JP6922759B2 - 鋼部材の製造方法 - Google Patents

鋼部材の製造方法 Download PDF

Info

Publication number
JP6922759B2
JP6922759B2 JP2018010322A JP2018010322A JP6922759B2 JP 6922759 B2 JP6922759 B2 JP 6922759B2 JP 2018010322 A JP2018010322 A JP 2018010322A JP 2018010322 A JP2018010322 A JP 2018010322A JP 6922759 B2 JP6922759 B2 JP 6922759B2
Authority
JP
Japan
Prior art keywords
pearlite
steel member
temperature
manufacturing
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018010322A
Other languages
English (en)
Other versions
JP2019127623A (ja
Inventor
久佳 田和
久佳 田和
弘之 井上
弘之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018010322A priority Critical patent/JP6922759B2/ja
Priority to BR102019000385A priority patent/BR102019000385A2/pt
Priority to US16/248,838 priority patent/US10894992B2/en
Priority to EP19152462.8A priority patent/EP3517640B1/en
Priority to CN201910048110.8A priority patent/CN110079652B/zh
Priority to RU2019101765A priority patent/RU2700632C1/ru
Priority to KR1020190008648A priority patent/KR102189121B1/ko
Publication of JP2019127623A publication Critical patent/JP2019127623A/ja
Application granted granted Critical
Publication of JP6922759B2 publication Critical patent/JP6922759B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は鋼部材の製造方法に関し、浸炭した後、再加熱して焼入れする鋼部材の製造方法に関する。
例えば歯車や軸受けなどの鋼部材では、耐摩耗性や疲労強度が要求されるため、鋼部材の表層部に硬化層が形成されている。例えば、製品形状に加工した鋼部材を、浸炭した後、再加熱して焼入れすることにより、鋼部材の表層部に硬化層を形成する。
特許文献1には、浸炭後にオーステナイト変態開始温度A1よりも低温まで降温して保持し、その後、再加熱して焼入れる鋼部材の製造方法が開示されている。
浸炭時にオーステナイト化された鋼部材を、オーステナイト変態開始温度A1よりも低温まで降温して保持すると、鋼部材のミクロ組織がオーステナイトからパーライトに変化する。そして、焼入れのための再加熱によって、ミクロ組織がパーライトからオーステナイトに変化し、焼入れによって、ミクロ組織がオーステナイトからマルテンサイトに変化する。ここで、パーライトは、フェライトからなる層(以下、フェライト層)とセメンタイトからなる層(以下、セメンタイト層)とが交互に積層されたラメラ構造を有する。
特開平5−279836号公報
発明者らは、浸炭した後、再加熱して焼入れる鋼部材の製造方法に関し、以下の問題点を見出した。
ここで、図9は、885℃でオーステナイト化された共析鋼(0.77質量%C)の恒温変態曲線を示すTTT(Time Temperature Transformation)図である。横軸は時間(秒)を対数で示し、縦軸は温度(℃)を示している。特許文献1に開示された浸炭後にオーステナイト変態開始温度A1よりも低温まで降温して保持する工程についても、図9を参照して説明することができる。
図9に示すように、浸炭後にパーライト変態させるために保持する温度(以下、「パーライト化温度」)は、オーステナイト変態開始温度A1よりも低温であり、恒温変態曲線のノーズ温度Tnよりも高温である。そして、パーライト化温度における保持時間が、パーライト変態開始曲線Psを超えるとパーライト変態が開始する。また、パーライト化温度における保持時間が、パーライト変態終了曲線Pfを超えるとパーライト変態が終了する。
図9に示すように、パーライト化温度がノーズ温度Tnに近付いて低くなると、パーライトのラメラ間隔が小さくなり、細かいパーライトが形成される。他方、パーライト化温度がオーステナイト変態開始温度A1に近付いて高くなると、パーライトのラメラ間隔が大きくなり、粗いパーライトが形成される。
特許文献1に開示されたパーライト化温度は680℃以下であるため、パーライトのラメラ間隔が小さく、再加熱によって、パーライトを構成するセメンタイト層が消失し、焼入れ処理した後に充分な疲労強度が得られないという問題があった。
ここで、単純にパーライト化温度を高くすると、図9に示すように、パーライト変態が終了するまでの時間が急激に長くなり、生産性が低下するという問題があった。
本発明は、このような事情に鑑みなされたものであって、疲労強度と生産性とを両立可能な鋼部材の製造方法を提供するものである。
本発明の一態様に係る鋼部材の製造方法は、
オーステナイト変態完了温度A3よりも高温に鋼部材を加熱してオーステナイト化しつつ、炭素濃度が共析組成よりも高くなるまで浸炭する浸炭工程と、
オーステナイト変態開始温度A1よりも低くかつ恒温変態曲線のノーズ温度よりも高い温度まで前記鋼部材を降温し、前記浸炭工程において形成されたオーステナイトをパーライト化するパーライト化工程と、
前記パーライト化工程の後、前記オーステナイト変態完了温度A3よりも高温に前記鋼部材を再加熱して急冷する焼入れ工程と、を備えた鋼部材の製造方法であって、
前記パーライト化工程は、
前記オーステナイト変態開始温度A1よりも低くかつ680℃よりも高い温度まで前記鋼部材を降温して保持し、前記浸炭工程において形成されたオーステナイトの一部をパーライト化する第1パーライト析出工程と、
680℃以下かつ前記ノーズ温度よりも高い温度まで前記鋼部材をさらに降温して保持し、前記第1パーライト析出工程において残留したオーステナイトをパーライト化する第2パーライト析出工程と、を備えるものである。
本発明の一態様に係る鋼部材の製造方法では、パーライト化工程が、オーステナイト変態開始温度A1よりも低くかつ680℃よりも高い温度まで鋼部材を降温して保持し、浸炭工程において形成されたオーステナイトの一部をパーライト化する第1パーライト析出工程を備える。680℃以下かつノーズ温度よりも高い温度まで鋼部材をさらに降温して保持し、第1パーライト析出工程において残留したオーステナイトをパーライト化する第2パーライト析出工程と、を備える。
第1パーライト析出工程では、析出するパーライトのラメラ間隔が大きくなり、焼入れ工程の再加熱によって、パーライトを構成するセメンタイト層が分断され微細粒となって残留する。その結果、焼入れ後の鋼部材の疲労強度が向上する。また、第2パーライト析出工程によって、パーライト変態が終了するまでの時間が長くなることを抑制することができる。
すなわち、鋼部材の疲労強度と生産性とを両立させることができる。
前記第1パーライト析出工程における保持温度を710℃以下としてもよい。710℃以下とすることによって、処理時間を短縮することができる。
前記第2パーライト析出工程における保持温度を600℃以上650℃以下としてもよい。600℃以上とすることによって、再加熱において消費するエネルギーを抑制することができると共に、650℃以下とすることによって、処理時間を短縮することができる。
前記浸炭工程において前記鋼部材が収容される熱処理室の外壁を、赤外線を透過する材質から構成し、前記外壁の外側に設置された赤外線ヒータによって前記鋼部材を加熱してもよい。熱処理室の内部の雰囲気を加熱せずに鋼部材のみを加熱することができるため、ヒータを切った際に、急速に鋼部材を冷却することができる。
前記浸炭工程の後、前記熱処理室に前記鋼部材を収容したまま、前記パーライト化工程及び前記焼入れ工程における再加熱を連続して行ってもよい。浸炭工程、パーライト化工程、及び焼入れ工程の加熱を1つの熱処理室で行うため、鋼部材の製造装置をコンパクトにすることができる。
本発明により、疲労強度と生産性とを両立可能な鋼部材の製造方法を提供することができる。
第1の実施形態に係る鋼部材の製造方法を示す温度チャートである。 第1の実施形態に係る鋼部材の製造方法に用いる製造装置の模式図である。 第1の実施形態に係る鋼部材の製造方法に用いる他の製造装置の模式図である。 第1の実施形態の比較例に係る鋼部材の製造方法を示す温度チャートである。 第1の実施形態の実施例に係る鋼部材の製造方法を示す温度チャートである。 比較例及び実施例に係る鋼部材における深さ方向の硬さプロファイルを示すグラフである。 比較例及び実施例に係る鋼部材のミクロ組織写真である。 焼入れ後の比較例及び実施例に係る鋼部材のローラピッチング疲労試験の結果を示すグラフである。 885℃でオーステナイト化された共析組成(0.77質量%C)を有する炭素鋼のTTT(Time-Temperature-Transformation)図である。
以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(第1の実施形態)
<鋼部材の製造方法>
まず、図1を参照して、第1の実施形態に係る鋼部材の製造方法について説明する。第1の実施形態に係る鋼部材の製造方法は、耐摩耗性や疲労強度が要求される歯車や軸受けなどの鋼部材の製造方法として好適である。鋼部材の材質は、特に限定されないが、例えば炭素濃度が0.25質量%以下の低炭素鋼や合金鋼を用いることができる。一例として、JIS規格の機械構造用クロムモリブデン鋼SCM420を挙げることができる。
図1は、第1の実施形態に係る鋼部材の製造方法を示す温度チャートである。図1の横軸は時間(s)、縦軸は温度(℃)である。図1に示すように、第1の実施形態に係る鋼部材の製造方法は、浸炭工程、パーライト化工程、焼入れ工程を備えている。第1の実施形態に係る鋼部材の製造方法では、浸炭工程の後、パーライト化工程を行い、その後、焼入れ工程を行う。ここで、パーライト化工程は、粗大パーライト析出工程(第1パーライト析出工程)と微細パーライト析出工程(第2パーライト析出工程)とを含む。
まず、浸炭工程では、オーステナイト変態完了温度A3よりも高温の温度T1に鋼部材を加熱して保持する。ここで、鋼部材の表面の炭素濃度が共析組成(0.77質量%)以上になるまで浸炭工程を行う。温度T1は、例えば950〜1150℃である。浸炭工程において、鋼部材は、オーステナイト化され、オーステナイト単相となる。
浸炭方法としては、真空浸炭を用いることができる。具体的には、炉内の雰囲気を例えば2kPa以下に減圧しつつ、浸炭ガスを炉内に導入する。浸炭ガスとしては、例えばアセチレン、メタン、プロパン、エチレン等の炭化水素ガスを用いることができる。鋼部材の表面において浸炭ガスが分解し、生成された炭素が鋼の表面から内部に向かって拡散することによって、鋼部材の表層部に浸炭層が形成される。
次に、粗大パーライト析出工程では、浸炭工程における温度T1からオーステナイト変態開始温度A1よりも低温かつ680℃より高温の温度T2まで降温して保持する。ここで、図9に示した恒温変態曲線を参照して説明する。粗大パーライト析出工程では、温度T2に保持する時間を、パーライト変態開始曲線Psよりも長く、パーライト変態終了曲線Pfよりも短くする。温度T2は、例えば710℃以下である。710℃以下とすることによって、処理時間を短縮することができる。一例として、温度T2を700℃とした場合、保持時間は10分程度とする。
すなわち、粗大パーライト析出工程では、オーステナイトの一部をパーライト変態させる。そのため、粗大パーライト析出工程が終了した時点において、鋼部材のミクロ組織はオーステナイトとパーライトとが混在した組織となる。より詳細には、炭素濃度が共析組成を超えている鋼部材の表層部では、オーステナイトと初析セメンタイトとパーライトとが混在した組織となる。炭素濃度が共析組成未満である鋼部材の内部(すなわちバルク)では、オーステナイトと初析フェライトとパーライトとが混在した組織となる。
粗大パーライト析出工程における温度T2は680℃より高温であって、次の微細パーライト析出工程における温度T3よりも高温である。そのため、粗大パーライト析出工程において形成されるパーライトのラメラ間隔は、微細パーライト析出工程において形成されるパーライトよりもラメラ間隔が大きくなる。
次に、微細パーライト析出工程では、粗大パーライト析出工程における温度T2から温度T3まで降温して保持する。温度T3は、図9に示した恒温変態曲線におけるノーズ温度Tnより高温かつ680℃より低温である。微細パーライト析出工程では、粗大パーライト析出工程において残留したオーステナイトを全てパーライト変態させる。温度T3は、例えば600〜650℃である。650℃以下とすることによって、処理時間を短縮することができる。一例として、温度T3を650℃とした場合、保持時間は30分程度とする。他方、600℃以上とすることによって、再加熱において消費するエネルギーを抑制することができる。
微細パーライト析出工程が終了した時点において、鋼部材のミクロ組織は、全体がパーライトとなる。但し、粗大パーライト析出工程において形成されたラメラ間隔の大きい粗大パーライトと、微細パーライト析出工程において形成されたラメラ間隔の小さい微細パーライトとが混在している。ここで、上述の通り、パーライトは、フェライト層とセメンタイト層とが交互に積層されたラメラ構造を有する。
最後に、焼入れ工程では、微細パーライト析出工程における温度T3からオーステナイト変態完了温度A3よりも高温の温度T4に鋼部材を加熱して保持した後、急冷する。焼入れ工程のための温度T4での加熱によって、ミクロ組織がパーライトからオーステナイトに変化し、急冷によって、ミクロ組織がオーステナイトからマルテンサイトに変化する。焼入れ工程によって、鋼部材の表層部に形成された浸炭層が硬化する。
以上に説明した通り、第1の実施形態に係る鋼部材の製造方法では、浸炭工程の後、微細パーライト析出工程の前に、粗大パーライト析出工程を行う。すなわち、オーステナイトの一部を680℃よりも高温においてパーライト変態させる。そのため、粗大パーライト析出工程では、析出するパーライトのラメラ間隔が大きくなり、焼入れ工程の再加熱によって、パーライトを構成するセメンタイト層が分断され微細粒となって残留する。その結果、焼入れ後の鋼部材の疲労強度が向上する。
また、粗大パーライト析出工程の後、温度T2から温度T3まで降温し、微細パーライト析出工程においてパーライト変態を終了させる。そのため、パーライト変態が終了するまでの時間が長くなることを抑制することができる。すなわち、生産性の低下も抑制することができる。
このように、第1の実施形態に係る鋼部材の製造方法によって、鋼部材の疲労強度と生産性とを両立させることができる。
<鋼部材の製造装置>
次に、図2を参照して、第1の実施形態に係る鋼部材の製造方法に用いる製造装置について説明する。図2は、第1の実施形態に係る鋼部材の製造方法に用いる製造装置の模式図である。図2に示すように、この製造装置は、熱処理装置10及び冷却装置20を備えている。図2に示した製造装置では、熱処理装置10において、図1に示した浸炭工程、粗大パーライト析出工程、微細パーライト析出工程、焼入れ工程の加熱を連続して行う。その後、鋼部材30を冷却装置20に搬送し、図1に示した焼入れ工程の冷却を行う。
図2に示すように、熱処理装置10は、熱処理室11、ヒータ12、真空ポンプPを備えている。密閉可能な箱状の熱処理室11の内部に鋼部材30が収容される。図2の例では、鋼部材30は歯車である。熱処理室11の外壁の外側には、鋼部材30を加熱するためのヒータ12が設置されている。ヒータ12としては、例えば赤外線ヒータを用いることができる。その場合、ヒータ12が設置された熱処理室11の外壁は、赤外線を透過する石英等の材料から構成される。
図2に示すように、熱処理室11の外壁の外側に設置されたヒータ12(赤外線ヒータ)によって加熱することにより、熱処理室11の内部の雰囲気を加熱せずに鋼部材30のみを加熱することができる。そのため、ヒータ12を切った際に、急速に鋼部材30を冷却することができる。さらに、熱処理室11の外壁を二重構造とし、鋼部材30を冷却する際に、その間に冷却水、冷却ガス、液体窒素などの冷媒を流してもよい。冷却時間をさらに短縮し、生産性を向上させることができる。
また、ヒータ12として赤外線ヒータを用いると、鋼部材30の形状等が変化しても均一に加熱することができ、段替えが不要となる。さらに、図2に示すように、複数の鋼部材30を同時に加熱することができる。
なお、ヒータ12として例えば誘導加熱ヒータを用いてもよいが、鋼部材30の形状等に応じて段替えが必要になる。
図2に示すように、熱処理室11の内部は真空ポンプPによって減圧することができる。また、熱処理室11の内部にアセチレン(C)などの浸炭ガスを導入することができる。浸炭工程では、熱処理室11の内部を真空ポンプPによって減圧しながら、アセチレン(C)などの浸炭ガスを導入する。浸炭工程が終了する際、浸炭ガスの導入を停止し、熱処理室11の内部を真空ポンプPによって減圧しながら、粗大パーライト析出工程、微細パーライト析出工程、焼入れ工程における加熱を連続して行う。
冷却装置20は、焼入れ室21、冷媒噴射部22を備えている。密閉可能な箱状の焼入れ室21の内部に、熱処理装置10において焼入れのために加熱された鋼部材30が搬送される。焼入れ室21の天井部には冷媒噴射部22が設けられており、冷媒噴射部22から鋼部材30に向かって冷媒23が吹き付けられる。冷媒としては、水、油、不活性ガス等を用いることができる。
図2に示した製造装置では、浸炭工程、パーライト化工程(粗大パーライト析出工程及び微細パーライト析出工程)、焼入れ工程の加熱を1つの熱処理装置10で行うため、製造装置をコンパクトにすることができる。
なお、例えば浸炭工程の前に鋼部材30を予め加熱しておく予備加熱室(不図示)を別途設けてもよい。熱処理装置10において鋼部材30を処理している間に、予備加熱室において他の鋼部材30を予め加熱しておくことができるため、生産性が向上する。
<鋼部材の他の製造装置>
次に、図3を参照して、第1の実施形態に係る鋼部材の製造方法に用いる他の製造装置について説明する。図3は、第1の実施形態に係る鋼部材の製造方法に用いる他の製造装置の模式図である。図3に示すように、この製造装置は、浸炭処理装置10a、パーライト化処理装置10b、焼入れ加熱装置10c及び冷却装置20を備えている。
図3に示した製造装置では、まず、浸炭処理装置10aにおいて、図1に示した浸炭工程を行う。次に、鋼部材30をパーライト化処理装置10bに搬送し、図1に示した粗大パーライト析出工程及び微細パーライト析出工程を行う。次に、鋼部材30を焼入れ加熱装置10cに搬送し、図1に示した焼入れ工程の加熱を行う。最後に、鋼部材30を冷却装置20に搬送し、図1に示した焼入れ工程の冷却を行う。
図3に示すように、浸炭処理装置10aは、熱処理室11a、ヒータ12aを備えている。図2に示した熱処理装置10と同様に、浸炭処理装置10aも真空ポンプPを備えていると共に浸炭ガスを導入することができるが、図3では省略されている。浸炭処理装置10aは、例えば汎用の真空加熱炉であって、熱処理室11aの内壁に、鋼部材30を加熱するためのヒータ12aが設置されている。
図3に示すように、パーライト化処理装置10bは、熱処理室11b、ヒータ12bを備えている。図2に示した熱処理装置10と同様に、パーライト化処理装置10bも真空ポンプPを備えているが、図3では省略されている。浸炭処理装置10aと同様に、パーライト化処理装置10bも、例えば汎用の真空加熱炉であって、熱処理室11bの内壁に、鋼部材30を加熱するためのヒータ12bが設置されている。
図3に示すように、焼入れ加熱装置10cは、熱処理室11c、ヒータ12cを備えている。図2に示した熱処理装置10と同様に、焼入れ加熱装置10cも真空ポンプPを備えているが、図3では省略されている。浸炭処理装置10aと同様に、焼入れ加熱装置10cも、例えば汎用の真空加熱炉であって、熱処理室11cの内壁に、鋼部材30を加熱するためのヒータ12cが設置されている。
なお、冷却装置20は、図2に示した製造装置の冷却装置20と同様であるため、説明を省略する。
図2に示した製造装置では、浸炭工程、パーライト化工程(粗大パーライト析出工程及び微細パーライト析出工程)、焼入れ工程の加熱を1つの熱処理装置10で行う。これに対し、図3に示した製造装置では、浸炭工程、パーライト化工程(粗大パーライト析出工程及び微細パーライト析出工程)、焼入れ工程の加熱を別々の装置で行う。そのため、それぞれの装置で異なる鋼部材30を平行して処理することができ、生産性に優れている。
<実施例>
以下に、第1の実施形態の比較例及び実施例について説明する。
比較例及び実施例に係る鋼部材としては、JIS規格SCM420からなる鋼部材を用いた。試験片の形状は、ローラピッチング疲労試験を行うため、直径26mm、長さ130mmの丸棒形状とした。ここで、図4は、第1の実施形態の比較例に係る鋼部材の製造方法を示す温度チャートである。また、図5は、第1の実施形態の実施例に係る鋼部材の製造方法を示す温度チャートである。
まず、図4、図5に示すように、比較例及び実施例に係る鋼部材については、いずれも1100℃において12分間、浸炭を行った。
次に、図4に示すように、比較例に係る鋼部材については、650℃において30分間、パーライト化処理を行った。一方、図5に示すように、実施例に係る鋼部材については、700℃において10分間、粗大パーライト析出処理を行った後、650℃において30分間、微細パーライト析出処理を行った。
最後に、図4に示すように、比較例に係る鋼部材については、850℃において1分間加熱した後、水冷して焼入れた。一方、図5に示すように、実施例に係る鋼部材については、900℃において1分間加熱した後、水冷して焼入れた。
焼入れ後の比較例及び実施例に係る鋼部材について、ビッカース硬さ測定、ミクロ組織観察、ローラピッチング疲労試験を実施した。
また、図4、図5に破線で示すように、パーライト化処理(微細パーライト析出処理)後に水冷した比較例及び実施例に係る鋼部材について、ビッカース硬さ測定、ミクロ組織観察を実施した。
ローラピッチング疲労試験条件については、回転数を2000rpm、滑り率を−40%、油温を80℃、油量を1.5L/minとした。潤滑油にはATF(Automatic Transmission Fluid)であるJWS3309を使用した。
図6は、比較例及び実施例に係る鋼部材における深さ方向の硬さプロファイルを示すグラフである。横軸は表面からの深さ(mm)、縦軸はビッカース硬さ(HV)を示している。図6には、パーライト化処理後の比較例及び実施例に係る鋼部材のビッカース硬さと、焼入れ後の比較例及び実施例に係る鋼部材のビッカース硬さとが、プロットされている。図6に示すように、比較例及び実施例に係る鋼部材のいずれについても、表面から深さ0.7mm程度まで浸炭層が形成されていた。
図6に示すように、パーライト化処理後の鋼部材については、浸炭層において、比較例よりも実施例の方が、ビッカース硬さが50〜100HV程度低かった。実施例に係る鋼部材では、比較例のパーライト化処理よりも高温の粗大パーライト析出処理において粗大パーライトを析出させたため、硬度が低くなったものと推察される。
他方、図6に示すように、焼入れ後の鋼部材については、浸炭層において、比較例と実施例とのビッカース硬さは同等であった。但し、深さ0.4〜0.6mmでは、比較例よりも実施例のビッカース硬さの方が高かった。
図7は、比較例及び実施例に係る鋼部材のミクロ組織写真である。図7には、パーライト化処理後の比較例及び実施例に係る鋼部材のミクロ組織と、焼入れ後の比較例及び実施例に係る鋼部材のミクロ組織が、並べて示されている。図7に示すように、パーライト化処理後の鋼部材については、比較例に比べ実施例のミクロ組織においてラメラ間隔が大きくなっているのが確認できた。また、焼入れ後の鋼部材については、比較例のミクロ組織ではセメンタイトが確認できなかったのに対し、実施例のミクロ組織ではセメンタイトの微細粒が確認できた。
図8は、焼入れ後の比較例及び実施例に係る鋼部材のローラピッチング疲労試験の結果を示すグラフである。横軸はピッチングが発生した繰り返し数(回)、縦軸は試験片に負荷したヘルツ面圧(MPa)を示している。図7に示すように、比較例に係る鋼部材の疲労強度に対し、実施例に係る鋼部材の疲労強度は、1.3倍程度であった。このように、第1の実施形態に係る鋼部材の製造方法を適用することによって、製造された鋼部材の疲労強度が向上することが確認できた。
なお、本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
10 熱処理装置
10a 浸炭処理装置
10b パーライト化処理装置
10c 加熱装置
11、11a、11b、11c 熱処理室
12、12a、12b、12c ヒータ
20 冷却装置
21 焼入れ室
22 冷媒噴射部
23 冷媒
30 鋼部材
P 真空ポンプ

Claims (5)

  1. オーステナイト変態完了温度A3よりも高温に鋼部材を加熱してオーステナイト化しつつ、炭素濃度が共析組成よりも高くなるまで浸炭する浸炭工程と、
    オーステナイト変態開始温度A1よりも低くかつ恒温変態曲線のノーズ温度よりも高い温度まで前記鋼部材を降温し、前記浸炭工程において形成されたオーステナイトをパーライト化するパーライト化工程と、
    前記パーライト化工程の後、前記オーステナイト変態完了温度A3よりも高温に前記鋼部材を再加熱して急冷する焼入れ工程と、を備えた鋼部材の製造方法であって、
    前記パーライト化工程は、
    前記オーステナイト変態開始温度A1よりも低くかつ680℃よりも高い温度まで前記鋼部材を降温して保持し、前記浸炭工程において形成されたオーステナイトの一部をパーライト化する第1パーライト析出工程と、
    680℃以下かつ前記ノーズ温度よりも高い温度まで前記鋼部材をさらに降温して保持し、前記第1パーライト析出工程において残留したオーステナイトをパーライト化する第2パーライト析出工程と、を備える、
    鋼部材の製造方法。
  2. 前記第1パーライト析出工程における保持温度を710℃以下とする、
    請求項1に記載の鋼部材の製造方法。
  3. 前記第2パーライト析出工程における保持温度を600℃以上650℃以下とする、
    請求項1又は2に記載の鋼部材の製造方法。
  4. 前記浸炭工程において前記鋼部材が収容される熱処理室の外壁を、赤外線を透過する材質から構成し、
    前記外壁の外側に設置された赤外線ヒータによって前記鋼部材を加熱する、
    請求項1〜3のいずれか一項に記載の鋼部材の製造方法。
  5. 前記浸炭工程の後、前記熱処理室に前記鋼部材を収容したまま、前記パーライト化工程及び前記焼入れ工程における再加熱を連続して行う、
    請求項4に記載の鋼部材の製造方法。
JP2018010322A 2018-01-25 2018-01-25 鋼部材の製造方法 Active JP6922759B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018010322A JP6922759B2 (ja) 2018-01-25 2018-01-25 鋼部材の製造方法
BR102019000385A BR102019000385A2 (pt) 2018-01-25 2019-01-09 método para produzir elemento de aço
US16/248,838 US10894992B2 (en) 2018-01-25 2019-01-16 Method for producing steel member
CN201910048110.8A CN110079652B (zh) 2018-01-25 2019-01-18 用于制造钢构件的方法
EP19152462.8A EP3517640B1 (en) 2018-01-25 2019-01-18 Method for producing steel member
RU2019101765A RU2700632C1 (ru) 2018-01-25 2019-01-23 Способ изготовления стального элемента
KR1020190008648A KR102189121B1 (ko) 2018-01-25 2019-01-23 강 부재의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010322A JP6922759B2 (ja) 2018-01-25 2018-01-25 鋼部材の製造方法

Publications (2)

Publication Number Publication Date
JP2019127623A JP2019127623A (ja) 2019-08-01
JP6922759B2 true JP6922759B2 (ja) 2021-08-18

Family

ID=65041608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010322A Active JP6922759B2 (ja) 2018-01-25 2018-01-25 鋼部材の製造方法

Country Status (7)

Country Link
US (1) US10894992B2 (ja)
EP (1) EP3517640B1 (ja)
JP (1) JP6922759B2 (ja)
KR (1) KR102189121B1 (ja)
CN (1) CN110079652B (ja)
BR (1) BR102019000385A2 (ja)
RU (1) RU2700632C1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194085B2 (ja) 2019-07-09 2022-12-21 日立Astemo株式会社 操舵制御装置、操舵制御方法、及び操舵制御システム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608387B2 (de) * 1962-08-24 1980-07-17 Morgan Construction Co., Worcester, Mass. (V.St.A.) Einrichtung zum kontinuierlichen Patentieren von Walzdraht aus der Walzhitze
US3337376A (en) 1966-12-27 1967-08-22 United States Steel Corp Method of hardening hypereutectoid steels
US3826694A (en) 1972-05-18 1974-07-30 Torrington Co Thermal treatment of steel
JPS6047324B2 (ja) * 1978-02-13 1985-10-21 アライド・スティ−ル・エンド・ワイヤ−リミテッド 熱間圧延した鋼のロツド又は棒の改良
SU812835A1 (ru) * 1979-03-06 1981-03-15 Московский Ордена Трудового Красногознамени Институт Стали И Сплавов Способ обработки деталей
JPS60125310A (ja) * 1983-12-12 1985-07-04 Hitachi Metals Ltd 球状黒鉛鋳鉄の製造法
FR2607519B1 (fr) * 1986-11-27 1989-02-17 Michelin & Cie Procede et dispositif pour traiter thermiquement un fil d'acier
JPS63195257A (ja) * 1987-02-09 1988-08-12 Nissan Motor Co Ltd 高強度部材の製造方法
JP2709596B2 (ja) * 1988-02-05 1998-02-04 株式会社豊田中央研究所 肌焼鋼強靭部品の製造方法
JP2787455B2 (ja) * 1988-12-08 1998-08-20 マツダ株式会社 浸炭焼入れ方法
JP3072537B2 (ja) * 1992-03-31 2000-07-31 大同特殊鋼株式会社 鋼材表面へのプラズマ浸炭方法
JP3625224B2 (ja) * 1995-06-07 2005-03-02 新日本製鐵株式会社 高深度高硬度レールの製造方法
RU2094485C1 (ru) * 1995-12-05 1997-10-27 Акционерное общество "Раменское приборостроительное конструкторское бюро" Способ упрочнения низкоуглеродистых сталей
JP3894635B2 (ja) 1997-08-11 2007-03-22 株式会社小松製作所 浸炭部材とその製造方法並びに浸炭処理システム
JP3764710B2 (ja) * 2002-08-20 2006-04-12 新日本製鐵株式会社 靭性および延性に優れたパーライト系レールの製造方法
CN101115859B (zh) * 2005-02-08 2011-05-18 帕卡热处理工业株式会社 高浓度渗碳·低应变淬火部件及其制造方法
EP1889929B1 (en) * 2005-09-26 2013-01-02 Aisin Aw Co., Ltd. Method for the manufacture of carburized steel members .
JP4876668B2 (ja) 2006-03-29 2012-02-15 アイシン精機株式会社 鋼部材の熱処理方法
JP5088633B2 (ja) * 2006-04-11 2012-12-05 日立金属株式会社 鋼材の製造方法
WO2007119721A1 (ja) * 2006-04-11 2007-10-25 Hitachi Metals, Ltd. マルテンサイト系工具鋼の焼入れ前処理方法および焼入れ処理方法
JP2008063603A (ja) 2006-09-05 2008-03-21 Ntn Corp 軌道部材の製造方法、動弁装置の製造方法および軌道部材
JP2009052119A (ja) 2007-08-29 2009-03-12 Ntn Corp 鋼の熱処理方法、機械部品の製造方法および機械部品
JP5305820B2 (ja) 2008-10-08 2013-10-02 アイシン・エィ・ダブリュ株式会社 浸炭部品の製造方法及び鋼部品
FR2951198B1 (fr) * 2009-10-12 2013-05-10 Snecma Traitements thermiques d'aciers martensitiques inoxydables apres refusion sous laitier
CN102226228B (zh) * 2011-06-08 2013-06-19 马鞍山钢铁股份有限公司 一种中间相退火球化中低碳钢组织中珠光体的试验工艺
JP5786815B2 (ja) * 2012-07-20 2015-09-30 新日鐵住金株式会社 浸炭又は浸炭窒化部品用鋼材
CN103132086A (zh) 2013-03-18 2013-06-05 上海市机械制造工艺研究所有限公司 一种重载齿轮渗碳-等温-淬火新工艺
RU2553107C2 (ru) * 2013-10-23 2015-06-10 Общество с ограниченной ответственностью "Газпром трансгаз Уфа" Способ упрочнения изделий из низкоуглеродистой стали
JP2016017212A (ja) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 鋼材の浸炭焼入れ方法
JP6191630B2 (ja) * 2015-01-15 2017-09-06 トヨタ自動車株式会社 ワークの製造方法
JP6401143B2 (ja) * 2015-10-20 2018-10-03 トヨタ自動車株式会社 浸炭用鍛造材の製造方法
JP2019127624A (ja) * 2018-01-25 2019-08-01 トヨタ自動車株式会社 鋼部材の製造方法

Also Published As

Publication number Publication date
EP3517640A1 (en) 2019-07-31
US20190226037A1 (en) 2019-07-25
KR102189121B1 (ko) 2020-12-09
EP3517640B1 (en) 2020-06-24
CN110079652B (zh) 2020-09-18
JP2019127623A (ja) 2019-08-01
US10894992B2 (en) 2021-01-19
BR102019000385A2 (pt) 2019-08-13
CN110079652A (zh) 2019-08-02
RU2700632C1 (ru) 2019-09-19
KR20190090713A (ko) 2019-08-02

Similar Documents

Publication Publication Date Title
JP5251868B2 (ja) 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
JP5611828B2 (ja) ベアリング用鋼から形成された回転要素又は回転リング
JP5535922B2 (ja) 鋼のための熱処理プロセス
JP4627776B2 (ja) 高濃度浸炭・低歪焼入れ部材およびその製造方法
US20110206473A1 (en) Method for manufacturing low distortion carburized gears
JP2008106856A (ja) ベルト式無段変速機用シーブ部材及びその製造方法
JP7163642B2 (ja) 浸炭焼入れ装置および浸炭焼入れ方法
JP2016023346A (ja) 歯車の浸炭処理方法
KR101453237B1 (ko) 복합 강 부품 및 그 제조 방법
JPWO2012081229A1 (ja) 高炭素クロム軸受鋼およびその製造方法
JP6922759B2 (ja) 鋼部材の製造方法
JP2009179869A (ja) ブッシュの製法
JP2019127624A (ja) 鋼部材の製造方法
JP2007119825A (ja) 表面焼入れされた鋼および鋼の表面焼入方法
JP6237459B2 (ja) 鋼管の熱処理方法およびそれを用いる軸受用鋼管の製造方法
JP2015531029A (ja) 鋼コンポーネントを熱処理する方法及び鋼コンポーネント
JP4654190B2 (ja) 耐摩耗性を改良されたジョイント部材及びそのジョイント部材を製造するための方法
JP2016017212A (ja) 鋼材の浸炭焼入れ方法
JP2005133211A (ja) 熱処理システム
JP5424298B2 (ja) 円柱状部品の熱処理方法
JP2005330587A (ja) 歯面強度に優れた歯車の製造方法および歯面強度に優れた歯車
JP2005133212A (ja) 熱処理システム
JP2005113210A (ja) 熱処理システム
JP2005113217A (ja) 熱処理システム
JP2005133215A (ja) 熱処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151