WO2006104158A1 - 無人ヘリコプタ - Google Patents

無人ヘリコプタ

Info

Publication number
WO2006104158A1
WO2006104158A1 PCT/JP2006/306327 JP2006306327W WO2006104158A1 WO 2006104158 A1 WO2006104158 A1 WO 2006104158A1 JP 2006306327 W JP2006306327 W JP 2006306327W WO 2006104158 A1 WO2006104158 A1 WO 2006104158A1
Authority
WO
WIPO (PCT)
Prior art keywords
gps
unmanned helicopter
aircraft
data
antenna
Prior art date
Application number
PCT/JP2006/306327
Other languages
English (en)
French (fr)
Inventor
Katsu Nakamura
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to US11/910,219 priority Critical patent/US20090069957A1/en
Priority to JP2007510534A priority patent/JPWO2006104158A1/ja
Publication of WO2006104158A1 publication Critical patent/WO2006104158A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to an unmanned helicopter that performs a program flight by autonomous control, and more particularly to a method of using and mounting a GPS sensor that detects the position of the unmanned helicopter.
  • a movie camera or a still camera is mounted on a helicopter to take a picture from above.
  • these cameras have been installed in unmanned helicopters (for example, Japanese Patent Publication No. 2002-166893) that perform remote control of ground power using radio-controlled devices or the like, or fly on programmed routes (program flight). Taking aerial photographs of places that are not accessible.
  • the unmanned helicopter due to its nature, has a large attitude change during flight, such as a disturbed attitude of the fuselage due to the influence of wind, etc., or a quick structural change.
  • the attitude of the unmanned helicopter is mainly controlled by changing the inclination angle of the main rotor axis and the inclination angle of the blades of the main rotor and tail rotor by various servo motors mounted on the aircraft.
  • this type of unmanned helicopter for example, when a strong crosswind is applied, the current flight path deviates significantly from the target flight path! ⁇
  • autonomous control a great deal of time is required to correct the flight path. There are cases like this.
  • a communication means for transmitting and receiving data between the helicopter aircraft and the ground station.
  • the aircraft status mentioned above refers to the operating status of the servo motor that controls the attitude of the aircraft, the operating status of the engine, the operating status of various sensors that detect the attitude angle of the aircraft, the engine speed, etc. This refers to the usage status of the knotters.
  • the flight status refers to the current status of the flight path such as the direction, altitude, and position where the unmanned helicopter is flying, and the status of the GPS device that indicates whether the GPS device is operating correctly. And so on.
  • GPS force This is an important factor in accurately detecting the current position of the aircraft in order to fly accurately along the route where the unmanned helicopter is set.
  • GPS Global Positioning System
  • This GPS uses information that also transmits the power of 24 GPS satellites (4 in 6 orbits) that orbit the earth (approximately 20,000 km above the sky). It is for obtaining the current location (latitude, longitude, altitude), speed, and time.
  • the radio wave used in this GPS has a high frequency (1.5 GHz), it has characteristics almost similar to light. For this reason, if the GPS antenna power installed in the unmanned helicopter is also in the space up to the satellite, metal, buildings, mountains, equipment, people, birds, etc., the position accuracy will be poor or radio waves cannot be received. Sometimes. Also, because GPS satellites are operated by the US Department of Defense, their use may be restricted during emergencies.
  • the first positioning system is a single GPS 101 with single positioning 100 using only GPS satellite power signals.
  • the second positioning system is a relative positioning 110 performed by a base station that receives GPS satellites on land and transmits the information wirelessly and a moving body such as a car, a ship, and an aircraft.
  • This mobile unit is configured to receive a signal of GPS satellite power, receive radio data from the base station, and improve positioning accuracy by calculation.
  • a differential GPS (DGPS) 111 that can be used even at a distance from the base station is inexpensive.
  • DGPS differential GPS
  • RTK-GPS Real Time Kinematic GPS
  • the single GPS 101 is composed of one GPS receiver and an antenna.
  • a GPS receiver measures the propagation time of a code carried on a radio wave (carrier wave) from a satellite and calculates the position, and is inexpensive and has a simple structure.
  • this GPS receiver has the advantage of being able to perform calculations at high speed in order to perform control.
  • the positioning accuracy of this GPS receiver depends on the radio wave reception accuracy of satellite power. Therefore, it includes an error of about 15m to 100m.
  • the DGPS 111 is composed of a base station installed at a point where the position on the land is accurately measured and a mobile station installed on a moving body such as an automobile, a ship, or an aircraft.
  • the base station measures the propagation time of the code carried on the radio wave (carrier wave) from the satellite and calculates its own position. At the same time, the base station compares the existing position data with the position data obtained by calculation to obtain correction data such as the error rate of the GPS signal.
  • the base station transmits this correction data on a radio wave to the mobile station.
  • This radio wave FM broadcast waves are used in general car navigation systems, but there are various radio wave frequencies and formats.
  • the mobile station uses the correction data to correct the data independently measured by the satellite force received signal, and obtains the current position. According to this DGPS111, it is possible to detect the position of a moving object with higher accuracy than single GPS with a relatively inexpensive and simple configuration.
  • RTK—GPS112 has a high accuracy of cm level by measuring the phase of the radio wave (carrier wave) that is not based on the measurement of the propagation time of the code placed on the carrier wave like the single GPS101 and DGPS111 mentioned above. It is a technology that makes it possible to measure.
  • RTK-GPS 112 is a configuration in which DGPS 111 is further provided with a reference station.
  • the reference station receives the base station power data and simultaneously observes the radio wave (carrier wave) from the satellite to measure the carrier phase integrated value and transmits the phase data to the mobile station.
  • the phase data is calculated by continuously observing the radio wave (carrier wave) of the satellite force, and the double phase difference is obtained based on the data transmitted from the reference station.
  • the mobile station identifies the correct mobile station position after removing the error factor from the lattice point group for each wavelength distributed three-dimensionally.
  • the mobile station performs initialization (determining an integer value bias) for each wavelength (19 cm) in order to detect the absolute distance to the satellite.
  • Initialization always requires reception of 5 or more satellites, and if a signal is lost even for a moment, it must be initialized again.
  • the obtained position accuracy is always maintained as long as four or more GPS satellites are received, and the radio waves of some satellites are interrupted even momentarily and become discontinuous. If this happens, it will be maintained again by reinitializing.
  • from the base station Data cannot be received from time to time. /.
  • a positioning system using GPS (hereinafter simply referred to as a GPS device) is performed while receiving radio waves from a GPS satellite, operation is not always guaranteed, and a satellite based on a shielding object It may not be possible to operate depending on the environment and circumstances, such as blocking radio waves.
  • the GPS device with high accuracy such as RTK-GPS, it is necessary to always receive phase data from 4 to 5 or more GPS satellites and the reference station, and there are not enough GPS satellites that can receive radio waves.
  • the data of the reference local power cannot be received, it will not work.
  • the unmanned helicopter When the reception state of the transmission data from the ground station deteriorates in this way, the unmanned helicopter automatically returns to the ground station (or a predetermined safe landing point, etc.) automatically. Is equipped with an automatic feedback program. However, the unmanned helicopter equipped with an automatic feedback program in this way has a problem when it cannot receive radio waves from GPS satellites. In other words, if you only have RTK-GPS as a positioning system, you will not be able to detect the current position required for autonomous control, and the automatic feedback program will not function. Because.
  • the present invention is based on the above-described conventional technology, and compensates for an uncertain part in the use of GPS, which is one of the most important sensors for performing a program flight by autonomous control. Objective.
  • the present invention provides an unmanned copter that can detect the current position of the copter and can perform program flight by autonomous control even when the number of GPS satellites capable of receiving radio waves is insufficient and data communication is interrupted. Means for solving the problems aimed at providing
  • an unmanned helicopter includes a GPS device that detects the position of the aircraft, and a control board in which a data communication device that communicates with the ground and a control program are incorporated. Equipped with an autonomous control unit, it flies based on aircraft data such as aircraft attitude and speed, engine speed and throttle opening, and flight data such as aircraft position and orientation.
  • the autonomous control unit includes a plurality of different types of GPS devices, and can always keep another GPS device in addition to the currently used GPS device. .
  • the main GPS device that is currently in use becomes unusable, by using a different type of GPS device. , It can detect the current position of the aircraft and can continue program flight by autonomous control.
  • the autonomous control unit of the unmanned helicopter according to the invention of claim 2 includes GPS devices having different methods of detecting positions as a plurality of different types of GPS devices, and the invention according to claim 3
  • the autonomous control unit of the unmanned helicopter has GPS devices of different manufacturers as a plurality of different types of GPS devices. For this reason, in this unmanned helicopter, the current position is detected by using different types of GPS devices in an abnormal state where the GPS device to be used mainly cannot be used. Since this different type of GPS device is a different type from the GPS device used mainly, the same abnormality is rarely generated. Therefore, according to the unmanned helicopter according to the present invention, the current position of the aircraft can be detected by different types of GPS devices when the above-described abnormality occurs, and a program flight by autonomous control can be performed.
  • Examples of GPS devices of different types include, for example, a method of detecting a position, a GPS device of a different so-called positioning control method, a device having a different number of required GPS satellites to be received, data from a reference station, etc.
  • positioning control method Even if the positioning control method is the same, if the manufacturer is different, the internal software and the reception sensitivity of each sensor will differ. As the type is different in this way, the availability depends on each situation, so the current position can be detected by other GPS devices even if the current location cannot be detected by the GPS device used mainly. .
  • the autonomous control unit sets priorities according to the functions and accuracy of the plurality of GPS devices, and receives the plurality of GPS devices in descending order of priority. Change over depending on the situation. For this reason, according to the present invention, it is assumed that the GPS device mainly used has a high function, while other GPS devices have a wide positioning range, so that the V or any situation can be reduced. However, it is possible to reliably detect the current position.
  • the GPS antenna of the GPS device having a high priority is provided at a position provided in the main body and away from the metal force of the main shaft of the main rotor and the rotor support. Can be arranged. Therefore, according to the present invention, it is possible to prevent the radio waves from the satellite received by the GPS antenna of the GPS device having a high priority from being blocked by the main shaft, the rotor support unit, or the like.
  • a plurality of GPS antennas arranged on the upper surface side of the tail body are configured such that each interval is set to a length between one wavelength and two wavelengths of the GPS radio wave. Therefore, the influence of reflected waves reflected by adjacent GPS antennas can be reduced.
  • FIG. 1 is a side view of an unmanned helicopter according to the present invention.
  • FIG. 2 is a top view of the unmanned helicopter of FIG.
  • FIG. 3 is a front view of the unmanned helicopter of FIG.
  • FIG. 4 is a block diagram of an unmanned helicopter according to the present invention.
  • FIG. 5 is a block configuration diagram of a ground station.
  • Fig. 6 is an explanatory view of arrangement of GPS antennas according to the present invention.
  • FIG. 7 is a table showing GPS priorities.
  • FIG. 8 is a flowchart showing GPS switching control.
  • FIG. 9 is an explanatory diagram showing the types of GPS.
  • FIG. 1 to 3 are a side view, a top view, and a front view, respectively, of an unmanned helicopter according to the present invention.
  • the unmanned helicopter 1 is provided with a body 4 including a main body 2 and a tail body 3.
  • a main shaft 5 that rotates in response to a rotational force from an engine (not shown) is provided on the upper portion of the main body 2.
  • a main rotor 6 is connected to the main shaft 5 via a rotor support portion 7.
  • a tail rotor 8 is provided at the rear of the tail body 3.
  • a radiator 9 is provided at the front of the main body 2.
  • a skid 11 is provided via support legs 10 at the center of the body 4 and at the left and right lower portions of the main body 2.
  • a control panel 12 is provided on the rear upper side of the main body 2, and an indicator lamp is provided on the lower side.
  • the control panel 12 displays pre-flight checkpoints and self-check results.
  • the display on the control panel 12 can also be confirmed at the ground station described later.
  • the indicator lamp 13 displays the status of GPS control (for example, the type of GPS device currently in use) and an abnormality warning for the aircraft 4.
  • a camera device 14 containing an infrared camera (or CCD camera) is attached to the lower side of the front portion of the main body 2 via a camera head 15.
  • a camera 27 (see FIG. 4) attached to the camera head 15 is configured to rotate about the pan axis (vertical axis) and to rotate about the tilt axis (horizontal axis). By adopting this configuration, the camera device 14 can shoot all directions on the ground with the aerodynamic force through the front window 16 by the camera 27.
  • an autonomous control box 17 is mounted on the left side of the main body 2.
  • Autonomous control box 17 is mounted on the left side of the main body 2.
  • Autonomous control is based on various types of data, which will be described later, to select a predetermined operation mode and control program automatically or in response to a command from the ground station, and to optimize control according to the aircraft status and flight status. Is done.
  • the various types of data mentioned here include aircraft data such as the attitude and speed of the aircraft indicating the aircraft status, engine speed and throttle opening, and flight data such as the location and orientation of the aircraft indicating the flight status.
  • the unmanned helicopter 1 can fly by such autonomous control.
  • the helicopter 1 can be made to fly not only by the autonomous control described above but also by a manual operation by an operator. This manually operated flight is This is done by operating the remote controller or remote controller based on various data sent from the aircraft while visually checking the attitude, speed, altitude and direction of the helicopter 1.
  • An antenna support frame 18 is attached to the lower surface side of the main body 2.
  • An inclined stay 19 is attached to the antenna support frame 18.
  • a steering data antenna 20 is attached to the stay 19 in order to transmit and receive steering data (digital data) such as airframe data and flight data necessary for the autonomous control described above to and from the ground station.
  • the stay 19 is further provided with an image data antenna 21 for transmitting image data captured by the camera device 14 to the ground station by analog image communication. This image communication can employ a digital system in addition to an analog system.
  • An azimuth angle sensor 22 based on geomagnetism or the like is provided on the lower surface side of the tail body 3. This azimuth sensor 22 detects the azimuth (east, west, south, north) of the aircraft.
  • the main body 2 is further provided with a posture angle sensor 40 (see FIG. 4) which is a gyro device force.
  • a main GPS antenna 23 and a sub GPS antenna 24 are provided on the upper surface side of the tail body 3. Note that in this embodiment, the force is shown as an example in which two GPS antennas are provided. As will be described later, the present invention is not limited to this, and a plurality of three or four antennas may be provided (for example, spare lines indicated by virtual lines in the figure). GPS antenna 25).
  • a remote control receiving antenna 26 for receiving a command signal of a remote controller is provided.
  • FIG. 4 is a block diagram of an unmanned helicopter according to the present invention.
  • the camera device 14 includes an infrared camera (or CCD camera) 27 mounted on a camera head 15.
  • the camera head 15 can rotate in a horizontal plane, that is, a pan head 15A that can rotate around a vertical axis (pan axis), and can rotate in a vertical plane, that is, around a horizontal axis (tilt axis). It is composed of a tilt pan head 15B that can rotate.
  • the camera head 15 is provided with a pan gyro 28A and a tilt gyro 28B, each of which detects the tilt.
  • the camera device 14 has a low-frequency component obtained by removing high-frequency components from the data of the pan gyro 28A and the tilt gyro 28B through low-pass filters 29A and 29B.
  • a camera control unit 30 that receives only components is provided.
  • the camera device 14 includes a pan motor 31 and a tilt motor 32 that drive the pan pan head 15A and the tilt pan head 15B based on a signal from the camera control unit 30.
  • the camera control unit 30, the pan gyro 28A, the tilt gyro 28B, the pan motor 31 and the tilt motor 32 constitute an attitude correction unit for the camera 27.
  • This camera device 14 drives the motor in the direction opposite to the tilted direction when it detects the swing (tilt) of the unmanned helicopter 1 in the horizontal direction (around the pan axis) and the pitching direction (around the tilt axis). Cancel tilt (vibration).
  • an image control device 33 that receives image data from the camera 27 from which the low frequency component of vibration has been removed by the posture correction unit and removes the high frequency component, and the image data are stored.
  • a main GPS receiver 37 connected to the main GPS antenna 23 and a sub GPS receiver 38 connected to the sub GPS antenna 24.
  • the spare GPS receiver 39 is housed in the autonomous control box 17 as described above.
  • the main GPS receiver 37 and the main GPS antenna 23 constitute a main GPS device
  • the sub GPS receiver 38 and the sub GPS antenna 24 constitute a sub GPS device!
  • a spare GPS device is configured by these.
  • an image data antenna 21 for sending analog image data from the image communication device 34 in the autonomous control box 17 to the ground station, a data communication device 35, and the ground
  • a steering data antenna 20 for transmitting and receiving digital steering data to and from the station is provided as described above.
  • the azimuth sensor 22 is connected to a control board 36 in the autonomous box 17.
  • the airframe 4 is provided with a posture angle sensor 40 that also has a gyro device isoelectric force. This attitude angle sensor 40 is connected to a control box 41.
  • the control box 41 communicates with the control board 36 in the autonomous control box 17 in data communication with The servo motor 42 is driven.
  • the three servo motors 42 control the main rotor 5 and, together with the servo motor 42 for engine control, control the forward / backward, left / right, and vertical movements of the airframe 4, and the servomotor 42 for tail rotor control is the airframe 4 Control the rotation of
  • FIG. 5 is a block configuration diagram of the ground station.
  • the ground station (reference station) 43 that communicates with the unmanned helicopter 1 includes a GPS antenna 44 that receives signals from GPS satellite power, a communication antenna 45 for data communication with the unmanned helicopter 1, and a unmanned helicopter 1
  • An image receiving antenna 46 for receiving image data from is provided. These three antennas are installed on the ground!
  • the ground station (reference station) 43 includes a data processing unit 47, a monitoring operation unit 48, and a power supply unit 49.
  • the data processing unit 47 includes a GPS receiver 50, a data communication device 51, an image communication device 52, and a communication board 53 connected to these communication devices 50, 51, 52.
  • the monitoring operation unit 48 is connected to a manual controller (remote controller) 54, a base controller 55 for operating the camera device 14 and controlling the operation of the airframe 4, a knock-up power supply 56, and a base controller 55.
  • a personal computer 57, a personal computer monitor 58, and an image monitor 59 connected to the base controller 55 and displaying image data.
  • the power supply unit 49 includes a generator 60 and a backup battery 62 connected to the generator 60 via a battery booster 61.
  • the knock-up battery 62 is connected to the fuselage 4 side and supplies 12V power when the generator 60 is not operating, such as during a pre-flight check. Further, the power supply unit 60 supplies 100 V power from the generator 60 to the data processing unit 47 and the monitoring operation unit 48 during the flight of the helicopter 1.
  • the image data reflected on the image monitor 59 of the ground station (reference station) 43 is transmitted to the remote monitoring room 63 via the DV recorder 64.
  • the remote monitoring room 63 includes a modulator 65 that receives and modulates image data, and a splitter 67 that divides the modulated image data into a plurality of monitors (three monitors in the figure) 66 and displays them (in the figure). Is a three-division machine). That is, in the remote monitoring room 63, the image received by the ground station 43 can be viewed on the three monitors 66.
  • FIG. 6 is an explanatory view of the arrangement of the GPS antenna, and is an enlarged view of the rear part of the tail body 3. It is.
  • the main GPS antenna 23 and the sub GPS antenna 24 (and the preliminary GPS antenna 25) are arranged in the front-rear direction of the tail body 3 on the upper surface side of the tail body 3 and separated from each other in the front-rear direction. It is positioned to do.
  • the positions where these antennas 23 to 25 are installed are set based on the priority levels described later!
  • the main GPS antenna 23 connected to the GPS receiver 37 having the highest priority is positioned on the rear side of the aircraft, and the next highest priority is received.
  • the sub GPS antenna 24 connected to the machine 38 is positioned in front of the main GPS antenna 23.
  • GPS antenna 25 connected to the GPS receiver 39 is positioned closest to the front of the aircraft.
  • the GPS antenna of a GPS device with a relatively high priority is relatively low in priority and is positioned on the rear side of the aircraft with respect to the GPS antenna of the GPS device.
  • the rear force of the airframe 4 is arranged in the order of the priority, the main GPS antenna 23, the sub GPS antenna 24 (and the spare GPS antenna 25).
  • the reason why the position of the GPS antenna is determined so as to correspond to the priority order of the GPS device in this way is that the main shaft 5 and the rotor support portion 7 are arranged on the rear side of the tail body 3 as much as possible. This is because the distance between the metal parts and the like becomes longer. In other words, since the GPS antenna is positioned near the rear end of the tail body 3, the radio wave from the GPS satellite is not easily blocked by the metal parts described above. As a result, the GPS antenna can receive a wide range of GPS satellite radio waves, and the radio waves can be received well. Specifically, as shown by lines LI, L2, and L3 in Fig. 1, the shielding angles 0 1, ⁇ 2, and ⁇ 3 become smaller as the position is behind the tail body 3, and the GPS satellites can be captured. Is getting wider.
  • the priority order of the GPS device described above corresponds to the performance 'function level of the GPS device, the structure of the GPS device', and the mounting conditions (satellite capture range) of the GPS antenna. It has been decided.
  • the priority order is set in the order of RTK-GPS, DGPS, and single GPS. ing. That is, RTK—GPS has the highest priority, then DGPS has a higher priority, and single GPS has the lowest priority.
  • the unmanned helicopter With the configuration as described above, the unmanned helicopter according to the present embodiment is configured.
  • This unmanned helicopter is equipped with RTK-GPS with ground station 43 as the reference station as the main GPS device in order of high priority, and single GPS as the sub-GPS device, and the reception status of GPS satellite power. Switch by etc.
  • a spare GPS device including a spare GPS antenna 25 and a spare GPS receiver 36 may be further provided.
  • the spare GPS device will be a single GPS and the sub-GPS device will be a DGPS, or equipped with GPS devices from different manufacturers.
  • the reason for using GPS devices from different manufacturers in this way is that the software used for positioning differs from manufacturer to manufacturer, and the positioning accuracy may differ slightly.
  • the GPS device is the same manufacturer as the sub or spare GPS device. If this is used, this GPS device software may have the same bug, and this GPS device may break down as well as the main GPS device. However, by using GPS devices from different manufacturers as sub-GPS devices or backup GPS devices, positioning can be performed reliably using these GPS devices.
  • FIG. 8 is a flowchart showing a GPS device switching control method. The operation shown in this flowchart is repeatedly performed at predetermined intervals during the flight of the unmanned helicopter 1. The operation of each step is as follows.
  • Step S1 When unmanned helicopter 1 starts flying, it is determined whether or not the GPS device with the highest priority is usable. If the GPS device with the first priority is usable, the process proceeds to step S2, and if not usable, the process proceeds to step S3. That is, In this embodiment, whether RTK-GPS can be applied, that is, whether or not ground station (reference station) 43 power data reception is good, and 4 or more (5 or more in the initial state) radio waves from GPS satellites. Is continuously discriminated from the power that can be received.
  • Step S2 The GPS device with the highest priority is used as a sensor for detecting the current position in autonomous control, and the operation for determining the GPS device currently used is terminated.
  • Step S3 Next, it is determined whether or not the GPS device having the second highest priority is usable. If the GPS device with the second priority is available, go to step S4, and if not, go to step S (2N—1). In this embodiment, it is determined whether or not single GPS can be used, that is, whether or not it is possible to receive radio waves from a plurality of (for example, three or more) GPS satellites. For example, when DGP S is used as a GPS device with the second highest priority, whether or not the correction data from the base station (reference station) is received is good and a plurality of (for example, three or more) GPS devices. It is determined whether or not radio waves of satellite power can be received.
  • Step S4 Own the GPS device with the second highest priority. Use it as a sensor to detect the current position, and end the operation to determine the GPS device currently in use.
  • Step S (2N-1) It is determined whether or not the GPS device with the Nth priority is usable. If the GPS device with the Nth priority is available, go to step S (2N), otherwise go to step S (2N + 1).
  • the autonomous control unit includes two different types of GPS devices, RTK-GPS and single GPS.
  • RTK-GPS the number of GPS satellites capable of receiving radio waves is insufficient, or the data communication of 43 ground stations has been interrupted. If RTK-GPS by tena 23) becomes unusable, a single GPS by sub-GPS device (GPS receiver 38 and GPS antenna 24) is used instead.
  • the sub GPS device (GPS receiver 38 and GPS antenna 24) is different from the main GPS device (GPS receiver 37 and GPS antenna 23) because the type of positioning system is different, so the main GPS device cannot be used. Even in circumstances, the sub-GPS device will not be disabled as the main GPS device.
  • this unmanned helicopter 1 can always detect the current position of the aircraft 4 even if the number of GPS satellites that can receive radio waves is insufficient or data communication from the ground station 43 is interrupted. Program flight by autonomous control can be performed.
  • the control board 36 uses RTK-GPS as the main GPS device and single GPS as the sub-GPS device, and sets the priority according to the function and accuracy of the GPS device.
  • the system is used by switching the GPS device according to the reception status in descending order. That is, in the unmanned helicopter 1 according to this embodiment, during normal flight, the current position is detected with high accuracy by the RTK-GP S by the main GPS device (GPS receiver 37 and GPS antenna 23), and accurate Program flight by autonomous control is possible.
  • the sub-GPS device GPS receiver 38 and GPS antenna 24
  • the rear force is arranged on the upper surface side of the tail body 3 in the descending order of priority of the GPS antenna 23, 24, 25 force SGPS device.
  • the GPS antenna 23 having a high priority is positioned at a position where the metal forces of the main shaft 5 of the main rotor 6 and the rotor support portion 7 are separated rearward. Therefore, according to the unmanned helicopter 1 according to this embodiment, the GPS antenna 23 of the high-priority GPS device receives the radio wave from the GPS satellite without being blocked by the main shaft 5, the rotor support 7 and the like. be able to.
  • the plurality of GPS antennas 23, 24, and 25 have intervals of one wavelength (about 20 cm) and two wavelengths (about 40 cm) of GPS radio waves. It is set to a length between (about 30cm). For this reason, according to the unmanned helicopter 1, it is possible to reduce the influence of the GPS antennas 23, 24, 25 on the reflected waves reflected by the other adjacent GPS antennas 23, 24, 25.
  • a helicopter to which the present invention is applied is a small-sized helicopter that can be applied to an unmanned helicopter for aerial photography, such as an unmanned helicopter for spraying agricultural chemicals. Can be used for unmanned helicopters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

 機体(4)の位置を検出するGPS装置(GPS受信機37~39、GPSアンテナ23~25)を備える。地上と通信するデータ通信機(35)および制御プログラムを組み込んだ制御基板(36)とを含む自律制御部(自律制御ボックス17)を備える。機体の姿勢や速度、エンジン回転数やスロットル開度などの機体データ、機体の位置や方位などの飛行データに基づいて飛行する無人ヘリコプタである。前記自律制御部は、複数の異なる種別のGPS装置を備えている。

Description

明 細 書
無人へリコプタ
技術分野
[0001] 本発明は、自律制御によるプログラムフライトを行なう無人へリコプタに関し、特に無 人へリコプタの位置を検出する GPSセンサの使用方法及び搭載方法に関する。 背景技術
[0002] 従来、へリコプタにムービーカメラやスチールカメラを搭載して、上空からの様子を 撮影することが行われている。特に近年ではラジコン等により地上力もの遠隔操作や 、予めプログラムされた経路を飛行 (プログラムフライト)する無人へリコプタ(例えば特 開 2002— 166893号公報)にこれらカメラを搭載して、有人へリコプタが近づけない 場所の航空写真撮影などが行われて 、る。
[0003] 無人へリコプタは、その性質上、風の影響などにより機体の姿勢が乱れやすぐ構 造上、方向転換など飛行時の姿勢変化が大きい。無人へリコプタの姿勢は、主に、 機体に搭載されている各種のサーボモータによりメインロータの軸線の傾斜角や、メ インロータおよびテールロータのブレードの傾斜角を変化させることによって制御され ている。また、この種の無人へリコプタにおいては、例えば強い横風を受けたりすると 現在の飛行経路が目標の飛行経路から大きく外れてしま!ヽ、自律制御では飛行経 路の修正に多大な時間が力かるような場合がある。
[0004] このような機体状況、飛行状況を地上で把握するとともに適切な制御を行うために、 へリコプタの機体と地上局との間で互いにデータを送受信するための通信手段が設 けられる。上述した機体状況とは、機体の姿勢を制御するサーボモータの動作状況 や、エンジンの動作状況や、機体の姿勢角やエンジンの回転数などを検出する各種 のセンサの動作状況や、機体に搭載されているノ ッテリーの使用状況などのことをい う。また、飛行状況とは、無人へリコプタが飛行している方位、高度、位置などの飛行 経路に関する現在の状況や、 GPS装置が正しく動作して 、るか否かを示す GPS装 置の動作状況などをいう。そして、これらの機体状況や飛行状況などのデータは、機 体から地上局へ送信され、地上局に設けたパソコンのモニタ画面に表示される。 [0005] 自律制御によるプログラムフライトを行なう上でもっとも重要なセンサの一つとして G PS力挙げられる。これは、無人へリコプタが設定された経路に沿って正確に飛行す るためには、自機の現在位置を正確に検出することが重要だ力もである。
[0006] GPS(Global Positioning System)は、近年のカーナビゲーシヨンの普及により身近な ものとなってきている。この GPSとは、地球の周回軌道(上空約 2万 km)を回る 24個 の GPS衛星 (6軌道に 4個ずつ配置されて 、る)力も発信される情報を利用して、利 用者の現在地 (緯度、経度、高度)、速度、時刻を得るためのものである。
[0007] この GPSで使用される電波は高周波(1. 5GHz)であるため、ほとんど光に近い性 質がある。このため、無人へリコプタに装備されている GPSアンテナ力も衛星までの 空間に金属、建物、山、機器類、人間、鳥などがあると、位置精度が悪ィ匕したり、又は 電波が受信できないことがある。また、 GPS衛星は米国国防総省が運営しているた め、有事の時には利用が制限されることがある。
[0008] GPSを使用して位置を検出する測位システムとしては、図 9に示すように、 2つの種 類がある。第 1の測位システムは、 GPS衛星力もの信号のみを利用した単独測位 10 0によるシングル GPS 101である。第 2の測位システムは、陸上で GPS衛星を受信し 、その情報を無線で送る基点局と、車、船舶、航空機など移動体とによって行われる 相対測位 110である。この移動体は、 GPS衛星力もの信号を受信するとともに、前記 基点局からの無線データを受信し、演算によって測位精度を向上させる構成が採ら れている。
[0009] この相対測位の方法としては、さらに、安価で比較的精度が高ぐかつ、基点局から 遠く離れていても使用可能なディファレンシャル GPS (Differential GPS、以下 DGPS と記す) 111と、より高精度なリアルタイムキネマテック GPS (Real Time Kinematic GP S、以下 RTK— GPSと記す) 112とがある。
[0010] シングル GPS101は、 1つの GPS受信機とアンテナとによって構成されている。
GPS受信機は、衛星からの電波 (搬送波)に載せられたコードの伝搬時間を測定し て、位置を算出するものであり、安価でかつ構造が単純なものである。また、この GP S受信機は、制御を実施するために高速で演算を行うことができるというメリットがある 。しかし、この GPS受信機の測位精度は、衛星力 の電波の受信精度に依存するた めに、 15m〜 100m程度の誤差を含んでいる。
[0011] DGPS111は、陸上の位置が正確に計られている地点に設置した基点局と、自動 車、船舶、航空機など移動体に設置した移動局とから構成されている。基点局は、衛 星からの電波 (搬送波)に乗せられたコードの伝搬時間を測定して、それ自体の位置 を演算する。これとともに、基点局は、既値の位置データと演算によって求めた位置 データとを比較して、 GPS信号のエラー率等の補正データを求める。
[0012] そして、基点局は、この補正データを無線電波に乗せて移動局に送信する。この無 線電波としては、一般的なカーナビ等では FM放送波が用いられるが、様々な電波 の周波数及び形式がある。移動局は、衛星力 受信した信号によって単独で測った データを前記補正データを用いて補正演算し、現在の位置を求める。この DGPS11 1によれば、比較的安価かつ単純な構成でシングル GPSよりも高 、精度で移動体の 位置を検出することができる。
[0013] RTK— GPS112は、前述のシングル GPS101や DGPS111のように搬送波に載 せられたコードの伝搬時間の測定によるものではなぐ電波 (搬送波)の位相を測定 することにより cmレベルの高い精度で測ることを可能とした技術である。
[0014] RTK— GPS112は、 DGPS111の構成にさらに基準局を設けたものである。基準 局は、基点局力 のデータを受信すると同時に衛星からの電波 (搬送波)を連続的に 観測して搬送波位相積算値を計測し、移動局に位相データを送信する。移動局では 、衛星力 の電波 (搬送波)を連続的に観測して位相データを算出するとともに、基 準局から送信されたデータを基にして二重位相差を求める。移動局は、このように二 重移送差を求めることにより、三次元的に分布する一波長ごとの格子点群の中から、 誤差要因を除去したうえで正しい移動局の位置を特定する。
[0015] これとともに、移動局は、衛星までの絶対距離を検出するために、波長(19cm)ごと に初期化 (整数値バイアスの確定)を行なう。初期化には常に 5個以上の衛星を受信 することが必要で、一瞬たりとも信号を逃すと、再度初期化をする必要がある。また、 一度初期化が終了すれば、得られた位置精度は、常に 4個以上の GPS衛星を受信 している限り維持され、一部の衛星の電波が瞬時的にも遮られて不連続になった場 合は、再度初期化をし直すことにより再び維持されるようになる。なお、基点局からの データは、時々受信できな 、程度であれば問題はな!/、。
発明の開示
発明が解決しょうとする課題
[0016] しかしながら、 GPSを用いた測位システム(以下、単に GPS装置という)は、 GPS衛 星からの電波を受信しながら行うものであるため、常に動作を保障できるものではなく 、遮蔽物による衛星電波の遮断等、環境や状況によって動作できない場合がある。 特に前記 RTK— GPSなどの高い精度を有する GPS装置では、常に 4〜5個以上 の GPS衛星と基準局とからの位相データを受信する必要があり、電波を受信可能な GPS衛星の数が足りなくなったり、基準局力 のデータが受信できなくなると動作し なくなってしまうという問題があった。
[0017] 無人へリコプタはこのように地上局からの送信データの受信状態が悪くなると、自動 的に地上局 (もしくは予め決められた安全な着陸地点等)に向力つて自動的に帰還 するように自動帰還プログラムが搭載されて 、る。しかし、このように自動帰還プログ ラムを装備した無人へリコプタにおいては、 GPS衛星力もの電波を受信できない場 合に問題が発生する。すなわち、測位システムとして RTK— GPSを装備しているだ けでは、自律制御を行ううえで必要になる現在の位置を検出することができなくなつ てしま 、、自動帰還プログラムが機能しなくなってしまうからである。
[0018] 本発明は、上記従来技術を考慮したものであって、自律制御によるプログラムフライ トを行う上で最も重要なセンサの一つである GPSの使用上の不確定な部分を補うこと を目的とする。すなわち、本発明は、電波を受信可能な GPS衛星の数が足りなかつ たりデータ通信が途絶えた場合でも、無人へリコプタの現在の位置を検出でき自律 制御によるプログラムフライトを可能とした無人へリコプタを提供することを目的とする 課題を解決するための手段
[0019] この目的を達成するために、本発明に係る無人へリコプタは、機体の位置を検出す る GPS装置と、地上と通信するデータ通信機および制御プログラムが組み込まれた 制御基板とを含む自律制御部を備え、機体の姿勢や速度、エンジン回転数やスロッ トル開度などの機体データ、機体の位置や方位などの飛行データに基づ 、て飛行す る無人へリコプタであって、前記自律制御部に、複数の異なる種別の GPS装置を装 備したものである。
発明の効果
[0020] 本発明によれば、自律制御部は、複数の異なる種別の GPS装置を備えており、現 在使用している GPS装置の他に常に別の GPS装置を待機させておくことができる。 電波を受信可能な GPS衛星の数が足りな力つたりデータ通信が途絶えたことにより、 現在使用中のメインの GPS装置が使用不可能となった場合、異なる種別の GPS装 置を用いることによって、機体の現在の位置を検出でき、自律制御によるプログラム フライトを継続して行うことができる。
[0021] 請求項 2記載の発明に係る無人へリコプタの自律制御部は、複数の異なる種別の GPS装置として、位置を検出する手法の異なる GPS装置を備え、請求項 3記載の発 明に係る無人へリコプタの自律制御部は、複数の異なる種別の GPS装置として製造 元の異なる GPS装置を備えている。このため、この無人へリコプタにおいては、主とし て使用する GPS装置が使用不可能となるような異常発生状態で、異なる種別の GPS 装置を用いて現在の位置を検出する。この異なる種別の GPS装置は、主として使用 する GPS装置とは異なる種別であるため、同じ異常が発生することはほとんどない。 したがって、この発明に係る無人へリコプタによれば、上述した異常発生時に異なる 種別の GPS装置により機体の現在の位置を検出することができ、自律制御によるプ ログラムフライトを行なうことができる。
[0022] 種別が異なる GPS装置の例として、例えば位置を検出する方法、 、わゆる測位制 御方法が異なる GPS装置としては、受信する GPS衛星の必要個数が異なるものや、 基準局等からのデータ等が必要なものと必要でな 、もの等がある。また測位制御方 法が同じであっても、製造元が異なればその内部ソフトウェアや各センサの受信感度 等が異なる。このように種別が異なることにより、それぞれの状況に応じて使用可否が 異なるため、主として使用する GPS装置では現在位置を検出できな ヽ場合でも他の GPS装置によって現在の位置を検出することができる。
[0023] さらに、請求項 4記載の発明によれば、自律制御部は、複数の GPS装置の機能お よび精度に応じて各々優先度を設定し、複数の GPS装置を優先度の高い順に受信 状況等によって切換えて用いる。このため、この発明によれば、主に使用する GPS装 置として高い機能を有するものとし、一方、他の GPS装置は測位可能範囲が広いも のとすることにより、 V、かなる状況にぉ 、ても確実に現在位置を検出できるようにする ことができる。
[0024] 請求項 5記載の発明によれば、メインボディに備えられて 、るメインロータのメインシ ャフトやローター支持部等の金属部力も離間する位置に、優先度が高い GPS装置の GPSアンテナを配置することができる。このため、この発明によれば、優先度の高い GPS装置の GPSアンテナが受信する衛星からの電波がメインシャフトやローター支 持部等によって遮断されるのを防ぐことができる。
[0025] 請求項 6記載の発明によれば、テールボディの上面側に複数配置された GPSアン テナは、各々の間隔を GPS電波の一波長と二波長との間の長さに設定してあるため 、隣接する GPSアンテナどうしによって反射した反射波の影響を低減することができ る。
図面の簡単な説明
[0026] [図 1]図 1は、本発明に係る無人へリコプタの側面図である。
[図 2]図 2は、図 1の無人へリコプタの上面図である。
[図 3]図 3は、図 1の無人へリコプタの正面図である。
[図 4]図 4は、本発明に係る無人へリコプタのブロック構成図である。
[図 5]図 5は、地上局のブロック構成図である。
[図 6]図 6は、本発明に係る GPSアンテナの配置説明図である。
[図 7]図 7は、 GPSの優先順位を示す表図である。
[図 8]図 8は、 GPSの切換制御を示すフローチャートである。
[図 9]図 9は、 GPSの種類を示す説明図である。
発明を実施するための最良の形態
[0027] 本発明が適用されるへリコプタについて、以下、図面とともに詳細に説明する。図 1 〜3はそれぞれ、本発明に係る無人へリコプタの側面図、上面図および正面図であ る。
無人へリコプタ 1は、メインボディ 2とテールボディ 3とからなる機体 4を備えている。 [0028] メインボディ 2の上部には、エンジン (不図示)からの回転力を受けて回転するメイン シャフト 5が設けられている。このメインシャフト 5には、メインロータ 6がローター支持 部 7を介して接続されている。テールボディ 3の後部にはテールロータ 8が備えられて いる。メインボディ 2の前部にはラジェータ 9が設けられている。機体 4のほぼ中央部 であってメインボディ 2の左右下部には、支持脚 10を介してスキッド 11が備えられて いる。
[0029] メインボディ 2の後部上側にはコントロールパネル 12が備えられ、下側には表示灯
13が備えられている。コントロールパネル 12は、飛行前のチェックポイントやセルフ チェック結果等を表示する。コントロールパネル 12の表示は後述する地上局でも確 認できる。表示灯 13は、 GPS制御の状態(たとえば現在使用している GPS装置の種 類)や機体 4の異常警告等の表示を行なう。
[0030] メインボディ 2の前部下側には、赤外線カメラ (もしくは CCDカメラ)を収容したカメラ 装置 14がカメラ雲台 15を介して取付けられて 、る。カメラ雲台 15に取付けられたカメ ラ 27 (図 4参照)は、パン軸 (垂直軸)廻りに回転するとともに、チルト軸 (水平軸)廻り に回転可能となるように構成されている。この構成を採ることにより、このカメラ装置 14 においては、カメラ 27によって前側の窓 16を通して上空力も地上の全方位を撮影す ることがでさる。
[0031] メインボディ 2の左側には自律制御ボックス 17が搭載されている。自律制御ボックス
17内には、自律制御に必要な GPS装置、地上と通信するデータ通信機や画像通信 機、および制御プログラムを組み込んだ制御基板などが収容されている。自律制御 では、後述する各種のデータに基づいて、予め定められた運転モードや制御プログ ラムを自動的に、あるいは地上局からの命令によって選択し、機体状況および飛行 状況に応じた最適な操縦制御が行われる。ここでいう各種のデータとは、機体状況を 示す機体の姿勢や速度、エンジン回転数やスロットル開度などの機体データと、飛行 状況を示す機体の位置や方位などの飛行データなどである。
[0032] この無人へリコプタ 1は、このような自律制御により飛行することができる。また、ヘリ コプタ 1は、上述した自律制御によって飛行する他に、オペレータによるマニュアル操 作によっても飛行させることができる。このマニュアル操作による飛行は、オペレータ がへリコプタ 1の姿勢、速度、高度および方位などを目で確認しながら、機体から送 信された各種データに基づいて、遠隔操作機またはリモートコントローラを操作するこ とによって行なわれる。
[0033] メインボディ 2の下面側にはアンテナ支持枠 18が取付けられている。このアンテナ 支持枠 18には、傾斜したステー 19が取付けられている。このステー 19には、前述の 自律制御に必要な機体データや飛行データ等の操縦データ (デジタルデータ)を地 上局との間で送受信するために操縦データアンテナ 20が取付けられている。ステー 19にはさらに、前述のカメラ装置 14によって撮影した画像データをアナログ式の画 像通信によって地上局に送信するための画像データアンテナ 21が取り付けられてい る。この画像通信は、アナログ式の他にデジタル式を採用することができる。
[0034] テールボディ 3の下面側には地磁気等に基づく方位角センサ 22が備えられている 。この方位角センサ 22により機体の指向する方位 (東西南北)が検出される。メインボ ディ 2内にはさらに、ジャイロ装置力 なる姿勢角センサ 40 (図 4参照)が備えられて いる。
[0035] テールボディ 3の上面側には、メイン GPSアンテナ 23およびサブ GPSアンテナ 24 が備えられている。なお、この実施形態では GPSアンテナを 2つ設けた例を示してい る力 後述するようにこれに限らず、 3つ、 4つと複数設けるようにしてもよい(例えば、 図中仮想線で示す予備 GPSアンテナ 25)。
テールボディ 3の後端部には、リモートコントローラ力もの指令信号を受信するリモコ ン受信アンテナ 26が備えられて 、る。
[0036] 図 4は本発明に係る無人へリコプタのブロック構成図である。
カメラ装置 14は、カメラ雲台 15に搭載された赤外線カメラ (又は CCDカメラ) 27を 備えている。カメラ雲台 15は、水平面内で回転可能な、すなわち、垂直軸 (パン軸) 廻りに回転可能なパン雲台 15Aと、垂直面内で回転可能な、すなわち、水平軸 (チ ルト軸)廻りに回転可能なチルト雲台 15Bとから構成されて ヽる。このカメラ雲台 15に は、各々にその傾きを検出するパンジャイロ 28Aおよびチルトジャイロ 28Bが備えら れている。さらに、カメラ装置 14は、これらパンジャイロ 28Aおよびチルトジャイロ 28B のデータからローパスフィルタ 29A, 29Bを介して高周波成分が除去された低周波 成分のみを受信するカメラ制御部 30を備えている。カメラ装置 14には、カメラ制御部 30の信号に基づ!/、てパン雲台 15Aおよびチルト雲台 15Bを駆動するパンモータ 31 およびチルトモータ 32が備えられて 、る。
[0037] これらカメラ制御部 30と、パンジャイロ 28Aと、チルトジャイロ 28Bと、パンモータ 31 およびチルトモータ 32とによってカメラ 27の姿勢補正部が構成されて 、る。このカメ ラ装置 14においては、無人へリコプタ 1のョ一方向(パン軸廻り)およびピッチング方 向(チルト軸廻り)の揺れ (傾き)を検出すると傾いた方向と逆方向にモータを駆動し て傾き (振動)をキャンセルする。
[0038] 自律制御ボックス 17内には、前記姿勢補正部によって振動の低周波成分が除去さ れたカメラ 27からの画像データを受信して高周波成分を除去する画像制御装置 33 と、画像データを地上局に送る画像通信機 34と、自律制御に必要なデータを地上局 との間で送受信するためのデータ通信機 35と、自律制御プログラムが格納されたマ イコン等カゝらなる制御基板 36と、メイン GPSアンテナ 23に接続されたメイン GPS受信 機 37と、サブ GPSアンテナ 24に接続されたサブ GPS受信機 38とが収納されている
[0039] 上述した予備 GPSアンテナ 25が設定される場合は、前記同様に予備 GPS受信機 39が自律制御ボックス 17内に収納される。この実施の形態においては、メイン GPS 受信機 37とメイン GPSアンテナ 23とによってメイン GPS装置が構成され、サブ GPS 受信機 38とサブ GPSアンテナ 24とによってサブ GPS装置が構成されて!、る。また、 予備 GPS受信機 39と予備 GPSアンテナ 25とを装備する場合は、これらによって予 備 GPS装置が構成される。
[0040] 機体 4におけるメインボディ 2 (図 1)の下面側には、自律制御ボックス 17内の画像 通信機 34からアナログ画像データを地上局に送る画像データアンテナ 21と、データ 通信機 35と地上局との間でデジタル操縦データを送受信する操縦データアンテナ 2 0とが前述のように備えられて 、る。方位角センサ 22は自律ボックス 17内の制御基板 36に接続されている。機体 4内には、ジャイロ装置等力も成る姿勢角センサ 40が備 えられている。この姿勢角センサ 40は、コントロールボックス 41に接続されている。コ ントロールボックス 41は、自律制御ボックス 17内の制御基板 36とデータ通信して 5台 のサーボモータ 42を駆動する。 3台のサーボモータ 42がメインロータ 5を制御してェ ンジンコントロール用のサーボモータ 42とともに、機体 4の前後、左右、上下方向の 移動を制御し、テールロータ制御用のサーボモータ 42が機体 4の回転を制御する。
[0041] 図 5は、地上局のブロック構成図である。
無人へリコプタ 1と通信する地上局 (基準局) 43には、 GPS衛星力もの信号を受信 する GPSアンテナ 44と、無人へリコプタ 1とデータ通信を行なうための通信アンテナ 4 5と、無人へリコプタ 1から画像データを受信するための画像受信アンテナ 46とが設 けられて 、る。これらの 3本のアンテナは地上に設置されて!、る。
[0042] 地上局(基準局) 43は、データ処理部 47と、監視操作部 48と、電源部 49とによつ て構成されている。
データ処理部 47は、 GPS受信機 50と、データ通信機 51と、画像通信機 52と、これ らの通信機 50, 51, 52に接続された通信基板 53とによって構成されている。
[0043] 監視操作部 48は、手動用コントローラ(リモートコントローラ) 54と、カメラ装置 14の 操作や機体 4の操縦調整等を行なうベースコントローラ 55と、ノックアップ電源 56と、 ベースコントローラ 55に接続されたパソコン 57と、パソコン用のモニタ 58と、ベースコ ントローラ 55に接続され画像データを表示する画像モニタ 59とによって構成されて いる。
[0044] 電源部 49は、発電機 60と、ノ ッテリブースタ 61を介して発電機 60に接続されたバ ックアップバッテリ 62とによって構成されている。ノックアップバッテリ 62は、飛行前の チェック時などの発電機 60が動作していないときに機体 4側に接続して 12Vの電力 を供給する。また、電源部 60は、ヘリコプタ 1の飛行中には、発電機 60からデータ処 理部 47および監視操作部 48に 100Vの電力を供給する。
[0045] 地上局(基準局) 43の画像モニタ 59に写る画像データは、 DVレコーダ 64を介して 遠隔監視室 63に送信される。遠隔監視室 63には、画像データを受信して変調する 変調機 65と、変調した画像データを複数のモニタ(図中では 3台のモニタ) 66に分割 して表示する分割機 67 (図中では 3分割機)とを備えている。すなわち、遠隔監視室 63では、地上局 43が受信した画像を 3台のモニタ 66によって見ることができる。
[0046] 図 6は、 GPSアンテナの配置の説明図であり、テールボディ 3の後部を拡大したも のである。同図に示すように、メイン GPSアンテナ 23とサブ GPSアンテナ 24 (及び予 備 GPSアンテナ 25)は、テールボディ 3の上面側においてテールボディ 3の前後方 向に並びかつ互 、に前後方向に離間するように位置付けられて 、る。これらのアン テナ 23〜25を取付ける位置は、後述する優先度に基づ!/、て設定されて!、る。
[0047] すなわち、 GPS受信機 37〜39のうち優先度が最も高い GPS受信機 37に接続され ているメイン GPSアンテナ 23が最も機体後側に位置付けられ、その次に優先度が高 い GPS受信機 38に接続されているサブ GPSアンテナ 24がメイン GPSアンテナ 23の 前方に位置付けられている。
[0048] GPS受信機 37〜39のうち最も優先度が低くなる GPS受信機 39に接続された GP Sアンテナ 25は、最も機体前側に位置付けられて 、る。
言い換えれば、優先度が相対的に高い GPS装置の GPSアンテナは、優先度の相 対的に低 、GPS装置の GPSアンテナより機体後側に位置付けられて 、る。この実施 の形態においては、図 6に示すように、優先度の高い順に機体 4の後方力 メイン GP Sアンテナ 23、サブ GPSアンテナ 24 (及び予備 GPSアンテナ 25)の順に配置されて いる。
[0049] このように GPS装置の優先順位に対応するように GPSアンテナの位置を決めた理 由は、テールボディ 3の可及的後側に配設した方がメインシャフト 5およびロータ支持 部 7等の金属部品との間隔が長くなるからである。すなわち、テールボディ 3の後端近 傍に GPSアンテナが位置することにより、 GPS衛星からの電波が上述した金属部品 によって遮断され難くなる力もである。この結果、 GPSアンテナにおいて、 GPS衛星 力 の電波を受信することができる範囲が広くなり、この電波を良好に受信できるよう になる。具体的には、図 1中に線 LI, L2, L3によって示すように、テールボディ 3の 後方に位置するほど遮蔽角度 0 1, Θ 2, Θ 3が小さくなり、 GPS衛星を捕捉できる範 囲が広くなつている。
[0050] 上述した GPS装置の優先順位は、図 7の表に示すように、 GPS装置の性能'機能 レベル、 GPS装置の構造'構成, GPSアンテナの搭載条件 (衛星捕捉範囲)に対応 して決定されている。例えば、前述の RTK—GPSと、 DGPSと、シングル GPSとを比 較した場合、 RTK— GPS, DGPS,シングル GPSという順序で優先順位が設定され ている。すなわち、 RTK— GPSの優先順位を最も高くし、その次に DGPSの優先順 位を高くし、シングル GPSの優先順位を最も低くする。
[0051] また、各々のアンテナの間隔 K (図 6参照)は、各 GPSアンテナによる反射波の影響 を抑制するために、 GPS電波の一波長と二波長との間の長さに設定している。具体 的には、 GPS電波の一波長は約 20cm (正確にはえ = 19cm)であるため、間隔 Kは 、一波長 20cmと二波長 40cmの間となる約 30cmに設定される。
[0052] 以上のような構成により、本実施の形態による無人へリコプタが構成されている。こ の無人へリコプタでは、優先度の高 、順にメイン GPS装置として地上局 43を基準局 とした RTK— GPSを搭載するとともに、サブ GPS装置としてシングル GPSを搭載し、 GPS衛星力 の電波の受信状況等によって切換える。
[0053] なお、前述のように、さらに予備 GPSアンテナ 25および予備の GPS受信機 36から なる予備 GPS装置を備えてもよい。この場合、予備 GPS装置をシングル GPSとして、 サブ GPS装置を DGPSにする力、もしくはそれぞれ製造元の異なる GPS装置を装備 する。このように製造元の異なる GPS装置を用いる理由は、測位を行うためのソフトゥ エアが製造元毎に異なり、測位精度が僅かに異なる場合があるからである。
[0054] また、上述したソフトウェアのプログラムに誤り(以下、これを単にバグと 、う)があつ たことが原因でメイン GPS装置が故障した場合、サブまたは予備の GPS装置として 製造元が同じ GPS装置を使っていると、この GPS装置のソフトウェアも同様なバグを 有している可能性があり、この GPS装置もメイン GPS装置と同様に故障するおそれ がある。しかし、製造元の異なる GPS装置をサブ GPS装置や予備 GPS装置として使 用することにより、これらの GPS装置を使用して確実に測位を行うことができるように なる。
[0055] 図 8は、 GPS装置の切換制御方法を示すフローチャートである。このフローチャート に示す動作は、無人へリコプタ 1の飛行中は所定時間ごとに繰り返し行われる。各ス テツプの動作は以下の通りである。
[0056] ステップ S1:無人へリコプタ 1が飛行を開始すると、優先順位が 1位の GPS装置が 使用可能であるか否かが判別される。優先順位が 1位の GPS装置が使用可能である 場合はステップ S2に進み、使用不可能である場合はステップ S3に進む。すなわち、 この実施形態では RTK— GPSが適用可能か否力、すなわち、地上局(基準局) 43 力 のデータ受信が良好力否かと、および 4個以上 (初期状態では 5個以上)の GPS 衛星からの電波を連続して受信可能力否力とが判別される。
[0057] ステップ S2:優先順位が 1位の GPS装置を自律制御にお 、て現在の位置を検出 するためのセンサーとして使用し、現在使用している GPS装置を判別する動作を終 了する。
[0058] ステップ S3:次に、優先順位が 2位の GPS装置が使用可能である力否かが判別さ れる。優先順位が 2位の GPS装置が使用可能である場合はステップ S4に進み、使 用不可能である場合はステップ S (2N—1)に進む。この実施の形態では、シングル GPSが使用可能か否力、すなわち、複数個(例えば 3個以上)の GPS衛星からの電 波を受信可能か否を判別する。また、例えば優先順位が 2位の GPS装置として DGP Sを使用している場合は、基地局 (基準局)からの補正データの受信が良好力否かお よび複数個(例えば 3個以上)の GPS衛星力もの電波を受信可能か否を判別する。
[0059] ステップ S4:優先順位が 2位の GPS装置を自
Figure imgf000015_0001
、て現在の位置を検出 するためのセンサーとして使用し、現在使用している GPS装置を判別する動作を終 了する。
このようにして繰り返し優先順位の高 、方力 低 、方に向けて順番に判別が行わ れる。そして、優先度の最も低い N位まで上述した判別を行なう。
[0060] ステップ S (2N- 1):優先順位が N位の GPS装置が使用可能であるか否かが判別 される。優先順位が N位の GPS装置が使用可能である場合はステップ S (2N)に進 み、使用不可能である場合はステップ S (2N+ 1)に進む。
ステップ S (2N):優先順位が N位の GPS装置を自律制御において現在の位置を 検出するためのセンサーとして使用し、現在使用している GPS装置を判別する動作 を終了する。
ステップ S (2N+ 1):全ての GPS装置が使用不可であるとして、使用している GPS 装置を判別する動作を終了する。
[0061] この場合、すなわち全ての GPS装置が使用不可である場合、所定時間毎に行われ る使用 GPSの判別(現在使用している GPS装置を判別する動作)によって、使用可 能な GPS装置が見つ力るまで、過去のデータとして保存されて!、る相対位置や方位 角センサを使用して自律制御によるフライトを行なう。
[0062] 以上の実施形態によれば、自律制御部(制御基板 36)は、 RTK— GPSとシングル GPSとの二つの異なる種別の GPS装置を備えて 、る。この実施の形態による無人へ リコプタ 1においては、電波を受信可能な GPS衛星の数が足りなかったり、地上局 43 力ものデータ通信が途絶えたことにより、メイン GPS装置 (GPS受信機 37と GPSアン テナ 23)による RTK—GPSが使用不可能となった場合、サブ GPS装置 (GPS受信 機 38と GPSアンテナ 24)によるシングル GPSを代わりに使用する。
[0063] サブ GPS装置(GPS受信機 38と GPSアンテナ 24)は、メイン GPS装置(GPS受信 機 37と GPSアンテナ 23)とは測位システムの種別が異なるため、メイン GPS装置が 使用不可能となる状況であっても、サブ GPS装置がメイン GPS装置と同様に使用不 可能になることはない。
したがって、この無人へリコプタ 1によれば、電波を受信可能な GPS衛星の数が足 りなかったり、地上局 43からのデータ通信が途絶えたりしても、常に機体 4の現在の 位置を検出でき、自律制御によるプログラムフライトを行うことができる。
[0064] さらに、前記制御基板 36は、 RTK— GPSをメイン GPS装置とするとともに、シング ル GPSをサブ GPS装置として使用し、 GPS装置の機能および精度に応じて優先度 を設定し、優先度の高い順に受信状況等によって GPS装置を切換えて使用する構 成が採られている。すなわち、この実施の形態による無人へリコプタ 1においては、通 常の飛行時はメイン GPS装置(GPS受信機 37と GPSアンテナ 23)による RTK—GP Sによって高い精度で現在位置を検出し、正確な自律制御によるプログラムフライトを 行えるようにしている。一方、サブ GPS装置(GPS受信機 38と GPSアンテナ 24)には 、構造が簡単で堅牢かつ単純なシングル GPSを用いることで、確実に現在位置を検 出できるようにしている。
[0065] また、この実施の形態による無人へリコプタ 1おいては、 GPSアンテナ 23, 24, 25 力 SGPS装置の優先度の高い順にテールボディ 3の上面側において後方力 並べら れている。このため、優先度の高い GPSアンテナ 23は、メインロータ 6のメインシャフ ト 5やローター支持部 7等の金属部力も後方に離間した位置に位置するようになる。 したがって、この実施の形態による無人へリコプタ 1によれば、優先度の高い GPS 装置の GPSアンテナ 23は、メインシャフト 5やローター支持部 7等によって遮られるこ となく GPS衛星からの電波を受信することができる。
[0066] さらに、この実施の形態による無人へリコプタ 1においては、複数の GPSアンテナ 2 3, 24, 25は、各々の間隔が GPS電波の一波長(約 20cm)と二波長(約 40cm)との 間の長さ(約 30cm)に設定してある。このため、この無人へリコプタ 1によれば、前記 GPSアンテナ 23, 24, 25が他の隣接する GPSアンテナ 23, 24, 25によって反射し た反射波によって受ける影響を低減することができる。
産業上の利用可能性
[0067] 本発明を適用したヘリコプタは、航空写真撮影用の無人へリコプタに適用できるほ 力 農薬散布用の無人へリコプタ等、予め設定された経路に沿って自律制御による プログラムフライトを行なう小型の無人へリコプタに利用できる。

Claims

請求の範囲
[1] 機体の位置を検出する GPS装置と、地上と通信するデータ通信機および制御プロ グラムを組み込んだ制御基板とを含む自律制御部を備え、
機体の姿勢や速度、エンジン回転数やスロットル開度などの機体データ、機体の位 置や方位などの飛行データに基づいて飛行する無人へリコプタであって、 前記自律制御部は、複数の異なる種別の GPS装置を備えてレ、ることを特徴とする 無人へリコプタ。
[2] 異なる種別の GPS装置は、位置を検出する手法が異なる GPS装置である請求項 1 に記載の無人へリコプタ。
[3] 異なる種別の GPS装置は、製造元の異なる GPS装置である請求項 1に記載の無 人へリコプタ。
[4] 自律制御部は、複数の GPS装置の機能および精度に応じて GPS装置の優先度を 設定し、 GPS装置を優先度の高い順に用いることを特徴とする請求項 1に記載の無 人へリコプタ。
[5] メインボディとテールボディからなる機体を備え、
複数の GPS装置はそれぞれ GPSアンテナを備え、
これらの GPSアンテナは、テールボディの上面側に機体の前後方向に並べて配置 され、 .
優先度が相対的に高い GPS装置の GPSアンテナが優先度の相対的に低い GPS 装置の GPSアンテナより機体後側に位置付けられてレ、ることを特徴とする請求項 4に 記載の無人へリコプタ。
[6] GPSアンテナどうしの間隔は、 GPS電波の一波長と二波長との間の長さに設定さ れてレ、ることを特徴とする請求項 5に記載の無人へリコプタ。
| された) S弒 (編 U91)
PCT/JP2006/306327 2005-03-28 2006-03-28 無人ヘリコプタ WO2006104158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/910,219 US20090069957A1 (en) 2005-03-28 2006-03-28 Unmanned helicopter
JP2007510534A JPWO2006104158A1 (ja) 2005-03-28 2006-03-28 無人ヘリコプタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005091914 2005-03-28
JP2005-091914 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104158A1 true WO2006104158A1 (ja) 2006-10-05

Family

ID=37053414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306327 WO2006104158A1 (ja) 2005-03-28 2006-03-28 無人ヘリコプタ

Country Status (5)

Country Link
US (1) US20090069957A1 (ja)
JP (1) JPWO2006104158A1 (ja)
KR (1) KR20070112413A (ja)
CN (1) CN101151188A (ja)
WO (1) WO2006104158A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176161A (zh) * 2011-01-27 2011-09-07 华北电力大学 面向电力线巡检的飞行模拟***
JP2018507589A (ja) * 2014-12-31 2018-03-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 移動物体およびそのアンテナ自動アライメント方法
US10962655B2 (en) 2015-09-16 2021-03-30 SZ DJI Technology Co., Ltd. Systems and methods for positioning of UAV

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL198873A0 (en) * 2009-05-21 2010-02-17 Gil Shalev Remote operation system for heavy machinery
CN101989363B (zh) * 2009-07-30 2014-07-16 中国商用飞机有限责任公司 用于对数字飞行数据进行处理的***和方法
ES2390441B1 (es) * 2010-12-01 2013-10-02 Sacyr, S.A. (Sociedad Unipersonal) Sistema para estudios topográficos e inspección de obras
CN103314336B (zh) 2011-01-14 2016-08-10 贝尔直升机泰克斯特龙公司 用于控制竖直飞行航迹的飞行控制***和方法
US8979032B1 (en) 2011-10-18 2015-03-17 The Boeing Company Methods and systems for retrieving personnel
JP5800745B2 (ja) * 2012-03-29 2015-10-28 三菱電機株式会社 ヘリコプター衛星通信システム、通信装置、通信方法、及び通信プログラム
JP5707367B2 (ja) * 2012-07-20 2015-04-30 ヤマハ発動機株式会社 無人ヘリコプタ
CN103744430B (zh) * 2013-02-07 2016-08-24 山东英特力光通信开发有限公司 一种小型无人直升机飞行控制方法
US9591270B1 (en) * 2013-08-22 2017-03-07 Rockwell Collins, Inc. Combiner display system and method for a remote controlled system
US9801201B1 (en) * 2014-04-07 2017-10-24 Olaeris, Inc Prioritized transmission of different data types over bonded communication channels
US10271261B1 (en) 2014-04-07 2019-04-23 Sqwaq, Inc. Prioritized transmission of different data types over bonded communication channels
JP6172783B2 (ja) * 2014-07-31 2017-08-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機を用いて仮想観光をするシステムおよび方法
JP5870171B1 (ja) * 2014-08-18 2016-02-24 ヤマハ発動機株式会社 遠隔操縦装置
CN112947510A (zh) 2014-09-30 2021-06-11 深圳市大疆创新科技有限公司 用于飞行模拟的***和方法
WO2016050099A1 (en) * 2014-09-30 2016-04-07 SZ DJI Technology Co., Ltd. System and method for supporting simulated movement
JP6179000B2 (ja) 2014-10-27 2017-08-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行情報を提供する方法、プログラム及び端末
WO2017017675A1 (en) * 2015-07-28 2017-02-02 Margolin Joshua Multi-rotor uav flight control method and system
US10205508B1 (en) 2016-04-25 2019-02-12 Sqwaq, Inc. Wireless communication between an operator of a remotely operated aircraft and a controlling entity
CN205583125U (zh) * 2016-04-28 2016-09-14 深圳市道通智能航空技术有限公司 一种无人机
KR101877611B1 (ko) * 2016-05-09 2018-07-11 인하공업전문대학산학협력단 복수의 gps 수신기를 이용한 무인 항공기 측위 장치 및 방법
CN206907920U (zh) * 2016-12-14 2018-01-19 深圳市道通智能航空技术有限公司 一种双频段微带天线及应用该天线的无人机
CN106741888B (zh) * 2017-02-15 2023-09-26 南京航空航天大学 一种仿生无人侦察直升机
CN109960271A (zh) * 2017-12-14 2019-07-02 惠州市组合科技有限公司 一种可控的数据分离式无人机通信设备及其工作方法
EP3746859A4 (en) * 2018-01-29 2021-10-27 AeroVironment, Inc. METHODS AND SYSTEMS FOR USING GLOBAL TRACKING SYSTEM (GPS) ANTENNAS IN VERTICAL TAKE-OFF AND LANDING (VTOL) AIR VEHICLES
WO2019186713A1 (ja) * 2018-03-27 2019-10-03 株式会社自律制御システム研究所 無人航空機
JP6654676B1 (ja) * 2018-09-21 2020-02-26 Hapsモバイル株式会社 システム、制御装置及びモジュール
US10962639B2 (en) * 2019-01-11 2021-03-30 Isaac Weissman Smallsat surveillance constellation using MIMO radar
CN112747714B (zh) * 2020-12-22 2023-02-17 北京航天飞腾装备技术有限责任公司 一种适用于无人直升机的差分gps高度测量***及方法
KR102371147B1 (ko) 2021-09-16 2022-03-04 주식회사 위젠텍에어로스페이스 회전익 항공기의 장애물 경보 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255750B2 (ja) * 1984-08-27 1990-11-28 Japan Radio Co Ltd
JPH0949737A (ja) * 1995-08-04 1997-02-18 Tamagawa Seiki Co Ltd 航法信号出力方法
JP2000275316A (ja) * 1999-03-23 2000-10-06 Toshiba Corp Gps受信機
JP2002166895A (ja) * 2000-12-01 2002-06-11 Yamaha Motor Co Ltd 無人ヘリコプターの燃料供給装置
JP2003344526A (ja) * 2002-05-31 2003-12-03 Mitsubishi Heavy Ind Ltd 飛翔体計測装置及び飛翔体計測方法
JP2004168216A (ja) * 2002-11-21 2004-06-17 Railway Technical Res Inst Gps測位による列車走行情報検出装置及びその列車走行情報検出方法
JP3104457U (ja) * 2004-04-06 2004-09-16 株式会社 データトロン Gpsによる測位異常検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166703B2 (ja) * 1998-03-27 2001-05-14 双葉電子工業株式会社 遠隔制御ヘリコプタ用ジャイロ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255750B2 (ja) * 1984-08-27 1990-11-28 Japan Radio Co Ltd
JPH0949737A (ja) * 1995-08-04 1997-02-18 Tamagawa Seiki Co Ltd 航法信号出力方法
JP2000275316A (ja) * 1999-03-23 2000-10-06 Toshiba Corp Gps受信機
JP2002166895A (ja) * 2000-12-01 2002-06-11 Yamaha Motor Co Ltd 無人ヘリコプターの燃料供給装置
JP2003344526A (ja) * 2002-05-31 2003-12-03 Mitsubishi Heavy Ind Ltd 飛翔体計測装置及び飛翔体計測方法
JP2004168216A (ja) * 2002-11-21 2004-06-17 Railway Technical Res Inst Gps測位による列車走行情報検出装置及びその列車走行情報検出方法
JP3104457U (ja) * 2004-04-06 2004-09-16 株式会社 データトロン Gpsによる測位異常検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176161A (zh) * 2011-01-27 2011-09-07 华北电力大学 面向电力线巡检的飞行模拟***
JP2018507589A (ja) * 2014-12-31 2018-03-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 移動物体およびそのアンテナ自動アライメント方法
US10516454B2 (en) 2014-12-31 2019-12-24 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
US10523293B2 (en) 2014-12-31 2019-12-31 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
US11057087B2 (en) 2014-12-31 2021-07-06 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
US10962655B2 (en) 2015-09-16 2021-03-30 SZ DJI Technology Co., Ltd. Systems and methods for positioning of UAV

Also Published As

Publication number Publication date
CN101151188A (zh) 2008-03-26
US20090069957A1 (en) 2009-03-12
JPWO2006104158A1 (ja) 2008-09-11
KR20070112413A (ko) 2007-11-23

Similar Documents

Publication Publication Date Title
WO2006104158A1 (ja) 無人ヘリコプタ
KR20070120105A (ko) 비행 제어 시스템
US7693617B2 (en) Aircraft precision approach control
US11017681B2 (en) Unmanned aerial vehicle avoiding obstacles
US9456185B2 (en) Helicopter
TWI496605B (zh) 無人飛行載具、監控方法及監控裝置
US20090115636A1 (en) Fuelage information display panel
JP2006281830A (ja) カメラの視点表示システム
CN112335190B (zh) 无线电链路覆盖图和减损***及方法
US11287261B2 (en) Method and apparatus for controlling unmanned aerial vehicle
US20220335840A1 (en) Ruggedized autonomous helicopter platform
US20220100207A1 (en) Unmanned aerial vehicle control system and unmanned aerial vehicle control method
JP2007230367A (ja) 無人ヘリコプタ基地局のモニタ表示システムおよびこれを用いた無人ヘリコプタの異常判別システム
US20230002046A1 (en) Accessory port systems and methods for unmanned aerial vehicles
JP2007106269A (ja) 無人ヘリコプタ
WO2019239958A1 (ja) 無人航空機
KR20180095989A (ko) 비행 성능 계측 장치 및 방법
JP2018004367A (ja) 無人飛行体
JP2020196355A (ja) 無人航空機及び無人航空システム
RU2320519C1 (ru) Портативный комплекс воздушного базирования оптико-визуального мониторинга
JP2007106268A (ja) 無人ヘリコプタのアンテナ
EP4040109A1 (en) Automatic and autonomous calibration transfer between two devices
WO2023189534A1 (ja) 無人移動体、情報処理方法及びコンピュータプログラム
WO2024004162A1 (ja) 無人航空機
JP2007230368A (ja) 無人ヘリコプタの基地局構成

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010444.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11910219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023802

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730275

Country of ref document: EP

Kind code of ref document: A1