WO2006087971A1 - Process for production of aromatic compound and process for production of hydrogenated aromatic compound - Google Patents

Process for production of aromatic compound and process for production of hydrogenated aromatic compound Download PDF

Info

Publication number
WO2006087971A1
WO2006087971A1 PCT/JP2006/302339 JP2006302339W WO2006087971A1 WO 2006087971 A1 WO2006087971 A1 WO 2006087971A1 JP 2006302339 W JP2006302339 W JP 2006302339W WO 2006087971 A1 WO2006087971 A1 WO 2006087971A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic compound
gas
hydrogen
carbon
supplied
Prior art date
Application number
PCT/JP2006/302339
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Kuwana
Kazutaka Akai
Kazunari Takahashi
Fumitaka Utsumi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CN2006800040248A priority Critical patent/CN101115700B/en
Publication of WO2006087971A1 publication Critical patent/WO2006087971A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an aromatic compound production method and a hydrogenated aromatic compound production method.
  • the present invention relates to a method for producing an aromatic compound, and more particularly to a method for producing an industrially advantageous aromatic compound by a catalytic reaction of a lower hydrocarbon such as methane. Furthermore, the present invention relates to a method for producing a hydrogenated aromatic compound in which the aromatic compound obtained by the present invention is hydrogenated.
  • Patent Documents 1 to 7 Regarding the production of aromatic compounds by catalytic reaction of lower hydrocarbons such as methane, many proposals have been made for improving the catalyst! (Patent Documents 1 to 7).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-272366
  • Patent Document 2 Japanese Patent Laid-Open No. 11-60514
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-334151
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-334152
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-336704
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-97891
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-269398
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an industrially advantageous method for producing an aromatic compound by catalytic reaction of a lower hydrocarbon such as methane.
  • the present inventors have found that the above-mentioned problems can be solved by combining the methanization process and the aromatic compound synthesis process, and complete the present invention. It came to. That is, the present invention relates to the following (1) to (12).
  • a hydrogen-containing gas is brought into contact with carbon monoxide and Z or carbon dioxide in the presence of a catalyst, and hydrogen in the gas reacts with carbon monoxide and carbon or Z or carbon dioxide.
  • a product gas containing an aromatic compound and hydrogen by reacting the methane obtained in the methanization process, which is converted into methane and water, and the lower hydrocarbon and the methane process in the presence of a catalyst.
  • Aromatic compound synthesis step of obtaining a product gas containing an aromatic compound, a lower hydrocarbon and hydrogen by reacting the lower hydrocarbon in the presence of a catalyst
  • Aromatic compound separation step for separating and recovering an aromatic compound and lower hydrocarbon and hydrogen-containing gas from the product gas obtained in the above aromatic compound synthesis step
  • the supply of carbon dioxide in the above-mentioned methanization step is performed by dividing the gas from which the aromatic compound has been separated in the above-described separation step into a first fraction and a second fraction.
  • the method for producing an aromatic compound according to the present invention is capable of reducing hydrogen supplied to the aromatic compound synthesis step and lower carbonizing nitric acid carbon which is regarded as a cause of global warming. Since it can be consumed as a raw material for hydrogen (methane), an aromatic compound can be produced industrially advantageously.
  • FIG. 1 is a flow sheet showing an example of a method for producing an aromatic compound according to the present invention.
  • FIG. 2 is a flow sheet showing another example of the method for producing an aromatic compound according to the present invention.
  • the method for producing an aromatic compound of the present invention is as follows. "A gas containing hydrogen is brought into contact with carbon monoxide and Z or carbon dioxide and in the presence of a catalyst, and hydrogen in the gas is reduced. “Methaney step that reacts with carbon monoxide and carbon dioxide or carbon dioxide to convert to methane and water” and “Aromatization by reacting lower hydrocarbons and methane obtained in methanation step in the presence of catalyst” An aromatic compound synthesis step for obtaining a product gas containing a compound and hydrogen is included as an essential step.
  • Preferred embodiments of the present invention include three steps of an aromatic compound synthesis step, an aromatic compound separation step and a methanization step as essential steps, and are obtained in the methanation step in the aromatic compound synthesis step. And a method having a means for circulating and supplying the gas.
  • substantially containing carbon monoxide and Z or carbon dioxide In addition to a lower hydrocarbon-containing gas, various lower hydrocarbons containing carbon monoxide and Z or carbon dioxide are contained. Aromatic compounds can be produced using gas. In addition, this These gases are supplied to an appropriate process, and the above “substantially free of carbon monoxide and Z or carbon dioxide” adversely affects the catalytic reaction in the aromatic compound generation process. It should be noted that the amount of monoxide carbon and / or diacid carbon in the range includes, but does mean. Further, the following reaction formula is an example of a reaction formula that occurs in the process described later, formulas (1) and () are reaction formulas for the aromatic compound synthesis step, and formulas (2) and (3) are It is a reaction formula.
  • the “lower hydrocarbon” in the present invention means a hydrocarbon compound having 1 to 4 carbon atoms, and specifically includes methane, ethane, propane, n-butane, i-butane and unsaturated compounds thereof.
  • methane and unsaturated hydrocarbon compounds having 2 to 4 carbon atoms are preferred, and methane is more preferred.
  • Gases containing lower hydrocarbons that are substantially free of carbon monoxide and Z or carbon dioxide are typically natural gas (LNG, NG), LPG, methane hydrate, petrochemical or petroleum refining. Off-gas etc. are mentioned.
  • the lower hydrocarbon gas containing carbon monoxide and Z or carbon dioxide includes coke oven gas, coal gasification gas, asphalt gasification gas, heavy oil residue gasification gas, petroleum coatus gasification gas, reformer gas, and oxo gas. Biogas, biomass gasification gas, waste gasification gas and the like.
  • Coke oven gas also contains lower hydrocarbons but contains carbon monoxide and Z or carbon dioxide and is used as a raw material gas for methane production.
  • the above-mentioned lower hydrocarbon-containing gas contains an amount of hydrogen according to its type, and hydrogen produced and by-produced should be used as the hydrogen source.
  • the lower hydrocarbon and the lower hydrocarbon-containing gas are supplied to the subsequent aromatic compound synthesizing step, and the methane generating raw material gas is supplied to the later-described methanization step. Is preferred. Substantially free of carbon monoxide and Z or carbon dioxide
  • the gas may be supplied to the methanization process together with the power mono-acid carbon and Z or di-acid carbon to supply the aromatic compound synthesis process.
  • various lower hydrocarbon-containing gases containing carbon monoxide and Z or carbon dioxide they may be supplied to the methanization process.
  • the lower hydrocarbon is reacted in the presence of a catalyst to obtain a product gas containing the aromatic compound, the lower hydrocarbon and hydrogen.
  • a catalyst described in JP-A-2001-334151 that is, one or more of Re or its compound is essential, and Zn, Ga, Co, Fe or a compound thereof is optionally included.
  • a catalyst comprising a metallosilicate and a catalyst material containing one or more of the above, one or more of Cr, W, Mo or one of these compounds, one or more of the rare earth metals or the compounds thereof is suitable.
  • a porous body having a large number of pores is preferable.
  • aluminosilicates molecular sieves 5A (UTA), faujasite (NaY) and NaX
  • ZSM-5, ZSM-11, ZSM-22 which are porous carriers made of silica and alumina with various compositional powers.
  • ZSM-48, ⁇ , mordenite, MCM-22 and the like In the case of a carrier mainly composed of phosphoric acid, a carrier having 4 to 8 mm micropores or channels may be exemplified as a porous carrier represented by SAPO-5, SAPO-34, VPI-5, etc. I can do it.
  • meso-fine materials such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) of mesopores (10-: LOOA) containing silica as a main component and partly alumina as a component.
  • Porous support The mesopore diameter is adjusted to 4-8A by CVD using silicon alkoxide etc. Examples of the adjusted modified mesoporous material can be given.
  • Metallosilicates are porous carriers such as silica or alumina aluminosilicate, titanosilicate with silicate and titer force, Fe, Ti, Mn, Cr, In, Ga, Mo , W, Co, V, Zn and the like, and those having a pore diameter of 4 to 8A can be suitably used.
  • micro and mesopore strengths ⁇ 8A support is preferred 5.5
  • Metallosilicates in the range of 5 ⁇ 1A are more preferred
  • metallosilicates with a surface area of 200-1000m 2 Zg are preferred. More preferable.
  • a commonly available porous carrier having a silica / alumina ratio of 1 to 8000 can be used as the content ratio of silica and alumina in the case of amylnosilicate.
  • a commonly available porous carrier having a silica / alumina ratio of 1 to 8000 can be used.
  • the silica Z alumina ratio is preferably 10 to: LOO.
  • a catalyst material such as Re can be prepared as a precursor when it is supported on a meta-mouth silicate.
  • precursors include halides such as chlorides and bromides, mineral salts such as nitrates, sulfates and phosphates, carboxylates such as carbonates, acetates and oxalates, and metalluronyl complexes.
  • Illustrative examples include organometallic salts such as pentagel complexes.
  • examples of rhenium precursors include rhenium carbonyl compounds (Re (CO)
  • Examples thereof include mineral salts such as chloride, nitrate, sulfate and phosphate, and carbonates such as carbonate, acetate and oxalate. Further, a complex complex salt or complex oxide can be used as the precursor.
  • the amount of the catalyst material supported on the metal silicate silicate is not particularly limited, but is usually 0.001 to 50 weights as a value based on the total catalyst weight for each catalyst material group. %, Preferably 0.01 to 40% by weight.
  • the total supported amount of the catalyst material is generally 0.002 to 50% by weight, preferably 0.02 to 40% by weight based on the total catalyst weight. %.
  • the above supported amount range indicates the supported amount as a precursor when a precursor is used as the catalyst material.
  • the above-mentioned metal precursor silicate is impregnated and supported as an aqueous solution of a metal precursor or an organic solvent such as alcohol. And (ii) a method of carrying out heat treatment in an inert gas or oxygen gas after being supported by an ion conversion method. An example of this method will be described more specifically.
  • a metallosilicate support is impregnated with an aqueous rhenium nitrate solution, and further dried to remove an appropriate amount of solvent, and then in a nitrogen-containing oxygen stream or
  • a meta-mouth silicate catalyst carrying rhenium can be produced by heat treatment usually in a pure oxygen stream at 250 to 800 ° C, preferably 350 to 600 ° C.
  • a catalyst comprising a complex oxide salt or complex complex salt can be obtained by the same supporting method or heat treatment method.
  • Rhenium and Z or a compound thereof (hereinafter referred to as the first component), zinc, gallium, iron, cobalt and their compound power Group force consisting of at least one kind selected as desired (hereinafter referred to as the second component)
  • At least one selected from the group consisting of chromium, tungsten, molybdenum or their compound power (hereinafter referred to as the third component), rare earth metal or their compound power at least one selected as desired
  • the type and the catalyst comprising the carrier were selected by supporting the first component on the meta-mouth silicate and then the second component and the like selected sequentially if desired.
  • each component can be produced by a method in which the second and subsequent components are supported in an appropriate order, and a method in which each component is simultaneously supported by the meta-mouth silicate.
  • the first component is first supported on the metal silicate. Thereafter, each component may be supported sequentially, or a plurality of components may be supported simultaneously.
  • the catalyst may be in the form of powder, pellets, or other shapes!
  • the catalyst is subjected to a catalyst activation process including pretreatment with hydrogen gas, hydrazine, metal hydride compounds such as BH, NaH, A1H, etc., in order to shorten the induction period for producing aromatic compounds.
  • the lower hydrocarbon used for the reaction raw material various gases containing the lower hydrocarbon in a dominant amount can be used. Specifically, LNG containing 50% by weight, preferably 70% by weight or more of methane can be shown.
  • the reaction is preferably carried out in a flow-type reaction mode such as a fixed bed, a moving bed, a fluidized bed or the like, which is usually performed in a batch-type or flow-type reaction mode.
  • the reaction temperature is usually 300-80. 0. C, preferably 450-775.
  • C reaction pressure is usually 0.1 to: LOkgZcm 2 (cage pressure, the same applies hereinafter), preferably 1 to 7 kgZcm 2 , and weight hourly space velocity (WHSV) is usually 0.1 to 10 and preferably Is between 0.5 and 5.0.
  • aromatic compound separation step “aromatic compound” and “unreacted lower hydrocarbon, generated lower hydrocarbon and hydrogen-containing gas” are separated from the product gas obtained in the above aromatic compound synthesis step. And collect.
  • the “lower hydrocarbon (unreacted lower hydrocarbon and produced lower hydrocarbon) and hydrogen-containing gas” from which the aromatic compound has been separated is sent to the next methanation step.
  • the components of the aromatic compound in the present invention are benzene, toluene, xylene, naphthalene, trimethylbenzene, naphthalene, methylnaphthalene, dimethylnaphthalene, and the like, preferably benzene, toluene, and naphthalene.
  • the produced lower class hydrocarbons are ethane, ethylene and the like by-produced in the process of producing aromatics from lower hydrocarbons.
  • the means for separating the aromatic compound is not particularly limited, but a method of cooling the gas with a heat exchanger to condense the high boiling point compound and performing gas-liquid separation with a separator with a demister is preferred.
  • the cooling temperature should be lowered with a refrigerator.
  • the aromatic compound is benzene
  • the pressure is increased to the pressure of the next step (methanization step), and the mixture is cooled to 6 ° C and separated.
  • the pressure is preferably higher, but power loss occurs when the pressure is higher than necessary.
  • the temperature is also preferably low, but if it is lowered to less than 6 ° C, the aromatic compound (benzene) is solidified and difficult to separate. When the temperature is lowered to less than 1 ° C, it becomes necessary to separate and remove moisture, and the cooling equipment becomes large and the equipment becomes expensive.
  • Other separation methods include a separation method using an absorbing solution.
  • the aromatic compound is separated as a liquid component.
  • the composition of the unreacted lower hydrocarbon and the hydrogen-containing gas from which the aromatic compound is separated differs depending on the raw material gas composition and the like, and thus can be uniformly defined.
  • gas components ethane and hydrogen, carbon monoxide
  • Examples include carbon oxides and hydrocarbons having 2 to 5 carbon atoms.
  • the hydrogen-containing gas obtained in the aromatic compound separation step may be supplied as it is to the methanization step, but hydrogen is separated from the hydrogen-containing gas and the separated hydrogen is supplied to the methanization step. It is industrially efficient and preferable to supply the remaining gas from which hydrogen has been separated (a gas mainly composed of unreacted lower hydrocarbon) to the aromatic compound synthesis step.
  • Hydrogen-containing gas power examples include a method using a hydrogen separation membrane and a pressure-cash swing adsorption method (PSA method).
  • PSA method pressure-cash swing adsorption method
  • hydrogen in the gas reacts with carbon monoxide and Z or carbon dioxide and converts it to methane and water.
  • hydrogen gas generally used industrially, hydrogen generated during the aromatic compound synthesis step (i) above, and hydrogen compound generated during the aromatic compound synthesis step (i) above.
  • hydrogen in H-containing gas used as raw material gas for example, coke oven gas
  • Coal gasification gas asphalt gasification gas, heavy oil residue gasification gas, petroleum coke gasification gas, reformer gas, oxo gas, biogas, biomass gasification gas, waste gasification gas, etc. can be used.
  • hydrogen produced and by-produced may be used as a hydrogen source.
  • a hydrogen source for example, (a) separated from the above-mentioned raw gas, petrochemical, off-gas catalyst discharged from petroleum refining process, etc. (B) Hydrogen from reforming using hydrocarbons such as naphtha, LNG, LPG, etc., and using steam, oxygen, carbon dioxide, etc., (c) Hydrogen from direct thermal decomposition of methane using plasma, ( d) By-product hydrogen from soda factories, (e) Hydrogen produced by electrolysis of water using electricity generated by hydro, thermal, wind, and nuclear power generation.
  • the thermal decomposition of water is divided into several chemical reactions, and it is a thermochemical hydrogen production process that decomposes water into hydrogen and oxygen with only heat lower than the temperature required for direct thermal decomposition. More produced hydrogen can also be used.
  • the exit gas of a high-temperature gas furnace using nuclear fuel as a heat source can also be used.
  • gamma rays and near ultraviolet rays can be used as energy sources for water decomposition.
  • hydrogen as an energy source may be used when a society using hydrogen as an energy source may be used.
  • the present invention can be positioned as an industrial diacid / carbon treatment technique because monoxide / carbon and / or diacid / carbon is consumed in the methanization process.
  • the methanization step is represented by the above formulas (2) and (3), and specifically, for example, as shown in the following ( ⁇ ) to ( ⁇ ).
  • the reaction in the aromatic compound synthesis step (the above formula (1)) has an equilibrium of the reaction.
  • carbon monoxide and Z or carbon dioxide supplied to the methanation step carbon monoxide and Z or carbon dioxide recovered from outside the production process of the present invention can be used.
  • the carbon dioxide that also collects various combustion exhaust gas power can be used. Examples include combustion gas from power plant turbines and boilers, various heating furnaces in chemical plants, and carbon dioxide recovered from exhaust gas from various incinerators.
  • the present invention can fix carbon monoxide and Z or carbon dioxide by a methanation reaction, which is also effective from the viewpoint of reducing carbon dioxide emission.
  • a known catalyst known as a methanation reaction catalyst can be used without limitation.
  • a typical catalyst is a nickel catalyst.
  • the reaction temperature is usually 200-500 ° C.
  • the methanation reaction is a strongly exothermic reaction, so if the concentration of monoxide-carbon and Z or diacid-carbon in the inlet gas is high, the reactor is divided into two or three stages. It is necessary to control the reaction temperature by installing a cooler in the middle or recycling the reaction gas. Carbon monoxide and carbon dioxide or carbon dioxide are converted to methane to almost equilibrium composition.
  • steam may be added to the methanization process so that the hydrocarbon can be reformed.
  • the appropriate amount of water vapor added to the methanation process is 0.8 to 4.5 times the weight of carbon supplied to the methanation process.
  • the gas from which the aromatic compound has been separated in the separation step described above is divided into a first fraction and a second fraction, the second fraction is burned, and the combustion exhaust gas power recovery is performed. It is recommended that the diacid carbon be fed to the methanization process along with the first fraction.
  • the heat source from the combustion can be used for maintaining the reaction temperature in the aromatic compound synthesis step, and the force can be recovered from the carbon dioxide discharged out of the system.
  • the viewpoint of environmental protection is also favorable. It is also preferable from the viewpoint of preventing accumulation of non-condensable gas such as nitrogen and impurities in the system.
  • the distribution ratio between the first fraction and the second fraction is determined in consideration of the reaction temperature in the aromatic compound synthesis step.
  • a method for recovering carbon dioxide from combustion exhaust gas for example, the method described in JP-A-5-184865, that is, a combustion exhaust gas and a monoethanolamine (MEA) aqueous solution under atmospheric pressure are used.
  • a method of removing the carbon dioxide contained in the combustion exhaust gas and recovering the carbon dioxide is preferable.
  • the MEA aqueous solution is preferably an aqueous solution with a concentration of 35% by weight or more.
  • the combustion exhaust gas cooler has a tower type structure, a watering nozzle is provided in the upper part of the tower, a filling part is formed in the central part, and a humidified cooling water circulation pump is attached.
  • Combustion exhaust gas of 100 to 150 ° C is usually supplied with the upper force of the combustion exhaust gas cooler and is derived from the lower part and then supplied to the lower part of the de-CO tower.
  • the CO removal tower is equipped with a spray nozzle for MEA aqueous solution at the top of the tower, and packed in the center.
  • the part is formed and a CO absorption MEA aqueous solution discharge pump is attached. And de CO
  • the flue gas supplied to the lower part of the tower is connected to the MEA aqueous solution by AC
  • the exhausted flue gas is discharged out of the system from the top of the de-CO tower.
  • the MEA aqueous solution regeneration tower is provided with a spray nozzle for MEA waste solution at the top of the tower, a filling part is formed at the center, and a regeneration heater (reboiler) is attached. Then, the MEA aqueous solution in which CO is absorbed is cooled by heat exchange ⁇ and then put into the MEA aqueous solution regeneration tower.
  • the carbon dioxide dioxide released from the MEA aqueous solution is discharged out of the upper power system of the MEA aqueous solution regeneration tower.
  • a hydrogenated aromatic compound in the hydrogenated aromatic compound synthesis step, can be obtained by hydrogenating the aromatic compound recovered in the above aromatic compound separation step in the presence of a catalyst.
  • the hydrogenation reaction of the aromatic compound is a technique that has been known for a long time, and any conventionally known technique can be used in the present invention.
  • a catalyst as an active metal, rhodium, iridium, platinum, ruthenium, rhenium, palladium, molybdenum, nickel, tungsten, vanadium, osmium, conoleto, chromium, iron, oxides thereof, sulfur oxides thereof.
  • the reaction temperature is usually 150 to 300 ° C., preferably 180 to 270 ° C.
  • the reaction pressure is usually 4 to 8 Okg / cm 2 , preferably 9 to 70 kg Zcm 2 .
  • the hydrogen source for example, a hydrogen-containing gas obtained by reducing the carbon monoxide carbon in the gas by performing a shift reaction of the above-described coke oven gas or the like is used. I like it.
  • the Shift reaction is represented by the formula CO + H 0 ⁇ CO + H and is a reaction well known to those skilled in the art.
  • the catalyst an iron-chromium catalyst and a copper-zinc catalyst are used, the reaction temperature is usually 180 to 480 ° C, and the reaction pressure is usually 1 to 34 kgZcm 2 .
  • the above-mentioned methanation reaction can also be used as a method for reducing carbon monoxide and carbon in the gas.
  • the hydrogen source for example, the above-mentioned coke oven gas isotonicity can use a hydrogen-containing gas in which carbon monoxide is reduced by a pressure swing adsorption (PSA) method or a method using a hydrogen separation membrane.
  • PSA pressure swing adsorption
  • the product gas force hydrogenated aromatic compound and the hydrogen-containing gas obtained in the hydrogenated aromatic compound synthesis step are separated and recovered.
  • the component of the hydrated aromatic compound is a hydride such as benzene (C H etc.) described above.
  • gas component examples include lower hydrocarbons and carbon dioxide, as well as hydrogen.
  • the means for separating the hydrogenated aromatic compound is not particularly limited, but a method of cooling the gas with a heat exchanger to condense the high-boiling point compound and separating it with a separator with a demister is suitable. Then, the hydrogenated aromatic compound is separated by cooling to 6 ° C while maintaining the pressure of the hydrogenation reaction.
  • FIG. 1 is a flow sheet showing an example of a method for producing an aromatic compound according to the present invention.
  • coal gasification gas H, CO, CO, N
  • coal gasification gas H, CO, CO, N
  • a diacid / carbon removal step (D) is included according to a preferred embodiment of the present invention.
  • a shift reaction step (E), a hydrogenation step (F), and a hydrogenated aromatic compound separation step (G) are provided to reform part of the coke oven gas and produce hydrogenated aromatic compounds together. Talk! The gas flow to each process is as follows.
  • Coal gasification gas is supplied from the line (1) to the methanization process (C).
  • the coke oven gas is introduced from the line (2) and divided into two streams, one of which is merged from the line (3) to the line (1) and mixed with the coal gasification gas as a methany process ( The other is fed from line (4) to the shift reaction step (E).
  • the gas (methane-containing gas) obtained in the methanization step (C) is supplied from the line (5) to the aromatic compound synthesis step (A), and the product gas obtained in this step is the line ( The aromatic compound separation step (B) is performed from 6).
  • the gas on the line (9) side is mixed with the air of the line (10) and used as a fuel in the aromatic compound synthesis step (A) such as the line (11).
  • the combustion exhaust gas is also supplied to the diacid / carbon removal process (D) in the line (12), and the carbon dioxide recovered in the process is combined with the recycle gas from the lines (13) to the line (8) to the methane process. Supplied to (C).
  • the aromatic compound separated in the aromatic compound separation step (B) is, if necessary, a benzene fraction (CH 3) and other components (high-boiling components represented by components having 7 or more carbon atoms). And
  • Such separation can be easily performed, for example, by a suitable distillation column.
  • the benzene extracted from the line (14) is supplied to the hydrogenation step (F) to be hydrotreated.
  • the hydrogen required for the hydrotreatment is supplied from the shift reaction step (E) through line (16).
  • the gas obtained in the hydrogenation step (F) is supplied to the hydrogenated aromatic compound separation step (G) from line (17), and the gas from which the hydrogenated aromatic compound has been separated is supplied to the line (18). From there, it is supplied to the methanization process (c) as recycled gas.
  • the hydrogenated aromatic compound is then removed from line (19).
  • FIG. 2 is a flow sheet showing another example of the method for producing an aromatic compound according to the present invention.
  • coke oven gas H, CH, CO, CO
  • a diacid-carbon removal step (D) is included according to a preferred embodiment of the present invention.
  • the gas flow to each process is as follows.
  • the coke oven gas is supplied from the line (1) to the methanization process (C).
  • the flue gas collected from the outside is supplied from the line (20) to the carbon dioxide removal step (D).
  • the gas (methane-containing gas) obtained in the methanization process (C) is combined with aromatic compounds from the line (5).
  • the product gas supplied to the synthesis step (A) and obtained in this step is subjected to the aromatic compound separation step (B) from the line (6).
  • the gas on the line (9) side is mixed with the air of the line (10) and used as a fuel in the aromatic compound synthesis step (A) such as the line (11).
  • the combustion exhaust gas is also supplied to the carbon dioxide removal step (D) with the line (12) force.
  • the flue gas from which the external force has also been recovered is supplied to the line (20) force and the nitric acid and carbon removal step (D).
  • the carbon dioxide recovered in the carbon dioxide removal step (D) is supplied from the line (13) to the methanation step (C).
  • the aromatic compound separated in the aromatic compound separation step (B) is, if necessary, a benzene fraction (CH 3) and other components (high-boiling components typified by components having 7 or more carbon atoms). And
  • Such separation can be easily performed, for example, by a suitable distillation column.
  • the aromatic compound produced by the above-described method can be used not only for hydrogenated aromatic compounds but for all raw materials of generally produced aromatic compound derivatives.
  • benzene for example, ethenylbenzene (raw material of styrene and polystyrene resin) by alkylation with ethylene, cumene (raw material of phenol, bisphenol-8, polycarbonate resin) by alkylation with propylene, and higher grade by alkylation with higher olefin.
  • Alkylbenzene (a raw material for alkylbenzene sulfonic acid) can be produced.
  • alkylbenzenes such as toluene and xylene can be produced by alkylation using methanol or the like.
  • terephthalic acid can be produced by an acid-oxidation reaction of noraxylene, and polyethylene terephthalate can be produced by reacting this with ethylene glycol.
  • cyclohexane as a hydrogenated aromatic compound
  • cyclohexanone cyclohexano Can produce force prolatatam.
  • 6-nylon can be produced by ring-opening polymerization of strong prolatatam.
  • cyclohexene can be produced by dehydrogenation of cyclohexane, and adipic acid can be produced from this. Adipic acid reacts with hexamethyldiamine to give 6, 6 nylon.
  • maleic anhydride is produced by a selective oxidation reaction, and this is catalytically hydrogenated to produce y-peptite ratatone, tetrahydrofuran, 1,4 butanediol, etc. it can. ⁇ ⁇ ⁇ ⁇ Alkyl-12 pyrrolidone and the like can be produced by reacting ⁇ -butyrolatatone with alkylamine or ammonia.
  • tetrahydrofuran can be selectively produced from 1,4 butanediol by a dehydration reaction, and from this, polytetramethylene glycol ether which is a low polymerization product can be produced using an acid catalyst or the like.
  • Polybutylene terephthalate can be produced by a condensation reaction of 1,4 butanediol and terephthalic acid. From naphthalenes, phthalic acid and its derivatives can be produced with acid. Furthermore, lower olefins such as ethylene, propylene and butene can be produced by catalytic cracking of aromatic compounds or hydrogenated aromatic compounds. Further, lower olefin derivatives derived therefrom, for example, ethylene derivatives include ethylene oxide by oxidation reaction, ethylene glycol, ethanolamine, glycol ether, etc., salt butyl monomers by chlorine, 1, 11 —Trichloroethane, polysalt-vinyl resin, salt-vinylidene and the like.
  • olefins and higher alcohols can be produced by using olefins as a raw material by an oxo reaction followed by a hydrogenation reaction
  • low density and high density polyethylene, etc. can be produced.
  • butyl acetate can be produced by reaction with acetic acid
  • acetoaldehyde and its derivative ethyl acetate can be produced by the Wicker reaction.
  • Propylene derivatives include acrylo-tolyl by ammonic acid, acrolein by selective acid, acrylic acid and acrylate, normal butyraldehyde by oxo reaction, oxo alcohol such as 2-ethylhexanol, propylene And polypropylene by polymerization of propylene, propylene oxide and propylene glycol by selective oxidation of propylene, and isopropyl alcohol by hydration of propylene.
  • acetone can be produced by the Hacker reaction.
  • methyl isobutyl ketone and acetone cyanohydrin can be produced from acetone. From the Acetosian hydrin Tilmetatalylate can be produced.
  • butadiene can be produced by acid dehydrogenation of butene.
  • 1,4-butanediol can be produced from butadiene through acetoxylation, hydrogenation, and hydrolysis.
  • pyrrolidones such as ⁇ -butyrate ratataton and ⁇ -methylpyrrolidone can be produced, followed by dehydration reaction.
  • tetrahydrofuran, polytetramethylene glycol and the like can be produced.
  • various synthetic rubbers can be produced with a butadiene strength.
  • Coal gasification gas ( ⁇ , CO, CO, N) and coke oven as raw material gas supplied from outside are Coal gasification gas ( ⁇ , CO, CO, N) and coke oven as raw material gas supplied from outside
  • Aromatic compounds were continuously produced. Coke oven gas was used after pretreatment for desulfurization, detarring, and dedusting according to conventional methods.
  • the catalyst raw material was kneaded to form a molded body, then dried at 100 ° C. for 5 hours and then calcined at 750 ° C.
  • the obtained fired body was immersed in an aqueous molybdenum molybdate solution, and the fired body was impregnated with a molybdenum component (amount of molybdenum supported: 6% by weight).
  • the obtained molybdenum-supported calcined product was calcined at 550 ° C for 10 hours to obtain a catalyst precursor, and then treated at 350 ° C for 24 hours in a C H + 11H mixed gas atmosphere.
  • Metani spoon conditions of step (C) the pressure: 10kgZcm 2, temperature (inlet): 350 ° C, GHSV: was 300h _1.
  • Table 1 the composition of the gas supplied to the methanation process and the composition of the product gas (methane-containing gas) in the methanation process (composition after cooling to 40 ° C in the cooler and separating the condensed water) Met.
  • the gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied to the aromatic compound synthesis step (A) from the line (5), where it was used for the catalytic reaction of methane.
  • Fang condition aromatic compound synthesis step (A) pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1.
  • Table 2 shows the composition of the product gas obtained in the aromatic compound synthesis step (A).
  • the reaction temperature in the aromatic compound synthesis step (A) is the fuel from the line (11), that is, the unreacted methane and hydrogen-containing gas at line (9) force and the air at line (10) force.
  • the heat from the combustion of the mixed gas was maintained by using heat exchange.
  • Combustion exhaust gas generated by the combustion is supplied to the line (12) force also diacid I ⁇ oxygen removal step (D), the recovered diacid I ⁇ oxygen l lkNm 3 / H in the process, lOkg / After boosting to cm 2 , line (13) force was also supplied to the methany process (C).
  • the carbon dioxide removal step (D) was carried out using a 40% by weight MEA aqueous solution as the carbon dioxide absorbing solution in accordance with the method described in the example of JP-B-5-184865.
  • the product gas obtained in the aromatic compound synthesis step (A) was supplied from the line (6) to the aromatic compound separation step (B) for processing. That is, the product gas was pressurized to 10 kgZcm 2 by a compressor and then cooled to a gas temperature of 6 ° C. by a refrigerator. And demister It was separated into condensate and gas by a single separator.
  • the separated gas (unreacted methane and hydrogen-containing gas) is derived from the line (7) and divided into two streams, one of which is recycled from the line (8) as a recycle gas (C)
  • the other was used as a fuel for reaction heat in the aromatic compound synthesis step (A) from line (9).
  • the separated condensate was distilled under the conditions of pressure: 10 kgZcm 2 and reflux ratio: 0.5, and separated into benzene and other components.
  • the benzene flow rate was 22 TZH.
  • the benzene 22TZH was maintained at a pressure of 20 kg / cm 2 and a temperature of 200 ° C. from the line (14) and the hydrogen-containing gas obtained in the shift reaction step (E) from the line (16), respectively.
  • GHSV was 500h _1.
  • Table 4 shows the composition of the raw material gas before hydrogenation and the product gas after the hydrogenation reaction to which each line force was supplied.
  • the product gas obtained in the hydrogenation step (F) was supplied to the line (17) force hydrogenated aromatic compound separation step (G) for processing. That is, the product gas was cooled to a gas temperature of 1 ° C. with a refrigerator and then separated into condensate and gas by a separator with a demister. That is, the product gas was cooled to a gas temperature of 1 ° C with a refrigerator and separated into condensate and gas by a separator with a demister.
  • the amount of recovered condensate (C H) produced is
  • the recovered gas was supplied to the methanation process (C) as a recycle gas from the line (18).
  • Coke oven gas H, CH, CO, CO, N
  • H, CH, CO, CO, N Coke oven gas
  • Coke oven gas was used after pretreatment of desulfurization, detarring, and dedusting in accordance with conventional methods.
  • the gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied to the aromatic compound synthesis step (A) from the line (5), where it was used for the catalytic reaction of methane.
  • Fang condition aromatic compound synthesis step (A) pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1.
  • the composition of the product gas obtained in the aromatic compound synthesis step (A) was as shown in Table 7.
  • the reaction temperature of the aromatic compound synthesis step (A) is determined by mixing the fuel from line (11), that is, the mixture of unreacted lower hydrocarbon and hydrogen containing gas with line (9) force and air with line (10) force.
  • the heat from gas combustion was maintained by using heat exchange.
  • the flue gas generated by the above combustion was also supplied to the carbon dioxide removal step (D) with line (12) force.
  • the flue gas recovered from the external column was supplied to the line (20) force and the carbon dioxide removal step (D).
  • the diacid carbon 24 4kNm 3 ZH recovered in the diacid carbon removal step (D) was pressurized to 10 kgZcm 2 and then the line (13) force was also supplied to the methany step (C).
  • the carbon dioxide removal step (D) was carried out according to the method described in the example of JP-A-5-184865, using a 40% by weight MEA aqueous solution as the carbon dioxide absorbing solution. .
  • the product gas obtained in the aromatic compound synthesis step (A) was supplied from the line (6) to the aromatic compound separation step (B) for processing. That is, the product gas was pressurized to 10 kgZcm 2 by a compressor and then cooled to a gas temperature of 6 ° C. by a refrigerator. Then, it was separated into condensate and gas by a separator with a demister.
  • the separated gas (unreacted lower hydrocarbon and hydrogen-containing gas) is derived from the line (7) and is divided into two streams, one of which is recycled from the line (8) as a recycle gas process ( The other was used as fuel for reaction heat in the aromatic compound synthesis step (A) from line (9).
  • the separated condensate was distilled under the conditions of pressure: lOkgZcm reflux ratio: 0.5 and separated into benzene and other components. The flow rate of benzene was 29 TZH.
  • Coke oven gas H, CH, CO, CO, N
  • combustion as raw material gas that also supplies external power An aromatic compound was continuously produced according to the flow sheet shown in Fig. 2, using a mixed gas of carbon dioxide and carbon dioxide that also recovered the exhaust gas power.
  • Coke oven gas was used after pretreatment for desulfurization, detarring, and dedusting according to conventional methods.
  • the methanation process (C) includes coke oven gas from line (3), aromatic compound separation process (B) described later from line (8), Recycle gas (lower hydrocarbon and hydrogen-containing gas), Carbon dioxide (13) was supplied from carbon dioxide (13), and a hydrogenated aromatic compound separation step (G), which will be described later, was supplied from the line (18). All of these gases were supplied to the methanization process (C) via line (1).
  • Methany Process (C) conditions are pressure: 10kgZcm 2 , temperature (inlet): 350.
  • Table 9 shows the composition of the gas supplied to the methane process and the composition of the product gas (methane-containing gas) in the methane process (the composition after cooling to 40 ° C and separating the condensed water). Met.
  • the gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied from the line (5) to the aromatic compound synthesis step (A), where it was used for the catalytic reaction of methane.
  • Fang condition aromatic compound synthesis step (A) pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1.
  • the composition of the product gas obtained in the aromatic compound synthesis step (A) is shown in Table 10. It was street.
  • the reaction temperature in the aromatic compound synthesis step (A) is the fuel from the line (11), that is, the unreacted lower hydrocarbon and the hydrogen-containing gas of line (9) force and the air of line (10) force.
  • the heat generated by the combustion of the mixed gas was maintained by using heat exchange.
  • the flue gas generated by the above combustion was also supplied to the carbon dioxide removal step (D) with line (12) force.
  • the flue gas recovered from the external column was supplied to the line (20) force and the carbon dioxide removal step (D).
  • the carbon dioxide 2 lkNm 3 ZH recovered in the carbon dioxide removal process (D) is boosted to 10 kgZcm 2 and then the line (13) force is also passed through the line (1) to the methanoly process (C).
  • the diacid soot carbon removal step (D) is described in JP-A-5-184865. According to the method described in the examples, a 40% by weight MEA aqueous solution was used as the carbon dioxide absorption solution.
  • the product gas obtained in the aromatic compound synthesis step (A) was processed in the aromatic compound separation step (B) from the line (6). That is, the product gas is lOkgZcm by the compressor.
  • the pressure was increased to 2 and then cooled to a gas temperature of 6 ° C with a refrigerator. And it was isolate
  • the separated gas (unreacted lower hydrocarbon and hydrogen-containing gas) is derived from line (7) and divided into two streams, one of which passes from line (8) via line (1).
  • Recycled gas was supplied to the methanization process (C), and the other was used as fuel for the reaction heat in the aromatic compound synthesis process (A) from line (9).
  • the separated condensate was distilled under the conditions of pressure: 10 kgZcm 2 , reflux ratio: 0.5, and separated into benzene and other components.
  • the outflow rate of benzene was 20TZH.
  • the benzene 20TZH is from the line (14), and the hydrogen-containing gas obtained in the shift reaction step (E) is from the line (16), and the hydrogen is maintained at a pressure of 20 kgZcm 2 and a temperature of 200 ° C, respectively. Supplied to the conversion step (F). GHSV was 500h _1. Table 12 shows the composition of the raw material gas before hydrogenation and the product gas after the hydrogenation reaction to which each line force was supplied.
  • the product gas obtained in the hydrogenation step (F) was supplied to the line (17) force hydrogenated aromatic compound separation step (G) for processing. That is, the product gas was cooled to a gas temperature of 1 ° C. with a refrigerator and then separated into condensate and gas by a separator with a demister. The volume of recovered condensate (C H) was 21 TZH. The recovered gas is

Abstract

Disclosed is an industrially advantageous process for producing an aromatic compound by means of a catalytic reaction of a lower hydrocarbon. The process comprises: a methanization step where a hydrogen-containing gas is allowed to contact with carbon monoxide and/or carbon dioxide in the presence of a catalyst to cause the reaction of the hydrogen in the gas with carbon monoxide and/or carbon dioxide, thereby converting these components into methane and water; and an aromatic compound synthesis step where a lower hydrocarbon is reacted with methane produced in the methanization step in the presence of a catalyst to generate a gaseous product containing an aromatic compound and hydrogen.

Description

明 細 書  Specification
芳香族化合物の製造方法及び水素化芳香族化合物の製造方法 技術分野  TECHNICAL FIELD The present invention relates to an aromatic compound production method and a hydrogenated aromatic compound production method.
[0001] 本発明は、芳香族化合物の製造方法に関し、詳しくは、メタン等の低級炭化水素の 触媒反応による工業的に有利な芳香族化合物の製造方法に関する。また、更には、 本発明により得られた芳香族化合物を水素化する水素化芳香族化合物の製造方法 に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing an aromatic compound, and more particularly to a method for producing an industrially advantageous aromatic compound by a catalytic reaction of a lower hydrocarbon such as methane. Furthermore, the present invention relates to a method for producing a hydrogenated aromatic compound in which the aromatic compound obtained by the present invention is hydrogenated.
背景技術  Background art
[0002] メタン等の低級炭化水素の触媒反応による芳香族化合物の製造については、触媒 の改良につ ヽての数多くの提案がなされて!/ヽる(特許文献 1〜7)。  [0002] Regarding the production of aromatic compounds by catalytic reaction of lower hydrocarbons such as methane, many proposals have been made for improving the catalyst! (Patent Documents 1 to 7).
[0003] 特許文献 1 :特開平 10— 272366号公報 Patent Document 1: Japanese Patent Laid-Open No. 10-272366
特許文献 2:特開平 11― 60514号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-60514
特許文献 3:特開 2001— 334151号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-334151
特許文献 4:特開 2001 - 334152号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-334152
特許文献 5:特開 2002— 336704号公報  Patent Document 5: Japanese Patent Laid-Open No. 2002-336704
特許文献 6:特開 2004— 97891号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-97891
特許文献 7:特開 2004— 269398号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-269398
[0004] し力しながら、プロセス自体の改良につ 、ては十分な提案は未だなされて!/ヽな 、様 であり、本発明者らの検討により、次の様な問題が見出された。 [0004] However, sufficient proposals have not yet been made to improve the process itself, and the following problems have been found by the inventors' investigation. It was.
[0005] すなわち、低級炭化水素の触媒反応による芳香族化合物の工業的な製造におい ては、反応後の未反応低級炭化水素含有ガスは循環使用されるべきである力 低級 炭化水素の芳香族化反応では水素が副生し、芳香族化合物合成工程で得られた生 成ガスには水素が含まれている。したがって芳香族化合物を分離した後の未反応低 級炭化水素含有ガスをそのまま循環使用すると、水素による低級炭化水素の希釈に よって工業的に十分な反応成績が得られない。 [0005] That is, in the industrial production of aromatic compounds by catalytic reaction of lower hydrocarbons, the unreacted lower hydrocarbon-containing gas after the reaction should be recycled. Aromatization of lower hydrocarbons In the reaction, hydrogen is produced as a by-product, and the product gas obtained in the aromatic compound synthesis process contains hydrogen. Therefore, if the unreacted low-grade hydrocarbon-containing gas after separation of the aromatic compound is recycled as it is, industrially sufficient reaction results cannot be obtained due to the dilution of lower hydrocarbons with hydrogen.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 本発明は、上記実情に鑑みなされたものであり、その目的は、メタン等の低級炭化 水素の触媒反応による工業的に有利な芳香族化合物の製造方法を提供すること〖こ ある。 Problems to be solved by the invention [0006] The present invention has been made in view of the above circumstances, and an object thereof is to provide an industrially advantageous method for producing an aromatic compound by catalytic reaction of a lower hydrocarbon such as methane.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、上記課題を解決すべく鋭意検討した結果、メタンィ匕工程と芳香族化 合物合成工程を組合すことによって上記課題を解決できることを見出し、本発明を完 成するに至った。即ち、本発明は以下の(1)〜(12)に関する。  [0007] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by combining the methanization process and the aromatic compound synthesis process, and complete the present invention. It came to. That is, the present invention relates to the following (1) to (12).
[0008] (1)水素含有ガスと、一酸化炭素および Zまたは二酸化炭素とを触媒の存在下に接 触させ、ガス中の水素を一酸ィ匕炭素および Zまたは二酸ィ匕炭素と反応させ、メタンと 水に変換するメタンィ匕工程、及び、触媒の存在下に低級炭化水素及びメタンィ匕工程 で得られたメタンを反応させ、芳香族化合物及び水素を含有する生成物ガスを得る 芳香族化合物合成工程  [0008] (1) A hydrogen-containing gas is brought into contact with carbon monoxide and Z or carbon dioxide in the presence of a catalyst, and hydrogen in the gas reacts with carbon monoxide and carbon or Z or carbon dioxide. To obtain a product gas containing an aromatic compound and hydrogen by reacting the methane obtained in the methanization process, which is converted into methane and water, and the lower hydrocarbon and the methane process in the presence of a catalyst. Compound synthesis process
を有する芳香族化合物の製造方法。  The manufacturing method of the aromatic compound which has this.
[0009] (2)芳香族化合物合成工程で得られた生成物ガスから芳香族化合物を分離し、残り の水素含有ガスをメタンィ匕工程に供給する上記(1)に記載の芳香族化合物の製造 方法。  [0009] (2) Production of the aromatic compound according to (1) above, wherein the aromatic compound is separated from the product gas obtained in the aromatic compound synthesis step, and the remaining hydrogen-containing gas is supplied to the methanization step. Method.
[0010] (3)芳香族化合物合成工程で得られた生成物ガスから芳香族化合物を分離し、次 、 で残りの水素含有ガス力 水素を分離し、分離した水素をメタンィ匕工程に供給し、水 素を分離した残りのガスを芳香族化合物合成工程に供給する上記(1)に記載の芳 香族化合物の製造方法。  [0010] (3) The aromatic compound is separated from the product gas obtained in the aromatic compound synthesis step, and then the remaining hydrogen-containing gas power is separated by using hydrogen, and the separated hydrogen is supplied to the methanization step. The method for producing an aromatic compound according to the above (1), wherein the remaining gas from which hydrogen has been separated is supplied to the aromatic compound synthesis step.
[ooii] (4)下記 (i)〜(m)の工程カゝら成り、芳香族化合物合成工程にメタンィ匕工程で得られ たガスを循環供給する手段を有することを特徴とする芳香族化合物の製造方法。  [ooii] (4) An aromatic compound comprising the following steps (i) to (m), and having means for circulating and supplying the gas obtained in the methanization step to the aromatic compound synthesis step Manufacturing method.
[0012] (i)触媒の存在下に低級炭化水素を反応させ、芳香族化合物、低級炭化水素および 水素を含有する生成物ガスを得る芳香族化合物合成工程  [0012] (i) Aromatic compound synthesis step of obtaining a product gas containing an aromatic compound, a lower hydrocarbon and hydrogen by reacting the lower hydrocarbon in the presence of a catalyst
[0013] (ii)上記の芳香族化合物合成工程で得られた生成物ガスから芳香族化合物と低級 炭化水素および水素含有ガスとを分離して回収する芳香族化合物分離工程 [0013] (ii) Aromatic compound separation step for separating and recovering an aromatic compound and lower hydrocarbon and hydrogen-containing gas from the product gas obtained in the above aromatic compound synthesis step
[0014] (iii)上記の芳香族化合物分離工程で芳香族化合物が分離された低級炭化水素お よび水素を含有するガスに一酸化炭素および Zまたは二酸化炭素を触媒の存在下 で接触させることにより、ガス中の水素を一酸ィ匕炭素および zまたは二酸ィ匕炭素と反 応させてメタンと水に変換するメタンィ匕工程 (Iii) In the presence of the catalyst, carbon monoxide and Z or carbon dioxide are added to the gas containing the lower hydrocarbon and hydrogen from which the aromatic compound has been separated in the aromatic compound separation step. In the gas to convert hydrogen in the gas to methane and water by reacting with hydrogen and carbon dioxide or z or carbon dioxide.
[0015] (5)芳香族化合物分離工程で得られた水素含有ガス力 水素を分離し、分離した水 素をメタンィ匕工程に供給し、水素を分離した残りのガスを芳香族化合物合成工程に 供給する上記 (4)に記載の芳香族化合物の製造方法。  [0015] (5) Hydrogen-containing gas power obtained in the aromatic compound separation step Hydrogen is separated, the separated hydrogen is supplied to the methanization step, and the remaining gas from which the hydrogen has been separated is supplied to the aromatic compound synthesis step. The method for producing an aromatic compound as described in (4) above.
[0016] (6)上記のメタン化工程に一酸化炭素および Zまたは二酸化炭素を含む低級炭化 水素を供給する上記(1)〜(5)の何れかに記載の製造方法。 [0016] (6) The production method according to any one of the above (1) to (5), wherein a lower hydrocarbon containing carbon monoxide and Z or carbon dioxide is supplied to the methanation step.
[0017] (7)上記の芳香族化合物合成工程に実質的に一酸化炭素および Zまたは二酸化炭 素を含まな!/ヽ低級炭化水素を供給する上記(1)〜(5)の何れかに記載の製造方法。 [0017] (7) Supplying! / ヽ lower hydrocarbons substantially free of carbon monoxide and Z or carbon dioxide to the aromatic compound synthesis step, according to any one of (1) to (5) above The manufacturing method as described.
[0018] (8)上記のメタンィ匕工程における一酸ィ匕炭素および Zまたは二酸ィ匕炭素の供給が、 系外から回収した一酸ィ匕炭素および/または二酸ィ匕炭素を供給することにより行われ る上記(1)〜(7)の何れかに記載の製造方法。 [0018] (8) Supply of monoxide carbon and Z or diacid carbon in the above methany process supplies monoxide carbon and / or diacid carbon recovered from outside the system. The production method according to any one of the above (1) to (7), wherein
[0019] (9)上記のメタンィ匕工程における二酸ィ匕炭素の供給が、上記の分離工程で芳香族 化合物が分離されたガスを第一分画と第二分画に分け、第二分画を燃焼し、その燃 焼排ガス力 回収した二酸ィ匕炭素を第一分画と共に供給することにより行われる上 記(1)〜(8)の何れかに記載の製造方法。 [0019] (9) The supply of carbon dioxide in the above-mentioned methanization step is performed by dividing the gas from which the aromatic compound has been separated in the above-described separation step into a first fraction and a second fraction. The production method according to any one of the above (1) to (8), which is carried out by burning the fraction and supplying the recovered combustion exhaust gas power together with the first fraction.
[0020] (10)上記(1)〜(9)の何れかの方法で得られた芳香族化合物を、触媒の存在下に 水素化して水素化芳香族化合物を得ることを特徴とする水素化芳香族化合物の製 造方法。 [0020] (10) Hydrogenation characterized in that a hydrogenated aromatic compound is obtained by hydrogenating the aromatic compound obtained by any of the above methods (1) to (9) in the presence of a catalyst. A method for producing aromatic compounds.
[0021] (11)水素化工程で得られた生成物ガスから水素化芳香族化合物を分離し、残りの ガスをメタンィ匕工程に循環使用する上記(10)に記載の水素化芳香族化合物の製造 方法。  [0021] (11) The hydrogenated aromatic compound is separated from the product gas obtained in the hydrogenation step, and the remaining gas is recycled to the methanization step. Production method.
[0022] (12)芳香族化合物工程で得られた芳香族化合物及び水素を含有する生成物ガス を、水素化工程に供給する上記(10)又は(11)に記載の水素化芳香族化合物の製 造方法。  [0022] (12) Supplying the product gas containing the aromatic compound and hydrogen obtained in the aromatic compound step to the hydrogenation step, the hydrogenated aromatic compound of the above (10) or (11) Production method.
発明の効果  The invention's effect
[0023] 本発明に係る芳香族化合物の製造方法は、芳香族化合物合成工程に供給される 水素を低減でき、かつ地球温暖化の元凶とみなされて ヽるニ酸ィ匕炭素を低級炭化 水素 (メタン)の原料として消費することが出来るため、工業的有利に芳香族化合物 を製造できる。 [0023] The method for producing an aromatic compound according to the present invention is capable of reducing hydrogen supplied to the aromatic compound synthesis step and lower carbonizing nitric acid carbon which is regarded as a cause of global warming. Since it can be consumed as a raw material for hydrogen (methane), an aromatic compound can be produced industrially advantageously.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明に係る芳香族化合物の製造方法の一例を示すフローシート  FIG. 1 is a flow sheet showing an example of a method for producing an aromatic compound according to the present invention.
[図 2]本発明に係る芳香族化合物の製造方法の他の一例を示すフローシート 符号の説明  FIG. 2 is a flow sheet showing another example of the method for producing an aromatic compound according to the present invention.
[0025] A:芳香族化合物合成工程 [0025] A: Aromatic compound synthesis step
B:芳香族化合物分離工程  B: Aromatic compound separation process
C :メタン化工程  C: Methanation process
D:二酸化炭素除去工程  D: Carbon dioxide removal process
E :シフト反応工程  E: Shift reaction process
F:水素化工程  F: Hydrogenation process
G:水素化芳香族化合物分離工程  G: Hydrogenated aromatic compound separation process
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の 実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。  [0026] Hereinafter, the present invention will be described in detail, but the description of the constituent elements described below is a representative example of embodiments of the present invention, and the present invention is not limited to these contents.
[0027] 本発明の芳香族化合物の製造方法は、「水素を含有するガスと、一酸化炭素およ び Zまたは二酸ィ匕炭素とを触媒の存在下に接触させ、ガス中の水素を一酸ィ匕炭素 および Zまたは二酸化炭素と反応させ、メタンと水に変換するメタンィ匕工程」と「触媒 の存在下に低級炭化水素及びメタン化工程で得られたメタンを反応させ、芳香族化 合物及び水素を含有する生成物ガスを得る芳香族化合物合成工程」を必須工程とし て包含する。  [0027] The method for producing an aromatic compound of the present invention is as follows. "A gas containing hydrogen is brought into contact with carbon monoxide and Z or carbon dioxide and in the presence of a catalyst, and hydrogen in the gas is reduced. “Methaney step that reacts with carbon monoxide and carbon dioxide or carbon dioxide to convert to methane and water” and “Aromatization by reacting lower hydrocarbons and methane obtained in methanation step in the presence of catalyst” An aromatic compound synthesis step for obtaining a product gas containing a compound and hydrogen is included as an essential step.
[0028] 本発明の好ま ヽ実施形態としては、芳香族化合物合成工程、芳香族化合物分離 工程およびメタンィ匕工程の 3工程を必須工程として包含し、芳香族化合物合成工程 にメタン化工程で得られたガスを循環供給する手段を有する方法が挙げられる。  [0028] Preferred embodiments of the present invention include three steps of an aromatic compound synthesis step, an aromatic compound separation step and a methanization step as essential steps, and are obtained in the methanation step in the aromatic compound synthesis step. And a method having a means for circulating and supplying the gas.
[0029] 本発明にお ヽては、実質的に一酸化炭素および Zまたは二酸化炭素を含まな ヽ 低級炭化水素含有ガスの他、一酸化炭素および Zまたは二酸化炭素を含む各種の 低級炭化水素含有ガスを使用して芳香族化合物を製造することが出来る。なお、こ れらのガスは、適切な工程に供給され、上記の「実質的に一酸化炭素および Zまた は二酸ィ匕炭素を含まない」とは、芳香族化合物生成工程における触媒反応に悪影響 を与えな 、範囲の一酸ィ匕炭素および/または二酸ィ匕炭素の量は含んで 、てもよ 、こ とを意味する。また、以下の反応式は、後述する工程で起こる反応式の一例であり、 式( 1)及び( )は芳香族化合物合成工程の反応式、式 (2)及び (3)はメタンィ匕工程 の反応式である。 [0029] In the present invention, substantially containing carbon monoxide and Z or carbon dioxide. In addition to a lower hydrocarbon-containing gas, various lower hydrocarbons containing carbon monoxide and Z or carbon dioxide are contained. Aromatic compounds can be produced using gas. In addition, this These gases are supplied to an appropriate process, and the above “substantially free of carbon monoxide and Z or carbon dioxide” adversely affects the catalytic reaction in the aromatic compound generation process. It should be noted that the amount of monoxide carbon and / or diacid carbon in the range includes, but does mean. Further, the following reaction formula is an example of a reaction formula that occurs in the process described later, formulas (1) and () are reaction formulas for the aromatic compound synthesis step, and formulas (2) and (3) are It is a reaction formula.
[0030] [化 1] [0030] [Chemical 1]
CH4 → 1X6 C6H6 + 3/2H2 . . . ' ' (i) CH 4 → 1X6 C 6 H 6 + 3 / 2H 2 .. '' (I)
C2H4 → 1/3 C6H6 + H2 . 。 . . . (i ' )C 2 H 4 → 1/3 C 6 H 6 + H 2 . (I ')
CO + 3 H2 → CH4 + H20 (2) CO + 3 H 2 → CH 4 + H 2 0 (2)
C02 十 4H2 → CH4 + 2H20 (3) C0 2 Ten 4H 2 → CH 4 + 2H 2 0 (3)
[0031] <原料ガス > [0031] <Raw gas>
本発明における「低級炭化水素」とは、炭素数 1〜4の炭化水素化合物を意味し、 具体的にはメタン、ェタン、プロパン、 n—ブタン、 i—ブタン及びこれらの不飽和物が 挙げられるが、好ましくはメタン及び炭素数 2〜4の不飽和炭化水素化合物、更に好 ましくはメタンである。  The “lower hydrocarbon” in the present invention means a hydrocarbon compound having 1 to 4 carbon atoms, and specifically includes methane, ethane, propane, n-butane, i-butane and unsaturated compounds thereof. However, methane and unsaturated hydrocarbon compounds having 2 to 4 carbon atoms are preferred, and methane is more preferred.
[0032] 実質的に一酸化炭素および Zまたは二酸化炭素を含まない低級炭化水素含有ガ スとしては、代表的には天然ガス(LNG、 NG)、 LPG、メタンハイドレード、石油化学 又は石油精製のオフガス等が挙げられる。一酸化炭素および Zまたは二酸化炭素を 含む低級炭化水素ガスとしては、コークス炉ガス、石炭ガス化ガス、アスファルトガス 化ガス、重質油残渣ガス化ガス、石油コータスガス化ガス、改質炉ガス、ォキソガス、 バイオガス、バイオマスガス化ガス、廃棄物ガス化ガス等が挙げられる。コークス炉ガ スは、低級炭化水素も含有するが、一酸化炭素および Zまたは二酸化炭素を含み、 メタン生成用原料ガスとして使用される。上記の低級炭化水素含有ガスには、その種 類に従った量の水素が含有されており、又製造、副生された水素を水素源として使 用してちょい。  [0032] Gases containing lower hydrocarbons that are substantially free of carbon monoxide and Z or carbon dioxide are typically natural gas (LNG, NG), LPG, methane hydrate, petrochemical or petroleum refining. Off-gas etc. are mentioned. The lower hydrocarbon gas containing carbon monoxide and Z or carbon dioxide includes coke oven gas, coal gasification gas, asphalt gasification gas, heavy oil residue gasification gas, petroleum coatus gasification gas, reformer gas, and oxo gas. Biogas, biomass gasification gas, waste gasification gas and the like. Coke oven gas also contains lower hydrocarbons but contains carbon monoxide and Z or carbon dioxide and is used as a raw material gas for methane production. The above-mentioned lower hydrocarbon-containing gas contains an amount of hydrogen according to its type, and hydrogen produced and by-produced should be used as the hydrogen source.
[0033] そして、上記の低級炭化水素および低級炭化水素含有ガスは、次の芳香族化合 物合成工程に供給されるが、上記のメタン生成用原料ガスは、後述のメタンィ匕工程 に供給するのが好ましい。実質的に一酸化炭素および Zまたは二酸化炭素を含まな ヽ低級炭化水素含有ガスの場合は、当該ガスを芳香族化合物合成工程に供給する 力 一酸ィ匕炭素および Zまたは二酸ィ匕炭素と共にメタンィ匕工程に供給してもよい。ま た、一酸化炭素および Zまたは二酸化炭素を含む各種の低級炭化水素含有ガスの 場合は、メタンィ匕工程に供給すればよい。一酸化炭素および Zまたは二酸化炭素を 含む各種の低級炭化水素含有ガスの場合、当該ガス中の一酸化炭素および Zまた は二酸化炭素は、前記の式 (2)及び (3)に示す様にメタンに変換され、その後、芳香 族化合物合成工程に供給される。従って、一酸化炭素および Zまたは二酸化炭素を 含む各種の低級炭化水素含有ガスの場合は、これをメタン化工程に供給すること〖こ より、芳香族化合物合成工程に直接供給した場合に引き起こされる一酸化炭素およ び Zまたは二酸ィ匕炭素による低級炭化水素の希釈問題が回避される。 [0033] The lower hydrocarbon and the lower hydrocarbon-containing gas are supplied to the subsequent aromatic compound synthesizing step, and the methane generating raw material gas is supplied to the later-described methanization step. Is preferred. Substantially free of carbon monoxide and Z or carbon dioxide In the case of a lower hydrocarbon-containing gas, the gas may be supplied to the methanization process together with the power mono-acid carbon and Z or di-acid carbon to supply the aromatic compound synthesis process. In the case of various lower hydrocarbon-containing gases containing carbon monoxide and Z or carbon dioxide, they may be supplied to the methanization process. In the case of various lower hydrocarbon-containing gases containing carbon monoxide and Z or carbon dioxide, carbon monoxide and Z or carbon dioxide in the gas is methane as shown in the above formulas (2) and (3). And then supplied to the aromatic compound synthesis process. Therefore, in the case of various lower hydrocarbon-containing gases containing carbon monoxide and Z or carbon dioxide, it is caused by supplying this gas to the methanation process, which is caused when it is directly supplied to the aromatic compound synthesis process. Dilution problems of lower hydrocarbons with carbon oxides and Z or carbon dioxide are avoided.
[0034] < (i)芳香族化合物合成工程 >  [0034] <(i) Aromatic compound synthesis step>
芳香族化合物合成工程では、触媒の存在下に低級炭化水素を反応させ、芳香族 化合物、低級炭化水素および水素を含有する生成物ガスを得る。  In the aromatic compound synthesis step, the lower hydrocarbon is reacted in the presence of a catalyst to obtain a product gas containing the aromatic compound, the lower hydrocarbon and hydrogen.
[0035] 触媒としては、例えば、特開 2001— 334151号公報に記載された触媒、すなわち 、 Re又はその化合物の一種以上を必須とし、所望により、 Zn、 Ga、 Co、 Fe又はそれ らの化合物の 1種以上、 Cr、 W、 Mo又はそれらの化合物の 1種以上、希土類金属ま たはその化合物の 1種以上を含む触媒材料と、メタロシリケートから成る触媒が好適 である。  [0035] As the catalyst, for example, a catalyst described in JP-A-2001-334151, that is, one or more of Re or its compound is essential, and Zn, Ga, Co, Fe or a compound thereof is optionally included. A catalyst comprising a metallosilicate and a catalyst material containing one or more of the above, one or more of Cr, W, Mo or one of these compounds, one or more of the rare earth metals or the compounds thereof is suitable.
[0036] 担体として使用されるメタロシリケートとしては多数の細孔を有する多孔質体が好ま しい。例えば、アルミノシリケートの場合、種々の組成力も成るシリカ及びアルミナから 成る多孔質担体であるモレキュラーシーブ 5A (UTA)、フォジャサイト(NaY)及び N aX、 ZSM— 5、 ZSM— 11、 ZSM— 22、 ZSM— 48、 β、モルデナイト、 MCM— 22 等が挙げられる。またリン酸を主成分とする担体の場合、 SAPO— 5、 SAPO— 34、 VPI— 5等に代表される多孔質担体で 4〜8Αのミクロ細孔やチャンネルを有する担 体を例示することが出来る。  [0036] As the metallosilicate used as the carrier, a porous body having a large number of pores is preferable. For example, in the case of aluminosilicates, molecular sieves 5A (UTA), faujasite (NaY) and NaX, ZSM-5, ZSM-11, ZSM-22, which are porous carriers made of silica and alumina with various compositional powers. ZSM-48, β, mordenite, MCM-22 and the like. In the case of a carrier mainly composed of phosphoric acid, a carrier having 4 to 8 mm micropores or channels may be exemplified as a porous carrier represented by SAPO-5, SAPO-34, VPI-5, etc. I can do it.
[0037] 更には、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜: LOOA) の筒状細孔(チャンネル)で特徴づけられる FSM— 16や MCM— 41等のメゾ細孔多 孔質担体をシリコンアルコキサイド等を使用した CVD法によりメゾ細孔径を 4〜8Aに 調整した修飾メゾ細孔材などを例示できる。 [0037] Further, meso-fine materials such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) of mesopores (10-: LOOA) containing silica as a main component and partly alumina as a component. Porous support The mesopore diameter is adjusted to 4-8A by CVD using silicon alkoxide etc. Examples of the adjusted modified mesoporous material can be given.
[0038] メタロシリケートとしては、シリカ又はアルミナ力 なるアルミノシリケートの他に、シリ 力及びチタ-ァ力 成るチタノシリケート等の多孔質担体であり Fe、 Ti、 Mn、 Cr、 In 、 Ga、 Mo、 W、 Co、 V、 Zn等を含有し、細孔径が 4〜8Aであるものが好適に使用す ることが出来る。  [0038] Metallosilicates are porous carriers such as silica or alumina aluminosilicate, titanosilicate with silicate and titer force, Fe, Ti, Mn, Cr, In, Ga, Mo , W, Co, V, Zn and the like, and those having a pore diameter of 4 to 8A can be suitably used.
[0039] また、ミクロ及びメゾ細孔力 〜8 Aの担体が好ましぐ 5. 5± 1 Aの範囲のメタロシリ ケートがより好ましぐ更に、表面積が 200〜1000m2Zgであるメタロシリケートがより 好ましい。また、例えば、アミルノシリケートの場合のシリカとアルミナの含有比として は、通常入手し得る多孔質担体のシリカ/アルミナ比 = 1〜8000のものを使用する ことが出来るが、実用的な転ィ匕率および選択率を得るためには、シリカ Zアルミナ比 は 10〜: LOOであることが好ましい。 [0039] Also, micro and mesopore strengths ~ 8A support is preferred 5.5 Metallosilicates in the range of 5 ± 1A are more preferred In addition, metallosilicates with a surface area of 200-1000m 2 Zg are preferred. More preferable. For example, as the content ratio of silica and alumina in the case of amylnosilicate, a commonly available porous carrier having a silica / alumina ratio of 1 to 8000 can be used. In order to obtain a soot rate and a selectivity, the silica Z alumina ratio is preferably 10 to: LOO.
[0040] Re等の触媒材料は、メタ口シリケ一トに担持させる際に、前駆体として用意すること が出来る。前駆体の例としては、塩化物、臭化物などのハロゲン化物、硝酸塩、硫酸 塩、リン酸塩などの鉱酸塩、炭酸塩、酢酸塩、蓚酸塩などのカルボン酸塩や金属力 ルポニル錯体ゃシクロペンタジェ -ル錯体などの有機金属塩を例示することが出来 る。特に、レニウムの前駆体の例としては、レニウムカルボ-ル化合物(Re (CO)  [0040] A catalyst material such as Re can be prepared as a precursor when it is supported on a meta-mouth silicate. Examples of precursors include halides such as chlorides and bromides, mineral salts such as nitrates, sulfates and phosphates, carboxylates such as carbonates, acetates and oxalates, and metalluronyl complexes. Illustrative examples include organometallic salts such as pentagel complexes. In particular, examples of rhenium precursors include rhenium carbonyl compounds (Re (CO)
2 10、 2 10,
Re (CO) , (C H ) Re (CO)、 CH ReO )の他に、塩化物、臭化物などのハロゲンRe (CO), (C H) Re (CO), CH ReO), and halogens such as chloride and bromide
6 5 5 2 2 3 3 6 5 5 2 2 3 3
化物、硝酸塩、硫酸塩、リン酸塩などの鉱酸塩、炭酸塩、酢酸塩、蓚酸塩などのカル ボン酸塩が例示できる。また、前駆体としては複合錯塩ゃ複合酸化物を使用すること も出来る。  Examples thereof include mineral salts such as chloride, nitrate, sulfate and phosphate, and carbonates such as carbonate, acetate and oxalate. Further, a complex complex salt or complex oxide can be used as the precursor.
[0041] 前記のメタ口シリケートに上記の触媒材料を担持させる際の担持量は、特に制限は ないが、各触媒材料群毎に、全触媒重量に基づく値として、通常 0. 001〜50重量 %、好ましくは 0. 01〜40重量%である。なお、複数の群から触媒材料を選択する場 合は、触媒材料の担持量の合計は、全触媒重量に基づく値として、通常 0. 002〜5 0重量%、好ましくは 0. 02〜40重量%である。なお、上記担持量範囲は、触媒材料 に前駆体を使用する場合には前駆体としての担持量を示す。  [0041] The amount of the catalyst material supported on the metal silicate silicate is not particularly limited, but is usually 0.001 to 50 weights as a value based on the total catalyst weight for each catalyst material group. %, Preferably 0.01 to 40% by weight. When a catalyst material is selected from a plurality of groups, the total supported amount of the catalyst material is generally 0.002 to 50% by weight, preferably 0.02 to 40% by weight based on the total catalyst weight. %. The above supported amount range indicates the supported amount as a precursor when a precursor is used as the catalyst material.
[0042] メタ口シリケートに触媒材料を担持させる方法としては、 (i)前述した金属の前駆体 の水溶液またはアルコール等の有機溶媒の溶液としてメタ口シリケ一トに含浸担持さ せる方法、(ii)イオン変換方法により担持させた後、不活性ガスあるいは酸素ガス中 で加熱処理する方法などがある。この方法の一例をより具体的に説明すると、まず最 初に、例えば、メタロシリケート担体に硝酸レニウム水溶液を含浸担持させ、更に乾 燥して溶媒を適当量除いた後、窒素含有酸素気流中又は純酸素気流中で通常 250 〜800°C、好ましくは 350〜600°Cで加熱処理してレニウムを担持したメタ口シリケ一 ト触媒を製造することが出来る。また、複合酸化物や複合錯塩を使用して触媒を得る 場合にも同様の担持方法や、加熱処理方法によって複合酸化物塩や複合錯塩から 成る触媒を得ることが出来る。 [0042] As a method for supporting the catalyst material on the meta-mouth silicate, (i) the above-mentioned metal precursor silicate is impregnated and supported as an aqueous solution of a metal precursor or an organic solvent such as alcohol. And (ii) a method of carrying out heat treatment in an inert gas or oxygen gas after being supported by an ion conversion method. An example of this method will be described more specifically. First, for example, a metallosilicate support is impregnated with an aqueous rhenium nitrate solution, and further dried to remove an appropriate amount of solvent, and then in a nitrogen-containing oxygen stream or A meta-mouth silicate catalyst carrying rhenium can be produced by heat treatment usually in a pure oxygen stream at 250 to 800 ° C, preferably 350 to 600 ° C. Also, when a catalyst is obtained using a complex oxide or complex complex salt, a catalyst comprising a complex oxide salt or complex complex salt can be obtained by the same supporting method or heat treatment method.
[0043] レニウム及び Z又はその化合物(以下、第一成分と 、う)、亜鉛、ガリウム、鉄、コバ ルト及びそれらの化合物力 成る群力 所望により選ばれた少なくとも一種類 (以下、 第二成分という)、クロム、タングステン、モリブデン又はそれらの化合物力も成る群か ら所望により選ばれた少なくとも一種類 (以下、第三成分という)、希土類金属または その化合物力 成る群力 所望により選ばれた少なくとも 1種類、および、担体からな る触媒は、メタ口シリケートに第一成分を担持した後、所望により選択した第二成分以 降を順次担持させる方法、メタ口シリケートに第一成分および所望により選択した第 二成分以降を適宜の順序で担持させせる方法、メタ口シリケ一トに各成分を同時に担 持させる方法によって製造することが出来る。これらの中では、先ず、第一成分をメタ 口シリケ一トに担持させるのが好ましい。その後は、順次各成分を担持させてもよぐ また、複数の成分を同時に担持させてもよい。  [0043] Rhenium and Z or a compound thereof (hereinafter referred to as the first component), zinc, gallium, iron, cobalt and their compound power Group force consisting of at least one kind selected as desired (hereinafter referred to as the second component) At least one selected from the group consisting of chromium, tungsten, molybdenum or their compound power (hereinafter referred to as the third component), rare earth metal or their compound power at least one selected as desired The type and the catalyst comprising the carrier were selected by supporting the first component on the meta-mouth silicate and then the second component and the like selected sequentially if desired. It can be produced by a method in which the second and subsequent components are supported in an appropriate order, and a method in which each component is simultaneously supported by the meta-mouth silicate. Among these, it is preferable that the first component is first supported on the metal silicate. Thereafter, each component may be supported sequentially, or a plurality of components may be supported simultaneously.
[0044] 触媒は、粉末状、ペレット状、その他の形状の何れであってもよ!/ヽ。また、触媒は、 芳香族化合物を生成する誘導期を短縮するため、水素ガスやヒドラジン、金属水素 化合物、例えば、 BH、 NaH、 A1H等による前処理を含む触媒活性化過程を施して  [0044] The catalyst may be in the form of powder, pellets, or other shapes! In addition, the catalyst is subjected to a catalyst activation process including pretreatment with hydrogen gas, hydrazine, metal hydride compounds such as BH, NaH, A1H, etc., in order to shorten the induction period for producing aromatic compounds.
3 3  3 3
ちょい。  A little.
[0045] 反応原料に使用される低級炭化水素は、優位量で低級炭化水素を含有する各種 のガスを使用することが出来る。具体的には、通常 50重量%、好ましくは 70重量% 以上のメタンを含有する LNG等を示すことが出来る。  [0045] As the lower hydrocarbon used for the reaction raw material, various gases containing the lower hydrocarbon in a dominant amount can be used. Specifically, LNG containing 50% by weight, preferably 70% by weight or more of methane can be shown.
[0046] 反応は、通常、回分式または流通式の反応形式で行われる力 固定床、移動床、 流動化床などの流通式反応形式で行うことが好ましい。反応温度は、通常 300〜80 0。C、好ましくは 450〜775。C、反応圧力は、通常 0. 1〜: LOkgZcm2 (ケージ圧、以 下同じ)、好ましくは l〜7kgZcm2、重量時間空間速度 (WHSV)は、通常 0. 1〜1 0であり、好ましくは 0. 5〜5. 0である。 [0046] The reaction is preferably carried out in a flow-type reaction mode such as a fixed bed, a moving bed, a fluidized bed or the like, which is usually performed in a batch-type or flow-type reaction mode. The reaction temperature is usually 300-80. 0. C, preferably 450-775. C, reaction pressure is usually 0.1 to: LOkgZcm 2 (cage pressure, the same applies hereinafter), preferably 1 to 7 kgZcm 2 , and weight hourly space velocity (WHSV) is usually 0.1 to 10 and preferably Is between 0.5 and 5.0.
[0047] 上記反応により、ベンゼン、トルエン等の芳香族炭化水素を主成分とする芳香族化 合物が得られる。また、この反応に伴って水素が副生する。  [0047] By the above reaction, an aromatic compound mainly containing an aromatic hydrocarbon such as benzene or toluene is obtained. In addition, hydrogen is by-produced along with this reaction.
[0048] < (ii)芳香族化合物分離工程 >  <0048> <(ii) Aromatic compound separation step>
芳香族化合物分離工程では、上記の芳香族化合物合成工程で得られた生成物ガ スから「芳香族化合物」と「未反応低級炭化水素、生成低級炭化水素および水素含 有ガス」とを分離して回収する。芳香族化合物が分離された「低級炭化水素 (未反応 低級炭化水素および生成低級炭化水素)及び水素を含有するガス」は、次のメタン 化工程に送られる。なお、本発明における芳香族化合物の成分は、ベンゼン、トルェ ン、キシレン、ナフタレン、トリメチルベンゼン、ナフタレン、メチルナフタレン、ジメチル ナフタレン等であり、好ましくはベンゼン、トルエン、ナフタレンである。また、生成低 級炭化水素とは、低級炭化水素から芳香族を生成する過程で副生するェタン、ェチ レン等である。  In the aromatic compound separation step, “aromatic compound” and “unreacted lower hydrocarbon, generated lower hydrocarbon and hydrogen-containing gas” are separated from the product gas obtained in the above aromatic compound synthesis step. And collect. The “lower hydrocarbon (unreacted lower hydrocarbon and produced lower hydrocarbon) and hydrogen-containing gas” from which the aromatic compound has been separated is sent to the next methanation step. The components of the aromatic compound in the present invention are benzene, toluene, xylene, naphthalene, trimethylbenzene, naphthalene, methylnaphthalene, dimethylnaphthalene, and the like, preferably benzene, toluene, and naphthalene. The produced lower class hydrocarbons are ethane, ethylene and the like by-produced in the process of producing aromatics from lower hydrocarbons.
[0049] 芳香族化合物の分離手段は、特に制限されないが、熱交換器でガスを冷却し高沸 点化合物を凝縮させ、デミスター付きのセパレーターにて気液分離する方法が好適 である。この場合、凝縮液分を増力!]させるために冷凍機にて冷却温度を下げるのが よい。芳香族化合物がベンゼンの場合、例えば、次工程 (メタンィ匕工程)の圧力まで 昇圧し、 6°Cまで冷却して分離する。圧力は、高圧の方が好ましいが、必要以上に高 い圧力にすると動力ロスが発生する。また、温度も低温の方が好ましいが、 6°C未満 まで低下させると、芳香族化合物 (ベンゼン)が凝固し、分離する事が困難となる。 1 °C未満まで低下させると水分を分離除去する必要が生じ、また、冷却設備が大きくな り、設備がコスト高となる。その他の分離方法としては、吸収液を使用する分離方法な どが挙げられる。  [0049] The means for separating the aromatic compound is not particularly limited, but a method of cooling the gas with a heat exchanger to condense the high boiling point compound and performing gas-liquid separation with a separator with a demister is preferred. In this case, in order to increase the condensate content!], The cooling temperature should be lowered with a refrigerator. When the aromatic compound is benzene, for example, the pressure is increased to the pressure of the next step (methanization step), and the mixture is cooled to 6 ° C and separated. The pressure is preferably higher, but power loss occurs when the pressure is higher than necessary. The temperature is also preferably low, but if it is lowered to less than 6 ° C, the aromatic compound (benzene) is solidified and difficult to separate. When the temperature is lowered to less than 1 ° C, it becomes necessary to separate and remove moisture, and the cooling equipment becomes large and the equipment becomes expensive. Other separation methods include a separation method using an absorbing solution.
[0050] 芳香族化合物は、液成分として分離され、一方、芳香族化合物が分離された未反 応低級炭化水素および水素含有ガスの組成は、原料ガス組成などによって異なるた め一律に規定し得ないが、ガス成分としては、ェタン及び水素の他、一酸化炭素、二 酸化炭素、炭素数 2〜5の炭化水素などである。 [0050] The aromatic compound is separated as a liquid component. On the other hand, the composition of the unreacted lower hydrocarbon and the hydrogen-containing gas from which the aromatic compound is separated differs depending on the raw material gas composition and the like, and thus can be uniformly defined. Although there are no gas components, ethane and hydrogen, carbon monoxide, Examples include carbon oxides and hydrocarbons having 2 to 5 carbon atoms.
[0051] なお、芳香族化合物分離工程で得られた水素含有ガスは、そのままメタンィ匕工程 に供給してもよいが、水素含有ガスから水素を分離し、分離した水素をメタンィ匕工程 に供給し、水素を分離した残りのガス (未反応の低級炭化水素を主成分とするガス) を芳香族化合物合成工程に供給することが、工業的に効率的で好ましい。  [0051] The hydrogen-containing gas obtained in the aromatic compound separation step may be supplied as it is to the methanization step, but hydrogen is separated from the hydrogen-containing gas and the separated hydrogen is supplied to the methanization step. It is industrially efficient and preferable to supply the remaining gas from which hydrogen has been separated (a gas mainly composed of unreacted lower hydrocarbon) to the aromatic compound synthesis step.
[0052] 水素含有ガス力 水素を分離する方法としては、水素分離膜を使用する方法や圧 カスイング吸着法 (PSA法)等が挙げられる。  [0052] Hydrogen-containing gas power Examples of methods for separating hydrogen include a method using a hydrogen separation membrane and a pressure-cash swing adsorption method (PSA method).
[0053] < (iii)メタン化工程 >  [0053] <(iii) Methanation process>
メタンィ匕工程では、ガス中の水素と一酸ィ匕炭素および Zまたは二酸ィ匕炭素とを反 応させてメタンと水に変換する。  In the methane process, hydrogen in the gas reacts with carbon monoxide and Z or carbon dioxide and converts it to methane and water.
[0054] 水素源としては、一般に工業的に使用されている水素ガス、上記 (i)の芳香族化合 物合成工程にぉ ヽて発生する水素、上記 (i)の芳香族化合物合成工程にぉ ヽて原 料ガスとして使用する H含有ガス中の水素などが挙げられ、例えば、コークス炉ガス  [0054] As the hydrogen source, hydrogen gas generally used industrially, hydrogen generated during the aromatic compound synthesis step (i) above, and hydrogen compound generated during the aromatic compound synthesis step (i) above. For example, hydrogen in H-containing gas used as raw material gas, for example, coke oven gas
2  2
、石炭ガス化ガス、アスファルトガス化ガス、重質油残渣ガス化ガス、石油コークスガ ス化ガス、改質炉ガス、ォキソガス、バイオガス、バイオマスガス化ガス、廃棄物ガス 化ガス等が使用できる。  Coal gasification gas, asphalt gasification gas, heavy oil residue gasification gas, petroleum coke gasification gas, reformer gas, oxo gas, biogas, biomass gasification gas, waste gasification gas, etc. can be used.
[0055] また、製造、副生された水素を水素源として使用してもよぐ例えば、(a)上記の原 料ガス、石油化学、石油精製プロセスカゝら排出されるオフガスカゝら分離された水素、( b)ナフサ、 LNG、 LPG等の炭化水素を原料とし、水蒸気、酸素、二酸化炭素などを 使用した改質による水素、(c)プラズマ等を使用したメタン直接熱分解による水素、( d)ソーダ工場からの副生水素、(e)水力、火力、風力、原子力を使用した発電により 発生した電気を使用した水の電気分解により製造された水素などが挙げられる。  [0055] Further, hydrogen produced and by-produced may be used as a hydrogen source. For example, (a) separated from the above-mentioned raw gas, petrochemical, off-gas catalyst discharged from petroleum refining process, etc. (B) Hydrogen from reforming using hydrocarbons such as naphtha, LNG, LPG, etc., and using steam, oxygen, carbon dioxide, etc., (c) Hydrogen from direct thermal decomposition of methane using plasma, ( d) By-product hydrogen from soda factories, (e) Hydrogen produced by electrolysis of water using electricity generated by hydro, thermal, wind, and nuclear power generation.
[0056] 水の電気分解には、アルカリ水電解、高温高圧水電解法、固体高分子電解質水電 解法、高温水蒸気電解法などが使用される。更には、太陽電池発電を使用して製造 した水素も使用可能である。また、水を酸化チタン等の光分解触媒を使用して分解し 製造した水素も使用できる。  [0056] For electrolysis of water, alkaline water electrolysis, high-temperature high-pressure water electrolysis, solid polymer electrolyte water electrolysis, high-temperature steam electrolysis, or the like is used. Furthermore, hydrogen produced using solar power generation can also be used. In addition, hydrogen produced by decomposing water using a photolysis catalyst such as titanium oxide can also be used.
[0057] 電気分解以外には、水の熱分解を幾つかの化学反応に分けて直接熱分解に必要 な温度よりも低温の熱のみで水を水素と酸素に分解する熱化学水素製造プロセスに より製造した水素も使用できる。この場合には、熱源として核燃料を使用した高温ガ ス炉の出口ガスも使用できる。また、水の分解には、 γ線、近紫外線などの放射線を エネルギー源として使用することも出来る。また、水素をエネルギー源とした社会が確 立された場合にはエネルギー源としての水素を利用してもよい。 [0057] In addition to electrolysis, the thermal decomposition of water is divided into several chemical reactions, and it is a thermochemical hydrogen production process that decomposes water into hydrogen and oxygen with only heat lower than the temperature required for direct thermal decomposition. More produced hydrogen can also be used. In this case, the exit gas of a high-temperature gas furnace using nuclear fuel as a heat source can also be used. In addition, gamma rays and near ultraviolet rays can be used as energy sources for water decomposition. In addition, when a society using hydrogen as an energy source is established, hydrogen as an energy source may be used.
[0058] なお、このメタンィ匕工程では一酸ィ匕炭素および Ζまたは二酸ィ匕炭素が消費されるこ とから、本発明は工業的な二酸ィ匕炭素処理技術としての位置づけも出来る。  [0058] It should be noted that the present invention can be positioned as an industrial diacid / carbon treatment technique because monoxide / carbon and / or diacid / carbon is consumed in the methanization process.
[0059] メタンィ匕工程は、前記の式(2)及び(3)に示され、具体的には、例えば、次の (Α) 〜(Ε)に示す様に行われる。  [0059] The methanization step is represented by the above formulas (2) and (3), and specifically, for example, as shown in the following (様) to (Ε).
[0060] (Α)上記の芳香族化合物分離工程で芳香族化合物が分離された「低級炭化水素( 未反応低級炭化水素および生成低級炭化水素)及び水素含有ガス」に一酸化炭素 および Ζまたは二酸ィ匕炭素を触媒の存在下で反応させることにより、ガス中の水素を 一酸ィ匕炭素および Ζまたは二酸ィ匕炭素と反応させてメタンと水に変換する。なお、一 酸ィ匕炭素および Ζまたは二酸化炭素の供給量が多ぐガス中の水素が不足する場 合は、外部力も水素含有ガスを追加供給してもよい。  [0060] (i) “Lower hydrocarbon (unreacted lower hydrocarbon and produced lower hydrocarbon) and hydrogen-containing gas” from which the aromatic compound has been separated in the aromatic compound separation step, and carbon monoxide and By reacting acid-carbon in the presence of a catalyst, the hydrogen in the gas reacts with carbon monoxide and carbon or carbon dioxide to convert it to methane and water. In addition, when hydrogen in a gas with a large supply amount of carbon monoxide and soot or carbon dioxide is insufficient, an external force may additionally supply a hydrogen-containing gas.
[0061] (Β)メタンィ匕工程に供給するガスが「一酸ィ匕炭素および Ζまたは二酸ィ匕炭素を含む 各種の低級炭化水素含有ガス」の場合は、当該ガス中の一酸ィ匕炭素および Ζまたは 二酸化炭素と、当該ガス中の水素、または、上記の芳香族化合物分離工程で芳香 族化合物が分離された「低級炭化水素 (未反応低級炭化水素および生成低級炭化 水素)及び水素を含有するガス中の水素」とを触媒の存在下で反応させ、メタンに変 換する。なお、低級炭化水素含有ガス中の一酸ィ匕炭素および Ζまたは二酸ィ匕炭素 の量が水素の量に比べ少なくて不足する場合は、外部力 一酸ィ匕炭素および Ζまた は二酸ィ匕炭素を追加供給してもよ ヽ。更に外部カゝら水素含有ガスを追加供給しても よい。  [0061] (i) When the gas supplied to the methany process is "various lower hydrocarbon-containing gases containing monoxide carbon and soot or diacid carbon", Carbon and soot or carbon dioxide, hydrogen in the gas, or “lower hydrocarbons (unreacted lower hydrocarbons and produced lower hydrocarbons) and hydrogen from which aromatic compounds were separated in the aromatic compound separation step described above and hydrogen. It reacts with hydrogen in the contained gas in the presence of a catalyst to convert it to methane. If the amount of carbon monoxide and carbon or diacid carbon in the lower hydrocarbon-containing gas is small compared to the amount of hydrogen, the external force monoacid carbon and carbon or diacid You may supply additional carbon. Further, an additional hydrogen-containing gas may be supplied from the outside.
[0062] (C)メタンィ匕工程に供給するガスが「実質的に一酸化炭素および Ζまたは二酸化炭 素を含まな!ヽ低級炭化水素含有ガス」の場合は、一酸化炭素および Ζまたは二酸化 炭素を供給し、当該一酸化炭素および Ζまたは二酸化炭素と、当該ガス中の水素、 または、上記の芳香族化合物分離工程で芳香族化合物が分離された「低級炭化水 素 (未反応低級炭化水素および生成低級炭化水素)及び水素を含有するガス中の 水素」とを触媒の存在下で反応させ、メタンに変換する。なお、一酸化炭素および Z または二酸ィ匕炭素の供給量が多ぐガス中の水素が不足する場合は、外部から水素 含有ガスを追加供給してもよ ヽ。 [0062] (C) When the gas supplied to the methany process is “substantially free of carbon monoxide and soot or carbon dioxide!“ Lower hydrocarbon-containing gas ”, carbon monoxide and soot or carbon dioxide The carbon monoxide and soot or carbon dioxide and hydrogen in the gas, or “lower hydrocarbon (unreacted lower hydrocarbon and unreacted lower hydrocarbon and Produced lower hydrocarbons) and hydrogen containing gas Hydrogen "is reacted in the presence of a catalyst and converted to methane. If hydrogen in the gas with a large supply of carbon monoxide and Z or carbon dioxide is insufficient, hydrogen-containing gas may be additionally supplied from the outside.
[0063] (D)上記 (A)〜(C)に記載の方法に、外部から水素含有ガスを原料ガスとして使 用し、触媒の存在下で反応させ、メタンに変換する。  [0063] (D) In the method described in (A) to (C) above, a hydrogen-containing gas is used from the outside as a raw material gas, reacted in the presence of a catalyst, and converted to methane.
[0064] (E)水素含有ガスに一酸ィ匕炭素および Zまたは二酸ィ匕炭素を触媒の存在下で反応 させることにより、ガス中の水素を一酸ィヒ炭素および Zまたは二酸ィヒ炭素と反応させ てメタンと水に変換する。 [0064] (E) By reacting a hydrogen-containing gas with carbon monoxide and Z or diacid carbon in the presence of a catalyst, the hydrogen in the gas is converted into carbon monoxide and Z or diacid carbon. Reacts with carbon dioxide to convert to methane and water.
[0065] 上記のメタンィ匕工程で得られたガスは芳香族化合物合成工程に循環されるが、芳 香族化合物合成工程の反応 (上記式(1) )には反応の平衡が存在するため、芳香族 化合物合成工程における原料ガスは、水素含有量が低いほど反応率が高くなり有利 である。従って、上記 (A)及び (B)において、ガス中の水素の含有量が対応する一 酸ィ匕炭素および Zまたは二酸ィ匕炭素より多い場合は、一酸ィ匕炭素および Zまたは 二酸ィ匕炭素をメタンィ匕工程に供給し、ガス中の水素含有量をメタンと水に変換し望ま [0065] Although the gas obtained in the above methanization step is circulated to the aromatic compound synthesis step, the reaction in the aromatic compound synthesis step (the above formula (1)) has an equilibrium of the reaction. The lower the hydrogen content of the raw material gas in the aromatic compound synthesis step, the higher the reaction rate, which is advantageous. Therefore, in (A) and (B) above, if the hydrogen content in the gas is greater than the corresponding mono-carbon and Z or di-acid carbon, the mono-acid carbon and Z or di-acid To supply carbon to the methany process and convert the hydrogen content in the gas to methane and water.
LV、値に調整することが好まし 、。 LV, preferred to adjust to the value.
[0066] メタン化工程に供給する一酸化炭素および Zまたは二酸化炭素としては、本発明 の製造プロセスの系外から回収した一酸化炭素および Zまたは二酸化炭素を使用 することが出来る。具体的には、二酸ィ匕炭素の場合は、各種の燃焼排排ガス力も回 収した二酸ィ匕炭素が使用できる。例えば、発電所のタービンやボイラーの燃焼ガス、 化学プラントの各種の加熱炉、各種の焼却炉などの排ガスから回収した二酸ィヒ炭素 が挙げられる。 [0066] As the carbon monoxide and Z or carbon dioxide supplied to the methanation step, carbon monoxide and Z or carbon dioxide recovered from outside the production process of the present invention can be used. Specifically, in the case of carbon dioxide, the carbon dioxide that also collects various combustion exhaust gas power can be used. Examples include combustion gas from power plant turbines and boilers, various heating furnaces in chemical plants, and carbon dioxide recovered from exhaust gas from various incinerators.
[0067] なお、本発明は、メタネーシヨン反応により一酸化炭素および Zまたは二酸化炭素 を固定ィ匕することが出来るので、二酸ィ匕炭素排出の低減という観点からも有効である  [0067] It should be noted that the present invention can fix carbon monoxide and Z or carbon dioxide by a methanation reaction, which is also effective from the viewpoint of reducing carbon dioxide emission.
[0068] 触媒は、メタネーシヨン反応触媒として知られている公知の触媒を制限なく使用する ことが出来る。典型的な触媒はニッケル触媒である。反応温度は通常 200〜500°C である。メタネーシヨン反応は、強い発熱反応であるため、入口ガス中の一酸ィ匕炭素 および Zまたは二酸ィ匕炭素の濃度が高い場合には、反応器を 2〜3段の多段として 、中間に冷却器を設ける力、または、反応ガスをリサイクルして、反応温度を制御する 必要がある。一酸ィ匕炭素および Zまたは二酸ィ匕炭素は、殆ど平衡組成までメタンに 変成される。なお、原料ガス中に炭素数の大きい炭化水素化合物が混入している場 合は、当該炭化水素を改質できる様にメタンィ匕工程に水蒸気を添加してもよい。メタ ン化工程に添加する水蒸気は、メタン化工程に供給する炭素重量の 0.8〜4.5倍が 適当である。 [0068] As the catalyst, a known catalyst known as a methanation reaction catalyst can be used without limitation. A typical catalyst is a nickel catalyst. The reaction temperature is usually 200-500 ° C. The methanation reaction is a strongly exothermic reaction, so if the concentration of monoxide-carbon and Z or diacid-carbon in the inlet gas is high, the reactor is divided into two or three stages. It is necessary to control the reaction temperature by installing a cooler in the middle or recycling the reaction gas. Carbon monoxide and carbon dioxide or carbon dioxide are converted to methane to almost equilibrium composition. When a hydrocarbon compound having a large number of carbon atoms is mixed in the raw material gas, steam may be added to the methanization process so that the hydrocarbon can be reformed. The appropriate amount of water vapor added to the methanation process is 0.8 to 4.5 times the weight of carbon supplied to the methanation process.
[0069] 本発明にお ヽては、上記の分離工程で芳香族化合物が分離されたガスを第一分 画と第二分画に分け、第二分画を燃焼し、その燃焼排ガス力 回収した二酸ィ匕炭素 を第一分画と共にメタンィ匕工程に供給する態様が推奨される。斯カる態様によれば、 上記の燃焼による熱源を芳香族化合物合成工程の反応温度の維持に利用すること が出来、し力も、系外に排出される二酸ィ匕炭素を回収することになり環境保全の観点 力も好ましい。また、窒素などの非凝縮性ガスや不純物の系内への蓄積を防止する 観点からも好ましい。なお、上記の第一分画と第二分画との分配比は、芳香族化合 物合成工程の反応温度を考慮して決定される。  [0069] In the present invention, the gas from which the aromatic compound has been separated in the separation step described above is divided into a first fraction and a second fraction, the second fraction is burned, and the combustion exhaust gas power recovery is performed. It is recommended that the diacid carbon be fed to the methanization process along with the first fraction. According to such an aspect, the heat source from the combustion can be used for maintaining the reaction temperature in the aromatic compound synthesis step, and the force can be recovered from the carbon dioxide discharged out of the system. The viewpoint of environmental protection is also favorable. It is also preferable from the viewpoint of preventing accumulation of non-condensable gas such as nitrogen and impurities in the system. The distribution ratio between the first fraction and the second fraction is determined in consideration of the reaction temperature in the aromatic compound synthesis step.
[0070] 燃焼排ガスから二酸ィ匕炭素を回収する方法としては、例えば、特開平 5— 184865 号公報に記載された方法、すなわち、燃焼排ガスとモノエタノールァミン (MEA)水 溶液を常圧下で接触させて燃焼排ガス中に含まれる二酸ィ匕炭素を除去して回収す る方法が好適である。 MEA水溶液としては濃度 35重量%以上の水溶液が好ま Uヽ  [0070] As a method for recovering carbon dioxide from combustion exhaust gas, for example, the method described in JP-A-5-184865, that is, a combustion exhaust gas and a monoethanolamine (MEA) aqueous solution under atmospheric pressure are used. A method of removing the carbon dioxide contained in the combustion exhaust gas and recovering the carbon dioxide is preferable. The MEA aqueous solution is preferably an aqueous solution with a concentration of 35% by weight or more.
[0071] 上記の公開公報に記載された方法の概要は次の通りである。すなわち、主として、 燃焼排ガス冷却器、脱 CO塔、 MEA水溶液再生塔からなる設備を使用する。 [0071] The outline of the method described in the above publication is as follows. In other words, equipment consisting mainly of a flue gas cooler, de-CO tower, and MEA aqueous solution regeneration tower is used.
2  2
[0072] 燃焼排ガス冷却器は、塔形式の構造であり、塔内の上部に散水ノズルが設けられ、 中央部に充填部が形成され、加湿冷却水循環ポンプが付設されている。そして、通 常 100〜150°Cの燃焼排ガスは、燃焼排ガス冷却器の上部力も供給されて下部から 導出した後に脱 CO塔の下部に供給される力 その間、散水ノズル力 の加湿冷却  [0072] The combustion exhaust gas cooler has a tower type structure, a watering nozzle is provided in the upper part of the tower, a filling part is formed in the central part, and a humidified cooling water circulation pump is attached. Combustion exhaust gas of 100 to 150 ° C is usually supplied with the upper force of the combustion exhaust gas cooler and is derived from the lower part and then supplied to the lower part of the de-CO tower.
2  2
水と接触し、通常 50〜150°Cの燃焼排ガスとなる。  It comes into contact with water and usually becomes 50 to 150 ° C combustion exhaust gas.
[0073] 脱 CO塔は、塔内の上部に MEA水溶液用散液ノズルが設けられ、中央部に充填 [0073] The CO removal tower is equipped with a spray nozzle for MEA aqueous solution at the top of the tower, and packed in the center.
2  2
部が形成され、 CO吸収 MEA水溶液排出ポンプが付設されている。そして、脱 CO 塔の下部に供給された燃焼排ガスは、脱 CO塔内において、 MEA水溶液と交流接 The part is formed and a CO absorption MEA aqueous solution discharge pump is attached. And de CO The flue gas supplied to the lower part of the tower is connected to the MEA aqueous solution by AC
2  2
触し、燃焼排ガス中の COは MEA水溶液に吸収されて除去される。 COが除去さ  Touching, CO in combustion exhaust gas is absorbed and removed by MEA aqueous solution. CO removed
2 2 れた燃焼排ガスは脱 CO塔の上部から系外に排出される。  The exhausted flue gas is discharged out of the system from the top of the de-CO tower.
2  2
[0074] MEA水溶液再生塔は、塔内の上部に MEA排水溶液用散液ノズルが設けられ、 中央部に充填部が形成され、再生加熱器 (リボイラー)が付設されている。そして、 C Oが吸収された MEA水溶液は、熱交^^で冷却された後、 MEA水溶液再生塔に [0074] The MEA aqueous solution regeneration tower is provided with a spray nozzle for MEA waste solution at the top of the tower, a filling part is formed at the center, and a regeneration heater (reboiler) is attached. Then, the MEA aqueous solution in which CO is absorbed is cooled by heat exchange ^^ and then put into the MEA aqueous solution regeneration tower.
2 2
供給され、再生加熱器 (リボイラー)により再生される。 MEA水溶液から放散された二 酸ィ匕炭素は、 MEA水溶液再生塔の上部力 系外に排出される。  It is supplied and regenerated by a regenerative heater (reboiler). The carbon dioxide dioxide released from the MEA aqueous solution is discharged out of the upper power system of the MEA aqueous solution regeneration tower.
[0075] 本発明においては、前記のメタン源として原料ガス中に含まれる水素を利用し、引 き続き説明する以下の工程により、前記で製造された芳香族化合物を水素化芳香族 化合物に容易に変換することが出来る。 [0075] In the present invention, hydrogen contained in the raw material gas is used as the methane source, and the aromatic compound produced as described above can be easily converted into a hydrogenated aromatic compound by the following steps described below. Can be converted to
[0076] < (iv)水素化芳香族化合物合成工程 > [0076] <(iv) Hydrogenated aromatic compound synthesis step>
水素化芳香族化合物合成工程では、上記の芳香族化合物分離工程で回収された 芳香族化合物を触媒の存在下に水素化して水素化芳香族化合物を得ることが出来 る。  In the hydrogenated aromatic compound synthesis step, a hydrogenated aromatic compound can be obtained by hydrogenating the aromatic compound recovered in the above aromatic compound separation step in the presence of a catalyst.
[0077] 芳香族化合物の水素化反応は古くから知られた技術であり、本発明においては、 従来公知の何れの技術をも使用することが出来る。例えば、触媒としては、活性金属 として、ロジウム、イリジウム、白金、ルテニウム、レニウム、パラジウム、モリブデン、二 ッケル、タングステン、バナジウム、オスミウム、コノ レト、クロム、鉄、それらの酸化物、 それらの硫ィ匕物から選ばれる少なくとも 1種を含む金属担持触媒などが挙げられる。 反応温度は、通常 150〜300°C、好ましくは 180〜270°C、反応圧力は、通常 4〜8 Okg/cm2,好ましくは 9〜70kgZcm2である。 [0077] The hydrogenation reaction of the aromatic compound is a technique that has been known for a long time, and any conventionally known technique can be used in the present invention. For example, as a catalyst, as an active metal, rhodium, iridium, platinum, ruthenium, rhenium, palladium, molybdenum, nickel, tungsten, vanadium, osmium, conoleto, chromium, iron, oxides thereof, sulfur oxides thereof. And a metal-supported catalyst containing at least one selected from those listed above. The reaction temperature is usually 150 to 300 ° C., preferably 180 to 270 ° C., and the reaction pressure is usually 4 to 8 Okg / cm 2 , preferably 9 to 70 kg Zcm 2 .
[0078] 本発明においては、水素源として、例えば、前述のコークス炉ガス等をシフト(Shift )反応してガス中の一酸ィ匕炭素を低減して得た水素含有ガスを使用するのが好まし い。 Shift反応は、 CO+H 0→CO +Hの式で表され、当業者によって周知の反  In the present invention, as the hydrogen source, for example, a hydrogen-containing gas obtained by reducing the carbon monoxide carbon in the gas by performing a shift reaction of the above-described coke oven gas or the like is used. I like it. The Shift reaction is represented by the formula CO + H 0 → CO + H and is a reaction well known to those skilled in the art.
2 2 2  2 2 2
応である。触媒には、鉄 クロム系触媒、銅 亜鉛系触媒が使用され、反応温度は 通常 180〜480°C、反応圧力は通常 l〜34kgZcm2である。なお、ガス中の一酸ィ匕 炭素を低減する方法としては、前述のメタネーシヨン反応も利用することが出来る。ま た、水素源として、例えば、前述のコークス炉ガス等力も圧力スイング吸着 (PSA)法 や水素分離膜を使用する方法により一酸化炭素を低減した水素含有ガスを利用する ことも出来る。 Yes. As the catalyst, an iron-chromium catalyst and a copper-zinc catalyst are used, the reaction temperature is usually 180 to 480 ° C, and the reaction pressure is usually 1 to 34 kgZcm 2 . The above-mentioned methanation reaction can also be used as a method for reducing carbon monoxide and carbon in the gas. Ma Further, as the hydrogen source, for example, the above-mentioned coke oven gas isotonicity can use a hydrogen-containing gas in which carbon monoxide is reduced by a pressure swing adsorption (PSA) method or a method using a hydrogen separation membrane.
[0079] < (v)水素化芳香族化合物の分離工程 > [0079] <(v) Separation process of hydrogenated aromatic compound>
水素化芳香族化合物分離工程では、上記の水素化芳香族化合物合成工程で得ら れた生成物ガス力 水素化芳香族化合物と水素含有ガスとを分離して回収する。水 素化芳香族化合物の成分としては、前述のベンゼン等の水素化物(C H 等)である  In the hydrogenated aromatic compound separation step, the product gas force hydrogenated aromatic compound and the hydrogen-containing gas obtained in the hydrogenated aromatic compound synthesis step are separated and recovered. The component of the hydrated aromatic compound is a hydride such as benzene (C H etc.) described above.
6 12 6 12
。ガス成分としては、低級炭化水素および二酸化炭素の他、水素などである。 . Examples of the gas component include lower hydrocarbons and carbon dioxide, as well as hydrogen.
[0080] 水素化芳香族化合物の分離手段は、特に制限されないが、熱交換器でガスを冷却 し高沸点化合物を凝縮させ、デミスター付きのセパレーターにて気液分離する方法 が好適である。そして、水素化反応の圧力を維持したまま 6°Cまで冷却して水素化芳 香族化合物を分離する。 [0080] The means for separating the hydrogenated aromatic compound is not particularly limited, but a method of cooling the gas with a heat exchanger to condense the high-boiling point compound and separating it with a separator with a demister is suitable. Then, the hydrogenated aromatic compound is separated by cooling to 6 ° C while maintaining the pressure of the hydrogenation reaction.
[0081] 図 1は、本発明に係る芳香族化合物の製造方法の一例を示すフローシートである。 FIG. 1 is a flow sheet showing an example of a method for producing an aromatic compound according to the present invention.
同図に示す製造方法は、原料ガスとして石炭ガス化ガス (H 、 CO、 CO 、 N )とコー  In the manufacturing method shown in the figure, coal gasification gas (H, CO, CO, N) and coal
2 2 2 クス炉ガス (H 、 CH 、 CO、 CO 、 N )の混合ガスを使用し、芳香族化合物合成工程  2 2 2 Aromatic compound synthesis process using mixed gas of coke oven gas (H, CH, CO, CO, N)
2 4 2 2  2 4 2 2
(A)、芳香族化合物分離工程 (B)、メタンィ匕工程 (C)の他に、本発明の好ましい態 様に従って二酸ィ匕炭素除去工程 (D)を包含する。更に、コークス炉ガスの一部を改 質し、水素化芳香族化合物を併産するため、シフト反応工程 (E)、水素化工程 (F) 及び水素化芳香族化合物分離工程 (G)を備えて!/ヽる。各工程へのガスの流れは次 の通りである。  In addition to (A), aromatic compound separation step (B) and methanization step (C), a diacid / carbon removal step (D) is included according to a preferred embodiment of the present invention. In addition, a shift reaction step (E), a hydrogenation step (F), and a hydrogenated aromatic compound separation step (G) are provided to reform part of the coke oven gas and produce hydrogenated aromatic compounds together. Talk! The gas flow to each process is as follows.
[0082] 石炭ガス化ガスはライン(1)からメタンィ匕工程 (C)に供給される。コークス炉ガスはラ イン(2)から導入され、 2つの流れに分画され、その一方はライン(3)からライン(1)に 合流されて石炭ガス化ガスとの混合ガスとしてメタンィ匕工程 (C)に供給され、他方は ライン (4)からシフト反応工程 (E)に供給される。  [0082] Coal gasification gas is supplied from the line (1) to the methanization process (C). The coke oven gas is introduced from the line (2) and divided into two streams, one of which is merged from the line (3) to the line (1) and mixed with the coal gasification gas as a methany process ( The other is fed from line (4) to the shift reaction step (E).
[0083] メタンィ匕工程 (C)で得られたガス (メタン含有ガス)はライン (5)から芳香族化合物合 成工程 (A)に供給され、当該工程で得られた生成物ガスはライン (6)から芳香族化 合物分離工程 (B)される。  [0083] The gas (methane-containing gas) obtained in the methanization step (C) is supplied from the line (5) to the aromatic compound synthesis step (A), and the product gas obtained in this step is the line ( The aromatic compound separation step (B) is performed from 6).
[0084] 芳香族化合物分離工程 (B)で芳香族化合物が分離された未反応メタン及び水素 含有ガスはライン(7)から導出され、 2つの流れに分画され、その一方はライン (8)か らリサイクルガスとしてメタンィ匕工程 (C)に供給され、他方はライン (9)から芳香族化 合物合成工程 (A)における反応熱供給のための燃料として使用される。 [0084] Unreacted methane and hydrogen from which aromatic compounds were separated in aromatic compound separation step (B) The contained gas is derived from line (7) and is divided into two streams, one of which is supplied as recycle gas from line (8) to the methanization process (C) and the other is aromatic from line (9). Used as fuel for reaction heat supply in compound synthesis step (A).
[0085] すなわち、ライン (9)側のガスは、ライン(10)力ゝらの空気と混合され、燃料としてライ ン(11)カゝら芳香族化合物合成工程 (A)で使用される。そして、燃焼排ガスはライン( 12)力も二酸ィ匕炭素除去工程 (D)に供給され、当該工程で回収した二酸化炭素は、 ライン( 13)からライン (8)側のリサイクルガスと共にメタンィ匕工程 (C)に供給される。  That is, the gas on the line (9) side is mixed with the air of the line (10) and used as a fuel in the aromatic compound synthesis step (A) such as the line (11). The combustion exhaust gas is also supplied to the diacid / carbon removal process (D) in the line (12), and the carbon dioxide recovered in the process is combined with the recycle gas from the lines (13) to the line (8) to the methane process. Supplied to (C).
[0086] 芳香族化合物分離工程 (B)で分離された芳香族化合物は、必要に応じ、ベンゼン 留分 (C H )とそれ以外の成分 (炭素数 7以上の成分で代表される高沸点成分)とに [0086] The aromatic compound separated in the aromatic compound separation step (B) is, if necessary, a benzene fraction (CH 3) and other components (high-boiling components represented by components having 7 or more carbon atoms). And
6 6 6 6
分離することが出来る。斯かる分離は、例えば、適当な蒸留塔により容易に行うことが 出来る。  Can be separated. Such separation can be easily performed, for example, by a suitable distillation column.
[0087] なお、図示した例においては、蒸留塔の記載は省略されており、上記の 2つの成分 は、模式的な表現として、芳香族化合物分離工程 (B)からのライン(14)及び(15)に より、それぞれ取り出されている。  [0087] In the illustrated example, the description of the distillation column is omitted, and the above two components are represented schematically by lines (14) and (14) from the aromatic compound separation step (B). Each is taken out by 15).
[0088] ライン(14)から取り出されたベンゼンは水素化工程 (F)に供給されて水素化処理 される。水素化処理に必要な水素は、シフト反応工程 (E)からライン(16)によって供 給される。水素化工程 (F)で得られたガスは、ライン(17)カゝら水素化芳香族化合物 分離工程 (G)に供給され、水素化芳香族化合物が分離されたガスは、ライン(18)か らリサイクルガスとしてメタンィ匕工程 (c)に供給される。そして、水素化芳香族化合物 はライン(19)から取り出される。  [0088] The benzene extracted from the line (14) is supplied to the hydrogenation step (F) to be hydrotreated. The hydrogen required for the hydrotreatment is supplied from the shift reaction step (E) through line (16). The gas obtained in the hydrogenation step (F) is supplied to the hydrogenated aromatic compound separation step (G) from line (17), and the gas from which the hydrogenated aromatic compound has been separated is supplied to the line (18). From there, it is supplied to the methanization process (c) as recycled gas. The hydrogenated aromatic compound is then removed from line (19).
[0089] 図 2は、本発明に係る芳香族化合物の製造方法の他の一例を示すフローシートで ある。同図に示す製造方法は、原料ガスとしてコークス炉ガス (H 、 CH 、 CO、 CO  FIG. 2 is a flow sheet showing another example of the method for producing an aromatic compound according to the present invention. In the production method shown in the figure, coke oven gas (H, CH, CO, CO
2 4 2 2 4 2
、 N )と外部カゝら回収した燃焼排ガスを使用し、芳香族化合物合成工程 (A)、芳香N) and the combustion exhaust gas recovered from the external column, the aromatic compound synthesis step (A),
2 2
族化合物分離工程 (B)、メタン化工程 (C)の他に、本発明の好ましい態様に従って 二酸ィ匕炭素除去工程 (D)を包含する。各工程へのガスの流れは次の通りである。  In addition to the group compound separation step (B) and the methanation step (C), a diacid-carbon removal step (D) is included according to a preferred embodiment of the present invention. The gas flow to each process is as follows.
[0090] コークス炉ガスはライン(1)からメタンィ匕工程 (C)に供給される。そして、外部から回 収した燃焼排ガスはライン (20)から二酸化炭素除去工程 (D)に供給される。  [0090] The coke oven gas is supplied from the line (1) to the methanization process (C). The flue gas collected from the outside is supplied from the line (20) to the carbon dioxide removal step (D).
[0091] メタンィ匕工程 (C)で得られたガス (メタン含有ガス)はライン (5)から芳香族化合物合 成工程 (A)に供給され、当該工程で得られた生成物ガスはライン (6)から芳香族化 合物分離工程 (B)される。 [0091] The gas (methane-containing gas) obtained in the methanization process (C) is combined with aromatic compounds from the line (5). The product gas supplied to the synthesis step (A) and obtained in this step is subjected to the aromatic compound separation step (B) from the line (6).
[0092] 芳香族化合物分離工程 (B)で芳香族化合物が分離された未反応低級炭化水素お よび水素含有ガスはライン(7)から導出され、 2つの流れに分画され、その一方はライ ン(8)力 リサイクルガスとしてメタンィ匕工程 (C)に供給され、他方はライン(9)力 芳 香族化合物合成工程 (A)における反応熱のための燃料として使用される。  [0092] The unreacted lower hydrocarbon and the hydrogen-containing gas from which the aromatic compound has been separated in the aromatic compound separation step (B) are led out from the line (7) and fractionated into two streams, one of which is a ligation. (8) Power is supplied to the methanization process (C) as recycle gas, and the other is used as fuel for reaction heat in the line (9) power aromatic compound synthesis process (A).
[0093] すなわち、ライン (9)側のガスは、ライン(10)力ゝらの空気と混合され、燃料としてライ ン(11)カゝら芳香族化合物合成工程 (A)で使用される。そして、燃焼排ガスはライン( 12)力も二酸ィ匕炭素除去工程 (D)に供給される。また、外部力も回収した燃焼排ガス はライン (20)力ゝらニ酸ィ匕炭素除去工程 (D)に供給される。二酸化炭素除去工程 (D )で回収した二酸化炭素は、ライン(13)からメタン化工程 (C)に供給される。  That is, the gas on the line (9) side is mixed with the air of the line (10) and used as a fuel in the aromatic compound synthesis step (A) such as the line (11). The combustion exhaust gas is also supplied to the carbon dioxide removal step (D) with the line (12) force. The flue gas from which the external force has also been recovered is supplied to the line (20) force and the nitric acid and carbon removal step (D). The carbon dioxide recovered in the carbon dioxide removal step (D) is supplied from the line (13) to the methanation step (C).
[0094] 芳香族化合物分離工程 (B)で分離された芳香族化合物は、必要に応じ、ベンゼン 留分 (C H )とそれ以外の成分 (炭素数 7以上の成分で代表される高沸点成分)とに [0094] The aromatic compound separated in the aromatic compound separation step (B) is, if necessary, a benzene fraction (CH 3) and other components (high-boiling components typified by components having 7 or more carbon atoms). And
6 6 6 6
分離することが出来る。斯かる分離は、例えば、適当な蒸留塔により容易に行うことが 出来る。  Can be separated. Such separation can be easily performed, for example, by a suitable distillation column.
[0095] なお、図示した例においては、蒸留塔の記載は省略されており、上記の 2つの成分 は、模式的な表現として、芳香族化合物分離工程 (B)からのライン(14)及び(15)に より、それぞれ取り出されている。  [0095] In the illustrated example, the description of the distillation column is omitted, and the above two components are represented schematically by lines (14) and (14) from the aromatic compound separation step (B). Each is taken out by 15).
[0096] なお、前述の方法で製造された芳香族化合物は、水素化芳香族化合物にかぎらず 一般的に製造される芳香族化合物誘導体の全ての原料に使用できる。ベンゼンの 場合、例えば、エチレンによるアルキル化によりェチルベンゼン (スチレン、ポリスチレ ン榭脂の原料)、プロピレンによるアルキル化によりキュメン(フエノール、ビスフエノー ル八、ポリカーボネート榭脂の原料)、高級ォレフィンによるアルキルィ匕により高級ァ ルキルベンゼン(アルキルベンゼンスルホン酸の原料)を製造できる。また、メタノー ル等によるアルキルィ匕により、トルエン、キシレン等のアルキルベンゼン類を製造でき る。更に、例えば、ノラキシレンの酸ィ匕反応によりテレフタル酸を製造でき、これとェ チレングリコールとの反応によりポリエチレンテレフタレートを製造できる。  [0096] The aromatic compound produced by the above-described method can be used not only for hydrogenated aromatic compounds but for all raw materials of generally produced aromatic compound derivatives. In the case of benzene, for example, ethenylbenzene (raw material of styrene and polystyrene resin) by alkylation with ethylene, cumene (raw material of phenol, bisphenol-8, polycarbonate resin) by alkylation with propylene, and higher grade by alkylation with higher olefin. Alkylbenzene (a raw material for alkylbenzene sulfonic acid) can be produced. In addition, alkylbenzenes such as toluene and xylene can be produced by alkylation using methanol or the like. Furthermore, for example, terephthalic acid can be produced by an acid-oxidation reaction of noraxylene, and polyethylene terephthalate can be produced by reacting this with ethylene glycol.
[0097] 水素化芳香族化合物のシクロへキサンの場合、シクロへキサノン、シクロへキサノー ル、力プロラタタムを製造できる。力プロラタタムの開環重合により 6—ナイロンを製造 できる。また、シクロへキサンの脱水素によりシクロへキセン、これを原料にアジピン酸 を製造できる。アジピン酸はへキサメチルジァミンと反応して 6, 6ナイロンとなる。 [0097] In the case of cyclohexane as a hydrogenated aromatic compound, cyclohexanone, cyclohexano Can produce force prolatatam. 6-nylon can be produced by ring-opening polymerization of strong prolatatam. Also, cyclohexene can be produced by dehydrogenation of cyclohexane, and adipic acid can be produced from this. Adipic acid reacts with hexamethyldiamine to give 6, 6 nylon.
[0098] 芳香族化合物、特にベンゼンの場合、先ず、選択酸化反応により無水マレイン酸を 製造し、これを接触水素化することにより、 y—プチ口ラタトン、テトラヒドロフラン、 1, 4 ブタンジオール等を製造できる。 γ ブチロラタトンにアルキルアミン又はアンモ ユアを反応させることにより Ν アルキル一 2 ピロリドン等を製造できる。また、 1, 4 ブタンジオールからは脱水反応によりテトラヒドロフランを選択的に製造でき、これか らは、酸触媒などにより低重合生成物のポリテトラメチレングリコールエーテルを製造 できる。 [0098] In the case of aromatic compounds, particularly benzene, first, maleic anhydride is produced by a selective oxidation reaction, and this is catalytically hydrogenated to produce y-peptite ratatone, tetrahydrofuran, 1,4 butanediol, etc. it can.ア ル キ ル Alkyl-12 pyrrolidone and the like can be produced by reacting γ-butyrolatatone with alkylamine or ammonia. Further, tetrahydrofuran can be selectively produced from 1,4 butanediol by a dehydration reaction, and from this, polytetramethylene glycol ether which is a low polymerization product can be produced using an acid catalyst or the like.
[0099] 1, 4 ブタンジオールとテレフタル酸の縮合反応により、ポリブチレンテレフタレート を製造できる。また、ナフタレン類からは、酸ィ匕によりフタル酸およびその誘導体を製 造できる。更には、芳香族化合物または水素化芳香族化合物の接触分解により、ェ チレン、プロピレン、ブテン等の低級ォレフィンを製造できる。そして、それから誘導さ れる低級ォレフィン誘導体、例えば、エチレン誘導品としては、酸化反応によるェチ レンオキサイド、エチレングリコール、エタノールァミン、グリコールエーテル等、塩素 ィ匕による塩ィ匕ビュルモノマー、 1, 11—トリクロロェタン、ポリ塩ィ匕ビニル榭脂、塩ィ匕ビ ユリデン等が挙げられる。また、エチレンの重合により、 ひ ォレフィン (更に、 ひーォ レフインを原料として、ォキソ反応それに続く水素化反応により高級アルコ一ルを製 造できる。)、低密度や高密度のポリエチレン等を製造できる。また、酢酸との反応に より酢酸ビュルを製造でき、また、ヮッカー反応によりァセトアルデヒド及びその誘導 体である酢酸ェチル等を製造できる。プロピレン誘導品としては、アンモ酸ィ匕によるァ クリロ-トリル、選択酸ィ匕によるァクロレイン、アクリル酸およびアクリル酸エステル、ォ キソ反応によるノルマルブチルアルデヒド、 2—ェチルへキサノール等のォキソアルコ ール、プロピレンの重合によるポリプロピレン、プロピレンの選択酸化によるプロピレン オキサイド及びプロピレングリコール、プロピレンの水和によるイソプロピルアルコール 等が挙げられる。また、ヮッカー反応によりアセトンを製造できる。更に、アセトンよりメ チルイソブチルケトンやアセトンシアンヒドリンを製造できる。ァセトシアンヒドリンからメ チルメタタリレートを製造できる。また、更に、ブテンの酸ィ匕脱水素によりブタジエンを 製造できる。そして、ブタジエンから、ァセトキシ化、水素化、加水分解を経て 1, 4— ブタンジオールを製造でき、これを原料として、 γ—ブチ口ラタトン、 Ν—メチルピロリ ドン等のピロリドン類を製造でき、脱水反応により、テトラヒドロフラン、ポリテトラメチレ ングリコール等を製造できる。また、ブタジエン力も種々の合成ゴムを製造できる。 実施例 [0099] Polybutylene terephthalate can be produced by a condensation reaction of 1,4 butanediol and terephthalic acid. From naphthalenes, phthalic acid and its derivatives can be produced with acid. Furthermore, lower olefins such as ethylene, propylene and butene can be produced by catalytic cracking of aromatic compounds or hydrogenated aromatic compounds. Further, lower olefin derivatives derived therefrom, for example, ethylene derivatives include ethylene oxide by oxidation reaction, ethylene glycol, ethanolamine, glycol ether, etc., salt butyl monomers by chlorine, 1, 11 —Trichloroethane, polysalt-vinyl resin, salt-vinylidene and the like. Also, by polymerization of ethylene, olefins (and higher alcohols can be produced by using olefins as a raw material by an oxo reaction followed by a hydrogenation reaction), low density and high density polyethylene, etc. can be produced. . In addition, butyl acetate can be produced by reaction with acetic acid, and acetoaldehyde and its derivative ethyl acetate can be produced by the Wicker reaction. Propylene derivatives include acrylo-tolyl by ammonic acid, acrolein by selective acid, acrylic acid and acrylate, normal butyraldehyde by oxo reaction, oxo alcohol such as 2-ethylhexanol, propylene And polypropylene by polymerization of propylene, propylene oxide and propylene glycol by selective oxidation of propylene, and isopropyl alcohol by hydration of propylene. In addition, acetone can be produced by the Hacker reaction. Furthermore, methyl isobutyl ketone and acetone cyanohydrin can be produced from acetone. From the Acetosian hydrin Tilmetatalylate can be produced. Furthermore, butadiene can be produced by acid dehydrogenation of butene. Then, 1,4-butanediol can be produced from butadiene through acetoxylation, hydrogenation, and hydrolysis. Using this as a raw material, pyrrolidones such as γ-butyrate ratataton and Ν-methylpyrrolidone can be produced, followed by dehydration reaction. Thus, tetrahydrofuran, polytetramethylene glycol and the like can be produced. In addition, various synthetic rubbers can be produced with a butadiene strength. Example
[0100] 以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超え ない限り、以下の実施例に限定されるものではない。  [0100] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[0101] 実施例 1 : [0101] Example 1:
外部から供給する原料ガスとして石炭ガス化ガス (Η 、 CO、 CO 、 N )とコークス炉  Coal gasification gas (Η, CO, CO, N) and coke oven as raw material gas supplied from outside
2 2 2  2 2 2
ガス(H 、 CH 、 CO、 CO 、 N )の混合ガスを使用し、図 1に示すフローシートに従つ Use a mixed gas of gas (H, CH, CO, CO, N) and follow the flow sheet shown in Fig. 1.
2 4 2 2 2 4 2 2
て芳香族化合物を連続的に製造した。コークス炉ガスは、常法に従って、脱硫、脱タ ール、脱ダストの前処理を行って使用した。  Aromatic compounds were continuously produced. Coke oven gas was used after pretreatment for desulfurization, detarring, and dedusting according to conventional methods.
[0102] また、芳香族化合物合成触媒は、特開 2005— 255605の実施例 2の方法に従つ て調製した。すなわち、触媒原料として、無機成分:有機バインダー:水 = 65. 4 : 13 . 6 : 21. 0 (重量比)であって、無機成分が、 SiO ZA1 O (モル比) =40である ZSM [0102] An aromatic compound synthesis catalyst was prepared according to the method of Example 2 of JP-A-2005-255605. That is, as a catalyst raw material, an inorganic component: organic binder: water = 65.4: 13.6: 21.0 (weight ratio), and the inorganic component is SiO ZA1 O (molar ratio) = 40.
2 2 3  2 2 3
-5ゼォライト(MFI型ゼオライト):粘土:ガラス繊維 = 82. 5 : 10. 5 : 7. 0 (重量比)で ある混合物を使用した。先ず、触媒原料を混練して成形体となし、次いで、 100°Cで 5時間乾燥した後、 750°Cで焼成した。次いで、得られた焼成体をモリブデン酸アン モ -ゥム水溶液に浸し、焼成体にモリブデン成分を含浸させた (モリブデンの担持量 : 6重量%)。得られたモリブデン担持焼成体を 550°Cで 10時間焼成し、触媒前駆体 を得、次いで、 C H + 11H混合ガス雰囲気下、 350°Cで 24時間処理して触媒を  -5 zeolite (MFI-type zeolite): A mixture of clay: glass fiber = 82.5: 10.5: 7.0 (weight ratio) was used. First, the catalyst raw material was kneaded to form a molded body, then dried at 100 ° C. for 5 hours and then calcined at 750 ° C. Next, the obtained fired body was immersed in an aqueous molybdenum molybdate solution, and the fired body was impregnated with a molybdenum component (amount of molybdenum supported: 6% by weight). The obtained molybdenum-supported calcined product was calcined at 550 ° C for 10 hours to obtain a catalyst precursor, and then treated at 350 ° C for 24 hours in a C H + 11H mixed gas atmosphere.
4 10 2  4 10 2
得た。  Obtained.
[0103] くメタン化工程 (C) :ニッケル触媒使用〉  [0103] Methanation Process (C): Using Nickel Catalyst>
メタン化工程 (C)には、ライン(1)から石炭ガス化ガス、ライン(3)からコークス炉ガ ス、ライン (8)から後述の芳香族化合物分離工程 (B)力ものリサイクルガス (メタン及 び水素含有ガス)、ライン(13)から二酸ィ匕炭素、ライン(18)から後述の水素化芳香 族化合物分離工程 (G)からのリサイクルガス (メタン及び水素含有ガス)がそれぞれ 供給された。メタンィ匕工程 (C)の条件は、圧力: 10kgZcm2、温度 (入口): 350°C、 GHSV: 300h_1とした。メタン化工程への供給ガスの組成およびメタン化工程での 生成ガス (メタン含有ガス)の組成 (冷却器にて 40°Cまで冷却し凝縮水を分離した後 の組成)は表 1に示す通りであった。 In the methanation process (C), coal gasification gas from line (1), coke oven gas from line (3), aromatic compound separation process (B) described later from line (8) And hydrogen-containing gas), recycle gas (methane and hydrogen-containing gas) from the hydrogenated aromatic compound separation step (G) described later from line (13), and carbon dioxide from line (13), respectively. Supplied. Metani spoon conditions of step (C), the pressure: 10kgZcm 2, temperature (inlet): 350 ° C, GHSV: was 300h _1. As shown in Table 1, the composition of the gas supplied to the methanation process and the composition of the product gas (methane-containing gas) in the methanation process (composition after cooling to 40 ° C in the cooler and separating the condensed water) Met.
[0104] [表 1] [0104] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0105] <芳香族化合物合成工程 (A): MoZゼォライト系触媒使用 >  <Aromatic compound synthesis step (A): Using MoZ zeolite catalyst>
メタンィ匕工程 (C)で得られたガス (メタン含有ガス)は 3kgZcm2まで減圧されライン (5)カゝら芳香族化合物合成工程 (A)に供給され、メタンの触媒反応に供された。芳 香族化合物合成工程 (A)の条件は、圧力: 3kgZcm2、温度: 750°C、 GHSV: 100 Oh_1とした。芳香族化合物合成工程 (A)で得られた生成物ガスの組成は表 2に示す 通りであった。 The gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied to the aromatic compound synthesis step (A) from the line (5), where it was used for the catalytic reaction of methane. Fang condition aromatic compound synthesis step (A), pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1. Table 2 shows the composition of the product gas obtained in the aromatic compound synthesis step (A).
[0106] [表 2] [0106] [Table 2]
Figure imgf000022_0001
Figure imgf000022_0001
[0107] 芳香族化合物合成工程 (A)の反応温度は、ライン(11)からの燃料、すなわち、ラ イン(9)力 の未反応メタン及び水素含有ガスとライン(10)力 の空気との混合ガス の燃焼による熱を熱交翻で利用することにより維持した。  [0107] The reaction temperature in the aromatic compound synthesis step (A) is the fuel from the line (11), that is, the unreacted methane and hydrogen-containing gas at line (9) force and the air at line (10) force. The heat from the combustion of the mixed gas was maintained by using heat exchange.
[0108] [表 3]  [0108] [Table 3]
Figure imgf000022_0002
Figure imgf000022_0002
[0109] 上記の燃焼で生成した燃焼排ガスはライン(12)力も二酸ィ匕炭素除去工程 (D)に 供給され、当該工程で回収した二酸ィ匕炭素 l lkNm3/Hは、 lOkg/cm2まで昇圧 後、ライン(13)力もメタンィ匕工程 (C)に供給された。二酸ィ匕炭素除去工程 (D)は、特 開平 5— 184865号公報の実施例に記載された方法に準じ、二酸化炭素の吸収液 に 40重量%濃度の MEA水溶液を使用して行なった。 [0109] Combustion exhaust gas generated by the combustion is supplied to the line (12) force also diacid I匕炭oxygen removal step (D), the recovered diacid I匕炭oxygen l lkNm 3 / H in the process, lOkg / After boosting to cm 2 , line (13) force was also supplied to the methany process (C). The carbon dioxide removal step (D) was carried out using a 40% by weight MEA aqueous solution as the carbon dioxide absorbing solution in accordance with the method described in the example of JP-B-5-184865.
[0110] <芳香族化合物分離工程 (B) >  [0110] <Aromatic compound separation step (B)>
芳香族化合物合成工程 (A)で得られた生成物ガスはライン (6)から芳香族化合物 分離工程 (B)に供給されて処理された。すなわち、生成物ガスは、圧縮機により 10k gZcm2まで昇圧され、その後、冷凍機でガス温 6°Cまで冷却された。そして、デミスタ 一付きセパレーターにより、凝縮液とガスとに分離された。 The product gas obtained in the aromatic compound synthesis step (A) was supplied from the line (6) to the aromatic compound separation step (B) for processing. That is, the product gas was pressurized to 10 kgZcm 2 by a compressor and then cooled to a gas temperature of 6 ° C. by a refrigerator. And demister It was separated into condensate and gas by a single separator.
[0111] 分離されたガス (未反応メタン及び水素含有ガス)はライン (7)から導出され、 2つの 流れに分画され、その一方はライン(8)からリサイクルガスとしてメタンィ匕工程 (C)に 供給され、他方はライン (9)から芳香族化合物合成工程 (A)における反応熱のため の燃料として使用された。一方、分離された凝縮液は、圧力: 10kgZcm2、還流比: 0. 5の条件で蒸留処理され、ベンゼンとその他の成分に分離された。ベンゼンの流 出速度は 22TZHであった。 [0111] The separated gas (unreacted methane and hydrogen-containing gas) is derived from the line (7) and divided into two streams, one of which is recycled from the line (8) as a recycle gas (C) The other was used as a fuel for reaction heat in the aromatic compound synthesis step (A) from line (9). On the other hand, the separated condensate was distilled under the conditions of pressure: 10 kgZcm 2 and reflux ratio: 0.5, and separated into benzene and other components. The benzene flow rate was 22 TZH.
[0112] <シフト反応工程 (E) :鉄 クロム系触媒使用 >  [0112] <Shift reaction process (E): Iron-chromium catalyst use>
ライン (4)からシフト反応工程 (E)に供給されたコークス炉ガスは、シフト反応工程( E)において処理された。シフト反応の条件は、圧力: 20kgZcm2、温度: 250°C、 G HSV: 300h_1とした。 The coke oven gas supplied from the line (4) to the shift reaction step (E) was processed in the shift reaction step (E). Conditions for shift reaction, pressure: 20kgZcm 2, temperature: 250 ° C, G HSV: was 300h _1.
[0113] <水素化工程 (F) :ニッケル触媒使用 >  [0113] <Hydrogenation process (F): Using nickel catalyst>
前記のベンゼン 22TZHはライン(14)から、上記のシフト反応工程 (E)で得られた 水素含有ガスはライン(16)から、それぞれ、圧力 20kg/cm2、温度 200°Cに維持さ れている水素化工程 (F)に供給された。 GHSVは 500h_1とした。各ライン力も供給 された水素化前の原料ガス及び水素化反応後の生成物ガスの組成は表 4に示す通 りであった。 The benzene 22TZH was maintained at a pressure of 20 kg / cm 2 and a temperature of 200 ° C. from the line (14) and the hydrogen-containing gas obtained in the shift reaction step (E) from the line (16), respectively. Was supplied to the hydrogenation step (F). GHSV was 500h _1. Table 4 shows the composition of the raw material gas before hydrogenation and the product gas after the hydrogenation reaction to which each line force was supplied.
[0114] [表 4]  [0114] [Table 4]
Figure imgf000023_0001
[0115] <水素化芳香族化合物分離工程 (G) >
Figure imgf000023_0001
[0115] <Hydrogenated aromatic compound separation step (G)>
水素化工程 (F)で得られた生成物ガスはライン( 17)力 水素化芳香族化合物分 離工程 (G)に供給されて処理された。すなわち、生成物ガスは、冷凍機でガス温 1°C まで冷却された後、デミスター付きセパレーターにより、凝縮液とガスとに分離された 。すなわち、生成物ガスは、冷凍機でガス温 1°Cまで冷却され、デミスター付きセパレ 一ターにより、凝縮液とガスとに分離された。回収された凝縮液 (C H )の生産量は  The product gas obtained in the hydrogenation step (F) was supplied to the line (17) force hydrogenated aromatic compound separation step (G) for processing. That is, the product gas was cooled to a gas temperature of 1 ° C. with a refrigerator and then separated into condensate and gas by a separator with a demister. That is, the product gas was cooled to a gas temperature of 1 ° C with a refrigerator and separated into condensate and gas by a separator with a demister. The amount of recovered condensate (C H) produced is
6 12  6 12
23TZHであった。また、回収されたガスはライン(18)からリサイクルガスとしてメタン 化工程 (C)に供給された。  It was 23TZH. The recovered gas was supplied to the methanation process (C) as a recycle gas from the line (18).
[0116] [表 5] [0116] [Table 5]
Figure imgf000024_0001
Figure imgf000024_0001
[0117] 実施例 2 :  [0117] Example 2:
外部力も供給する原料ガスとしてコークス炉ガス (H、 CH 、 CO、 CO 、 N )を使用  Coke oven gas (H, CH, CO, CO, N) is used as a raw material gas that also supplies external power
2 4 2 2 し、図 2に示すフローシートに従って芳香族化合物を連続的に製造した。コークス炉 ガスは、常法に従って、脱硫、脱タール、脱ダストの前処理を行って使用した。  Then, an aromatic compound was continuously produced according to the flow sheet shown in FIG. Coke oven gas was used after pretreatment of desulfurization, detarring, and dedusting in accordance with conventional methods.
[0118] くメタン化工程 (C) :ニッケル触媒使用〉 [0118] Methanation Process (C): Using Nickel Catalyst>
メタン化工程 (C)には、ライン(1)からコークス炉ガス、ライン (8)から後述の芳香族 化合物分離工程 (B)からのリサイクルガス (メタン及び水素含有ガス)、ライン( 13)か ら二酸化炭素がそれぞれ供給された。メタンィ匕工程 (C)の条件は、圧力: lOkgZcm 2、温度(入口): 280°C、 GHSV: 300h_1とした。メタン化工程への供給ガスの組成 およびメタンィ匕工程での生成ガス (メタン含有ガス)の組成 (冷却器にて 40°Cまで冷 却し凝縮水を分離した後の組成)は表 6に示す通りであった [0119] [表 6] In the methanation process (C), the coke oven gas from the line (1), the recycle gas (methane and hydrogen-containing gas) from the aromatic compound separation process (B) described later from the line (8), the line (13) Carbon dioxide was supplied. Metani spoon conditions of step (C), the pressure: lOkgZcm 2, temperature (inlet): 280 ° C, GHSV: was 300h _1. Table 6 shows the composition of the gas supplied to the methanation process and the composition of the product gas (methane-containing gas) in the methanization process (composition after cooling to 40 ° C with a cooler and separating the condensed water) Was the street [0119] [Table 6]
Figure imgf000025_0001
Figure imgf000025_0001
[0120] <芳香族化合物合成工程 (A): MoZゼォライト系触媒使用 >  [0120] <Aromatic compound synthesis step (A): Using MoZ zeolite catalyst>
メタンィ匕工程 (C)で得られたガス (メタン含有ガス)は 3kgZcm2まで減圧されライン (5)カゝら芳香族化合物合成工程 (A)に供給され、メタンの触媒反応に供された。芳 香族化合物合成工程 (A)の条件は、圧力: 3kgZcm2、温度: 750°C、 GHSV: 100 Oh_1とした。芳香族化合物合成工程 (A)で得られた生成物ガスの組成は表 7に示す 通りであった。 The gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied to the aromatic compound synthesis step (A) from the line (5), where it was used for the catalytic reaction of methane. Fang condition aromatic compound synthesis step (A), pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1. The composition of the product gas obtained in the aromatic compound synthesis step (A) was as shown in Table 7.
[0121] [表 7]  [0121] [Table 7]
Figure imgf000025_0002
Figure imgf000025_0002
芳香族化合物合成工程 (A)の反応温度は、ライン(11)からの燃料、すなわち、ラ イン (9)力 の未反応低級炭化水素および水素含有ガスとライン(10)力 の空気と の混合ガスの燃焼による熱を熱交^^で利用することにより維持した。 [0123] [表 8] The reaction temperature of the aromatic compound synthesis step (A) is determined by mixing the fuel from line (11), that is, the mixture of unreacted lower hydrocarbon and hydrogen containing gas with line (9) force and air with line (10) force. The heat from gas combustion was maintained by using heat exchange. [0123] [Table 8]
Figure imgf000026_0001
Figure imgf000026_0001
[0124] 上記の燃焼で生成した燃焼排ガスはライン(12)力も二酸ィ匕炭素除去工程 (D)に 供給された。また、外部カゝら回収した燃焼排ガスはライン (20)力ゝらニ酸ィ匕炭素除去 工程 (D)に供給された。そして、二酸ィ匕炭素除去工程 (D)で回収した二酸ィ匕炭素 2 4kNm3ZHは、 lOkgZcm2まで昇圧後、ライン(13)力もメタンィ匕工程 (C)に供給さ れた。二酸ィ匕炭素除去工程 (D)は、特開平 5— 184865号公報の実施例に記載さ れた方法に準じ、二酸化炭素の吸収液に 40重量%濃度の MEA水溶液を使用して 行なった。 [0124] The flue gas generated by the above combustion was also supplied to the carbon dioxide removal step (D) with line (12) force. In addition, the flue gas recovered from the external column was supplied to the line (20) force and the carbon dioxide removal step (D). The diacid carbon 24 4kNm 3 ZH recovered in the diacid carbon removal step (D) was pressurized to 10 kgZcm 2 and then the line (13) force was also supplied to the methany step (C). The carbon dioxide removal step (D) was carried out according to the method described in the example of JP-A-5-184865, using a 40% by weight MEA aqueous solution as the carbon dioxide absorbing solution. .
[0125] <芳香族化合物分離工程 (B) >  [0125] <Aromatic compound separation step (B)>
芳香族化合物合成工程 (A)で得られた生成物ガスはライン (6)から芳香族化合物 分離工程 (B)に供給されて処理された。すなわち、生成物ガスは、圧縮機により 10k gZcm2まで昇圧され、その後、冷凍機でガス温 6°Cまで冷却された。そして、デミスタ 一付きセパレーターにより、凝縮液とガスとに分離された。 The product gas obtained in the aromatic compound synthesis step (A) was supplied from the line (6) to the aromatic compound separation step (B) for processing. That is, the product gas was pressurized to 10 kgZcm 2 by a compressor and then cooled to a gas temperature of 6 ° C. by a refrigerator. Then, it was separated into condensate and gas by a separator with a demister.
[0126] 分離されたガス (未反応低級炭化水素および水素含有ガス)はライン (7)から導出 され、 2つの流れに分画され、その一方はライン (8)からリサイクルガスとしてメタンィ匕 工程 (C)に供給され、他方はライン (9)から芳香族化合物合成工程 (A)における反 応熱のための燃料として使用された。一方、分離された凝縮液は、圧力: lOkgZcm 還流比: 0. 5の条件で蒸留処理され、ベンゼンとその他の成分に分離された。ベ ンゼンの流出速度は 29TZHであった。  [0126] The separated gas (unreacted lower hydrocarbon and hydrogen-containing gas) is derived from the line (7) and is divided into two streams, one of which is recycled from the line (8) as a recycle gas process ( The other was used as fuel for reaction heat in the aromatic compound synthesis step (A) from line (9). On the other hand, the separated condensate was distilled under the conditions of pressure: lOkgZcm reflux ratio: 0.5 and separated into benzene and other components. The flow rate of benzene was 29 TZH.
[0127] 実施例 3 :  Example 3
外部力も供給する原料ガスとしてコークス炉ガス (H、 CH、 CO、 CO、 N )と燃焼 排ガス力も回収した二酸ィ匕炭素の混合ガスを使用し、図 2に示すフローシートに従つ て芳香族化合物を連続的に製造した。コークス炉ガスは、常法に従って、脱硫、脱タ ール、脱ダストの前処理を行って使用した。 Coke oven gas (H, CH, CO, CO, N) and combustion as raw material gas that also supplies external power An aromatic compound was continuously produced according to the flow sheet shown in Fig. 2, using a mixed gas of carbon dioxide and carbon dioxide that also recovered the exhaust gas power. Coke oven gas was used after pretreatment for desulfurization, detarring, and dedusting according to conventional methods.
[0128] くメタン化工程 (C) :ニッケル触媒使用〉  [0128] Methanation Process (C): Using Nickel Catalyst>
メタン化工程 (C)には、ライン(3)からコークス炉ガス、ライン (8)から後述の芳香族 化合物分離工程 (B)力ゝらのリサイクルガス (低級炭化水素および水素含有ガス)、ライ ン(13)から二酸化炭素、ライン (18)から後述の水素化芳香族化合物分離工程 (G) 力ものリサイクルガス (低級炭化水素および水素含有ガス)がそれぞれ供給された。こ れらのガスは、何れも、ライン(1)を経由してメタンィ匕工程 (C)に供給された。メタンィ匕 工程(C)の条件は、圧力: 10kgZcm2、温度(入口): 350。C、 GHSV: 300h_1とし た。メタンィ匕工程への供給ガスの組成およびメタンィ匕工程での生成ガス (メタン含有 ガス)の組成 (冷却器にて 40°Cまで冷却し凝縮水を分離した後の組成)は表 9に示す 通りであった。 The methanation process (C) includes coke oven gas from line (3), aromatic compound separation process (B) described later from line (8), Recycle gas (lower hydrocarbon and hydrogen-containing gas), Carbon dioxide (13) was supplied from carbon dioxide (13), and a hydrogenated aromatic compound separation step (G), which will be described later, was supplied from the line (18). All of these gases were supplied to the methanization process (C) via line (1). Methany Process (C) conditions are pressure: 10kgZcm 2 , temperature (inlet): 350. C, GHSV: 300h _1 . Table 9 shows the composition of the gas supplied to the methane process and the composition of the product gas (methane-containing gas) in the methane process (the composition after cooling to 40 ° C and separating the condensed water). Met.
[0129] [表 9]  [0129] [Table 9]
Figure imgf000027_0001
Figure imgf000027_0001
<芳香族化合物合成工程 (A): MoZゼォライト系触媒使用 >  <Aromatic compound synthesis step (A): Using MoZ zeolite catalyst>
メタンィ匕工程 (C)で得られたガス (メタン含有ガス)は 3kgZcm2まで減圧されライン (5)から芳香族化合物合成工程 (A)に供給され、メタンの触媒反応に供された。芳 香族化合物合成工程 (A)の条件は、圧力: 3kgZcm2、温度: 750°C、 GHSV: 100 Oh_1とした。芳香族化合物合成工程 (A)で得られた生成物ガスの組成は表 10に示 す通りであった。 The gas (methane-containing gas) obtained in the methanization step (C) was depressurized to 3 kgZcm 2 and supplied from the line (5) to the aromatic compound synthesis step (A), where it was used for the catalytic reaction of methane. Fang condition aromatic compound synthesis step (A), pressure: 3kgZcm 2, temperature: 750 ° C, GHSV: was 100 Oh _1. The composition of the product gas obtained in the aromatic compound synthesis step (A) is shown in Table 10. It was street.
[0131] [表 10]  [0131] [Table 10]
Figure imgf000028_0001
Figure imgf000028_0001
[0132] 芳香族化合物合成工程 (A)の反応温度は、ライン(11)からの燃料、すなわち、ラ イン (9)力 の未反応低級炭化水素および水素含有ガスとライン(10)力 の空気と の混合ガスの燃焼による熱を熱交^^で利用することにより維持した。  [0132] The reaction temperature in the aromatic compound synthesis step (A) is the fuel from the line (11), that is, the unreacted lower hydrocarbon and the hydrogen-containing gas of line (9) force and the air of line (10) force. The heat generated by the combustion of the mixed gas and was maintained by using heat exchange.
[0133] [表 11]  [0133] [Table 11]
Figure imgf000028_0002
Figure imgf000028_0002
上記の燃焼で生成した燃焼排ガスはライン(12)力も二酸ィ匕炭素除去工程 (D)に 供給された。また、外部カゝら回収した燃焼排ガスはライン (20)力ゝらニ酸ィ匕炭素除去 工程 (D)に供給された。そして、二酸ィ匕炭素除去工程 (D)で回収した二酸ィ匕炭素 2 lkNm3ZHは、 lOkgZcm2まで昇圧後、ライン(13)力もライン(1)を経由しメタンィ匕 工程 (C)に供給された。二酸ィ匕炭素除去工程 (D)は、特開平 5— 184865号公報の 実施例に記載された方法に準じ、二酸化炭素の吸収液に 40重量%濃度の MEA水 溶液を使用して行なった。 The flue gas generated by the above combustion was also supplied to the carbon dioxide removal step (D) with line (12) force. In addition, the flue gas recovered from the external column was supplied to the line (20) force and the carbon dioxide removal step (D). Then, the carbon dioxide 2 lkNm 3 ZH recovered in the carbon dioxide removal process (D) is boosted to 10 kgZcm 2 and then the line (13) force is also passed through the line (1) to the methanoly process (C). Supplied to The diacid soot carbon removal step (D) is described in JP-A-5-184865. According to the method described in the examples, a 40% by weight MEA aqueous solution was used as the carbon dioxide absorption solution.
[0135] <芳香族化合物分離工程 (B) > [0135] <Aromatic compound separation step (B)>
芳香族化合物合成工程 (A)で得られた生成物ガスはライン (6)から芳香族化合物 分離工程 (B)されて処理された。すなわち、生成物ガスは、圧縮機により lOkgZcm The product gas obtained in the aromatic compound synthesis step (A) was processed in the aromatic compound separation step (B) from the line (6). That is, the product gas is lOkgZcm by the compressor.
2まで昇圧され、その後、冷凍機でガス温 6°Cまで冷却された。そして、デミスター付き セパレーターにより、凝縮液とガスとに分離された。 The pressure was increased to 2 and then cooled to a gas temperature of 6 ° C with a refrigerator. And it was isolate | separated into the condensate and gas with the separator with a demister.
[0136] 分離されたガス (未反応低級炭化水素および水素含有ガス)はライン (7)から導出 され、 2つの流れに分画され、その一方はライン (8)からライン(1)を経由しリサイクル ガスとしてメタンィ匕工程 (C)に供給され、他方はライン(9)から芳香族化合物合成ェ 程 (A)における反応熱のための燃料として使用された。一方、分離された凝縮液は、 圧力: 10kgZcm2、還流比: 0. 5の条件で蒸留処理され、ベンゼンとその他の成分 に分離された。ベンゼンの流出速度は 20TZHであった。 [0136] The separated gas (unreacted lower hydrocarbon and hydrogen-containing gas) is derived from line (7) and divided into two streams, one of which passes from line (8) via line (1). Recycled gas was supplied to the methanization process (C), and the other was used as fuel for the reaction heat in the aromatic compound synthesis process (A) from line (9). On the other hand, the separated condensate was distilled under the conditions of pressure: 10 kgZcm 2 , reflux ratio: 0.5, and separated into benzene and other components. The outflow rate of benzene was 20TZH.
[0137] <シフト反応工程 (E) :鉄 クロム系触媒使用 >  [0137] <Shift reaction step (E): Use of iron-chromium catalyst>
ライン (4)からシフト反応工程 (E)に供給されたコークス炉ガスは、シフト反応工程( E)において処理された。シフト反応の条件は、圧力: 20kgZcm2、温度: 250°C、 G HSV: 300h_1とした。 The coke oven gas supplied from the line (4) to the shift reaction step (E) was processed in the shift reaction step (E). Conditions for shift reaction, pressure: 20kgZcm 2, temperature: 250 ° C, G HSV: was 300h _1.
[0138] <水素化工程 (F):ニッケル触媒使用 >  [0138] <Hydrogenation process (F): Using nickel catalyst>
前記のベンゼン 20TZHはライン(14)から、上記のシフト反応工程 (E)で得られた 水素含有ガスはライン(16)から、それぞれ、圧力 20kgZcm2、温度 200°Cに維持さ れている水素化工程 (F)に供給された。 GHSVは 500h_1とした。各ライン力も供給 された水素化前の原料ガス及び水素化反応後の生成物ガスの組成は表 12に示す 通りであった。 The benzene 20TZH is from the line (14), and the hydrogen-containing gas obtained in the shift reaction step (E) is from the line (16), and the hydrogen is maintained at a pressure of 20 kgZcm 2 and a temperature of 200 ° C, respectively. Supplied to the conversion step (F). GHSV was 500h _1. Table 12 shows the composition of the raw material gas before hydrogenation and the product gas after the hydrogenation reaction to which each line force was supplied.
[0139] [表 12] 水素化前の原料ガス 水素化反応後の生成物ガス [0139] [Table 12] Source gas before hydrogenation Product gas after hydrogenation reaction
(流量 3 5 kNms/H) (流量 1 8 kNm3/H) o  (Flow rate 35 kNms / H) (Flow rate 18 kNm3 / H) o
CH4 (mo 1 %) 22 43 CH 4 (mo 1%) 22 43
H2 (mo 1 %) 5 1 5 H 2 (mo 1%) 5 1 5
 Yes
C02 (mo 1 %) 7 1 4 C0 2 (mo 1%) 7 1 4
N2 (mo 1 %) 2 3 N 2 (mo 1%) 2 3
C 6 H6 (mo 1 %) 1 6 ― C 6 H 6 (mo 1%) 1 6 ―
― 3 2 ― 3 2
その他 (mo 1 %) 2 3  Other (mo 1%) 2 3
[0140] <水素化芳香族化合物分離工程 (G) > [0140] <Hydrogenated aromatic compound separation step (G)>
水素化工程 (F)で得られた生成物ガスはライン( 17)力 水素化芳香族化合物分 離工程 (G)に供給されて処理された。すなわち、生成物ガスは、冷凍機でガス温 1°C まで冷却された後、デミスター付きセパレーターにより、凝縮液とガスとに分離された 。回収された凝縮液 (C H )の生産量は 21TZHであった。また、回収されたガスは  The product gas obtained in the hydrogenation step (F) was supplied to the line (17) force hydrogenated aromatic compound separation step (G) for processing. That is, the product gas was cooled to a gas temperature of 1 ° C. with a refrigerator and then separated into condensate and gas by a separator with a demister. The volume of recovered condensate (C H) was 21 TZH. The recovered gas is
6 12  6 12
ライン(18)からライン(1)を経由しリサイクルガスとしてメタンィ匕工程 (C)に供給された  Supplied as recycle gas from line (18) to line (1) to the methany process (C)
[0141] [表 13] ライン (1 8) から供給されたリサイクルガス [0141] [Table 13] Recycled gas supplied from line (1 8)
(流量 1 2 kNm3/H)  (Flow rate 12 kNm3 / H)
CH4 (mo 1 %) 6 3 CH 4 (mo 1%) 6 3
C02 (mo 1 %) 2 0 C0 2 (mo 1%) 2 0
H2 (mo 1 %) 7 H 2 (mo 1%) 7
N2 (mo 1 %) 5 その他 (mo 1 %) 5 N 2 (mo 1%) 5 Others (mo 1%) 5

Claims

請求の範囲 The scope of the claims
[1] 水素含有ガスと、一酸化炭素および Zまたは二酸化炭素とを触媒の存在下に接触 させ、ガス中の水素を一酸ィ匕炭素および Zまたは二酸ィ匕炭素と反応させ、メタンと水 に変換するメタンィ匕工程、及び、触媒の存在下に低級炭化水素及びメタンィ匕工程で 得られたメタンを反応させ、芳香族化合物及び水素を含有する生成物ガスを得る芳 香族化合物合成工程を有する芳香族化合物の製造方法。  [1] A hydrogen-containing gas is brought into contact with carbon monoxide and Z or carbon dioxide in the presence of a catalyst, and the hydrogen in the gas is reacted with carbon monoxide and Z or carbon dioxide with carbon dioxide to react with methane. A methane process for converting to water, and an aromatic compound synthesis process for reacting the methane obtained in the lower hydrocarbon and the methane process in the presence of a catalyst to obtain a product gas containing an aromatic compound and hydrogen. The manufacturing method of the aromatic compound which has this.
[2] 芳香族化合物合成工程で得られた生成物ガスから芳香族化合物を分離し、残りの 水素含有ガスをメタン化工程に供給する請求項 1に記載の芳香族化合物の製造方 法。  [2] The method for producing an aromatic compound according to [1], wherein the aromatic compound is separated from the product gas obtained in the aromatic compound synthesis step, and the remaining hydrogen-containing gas is supplied to the methanation step.
[3] 芳香族化合物合成工程で得られた生成物ガスから芳香族化合物を分離し、次 ヽで 残りの水素含有ガス力 水素を分離し、分離した水素をメタンィ匕工程に供給し、水素 を分離した残りのガスを芳香族化合物合成工程に供給する請求項 1に記載の芳香 族化合物の製造方法。  [3] Aromatic compounds are separated from the product gas obtained in the aromatic compound synthesis step, the remaining hydrogen-containing gas power is separated in the next step, hydrogen is separated, and the separated hydrogen is supplied to the methanization step to remove hydrogen. 2. The method for producing an aromatic compound according to claim 1, wherein the remaining separated gas is supplied to the aromatic compound synthesis step.
[4] 下記 (i)〜 (iii)の工程カゝら成り、芳香族化合物合成工程にメタン化工程で得られた ガスを循環供給する手段を有することを特徴とする芳香族化合物の製造方法。  [4] A process for producing an aromatic compound comprising the following steps (i) to (iii), and comprising means for circulatingly supplying the gas obtained in the methanation process to the aromatic compound synthesis process .
(i)触媒の存在下に低級炭化水素を反応させ、芳香族化合物、低級炭化水素および 水素を含有する生成物ガスを得る芳香族化合物合成工程  (i) Aromatic compound synthesis step in which a lower hydrocarbon is reacted in the presence of a catalyst to obtain a product gas containing an aromatic compound, a lower hydrocarbon and hydrogen
(ii)上記の芳香族化合物合成工程で得られた生成物ガスから芳香族化合物と低級 炭化水素および水素含有ガスとを分離して回収する芳香族化合物分離工程  (ii) Aromatic compound separation step for separating and recovering the aromatic compound and the lower hydrocarbon and hydrogen-containing gas from the product gas obtained in the above aromatic compound synthesis step
(iii)上記の芳香族化合物分離工程で芳香族化合物が分離された低級炭化水素お よび水素を含有するガスに一酸化炭素および Zまたは二酸化炭素を触媒の存在下 で接触させることにより、ガス中の水素を一酸ィ匕炭素および Zまたは二酸ィ匕炭素と反 応させてメタンと水に変換するメタンィ匕工程  (iii) By contacting carbon monoxide and Z or carbon dioxide in the presence of a catalyst with the gas containing the lower hydrocarbon and hydrogen from which the aromatic compound has been separated in the aromatic compound separation step, Process for the conversion of hydrogen into methane and water by reacting hydrogen with mono-carbon and Z or di-acid carbon
[5] 芳香族化合物分離工程で得られた水素含有ガスから水素を分離し、分離した水素 をメタンィ匕工程に供給し、水素を分離した残りのガスを芳香族化合物合成工程に供 給する請求項 4に記載の芳香族化合物の製造方法。  [5] Claims for separating hydrogen from the hydrogen-containing gas obtained in the aromatic compound separation step, supplying the separated hydrogen to the methanization step, and supplying the remaining gas from the hydrogen separation step to the aromatic compound synthesis step Item 5. A method for producing an aromatic compound according to Item 4.
[6] 上記のメタン化工程に一酸化炭素および Zまたは二酸化炭素を含む低級炭化水 素を供給する請求項 1〜5の何れかに記載の製造方法。 6. The production method according to any one of claims 1 to 5, wherein lower mesocarbons containing carbon monoxide and Z or carbon dioxide are supplied to the methanation step.
[7] 上記の芳香族化合物合成工程に実質的に一酸化炭素および Zまたは二酸化炭 素を含まない低級炭化水素を供給する請求項 1〜5の何れかに記載の製造方法。 7. The production method according to any one of claims 1 to 5, wherein lower hydrocarbons substantially free of carbon monoxide and Z or carbon dioxide are supplied to the aromatic compound synthesis step.
[8] 上記のメタンィ匕工程における一酸ィ匕炭素および Zまたは二酸ィ匕炭素の供給が、系 外から回収した一酸ィ匕炭素および/または二酸ィ匕炭素を供給することにより行われる 請求項 1〜7の何れかに記載の製造方法。 [8] The supply of monoxide carbon and Z or diacid carbon in the above methany process is performed by supplying monoxide carbon and / or diacid carbon recovered from outside the system. The manufacturing method according to any one of claims 1 to 7.
[9] 上記のメタンィ匕工程における二酸ィ匕炭素の供給が、上記の分離工程で芳香族化 合物が分離されたガスを第一分画と第二分画に分け、第二分画を燃焼し、その燃焼 排ガス力 回収した二酸ィ匕炭素を第一分画と共に供給することにより行われる請求 項 1〜8の何れかに記載の製造方法。 [9] The supply of carbon dioxide in the above-mentioned methanization process divides the gas from which the aromatic compound was separated in the above-mentioned separation process into a first fraction and a second fraction. The production method according to any one of claims 1 to 8, which is carried out by burning the gas and supplying the recovered exhaust gas power together with the first fraction.
[10] 請求項 1〜9の何れかの方法で得られた芳香族化合物を、触媒の存在下に水素化 して水素化芳香族化合物を得ることを特徴とする水素化芳香族化合物の製造方法。 [10] A hydrogenated aromatic compound, characterized in that the aromatic compound obtained by the method of any one of claims 1 to 9 is hydrogenated in the presence of a catalyst to obtain a hydrogenated aromatic compound. Method.
[11] 水素化工程で得られた生成物ガスカゝら水素化芳香族化合物を分離し、残りのガス をメタンィ匕工程に循環使用する請求項 10に記載の水素化芳香族化合物の製造方 法。 [11] The method for producing a hydrogenated aromatic compound according to claim 10, wherein the hydrogenated aromatic compound is separated from the product gas obtained in the hydrogenation step, and the remaining gas is recycled to the methanization step. .
[12] 芳香族化合物工程で得られた芳香族化合物及び水素を含有する生成物ガスを、 水素化工程に供給する請求項 10又は 11に記載の水素化芳香族化合物の製造方 法。  12. The method for producing a hydrogenated aromatic compound according to claim 10 or 11, wherein the product gas containing the aromatic compound and hydrogen obtained in the aromatic compound step is supplied to the hydrogenation step.
PCT/JP2006/302339 2005-02-18 2006-02-10 Process for production of aromatic compound and process for production of hydrogenated aromatic compound WO2006087971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800040248A CN101115700B (en) 2005-02-18 2006-02-10 Process for production of aromatic compound and process for production of hydrogenated aromatic compound

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005042573 2005-02-18
JP2005-042573 2005-02-18
JP2005042574 2005-02-18
JP2005-042574 2005-02-18
JP2005262765 2005-09-09
JP2005-262765 2005-09-09
JP2005262774 2005-09-09
JP2005-262774 2005-09-09

Publications (1)

Publication Number Publication Date
WO2006087971A1 true WO2006087971A1 (en) 2006-08-24

Family

ID=36916379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302339 WO2006087971A1 (en) 2005-02-18 2006-02-10 Process for production of aromatic compound and process for production of hydrogenated aromatic compound

Country Status (2)

Country Link
CN (2) CN101115700B (en)
WO (1) WO2006087971A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054230A1 (en) * 2006-11-02 2008-05-08 Rco2 As Process for producing carbon dioxide and methane by catalytic gas reaction
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
US7759535B2 (en) * 2004-12-22 2010-07-20 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
US7772450B2 (en) * 2006-06-23 2010-08-10 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons and syngas from methane
EP2841403A4 (en) * 2012-04-23 2015-05-27 Shell Int Research Aromatization of a methane-containing gas stream
CN104844403A (en) * 2015-03-25 2015-08-19 清华大学 System and method for directly preparing aromatic hydrocarbon from methane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774876B (en) * 2010-01-27 2013-04-24 清华大学 Method for preparing aromatic hydrocarbon by aromatizing methane and special-purpose reaction system thereof
US9809758B2 (en) * 2014-07-24 2017-11-07 Exxonmobil Chemical Patents Inc. Production of xylenes from syngas
JP6933745B1 (en) * 2020-03-27 2021-09-08 三菱パワー株式会社 Biogas utilization metanation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127544A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide and hydrogen
JPH08127545A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide
JPH11179204A (en) * 1997-12-19 1999-07-06 Cosmo Sogo Kenkyusho Kk Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2001334151A (en) * 2000-05-30 2001-12-04 Masaru Ichikawa Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JP2003026613A (en) * 2001-07-12 2003-01-29 National Institute Of Advanced Industrial & Technology Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon
JP2004269398A (en) * 2003-03-07 2004-09-30 Masaru Ichikawa Method and apparatus for catalytically reacting lower hydrocarbon into aromatic compound, and method for producing aromatic compound and hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127544A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide and hydrogen
JPH08127545A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide
JPH11179204A (en) * 1997-12-19 1999-07-06 Cosmo Sogo Kenkyusho Kk Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2001334151A (en) * 2000-05-30 2001-12-04 Masaru Ichikawa Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JP2003026613A (en) * 2001-07-12 2003-01-29 National Institute Of Advanced Industrial & Technology Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon
JP2004269398A (en) * 2003-03-07 2004-09-30 Masaru Ichikawa Method and apparatus for catalytically reacting lower hydrocarbon into aromatic compound, and method for producing aromatic compound and hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759535B2 (en) * 2004-12-22 2010-07-20 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
US7772450B2 (en) * 2006-06-23 2010-08-10 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons and syngas from methane
WO2008054230A1 (en) * 2006-11-02 2008-05-08 Rco2 As Process for producing carbon dioxide and methane by catalytic gas reaction
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
EP2841403A4 (en) * 2012-04-23 2015-05-27 Shell Int Research Aromatization of a methane-containing gas stream
CN104844403A (en) * 2015-03-25 2015-08-19 清华大学 System and method for directly preparing aromatic hydrocarbon from methane

Also Published As

Publication number Publication date
CN101823930B (en) 2013-11-06
CN101115700A (en) 2008-01-30
CN101115700B (en) 2011-06-01
CN101823930A (en) 2010-09-08

Similar Documents

Publication Publication Date Title
CN1990435B (en) Olefin production via oxygenate conversion
WO2006087971A1 (en) Process for production of aromatic compound and process for production of hydrogenated aromatic compound
AU2006324972B2 (en) Production of hydrocarbons from natural gas
US7772292B2 (en) Synthesis gas production and use
JP5082254B2 (en) Method for producing aromatic compound and method for producing hydrogenated aromatic compound
MX2015001602A (en) High efficiency processes for olefins, alkynes, and hydrogen co-production from light hydrocarbons such as methane.
JP2009179591A (en) Method for producing methanol
JP5425630B2 (en) Integrated processing from methanol to olefins
CN101080377A (en) Process for the production of methanol
CN108358162A (en) The method for preparing paraffin products
CN101113127B (en) Method for preparing menthol by using refinery gas as raw material
JP2009084257A (en) Method for producing aromatic compound
TW202328414A (en) Production of liquefied petroleum gas (lpg) hydrocarbons from carbon dioxide-containing feeds
CN1266093C (en) Production of olefins
RU2400464C2 (en) Method for synthesis of aromatic compounds and method for synthesis of hydrogenated aromatic compounds
JP2006182792A (en) Method for producing liquefied petroleum gas
US11578018B1 (en) Integrated process for producing BTX and hydrogen from shale gas with feeding of carbon dioxide
US20230382820A1 (en) Production of liquid hydrocarbons from carbon dioxide, in combination with hydrogen or a hydrogen source
WO1995024367A1 (en) Natural gas conversion to higher hydrocarbons
EP4163267A1 (en) Method for producing aromatic compound
WO2021176970A1 (en) Method for producing fuel gas
WO2021250002A2 (en) Thermal oxidative coupling of methane process using renewable energy with possible co-production of hydrogen
KR20230057630A (en) Integrated Process for Producing BTX and Methanol from Shale Gas
JP2021138927A (en) Method for manufacturing fuel gas
WO2021239811A1 (en) Gas to methanol with coproduction of hydrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 5897/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007129730

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200680004024.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713482

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713482

Country of ref document: EP