WO2006085549A1 - 高濃度浸炭・低歪焼入れ部材およびその製造方法 - Google Patents

高濃度浸炭・低歪焼入れ部材およびその製造方法 Download PDF

Info

Publication number
WO2006085549A1
WO2006085549A1 PCT/JP2006/302161 JP2006302161W WO2006085549A1 WO 2006085549 A1 WO2006085549 A1 WO 2006085549A1 JP 2006302161 W JP2006302161 W JP 2006302161W WO 2006085549 A1 WO2006085549 A1 WO 2006085549A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface layer
concentration
carburizing
temperature
low
Prior art date
Application number
PCT/JP2006/302161
Other languages
English (en)
French (fr)
Inventor
Isao Machida
Hisashi Abe
Toshio Fukushima
Koji Horikiri
Original Assignee
Parker Netsushori Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Netsushori Kogyo K.K. filed Critical Parker Netsushori Kogyo K.K.
Priority to EP06713304.1A priority Critical patent/EP1847630B1/en
Priority to CA2594838A priority patent/CA2594838C/en
Priority to JP2007502622A priority patent/JP4627776B2/ja
Priority to US11/883,793 priority patent/US20080156399A1/en
Priority to CN2006800041128A priority patent/CN101115859B/zh
Publication of WO2006085549A1 publication Critical patent/WO2006085549A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite

Definitions

  • Tempering is performed at a cooling rate of 1 ° CZ second to generate fine carbides and / or nuclei of the carbides on the surface layer of the member, and then the member is heated and soaked to the temperature of the austenite region.
  • high-concentration carburizing and low-distortion quenching characterized by consisting of a secondary treatment that precipitates fine carbides in the range of 10 to 30% of effective hardening depth ratio in the outermost layer by rapid quenching A method for manufacturing the insert member.
  • the surface layer is a structure mainly composed of martensite including a mixed structure such as troostite and retained austenite, and the order of the fineness of the austenite grain size of the layer.
  • a high-concentration carburizing / low-distortion quenching member characterized in that A ⁇ C ⁇ B in the layer inside part A (part B) and the layer inside part B (part C).
  • the method of the present invention uses a low-pressure carburizing equipment for the processing of the member, a primary treatment in which the member is quenched at an appropriate high-concentration carburizing and an optimal cooling rate, and a simple and efficient fine carbide that is subsequently performed.
  • the heat treatment deformation and distortion of the treated member can be minimized.
  • This method greatly reduces the number of complicated grinding and distortion correction processes after processing, such as bending of the shaft and deformation of the tooth profile, which were the biggest concerns of conventional high-concentration carburization. It has the effect of making significant improvements in productivity, quality, and cost of high-concentration carburized components.
  • the surface of the member is subjected to additional carburization to increase the hardness of the matrix (base), and the outermost layer of the member.
  • the crystal grain size of the part can be made ultrafine, which is extremely effective for increasing the strength and toughness of the member.
  • the method of the present invention it is possible to easily achieve high strength, high toughness, high surface pressure, etc. of members such as shafts and gears, which have conventionally been difficult to apply high-concentration carburizing. Therefore, the method of the present invention can be widely applied to fields where such needs are high, and has the effect of being able to make a significant contribution to the improvement of the performance of members and the small and light weight. .
  • the effective hardening depth ratio means the carburized effective hardening depth (T) after completion of the secondary treatment of the member (including 180 ° C tempering treatment) and the finest surface layer portion of the member. It means the ratio (t / T) to the carbide precipitation depth (t).
  • the carburizing effective hardening depth is the Vickers hardness (HV) from the surface of the hardened layer as it is quenched or tempered at a temperature not exceeding 200 ° C according to the JIS G0557 steel carburized hardened layer depth measurement method. The distance to the limit depth position of 550.
  • the precipitation depth of fine carbide is analyzed by an optical microscope or an electron microscope, and the maximum depth at which fine carbide exists from the outermost layer portion of the member is measured.
  • the member is analyzed in an etching state using a corrosive solution such as 5% nitrate alcohol.
  • the inventors have performed a primary treatment in which high-concentration carburization is performed on the surface layer portion of the material using low-pressure carburizing equipment, and fine particles of carbide are precipitated in the surface layer portion.
  • a detailed study was conducted on the secondary treatment to be performed, including temperature rise, soaking, carbon concentration and diffusion during carburization, and various cooling (quenching) conditions.
  • the carbon concentration is preferably 0.8% by mass or more, more preferably 1.0 to 2.0% by mass in the range of 10 to 30% in effective curing depth ratio (t / T) at the outermost layer.
  • Table 2 summarizes various effects of the cooling rate on the precipitation state of carbide in the surface layer portion of the specimen and the heat treatment deformation of the specimen in the primary treatment of the present invention.
  • the test piece was subjected to high-concentration carburization with the target of an effective hardening depth of 0.5 mm after heating and soaking in the heat cycle shown in FIG.
  • Table 2 Relationship between primary treatment cooling conditions, carbide precipitation and axial runout
  • Cooling rate represents the average cooling rate at the axial center of the specimen from the quenching temperature of 950 ° C after completion of carburizing and diffusion of the specimen to 400 ° C.
  • Shaft run-out represents the run-out at the center of the shaft measured with a dial gauge with the test piece attached to a run-out measuring instrument supported at both ends.
  • the cooling rate during cooling is as low as 1 ° C / sec.
  • Precipitation of continuous network carbides is the main, and the base becomes an incompletely quenched structure of ferrite, pearlite, and bainite.
  • axial runout and deformation become large.
  • the comparative example shown in test piece No. 3 was obtained by rapid cooling equivalent to a typical oil quenching (20 ° C / sec), and the amount of carbide precipitation was very small and high carbon with supersaturated carbon. It becomes a quenched structure from the state, and the shaft runout and deformation are large.
  • the cooling rate of the examples shown in test pieces 2, 5, and 7 is 4 to 12 ° C / sec (the present invention)
  • a large amount of fine carbides are precipitated, and the fine particles that form the core
  • the appearance of the structure improved the deformation and strain (shaft runout) of the specimen, which was a major concern for high-concentration carburization.
  • the shaft runout amount of the test piece is approximately half that of the other examples, and the shaft runout amount can be significantly reduced. It was. Based on these results, the cooling rate during quenching of the primary treatment is optimally 3 to 15 ° C / sec.
  • Table 3 uses a representative test piece of the primary treatment shown in Table 2 and performs a secondary treatment for the purpose of finally precipitating fine carbides on the surface layer portion.
  • the results of various investigations such as concentration, carbide precipitation state, microstructure, grain size, and axial runout of the specimen are shown.
  • the secondary treatment the soaking temperature is set to three levels of 800 ° C, 850 ° C and 900 ° C above the A transformation in the heat cycle shown in Fig. 2, and the surface layer is obtained by secondary treatment.
  • test piece (307 () 25/20 and 300111111
  • the secondary treatment temperature (herein referred to as the tempered carburizing temperature)
  • the carbide in the surface layer was dissolved and the entire carbide
  • the precipitation of particles is small and the axial runout of the test piece is also large.
  • the 800 ° C secondary treatment temperature used for test piece No. 2-3 flake carbides precipitated at the grain boundaries of the surface layer, and the inside of the member (unhardened part) was incompletely quenched. Variations in the axial runout of the test piece appear. From these results, the optimum processing temperature for precipitating fine carbides on the surface layer in the secondary treatment is determined by the composition of the member (before carburizing treatment), and a temperature corresponding to the A transformation point temperature + 10 to 70 ° C is preferable. .
  • test pieces 5-1 and 7 are identical to test pieces 5-1 and 7
  • the austenite grain size of the outermost layer portion of the additional-force carburized member was an ultrafine grain size as shown in FIG.
  • the ultra-fine grain size and carburized grain size test method in the austenite grain size test method of IS-G0551 steel the austenite crystal grain size corresponds to No. 10 or more, and further consists of fine grains and fine grains toward the internal direction.
  • the austenite grain size of the surface layer in normal carburizing is generally equivalent to No. 7-8, and in the present invention, the conventional carburizing treatment is performed. It has a distinctive three-layered grain structure that does not appear in theory.
  • Table 4 shows the effect of the effective hardening depth ratio of the carbide precipitation layer on various characteristics in the high-concentration carburization of the present invention.
  • various test pieces were prepared by machining after pre-normalizing the material at 900 ° C using SCM420 of JIS machine structural steel as a material.
  • the high-concentration carburization treatment of the test piece was performed in the heat cycle of the primary treatment and the secondary treatment shown in Fig. 3.
  • the treated specimens were analyzed for pitting life, impact strength, heat treatment strain, etc.
  • the effect of the carbon concentration in the outermost layer of the test piece shown in Table 5 on the strength durability and heat treatment deformation of the test piece was also treated in the heat cycle shown in Fig. 3, as in the case of the various test pieces in Table 4.
  • the carbon concentration of the treated specimen was examined.
  • pressurized gas cooling in which gases such as He, H, etc. are used alone or in combination.
  • the depth ratio of the carbide precipitation layer to the effective hardening depth is optimally in the range of 10-30%.
  • the symbols H, J, and K which have a higher carbon concentration in the outermost layer, are superior, and the carbon concentration is higher than that of the former.
  • symbols G and I which are as low as 1%, it can be said that the pitching life is partially inferior.
  • the carbon content of the outermost layer is less than 0.8% by mass as shown by reference symbol F, the test piece has a significantly poor pitching toughness. That is, the higher the carbon concentration, the better the finer carbides deposited on the outermost layer. Therefore, in the present invention, the carbon concentration of the high-concentration carburization is set to 0.8 mass% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 本発明は、高強度・高面圧などの特徴を持つ高濃度浸炭焼入れ分野において、高性能化と熱処理歪の極小化を両立させた高濃度浸炭・低歪焼入れ部材およびその製造方法を提供することができる、真空浸炭(低圧浸炭)方法により、機械構造用鋼部材をオーステナイト域の温度に加熱し、該部材の表層部に、共析炭素濃度以上の炭素を固溶させた後、該部材をオーステナイト域の温度から、A1変態点以下の温度に3~15°C/秒の冷却速度で焼き入れを行い、上記部材の表層部に微細炭化物および/または該炭化物の核を生成させる一次処理と、引き続き該部材をオーステナイト域の温度まで昇温および均熱させた後、急速焼き入れを行い最表層部に有効硬化深さ比で10~30%の範囲に、微細炭化物を析出させる二次処理とからなることを特徴とする高濃度浸炭・低歪焼き入れ部材の製造方法である。

Description

明 細 書
高濃度浸炭 ·低歪焼入れ部材およびその製造方法
技術分野
[0001] 本発明は、機械構造部材の強化手段として多く利用されている浸炭焼き入れ処理 のうち、焼き戻し軟化抵抗が高く高強度'高面圧などの特徴を有する高濃度浸炭焼 入れ部材に係わり、高性能化と熱処理歪の相反する特性を両立させた、高濃度浸炭 •低歪焼入れ部材(以下単に「部材」という場合がある)およびその製造方法に関する 従来技術
[0002] 浸炭焼入れ部材は、耐久強度および耐磨耗性などの優れた特徴により、輸送機器 や産業機械などの各種部材などとして幅広く使用されており、該部材のさらなる性能 向上による小型化 ·軽量ィ匕などの観点から、浸炭焼入れ部材に関する多くの開発が なされている。また、近年、真空浸炭(低圧浸炭)プロセスが開発され、該プロセスは、 従来のガス浸炭プロセスに比較して環境にも優し 浸炭層の粒界酸化が防止され、 高温浸炭処理が可能で、さらには浸炭および炭素の拡散の制御が容易であるなど、 優れた特徴を有し、部材のさらなる性能、品質向上ゃ部材のさらなる生産性向上など の面からさらなる普及が予想される。
[0003] 歯車や軸物部材などの機械構造部材の浸炭焼入を行い、該部材の耐ピッチング 性能を向上させる方法としては浸炭窒化処理がある。これは基地(マトリックス)に炭 素と窒素とを同時に拡散し、部材の焼き戻し軟化抵抗を向上させるものである。また、 部材の表層部に炭化物を析出させ、部材の焼き戻し軟化抵抗を向上させる高濃度 浸炭処理も開発されており、近年、低圧浸炭設備の進化と相まって多くの研究が行 われている。
[0004] 高濃度浸炭方法の代表例として特許文献 1に開示された部材の浸炭処理方法が ある。該特許文献 1によれば、鋼材の表層部に球状炭化物を析出させ、該表層部の 炭素濃度が Acm以下で、鋼と炭素との共析濃度以上となる炭素量の予備浸炭を行 レ、、その後、処理部材を徐冷または急冷させて、その表層部をべイナイト、ノ ーライト またはマルテンサイト組織とした後、 Acl点力 750〜950°Cの温度範囲まで 20°C Z分以下の加熱速度で昇温し、浸炭焼入れを行い、深さ 0. 4mmの範囲に体積率 にて 30%以上の擬球状または球状炭化物を生成させる方法が提案されている。
[0005] し力 ながら、上記方法では、部材の表層部に炭化物を析出させることにより、該部 材の耐ピッチング性能などの特性は改善されるものの、この方法は表層部に 30%も の炭化物を析出させる高濃度浸炭であるために、得られる部材は、熱処理変形や歪 などの課題がある。
[0006] 高濃度浸炭法により部材の表層部へ炭化物を微細に析出させる方法については、 多くの加熱および冷却方法が検討されており、特許文献 1では予備浸炭後、空冷( ベイナイトまたはパーライト組織が生成)または焼入れ (マルテンサイト組織が生成)し 、次工程の炭化物生成処理では Acl変態温度から 750〜950°Cまでを 20°C/分以 下のゆっくりした速度で加熱し、直接焼入れまたは空冷後、再加熱焼入れ方法が良 いと言われている。
[0007] また、特許文献 2ならびに特許文献 3では、予備浸炭または一次浸炭後、徐冷 (ま たは 30°C/Hr以下)が最適との提案もなされている。
[0008] し力しながら、特許文献 1、 2、 3に示す方法にて、予備浸炭または一次浸炭後の焼 入れが空冷ゃ徐冷による場合には、部材の表層部内で結晶粒界に沿って網状炭化 物が析出しやす 次工程の炭化物生成処理で上記網状炭化物を短時間に分解し 、表層内で分散析出させることは困難であり、そのために複数回の加熱冷却が行わ れる例がある。
[0009] 一方、特許文献 1において、部材を予備浸炭後、冷却速度を速め、マルテンサイト 組織を狙った焼入れがあるが、表層内の炭化物の核が固溶して消失する畏れがあり 、さらに炭素が過飽和状態の焼入れとなり、高炭素マルテンサイト変態のために、部 材の膨張や収縮などの変形或いは歪が増大する懸案がある。
[0010] 特許文献 4には、低圧浸炭法による高濃度浸炭部材の製造方法が記載されており 、一次浸炭の炭素濃度を 0. 5〜0. 7質量%で二次浸炭の炭素濃度を 0. 7〜:!質量 %とし、さらに一次冷却を 1〜: 10°C/分と非常に遅くするなど、炭化物の微細化に関 する記述はあるが、変形歪に対しては前述の引用文献 1、 2および 3と同様に好ましく ないことが予想される。
[0011] ここで参考までに最近時、市場拡大している低圧浸炭法が通常ガス浸炭法と比較 して優れている点を以下に示す。
a)炉内雰囲気条件の変更が容易で迅速にでき、浸炭雰囲気から炭素の拡散雰囲気 への切換が容易である。
b)高温処理が可能で、迅速浸炭ができる。
c)部材の表層部における粒界酸化がないので、これらを起点とする処理部材の亀裂 の発生が抑制される。
d)スーティングがなぐスーティングに伴う浸炭ムラの発生がない。
特許文献 1 :特公昭 62— 24499号公報
特許文献 2:特許第 2787455号公報
特許文献 3:特許第 2808621号公報
特許文献 4 :特開 2002— 348615号公報
発明の開示
発明が解決しょうとする課題
[0012] し力しながら、従来の低圧浸炭法による高濃度浸炭処理においても、被処理部材 の表層内における炭化物の生成過程と表層部のミクロ組織との最適バランスが得ら れず、処理部材の変形や歪の問題が依然として残されている。そのために浸炭工程 後における部材の研磨加工や歪修正のための部材の仕上げカ卩ェなどが必須となり、 本来得られるはずの高濃度浸炭の高面圧化性能の低下や、さらには生産性の低下 やコストアップが高濃度浸炭処理の普及の妨げになっている。 課題を解決するための手段
[0013] 本発明では、部材の炭素濃度、浸炭処理/拡散処理の繰り返し、部材の昇温、均 熱、浸炭、焼入れなどの各種温度条件、加熱条件および冷却速度 (焼入れ)条件な どの各種制御を迅速でかつ高精度で対応できる低圧浸炭設備を利用し、部材の高 面圧化と低歪が両立できる最適なプロセス開発を行って上記課題を解決した。
[0014] 上記課題は以下の本発明によって達成される。
1.真空浸炭 (低圧浸炭)方法により、機械構造用鋼部材をオーステナイト域の温度 に加熱し、該部材の表層部に、共析炭素濃度以上の炭素を固溶させた後、該部材を オーステナイト域の温度から、 A変態点以下の温度に 3〜: 15
1 °CZ秒の冷却速度で 焼き入れを行い、上記部材の表層部に微細炭化物および/または該炭化物の核を 生成させる一次処理と、引き続き該部材をオーステナイト域の温度まで昇温および均 熱させた後、急速焼き入れを行い最表層部に有効硬化深さ比で 10〜30%の範囲に 、微細炭化物を析出させる二次処理とからなることを特徴とする高濃度浸炭 ·低歪焼 き入れ部材の製造方法。
[0015] 2.前記二次処理において、部材の表層部に追加浸炭処理を行う前記部材の製造 方法。
3.前記二次処理において、前記部材の表層部に微細炭化物を析出させ、該表層部 に、トルースタイトおよび残留オーステナイトなどの混合組織を一部含むマルテンサイ トを主体とする組織を形成させ、該層の最表層部 (A部)と A部より内側の層部(B部) と B部より内側の層部(C部)のそれぞれのオーステナイト結晶粒度の微細さの序列を A≥C≥ Bとする前記部材の製造方法。
[0016] 表層部がトルースタイトおよび残留オーステナイトなどの混合組織を一部含むマル テンサイトを主体とする組織であり、該層のオーステナイト結晶粒度の微細さの序列 力 最表層部 (A部)と A部より内部の層(B部)と B部より内部の層(C部)において、 A ≥ C≥ Bとなってレ、ることを特徴とする高濃度浸炭 ·低歪焼き入れ部材。
発明の効果
[0017] 本発明の方法は、部材の処理を低圧浸炭設備を用い、適切な高濃度浸炭と最適 な冷却速度で部材の焼き入れを行う一次処理と、引き続き行うシンプルで効率的に 微細炭化物を析出させる二次処理とを組合せて、処理部材の熱処理変形および歪 が極少に抑えられる方法である。この方法により、従来の高濃度浸炭で最大の懸案 であった、例えば、軸の曲がりや歯形の変形歪など、処理後の部材の煩雑な研磨加 ェゃ歪修正加工などが大幅に削減され、高濃度浸炭部材の生産性、品質、コストな どの大きな改善が図れる効果がある。
[0018] また、本発明の方法では、さらに二次処理において、部材の表層部に追加浸炭処 理を施すことにより、マトリックス(基地)の高硬度化が図れるとともに、部材の最表層 部の結晶粒度を超微細粒にすることができ、部材の高強度化および高靭性化にも極 めて有効である。該本発明の方法によって、従来は高濃度浸炭の適用が困難であつ た軸物や歯車などの部材の高強度化、高靭性化および高面圧化などが容易に達成 される。従って本発明の方法は、このようなニーズが高い分野などに広範に応用が可 能となり、部材の高性能化および小型軽量ィ匕に対して大きく貢献することができると レ、う効果がある。
発明を実施するための最良の形態
[0019] 次に発明を実施するための最良の形態を挙げて本発明をさらに詳しく説明する。本 発明に至った技術的経緯および知見は以下の通りである。
本発明者らは、低圧浸炭設備を用いて部材の表層部に微細炭化物を析出させる 高濃度浸炭プロセスの開発を目的に、上記表層部の炭素濃度や、各種加熱および 冷却条件と表層部における微細炭化物の析出形態、ならびに基地のミクロ組織との 関係を徹底的に調査した。また、ギアや車軸などの部材を想定した熱処理歪の改善 などについて、多方面からの研究開発を行レ、、高濃度浸炭による部材の高性能化と 部材の変形、歪などとの相反する特性を高次元でバランスさせ、これらが両立できる 新たな高濃度浸炭 ·低歪焼入れ方法の確立を目指した。
[0020] 鋼材 (部材)の表層部へ高濃度浸炭を行なう上で重要な点は、一次処理と二次処 理との最適組合せにおいて、部材の表層部にいかに多くの微細炭化物を分散析出 させるかの点であり、微細炭化物の生成を制御するには、使用する浸炭焼入れ設備 にも大きくかかわる。本発明では、従来の浸炭設備に比べて炭素濃度、浸炭 Z拡散 の繰り返し、昇温、均熱、浸炭、焼入れなどの各種温度条件、加熱条件および冷却 速度条件などの各種制御が迅速でかつ高精度で対応できる低圧浸炭設備を用い、 種々の開発を行った。
[0021] 具体的には一次処理時の部材の昇温、均熱、高濃度浸炭、拡散ならびに冷却 (焼 入れ)条件など、種々検討を行い、先ずは一次処理段階での部材の変形や歪の低 減を図り、さらに次工程の二次処理では微細炭化物の析出や浸炭層のオーステナイ ト結晶粒度の調整などができる浸炭および焼き入れ (冷却)条件が重要である。すな わち、二次処理では部材の表層部の微細炭化物の析出範囲を、浸炭層の有効硬化 深さ比で 10〜30%とし、さらには最表層部を超微細結晶構造にすることにより、部材 の熱処理変形や歪を極少にすることができることを見出した。
[0022] ここで有効硬化深さ比とは、部材の二次処理完了後(180°C焼戻し処理も含む)の 浸炭有効硬化深さ (T)と該部材の最表面層部に存在する微細炭化物の析出深さ (t )との比(t/T)を意味する。なお、浸炭有効硬化深さとは、 JIS G0557鋼の浸炭硬 化層深さ測定方法による、焼入れのまま、または 200°Cを超えない温度で焼戻しした 硬化層の、表面からビッカース硬さ(HV) 550の限界深さの位置までの距離である。 次に微細炭化物の析出深さとは、光学顕微鏡または電子顕微鏡にて解析を行い、 該部材の最表層部より微細炭化物が存在する最大深さをレ、う。ここで微細炭化物を 判別し易くするため、該部材を 5%の硝酸アルコールなどの腐食液を用レ、、エツチン グ状態で解析する。
[0023] 本発明で用いる真空浸炭 (低圧浸炭)設備とは、浸炭加熱室が 200〜2, OOOPaに 分圧制御し得る処理炉を有する設備であり、該設備は市販されており、市販の設備 はいずれも本発明で使用できる。本発明では、一次処理として、該設備の炉内で部 材を所定の温度に昇温および均熱後、部材の表層部の炭素濃度を、共析炭素濃度 以上の炭素濃度にするため、浸炭と拡散を交互に繰り返した後、適切な冷却速度で 部材の焼入れを行う。また、引き続いて行う二次処理では部材の表層部に炭化物を 微細に析出させ、さらには必要に応じて追加浸炭処理を行う。
[0024] 本発明の方法における一次処理では、被処理鋼材(部材)を 900〜: 1, 100°Cのォ ーステナイト域に昇温して均熱後、表層部の炭素濃度が好ましくは 0. 8質量%以上 になるよう浸炭を行い、続いてその状態から最適な冷却速度で焼入れを行う。ここで 最適冷却条件は、浸炭温度(オーステナイト域の温度)から A変態点以下、好ましく
1
は 400°C以下に至る温度範囲を 3〜: 15°C/秒の冷却速度にて部材を均一に冷却す ることである。この冷却によって部材の表層部に微細炭化物を析出させ、表層部にマ ルテンサイトを主とした組織を形成させる。ここで微細炭化物とは、 Fe C (セメンタイト
3
)や鋼材中の Cr、 Moなどの炭化物形成元素が、過飽和に固溶している炭素と結合 して生成した M C型炭化物を意味する。
23 6
[0025] 次に二次処理では、部材の非浸炭部分(内部)をオーステナイト化温度 + 80°C以 内、好ましくはオーステナイトィ匕温度 + 10〜70°Cの範囲に昇温および均熱し、その 後に急速冷却して表層部の炭素濃度が好ましくは 0. 8質量%以上、より好ましくは 1 . 0〜2. 0質量%となるように微細炭化物の析出を行う。また、二次処理における微 細炭化物の析出と併行して、表層部に追加浸炭処理を行うことにより、表層部におけ る微細炭化物の析出を助長させ、さらにマトリックス(基地)の炭素濃度を適正に調整 した状態から急速焼入れを行うことが好ましい。
[0026] なお、二次処理後の最終焼入れ温度については前処理条件が昇温'均熱後、又 は昇温 ·均熱 ·追加浸炭後のそれぞれのケースがある力 そのままの温度で急速焼 入れを行うか、さらにはそれらの温度に対し、昇降温してもよい。すなわち、二次処理 後の最終焼入れ温度は該部材に要求される硬度やミクロ組織などの熱処理品質に 合わせて温度設定することができる。
[0027] 本発明者らは、高濃度浸炭の最適条件を構築するため、低圧浸炭設備を用いて部 材の表層部に高濃度浸炭を行う一次処理と、炭化物の微細粒を表層部内に析出さ せる二次処理について、昇温、均熱、浸炭時の炭素濃度および、拡散、ならびに各 種冷却 (焼入れ)条件に至る詳細検討を実施した。その結果、最表層部に有効硬化 深さ比(t/T)で 10〜30%の範囲に炭素濃度が好ましくは 0. 8質量%以上、より好 ましくは 1. 0〜2. 0質量%であり、かつ最表層よりオーステナイト結晶粒度が 10番以 上の超微細粒層、続いて細粒層、さらに微細粒層の 3層構造を有する高濃度浸炭焼 入れ部材を得ることに成功した。この高濃度浸炭焼入れ部材は、処理後において変 形および歪が極小となり、従来の高濃度浸炭では不可避であった歪の矯正が不要 若しくは従来方法に比べて容易に対応できることを見出した。
実施例
[0028] 次に実施例を挙げて本発明をさらに詳しく説明する。
下記表 1に示す機械構造用鋼材 (素材)を用い、予め 900°Cで素材の焼準処理後 、機械加工にて φ 30/ φ 25/ φ 20 X L300mmの段付き丸棒試験片を作成した。 該試験片の浸炭焼入れは、低圧下で加熱および浸炭ができ、かつ油焼き入れなら びに加圧ガス冷却が可能な設備を用い、本発明の高濃度浸炭工程の一次処理を行 つた。 [0029] ここで鋼種記号 1および 2は、 JISの浸炭焼入れ用鋼材であり、記号 1はクロム—モリ ブデン鋼の SCM420であり、記号 2はクロム鋼の SCr415である。鋼種記号 3の MA C14は鋼材メーカー開発の商品記号であり、上記の 2鋼種に比べ Cr含有量を多くし 、さらに Mo元素を添加し、高濃度浸炭時(一次および二次処理)に、 M C型の微
23 6 細炭化物の析出を目的に開発された鋼材である。
[0030]
表 1:使用鋼材と化学成分 (質量%)
Figure imgf000010_0001
[0031] 表 2は、本発明の一次処理における、試験片の表層部での炭化物の析出状態、な らびに試験片の熱処理変形に及ぼす冷却速度の影響を種々実験して纏めたもので ある。ここで一次処理条件としては図 1に示すヒートサイクルにて、昇温'均熱後、有 効硬化深さ 0. 5mmを目標に試験片の高濃度浸炭を行った。具体的には最終状態 の試験片の表層部の炭素濃度が約 1. 5質量%となるように、 950°Cの温度にて高濃 度浸炭および拡散処理を交互に約 70分間実施し、試験片の表層部の炭素濃度が 過飽和の状態から、表 2に示す各冷却速度条件で試験片の焼入れを行い、試験片 の表層部における炭化物の形状、大きさ、表層部のミクロ組織を調査した。
[0032] また、一次処理による試験片の熱処理変形および歪を調べるため、試験片として段 付き丸棒試験片 30/ φ 25/ φ 20 X L300mm)を用い、両端支持状態での試 験片の軸中央部での振れ量を解析し、試験片の焼き入れ時の冷却速度と試験片の 軸振れ量との関連を調査した。 [0033]
表 2:一次処理の冷却条件と炭化物の析出形態および軸振れ量の関係
Figure imgf000011_0001
[0034] ここで表中に示す記号と解析手法を下記に説明する。
1)冷却速度は、試験片の浸炭'拡散終了後の焼入れ温度 950°Cから、 400°Cに至 るまでの試験片の軸中央部における平均冷却速度を表す。
2)炭化物の形状および大きさは、走査型電子顕微鏡にて観察した。
3)ミクロ組織の略号
F :フェライト、 P :パーライト、 B :ベイナイト、 T:トルースタイト、 M :マルテンサイト、 γ: 残留オーステナイト
4)軸振れ量は、試験片を両端支持の振れ測定器に取付け、ダイアルゲージにて測 定した軸中央部の振れ量を表す。
[0035] ここで表 2の試験片 No. 1、 4、 6に示す比較例は、冷却時の冷却速度が 1°C/秒と 遅いため、表層部での炭化物の析出は片状炭化物が連なった網状炭化物の析出が 主体で、基地はフェライト、パーライトおよびべイナイトの不完全焼入れ組織となり、そ の結果、軸振れ量および変形が大となる。また、試験片 No. 3に示す比較例は一般 的な油焼入れ相当(20°C/秒)の急速冷却を行なったもので、炭化物の析出量は非 常に少なぐかつ炭素が過飽和の高炭素状態からの焼入れ組織となり、軸振れ量お よび変形が大である。 [0036] 次に試験片 2、 5および 7に示す実施例の冷却速度が 4〜: 12°C/秒の場合 (本発 明)、微細炭化物が多量に析出し、さらにその核となる微細組織が出現し、高濃度浸 炭の大きな懸案課題であった試験片の変形および歪 (軸振れ量)が改善された。す なわち、冷却が遅い徐冷や、逆に速い急速焼入れに比べ、本発明では試験片の軸 振れ量が、他の例の概ね 1/2レベルとなり、軸振れ量の大幅な低減が実現できた。 これらの結果より、一次処理の焼き入れ時における冷却速度は 3〜: 15°C/秒が最適 である。
[0037] 表 3には、表 2に示す一次処理の代表的な試験片を用い、表層部に微細炭化物を 最終的に析出させることを目的とした二次処理を行なって、表層部の炭素濃度、炭 化物析出状態ならびにミクロ組織、結晶粒度、さらには試験片の軸振れ量などを種 々調査した結果を示す。二次処理の条件としては図 2に示すヒートサイクルにて、均 熱温度を A変態以上の 800°C、 850°C、 900°Cの 3水準に、また、二次処理で表層
1
部の炭素濃度をより高め、さらに微細炭化物の析出を増量させる手法として昇温 ·均 熱後、共析炭素濃度以上となる追加浸炭も同時に実施した。
図:!〜 3における(浸炭/拡散) nおよび(追加浸炭/拡散) nの「n」は、それぞれの 工程における浸炭および拡散の繰り返し回数を意味し、その「n」数は部材毎に要求 される品質に合わせて設定する。例えば、表 2に示す実施例 No. 2のケースでは n= 8であり、また、表 3に示す実施例 No. 2_ 2のケースでは n = 5とした。
表 3:二次処理の処理条件と炭化物の析出形態および軸振れの関係
Figure imgf000013_0001
「表層部の炭素濃度の分析方法」
試験片( 307()25/ 20 し300111111)を用レヽ、 φ 25mm部の表層部より 0.0 5mm深さ迄の切粉を旋削加工で採取し、湿式分析法にて表層部の炭素濃度を求め る。 [0040] 表 3からして、試験片 No. 2シリーズは、二次処理温度を変化させた場合の炭化物 の析出形態および他への影響を、また、 No. 5および 7シリーズは、二次処理で行つ た追加浸炭の有無による、微細炭化物の析出ならびに表層部の最終炭素濃度など に及ぼす影響を示す。
[0041] ここで二次処理温度(ここでは追力卩浸炭温度を言う)については試験片 No. 2_ 1を 用いた 900°Cの温度では、表層部の炭化物が固溶し全体的に炭化物粒子の析出が 少なぐまた、試験片の軸振れ量も大きくなるという問題ある。また、試験片 No. 2- 3 に用いた 800°Cの二次処理温度では表層部の結晶粒界に片状炭化物が析出し、か つ部材の内部(非硬化部)が不完全焼入れとなり、試験片の軸振れ量にバラツキが 現れる。これらの結果より、二次処理にて表層部に微細炭化物を析出させる最適処 理温度は該部材の組成(浸炭処理前)によって定まる、 A変態点温度 + 10〜70°C 相当の温度が好ましい。
[0042] 次に二次処理における、追加浸炭処理の有無については、試験片 5—1および 7
1の結果より明らかの如ぐ追加浸炭処理を施すことにより、表層部における炭素 濃度の向上はもとより、炭化物が微細に析出するという効果が認められる。この理由と して表層部の炭素が炭化物として析出し、マトリックス (基地)の炭素濃度が希薄とな ること力ら、追加浸炭を行い表層部に炭素を補給することにより、表層部には新たに Fe Cならびに M Cなどの微細炭化物やその核の生成が助長されることが考えられ る。
[0043] また、追力卩浸炭処理部材は図 4に示す如ぐ最表層部のオーステナイト結晶粒度が 超微細粒度になることが判明した。ここで超微細粒度と ίお IS— G0551鋼のオーステ ナイト粒度試験方法における浸炭粒度試験方法にて、オーステナイト結晶粒度が 10 番以上に相当、さらに内部方向に向かって細粒および微細粒からなる 3層構造が形 成される大きな特徴を発見した。また、これらのオーステナイト結晶粒度と浸炭層との 関連を見ると、微細炭化物の析出量が多い最表層部を Α部とし、その内部の浸炭層 部(細粒部)を B部とし、さらにその内部(非硬化部)の微細粒部を C部とすると、この 3 層の結晶粒度は A≥C≥Bの関係にある。因みに通常浸炭における表層部のオース テナイト結晶粒度は、概ね 7〜8番相当が一般的であり、本発明では従来の浸炭処 理では出現しない特徴的な 3層構造の結晶粒構成となっている。
[0044] ここで、これらの超微細粒度層の効果としては、従来の浸炭処理部材で懸案であつ た、表面硬化層の靭性改善が可能となり、本発明の特徴である高面圧化とともに、浸 炭層自体の高靭性も合わせて付与できる大きな特徴を有し、今後の浸炭部材のさら なる高強度化に極めて有効である。
[0045] 表 4には本発明の高濃度浸炭における炭化物析出層の有効硬化深さ比の各種特 性に及ぼす影響を示した。ここで各種試験片は、 JIS機械構造用鋼の SCM420を素 材として用い、素材を予め 900°Cにて焼準処理後、機械加工にて作成した。試験片 の高濃度浸炭処理は、図 3に示す一次処理と二次処理のヒートサイクルにて行った。 処理された試験片のピッチング寿命、衝撃強度および熱処理歪などを解析調査した 。また、表 5に示した試験片の最表層部の炭素濃度が試験片の強度耐久性ならびに 熱処理変形に及ぼす影響についても、表 4の各種試験片と同様に図 3に示すヒート サイクルにて処理を行い、処理試験片の炭素濃度などを調べた。
[0046] ここで表 4の炭化物の析出深さの調整は、主に浸炭時間と炭素濃度の制御などに て、また、表 5の最表層部の炭素濃度の調整は、一次処理や二次処理の浸炭'拡散 の繰り返し時のプロセスガス量、時間などを予め計算したプログラムにて制御して行 つた。低圧浸炭用プロセスガスとしてはプロパン、アセチレン、エチレンなどがあるが、 最もポピュラーで低廉なプロパンガスを、また、拡散時の不活性ガスとして窒素ガスを 用いた。さらに二次処理での急速焼き入れは油冷却で実施した力 これら以外に N
2
、 He、 Hなどのガスを単独若しくは複合させた加圧ガス冷却でも実施可能である。
[0047]
表 4:有効硬化深さ比の強度、 耐久性ならびに熱処理変形に及ぼす影響
Figure imgf000016_0001
5:最表層部炭素濃度の強度、 耐久性ならびに熱処理変形に及ぼす影響
Figure imgf000016_0002
[0049] 1)有効硬化深さ比は、マイクロビッカース硬さで 550HMV以上を有する硬化深さ(T )に対する微細炭化物層深さ (t)との比 (t/T)を表す。
2)転動疲労寿命は、下記条件でのピッチング発生までの繰り返し数を示す。
面圧: 3GPa、回転数: 1500i"pm、すべり率: 40%、油圧: 80°C
3)衝撃強度はシャルピー試験片による破壊エネルギーを示す。
4)真円度はテストピース形状: φ 100 ( (> 80) X I 5tのリングを用レ、、形状測定器にて リング内径の X— Y方向の変形量を示す。 [0050] 有効硬化深さ比の転動疲労寿命に及ぼす影響については、記号 Aの比較例で有 効硬化深さ比が 5%と浅い場合、微細炭化物自体の析出量が少なぐ高濃度浸炭の 特徴である焼き戻し軟ィ匕抵抗が乏しぐピッチングタフネスが低いといえる。一方、有 効硬化深さ比が 40%の記号 Eの比較例の場合、高硬度の範囲が広がることから衝 撃強度が低下する問題あり、また、真円度から見た熱処理変形についても歪が増加 傾向となる。これらの結果より炭化物析出層の有効硬化深さに対する深さ比は 10〜 30%の範囲が最適である。
[0051] 次に、表 5に示す最表層部の炭素濃度のピッチング寿命に及ぼす影響については 、最表層部の炭素濃度が高い記号 H、J、 Kが優れており、前者に比べ炭素濃度が 1 %と低い、記号 G、 Iの場合ピッチング寿命が一部劣ることがいえる。参考例として示 した記号 Fのように最表層部炭素濃度が 0. 8質量%未満の場合には、試験片のピッ チングタフネスが大幅に劣る。すなわち、最表層部には微細炭化物が多く析出し炭 素濃度が高いほど良好である。よって本発明では高濃度浸炭の炭素濃度は 0. 8質 量%以上に設定した。
[0052] 浸炭される炭素濃度の上限については 2. 0質量%までは特に問題にはならなかつ た。なお、炭素濃度をさらに 2. 0質量%を超える高濃度にした場合、片状炭化物が 析出しやすくなり、試験片の衝撃強度ならびに熱処理変形が不利な方向に向力 と いう懸念がある。このために部材 (試験片)の要求特性に合わせた最表層部の炭素 濃度を設定することが必要である。
[0053] 次に記号 I、 J、 Kの二次処理で、追加浸炭処理を適用した場合のピッチング寿命、 衝撃強度、熱処理変形 (歪)に及ぼす影響については、炭素濃度が同等で追加浸炭 "無"の記号 G、 Hに比べ、いずれの特性もバラツキが少なく良好である。その理由と しては追加浸炭処理により基地の炭素濃度の安定化、さらには最表層部の微細炭 化物の生成が助長され、浸炭層自体が緻密でバランスの取れた組織となり、熱処理 品質が全体的に安定化するためと思われる。
[0054] 以上の各種解析結果より、本発明の方法における最適な処理条件は、部材として 機械構造用鋼を用い、低圧浸炭にて一次処理および二次処理を組み合わせた高濃 度浸炭を行い、最適な加熱および冷却条件を経た後、最終工程における炭化物の 析出深さを有効硬化深さ比 10〜30%の範囲に、また、表層部の炭素濃度を 0. 8質 量%以上になるよう制御することが望ましレ、。
産業上の利用可能性
[0055] 上記の一連の結果より、本発明によれば、機械構造部材である歯車や車軸部材な どを高強度化および高面圧化でき、かつ低歪が要求される部材や、軸受け構造を有 する回転摺動ゃ往復摺動部材、さらには高面圧下での接触疲労や、耐摩耗性が要 求される部材など、各種部材の高強度化および高性能化ならびに軽量コンパクトィ匕 などのニーズを低歪で具現化できる、全く新しい高濃度浸炭 ·低歪焼入れ部材およ びその製造方法を提供することができる。
図面の簡単な説明
[0056] [図 1]一次処理のヒートサイクノレ
[図 2]二次処理のヒートサイクノレ
[図 3]実施例のヒートサイクノレ
[図 4]表 3の試験片 No. 2— 2の光学顕微鏡写真 (倍率 X 100)

Claims

請求の範囲
[1] 真空浸炭 (低圧浸炭)方法により、機械構造用鋼部材をオーステナイト域の温度に 加熱し、該部材の表層部に、共析炭素濃度以上の炭素を固溶させた後、該部材をォ ーステナイト域の温度から、 A変態点以下の温度に 3〜: 15°C/秒の冷却速度で焼き
1
入れを行い、上記部材の表層部に微細炭化物および/または該炭化物の核を生成 させる一次処理と、引き続き該部材をオーステナイト域の温度まで昇温および均熱さ せた後、急速焼き入れを行い最表層部に有効硬化深さ比で 10〜30%の範囲に、微 細炭化物を析出させる二次処理とからなることを特徴とする高濃度浸炭 ·低歪焼き入 れ部材の製造方法。
[2] 前記二次処理において、部材の表層部に追加浸炭処理を行う請求項 1に記載の 前記部材の製造方法。
[3] 前記二次処理において、前記部材の表層部に微細炭化物を析出させ、該表層部 に、トルースタイトおよび残留オーステナイトなどの混合組織を一部含むマルテンサイ トを主体とする組織を形成させ、該層の最表層部 (A部)と A部より内側の層部(B部) と B部より内側の層部(C部)のそれぞれのオーステナイト結晶粒度の微細さの序列を A≥C≥ Bとする請求項 2に記載の前記部材の製造方法。
[4] 表層部がトルースタイトおよび残留オーステナイトなどの混合組織を一部含むマル テンサイトを主体とする組織であり、該層のオーステナイト結晶粒度の微細さの序列 力 最表層部 (A部)と A部より内部の層(B部)と B部より内部の層(C部)において、 A ≥ C≥ Bとなってレ、ることを特徴とする高濃度浸炭 ·低歪焼き入れ部材。
PCT/JP2006/302161 2005-02-08 2006-02-08 高濃度浸炭・低歪焼入れ部材およびその製造方法 WO2006085549A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06713304.1A EP1847630B1 (en) 2005-02-08 2006-02-08 High-concentration carburized/low-strain quenched member and process for producing the same
CA2594838A CA2594838C (en) 2005-02-08 2006-02-08 High-concentration carburized/low-strain quenched member and process for producing the same
JP2007502622A JP4627776B2 (ja) 2005-02-08 2006-02-08 高濃度浸炭・低歪焼入れ部材およびその製造方法
US11/883,793 US20080156399A1 (en) 2005-02-08 2006-02-08 High-Concentration Carburized/Low-Strain Quenched Member and Process for Producing the Same
CN2006800041128A CN101115859B (zh) 2005-02-08 2006-02-08 高浓度渗碳·低应变淬火部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-032302 2005-02-08
JP2005032302 2005-02-08

Publications (1)

Publication Number Publication Date
WO2006085549A1 true WO2006085549A1 (ja) 2006-08-17

Family

ID=36793120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302161 WO2006085549A1 (ja) 2005-02-08 2006-02-08 高濃度浸炭・低歪焼入れ部材およびその製造方法

Country Status (7)

Country Link
US (1) US20080156399A1 (ja)
EP (1) EP1847630B1 (ja)
JP (1) JP4627776B2 (ja)
KR (1) KR100898679B1 (ja)
CN (1) CN101115859B (ja)
CA (1) CA2594838C (ja)
WO (1) WO2006085549A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
JP2015160982A (ja) * 2014-02-27 2015-09-07 新日鐵住金株式会社 浸炭部品
CN110541139A (zh) * 2019-10-18 2019-12-06 洪新阳 一种半轴齿轮内花键渗碳淬火方法及渗碳淬火设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010279452B2 (en) 2009-08-07 2015-04-30 Swagelok Company Low temperature carburization under soft vacuum
US8808470B2 (en) * 2010-12-13 2014-08-19 Nippon Steel & Sumitomo Metal Corporation High-carbon chromium bearing steel and production method of the same
DK2804965T3 (da) 2012-01-20 2020-12-14 Swagelok Co Samtidigt flow af aktiveringsgas ved lavtemperatur-karburering
EP3000910A4 (en) * 2013-05-10 2017-01-25 Hitachi, Ltd. Software and method for calculating carbon concentration distribution
KR101575435B1 (ko) 2013-12-24 2015-12-07 현대자동차주식회사 고탄소침탄강 소재 및 이를 이용한 기어 제조방법
CN104726819B (zh) * 2015-03-20 2017-09-19 上海人本集团有限公司 渗碳钢的热处理渗碳工艺
JP6922759B2 (ja) * 2018-01-25 2021-08-18 トヨタ自動車株式会社 鋼部材の製造方法
CN110184561A (zh) * 2019-07-05 2019-08-30 晋江鹏发机械有限公司 一种合金钢铸件的渗碳热处理工艺
CN116065005B (zh) * 2023-03-07 2023-07-25 中国机械总院集团北京机电研究所有限公司 一种真空热处理复合工艺开发设备及处理工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224499B2 (ja) 1978-11-20 1987-05-28 Komatsu Mfg Co Ltd
JPH083720A (ja) * 1994-06-16 1996-01-09 Sumitomo Metal Ind Ltd 転動疲労寿命に優れた鋼製部品とその製造方法
JPH0881737A (ja) * 1994-09-14 1996-03-26 Daido Steel Co Ltd 摺動特性に優れるロッカーアームおよびその製造方法
JP2787455B2 (ja) 1988-12-08 1998-08-20 マツダ株式会社 浸炭焼入れ方法
JP2808621B2 (ja) 1988-11-28 1998-10-08 大同特殊鋼株式会社 鋼の浸炭処理方法
JP2002212642A (ja) * 2001-01-10 2002-07-31 Ntn Corp 転動部品のガス浸炭焼入れ方法およびそれにより得られる転動部品
JP2002348615A (ja) 2001-05-18 2002-12-04 Daido Steel Co Ltd 耐高面圧部材およびその製造方法
JP2004285384A (ja) * 2003-03-20 2004-10-14 Daido Steel Co Ltd 高強度浸炭部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260249A (en) * 1939-08-31 1941-10-21 Battelle Memorial Institute Case carburizing
US4202710A (en) * 1978-12-01 1980-05-13 Kabushiki Kaisha Komatsu Seisakusho Carburization of ferrous alloys
EP0033403A1 (en) * 1980-01-31 1981-08-12 Ford Motor Company Method of treating the surfaces of high carbon steel bodies and bodies of high carbon steel
JP3410947B2 (ja) * 1998-01-09 2003-05-26 日産自動車株式会社 無段変速機の転動体およびその製造方法
US6537390B1 (en) * 1999-11-11 2003-03-25 Koyo Seiko Co., Ltd. Antifriction bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224499B2 (ja) 1978-11-20 1987-05-28 Komatsu Mfg Co Ltd
JP2808621B2 (ja) 1988-11-28 1998-10-08 大同特殊鋼株式会社 鋼の浸炭処理方法
JP2787455B2 (ja) 1988-12-08 1998-08-20 マツダ株式会社 浸炭焼入れ方法
JPH083720A (ja) * 1994-06-16 1996-01-09 Sumitomo Metal Ind Ltd 転動疲労寿命に優れた鋼製部品とその製造方法
JPH0881737A (ja) * 1994-09-14 1996-03-26 Daido Steel Co Ltd 摺動特性に優れるロッカーアームおよびその製造方法
JP2002212642A (ja) * 2001-01-10 2002-07-31 Ntn Corp 転動部品のガス浸炭焼入れ方法およびそれにより得られる転動部品
JP2002348615A (ja) 2001-05-18 2002-12-04 Daido Steel Co Ltd 耐高面圧部材およびその製造方法
JP2004285384A (ja) * 2003-03-20 2004-10-14 Daido Steel Co Ltd 高強度浸炭部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847630A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
JP2015160982A (ja) * 2014-02-27 2015-09-07 新日鐵住金株式会社 浸炭部品
CN110541139A (zh) * 2019-10-18 2019-12-06 洪新阳 一种半轴齿轮内花键渗碳淬火方法及渗碳淬火设备
CN110541139B (zh) * 2019-10-18 2020-11-10 浙江丰安齿轮股份有限公司 一种半轴齿轮内花键渗碳淬火方法及渗碳淬火设备

Also Published As

Publication number Publication date
US20080156399A1 (en) 2008-07-03
CN101115859A (zh) 2008-01-30
EP1847630A1 (en) 2007-10-24
EP1847630B1 (en) 2014-07-09
CA2594838A1 (en) 2006-08-17
JPWO2006085549A1 (ja) 2008-06-26
CA2594838C (en) 2014-04-01
KR100898679B1 (ko) 2009-05-22
EP1847630A4 (en) 2011-01-12
JP4627776B2 (ja) 2011-02-09
KR20070095390A (ko) 2007-09-28
CN101115859B (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4627776B2 (ja) 高濃度浸炭・低歪焼入れ部材およびその製造方法
JP5639064B2 (ja) 浸炭窒化部材の製造方法
JP5611828B2 (ja) ベアリング用鋼から形成された回転要素又は回転リング
WO2011122651A1 (ja) 浸炭鋼部材及びその製造方法
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
WO2010064617A1 (ja) 浸炭窒化部材および浸炭窒化部材の製造方法
US20100126632A1 (en) Manufacturing method for high-concentration carburized steel
JP2011514929A (ja) 鋼のための熱処理プロセス
JP2005163173A (ja) 歯車部材およびその製造方法
JP6055397B2 (ja) 耐摩耗性に優れた軸受部品、およびその製造方法
JP2000129347A (ja) 高強度部品の製造方法
JP7364895B2 (ja) 鋼部品及びその製造方法
JP2007246941A (ja) 高面圧用部品とその製造方法
JP7270343B2 (ja) 機械部品の製造方法
JP2018053337A (ja) 耐摩耗性および疲労特性に優れた浸炭部品およびその製造方法
JP4821582B2 (ja) 真空浸炭歯車用鋼
JP2004027266A (ja) 焼入用鋼
JP2003055711A (ja) 鋼部材の表面処理方法およびその焼入れ部品
JP6881496B2 (ja) 部品およびその製造方法
JP2005002366A (ja) 冷間加工性に優れた高硬度高周波焼入れ用鋼
JPH09256045A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JPH0972342A (ja) ころがり軸受部材
JP2024072443A (ja) 歯車及び歯車の製造方法
JP2021165410A (ja) 軌道輪、転がり軸受および軌道輪の製造方法
JP2020033638A (ja) 部品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502622

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2594838

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2642/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006713304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680004112.8

Country of ref document: CN

Ref document number: 1020077018051

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11883793

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006713304

Country of ref document: EP