pの表面 (XY平面)と略平行となるように設けられて 、る。 そして、第 1面 75は、露光光 ELの光路空間 K1を満たすために液体供給装置 11か ら供給された液体 LQを基板 Pとの間で保持可能となって 、る。以下の説明にお 、て は、ノズル部材 70の、基板ステージ PSTに保持された基板 Pの表面と対向するように 、且つ露光光 ELの光路空間 K1を囲むように設けられ、基板 Pの表面 (XY平面)と略 平行となるように形成された第 1面 (平坦面) 75を適宜、「第 1ランド面 75」と称する。
[0045] 第 1ランド面 75は、ノズル部材 70の、基板ステージ PSTに保持された基板 Pに最も 近い位置に設けられている。すなわち、第 1ランド面 75は、基板ステージ PSTに保持 された基板 Pの表面との距離 (間隔)が最も小さくなる部分である。これにより、第 1ラ ンド面 75と基板 Pとの間で液体 LQを良好に保持して液浸領域 LRを形成することが できる。本実施形態においては、基板 Pの表面と第 1ランド面 75との距離(間隔) W1 は、 1mm程度に設定されている。
[0046] そして、第 1ランド面 75は、投影光学系 PLの下面 T1と基板 Pとの間において、露光 光 ELの光路空間 K1 (投影領域 AR)を囲むように設けられている。第 1ランド面 75は 、ノズル部材 70 (底板部 70D)の下面の一部の領域に設けられている。上述のように 、第 1ランド面 75には、露光光 ELが通過する開口 74を囲むように設けられている。 第 1ランド面 75は、開口 74に応じた形状を有しており、本実施形態における第 1ラン ド面 75の外形は、 X軸方向(非走査方向)を長手方向とする矩形状である。
[0047] 開口 74は、第 1ランド面 75のほぼ中央部に設けられている。そして、図 3等に示す ように、 Y軸方向(走査方向)における第 1ランド面 75の幅 D1は、 Y軸方向における 開口 74の幅 D2よりも小さくなつている。ここで、 Y軸方向における第 1ランド面 75の 幅 D1とは、第 1ランド面 75の +Y側(-Y側)の端部(エッジ) Eと開口 74の +Y側(- Y側)の端部 (エッジ)との距離である。本実施形態においては、開口 74は第 1ランド 面 75のほぼ中央部に設けられているため、第 1ランド面 75の +Y側の端部 Eと開口 7 4の +Y側の端部との距離と、第 1ランド面 75の— Y側の端部 Eと開口 74の— Y側の 端部との距離とはほぼ等 、。
[0048] また、本実施形態においては、 Y軸方向における第 1ランド面 75の幅 D1は、 X軸方 向における第 1ランド面 75の幅 D3よりも小さくなつている。ここで、 X軸方向における 第 1ランド面 75の幅 D3とは、第 1ランド面 75の +X側(-X側)の端部(エッジ)と開口 74の +X側(一 X側)の端部(エッジ)との距離である。本実施形態にぉ ヽては、開口 74は第 1ランド面 75のほぼ中央部に設けられているため、第 1ランド面 75の +X側の 端部と開口 74の +X側の端部との距離と、第 1ランド面 75の— X側の端部と開口 74 の—X側の端部との距離とはほぼ等 、。
[0049] 基板 Pの表面と最終光学素子 LSIの下面 T1との距離は、基板 Pの表面と第 1ランド 面 75との距離よりも長くなつている。すなわち、最終光学素子 LSIの下面 T1は、第 1 ランド面 75より高い位置に形成されている。また、底板部 70Dは、最終光学素子 LS 1の下面 T1及び基板 P (基板ステージ PST)とは接触しな 、ように設けられて 、る。そ して、図 5等に示すように、最終光学素子 LSIの下面 T1と底板部 70Dの上面 77との 間には、所定のギャップ G2を有する空間が形成されている。底板部 70Dの上面 77 は、露光光 ELが通過する開口 74を囲むように設けられている。すなわち、底板部 70 Dの上面 77は、露光光 ELの光路空間 K1を囲むように設けられ、最終光学素子 LSI との間に所定のギャップ G2を介して対向している。以下の説明においては、最終光 学素子 LSIの下面 T1と底板部 70Dの上面 77との間の空間を含むノズル部材 70の 内側の空間を適宜、「内部空間 G2」と称する。
[0050] また、ノズル部材 70の下面の、第 1ランド面 75に対して Y軸方向両側のそれぞれに は凹部 72 (空間形成領域)が設けられている。凹部 72は、基板ステージ PSTに保持 された基板 Pの表面に対して離れるように凹んでいる。凹部 72の内側には、基板ステ ージ PSTに保持された基板 Pと対向する第 2面 76が形成されている。第 2面 76は、 露光光 ELの光路空間 K1に対して第 1ランド面 75の外側に配置されている。第 2面 7 6は、基板ステージ PSTに保持された基板 Pの表面に対して第 1ランド面 75よりも離 れている。以下の説明においては、ノズル部材 70の、基板ステージ PSTに保持され た基板 Pの表面と対向するように、且つ露光光 ELの光路空間 K1に対して第 1ランド 面 75の外側に配置され、基板 Pの表面に対して第 1ランド面 75よりも離れている第 2 面 76を適宜、「第 2ランド面 76」と称する。
[0051] 本実施形態においては、第 2ランド面 76は、基板ステージ PSTに保持された基板 P の表面とほぼ平行な平坦面である。また、本実施形態においては、基板 Pの表面と第 2ランド面 76との距離(間隔) W2は、 3mm程度に設定されている。なお図面を見や すくするため、各図面における縮尺等は実際のものとは異なっている。
[0052] 第 2ランド面 76は、 Y軸方向(走査方向)において、第 1ランド面 75の両側のそれぞ れに設けられている。図 5等に示すように、本実施形態においては、第 2ランド面 76 の外形は、 X軸方向(非走査方向)を長手方向とする矩形状であり、第 2ランド面 76の X軸方向の大きさ及び第 1ランド面 75の X軸方向全体の大きさはほぼ同じ値 D4であ る。そして、本実施形態においては、第 1ランド面 75の +Y側のエッジ Eは平面視に お!、て X軸方向に延びるように直線状に形成されており、 Y側のエッジ Eも平面視 にお 、て X軸方向に延びるように直線状に形成されて!、る。
[0053] また、第 1ランド面 75には光路空間 K1に満たされた液体 LQが接触し、最終光学 素子 LSIの下面 T1にも光路空間 K1に満たされた液体 LQが接触する。すなわち、ノ ズル部材 70の第 1ランド面 75及び最終光学素子 LSIの下面 T1のそれぞれは、液 体 LQと接触する液体接触面となって 、る。
[0054] 一方、後述するように、第 2ランド面 76は、基板 Pの表面と第 2ランド面 76との間に 存在する液体 LQの膜が第 2ランド面 76と接触しな 、ように設けられて 、る。すなわち 、光路空間 K1を液体 LQで満たすために第 1ランド面 75に液体 LQを接触させて第 1 ランド面 75と基板 Pとの間で液体 LQを保持した場合でも、基板 Pの表面と第 2ランド 面 76との間に存在する液体 LQの膜は第 2ランド面 76と接触しないようになっている 。換言すれば、第 2ランド面 76を区画する凹部 72 (空間形成領域)の存在により、第 2ランド面 76と対向する基板 P上に存在する液体 LQ (液体 LQの表面)と第 2ランド面 76との間に液体が存在しない空間がもたらされる。
[0055] 第 1ランド面 75は、液体 LQに対して親液性を有している。本実施形態においては 、第 1ランド面 75を形成する底板部 70Dはチタンによって形成されている。チタン材 料は光触媒作用を有する不動態膜が表面に形成され、その表面の親液性 (親水性) を維持することができるため、第 1ランド面 75における液体 LQの接触角を例えば 20 ° 以下に維持することができる。
[0056] なお、第 1ランド面 75及び第 2ランド面 76をステンレス鋼(例えば SUS316)で形成 し、その表面に液体 LQへの不純物の溶出を抑えるための表面処理、あるいは親液 性を高めるための表面処理を施してもよい。そのような表面処理としては、第 1ランド 面 75及び第 2ランド面 76のそれぞれに酸化クロムを付着する処理が挙げられ、例え ば株式会社神鋼環境ソリューションの「GOLDEP」処理あるいは「GOLDEP WHITEJ 処理が挙げられる。
[0057] 一方、第 2ランド面 76は、液体 LQに対して撥液性を有して 、る。本実施形態にお いては、第 2ランド面 76には、液体 LQに対して撥液性を付与する表面処理 (撥液ィ匕 処理)が施されている。そのような表面処理としては、例えば、ポリ四フッ化工チレン( テフロン (登録商標))等のフッ素系榭脂材料、アクリル系榭脂材料、シリコン系榭脂 材料等の撥液性材料を付着する処理が挙げられる。
[0058] ノズル部材 70は、露光光 ELの光路空間 K1を満たすための液体 LQを供給する供 給口 12と、露光光 ELの光路空間 K1を満たすための液体 LQを回収する回収口 22 とを備えている。また、ノズル部材 70は、供給口 12に接続する供給流路 14、及び回 収ロ 22に接続する回収流路 24を備えている。また、図 2〜図 5においてはその図示 を省略若しくは簡略しているが、供給流路 14は供給管 13の他端部と接続され、回収 流路 24は回収管 23の他端部と接続される。
[0059] 供給流路 14は、ノズル部材 70の傾斜板部 70Bの内部を傾斜方向に沿って貫通す るスリット状の貫通孔によって形成されている。また、本実施形態においては、供給流 路 14は、光路空間 K1 (投影領域 AR)に対して Y軸方向両側のそれぞれに設けられ ている。そして、供給流路 (貫通孔) 14の上端部と供給管 13の他端部とが接続され、 これにより、供給流路 14が供給管 13を介して液体供給装置 11に接続される。一方、 供給流路 14の下端部は、最終光学素子 LSIの下面 T1と底板部 70Dの上面 77との 間の内部空間 G2近傍に設けられており、この供給流路 14の下端部が供給口 12とな つている。すなわち、供給口 12は、最終光学素子 LSIの下面 T1と底板部 70Dの上 面 77との間の内部空間 G2近傍に設けられており、内部空間 G2と接続されている。 本実施形態においては、供給口 12は、露光光 ELの光路空間 K1の外側において、 光路空間 K1を挟んだ Y軸方向両側のそれぞれの所定位置に設けられている。
[0060] 供給口 12は、光路空間 K1を満たすための液体 LQを供給する。供給口 12には液 体供給装置 11力も液体 LQが供給されるようになっており、供給口 12は、最終光学 素子 LSIの下面 T1と底板部 70Dの上面 77との間、すなわち内部空間 G2に液体 L Qを供給可能である。供給口 12から最終光学素子 LSIと底板部 70Dとの間の内部 空間 G2に液体 LQを供給することによって、最終光学素子 LSIと基板 Pとの間の露 光光 ELの光路空間 K1が液体 LQで満たされる。
[0061] また、ノズル部材 70は、内部空間 G2と外部空間 K3とを連通させるための排気口 1 6を有している。排気口 16には排気流路 15が接続されている。排気流路 15は、ノズ ル部材 70の傾斜板部 70Bの内部を傾斜方向に沿って貫通するスリット状の貫通孔 によって形成されている。また、本実施形態においては、排気流路 15は、光路空間 K1 (投影領域 AR)に対して X軸方向両側のそれぞれに設けられている。そして、排 気流路 (貫通孔) 15の上端部は外部空間(大気空間) K3に接続されており、大気開 放された状態となっている。一方、排気流路 15の下端部は、最終光学素子 LSIの下 面 T1と底板部 70Dの上面 77との間の内部空間 G2に接続されており、この排気流路 15の下端部が排気口 16となっている。すなわち、排気口 16は、最終光学素子 LSI の下面 T1と底板部 70Dの上面 77との間の内部空間 G2近傍に設けられており、内 部空間 G2と接続されている。本実施形態においては、排気口 16は、露光光 ELの光 路空間 K1の外側にぉ 、て、光路空間 K1を挟んだ X軸方向両側のそれぞれの所定 位置に設けられている。また、本実施形態においては、底板部 70Dの上面 77の排気 口 16近傍には凹部 78が設けられている。排気口 16は、排気流路 15を介して、内部 空間 G2と外部空間 K3とを連通させているため、内部空間 G2の気体は、排気口 16 を介して、排気流路 15の上端部より、外部空間 K3に排出 (排気)可能となっている。
[0062] ノズル部材 70は、側板部 70Aと傾斜板部 70Bとの間において下向きに開口する空 間 24を有している。回収口 22は、空間 24の開口に設けられている。また、空間 24は 、ノズル部材 70内の回収流路の少なくとも一部を構成している。そして、回収流路( 空間) 24の一部に回収管 23の他端部が接続される。
[0063] 回収口 22は、光路空間 K1を満たすための液体 LQを回収する。回収口 22は、基 板ステージ PSTに保持された基板 Pの上方において、その基板 Pの表面と対向する 位置に設けられている。回収口 22と基板 Pの表面とは所定距離だけ離れている。回 収ロ 22は、投影光学系 PLの像面近傍の光路空間 K1に対して供給口 12の外側に 設けられている。 [0064] 回収口 22は、光路空間 K1に対して第 2ランド面 76の外側に設けられている。本実 施形態においては、回収口 22は、第 1ランド面 75及び第 2ランド面 76を囲むように、 平面視において環状に設けられている。回収口 22を第 1ランド面 75及び第 2ランド 面 76を囲むように環状に設けることにより、液体 LQの漏出、残留などを十分に抑制 することができる。
[0065] ノズル部材 70は、回収口 22を覆うように配置された、複数の孔を有する多孔部材 2 5を備えて 、る。多孔部材 25は複数の孔を有したメッシュ部材により構成可能であり 、例えば略六角形状の複数の孔カ なるハ-カムパターンを形成されたメッシュ部材 によって構成可能である。また、多孔部材 25は、チタン、ステンレス鋼 (例えば SUS3 16)など力 なる多孔部材の基材となる板部材に孔あけ加工を施すことで形成可能 である。あるいは、多孔部材 25として、セラミックス製の多孔部材を用いることも可能 である。本実施形態の多孔部材 25は薄板状に形成されており、例えば 100 m程 度の厚みを有するものである。
[0066] 多孔部材 25は、基板ステージ PSTに保持された基板 Pと対向する下面 26を有して いる。多孔部材 25の下面 26は、ノズル部材 70の下面の一部であり、多孔部材 25の 基板 Pと対向する下面 26はほぼ平坦である。多孔部材 25は、その下面 26が基板ス テージ PSTに保持された基板 Pの表面 (すなわち XY平面)とほぼ平行になるように 回収口 22に設けられて!/、る。
[0067] 多孔部材 25の下面 26と基板 Pの表面との距離は、第 1ランド面 75と基板 Pの表面と の距離とほぼ等しくなつている。すなわち、回収口 22に設けられた多孔部材 25の下 面 26と第 1ランド面 75とは、基板 Pの表面に対してほぼ同じ位置(高さ)に設けられて いる。そして、回収口 22に設けられた多孔部材 25は、液体 LQを回収するときに液体 LQと接触する。回収口 22は、多孔部材 25に接触した液体 LQを回収することができ る。回収口 22及びその回収口 22に配置された多孔部材 25は、平面視において矩 形の環状に形成されて 、る。
[0068] また、本実施形態にぉ 、ては、多孔部材 25は液体 LQに対して親液性 (親水性)を 有している。多孔部材 25を親液性にするための親液ィ匕処理 (表面処理)としては、多 孔部材 25に酸ィ匕クロムを付着する処理が挙げられる。具体的には、上述したような「 GOLDEP」処理あるいは「GOLDEP WHITE」処理が挙げられる。また、このような表面 処理を施すことにより、多孔部材 25から液体 LQへの不純物の溶出が抑えられる。も ちろん、親液性の材料自体で多孔部材 25を形成してもよ 、。
[0069] 次に、図 6を参照しながら、本実施形態における液浸機構 1による液体回収動作の 原理について説明する。図 6は多孔部材 25の一部を拡大した断面図であって、多孔 部材 25を介して行われる液体回収動作を説明するための模式図である。本実施形 態において、液浸機構 1は、回収口 22を介して液体 LQのみを回収するように設けら れている。したがって、液浸機構 1は、回収口 22を介して空間 24に気体を流入させ ること無ぐ液体 LQを良好に回収することができる。
[0070] 図 6において、回収口 22には多孔部材 25が設けられている。また、多孔部材 25の 下側には基板 Pが配置されている。そして、多孔部材 25と基板 Pとの間には、気体空 間及び液体空間が形成されている。より具体的には、多孔部材 25の第 1孔 25Haと 基板 Pとの間には気体空間が形成され、多孔部材 25の第 2孔 25Hbと基板 Pとの間 には液体空間が形成されている。また、多孔部材 25の上側には、回収流路 (流路空 間) 24が形成されている。
[0071] 多孔部材 25の第 1孔 25Haと基板 Pとの間の空間 K3の圧力(多孔部材 25Hの下 面での圧力)を Pa、多孔部材 25の上側の流路空間 24の圧力(多孔部材 25の上面 での圧力)を Pc、孔 25Ha、 25Hbの孔径(直径)を d、多孔部材 25 (孔 25Hの内側面 )の液体 LQとの接触角を Θ、液体 LQの表面張力を γとした場合、本実施形態の液 浸機構 1は、
(4 Χ γ X cos 0 ) /d ≥ (Pa— Pc) …ひ)
の条件を満足するように設定されている。なお、上記(1)式においては、説明を簡単 にするために多孔部材 25の上側の液体 LQの静水圧は考慮してな 、。
[0072] この場合において、多孔部材 25 (孔 25Hの内側面)の液体 LQとの接触角 Θは、
Θ ≤ 90° - -- (2)
の条件を満足する必要がある。
[0073] 上記条件が成立する場合、多孔部材 25の第 1孔 25Haの下側(基板 P側)に気体 空間が形成された場合でも、多孔部材 25の下側の空間 K3の気体が孔 25Haを介し て多孔部材 25の上側の流路空間 24に移動 (侵入)することが防止される。すなわち 、上記条件を満足するように、多孔部材 25の孔径 d、多孔部材 25の液体 LQとの接 触角(親和性) Θ、液体 LQの表面張力 γ、及び圧力 Pa、 Pcを最適化することにより 、液体 LQと気体との界面を多孔部材 25の第 1孔 25Haの内側に維持することができ 、第 1孔 25Haを介して空間 K3から流路空間 24へ気体が侵入することを抑えること ができる。一方、多孔部材 25の第 2孔 25Hbの下側 (基板 P側)には液体空間が形成 されて!/、るので、第 2孔 25Hbを介して液体 LQのみを回収することができる。
[0074] 本実施形態においては、多孔部材 25の下側の空間 K3の圧力 Pa、孔径 d、多孔部 材 25 (孔 25Hの内側面)の液体 LQとの接触角 0、液体 (純水) LQの表面張力 γは ほぼ一定であり、液浸機構 1は、液体回収装置 21の吸引力を制御して、上記条件を 満足するように、多孔部材 25の上側の流路空間 24の圧力 Pcを調整する。
[0075] なお、上記(1)式において、(Pa— Pc)の絶対値が大きいほど、すなわち、((4 X γ
X cos Θ )Zd)の絶対値が大きいほど、上記条件を満足するような圧力 Pcの制御が 容易になるので、孔径 dは可能な限り小さぐ多孔部材 25の液体 LQとの接触角 Θは 可能な限り小さいことが望ましい。本実施形態においては、多孔部材 25は液体 LQ に対して親液性を有しており、十分に小さい接触角 Θを有している。
[0076] このように、本実施形態では、多孔部材 25が濡れた状態で、多孔部材 25の上側の 空間 24と下側の空間 K3との圧力差 (多孔部材 25の上面と下面との圧力差)を、上 記条件を満足するように制御することで、多孔部材 25の孔 25H力も液体 LQのみを 回収する。これにより、液体 LQと気体とを一緒に吸引することに起因する振動の発生 を抑制することができる。
[0077] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターン像を基板 P に露光する方法にっ 、て説明する。
[0078] 露光光 ELの光路空間 K1を液体 LQで満たすために、制御装置 CONTは、液体供 給装置 11及び液体回収装置 21のそれぞれを駆動する。制御装置 CONTの制御の もとで液体供給装置 11から送出された液体 LQは、供給管 13を流れた後、ノズル部 材 70の供給流路 14を介して、供給口 12より投影光学系 PLの最終光学素子 LSIと 底板部 70Dとの間の内部空間 G2に供給される。供給口 12から内部空間 G2に供給 された液体 LQは、底板部 70Dの上面 77を拡がるように流れ、開口 74に達する。内 部空間 G2に液体 LQが供給されることにより、内部空間 G2に存在していた気体部分 は排気口 16及び Z又は開口 74を介して外部空間 K1に排出される。したがって、内 部空間 G2に対する液体 LQの供給開始時に、内部空間 G2に気体が留まってしまう といった不都合を防止することができ、光路空間 K1の液体 LQ中に気体部分 (気泡) が生成される不都合を防止することができる。
[0079] また、本実施形態においては、底板部 70Dの上面 77の排気口 16近傍には凹部 7 8が設けられている。これにより、最終光学素子 LSIの下面 T1と底板部 70Dの上面 7 7との間のギャップが小さくても、排気口 16近傍の流路は凹部 78によって広くなつて いるので、内部空間 G2の気体部分を凹部 78及び排気口 16を介して外部空間 K3に 円滑に排出することができる。
[0080] なお、ここでは、排気流路 15の上端部は大気空間(外部空間) K3に接続されてお り、大気開放された状態となっているが、排気流路 15の上端部を真空系などの吸引 装置と接続して、内部空間 G2の気体を強制的に排気するようにしてもよい。
[0081] また、光路空間 K1に対して X軸方向の両側に設けられた口(排気口) 16から内部 空間 G2に対して液体 LQを供給するとともに、光路空間 K1に対して Y軸方向の両側 に設けられた口(供給口) 12から内部空間 G2の気体部分を外部空間 K3に排出する ようにしてもよい。
[0082] 内部空間 G2に供給された液体 LQは、内部空間 G2を満たした後、開口 74を介し て第 1ランド面 75と基板 P (基板ステージ PST)との間の空間に流入し、露光光 ELの 光路空間 K1を満たす。このように、最終光学素子 LSIと底板部 70Dとの間の内部空 間 G2に供給口 12から液体 LQを供給することによって、最終光学素子 LSI (投影光 学系 PL)と基板 Pとの間の露光光 ELの光路空間 K1が液体 LQで満たされる。
[0083] このとき、制御装置 CONTの制御のもとで駆動されている液体回収装置 21は、単 位時間当たり所定量の液体 LQを回収している。真空系を含む液体回収装置 21は、 空間 24を負圧にすることにより、回収口 22 (多孔部材 25)と基板 Pとの間に存在する 液体 LQを、回収口 22を介して回収することができる。露光光 ELの光路空間 K1に満 たされている液体 LQは、ノズル部材 70の回収口 22を介して回収流路 24に流入し、 回収管 23を流れた後、液体回収装置 21に回収される。
[0084] 以上のように、制御装置 CONTは、液浸機構 1を使って、光路空間 K1に対して単 位時間当たり所定量の液体 LQを供給するとともに光路空間 K1の液体 LQを単位時 間当たり所定量で回収することで、投影光学系 PLと基板 Pとの間の露光光 ELの光 路空間 K1を満たす液体 LQと、ノズル部材 70と基板 Pとの間の空間を満たす液体 L Qとで、基板 P上に液浸領域 LRを局所的に形成することができる。制御装置 CONT は、露光光 ELの光路空間 K1を液体 LQで満たした状態で、投影光学系 PLと基板 P とを相対的に移動しながらマスク Mのパターン像を投影光学系 PL及び光路空間 K1 の液体 LQを介して基板 P上に投影する。上述のように、本実施形態の露光装置 EX は、 Y軸方向を走査方向とする走査型露光装置であるため、制御装置 CONTは、基 板ステージ PSTを制御して、基板 Pを Y軸方向に移動しつつ基板 P上に露光光 ELを 照射して、基板 Pを露光する。
[0085] このような走査型露光装置にお!、て、ノズル部材の構造によっては、例えば基板 P の走査速度 (移動速度)の高速ィ匕に伴って、回収口 22を介して液体 LQを十分に回 収することができず、光路空間 K1に満たされた液体 LQが光路空間 K1に対して回 収口 22よりも外側(ノズル部材 70と基板 Pとの間の空間の外側)へ漏出する可能性が ある。
[0086] 例えば、図 7 (A)の模式図に示すような状態から、液浸領域 LRに対して基板 Pを Y方向に所定速度で所定距離だけ移動した場合、基板 Pの移動に伴って、液浸領域 LRの液体 LQとその外側の空間との界面 LGが露光光 ELの光路空間 K1に対して外 側へ向かって移動する。その移動中において、図 7 (B)の模式図に示すように、ノズ ル部材 70の下面に接触していた液体 LQがノズル部材 70の下面の一部から離れ( 剥離し)、基板 P上に液体 LQの膜 (薄膜)を形成する可能性がある。ここで、以下の 説明においては、ノズル部材 70の下面の、基板 Pの移動(界面 LGの移動)に伴って ノズル部材 70の下面に接触して 、た液体 LQが離れる位置を適宜、「膜発生位置 Fp 」と称する。
[0087] 形成された液体 LQの膜は回収口 22 (多孔部材 25)に対して離れるため、回収口 2 2によってその液体 LQの膜を回収できない状況が生じる可能性がある。すなわち、 形成された液体 LQの膜は回収口 22に配置された多孔部材 25に接触しな 、ため、 回収口 22が液体 LQを回収できない状況が発生する可能性がある。すると、液体 LQ が回収口 22の外側に漏出したり、及び Z又は液体 LQの膜が基板 P上で液滴となつ て残留する等の不都合が生じる可能性がある。そして、基板 Pの移動速度の高速ィ匕 に伴って、基板 P上に液体 LQの膜が形成される可能性が高くなるとともに、その膜の 大きさ Lwも大きくなる可能性が高くなる。そのため、基板 Pの移動の高速化に伴って 、回収口 22を介して液体 LQを十分に回収することができなくなる可能性が高くなる。 ここで、膜の大きさ Lwとは、膜発生位置 Fpと、基板 Pの移動方向前方側 (ここでは— Y側)における液体 LQの膜の先端部 Hとの距離を指す。
[0088] 本発明者の研究によると、液体 LQの膜を光路空間 K1に対して回収口 22よりも内 側に形成することができれば、回収口 22を介して液体 LQを回収することができること が分った。本発明者は、実験などを通じて、例えば、図 7に示すように、基板 Pを— Y 方向に移動したとき(特に、 Y方向へ移動中の基板 Pに +Y方向への加速度を与 えたとき)、液体 LQの膜の先端部 H近傍の厚み (膜厚)が液体 LQの表面張力等によ つて厚くなる現象が生じることを見いだした(図 7 (B)参照)。このため、液体 LQの先 端部 Hが光路空間 K1に対して回収口 22の外側のエッジ 22Aよりも内側に形成され れば、換言すれば、回収口 22 (多孔部材 25)と液体 LQの膜の先端部 Hとを対向さ せることができれば、回収口 22の多孔部材 25と液体 LQ (先端部 H)とを接触させるこ とができ、回収口 22を介して液体 LQを回収することができる。また、液体 LQの先端 部 Hが光路空間 K1に対して回収口 22の内側のエッジ 22Bよりも内側に形成されれ ば、光路空間 K1に対して液体 LQの膜が形成された方向とは逆方向(ここでは +Y 方向)に基板 Pを移動することにより、形成された液体 LQの膜を液浸領域 LRの液体 LQと一緒に回収口 22を介して回収することができる。
[0089] ところが、上述のように、膜の大きさ Lwは、基板 Pの移動速度の高速化に伴って巨 大化する可能性が高いため、液体 LQの膜を回収口 22を介して回収しょうとすると、 光路空間 K1 (投影光学系 PLの光軸 AX)カゝら離れた位置に回収口 22を設ける必要 があるため、ノズル部材 70の巨大化、ひいては露光装置 EX全体の巨大化を招く不 都合が生じる。また、膜発生位置 Fpが、光路空間 K1 (光軸 AX)力も離れていると、 光路空間 Kl (光軸 AX)と液体 LQの膜の先端部 Hとの距離 Lsが大きくなり、液浸領 域 LRの巨大化を招くため、その液体 LQを回収口 22を介して回収しょうとすると、ノ ズル部材 70を巨大化する必要があり、ひいては露光装置 EXの巨大化を招く。
[0090] そこで、本実施形態にぉ 、ては、基板 Pを移動した場合にぉ 、ても、液浸領域 LR の巨大化及びノズル部材 70の巨大化を抑え、且つ光路空間 K1を液体 LQで良好に 満たすことができるように、ノズル部材 70の基板 Pと対向する下面に、第 1ランド面 75 と第 2ランド面 76 (または第 1ランド面 75と隣り合う凹部 72 :空間形成領域)が設けら れている。
[0091] 図 8は、基板 Pを Y方向に移動したときの液浸領域 LRの挙動の一例を説明する ための模式図である。上述のように、第 1ランド面 75は基板 Pの表面とほぼ平行な平 坦面であって親液性を有しており、基板 Pの表面と第 1ランド面 75との間に存在する 液体 LQは第 1ランド面 75に密着し、その液体 LQは、基板 Pの表面と第 1ランド面 75 との間において良好に保持される。
[0092] そして、第 2ランド面 76は、基板 Pの表面に対して第 1ランド面 75よりも離れており、 第 1ランド面 75のエッジ Eにおいて第 2ランド面 76との間に段差が設けられているた め、基板 Pの表面と第 1ランド面 75との間に保持されている液体 LQの界面 LG力 露 光光 ELの光路空間 K1に対して第 1ランド面 75の外側へ向力つて移動するときに、 第 1ランド面 75に接触していた液体 LQ力 第 1ランド面 75のエッジ Eにおいて、第 2 ランド面 76から離れるようになつている。そして、基板 Pの表面と第 2ランド面 76との間 に存在する液体 LQは、基板 Pの表面と第 1ランド面 75との距離(間隔) W1よりも薄い 膜になっており、基板 Pの表面と第 2ランド面 76との間に存在する液体 LQの膜は、第 2ランド面 76と接触しないようになっている。換言すれば、第 2ランド面 76と対向する 基板 P上に存在する液体 LQの膜と第 2ランド面 76との間には、液体が存在しない空 間 SPが形成されている。この空間 SPは、第 2ランド面 76を区画する凹部 76によりも たらされている。
[0093] このように、光路空間 K1に対して第 1ランド面 75の外側に第 2ランド面 76 (凹部 72 )を設けたことにより、膜発生位置 Fpが第 1ランド面 75のエッジ Eに設定される。換言 すれば、本実施形態のノズル部材 70は、第 1ランド面 75と第 2ランド面 76 (凹部 72) によって、膜発生位置 Fpが規定される。
[0094] そして、図 3等を参照して説明したように、 Y軸方向(走査方向)における第 1ランド 面 75の幅 D1は十分に小さいため、光路空間 K1 (光軸 AX)と、形成される液体 LQ の膜の先端部 Hとの距離 Lsを小さくすることができる。
[0095] また、本実施形態においては、第 1ランド面 75と第 2ランド面 76との境界であるエツ ジ Eで発生した液体 LQの膜が露光光 ELの光路空間 K1に対して回収口 22よりも内 側に形成されるように、第 1ランド面 75のエッジ Eの位置と回収口 22の位置(大きさ) とが設定されている。図 8に示す例では、液体 LQの膜 (先端部 H)が、光路空間 K1 に対して回収口 22の内側エッジ 22Bよりも内側に形成されるように、第 1ランド面 75 のエッジ Eと回収口 22との位置関係 (距離)が設定されている。すなわち、光路空間 K1に対して回収口 22の内側エッジ 22Bよりも内側に形成されるように、空間形成領 域である凹部 72が光路空間 K1と回収口 22との間に形成されている。これにより、液 体 LQの漏出、残留等を防止することができる。また、第 2ランド面 76は、基板 Pの表 面と第 2ランド面 76との間に存在する液体 LQを距離 W1よりも薄くするように設けられ ており、第 2ランド面 76に液体 LQの膜が接触しないようになっている。そして、第 2ラ ンド面 76を基板 Pの表面に対して第 1ランド面 75よりも離すことで、第 2ランド面 76に 対する液体 LQの付着、残留等を防止できる。
[0096] また、図 9に示すように、例えば基板 Pの移動速度の高速ィ匕に伴って、膜の大きさ L wが大きくなつても、液体 LQの膜 (先端部 H)が、光路空間 K1に対して回収口 22の 外側エッジ 22Aよりも内側に形成されるように、第 1ランド面 75のエッジ Eの位置と回 収ロ 22の位置とが設定されている。すなわち、光路空間 K1に対して回収口 22の内 側エッジ 22Aよりも内側に形成されるように、空間形成領域である凹部 72が光路空 間 K1と回収口 22との間に形成されている。したがって、液体 LQの漏出、残留等を 防止することができる。多孔部材 25の下面 26と基板 Pの表面との距離は、第 1ランド 75と基板 Pの表面との距離とほぼ同じであり、多孔部材 25は、形成された液体 LQの 膜の、膜厚が厚 、部分である先端部 Hの液体 LQと接触可能な位置に設けられて ヽ る。そのため、図 9に示すように、回収口 22 (多孔部材 25)と液体 LQの膜の先端部 H とが対向するように、すなわち液体 LQの膜 (先端部 H)が回収口 22の外側エッジ 22 Aよりも内側に形成されるように、第 1ランド面 75のエッジ Eの位置と回収口 22 (外側 エッジ 22A)の位置とを設定することで、液体 LQを回収することができる。また、第 2 ランド面 76 (凹部 72)の存在により、液体 LQの膜の、厚さが薄い部分の上方には空 間が存在している。すなわち、この実施形態では、基板 P上に形成された液浸領域の 液体 LQは、液体 LQは第 2ランド面 76との間に空間(凹部 72内に区画される空間よ りも下方の空間) SPを形成しつつ、回収口 22から回収されて 、る。
[0097] ここで、上述のように、液体 LQの膜の大きさ Lwは、基板 Pを露光するときの基板 P の移動速度などに応じて変化するため、液体 LQの膜が回収口 22の内側に形成され るように、 Y軸方向における第 2ランド面 76 (あるいは凹部 72)の大きさ D5を、基板 P を露光するときの基板 Pの Y軸方向における移動速度などに応じて設定することがで きる。基板ステージ PSTの最高速度は予め分力つているので、この最高速度に応じ て第 2ランド面 76 (あるいは凹部 72)の大きさ D5を設定することができる。例えば、基 板 Pを高速で移動しつつ露光する場合には、液体 LQの膜の大きさ Lwは大きくなる 可能性が高いため、第 2ランド面 76の大きさ D5、ひいては第 1ランド面 75のエッジ E と回収口 22との距離を大きくすることにより、液体 LQの膜を回収口 22の内側に形成 することができる。したがって、液体 LQの漏出、残留などを防止できる。一方、基板 P を比較的低速で移動しつつ露光する場合には、液体 LQの膜の大きさ Lwは小さ ヽ 可能性が高いため、第 2ランド面 76の大きさ D5、ひいては第 1ランド面 75のエッジ E と回収口 22との距離を小さくしても、液体 LQの膜を回収口 22の内側に形成すること ができる。したがって、ノズル部材 70の小型化、ひいては露光装置 EX全体の小型化 を図ることができる。
[0098] なお、移動速度に限らず、基板 Pを移動するときの加速度、移動距離、移動方向( 移動軌跡)等に応じても、液体 LQの膜の大きさ Lwが変化する可能性があるため、こ れら基板 Pの移動速度、加速度、移動距離、移動方向(移動軌跡)の少なくとも 1つを 含む移動条件に応じて、第 1ランド面 75のエッジ Eの位置、及び第 2ランド面 76 (凹 部 72)の大きさを設定することができる。
[0099] また、液体 LQの膜の大きさ Lwは、基板 Pと液体 LQとの接触角に応じても変化する 可能性がある。例えば、基板 Pと液体 LQとの接触角が小さい場合、換言すれば基板 Pの表面が親液性である場合、その基板 Pを移動しつつ露光した場合において、基 板 P上に形成される液体 LQの膜の大きさ Lwは大きくなる可能性が高くなる。したが つて、そのような場合には、第 2ランド面 76 (あるいは凹部 72)の大きさ D5、ひいては 第 1ランド面 75のエッジ Eと回収口 22との距離を大きくすることにより、液体 LQの膜を 回収口 22の内側に形成することができる。一方、基板 Pと液体 LQとの接触角が大き い場合、換言すれば基板 Pの表面が撥液性である場合、その基板 Pを移動しつつ露 光した場合にぉ 、て、形成される液体 LQの膜の大きさ Lwは小さくなる可能性が高く なる。したがって、そのような場合には、第 2ランド面 76 (あるいは凹部 72)の大きさ D 5、ひいては第 1ランド面 75のエッジ Eと回収口 22との距離を小さくしても、液体 LQの 膜を回収口 22の内側に形成することができる。したがって、ノズル部材 70の小型化、 ひいては露光装置 EX全体の小型化を図ることができる。このように、第 1ランド面 75 のエッジ Eの位置、及び Y軸方向における第 2ランド面 76の大きさ D5を、基板 Pと液 体 LQとの接触角に応じて設定することができる。
[0100] また、液浸領域 LRを形成するときの液浸条件によっても、液体 LQの膜の大きさ Lw が変動する可能性がある。ここで、液浸条件とは、光路空間 K1に対する液体 LQの 供給条件、及び光路空間 K1の液体 LQの回収条件の少なくとも一方を含む。液体し Qの供給条件には、単位時間当たりの液体供給量、光路空間 K1に対する液体 LQ の供給位置、供給方向等が含まれる。液体 LQの回収条件には、単位時間当たりの 液体回収量、光路空間 K1に対する液体 LQの回収位置、回収方向等が含まれる。こ のような液浸条件の違いによっても、形成される液体 LQの膜の大きさ Lwが変化する 可能性があるため、これら液浸条件に応じて、第 1ランド面 75のエッジ Eの位置、及 び第 2ランド面 76 (凹部 72)の大きさを設定するようにしてもよ!、。
[0101] 以上説明したように、基板 Pの表面と第 2ランド面 76 (凹部 72)との間に存在する液 体 LQの膜が第 2ランド面 76に接触しないように第 2ランド面 76 (凹部 72)を設けたの で、基板 Pを移動しつつ露光する場合においても、液体 LQの漏出、残留などといつ た不都合を防止できる。そして、第 1ランド面 75によって液体 LQを良好に保持するこ とができ、露光光 ELの光路空間 K1を液体 LQで所望状態に満たすことができる。
[0102] そして、第 1ランド面 75の大きさを十分に小さくすることで、膜発生位置 Fpを光路空 間 Kl (光軸 AX)に近づけることができるため、液浸領域 LRの小型化、ノズル部材 70 の小型化などを実現することができる。そのため、第 1ランド面 75の Y軸方向の幅 D1 は、例えば基板 Pを Y方向に移動しつつ液浸露光した後、 +Y方向に移動させた 場合に、光路空間 K1に気泡が生成されたり、気体部分が生成される現象 (例えば光 路空間 K1の液体 LQが切れる液切れ現象)が生じない範囲内で、可能な限り小さい ことが望ましい。換言すれば、第 1ランド面 75は、基板 Pを— Y方向に移動しつつ液 浸露光した後、 +Y方向に移動させた場合でも、第 1ランド面 75と基板 Pとの間で液 体 LQを良好に保持可能な範囲内で、可能な限り小さいことが望ましい。同様に、第 1 ランド面 75の X軸方向の幅 D3は、基板 Pを X軸方向にステップ移動した場合でも、光 路空間 K1に気泡が生成されるなどの不都合が生じな 、範囲で可能な限り小さ 、こと が望ましい。
[0103] 本実施形態においては、第 1ランド面 75は X軸方向を長手方向とする矩形状であり 、第 1ランド面 75の Y軸方向の幅 D1は、 X軸方向の幅 D3及び開口 74の幅 D2よりも 十分に小さく設けられており、液浸領域 LRの巨大化を抑えつつ、光路空間 K1を液 体 LQで良好に満たすことができるようになつている。
[0104] また、第 2ランド面 76は、 Y軸方向において第 1ランド面 75の両側のそれぞれに設 けられているので、基板 Pを Y軸方向に関して移動しつつ露光する場合、 +Y方向へ の移動と一 Y方向への移動とのそれぞれに対応することができる。
[0105] なお、本実施形態においては、第 2ランド面 76は、基板ステージ PSTに保持された 基板 Pの表面とほぼ平行な平坦面である力 基板ステージ PSTに保持された基板 P の表面と平行でなくてもよいし、平坦面でなくてもよい。基板 Pの表面と第 2ランド面 7 6との間に存在する液体 LQの膜を第 2ランド面 76に接触させないようにすることがで きるのであれば、第 2ランド面 76の凹凸形状及び基板 Pに対する角度等を含む表面 状態は任意でよい。
[0106] 本実施形態においては、第 1ランド面 75に対して凹部 72となるように第 2ランド面 7 6を設けたが、基板 Pとの間で液体 LQを良好に保持できれば、第 1ランド面 75の傾き 及び Z又は形状を変更して、基板 P上の液体とノズル部材 70の下面との間に空間が 形成されるようにしてもよい。例えば、第 1ランド面 75が回収口 22向力つて徐々に基 板 P側に近づくように連続的にまたは段階的に傾斜させてもよい。こうすることで、第 1 ランド面 75の外側のエッジ Eの高さ (Z方向の位置)が内側のエッジ (光路空間 K1側 のエッジ)の高さよりも低くなり、第 2ランド面 76の高さが第 1ランド面 75の外側のエツ ジ Eの高さよりも高くなるため、第 2ランド面 76が第 1ランド面 75の内側のエッジと同じ 高さであっても、基板 Pの移動に伴って液体 LQが光路空間 K1に対して第 1ランド面 75の外側に移動するときに、エッジ Eの外側で (第 2ランド面 76と基板 Pとの間で)液 体 LQの上方に空間 SPを形成することができる。
[0107] あるいは、第 1ランド面 75と第 2ランド面を同じ高さとしつつ、第 1ランド面 75と第 2ラ ンド面との間に基板 P側に突出する突起を設けてもよい。この突起により、基板 Pの移 動に伴って液体 LQが光路空間 K1に対して第 1ランド面 75の外側に移動するときに 、液体 LQが突起を通過した直後に第 2ランド面 76と基板 Pとの間の液体 LQ上に空 間 SPを形成することができる。すなわち、基板 Pの移動に伴って液体 LQが光路空間 K1に対して第 1ランド面 75の外側に移動するときに、光路空間 K1から回収口 22ま での範囲において(特に、 Y方向において)、ノズル部材 70の下面と、基板 P及びノ ズル部材 70の下面の間に存在する液体 LQとの間に空間 SPが発生するような任意 の形状または構造を有する領域 (空間形成領域)を、ノズル部材 70の下面に設ける ことができる。ただし、空間形成領域は、光路空間 K1における液体を所望の状態に 維持する、例えば、光路領域 K1における液体に気体部分 (気泡含む)を発生させな Vヽ構造及び形状であることは言うまでもな!/、。
[0108] なお、本実施形態において、第 2ランド面 76には撥液ィ匕処理が施されている力 第 2ランド面 76に撥液ィ匕処理を施さなくても、第 2ランド面 76を基板 Pの表面に対して第 1ランド面 75よりも離れた位置に設けることにより、基板 Pの表面と第 2ランド面 76との 間に存在する液体 LQを第 2ランド面 76に接触させないようにすることができるため、 第 2ランド面 76は必ずしも撥液性を有していなくてもよい。例えば、上述の「GOLDEP 」処理あるいは「GOLDEP WHITE」処理などは、ノズル部材 70から液体 LQへの不純 物の溶出を抑えることができるため、第 2ランド面 76を含むノズル部材 70の所定位置 に、「GOLDEP」処理あるいは「GOLDEP WHITE」処理を施すことができる。
[0109] また、基板 Pとの間で液体 LQを保持可能であれば、第 1ランド面 75に対する親液 化処理を省略してもよい。すなわち第 1ランド面 75が親液性でなくてもよい。
[0110] <第 2実施形態 >
次に、第 2実施形態について図 10を参照しながら説明する。以下の説明において 、上述の実施形態と同一又は同等の構成部分についてはその説明を簡略若しくは 省略する。
[0111] 上述の第 1実施形態においては、第 2ランド面 76を基板 Pの表面に対して第 1ランド 面 75よりも離れた位置に設けることにより、基板 Pの表面と第 2ランド面 76との間に存 在する液体 LQの膜が第 2ランド面 76に接触させないようにしているが、第 2ランド面 7 6を撥液性にすることにより、第 2ランド面 76を基板 Pの表面に対して第 1ランド面 75 よりも離れた位置に設けなくても、基板 Pの表面と第 2ランド面 76との間に存在する液 体 LQの膜を第 2ランド面 76に接触させないようにすることができる。すなわち、本実 施形態においては、図 10に示すように、基板 Pの表面に対する第 1ランド面 75の位 置 (高さ)と第 2ランド面 76の位置 (高さ)とをほぼ同じにしても、第 2ランド面 76を撥液 性にすることにより、基板 Pの表面と第 2ランド面 76との間に存在する液体 LQの膜を 第 2ランド面 76に接触させないようにすることができる。例えば、第 2ランド面 76にお ける液体 LQの接触角を 100° 以上にすることで、基板 Pの表面と第 2ランド面 76との 間に存在する液体 LQを第 2ランド面 76から剥離させることができる。すなわち、この 実施形態では、撥液性を有する第 2ランド面 76が空間形成領域であり、この空間形 成領域により、第 2ランド面 76の下方の基板 P上に液体 LQと第 2ランド面 76との間に 空間 SPが形成されている。
[0112] 図 10において、第 1ランド面 75と第 2ランド面 76とはほぼ面一に設けられており、第 2ランド面 76には、液体 LQに対して撥液性を付与する撥液ィ匕処理が施されて 、る。 撥液化処理としては、例えば、ポリ四フッ化工チレン (テフロン (登録商標))等のフッ 素系榭脂材料、アクリル系榭脂材料、シリコン系榭脂材料等の撥液性材料を付着す る処理が挙げられる。
[0113] 第 2ランド面 76を撥液性にすることにより、第 1実施形態同様、基板 Pの表面と第 2ラ ンド面 76との間に存在する液体 LQの膜を、第 2ランド面 76に接触させな 、ようにす ることができる。そして、基板 Pの表面と第 2ランド面 76との間に存在する液体 LQを、 基板 Pの表面と第 1ランド面 75との間の距離 Wlより薄くすることができる。そして、基 板 Pの表面と第 1ランド面 75との間の液体 LQの界面 LGが露光光 ELの光路空間 K1 に対して第 1ランド面 75の外側へ向かって移動するときに、第 1ランド面 75に接触し ていた液体 LQを第 2ランド面 76から離すことができる。この場合においても、第 1ラン ド面 75と第 2ランド面 76との境界 E'で発生した液体 LQの膜が、露光光 ELの光路空 間 K1に対して回収口 22の外側のエッジよりも内側に形成されるように、第 1ランド面 75のエッジ E,と回収口 22との位置関係、回収口 22の大きさなどが設定されて 、る。 また、液体 LQの膜力 露光光 ELの光路空間 K1に対して回収口 22の外側のエッジ よりも内側に形成されるように、 Y軸方向における第 2ランド面 76の大きさが、第 1実 施形態と同様に、基板 Pの移動速度、基板 Pと液体 LQとの接触角などに応じて設定 される。なお、上述の第 1、第 2実施形態において、第 1ランド面 75と多孔部材 25の 下面 26とは高さ(Z方向の位置)は異なっていてもよい。すなわち、多孔部材 25の下 面 26の高さ (Z方向の位置)は、基板 P上に形成された液体 LQの薄膜の先端部 Hが 触れるように配置されて 、ればよ!/、。
[0114] <第 3実施形態 >
次に、第 3実施形態について図 11及び図 12を参照しながら説明する。図 11及び 図 12において、回収口 22にはフィン部材 50が設けられている。フィン部材 50は回 収ロ 22の多孔部材 25の下面 26に設けられている。フィン部材 50は、多孔部材 25 の下面 26の、回収口 22の外側エッジ 22A近傍に設けられている。フィン部材 50は、 光路空間 K1に対して放射状に複数設けられて!/ヽる。
[0115] また、本実施形態において、回収口 22に配置された多孔部材 25の下面 26と基板 Pの表面との距離 W3は、第 1ランド面 75と基板 Pの表面との距離 W1よりも大きい。本 実施形態においては、距離 W1は lmm程度であり、距離 W3は 1. 5mm程度である 。また、基板 Pの表面に対する第 1ランド面 75の位置 (高さ)と、基板 Pの表面に対す るノズル部材 70の側板部 70Aの下端部の位置(高さ)とはほぼ同じに設けられて 、る 。すなわち、側板部 70Aの下端部と基板 Pの表面との距離は lmm程度であり、側板 部 70Aの下端部近傍は、回収口 22に配置された多孔部材 25の下面 26よりも下方 に突出している。そして、多孔部材 25の下面 26よりも下方に突出した側板部 70Aの 光路空間 Kl側を向く内側面によって、液体 LQの漏れを防止するための壁部 51が 形成されている。したがって、壁部 51の Z軸方向の大きさ W4は 0. 5mm程度である。 壁部 51は、回収口 22の周縁部(外側エッジ 22A)に設けられており、光路空間 K1に 満たされた液体 LQの漏れを防止するためのものである。そして、その壁部 51に沿つ て、複数のフィン部材 50が設けられている。
[0116] フィン部材 50の下端部と基板 Pの表面との距離は lmm程度である。すなわち、フィ ン部材 50の Z軸方向の大きさは、壁部 51の Z軸方向の大きさ W4とはほぼ同じ値で あり、フィン部材 50の下端部と基板 Pの表面との距離は、第 1ランド面 75と基板 Pの表 面との距離 W1とほぼ同じ値である。
[0117] このように、回収口 22に設けられたフィン部材 50に液体 LQの膜の先端部 Hを接触 させることができ、回収口 22を介して液体 LQを良好に回収することができる。また、 壁部 51によって、回収口 22の外側に液体 LQが漏出することを防止できる。
[0118] なお、フィン部材 50に液体 LQの薄膜の先端部 Hを接触させることができさえすれ ば、フィン部材 50の下端部と第 1ランド面 75とは高さが異なっていてもよい。なお、本 実施形態においては、フィン部材 50は、環状に設けられた回収口 22 (多孔部材 25) の周縁部に設けられた構成である力 例えば多孔部材 25の下面 26の全部の領域に 所定間隔で設けてもよいし、多孔部材 25の下面 26の光路空間 K1に対して Y軸方向 両側のそれぞれの所定領域のみに設けてもょ 、。
[0119] なお、上述の第 1〜第 3実施形態においては、第 2ランド面 76は第 1ランド面 75に 対して Y軸方向両側のそれぞれに設けられている力 X軸方向両側のそれぞれに設 けられていてもよい。
[0120] なお、上述の第 1〜第 3実施形態においては、第 1ランド面 75の外形は、 X軸方向 を長手方向とする矩形状であるが、基板 Pとの間で液体 LQを良好に保持可能であり 、光路空間 K1 (光軸 AX)と液体 LQの膜の先端部 Hとの距離 Lsを小さくすることがで きるのであれば、円形状など任意の形状でょ 、。
[0121] なお、上述の第 1〜第 3実施形態において、第 2ランド面 76 (空間形成領域)と回収 口 22とが離れていてもよい。例えば、ノズル部材 70の下面の、光路空間 K1に対して 回収口 22よりも内側であって、第 2ランド面 76よりも外側に、ノズル部材 70と基板 Pと の間の液体 LQが自由に出入り可能なバッファ空間を形成してもよい。このバッファ空 間の下端には、回収口 22の内側エッジ 22B近傍に露光光 ELの光路を取り囲むよう に環状に形成された開口が形成され、その上端は外部空間(大気空間)に接続され ている。このように、回収口 22の内側エッジ 22B近傍にバッファ空間を設けることによ つて、光路空間 K1の外側へ向かって流れる液体 LQの一部がバッファ空間に流れ込 み、回収口 22へ到達する液体 LQの量を少なくすることができる。したがって、より確 実に液体 LQの漏出を抑えることができる。なお、バッファ空間の下端の開口を回収 口 22の外側エッジ 22A近傍に配置してもよい。この場合、光路空間 K1の外側へ向 力つて流れる液体 LQの回収口 22で回収されなかった液体 LQがバッファ空間に流 れ込むため、液体 LQの漏出を抑えることができる。もちろん、回収口 22の内側エツ ジ 22B近傍及び外側エッジ 22A近傍の両方に環状の開口を形成し、それぞれの開 口に液体 LQが自由に出入りすることができるノッファ空間を形成してもよい。この場 合、第 2ランド面 76 (空間形成領域)を有する部材と、回収口 22を有する部材とが分 離されていてもよい。
[0122] また、上述の第 1〜第 3実施形態においては、 Y軸方向における第 2ランド面 76の 大きさ D5を、基板 Pの移動速度、基板 Pと液体 LQとの接触角などに応じて設定する ようにしている力 第 2ランド面 76の大きさ D5に応じて、基板 Pの移動条件 (移動速度 、加速度、移動方向、移動距離など)及び液浸条件 (液体供給量、回収量など)の少 なくとも一方を決めるようにしてもよい。また、第 2ランド面 76の大きさ D5に応じて、露 光装置 EXで露光可能な基板 P表面の膜条件 (接触角など)を決めるようにしてもよ!ヽ
[0123] なお上記実施形態で用いたノズル部材 70などの液浸機構 1は、上述の構造に限ら れず、例えば、欧州特許公開第 1420298号公報、国際公開第 2004Z055803号 公報、国際公開第 2004Z057589号公報、国際公開第 2004/057590号公報、 国際公開第 2005Z029559号公報に記載されて 、るものも用いることができる。ま た、上述の実施形態においては、ノズル部材 70の一部 (底板部 70D)が、投影光学 系 PLと基板 Pとの間に配置されている力 ノズル部材 70の一部が投影光学系 PLと 基板 Pとの間に配置されていなくてもよい。すなわち、投影光学系 PLの最終光学素 子 LSIの下面 Tlの全体が基板 Pと対向していてもよい。この場合、最終光学素子 L S1の下面 T1とノズル部材 70の下面とがほぼ面一であってもよい。また、上述の実施 形態において、供給口 12は内部空間 G2に接続されている力 ノズル部材 70の下面 に供給口を設けてもよい。なお、上述の各実施形態においては、露光光 ELが照射 可能な位置に基板 Pを配置した状態で、露光光 ELの光路空間 K1を液体 LQで満た しているが、露光光 ELが照射可能な位置に、例えば基板ステージ PSTの上面 94、 あるいは基板ステージ PSTとは別の物体を配置した状態で、露光光 ELの光路空間 K1が液体 LQで満たされてもよ 、。
[0124] 上述したように、本実施形態における液体 LQは純水を用いた。純水は、半導体製 造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジスト、光学素子( レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がな いとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PL の先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場 等力 供給される純水の純度が低い場合には、露光装置が超純水製造器を持つよう にしてもよい。
[0125] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0126] 本実施形態では、投影光学系 PLの先端に光学素子 LSIが取り付けられており、こ のレンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の 調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子としては 、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるいは 露光光 ELを透過可能な平行平面板であってもよ ヽ。
[0127] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0128] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
[0129] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学系を採用 することちでさる。
[0130] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)、
2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PL及び基板 P表面に塗布されているフォ トレジストに対して安定なもの(例えばセダー油)を用いることも可能である。
[0131] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、 石英及び蛍石よりも屈折率が高い(例えば 1. 6以上)材料で光学素子 LSIを形成し てもよい。液体 LQとして、種々の流体、例えば、超臨界流体を用いることも可能であ る。
[0132] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。
[0133] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0134] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。ま た、上記実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明してきた 力 投影光学系 PLを用いない露光装置及び露光方法に本発明を適用することがで きる。このように投影光学系 PLを用いない場合であっても、露光光はレンズなどの光 学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間に液 浸領域が形成される。国際公開第 2001Z035168号パンフレットに開示されている ように、干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スぺー スパターンを形成する露光装置にも適用できる。
[0135] また、本発明は、ツインステージ型の露光装置にも適用できる。ツインステージ型の 露光装置の構造及び露光動作は、例えば特開平 10— 163099号及び特開平 10— 214783号(対応米国特許 6, 341, 007、 6, 400, 441、 6, 549, 269及び 6, 590 ,634)、特表 2000— 505958号(対応米国特許 5, 969, 441)あるいは米国特許 6 , 208, 407に開示されており、本国際出願で指定または選択された国の法令で許 容される限りにお 、て、それらの開示を援用して本文の記載の一部とする。
[0136] 更に、特開平 11 135400号公報、特開 2000— 164504号公報などに開示され ているように、基板を保持する基板ステージと基準マークが形成された基準部材、及 び Z又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明 を適用することができる。
[0137] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスクを用いてもょ 、。
[0138] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露 光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。
[0139] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
[0140] 半導体デバイス等のマイクロデバイスは、図 13に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光し、露光した基板を現 像する基板処理 (露光処理)ステップ 204、デバイス組み立てステップ (ダイシングェ 程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステツ プ 206等を経て製造される。
産業上の利用可能性
[0141] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを製 造するための露光装置などにも広く適用できる。

Claims

請求の範囲
[1] 基板上に露光光を照射して前記基板を露光する露光装置であって、
前記露光光の光路空間を液体で満たすために液体を供給する液体供給装置と、 前記露光光が照射可能な位置に配置された物体の表面と対向するように、且つ前 記露光光の光路空間を囲むように設けられ、前記液体供給装置から供給された液体 を前記物体との間で保持可能な第 1面と、
前記物体の表面と対向するように、且つ前記露光光の光路空間に対して前記第 1 面の外側に配置された第 2面とを備え、
前記第 2面は、前記物体の表面と前記第 2面との間に存在する液体の膜が前記第 2面と接触しな 、ように設けられて 、る露光装置。
[2] 前記第 1面は、前記物体の表面と第 1の間隔だけ離れて配置されており、
前記第 2面は、前記物体の表面と前記第 2面との間に存在する液体が前記第 1の 間隔よりも薄 、膜となるように設けられて 、る請求項 1記載の露光装置。
[3] 前記物体の表面と前記第 1面との間の液体の界面が、前記露光光の光路空間に 対して前記第 1面の外側へ向力つて移動するときに、前記第 1面に接触して 、た液体 が前記第 2面力 離れるように設けられて 、る請求項 1記載の露光装置。
[4] 前記第 1面は、前記物体の表面と略平行に設けられ、
前記第 2面は、前記物体の表面に対して前記第 1面よりも離れている請求項 1記載 の露光装置。
[5] 前記第 1面は、前記物体の表面と略平行に設けられ、前記液体に対して親液性を 有し、
前記第 2面は、前記液体に対して撥液性を有する請求項 1記載の露光装置。
[6] 前記基板を所定方向に移動しつつ前記露光光を前記基板に照射し、
前記第 2面は、前記所定方向において前記第 1面の両側のそれぞれに設けられて V、る請求項 1記載の露光装置。
[7] 前記第 1面の外形は、前記所定方向と交差する方向を長手方向とする矩形状であ る請求項 6記載の露光装置。
[8] 前記所定方向における前記第 2面の大きさは、前記基板を露光するときの前記基 板の移動速度に応じて設定されている請求項 6記載の露光装置。
[9] 前記所定方向における前記第 2面の大きさは、前記基板と前記液体との接触角に 応じて設定されて!、る請求項 6記載の露光装置。
[10] 前記光路空間に対して前記第 2面の外側に液体を回収する回収口を有する請求 項 1記載の露光装置。
[11] 前記回収口は、前記物体と対向する位置に設けられている請求項 10記載の露光 装置。
[12] 前記回収口は、前記第 1面及び前記第 2面を囲むように設けられている請求項 10 記載の露光装置。
[13] 前記第 1面と前記第 2面との境界で発生した前記液体の膜が前記露光光の光路空 間に対して前記回収口よりも内側に形成されるように、前記第 1面のエッジの位置と 前記回収口の位置とが設定されて!、る請求項 10記載の露光装置。
[14] 前記回収口に設けられ、前記液体と接触する所定部材を有する請求項 10記載の 露光装置。
[15] 前記所定部材は多孔部材を含む請求項 14記載の露光装置。
[16] 前記多孔部材と前記物体の表面との距離は、前記第 1面と前記物体の表面との距 離と略等しい請求項 15記載の露光装置。
[17] 前記所定部材はフィン状の部材を含む 14記載の露光装置。
[18] 前記回収口の周縁部に前記液体の漏れを防止するための壁部を有する 10記載の 露光装置。
[19] 前記露光光が通過する光学部材と、
前記露光光の光路空間を囲むように設けられ、前記光学部材との間に所定の隙間 を介して対向する第 3面と、
前記光学部材と前記第 3面との間の所定空間の近傍に設けられ、前記液体供給装 置から液体が供給される供給口とを有する請求項 1記載の露光装置。
[20] 前記所定空間の近傍に設けられ、前記所定空間と外部空間とを連通させるための 排気口とを更に有する請求項 19記載の露光装置。
[21] 前記露光光が通過する光学部材と、 前記露光光の光路空間を囲むように設けられ、前記光学部材との間に所定の隙間 を介して対向する第 3面と、
前記光学部材と前記第 3面との間の所定空間の近傍に設けられ、前記所定空間と 外部空間とを連通させるための排気口とを有する請求項 1記載の露光装置。
[22] 前記物体は、前記基板を含む請求項 1記載の露光装置。
[23] 請求項 1〜請求項 22のいずれか一項記載の露光装置を用いて基板を露光するこ とと、露光された基板を現像することと、現像された基板を加工することを含むデバィ ス製造方法。
[24] 基板に液体を介して露光光を照射して前記基板を露光する露光装置であって、 前記露光光が照射可能な位置に配置される物体の表面と対向し、前記液体を前記 物体との間で保持可能な部材と、
前記物体と部材の間で保持された液体を回収する回収部と、
前記光路と前記回収部との間に前記物体の表面と対向するように位置し、且つ前 記物体上の液体と前記部材の間に空間をもたらす空間形成領域が前記部材に形成 されている露光装置。
[25] 前記空間形成領域が、前記部材に形成された凹部である請求項 24に記載の露光 装置。
[26] 前記空間形成領域が、前記部材の表面に形成された撥液性領域である請求項 24 に記載の露光装置。
[27] 前記部材の前記撥液性領域と前記光路との間に親液性領域が設けられている請 求項 26に記載の露光装置。
[28] 前記部材に前記回収部が設けられている請求項 24に記載の露光装置。
[29] 前記基板に液体を介して露光光が照射されるときに、前記基板が所定方向に移動 され、前記空間形成領域が前記所定方向における前記光路と前記回収部との間に 設けられて 、る請求項 24に記載の露光装置。
[30] 請求項 24〜請求項 29の 、ずれか一項記載の露光装置を用いて基板を露光する ことと、露光された基板を現像することと、現像された基板を加工することを含むデバ イス製造方法。
[31] 基板に液体を介して露光光を照射して前記基板を露光する露光方法であって 前記液体を、前記基板と対向するように配置された部材と前記基板との間に供給 することと、
前記基板上の液体と前記部材との間に空間をもたらしつつ液体を回収することと、 前記基板に液体を介して露光光を照射して前記基板を露光することを含む露光方 法。
[32] さらに、前記基板に液体を介して露光光を照射するときに前記基板を所定方向に 移動することを含み、前記所定方向において前記液体と前記部材との間に空間がも たらされつつ液体が回収される請求項 31記載の露光方法。
[33] さらに、前記基板を所定方向に移動することを含み、
前記所定方向における前記露光光の光路空間と前記基板と対向するように配置され た液体回収部との間で前記空間がもたらされつつ前記液体回収部で液体が回収さ れる請求項 31に記載の露光方法。
[34] 前記液体回収部は、前記部材に形成されている請求項 32記載の露光方法。
[35] 請求項 31記載の露光方法を用いて基板を露光することと、
露光された基板を現像することと、
現像された基板を加工することを含むデバイス製造方法。
PCT/JP2006/306809 2005-03-31 2006-03-31 露光装置、露光方法及びデバイス製造方法 WO2006106907A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/887,565 US20090253083A1 (en) 2005-03-31 2006-03-31 Exposure Apparatus, Exposure Method, and Method for Producing Device
EP06730757A EP1873815A4 (en) 2005-03-31 2006-03-31 EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-100691 2005-03-31
JP2005100691 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106907A1 true WO2006106907A1 (ja) 2006-10-12

Family

ID=37073458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306809 WO2006106907A1 (ja) 2005-03-31 2006-03-31 露光装置、露光方法及びデバイス製造方法

Country Status (6)

Country Link
US (1) US20090253083A1 (ja)
EP (1) EP1873815A4 (ja)
KR (1) KR20080004540A (ja)
CN (1) CN100552881C (ja)
TW (1) TW200644079A (ja)
WO (1) WO2006106907A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038373A (ja) * 2007-08-02 2009-02-19 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
CN102226869A (zh) * 2008-04-16 2011-10-26 Asml荷兰有限公司 器件制造方法和浸没式光刻设备
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8891059B2 (en) 2007-01-23 2014-11-18 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201252A (ja) * 2006-01-27 2007-08-09 Canon Inc 露光装置及びデバイス製造方法
US9323160B2 (en) * 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9823580B2 (en) * 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2004320016A (ja) * 2003-04-11 2004-11-11 Nikon Corp 液浸リソグラフィシステム
JP2005005713A (ja) * 2003-06-11 2005-01-06 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2005019864A (ja) * 2003-06-27 2005-01-20 Canon Inc 露光装置及び露光方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
EP0951054B1 (en) * 1996-11-28 2008-08-13 Nikon Corporation Aligner and method for exposure
JP2000505958A (ja) * 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
US6897963B1 (en) * 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
JP4362867B2 (ja) * 2002-12-10 2009-11-11 株式会社ニコン 露光装置及びデバイス製造方法
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR101101737B1 (ko) * 2002-12-10 2012-01-05 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
KR101562447B1 (ko) * 2003-02-26 2015-10-21 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7317504B2 (en) * 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4378136B2 (ja) * 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP4444920B2 (ja) * 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
US7528929B2 (en) * 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101911681B1 (ko) * 2004-01-05 2018-10-25 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR101556454B1 (ko) * 2004-06-10 2015-10-13 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) * 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101427056B1 (ko) * 2005-01-31 2014-08-05 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7411654B2 (en) * 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2004320016A (ja) * 2003-04-11 2004-11-11 Nikon Corp 液浸リソグラフィシステム
JP2005005713A (ja) * 2003-06-11 2005-01-06 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2005019864A (ja) * 2003-06-27 2005-01-20 Canon Inc 露光装置及び露光方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891059B2 (en) 2007-01-23 2014-11-18 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
JP2009038373A (ja) * 2007-08-02 2009-02-19 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2012142625A (ja) * 2007-08-02 2012-07-26 Asml Netherlands Bv バリア部材およびリソグラフィ装置
US8462314B2 (en) 2007-08-02 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN102226869A (zh) * 2008-04-16 2011-10-26 Asml荷兰有限公司 器件制造方法和浸没式光刻设备
CN102226869B (zh) * 2008-04-16 2013-08-28 Asml荷兰有限公司 器件制造方法和浸没式光刻设备
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member

Also Published As

Publication number Publication date
US20090253083A1 (en) 2009-10-08
TW200644079A (en) 2006-12-16
KR20080004540A (ko) 2008-01-09
CN100552881C (zh) 2009-10-21
CN101171668A (zh) 2008-04-30
EP1873815A4 (en) 2010-11-24
EP1873815A1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP4844186B2 (ja) プレート部材、基板保持装置、露光装置及び露光方法、並びにデバイス製造方法
JP6319237B2 (ja) ステージ装置、露光装置、及びデバイス製造方法
JP5130609B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP5287948B2 (ja) 露光装置及びデバイス製造方法
JP4802604B2 (ja) 露光装置、露光方法、及びデバイス製造方法
WO2006106907A1 (ja) 露光装置、露光方法及びデバイス製造方法
WO2006106851A1 (ja) 露光装置、露光方法及びデバイス製造方法
JP4752320B2 (ja) 基板保持装置及び露光装置、基板保持方法、露光方法、並びにデバイス製造方法
JPWO2005059977A1 (ja) ステージ装置、露光装置、及び露光方法
JP2007019463A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2006310827A (ja) 露光装置、露光方法、及びデバイス製造方法
JP4807086B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2011086968A (ja) 露光装置及びデバイス製造方法
JP4400390B2 (ja) 露光装置及びデバイス製造方法
JP5343962B2 (ja) 露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015882.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024995

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887565

Country of ref document: US