WO2006070497A1 - Convection temperature difference prime motive power device - Google Patents

Convection temperature difference prime motive power device Download PDF

Info

Publication number
WO2006070497A1
WO2006070497A1 PCT/JP2005/011580 JP2005011580W WO2006070497A1 WO 2006070497 A1 WO2006070497 A1 WO 2006070497A1 JP 2005011580 W JP2005011580 W JP 2005011580W WO 2006070497 A1 WO2006070497 A1 WO 2006070497A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cylinder
gas
temperature difference
cylinder
liquid
Prior art date
Application number
PCT/JP2005/011580
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Abe
Original Assignee
Toshihiro Abe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshihiro Abe filed Critical Toshihiro Abe
Priority to JP2006550596A priority Critical patent/JPWO2006070497A1/en
Publication of WO2006070497A1 publication Critical patent/WO2006070497A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention obtains various thermal energy power such as heat energy in the natural world such as seawater, snow, groundwater, geothermal heat, industrial waste heat energy, or heat energy obtained by burning waste.
  • the present invention relates to a convection temperature difference prime mover that generates gas convection inside and generates power by this convection.
  • this convection temperature difference prime mover Sa has a sealed cylindrical outer shell 200, a support shaft 201 provided along the center axis of the outer shell, and a rotation to the support shaft 201.
  • the inner cylinder 204 has a gas supply port 202a formed at one end in the axial direction and a gas discharge port 203 formed at the center of the other end, and is provided rotatably with respect to the outer shell 200 and the inner cylinder 204.
  • the wall portion includes an outer cylinder 205 positioned between the outer shell 200 and the inner cylinder 204.
  • the convection temperature differential prime mover Sa has a one-way flow of gas from the supply port 202a of the inner cylinder 204 through the inside of the inner cylinder 204 to the discharge port 203, and from the discharge port 203 of the inner cylinder 204 to the outside of the inner cylinder 204.
  • a temperature difference is imparted to the gas to cause convection of the gas so as to pass through the other flow path that passes through the supply port 202a.
  • the convection temperature difference prime mover Sa rotates the inner cylinder 204 and the outer cylinder 205 by the gas convection, and generates power by using the power acquisition mechanism 206a.
  • One end and the other end of the inner cylinder 204 and the outer cylinder 205 are pivotally supported with respect to the support shaft 201. Further, the inner cylinder 204 and the outer cylinder 205 are divided into one end side rotating bodies 204a and 205a and the other end side rotating bodies 204b and 205b. The split end portions of the one-end-side rotators 204a and 205a and the other-end-side rotators 204b and 205b are connected so that the split end portions can be relatively shifted in the direction perpendicular to the axial direction and can be relatively rotated. .
  • a turbine 206 is provided at the other end of the inner cylinder 204. The turbine 206 injects the gas from the discharge port 203 to the outside of the inner cylinder 204 in the direction opposite to the rotation direction of the inner cylinder 204, thereby applying a rotational force to the inner cylinder 204.
  • the convection temperature difference prime mover Sa is provided with a liquid circulation line 207.
  • the liquid circulation pipe 207 has an injection port 208 connected to the supply port 202b of the support shaft 201, and further has a recovery port 209 in the outer enjoyment G200.
  • the liquid force in the inner cylinder 204 is cooled by being injected into the inner cylinder 204 from the outlet 210 through the support shaft 201 from the power injection force 208 force. Thereafter, the liquid circulation pipe 207 recovers the liquid that reaches the partition wall 211 through the turbine 206 from the recovery port 209 and guides it to the injection port 208 again.
  • a cooling unit 212 for cooling the liquid is provided in the middle of the liquid circulation pipe 207.
  • a gas circulation line 215 capable of circulating gas is provided.
  • the gas circulation pipe 215 has a blowout port 213 at one end of the outer shell 200 and further has a return port 214 at the other end.
  • a heating unit 216 for heating the circulating gas is provided.
  • a large number of air passages 217 for allowing the gas from the outlet 213 to flow from the one end side inlet 217a to the other end side outlet 217b are arranged in a row.
  • the high-temperature gas flowing out from the other end side outlet 217b of the ventilation path 217 passes through the space between the inner cylinder 204 and the outer cylinder 205, passes through one flow path of the inner cylinder 204, and is liquid in the one flow path. Cooled by the turbine 206.
  • the cooling liquid is supplied into the support shaft 201 from the supply port 202b of the support shaft 201, and the gas is blown out from the air outlet 213.
  • the cooling liquid passes through the support shaft 201, flows out from the outlet 210 into the inner cylinder 204, is guided to the recovery port 209 through the turbine 206, and passes through the liquid circulation line 207 from the recovery port 209. It is led to the inlet 208 again. Further, the gas flows in from the one end side inlet 217a of the ventilation path 217 of the one end side rotating body 205a and flows out from the other end side outlet 217b.
  • the high-temperature gas that has flowed out passes through the other flow path between the inner cylinder 204 and the outer cylinder 205, and then passes through the one flow path of the inner cylinder 204, and is cooled by the liquid in one flow path, thereby being transferred to the turbine 206. To. Then, the gas is led from the return port 214 through the gas circulation line 215 to the blowout port 213 again. In the middle of the gas circulation pipe 215, the cooled gas is heated by the heating unit 216.
  • the force from the supply port 202a of the inner cylinder 204 passes through the inner flange of the inner cylinder 204 to the outlet 203 from the force of the supply port 202a and the outlet 203 of the inner cylinder 204 to the supply port 202 through the outside of the inner cylinder 204.
  • Gas convection occurs through the other flow path. Due to this convection, the inner cylinder 204 and the outer cylinder 205 are rotated in the same direction via the turbine 206.
  • the gas is injected in the direction opposite to the rotational circumferential direction of the inner cylinder 204, and the inner cylinder 204 and the outer cylinder 205 rotate.
  • the power acquisition mechanism 206a generates power by obtaining power from both the inner cylinder 204 and the outer cylinder 205.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-256882
  • such a convection temperature difference prime mover Sa uses V for the gas for rotating the inner cylinder 204 and the outer cylinder 205, and simply adds the gas circulation pipe 215 outside the outer cylinder 205. After heating by the warming part 216, the air is blown from the lower side of the outer cylinder 205 through the ventilation path 217. For this reason, the path of the gas flowing through the other flow path becomes complicated, loss of gas convection energy occurs, and there is a problem that the energy cannot be efficiently applied to the inner cylinder 204 and the outer cylinder 205.
  • the present invention has been made in view of the above-described problems, and allows the gas passing through the other flow path to be heated in the space between the inner cylinder and the outer cylinder, thereby simplifying the gas path and
  • the purpose is to provide a convection temperature difference prime mover that can efficiently apply convection energy from the inner cylinder and outer cylinder.
  • a convection temperature difference prime mover of the present invention for achieving such an object includes an outer shell, a shaft rotatably supported by the outer shell, a gas supply port formed at one end in the axial direction, and the other end.
  • a convection temperature difference prime mover for generating a convection of a gas by giving a temperature difference to the gas and rotating the inner cylinder and the outer cylinder by the convection of the gas to obtain power
  • the inner cylinder is connected to the supply port from the supply port.
  • Receive the gas flowing in A cooling liquid circulation system for providing a moving blade for applying a rotational force to the inner cylinder, spraying a cooling liquid into the inner cylinder, cooling the gas passing through the one flow path, and circulating the cooling liquid.
  • a pipe is provided, and a cooling unit for cooling the cooling liquid is provided in the middle of the cooling liquid circulation pipe, and the warming liquid is sprayed between the inner cylinder and the outer cylinder so that the other flow path is provided.
  • a heated liquid circulation line is provided for heating the gas passing therethrough and circulating the heated liquid, and a heating unit for heating the heated liquid is provided in the middle of the heated liquid circulation line. The configuration is provided.
  • the cooling liquid body is sprayed into the inner cylinder by the cooling liquid circulation conduit.
  • the cooling liquid cools the gas flowing through the one flow path and is heated by this gas. And it cools again by the cooling part in the middle of the cooling liquid circulation conduit. For this reason, the cooling liquid sprayed into the inner cylinder is again in a low temperature state, while the cooling state of the gas in the flow path is improved.
  • the warming liquid is sprayed between the inner cylinder and the outer cylinder by the warming liquid circulation conduit.
  • the heated liquid warms the gas in the other channel and is cooled by this gas.
  • the heated liquid is heated again by the heating unit. Therefore, the warming liquid sprayed between the inner cylinder and the outer cylinder is again in a high temperature state, and the gas heating state of the other flow path is improved.
  • the gas flowing through the other channel is directly heated in the space between the outer cylinder and the inner cylinder by the heating liquid. For this reason, the gas in the other channel is heated without going out of the outer cylinder, so that the gas path is simplified. As a result, energy loss in the convection of the gas is reduced, and the energy force and rotational force of the convection is efficiently applied to the inner cylinder and the outer cylinder.
  • the cooling liquid circulation conduit has a cooling liquid inlet provided in the outer shell on one end side, and the inner side on the other end side.
  • the cylinder has a number of outlets for spraying the cooling liquid, and the other ends of the inner cylinder and the outer cylinder are rotatable.
  • One support shaft an inlet connected to the inlet of the one support shaft, a recovery port for recovering the cooling fluid that has flowed out of the inner cylinder after the gas in the one flow path is cooled, and the recovery port
  • a cooling liquid circulation pipe that circulates the cooling liquid from the inlet to the inlet again, and the heating liquid circulation pipe has a heating liquid inlet provided in the outer shell on one end side, and the other end.
  • a second support shaft that pivotally supports one end of the inner cylinder and the outer cylinder, covers an outer side of the inner cylinder, and the outlet of the other support shaft between the inner cylinder
  • a cylindrical body formed with a flow passage through which the heated liquid from which is allowed to flow and a plurality of injection ports for injecting the heated liquid toward the outer cylinder, and the inlet of the other support shaft.
  • the heating liquid circulation tube body for circulating the heating liquid is provided.
  • the convection temperature difference prime mover is provided with a tubular inner cylinder rotating shaft rotatably inserted into the one supporting shaft or the other supporting shaft in the inner cylinder, A tubular outer cylinder rotation axis that is coaxial with the inner cylinder rotation axis is provided, and a power acquisition mechanism that obtains power from both the inner cylinder rotation axis and the outer cylinder rotation axis is provided.
  • the power acquisition mechanism includes a first prime mover gear provided on the inner cylinder rotary shaft, a second prime gear provided on the outer cylinder rotary shaft, and a first prime mover.
  • the power can be obtained as electric power by a reliable mechanism called a gear mechanism.
  • a guide blade that guides gas to a moving blade provided at the supply port is provided on an inner periphery on one end side of the outer cylinder, and the moving blade includes the inner blade.
  • a plurality of blades arranged in an equiangular relationship around the rotation axis of the inner cylinder on one end side of the cylinder and having a surface for receiving the gas guided by the guide blades, the guide blades being A plurality of wind guide plates arranged in an equiangular relationship corresponding to the blade of the moving blade are provided. If it does in this way, a guide blade will receive the gas of the other channel by a baffle plate, and will change the flow direction.
  • the gas flows into the blade, stops at the blade of the moving blade, and escapes to the inner peripheral portion of the moving blade and flows into the inner cylinder.
  • the blade blade is sufficiently compressed by the guide blades and applied with centrifugal force to stop at right angles, so the blade blade can receive the gas force sufficiently. . Therefore, the conversion efficiency for converting gas energy into the rotational force of the inner cylinder is greatly improved, and the power generation efficiency is improved. Further, at this time, the gas is further compressed between the blades, and the flow velocity becomes extremely fast. Therefore, the energy that impinges on the blades is increased, and is efficiently applied to the inner cylinder as convective energy force and rotational force.
  • the air guide plate is formed to be bent in one circumferential direction, and flows into the supply port by the concave surface of the air guide plate. It is configured to apply centrifugal force to the gas.
  • the convection temperature difference prime mover of the present invention receives the gas discharged from the discharge port force outside the other end of the inner tube, applies a rotational force to the inner tube, and applies the discharge locus
  • a guide vane is provided to guide the exhausted gas in the flow direction of the gas in the other flow path.
  • the gas that descends in the one flow path and discharges the exhaust gas is also rotated to the inner cylinder. It becomes possible to apply force, and it is more efficiently applied to the inner cylinder as convective energy force and rotational force.
  • the guide vane moves the gas from the discharge port in the direction of gas flow in the other channel. Since the gas is directed toward the gas, the gas stays at the other end of the outer cylinder.
  • the convection temperature difference prime mover of the present invention has a configuration in which a porous member capable of passing the gas and the cooling liquid passing through the one passage is provided inside the inner cylinder.
  • the porous member may be a wound sheet-like metal net.
  • the cooling liquid is given a centrifugal force by the rotation of the inner cylinder, moves through the mesh and sequentially moves outward, reaches the inner cylinder and flows down the inner wall of the inner cylinder. This simplifies the structure of the porous member.
  • a fin for pushing the accumulated gas to the outlet side is provided on the supply port side of the one flow path on the inner periphery of the inner cylinder, or the one support shaft is linked to the inner cylinder. It is preferable that a fin that pushes the gas staying on the supply port side of the one flow path to the discharge port side may be provided on the one support shaft. In this way, the gas that flows into the supply loci and tries to stay inside the one end side of the inner cylinder is pushed into the discharge port side by the fins, so that the gas flow in one flow path becomes smooth and convection of the gas The state becomes good.
  • the convection temperature difference prime mover scatters the warming liquid between the inner cylinder and the outer cylinder, warms the gas passing through the other channel, and heats the warming liquid.
  • a heating liquid circulation circuit for circulating the liquid is provided, and a heating unit for heating the heating liquid is provided in the middle of the heating liquid circulation pipe.
  • FIG. 1 is a diagram showing a convection temperature difference prime mover according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a main part of the convection temperature difference prime mover according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the first embodiment of the present invention. It is a big picture.
  • FIG. 5 shows a convection temperature difference prime mover according to the first embodiment of the present invention, and is a cross-sectional view taken along the line BB of FIG.
  • a convection temperature difference prime mover according to the first embodiment of the present invention, which is a sectional view taken along the line CC in FIG.
  • a convection temperature difference prime mover according to the first embodiment of the present invention which is a cross-sectional view taken along the line EE in FIG.
  • FIG. 9 is a convection temperature difference prime mover according to the first embodiment of the present invention, and is a sectional view taken along the line FF in FIG.
  • a convection temperature difference prime mover according to the first embodiment of the present invention which is a GG cross-sectional view of FIG.
  • FIG. 12 is a cross-sectional view taken along the line II of FIG. 2, showing the convection temperature difference prime mover according to the first embodiment of the present invention.
  • a convection temperature difference prime mover according to the first embodiment of the present invention which is a KK cross-sectional view of FIG.
  • a convection temperature difference prime mover according to the first embodiment of the present invention which is a cross-sectional view taken along line LL in FIG.
  • FIG. 16 shows a convection temperature difference driving device according to the first embodiment of the present invention, and is an MM sectional view of FIG.
  • FIG. 17 A system in which the convection temperature difference prime mover according to the first embodiment of the present invention is used.
  • FIG. 18 is a diagram showing a convection temperature difference prime mover according to a second embodiment of the present invention.
  • FIG. 19 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the second embodiment of the present invention.
  • FIG. 20 is a sectional view taken along line NN in FIG. 18, showing a convection temperature difference prime mover according to a second embodiment of the present invention.
  • a convection temperature difference prime mover according to a second embodiment of the present invention which is an OO sectional view of FIG.
  • FIG. 23 is a diagram showing a convection temperature difference prime mover according to a fourth embodiment of the present invention.
  • FIG. 24 shows a convection temperature difference prime mover according to a fourth embodiment of the present invention, and is a PP sectional view of FIG.
  • a convection temperature difference prime mover according to a fourth embodiment of the present invention, which is a QQ sectional view of FIG.
  • FIG. 26 is a diagram showing a convection temperature difference prime mover according to a fifth embodiment of the present invention.
  • FIG. 27 is a perspective view showing a convection temperature difference prime mover according to a fifth embodiment of the present invention with a part cut away.
  • FIG. 28 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
  • a convection temperature difference prime mover according to a fifth embodiment of the present invention is shown, and is an RR sectional view of FIG.
  • FIG. 30 is an SS cross-sectional view of FIG. 28 showing the inner cylinder of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
  • FIG. 31 is a cross-sectional view of UU in FIG. 30, showing the inner cylinder of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
  • FIG. 32 A convection temperature difference prime mover according to a fifth embodiment of the present invention, which is a TT sectional view of FIG.
  • FIG. 33 A view showing fins of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
  • FIG. 34 is a cross-sectional view of a principal part showing a convection temperature difference prime mover according to a sixth embodiment of the present invention.
  • FIG. 35 is a diagram showing an application example of a system using the convection temperature difference prime mover according to the first embodiment of the present invention.
  • FIG. 36 is a diagram showing an application example of the shapes of the inner cylinder and the outer cylinder of the convection temperature difference prime mover according to each embodiment of the present invention.
  • FIG. 37 is a diagram showing an example of a conventional convection temperature difference prime mover.
  • Cooling liquid circulation pipe Cooling liquid circulation pipe Cooling section 82 One spindle
  • the convection temperature difference prime mover S1 includes a cylindrical outer shell 1, an inner cylinder 10, and an outer cylinder 20.
  • the inner cylinder 10 is rotatably supported by the outer shell 1, and further, a gas supply port 11 is formed at one end in the axial direction, and a gas discharge port 12 is formed at the other end.
  • the outer cylinder 20 is provided so as to be rotatable with respect to the outer casing 1 and the inner casing 10, and the wall portion thereof is positioned between the outer casing 1 and the inner cylinder 10.
  • the convection temperature differential prime mover S1 is configured such that the gas flows from the supply port 11 of the inner cylinder 10 through the inside of the inner cylinder 10 to the discharge port 12 and from the discharge port 12 of the inner cylinder 10 to the inner cylinder 10 A temperature difference is given to the gas so as to pass through the other flow path Rb leading to the supply port 11 through the outside of the gas, thereby causing convection of the gas.
  • the convection temperature difference prime mover S1 rotates the inner cylinder 10 and the outer cylinder 20 by gas convection and obtains power from the power acquisition mechanism 30.
  • diacid carbon is used as the gas.
  • a heating liquid that heats the gas and a cooling liquid that cools the gas are used.
  • the heating liquid and the cooling liquid are, for example, oil having a lubricating ability.
  • At least one of the one end and the other end of the inner cylinder 10 is provided with one support shaft 82 or the other support shaft described later.
  • a tubular inner cylinder rotating shaft 13 that is rotatably inserted in 92 is provided.
  • the outer cylinder 20 is provided with a tubular outer cylinder rotating shaft 23 that is rotatably inserted into the inner cylinder rotating shaft 13.
  • the inner cylinder 10 is provided with an inner cylinder rotating shaft 13 at both one end and the other end. That is, at one end of the inner cylinder 10, a tubular inner cylinder rotating shaft 13 (13a) that is rotatably inserted into the other supporting shaft 92 is provided, and at the other end of the inner cylinder 10, it can rotate on one supporting shaft 82. A tubular inner cylinder rotating shaft 13 (13b) inserted through is provided. The inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 is rotatably inserted into the other support shaft 92. Also, as shown in FIG.
  • the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 includes a tubular body 14 provided at the center of the bottom of the inner cylinder 10, and one end in the axial direction of the inner cylinder 10 is tubular.
  • a shaft tube body 15 connected to the inside of the body 14 by a spline gear is provided.
  • the shaft tube body 15 is provided in a state of penetrating the top plate 4 of the gantry 2 provided in the outer shell 1. Yes.
  • the gantry 2 includes a cylindrical side wall 3 erected on the base la and a top plate 4 provided at the upper edge of the side wall 3 so that the cooling liquid can be stored inside.
  • the inner cylinder 10 is supported by the outer cylinder 20 while being placed on the bottom of the outer cylinder 20.
  • the inner cylinder 10 rotates, for example, at a peripheral speed of its outer peripheral edge of about lOOmZs.
  • the outer cylinder 20 has an outer cylinder rotating shaft 23 (23a) rotatably inserted into the other support shaft 92 at one end, and an inner cylinder rotating shaft on the other end side of the inner cylinder 10 at the other end. 13 (13b) is provided with an outer cylinder rotating shaft 23 (23b) that is rotatably inserted.
  • the outer cylinder rotating shaft 23 (23a) on one end side of the outer cylinder 20 is configured to include a triangular pyramid-shaped support member 24 supported by a support base 5 provided on the upper portion of the outer shell 1.
  • the support member 24 is rotatably inserted into and supported by a funnel-shaped receiving portion 6 provided on the support base 5, and the entire outer cylinder 20 is supported by being suspended from the receiving portion 6.
  • a space inside the receiving part 6 and surrounded by the support 5 and the outer shell 1 is filled with a warming liquid.
  • the outer cylinder rotating shaft 23 (23b) on the other end side of the outer cylinder 20 is provided at the center of the bottom of the outer cylinder 10, and is rotatably inserted into the shaft tube body 15 on the other axial end side of the inner cylinder 10. ing.
  • the outer cylinder 20 rotates, for example, at a peripheral speed of the outer peripheral edge of about 50 mZs.
  • the power acquisition mechanism 30 includes a first driving gear 31 provided on the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10, and an outer cylinder rotating shaft 23 (23b on the other end side of the outer cylinder 20). ) Through a bottom wall of the outer cylinder 20, and a generator 33 driven in linkage with at least one of the first driving gear 31 and the second driving gear 32. It has a configuration with.
  • the power acquisition mechanism 30 includes a first driven gear 34 meshed with the first driving gear 31, a second driven gear 35 meshed with the second driving gear 32, and a shaft 36 connected to the generator 33.
  • the generator 33 is operated by the rotation of the shaft 36.
  • the first driving gear 31 and the first driven gear 34 are positioned inside the gantry 2 provided inside the outer shell 1.
  • the second driving gear 32 and the second driven gear 35 are provided outside the gantry 2. Further, the shaft 36 is rotatably supported by the outer shell 1 via a ball bearing 37.
  • a rotor blade 40 is provided at one end of the inner cylinder 10 to receive the gas flowing in from the supply port 11 and apply a rotational force to the inner cylinder 10. Yes.
  • This rotor blade 40 has an inner cylinder 10 A plurality of blades 41 having a surface for receiving gas guided by guide vanes 70 described later, arranged in an equiangular relationship around the rotation axis of the inner cylinder 10 and substantially along the axial direction.
  • a closing plate 42 for closing the upper side in the axial direction of the inner cylinder 10 of the blade 41 group. The gas also flows into the lower side of the inner cylinder 10 due to the side force of the blades 41 flowing in.
  • a guide vane 50 is provided at the other end of the inner cylinder 10 and outside thereof.
  • the guide vane 50 receives the gas discharged from the discharge port 12, applies a rotational force to the inner cylinder 10, and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb.
  • the guide blade 50 includes a bowl-shaped guide plate body 51 that changes the gas from the discharge port 12 in the direction of gas flow in the other flow path Rb, and a plurality of blade member members 52 provided inside the guide plate body 51. And.
  • the guide plate body 51 is formed so that the diameter of the opening is larger than the inner cylinder 10 so that the discharge port 12 of the inner cylinder 10 is located on the inner side. It forms the outlet.
  • the center bottom portion of the guide plate 51 is inserted into the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 and fixed to the inner cylinder rotating shaft 13 (13b).
  • the blade member 52 is blown onto the bottom of the guide plate body 51 and has a gas receiving surface that flows outward in the circumferential direction of the guide plate body 51, and has the same direction as the rotational force applied to the inner cylinder 10 by the rotor blade 40. A rotational force is applied to the inner cylinder 10.
  • a porous member 60 through which the gas passing through the one passage Ra and the cooling liquid can pass is provided inside the inner cylinder 10.
  • the porous member 60 is a rolled sheet-like metal net 61. Since the porous member 60 has a structure in which the net 61 is wound, the structure becomes simple.
  • a plate body 62 having a large number of through holes is provided above and below the net 61.
  • the accumulated gas is provided inside the inner cylinder 10 and on the supply port 11 side of the flow path Ra.
  • a fin 65 to be pushed into the discharge port 12 side is provided.
  • the fin 65 is provided so as to be suspended from a lower edge of a feed pipe 97 described later, and is bent in one circumferential direction.
  • the fin 65 forms a vortex in the gas in the inner cylinder 10 by the rotation of the inner cylinder 10, and makes it easier for the gas staying in the upper part of the inner cylinder 10 to descend.
  • the guide blade 70 includes a wind guide plate 71.
  • the air guide plate 71 is arranged in an equiangular relationship at a portion surrounding the outer peripheral portion of the rotor blade 40, and has a surface along the axial direction.
  • the air guide plate 71 is concaved in one circumferential direction, and imparts centrifugal force to the gas flowing into the supply port 11 by the concave surface.
  • the guide blade 70 is provided with a bowl-shaped guide plate 72.
  • the guide plate 72 is suspended from the upper wall of the outer tube 20 by a bolt 73 inserted into the upper wall of the outer tube 20 and a nut 74 provided on the guide plate 72.
  • the convection temperature difference prime mover S1 cools the gas passing through the one-way channel Ra and circulates the cooling liquid by spraying the cooling liquid into the inner cylinder 10.
  • Line 80 is provided.
  • a cooling unit 81 for cooling the cooling liquid is provided in the middle of the cooling liquid circulation pipe 80.
  • the cooling liquid circulation pipe 80 is provided in the outer shell 1, has a cooling liquid inlet 83 on one end side, and has a number of outlets 84 for spraying the cooling liquid on the inner cylinder 10 on the other end side.
  • the cooling liquid circulation pipe 80 includes a first support shaft 82 that pivotally supports the other ends of the inner cylinder 10 and the outer cylinder 20, and a cooling liquid circulation pipe body 80a.
  • the cooling liquid circulation pipe 80a is supplied from the inlet 85 for injecting the cooling liquid supplied to the inlet 83 of the one support shaft 82, and the outlet 12 of the inner cylinder 10 after cooling the gas in the one passage Ra.
  • a recovery port 86 for recovering the cooled cooling liquid is provided, and the cooling liquid is circulated from the collection port 86 to the injection port 85 again.
  • the support shaft 82 stands upright with one end in contact with the outer shell 1.
  • a plurality of inflow ports 83 are provided on the tube wall on the other end side of the support shaft 82.
  • the one support shaft 82 supplies the cooling liquid in the one support shaft 82 to the inner tube rotation shaft 13 at a position where the inner tube rotation shaft 13 (13b) on the other end side of the inner tube 10 is inserted.
  • a hole 82a is provided.
  • the inlet 85 of the cooling liquid circulation pipe 80 a is connected to the inlet 83 of the one support shaft 82 through the space inside the gantry 2.
  • the recovery port 86 of the cooling liquid circulation pipe 80a is provided in the outer shell 1.
  • the recovery port 86 recovers the cooling liquid through the hole 88 and the groove 89a of the sliding contact member 89.
  • the holes 88 are provided in a plurality of rows along the circumferential direction of the outer cylinder 20 at the other end of the outer cylinder 20.
  • the sliding contact member 89 is in sliding contact with the surface of one end of the outer cylinder 20 and surrounds a plurality of holes 88 provided in the outer shell 1.
  • the cooling unit 81 is provided in the middle of the cooling liquid circulation pipe body 80a. In the present embodiment, the temperature of the cooling liquid cooled by the cooling unit 81 is about ⁇ 50 ° C.
  • the convection temperature difference prime mover S1 heats the gas passing through the other flow path Rb by spraying a warming liquid between the inner cylinder 10 and the outer cylinder 20, and further heats the gas.
  • a warming liquid circulation line 90 for circulating warm liquid is provided.
  • a heating unit 91 for heating the heated liquid is provided in the middle of the heated liquid circulation line 90.
  • the warming liquid circulation pipe 90 includes the other support shaft 92, a cylindrical body 10a, and a warming liquid circulation pipe 90a.
  • the other support shaft 92 is provided on the outer shell 1, has a warming liquid inlet 93 on one end side, and an outlet 94 on the other end, and has one end of the inner cylinder 10 and the outer cylinder 20.
  • the cylindrical body 10 a covers the inner cylinder 10, and a flow passage is formed between the inner cylinder 10 and the heated liquid from the outlet 94 of the other support shaft 92, and is directed toward the outer cylinder 20. As a result, a number of spouts 99 through which liquid flows out are formed.
  • the heated liquid circulation tube 90a includes an inlet 95 connected to the inlet 93 of the other support shaft 92 and a recovery port 96 for recovering the heated liquid, and the recovery port 96 force is also heated to the inlet 95 again. Circulate the liquid.
  • the warming liquid is injected from the injection port 95, is ejected from the ejection port 99 toward the outer cylinder 20 through the flow path, and warms the gas in the other flow path Rb.
  • the cylinder 10a is provided to be rotatable with respect to the inner cylinder 10.
  • the other support shaft 92 is formed with an inlet 93 at one end to which the inlet 95 of the heated liquid circulation tube 90a is connected.
  • the outlet 94 is formed at the other end of the other support shaft 92 and is located inside the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10. Further, the lower end of the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 is closed, and the inside thereof communicates with the flow passage of the cylinder 10a via a plurality of feed pipes 97. ing.
  • the feed pipes 97 are arranged in an equiangular relationship in the circumferential direction of the inner cylinder 10.
  • the jet port 99 of the cylinder 10a is provided over the entire outer peripheral surface of the cylinder 10a.
  • the other support shaft 92 is provided with a supply hole 92a, and this supply hole 92a supplies the heated liquid flowing inside to the space surrounded by the support 5 and the outer shell 1 inside the receiving portion 6. .
  • a pressure of about 10 kgZcm 2 to 100 kgZcm 2 (lMPa ⁇ : LOMPa) is applied to the heated liquid ejected from the jet port 99.
  • the recovery port 96 of the heated liquid circulation tube 90a is provided in the outer shell 1.
  • the recovery port 96 has a plurality of holes 98 arranged in a row along the circumferential direction of the outer tube 20 and a sliding contact member 89 on the upper side of the hole 88 communicating with the recovery port 86 for recovering the cooling liquid of the outer tube 20.
  • the heated liquid is recovered through another groove 89b provided on the upper side of the groove 89a.
  • the heating unit 91 is provided in the middle of the heated liquid circulation tube 90a. In the present embodiment, the heated liquid heated by the heating unit 91 is about 200 ° C. to 250 ° C.
  • cooling liquid circulation line 80 and the warming liquid circulation line 90 are provided with pumps that suck and raise these liquids into the inlet 95 from each recovery port 96! /
  • the convection temperature difference prime mover S 1 has a cooling liquid and a heating liquid as lubricating oil that leaks from the inner cylinder rotating shaft 13 and the outer cylinder rotating shaft 23 and accumulates on the base la in the outer shell 1.
  • a gear pump 8 is provided to feed the gas into the gantry 2.
  • the gear pump 8 includes a pulley 8 a for operation, and operates in conjunction with the rotation of the shaft 36 via a belt hung on the pulley 8 a and a pulley 36 a provided on the shaft 36.
  • the cooling liquid circulation pipe 80a is provided on the upstream side and the downstream side of the cooling unit 81. And a degassing valve 111 for discharging bubbles in the cooling liquid circulation pipe body 80a.
  • the warming liquid circulation tube 90a includes a check valve 112 provided on the upstream side of the heating unit 91 and a gas vent valve 113 that discharges bubbles in the warming liquid circulation tube 90a.
  • the cooling unit 81 has a raje-taka.
  • the heating unit 91 burns LP gas from the LP gas storage tank 9 la to heat the heating liquid.
  • this system is provided with a flow rate adjusting mechanism 120 that adjusts the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a.
  • the flow rate adjusting mechanism 120 takes in a part of both of the liquid from the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a. Approximately the same amount of liquid taken from the tubes 80a and 90a flows into the tubes 80a and 90a. On the other hand, the flow rate adjusting mechanism 120 is less than the flow rate of the liquid flowing through one of the cooling liquid circulating tube 80a and the heated liquid circulating tube 90a, and the flow rate of the liquid flowing through the tubes 80a and 90a flowing through the other. In such a case, the liquid taken in preferentially flows into one of the pipe bodies 80a and 90a having a low flow rate.
  • the flow rate adjusting mechanism 120 includes an upstream branch pipe 121, an upstream branch pipe 122, a main pipe 123, a downstream branch pipe 124, and a downstream branch pipe 125.
  • the upstream branch pipe 121 branches the cooling liquid between the recovery port 86 of the cooling liquid circulation pipe body 80a and the check valve 110 closer to the recovery port 86 than the cooling unit 81.
  • the upstream branch pipe 122 branches the heated liquid between the collection port 96 of the heated liquid circulation pipe body 90 a and the check valve 112 on the recovery port 96 side of the heating unit 91.
  • the main pipe 123 is provided with a pump 123a that always operates while the upstream branch pipes 121 and 122 merge.
  • the downstream branch pipe 124 branches from the main pipe 123 and merges with the cooling liquid circulation pipe 80a and opens and closes based on the flow rate of the warming liquid flowing through the warming liquid circulation pipe 90a.
  • the downstream branch pipe 125 branches from the main pipe 123 and joins the heated liquid circulation pipe 90a, and opens and closes based on the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe 80a.
  • Each upstream branch pipe 121, 122 is provided with a check valve 119 to prevent backflow from the upstream branch pipe 121 to the cooling liquid circulation pipe 80a and from the upstream branch pipe 122 to the warming liquid circulation pipe 90a. To do.
  • the downstream branch pipe 124 connected to the cooling liquid circulation pipe body 80a is provided with a solenoid valve 127.
  • the electromagnetic valve 127 is provided between the warming portion 91 of the warming liquid circulation tube 90a and the check valve 112 on the upstream side of the warming portion 91, and the warming liquid flowing through the warming liquid circulation tube 90a. Opening and closing based on the flow rate measured by the heated liquid flow meter 126 for measuring the flow rate.
  • This solenoid valve 127 is normally open, but when the flow rate of the warming liquid measured by the warming liquid flow meter 126 falls below a certain amount, the switch 128 is turned on and connected to the power source 150. Operates and closes the downstream branch pipe 124.
  • a solenoid valve 130 is provided in the downstream branch pipe 125 connected to the heated liquid circulation pipe body 90a. Solenoid valve 130 is more than cooling part 91 and cooling part 91 of cooling liquid circulation pipe body 80a. Based on the flow rate measured by the cooling liquid flow rate measuring device 129, which is provided between the upstream side check valve 110 and measures the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a. This solenoid valve 130 is normally open, but when the cooling liquid flow rate measured by the cooling liquid flow meter 129 falls below a certain amount, the switch 131 is turned on and connected to the power source 150 to operate. Then, the downstream branch pipe 125 is closed.
  • the flow rate adjustment mechanism 120 includes a receiving member 135, a tank 136, and a supply pipe 137.
  • the receiving member 135 receives the cooling liquid and the heated liquid that have leaked from the sliding contact portions of the outer cylinder 20 and the sliding contact member 89.
  • the receiving member 135 has a substantially U-shaped cross section so as to cover the lower portion of the outer cylinder 20 and the sliding member 89, and a cooling liquid and a warming liquid are stored in the interior 135a.
  • the tank 136 is provided with a liquid replenishing port 136a for accumulating liquid from the receiving member 135 and replenishing liquid that has decreased due to volatilization or the like.
  • the tank 136 communicates with the interior 135a of the receiving member 135 through the recovery pipe 138.
  • the supply pipe 137 supplies the liquid in the tank 136 to the main pipe 123 when the amount of liquid stored in the tank 136 exceeds a predetermined amount.
  • the supply pipe 137 joins between the junction of the upstream branch pipes 121 and 122 and the pump 123a.
  • the supply pipe 137 includes an electromagnetic valve 141 for opening and closing the supply pipe 137 and a check valve 142 for preventing liquid from flowing back from the main pipe 137.
  • Solenoid valve 141 is connected between the confluence of main pipe 123 and replenishment pipe 137 and the confluence of upstream branch pipes 121 and 122 by liquid amount measuring device 139 that measures the amount of liquid in tank 136. It opens and closes with the installed solenoid valve 140.
  • the power supply 150 is connected to the solenoid valve 141 by the switch 143, the solenoid valve 141 is closed, and the solenoid valve 140 is Disconnected from 150 and opened.
  • the fluid is pumped from the upstream branch pipes 121 and 122 by the liquid force pump 123a.
  • the switch 143 connects the power source 150 to the solenoid valve 140 and closes the solenoid valve 140. Disconnect from power supply 150 and open. In this case, suction is performed by the liquid force pump 123a in the tank 136.
  • a compressor 145 that supplies a gas for rotating the inner cylinder 10 and the outer cylinder 20 into the outer cylinder 20 using the cooling liquid circulation pipe 80a is provided. Is provided. The gas from the compressor 145 does not flow into the cooling unit 81 due to the check valve 110 provided on the downstream side of the cooling unit 81.
  • reference numeral 146 denotes a pressure gauge that measures the pressure of the cooling liquid flowing inside the cooling liquid circulation tube 80a.
  • the convection temperature difference prime mover S1 according to the first embodiment operates as follows.
  • gas is introduced into the outer cylinder 20 by the compressor 145.
  • the cooling liquid is circulated through the cooling liquid circulation line 80 and the warming liquid is circulated through the heating liquid circulation line 90.
  • the cooling liquid is supplied from the inlet 85 to the gantry 2 through the cooling liquid circulation pipe 80a of the cooling liquid circulation pipe 80, and then the inside of the one spindle 82 from the inlet 83 of the one spindle 82. Passes through and flows out from the outlet 84 into the inner cylinder 10. Thereafter, the cooling liquid cools the gas in the one-way channel Ra in the inner cylinder 10, passes through the discharge port 12 and the guide vane 50, passes from the recovery port 86 through the cooling liquid circulation tube 80 a, and again enters the injection port 85. Led to.
  • the cooling liquid is heated by the cooling of the gas, but is cooled again by the cooling unit 81 in the middle of the cooling liquid circulation pipe body 80a. Therefore, the cooling liquid sprayed into the inner cylinder 10 is cooled to a low temperature state, while the cooling state of the gas in the flow path Ra is improved.
  • the warming liquid is heated by the warming liquid circulation conduit 90 from the inlet 93 of the other support shaft 92 into the other support shaft 92 and the inner cylinder rotating shaft 13 on one end side of the inner cylinder 10 (13a). It passes through the inside, the feed pipe 97 and the flow passage, and is ejected from the spout 99 to the outside of the inner cylinder 10. Subsequently, the warming liquid warms the gas in the other flow path Rb, and then is led from the recovery port 86 through the warming liquid circulation tube 90a to the inlet 95 again. This heated liquid is cooled by heating the gas in the other flow path Rb, but is heated again by the heating unit 91 in the middle of the heated liquid circulation pipe body 90a. Therefore, the warming liquid sprayed between the inner cylinder 10 and the outer cylinder 20 is in a high temperature state again, and the warming state of the gas in the other flow path Rb is improved.
  • the gas flowing through the other channel Rb is caused by the heated liquid ejected from the ejection port 99. It is heated directly in the space between the outer cylinder 20 and the inner cylinder 10. Therefore, the gas in the other flow path Rb is heated without going out of the outer cylinder 20, so that the structure of the other flow path Rb is simplified.
  • one support shaft 82 is also used as part of the cooling liquid circulation conduit 80 and the other support shaft 92 is also used as part of the caloric liquid circulation conduit 90, these liquids can flow out. Compared with the case where a separate pipe line is provided, the structure is simplified. As a result, the gas convection generated in the one flow path Ra and the other flow path Rb no longer has an adverse effect, and energy loss in the gas convection is reduced. Efficiently applied to the outer cylinder 20.
  • the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a are ensured to be equal to or larger than a certain amount.
  • the liquid amount measuring device 139 detects this.
  • the switch 143 connects the power source 150 to the solenoid valve 141 side, opens the solenoid valve 141, and closes the solenoid valve 140.
  • the liquid in the tank 136 is sucked by the pump 123a and flows into the cooling liquid circulation pipe body 80a and the heated liquid circulation pipe body 90a. Therefore, even if the liquid leaks and the cooling liquid flowing through the cooling liquid circulation pipe 80 and the warming liquid flowing through the warming liquid circulation pipe 90 are reduced, they can be replenished in a timely manner.
  • the supply port 11 from the supply port 11 of the inner cylinder 10 passes through the inside of the inner tube 10 to the discharge port 12, and the supply port passes from the discharge port 12 of the inner cylinder 10 to the outside of the inner tube 10 through the outside. Convection of gas through the other flow path Rb leading to 11.
  • the inner cylinder 10 rotates through the moving blade 40 and the guide blade 50.
  • this rotational force is applied to the inner cylinder rotating shaft 13 (13b) on the other end side, the first driving gear 31, the first driven gear 34, the shaft 36, the second driven gear 35, and the second driving power.
  • the outer cylinder 20 is transmitted to the outer cylinder 20 via the outer cylinder rotating shaft 23 (23b) on the other end side of the gear 32 and the outer cylinder 20, and the outer cylinder 20 also rotates in the same direction as the rotation direction of the inner cylinder 10.
  • the gas in the one-sided passage Ra that has been cooled down in the inner cylinder 10 and descended to the discharge port 12 is sequentially discharged from the discharge port 12 provided at the other end of the inner tube 10 to be guided vanes.
  • the gas strikes the guide plate body 51 and is guided along the flow direction of the gas in the other flow path Rb outside the guide plate body 51 in the circumferential direction.
  • the inner cylinder 10 is rotated by stopping against the surface of the blade member 52 provided inside the plate 51.
  • the gas from the discharge port 12 is blown out in the flow direction of the other flow path Rb and stays in the lower part in the outer cylinder 20. Thereby, convection of gas is performed smoothly. Thus, the gas discharged from the discharge port 12 rises as a vortex.
  • the gas in the other flow path Rb reaches the guide blade 70 in the upper portion of the outer cylinder 20 in a compressed state by the centrifugal force imparted by the expansion and vortex flow of the heated liquid, and guide plate 72
  • the distribution direction is directed to the inside of the outer cylinder 20 in the circumferential direction.
  • the gas impinges on the concave curved surface of the air guide plate 71 in the guide blade 70. Then, the flow direction is changed almost in the radial direction by the air guide plate 71. Since each air guide plate 71 of the guide blade 70 is bent in one circumferential direction, the flow direction of the gas is changed by further applying a centrifugal force. Then, the gas flows in from the supply port 11 on the outer peripheral portion of the blade 41, stops at the blade 41 of the moving blade 40, flows into the inner peripheral portion of the moving blade 40, and flows into the inner cylinder 10. .
  • the gas compressed by the guide blade 70 and applied with centrifugal force to the blade 41 of the moving blade 40 impinges at a substantially right angle, so that the blade 41 of the moving blade 40 has sufficient gas force.
  • the conversion efficiency for converting gas energy into the rotational force of the inner cylinder 10 is greatly improved, and the power generation efficiency is improved.
  • the gas is further compressed between the blades 41, and the flow velocity becomes extremely fast. Therefore, the energy to strike the blades 41 is increased, and the convection energy is efficiently used as the rotational force of the inner cylinder 10. Often given to the inner cylinder 10.
  • this gas reaches the discharge port 12 again, circulates in the other flow path Rb and the one flow path Ra in the same manner as described above, and rotates the inner cylinder 10 and the outer cylinder 20.
  • the cooling liquid and the warming liquid are pressed against the inner wall of the outer cylinder 20 by centrifugal force and accumulated, and are collected from the holes 88 and 98 through the grooves 89a and 89b. Recovered from mouths 8 6, 96.
  • the holes 88 and 98 are separated by the ridges 25, the cooling liquid and the heating liquid are hardly mixed, and the cooling liquid and the heating liquid can be collected separately. For this reason, the temperature of the recovered cooling liquid does not rise so much, and the temperature of the recovered warming liquid does not drop much! /, So cooling of the cooling liquid by the cooling unit 81 and heating liquid by the heating unit 91 Can be efficiently heated.
  • the power acquisition mechanism 30 Since the cylinder 10 and the outer cylinder 20 rotate in the same direction, both these forces can also obtain power. That is, the rotational force of the inner cylinder 10 is transmitted through the inner cylinder rotating shaft 13 (13b), the first driving gear 31, the first driven gear 34, the shaft 36, and the second driven gear 35 on the other end side of the inner cylinder 10. Since the outer cylinder 20 itself also rotates the second driving gear 32, the rotation of the first driving gear 31 is transmitted to the generator 33, which is transmitted to the second driving gear 32 of the outer cylinder 20.
  • the inner cylinder 10 and the outer cylinder 20 are supplied with cooling liquid or heating liquid in the bearing part of the inner cylinder rotating shaft 13 of the inner cylinder 10 and the bearing part of the outer cylinder rotating shaft 23 of the outer cylinder 20. Since it is supplied as lubricating oil, it rotates smoothly.
  • the convection temperature difference prime mover S2 is provided with a mechanism for recovering the cooling liquid and the heated liquid by the relative rotation of the inner cylinder 10 and the outer cylinder 20.
  • the guide vane 50 is provided around the inner cylinder rotation shaft 13 (13b), and the guide plate has a concave force curve on the outside of the inner cylinder 10 from the inner cylinder rotation shaft 13 (13b).
  • a body 51 and a blade member 52 provided inside the guide plate body 51 are provided.
  • the guide plate body 51 of the guide blade 50 has a discharge liquid of the discharged rocker between the inner surface member 53 that forms the inner surface of the guide plate body 51 and the inner surface member 53 provided outside the inner surface member 53. And an outer surface member 54 in which a space communicating with the recovery port 86 of the cooling liquid circulation pipe body 80a is formed.
  • a plurality of holes 100 are arranged in the opening edge portion of the inner surface member 53 through which cooling liquid that flows in the axially outside inside the inner surface member 53 flows due to the centrifugal force generated by the rotation of the inner cylinder 10.
  • a recovery blade 55 that scrapes off the heated liquid collected in a recess provided on the outer side in the axial direction of the outer cylinder 20 near the lower portion inside the outer cylinder 20, and a recovery blade 55 A basin-shaped basin in which the heated liquid from the recovery blade 55 circulates between the outer surface member 54 and the outer surface member 54, and a space communicating with the recovery port 96 of the heated liquid circulation tube 90a is formed.
  • member 56 The
  • the shaft tube body 15 of the inner cylinder rotation shaft 13 (13b) inserted through the one support shaft 82 is slidably contacted with the one support shaft 82 by a sliding contact portion 101 provided at the top and bottom. Further, the shaft tube body 15 is formed with a first passage 102 through which the cooling liquid flows and a second passage 103 through which the heating liquid flows, between the first support shaft 82.
  • the inner cylinder rotating shaft 13 (13b) is internally partitioned by a partition wall 104 and separates the one passage 102 and the other passage 103 from each other.
  • the passage 102 is a part of the cooling liquid circulation pipe body 80a, and is formed in the recovery port 86 communicating with the space between the inner surface member 53 and the outer surface member 54 on the upper end side.
  • the other passage 103 is a part of the heated liquid circulation pipe 90a, and is provided with a recovery port 96 communicating with the space between the outer surface member 54 and the tray member 56 on the upper end side.
  • the upper end of the cylindrical body 10 a is joined to the air guide plate 71 of the guide blade 70, and rotates together with the guide blade 70. Further, the upper and lower portions of the inner periphery of the cylinder 10a slide relative to the inner cylinder.
  • the cooling liquid is circulated through the cooling liquid circulation line 80 and the heated liquid is circulated through the heating liquid circulation line 90 in the same manner as in the first embodiment.
  • the inner cylinder 10 and the outer cylinder 20 rotate.
  • the cooling liquid flowing out from the outlet 84 of the one support shaft 82 flows down the inner wall of the inner cylinder 10 and falls to the inner surface member 53 of the guide plate body 51. Then, it collects at the opening edge of the guide plate 51 by centrifugal force, reaches the recovery port 86 from the hole 100, and is recovered in the cooling liquid circulation pipe 80a.
  • the heated liquid flowing out from the outlet 99 of the cylinder 10a is accumulated in the recess by the centrifugal force of the outer cylinder 20, and is scraped off by the recovery blade 55 and recovered from the recovery port 96 to the heated liquid circulation pipe 90a. Is done.
  • cooling liquid is recovered without leaking to the outer cylinder 20 side, it becomes more difficult to mix with the warming liquid and can be recovered separately. For this reason, the temperature of the recovered cooling liquid does not rise so much, and the temperature of the recovered warming liquid does not drop so much. Therefore, cooling by the cooling unit 81 and heating by the heating unit 91 should be performed efficiently. Can do.
  • the cylinder 10a also rotates via the air guide plate 71 of the guide blade 70. Since the spout 99 itself also rotates, the heated liquid from the spout 99 also rotates. For this reason, the rotation of the gas in the heated liquid and the other flow path Rb is almost the same, fluid friction is reduced, and gas convection is performed smoothly, so that the energy from the convection is efficiently increased by the inner cylinder 10 and the outer cylinder 20 Is applied as a rotational force.
  • the convection temperature difference prime mover S3 has a force that is substantially the same as the convection temperature difference prime mover S2 according to the second embodiment. Unlike this, the cooling liquid and the warming liquid are collected at the same collection port 86. However, the cooling liquid circulation pipe 80a and a part of the warming liquid circulation pipe 90a are combined.
  • a recovery pipe comprising a shaft tube body 15 that is coaxially inserted into the one support shaft 82 is provided.
  • the recovery pipe is provided at its upper part with a recovery port 86 that communicates with the space between the inner surface member 53 of the guide plate body 51 and the tray-shaped member 56.
  • the cooling liquid circulation pipe 80a and the heated liquid circulation are provided at the lower end side. It communicates with the collection tube 300 that shares the tube 90a.
  • the cooling liquid is circulated through the cooling liquid circulation line 80 and the heated liquid is circulated through the heating liquid circulation line 90 in the same manner as in the above embodiment.
  • the inner cylinder 10 and the outer cylinder 20 rotate.
  • This convection temperature difference prime mover S4 is substantially the same as the convection temperature difference prime mover S2 according to the second embodiment, but unlike this, the lower end of the support shaft 82 is separated from the base la, and this The lower end is welded and fixed coaxially with the inner cylinder rotating shaft 13 (13b) inside the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10.
  • the one support shaft 82 is rotatable in conjunction with the inner cylinder 10. Further, the opening of the lower end of the one support shaft 82 is formed in the cooling liquid inlet 83.
  • the guide blade 70 is integrated with the cylindrical body 10 a and is rotatable with respect to the inner cylinder 10.
  • the outer cylinder 20 can transmit power to the guide vane 70 via the planetary gear mechanism 170.
  • the relationship between the rotational speed VI of the inner cylinder 10, the rotational speed V2 of the cylindrical body 10a rotated by the guide blade 70, and the rotational speed V3 of the outer cylinder 20 is V1> V2> V3
  • the meshing relationship of the gears is determined so that The gear ratio of the planetary gear mechanism 170 is set so that the inner peripheral speed of the outer cylinder 20 and the outer peripheral speed of the cylindrical body 10a are substantially the same.
  • the convection temperature difference prime mover S4 is provided with a detection mechanism for detecting an abnormality due to the secular change of the outer cylinder 20.
  • This detection mechanism has a thin part 175 in which the thickness of the outer cylinder 20 is reduced.
  • the outer cylinder 20 increases with the increase in atmospheric pressure.
  • the convection temperature difference prime movers SI, S 2 and S3 unlike the convection temperature difference prime movers SI, S 2 and S3 according to the above-described embodiments, a large number of air guide plates 71 are provided, and the concave curved surface is provided. In addition, the radius of curvature gradually decreases as the distance from the tip increases.
  • the blade 41 is formed to have the same curvature as an arc whose diameter is the average diameter of the rotor blade 40, and the inclination angle is determined so that the efficiency of the rotational speed is optimized.
  • the other configuration is substantially the same as the convection temperature difference prime mover S2 of the second embodiment.
  • the planetary gear mechanism 170 causes the inner peripheral speed of the outer cylinder 20 and the outer peripheral speed of the cylindrical body 10a to be substantially the same, so that a frictional resistance is generated between the outer cylinder 20 and the cylindrical body 10a. As a result, the output efficiency of power from the inner cylinder 10 and the outer cylinder 20 is improved. Furthermore, since the peripheral speed of the inner periphery of the outer cylinder 20 and the peripheral speed of the outer periphery of the cylinder 10a are substantially the same, the heat generation of the gas outside the inner cylinder 10 is suppressed.
  • the air guide plate 71 of the guide vane 70 has a small radius of the concave surface, the folded centrifugal force applied to the gas flowing through the other flow path Rb is increased. That is, transmission of power to the blade 41 of the rotor blade 40 that receives the gas flowing into the supply port 11 guided by the air guide plate 71 of the guide blade 70 is ensured, and the inner cylinder 10 is reliably rotated.
  • the gas in the outer cylinder 20 leaks into the outer shell 1 from the hole, and the atmospheric pressure in the outer shell 1 rises, and the gas leaks from the outer shell 1.
  • the gas in the outer cylinder 20 leaks into the outer shell 1 from the hole, and the atmospheric pressure in the outer shell 1 rises, and the gas leaks from the outer shell 1.
  • 26 to 33 show a convection temperature difference prime mover S5 according to the fifth embodiment of the present invention.
  • one support shaft 82 is provided to be rotatable with respect to the inner cylinder rotary shaft 13 (13b). Further, unlike the convection temperature difference prime mover S4 according to the fourth embodiment, the lower end of one support shaft 82 A rod 306 is provided. The rod 306 closes the lower end of the one support shaft 82, and moves together with the one support shaft 82, and slidably contacts the inner cylinder rotating shaft 13 (13b) via the bearing 305.
  • first planetary gear mechanism 170 In addition to the planetary gear mechanism 170 (hereinafter referred to as "first planetary gear mechanism 170"), the convection temperature difference prime mover S5 is connected to the one support shaft 82 from the inner cylinder rotary shaft 13 (13b). The second planetary gear mechanism 310 for transmitting the motive power is provided, and the support shaft 82 can rotate in conjunction with the inner cylinder 10.
  • the second planetary gear mechanism 310 has a central gear that is fixed to a rod 306 provided at the lower end of the one support shaft 82 and moves with the one support shaft 82.
  • 311 and three gears 313 disposed around the gear 311 and rotatably supported by a disk body 312 provided at the lower end portion of the inner cylinder rotary shaft 13 (13b).
  • the center of the disk body 312 is screwed into a right screw provided at the lower end of the inner cylinder rotation shaft 13 (13b), and is coupled to the inner cylinder rotation shaft 13 (13b).
  • the three surrounding gears 312 are meshed with a gear 316 provided inside a cylindrical guide member 315 standing on the base la.
  • the second planetary gear mechanism 310 is provided in a room formed below the inner space of the outer shell 1 by a partition plate 317 provided in the lower portion of the outer shell 1.
  • the partition plate 317 is provided at its center with a plain bearing 321 that supports the inner cylinder rotary shaft 13 (13b).
  • the meshing relationship between the gear 311 and the gear 313 is related to the rotational speed VI of the inner cylinder 10 and the rotational speed V4 of the one support shaft 82 rotated by the inner cylinder rotating shaft 13 (13b) of the inner cylinder 10.
  • the cylinder 10a is provided so as to be convertible up and down.
  • a lower portion of the cylindrical body 1 Oa is inserted into a cylindrical body 315 attached to a plurality of arms 314 fixed to the outer cylinder 20.
  • the upper part of the cylindrical body 10 a is passed through a cylindrical body 316 provided on the air guide plate 71 of the guide blade 70.
  • the cylindrical body 10a is guided by sliding in contact with either one of the cylindrical bodies 315 and 316, and is connected to the other.
  • the cylindrical body 10a and the cylindrical bodies 315 and 316 are connected to a plurality of slits provided in the cylindrical bodies 315 and 316 so as to project in the circumferential direction of the upper or lower surface of the cylindrical body 10a. This is performed by fitting a plurality of convex bodies 318 together.
  • the upper portion of the one support shaft 82 is stagnated on the supply port 11 side of the one flow path Ra. Fins 320 are provided to push the retained gas downward. As shown in FIG. 33, the fin 320 includes a tube body 321 passed through the one support shaft 82 and four blades 322 provided around the tube body 321.
  • the inside of the inner cylinder 10 is configured such that the porous member 60 provided around the one support shaft 82 is not provided.
  • a ring-shaped protrusion 330 protruding along the inner peripheral surface is provided on the discharge port 12 side of the inner cylinder 10.
  • the ridge 330 has a rectangular cross section.
  • the other configuration is substantially the same as the convection temperature difference prime mover S4 of the fourth embodiment.
  • the convection temperature difference prime mover S5 moves the cylindrical body 10a with the outer cylinder 20 at the time of installation, the convex body 318 is fitted into the slit of the cylindrical body 315 including the arm 314.
  • the side with the convex body 318 is set to the lower side, the cylindrical body 316 is inserted into the cylindrical body 10a, and the tip of the arm 314 is joined to the inner wall of the outer cylinder 20.
  • the cylindrical body 10a when the cylindrical body 10a is moved together with the guide blade 70, the cylindrical body 10a is placed on the side where the convex body 318 is located, the cylindrical body 315 is passed through the cylindrical body 10a, and the cylindrical body 316 is provided. And the slit of the cylindrical body 316 is fitted into the convex body 318. Then, the arm 314 of the cylindrical body 315 is joined to the inner wall of the outer cylinder 20.
  • the cooling liquid is circulated through the cooling liquid circulation line 80 and the warming liquid is circulated in the heating liquid circulation line 90 in the same manner as in the above embodiment. Then, the inner cylinder 10 and the outer cylinder 20 rotate.
  • the second planetary gear mechanism 310 makes the rotation of the one support shaft 82 faster than the rotation of the inner cylinder 10. Therefore, the gas staying on the supply port 11 side of the one-way channel Ra is pushed into the discharge port 12 side at high speed by the fins 320, so that the gas flow inside the inner cylinder 10 becomes high-speed and the convection is smoothly performed. It becomes easier to get power.
  • the gas in the one flow path Ra pushed into the discharge port 12 side by the fin 320 becomes a vortex by the rotation of the fin 320 and the rotation of the inner cylinder 10, and the inner cylinder 10 by the centrifugal force due to the vortex flow. It is compressed to the inner peripheral surface side.
  • the compressed gas layer is formed in the vicinity of the inner peripheral surface of the inner cylinder 10 by this gas.
  • the gas in the compressed gas layer collides with the ridge 330 on the outlet 11 side. In addition, it goes over the ridge 330 and is discharged from the discharge port 12.
  • the gas in the one-way channel Ra collides with the ridge 330 and its flow velocity is limited to some extent, that is, when there is no ridge 330, the gas on the outlet 12 side near the inner peripheral surface of the inner cylinder 10 is The gas is sequentially discharged from the discharge port 12 and its density is significantly lower than that on the supply port 11 side, and the density of the gas in the compressed gas layer tends to be uneven.
  • the protrusion 330 limits the gas flow in the vicinity of the inner peripheral surface of the inner cylinder 10 and keeps the gas on the discharge port 12 side. It can be made almost uniform throughout.
  • the cooling liquid from the outlet 84 is dispersed in the compressed gas layer in which the gas is uniformly distributed, and the gas is cooled, so that the cooling efficiency is improved and power is easily obtained.
  • the cylinder 10a can be selected to move together with either the guide vane 70 or the outer cylinder 20 at the time of installation, the cylinder 10a can be moved together with the guide vane 70 via the tubular body 316. Can be rotated at high speed.
  • the outer cylinder 20 is moved through the cylindrical body 315 and the arm 314, the cylindrical body 10a can be rotated at a low speed.
  • FIG. 34 shows a convection temperature difference prime mover S6 according to the sixth embodiment of the present invention.
  • This convection temperature difference prime mover S6 is substantially the same as the convection temperature difference prime mover S1 according to the first embodiment, but unlike this, the support shaft 82 can rotate integrally with the inner cylinder. An opening at the lower end is formed in the cooling liquid inlet 83.
  • the power acquisition mechanism 30 includes a timing belt transmission mechanism 400 provided on the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 and extracting the rotation of the inner cylinder rotating shaft 13 (13a).
  • the timing belt transmission mechanism 401 extracts the rotation of the outer cylinder rotating shaft 23 (23b) on the other end side.
  • a moving blade 40 that receives gas flowing from the supply port 11 and applies a rotational force to the inner cylinder 10 is provided at one end of the inner cylinder 10.
  • the rotor blades 40 are arranged on one end side of the inner cylinder 10 at an equiangular relationship around the rotation axis of the inner cylinder 10 and have a surface for receiving the gas guided by the guide blades 70 provided on the outer cylinder 20.
  • the guide blade 70 provided in the outer cylinder 20 includes a baffle plate 71 arranged in an equiangular relationship corresponding to the blade 41 of the rotor blade 40, and passes through the outer side of the inner cylinder 10 to the supply port 11.
  • the gas from the other flow path Rb is reversed and fed to the blade 41 from the upper side of the blade 41 of the rotor blade 40. For this reason, since the gas is allowed to flow in the vertical direction, the gas is surely received by the blade 41, and the rotation efficiency is improved.
  • a guide vane 50 is provided outside the other end of the inner cylinder 10.
  • the guide vane 50 receives the gas discharged from the discharge port 12, applies a rotational force to the inner cylinder 10, and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb.
  • the guide vane 50 includes a bowl-shaped guide plate body 51 that reverses the gas from the discharge port 12 in the gas flow direction of the other flow path Rb, and a plurality of blade members 52 provided on the guide plate body 51. Yes.
  • the guide plate body 51 is fixed to the outer cylinder 20. Thereby, the guide vane 50 and the outer cylinder 20 rotate in the same direction. Other functions and effects are the same as described above.
  • FIG. 35 shows an application example of a system for operating the convection temperature difference prime mover according to the first embodiment of the present invention.
  • the convection temperature difference prime mover S1 of this system is a part of the cooling liquid circulation pipe upstream of the cooling section and the warming liquid circulation pipe upstream of the heating section.
  • the cooling liquid circulation pipe and the heated liquid circulation pipe are separated.
  • the convection temperature difference prime mover S 1 is provided with a recovery port 156 for recovering the cooling liquid and the warming liquid on the cooling liquid circulation line 80 and the warming liquid circulation line 90 on the upstream side.
  • a tube 155 is provided on the downstream side of the recovery pipe body 155. On the downstream side of the recovery pipe body 155, it branches off into a cooling liquid circulation pipe body 80a and a heated liquid circulation pipe body 90a. Further, a check valve 157 is provided on the upstream side of the branching point where the cooling liquid circulation pipe 80a and the heated liquid circulation pipe 90a branch.
  • a bypass pipe 160 that bypasses the recovery pipe 155 is provided.
  • a pump 160a In the middle of the bypass pipe 160, a pump 160a is provided.
  • the pump 160a sucks the liquid flowing through the recovery pipe 155, and draws this liquid downstream of the check valve 157.
  • a supply pipe 161 for replenishing the liquid stored in the tank 136 to the recovery pipe bypass pipe 160 is provided.
  • the supply pipe 161 is opened and closed based on the liquid amount measured by the liquid amount measuring device 139 provided in the tank 136.
  • the supply pipe 161 includes an electromagnetic valve 163 that opens and closes the supply pipe 161 and a check valve 164 for preventing liquid from flowing backward from the bypass pipe 160.
  • the electromagnetic valve 163 is opened and closed together with the electromagnetic valve 162 provided on the upstream side of the junction of the supply pipe 161 and the bypass pipe 160 by the liquid amount measuring device 139 that measures the amount of the liquid in the tank 136.
  • the operations of the solenoid valve 162 and the solenoid valve 163 are as follows.
  • the switch 143 connects the power source 150 to the electromagnetic valve 163 and closes the electromagnetic valve 163.
  • the electromagnetic valve 162 is disconnected from the power source 150 and opened. In this case, the liquid is pumped from the recovery pipe 155 by the liquid force pump 160 a and returned to the recovery pipe 155.
  • the power supply 150 is connected to the electromagnetic valve 162 by the switch 143 and the electromagnetic valve 162 is closed.
  • the solenoid valve 163 is disconnected from the power source 150 and opened. In this case, the liquid in the tank 136 is sucked by the pump 160a.
  • the cooling liquid and the warming liquid are collected together by the collecting rod 156, and the cooling leaked from between the outer cylinder 20 and the sliding contact member 89 is performed. Since the liquid and the warming liquid can be returned to the cooling liquid circulation line 80 and the warming liquid circulation line 90 through the bypass pipe 160 at appropriate times, the cooling liquid and the warming liquid can be returned to the cooling liquid circulation line. A predetermined amount can flow through 80 and the heated liquid circulation line 90.
  • the inner cylinder 10 and the outer cylinder 20 have a cylindrical force.
  • Fig. 36 (a), (b), (c), (d), (e), (f), (g), (h), various shapes can be used. Of course, the design can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A convection temperature difference prime motive power device (S1), comprising an inner tube (10) rotatably pivoted on an outer shell (1), having a gas supply port (11) formed at its axial one end, and having a gas discharge port (12) formed at the other end, an outer tube (20) rotatably installed relative to the outer shell (1) and the inner tube (10), a moving blade (40) imparting a rotational force to the inner tube (10) by a gas flowing from the supply port (11) therein, a cooling liquid circulation pipeline (80) spraying and circulating a cooling liquid in the inner tube (10), and a heated liquid circulation pipeline (90) spraying and circulating a heated liquid between the inner tube (10) and the outer tube (20). A temperature difference is applied to the gas so that the gas flows in one flow passage (Ra) starting at the supply port (11) to the discharge port (12) through the inside of the inner tube (10) and in the other flow passage (Rb) starting at the discharge port (12) to the supply port (11) through the outside of the inner tube (10) to produce convection in the gas.

Description

対流温度差原動装置  Convection temperature difference prime mover
技術分野  Technical field
[0001] 本発明は、自然界にある例えば海水,雪,地下水や地熱等の熱エネルギー、工業 用の廃熱エネルギー、あるいは廃棄物を燃焼させて得られる熱エネルギー等の各種 熱エネルギー力 動力を得ることのできる対流温度差原動装置に係り、特に、内部で 気体の対流を発生させ、この対流により動力を発生させる対流温度差原動装置に関 する。  [0001] The present invention obtains various thermal energy power such as heat energy in the natural world such as seawater, snow, groundwater, geothermal heat, industrial waste heat energy, or heat energy obtained by burning waste. In particular, the present invention relates to a convection temperature difference prime mover that generates gas convection inside and generates power by this convection.
背景技術  Background art
[0002] 従来、この種の対流温度差原動装置としては、本願出願人の研究に係るものがあ る。例えば、特許文献 1 (特開 2002— 256882号公報)に記載された対流温度差原 動装置が知られている。  Conventionally, as this type of convection temperature difference prime mover, there is one related to the research of the present applicant. For example, a convection temperature difference driving device described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-256882) is known.
[0003] この対流温度差原動装置 Saは、図 37に示すように、密封された円筒状の外郭 200 と、外郭の中心軸に沿って設けられた支軸 201と、支軸 201に回転可能に軸支され 、軸方向一端に気体の供給口 202aが形成され、他端中央に気体の排出口 203が 形成された内筒 204と、外郭 200及び内筒 204に対して回転可能に設けられ、壁部 が外郭 200と内筒 204との間に位置する外筒 205とを備えている。対流温度差原動 装置 Saは、気体が、内筒 204の供給口 202aから内筒 204の内部を通って排出口 2 03に至る一方流路及び内筒 204の排出口 203から内筒 204の外側を通って供給口 202aに至る他方流路を通るように、気体に温度差を付与して気体の対流を生じさせ る。対流温度差原動装置 Saは、上記気体の対流により内筒 204及び外筒 205を回 転させ、動力取得機構 206aによって動力を得て発電する。  As shown in FIG. 37, this convection temperature difference prime mover Sa has a sealed cylindrical outer shell 200, a support shaft 201 provided along the center axis of the outer shell, and a rotation to the support shaft 201. The inner cylinder 204 has a gas supply port 202a formed at one end in the axial direction and a gas discharge port 203 formed at the center of the other end, and is provided rotatably with respect to the outer shell 200 and the inner cylinder 204. The wall portion includes an outer cylinder 205 positioned between the outer shell 200 and the inner cylinder 204. The convection temperature differential prime mover Sa has a one-way flow of gas from the supply port 202a of the inner cylinder 204 through the inside of the inner cylinder 204 to the discharge port 203, and from the discharge port 203 of the inner cylinder 204 to the outside of the inner cylinder 204. A temperature difference is imparted to the gas to cause convection of the gas so as to pass through the other flow path that passes through the supply port 202a. The convection temperature difference prime mover Sa rotates the inner cylinder 204 and the outer cylinder 205 by the gas convection, and generates power by using the power acquisition mechanism 206a.
内筒 204及び外筒 205は、支軸 201に対して一端及び他端が軸支されて 、る。 また、内筒 204及び外筒 205は、一端側回転体 204a, 205aと他端側回転体 204 b, 205bとに分割形成されている。一端側回転体 204a, 205aと他端側回転体 204 b, 205bとの分割端部は、分割端部どうしが軸方向に直交する方向に相対変移可能 、かつ、相対回転可能に連結されている。 内筒 204の他端には、タービン 206が設けられている。このタービン 206は、排出 口 203からの気体を内筒 204の外側に内筒 204の回転方向に対し逆向きに噴射さ せて、内筒 204に回転力を付与する、 One end and the other end of the inner cylinder 204 and the outer cylinder 205 are pivotally supported with respect to the support shaft 201. Further, the inner cylinder 204 and the outer cylinder 205 are divided into one end side rotating bodies 204a and 205a and the other end side rotating bodies 204b and 205b. The split end portions of the one-end-side rotators 204a and 205a and the other-end-side rotators 204b and 205b are connected so that the split end portions can be relatively shifted in the direction perpendicular to the axial direction and can be relatively rotated. . A turbine 206 is provided at the other end of the inner cylinder 204. The turbine 206 injects the gas from the discharge port 203 to the outside of the inner cylinder 204 in the direction opposite to the rotation direction of the inner cylinder 204, thereby applying a rotational force to the inner cylinder 204.
[0004] また、この対流温度差原動装置 Saには、液体循環管路 207が設けられて 、る。液 体循環管路 207は、支軸 201の供給口 202bに接続される注入口 208を有し、さらに 、外享 G200に回収口 209を有して!/ヽる。液体力 注人口 208力ら支軸 201内を通り、 流出口 210から内筒 204内に噴出することにより、内筒 204内の気体が冷却される。 その後、液体循環管路 207は、タービン 206を通って隔壁 211に至る液体を、回収 口 209から回収し、再び注入口 208に導く。そして、この液体循環管路 207の途中に は、液体を冷却する冷却部 212が設けられている。  [0004] The convection temperature difference prime mover Sa is provided with a liquid circulation line 207. The liquid circulation pipe 207 has an injection port 208 connected to the supply port 202b of the support shaft 201, and further has a recovery port 209 in the outer enjoyment G200. The liquid force in the inner cylinder 204 is cooled by being injected into the inner cylinder 204 from the outlet 210 through the support shaft 201 from the power injection force 208 force. Thereafter, the liquid circulation pipe 207 recovers the liquid that reaches the partition wall 211 through the turbine 206 from the recovery port 209 and guides it to the injection port 208 again. A cooling unit 212 for cooling the liquid is provided in the middle of the liquid circulation pipe 207.
[0005] さらにまた、気体が循環可能な気体循環管路 215が設けられている。この気体循環 管路 215は、外郭 200の一端に吹出口 213を有し、さらに、他端に戻り口 214を有し ている。そして、気体循環管路 215の途中には、循環する気体を加温する加温部 21 6が設けられている。また、外筒 205の一端側回転体 205aの内壁には、吹出口 213 からの気体を一端側入口 217aから他端側出口 217bに流す通風路 217が多数列設 されている。これにより、通風路 217の他端側出口 217bから流出した高温の気体は 、内筒 204と外筒 205の間の空間を通るとともに、内筒 204の一方流路を通り、一方 流路で液体によって冷却されてタービン 206に至る。  [0005] Furthermore, a gas circulation line 215 capable of circulating gas is provided. The gas circulation pipe 215 has a blowout port 213 at one end of the outer shell 200 and further has a return port 214 at the other end. In the middle of the gas circulation line 215, a heating unit 216 for heating the circulating gas is provided. In addition, in the inner wall of the one end side rotating body 205a of the outer cylinder 205, a large number of air passages 217 for allowing the gas from the outlet 213 to flow from the one end side inlet 217a to the other end side outlet 217b are arranged in a row. Thus, the high-temperature gas flowing out from the other end side outlet 217b of the ventilation path 217 passes through the space between the inner cylinder 204 and the outer cylinder 205, passes through one flow path of the inner cylinder 204, and is liquid in the one flow path. Cooled by the turbine 206.
[0006] この対流温度差原動装置 Saが発電するとき、冷却液体は、支軸 201の供給口 202 bから支軸 201内に供給され、気体は、吹出口 213から吹き出される。この際、冷却 液体は、支軸 201内を通過し、流出口 210から内筒 204内に流出し、タービン 206を 通って回収口 209に導力れ、回収口 209から液体循環管路 207を通って再び注入 口 208に導かれる。また、気体は、一端側回転体 205aの通風路 217の一端側入口 217aから流入し、他端側出口 217bから流出する。この流出した高温の気体は、内 筒 204と外筒 205との間の他方流路を通り、続いて、内筒 204の一方流路を通り、一 方流路で液体によって冷却されてタービン 206に至る。それから、上記気体は、戻り 口 214から気体循環管路 215を通って、再び吹出口 213に導かれる。この気体循環 管路 215の途中では、冷却された気体が加温部 216により加温される。 これにより、内筒 204の供給口 202a力ら内筒 204の内咅を通って 出口 203に至 る一方流路及び内筒 204の排出口 203から内筒 204の外側を通って供給口 202に 至る他方流路を通る、気体の対流が生じる。そして、この対流によりタービン 206を介 して内筒 204及び外筒 205は、同方向に回転する。 [0006] When the convection temperature difference prime mover Sa generates power, the cooling liquid is supplied into the support shaft 201 from the supply port 202b of the support shaft 201, and the gas is blown out from the air outlet 213. At this time, the cooling liquid passes through the support shaft 201, flows out from the outlet 210 into the inner cylinder 204, is guided to the recovery port 209 through the turbine 206, and passes through the liquid circulation line 207 from the recovery port 209. It is led to the inlet 208 again. Further, the gas flows in from the one end side inlet 217a of the ventilation path 217 of the one end side rotating body 205a and flows out from the other end side outlet 217b. The high-temperature gas that has flowed out passes through the other flow path between the inner cylinder 204 and the outer cylinder 205, and then passes through the one flow path of the inner cylinder 204, and is cooled by the liquid in one flow path, thereby being transferred to the turbine 206. To. Then, the gas is led from the return port 214 through the gas circulation line 215 to the blowout port 213 again. In the middle of the gas circulation pipe 215, the cooled gas is heated by the heating unit 216. As a result, the force from the supply port 202a of the inner cylinder 204 passes through the inner flange of the inner cylinder 204 to the outlet 203 from the force of the supply port 202a and the outlet 203 of the inner cylinder 204 to the supply port 202 through the outside of the inner cylinder 204. Gas convection occurs through the other flow path. Due to this convection, the inner cylinder 204 and the outer cylinder 205 are rotated in the same direction via the turbine 206.
このタービン 206によって、気体は、内筒 204の回転周方向に対し逆向きに噴射さ せれ、内筒 204及び外筒 205が回転する。そして、動力取得機構 206aは、内筒 204 及び外筒 205の両方から動力を得て発電する。  By this turbine 206, the gas is injected in the direction opposite to the rotational circumferential direction of the inner cylinder 204, and the inner cylinder 204 and the outer cylinder 205 rotate. The power acquisition mechanism 206a generates power by obtaining power from both the inner cylinder 204 and the outer cylinder 205.
[0007] 特許文献 1:特開 2002— 256882号公報 [0007] Patent Document 1: Japanese Patent Laid-Open No. 2002-256882
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] ところで、このような対流温度差原動装置 Saは、内筒 204及び外筒 205を回転させ るための気体を、 V、つたん外筒 205の外部にある気体循環管路 215の加温部 216で 加温してから、通風路 217で外筒 205の下側から吹き出させる。このため、他方流路 を流れる気体の経路が複雑になり、気体の対流のエネルギーにロスが生じ、内筒 20 4及び外筒 205に上記エネルギーを効率よく付与できないという問題があった。  [0008] By the way, such a convection temperature difference prime mover Sa uses V for the gas for rotating the inner cylinder 204 and the outer cylinder 205, and simply adds the gas circulation pipe 215 outside the outer cylinder 205. After heating by the warming part 216, the air is blown from the lower side of the outer cylinder 205 through the ventilation path 217. For this reason, the path of the gas flowing through the other flow path becomes complicated, loss of gas convection energy occurs, and there is a problem that the energy cannot be efficiently applied to the inner cylinder 204 and the outer cylinder 205.
[0009] 本発明は上記の問題点に鑑みてなされたもので、他方流路を通る気体を内筒と外 筒の間の空間で加温できるようにして、気体の経路を簡単にし、気体からの対流のェ ネルギーを効率よく内筒及び外筒に付与できるようにした対流温度差原動装置を提 供することを目的とする。  [0009] The present invention has been made in view of the above-described problems, and allows the gas passing through the other flow path to be heated in the space between the inner cylinder and the outer cylinder, thereby simplifying the gas path and The purpose is to provide a convection temperature difference prime mover that can efficiently apply convection energy from the inner cylinder and outer cylinder.
課題を解決するための手段  Means for solving the problem
[0010] このような目的を達成するための本発明の対流温度差原動装置は、外郭と、該外 郭に回転可能に軸支され、軸方向一端に気体の供給口が形成され、他端に気体の 排出口が形成された内筒と、上記外郭及び内筒に対して回転可能に設けられ、壁部 が外郭と内筒との間に位置する外筒とを備え、気体が、上記内筒の供給口から該内 筒の内部を通って排出口に至る一方流路及び該内筒の排出口から該内筒の外側を 通って供給口に至る他方流路を通るように、上記気体に温度差を付与して気体の対 流を生じさせ、該気体の対流により上記内筒及び外筒を回転させて動力を得る対流 温度差原動装置において、上記内筒に、上記供給口から流入した上記気体を受け て該内筒に回転力を付与する動翼を設け、上記内筒内に冷却液体を散布して、上 記一方流路を通る気体を冷却し、かつ、該冷却液体を循環させる冷却液体循環管路 を設け、該冷却液体循環管路の途中に、該冷却液体を冷却する冷却部を設け、上 記内筒と外筒との間に加温液体を散布して、上記他方流路を通る気体を加温し、か つ、該加温液体を循環させる加温液体循環管路を設け、該加温液体循環管路の途 中に、該加温液体を加温する加温部を設けた構成としてある。 [0010] A convection temperature difference prime mover of the present invention for achieving such an object includes an outer shell, a shaft rotatably supported by the outer shell, a gas supply port formed at one end in the axial direction, and the other end. An inner cylinder in which a gas discharge port is formed, and an outer cylinder that is rotatably provided with respect to the outer shell and the inner cylinder, and whose wall portion is located between the outer shell and the inner cylinder. The above-mentioned one passage from the supply port of the inner cylinder through the inside of the inner cylinder to the discharge port and the other flow path from the discharge port of the inner cylinder to the supply port through the outside of the inner cylinder In a convection temperature difference prime mover for generating a convection of a gas by giving a temperature difference to the gas and rotating the inner cylinder and the outer cylinder by the convection of the gas to obtain power, the inner cylinder is connected to the supply port from the supply port. Receive the gas flowing in A cooling liquid circulation system for providing a moving blade for applying a rotational force to the inner cylinder, spraying a cooling liquid into the inner cylinder, cooling the gas passing through the one flow path, and circulating the cooling liquid. A pipe is provided, and a cooling unit for cooling the cooling liquid is provided in the middle of the cooling liquid circulation pipe, and the warming liquid is sprayed between the inner cylinder and the outer cylinder so that the other flow path is provided. A heated liquid circulation line is provided for heating the gas passing therethrough and circulating the heated liquid, and a heating unit for heating the heated liquid is provided in the middle of the heated liquid circulation line. The configuration is provided.
[0011] この対流温度差原動装置によれば、冷却液体循環管路によって、内筒内に冷却液 体が散布される。冷却液体は、一方流路を流通する気体を冷却し、この気体により加 温される。そして、冷却液体循環管路の途中で、冷却部により再び冷却される。その ため、内筒内に散布される冷却液体は、再び温度が低い状態になり、一方流路の気 体の冷却状態が良好になる。  [0011] According to this convection temperature difference prime mover, the cooling liquid body is sprayed into the inner cylinder by the cooling liquid circulation conduit. The cooling liquid cools the gas flowing through the one flow path and is heated by this gas. And it cools again by the cooling part in the middle of the cooling liquid circulation conduit. For this reason, the cooling liquid sprayed into the inner cylinder is again in a low temperature state, while the cooling state of the gas in the flow path is improved.
また、加温液体循環管路によって、内筒と外筒との間に加温液体が散布される。加 温液体は、他方流路の気体の加温し、この気体より冷却される。そして、加温液体循 環管体の途中で、加温液体は加温部により再び加温させられる。そのため、内筒と外 筒との間に散布される加温液体は、再び、温度が高い状態になり、他方流路の気体 の加温状態が良好になる。  Further, the warming liquid is sprayed between the inner cylinder and the outer cylinder by the warming liquid circulation conduit. The heated liquid warms the gas in the other channel and is cooled by this gas. Then, in the middle of the heated liquid circulation tube, the heated liquid is heated again by the heating unit. Therefore, the warming liquid sprayed between the inner cylinder and the outer cylinder is again in a high temperature state, and the gas heating state of the other flow path is improved.
[0012] これにより、内筒の供給口から内筒の内部を通って排出口に至る一方流路及び内 筒の排出口から内筒の外側を通って供給口に至る他方流路を通る気体の対流が生 じる。そして、この対流により、気体が内筒の動翼に作用し、内筒及び外筒が回転す る。  [0012] Thereby, the gas passing through the one flow path from the supply port of the inner cylinder to the discharge port through the inside of the inner cylinder and the other flow path from the discharge port of the inner cylinder to the supply port through the outside of the inner cylinder Convection occurs. Due to this convection, gas acts on the rotor blades of the inner cylinder, and the inner cylinder and the outer cylinder rotate.
この際、他方流路を流通する気体は、加温液体により外筒と内筒の間の空間で直 接加温される。そのため、他方流路の気体は、外筒の外部に出ることなく加温される ので、気体の経路が簡単になる。これにより、気体の対流におけるエネルギーのロス が低減されるので、この対流のエネルギー力 回転力として内筒及び外筒に効率よく 付与される。  At this time, the gas flowing through the other channel is directly heated in the space between the outer cylinder and the inner cylinder by the heating liquid. For this reason, the gas in the other channel is heated without going out of the outer cylinder, so that the gas path is simplified. As a result, energy loss in the convection of the gas is reduced, and the energy force and rotational force of the convection is efficiently applied to the inner cylinder and the outer cylinder.
[0013] また、本発明の対流温度差原動装置は、上記冷却液体循環管路が、一端側に、上 記外郭に設けられた冷却液体の流入口を有し、他端側に、上記内筒に該冷却液体 を散布する多数の流出口を有し、さらに、上記内筒と外筒の他端を回転可能にする 一方支軸,上記一方支軸の流入口に接続される注入口,上記一方流路の気体を冷 却した後上記内筒の排出ロカ 流出した冷却流体を回収する回収口,及び,上記 回収口から再び上記注入口に冷却液体を循環させる冷却液体循環管体を備え、上 記加温液体循環管路が、一端側に、上記外郭に設けられ加温液体の流入口を有し 、他端側に、流出口を有し、さらに、上記内筒と外筒の一端を軸支する他方支軸,上 記内筒の外側を覆い、該内筒との間に上記他方支軸の流出口からの加温液体が流 通可能な流通路を形成し、かつ、上記外筒に向けて加温液体を噴射する多数の噴 射口が形成された筒体,上記他方支軸の流入口に接続される注入口,上記筒体の 噴射口から噴射された加温液体を回収する回収口,及び,上記回収口から再び上 記注入口に加温液体を循環させる加温液体循環管体を備えた構成としてある。 このようにすると、一方支軸が冷却液体循環管路の一部として兼用され、他方支軸 が加温液体循環管路の一部として兼用されるので、これらの液体を噴出する専用の 管路を別途設ける場合と比較して、構造が簡単になる。そのため、一方流路と他方流 路における気体の対流に悪影響が発生せず、気体の対流におけるエネルギーの口 スが低減され、この対流のエネルギーが、回転力として内筒及び外筒に効率よく付与 される。 [0013] Further, in the convection temperature difference prime mover according to the present invention, the cooling liquid circulation conduit has a cooling liquid inlet provided in the outer shell on one end side, and the inner side on the other end side. The cylinder has a number of outlets for spraying the cooling liquid, and the other ends of the inner cylinder and the outer cylinder are rotatable. One support shaft, an inlet connected to the inlet of the one support shaft, a recovery port for recovering the cooling fluid that has flowed out of the inner cylinder after the gas in the one flow path is cooled, and the recovery port A cooling liquid circulation pipe that circulates the cooling liquid from the inlet to the inlet again, and the heating liquid circulation pipe has a heating liquid inlet provided in the outer shell on one end side, and the other end. A second support shaft that pivotally supports one end of the inner cylinder and the outer cylinder, covers an outer side of the inner cylinder, and the outlet of the other support shaft between the inner cylinder A cylindrical body formed with a flow passage through which the heated liquid from which is allowed to flow and a plurality of injection ports for injecting the heated liquid toward the outer cylinder, and the inlet of the other support shaft. An inlet to be connected, a recovery port for recovering the warmed liquid sprayed from the injection port of the cylinder, and the recovery port to the injection port again. The heating liquid circulation tube body for circulating the heating liquid is provided. In this case, since one support shaft is also used as a part of the cooling liquid circulation conduit and the other support shaft is also used as a part of the heated liquid circulation conduit, a dedicated conduit for ejecting these liquids is used. Compared with the case where the is separately provided, the structure becomes simple. For this reason, there is no adverse effect on gas convection in the one flow path and the other flow path, the energy source in the gas convection is reduced, and this convection energy is efficiently applied to the inner and outer cylinders as rotational force. Is done.
[0014] また、本発明の対流温度差原動装置は、上記内筒に、上記一方支軸又は他方支 軸に回転可能に挿通される管状の内筒回転軸を設け、上記外筒に、該内筒回転軸 と同軸の管状の外筒回転軸を設け、上記内筒回転軸及び外筒回転軸の両方から動 力を得る動力取得機構を設けた構成としてある。  [0014] Further, the convection temperature difference prime mover according to the present invention is provided with a tubular inner cylinder rotating shaft rotatably inserted into the one supporting shaft or the other supporting shaft in the inner cylinder, A tubular outer cylinder rotation axis that is coaxial with the inner cylinder rotation axis is provided, and a power acquisition mechanism that obtains power from both the inner cylinder rotation axis and the outer cylinder rotation axis is provided.
このようにすると、動力取得機構により内筒と外筒の両方の回転力を動力として得る ことができ、エネルギーの変換効率が極めて良くなる。  If it does in this way, the rotational force of both an inner cylinder and an outer cylinder can be obtained as motive power by a motive power acquisition mechanism, and the conversion efficiency of energy will become very good.
[0015] また、本発明の対流温度差原動装置は、上記動力取得機構が、上記内筒回転軸 に設けられる第一原動ギア,上記外筒回転軸に設けられる第二原動ギア,第一原動 ギアに嚙合する第一従動ギア,第二原動ギアに嚙合する第二従動ギア,第一従動ギ ァと第二従動ギアが取り付けられるシャフト,及び,該シャフトに連係して駆動される 発電機を備えた構成としてある。これにより、ギア機構という確実な機構によって、動 力を電力として得ることができる。 [0016] また、本発明の対流温度差原動装置は、上記外筒の一端側の内周に、上記供給 口に設けた動翼に気体を導くガイド翼を設け、上記動翼が、上記内筒の一端側に、 該内筒の回転軸を中心に等角度関係で列設され、さらに、上記ガイド翼により導かれ た気体を受ける面を有した複数のブレードを備え、上記ガイド翼が、上記動翼のブレ ードに対応させて等角度関係で列設された複数の導風板を備えた構成としてある。 このようにすると、ガイド翼は、他方流路の気体を導風板で受け、その流向を変更さ せる。そして、気体は、ブレードに流入し、動翼のブレードに衝止するとともに動翼の 内周部に抜けて内筒の内部に流入する。そのため、動翼のブレードには、ガイド翼に より圧縮されて遠心力が付与された気体が、ほぼ直角に衝止するので、動翼のブレ ードは気体の力を充分に受けることができる。したがって、気体のエネルギーを内筒 の回転力に変換する変換効率が大幅に向上し、発電効率が向上する。また、この際 、気体は、ブレード間でさらに圧縮されて、流速が極めて速くなるので、ブレードに衝 止するエネルギーが高められ、対流のエネルギー力 回転力として内筒に効率よく付 与される。 [0015] Further, in the convection temperature difference prime mover according to the present invention, the power acquisition mechanism includes a first prime mover gear provided on the inner cylinder rotary shaft, a second prime gear provided on the outer cylinder rotary shaft, and a first prime mover. A first driven gear meshing with the gear, a second driven gear meshing with the second driving gear, a shaft to which the first driven gear and the second driven gear are attached, and a generator driven in conjunction with the shaft. It is as a configuration provided. Thus, the power can be obtained as electric power by a reliable mechanism called a gear mechanism. [0016] Further, in the convection temperature difference prime mover according to the present invention, a guide blade that guides gas to a moving blade provided at the supply port is provided on an inner periphery on one end side of the outer cylinder, and the moving blade includes the inner blade. A plurality of blades arranged in an equiangular relationship around the rotation axis of the inner cylinder on one end side of the cylinder and having a surface for receiving the gas guided by the guide blades, the guide blades being A plurality of wind guide plates arranged in an equiangular relationship corresponding to the blade of the moving blade are provided. If it does in this way, a guide blade will receive the gas of the other channel by a baffle plate, and will change the flow direction. Then, the gas flows into the blade, stops at the blade of the moving blade, and escapes to the inner peripheral portion of the moving blade and flows into the inner cylinder. For this reason, the blade blade is sufficiently compressed by the guide blades and applied with centrifugal force to stop at right angles, so the blade blade can receive the gas force sufficiently. . Therefore, the conversion efficiency for converting gas energy into the rotational force of the inner cylinder is greatly improved, and the power generation efficiency is improved. Further, at this time, the gas is further compressed between the blades, and the flow velocity becomes extremely fast. Therefore, the energy that impinges on the blades is increased, and is efficiently applied to the inner cylinder as convective energy force and rotational force.
[0017] また、本発明の対流温度差原動装置は、上記導風板を、円周一方向に凹曲して形 成し、該導風板の凹曲した面によって、上記供給口に流入する気体に遠心力を付与 する構成としてある。  [0017] In the convection temperature difference driving device of the present invention, the air guide plate is formed to be bent in one circumferential direction, and flows into the supply port by the concave surface of the air guide plate. It is configured to apply centrifugal force to the gas.
このようにすると、他方流路の気体は、各導風板の凹曲面に衝止し、遠心力が付与 された状態で、気体の流向が変更される。そのため、動翼のブレードに衝止するエネ ルギ一が高められ、対流のエネルギー力 回転力として内筒にさらに効率よく付与さ れる。  If it does in this way, the gas of the other channel will stop on the concave curved surface of each baffle plate, and the flow direction of gas will be changed in the state where centrifugal force was given. As a result, the amount of energy that stops against the blades of the rotor blades is increased, and it is more efficiently applied to the inner cylinder as convective energy force and rotational force.
[0018] また、本発明の対流温度差原動装置は、上記内筒の他端の外方に、上記排出口 力 排出された気体を受けて該内筒に回転力を付与するとともに該排出ロカ 排気 された気体を上記他方流路の気体の流通方向に導く案内翼を設けた構成としてある このようにすると、一方流路を下降して排出口力 排出された気体からも内筒に回 転力を付与できるようになり、対流のエネルギー力 回転力として内筒にさらに効率よ く付与される。また、案内翼が、排出口からの気体を他方流路の気体の流通方向に 向けて導くので、気体が外筒の他端側に滞留しに《なる。 [0018] Further, the convection temperature difference prime mover of the present invention receives the gas discharged from the discharge port force outside the other end of the inner tube, applies a rotational force to the inner tube, and applies the discharge locus In this way, a guide vane is provided to guide the exhausted gas in the flow direction of the gas in the other flow path. In this way, the gas that descends in the one flow path and discharges the exhaust gas is also rotated to the inner cylinder. It becomes possible to apply force, and it is more efficiently applied to the inner cylinder as convective energy force and rotational force. In addition, the guide vane moves the gas from the discharge port in the direction of gas flow in the other channel. Since the gas is directed toward the gas, the gas stays at the other end of the outer cylinder.
[0019] また、本発明の対流温度差原動装置は、上記内筒の内部に、上記一方通路を通る 気体及び冷却液体が通過可能な多孔質部材を設けた構成としてある。  [0019] Further, the convection temperature difference prime mover of the present invention has a configuration in which a porous member capable of passing the gas and the cooling liquid passing through the one passage is provided inside the inner cylinder.
このようにすると、多孔質部材によって、冷却液体が一方流路上に一時的に留まる ので、一方流路を流通する気体との熱交換効率が向上する。  If it does in this way, since a cooling liquid stays temporarily on one flow path by a porous member, the heat exchange efficiency with the gas which distribute | circulates one flow path improves.
また、上記多孔質部材を、卷回されたシート状の金属製網とするとよい。このように すると、冷却液体は、内筒の回転により遠心力が付与されて、網目を抜けて順次外 側に移動し、内筒に至って内筒の内壁を流下する。これにより、多孔質部材の構造 が簡単になる。  The porous member may be a wound sheet-like metal net. In this way, the cooling liquid is given a centrifugal force by the rotation of the inner cylinder, moves through the mesh and sequentially moves outward, reaches the inner cylinder and flows down the inner wall of the inner cylinder. This simplifies the structure of the porous member.
さらに、上記内筒の内周であって上記一方流路の供給口側に、滞留した気体を排 出口側に押し込むフィンを設けたり、あるいは、上記一方支軸を、上記内筒と連係し て回転可能とし、該一方支軸に、上記一方流路の供給口側に滞留した気体を排出 口側に押し込むフィンを設けたりするとよい。このようにすると、供給ロカ 流入し、内 筒の一端側の内部に滞留しょうとする気体が、フィンで排出口側に押し込まれるので 、一方流路の気体の流れがスムーズになり、気体の対流状態が良好になる。  Further, a fin for pushing the accumulated gas to the outlet side is provided on the supply port side of the one flow path on the inner periphery of the inner cylinder, or the one support shaft is linked to the inner cylinder. It is preferable that a fin that pushes the gas staying on the supply port side of the one flow path to the discharge port side may be provided on the one support shaft. In this way, the gas that flows into the supply loci and tries to stay inside the one end side of the inner cylinder is pushed into the discharge port side by the fins, so that the gas flow in one flow path becomes smooth and convection of the gas The state becomes good.
発明の効果  The invention's effect
[0020] 上述したように、本発明の対流温度差原動装置は、内筒と外筒との間に加温液体 を散布して、他方流路を通る気体を加温するとともに、加温液体を循環させる加温液 体循環管路を設け、加温液体循環管路の途中に加温液体を加温する加温部を設け ている。これにより、他方流路を流れる気体は、流出ロカ 流出した加温液体により 外筒と内筒の間の空間で直接加温される。そのため、他方流路の気体は、外筒の外 部に出ることなく加温され、気体の経路が簡単となり、気体の対流におけるエネルギ 一のロスが低減され、この対流のエネルギー力 回転力として内筒及び外筒に効率 よく付与される。  [0020] As described above, the convection temperature difference prime mover according to the present invention scatters the warming liquid between the inner cylinder and the outer cylinder, warms the gas passing through the other channel, and heats the warming liquid. A heating liquid circulation circuit for circulating the liquid is provided, and a heating unit for heating the heating liquid is provided in the middle of the heating liquid circulation pipe. As a result, the gas flowing through the other flow path is directly heated in the space between the outer cylinder and the inner cylinder by the heated liquid that has flowed out. Therefore, the gas in the other channel is heated without going out of the outer cylinder, the gas path is simplified, the loss of energy in the gas convection is reduced, and the energy force of this convection becomes the internal rotational force. Efficiently applied to the cylinder and outer cylinder.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の第一実施形態に係る対流温度差原動装置を示す図である。  FIG. 1 is a diagram showing a convection temperature difference prime mover according to a first embodiment of the present invention.
[図 2]本発明の第一実施形態に係る対流温度差原動装置の主要部を示す図である。  FIG. 2 is a diagram showing a main part of the convection temperature difference prime mover according to the first embodiment of the present invention.
[図 3]本発明の第一実施形態に係る対流温度差原動装置の、下部の要部を示す拡 大図である。 FIG. 3 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the first embodiment of the present invention. It is a big picture.
圆 4]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の A— A断面 図である。 [4] The convection temperature difference prime mover according to the first embodiment of the present invention, which is a cross-sectional view taken along the line AA in FIG.
圆 5]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の B—B断面 図である。 [5] FIG. 5 shows a convection temperature difference prime mover according to the first embodiment of the present invention, and is a cross-sectional view taken along the line BB of FIG.
圆 6]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の C— C断面 図である。 6] A convection temperature difference prime mover according to the first embodiment of the present invention, which is a sectional view taken along the line CC in FIG.
圆 7]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の D—D断面 図である。 [7] The convection temperature difference prime mover according to the first embodiment of the present invention is shown in the DD cross section of FIG.
圆 8]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の E— E断面 図である。 8] A convection temperature difference prime mover according to the first embodiment of the present invention, which is a cross-sectional view taken along the line EE in FIG.
圆 9]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の F— F断面 図である。 [9] FIG. 9 is a convection temperature difference prime mover according to the first embodiment of the present invention, and is a sectional view taken along the line FF in FIG.
圆 10]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の G— G断面 図である。 10] A convection temperature difference prime mover according to the first embodiment of the present invention, which is a GG cross-sectional view of FIG.
圆 11]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の H— H断面 図である。 圆 11] The convection temperature difference prime mover according to the first embodiment of the present invention is shown, and is a cross-sectional view taken along the line HH in FIG.
圆 12]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の I— I断面図 である。 FIG. 12 is a cross-sectional view taken along the line II of FIG. 2, showing the convection temperature difference prime mover according to the first embodiment of the present invention.
圆 13]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の J -J断面図 である。 13] A convection temperature difference prime mover according to the first embodiment of the present invention, taken along the line JJ of FIG.
圆 14]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の K— K断面 図である。 14] A convection temperature difference prime mover according to the first embodiment of the present invention, which is a KK cross-sectional view of FIG.
圆 15]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の L— L断面 図である。 15] A convection temperature difference prime mover according to the first embodiment of the present invention, which is a cross-sectional view taken along line LL in FIG.
[図 16]本発明の第一実施形態に係る対流温度差原動装置を示し、図 2の M— M断 面図である。  FIG. 16 shows a convection temperature difference driving device according to the first embodiment of the present invention, and is an MM sectional view of FIG.
圆 17]本発明の第一実施形態に係る対流温度差原動装置が用いられるシステムを 示す図である。 圆 17] A system in which the convection temperature difference prime mover according to the first embodiment of the present invention is used. FIG.
[図 18]本発明の第二実施形態に係る対流温度差原動装置を示す図である。  FIG. 18 is a diagram showing a convection temperature difference prime mover according to a second embodiment of the present invention.
[図 19]本発明の第二実施形態に係る対流温度差原動装置の、下部の要部を示す拡 大図である。  FIG. 19 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the second embodiment of the present invention.
圆 20]本発明の第二実施形態に係る対流温度差原動装置を示し、図 18の N— N断 面図である。 FIG. 20 is a sectional view taken along line NN in FIG. 18, showing a convection temperature difference prime mover according to a second embodiment of the present invention.
圆 21]本発明の第二実施形態に係る対流温度差原動装置を示し、図 18の O— O断 面図である。 圆 21] A convection temperature difference prime mover according to a second embodiment of the present invention, which is an OO sectional view of FIG.
圆 22]本発明の第三実施形態に係る対流温度差原動装置の要部拡大図である。 圆 22] It is a principal part enlarged view of the convection temperature difference prime mover according to the third embodiment of the present invention.
[図 23]本発明の第四実施形態に係る対流温度差原動装置を示す図である。 FIG. 23 is a diagram showing a convection temperature difference prime mover according to a fourth embodiment of the present invention.
圆 24]本発明の第四実施形態に係る対流温度差原動装置を示し、図 23の P— P断 面図である。 24] FIG. 24 shows a convection temperature difference prime mover according to a fourth embodiment of the present invention, and is a PP sectional view of FIG.
圆 25]本発明の第四実施形態に係る対流温度差原動装置を示し、図 23の Q— Q断 面図である。 25] A convection temperature difference prime mover according to a fourth embodiment of the present invention, which is a QQ sectional view of FIG.
[図 26]本発明の第五実施形態に係る対流温度差原動装置を示す図である。  FIG. 26 is a diagram showing a convection temperature difference prime mover according to a fifth embodiment of the present invention.
[図 27]本発明の第五実施形態に係る対流温度差原動装置を一部切り欠いて示す斜 視図である。  FIG. 27 is a perspective view showing a convection temperature difference prime mover according to a fifth embodiment of the present invention with a part cut away.
[図 28]本発明の第五実施形態に係る対流温度差原動装置の、下部の要部を示す拡 大図である。  FIG. 28 is an enlarged view showing the main part of the lower part of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
圆 29]本発明の第五実施形態に係る対流温度差原動装置を示し、図 28の R— R断 面図である。 29] A convection temperature difference prime mover according to a fifth embodiment of the present invention is shown, and is an RR sectional view of FIG.
[図 30]本発明の第五実施形態に係る対流温度差原動装置の内筒を示し、図 28の S S断面図である。  30 is an SS cross-sectional view of FIG. 28 showing the inner cylinder of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
[図 31]本発明の第五実施形態に係る対流温度差原動装置の内筒を示し、図 30の U U断面図である。  FIG. 31 is a cross-sectional view of UU in FIG. 30, showing the inner cylinder of the convection temperature difference prime mover according to the fifth embodiment of the present invention.
圆 32]本発明の第五実施形態に係る対流温度差原動装置を示し、図 28の T— T断 面図である。 FIG. 32] A convection temperature difference prime mover according to a fifth embodiment of the present invention, which is a TT sectional view of FIG.
圆 33]本発明の第五実施形態に係る対流温度差原動装置のフィンを示す図である。 [図 34]本発明の第六実施形態に係る対流温度差原動装置を示す要部断面図である FIG. 33] A view showing fins of the convection temperature difference prime mover according to the fifth embodiment of the present invention. FIG. 34 is a cross-sectional view of a principal part showing a convection temperature difference prime mover according to a sixth embodiment of the present invention.
[図 35]本発明の第一実施形態に係る対流温度差原動装置を用いたシステムの応用 例を示す図である。 FIG. 35 is a diagram showing an application example of a system using the convection temperature difference prime mover according to the first embodiment of the present invention.
[図 36]本発明の各実施形態に係る対流温度差原動装置の内筒及び外筒の形状の 応用例を示す図である。  FIG. 36 is a diagram showing an application example of the shapes of the inner cylinder and the outer cylinder of the convection temperature difference prime mover according to each embodiment of the present invention.
[図 37]従来の対流温度差原動装置の一例を示す図である。  FIG. 37 is a diagram showing an example of a conventional convection temperature difference prime mover.
符号の説明 Explanation of symbols
SI, S2, S3, S4, S5 対流温度差原動装置 SI, S2, S3, S4, S5 Convection temperature difference prime mover
Ra 一方流路 Ra one-way channel
Rb 他方流路 Rb other channel
1 外郭 1 outline
la 土台 la foundation
2 架台 2 frame
3 側壁 3 Side wall
4 天板 4 Top plate
8 ギアポンプ 8 Gear pump
10 内筒 10 inner cylinder
10a 筒体 10a cylinder
11 供給口 11 Supply port
12 排出口 12 outlet
13 内筒回転軸 13 Inner cylinder rotation axis
20 外筒 20 outer cylinder
23 外筒回転軸 23 Outer cylinder rotation axis
24 吊下部材 24 Suspension member
25 凸条 25 ridges
30 動力取得機構  30 Power acquisition mechanism
31 第一原動ギア 第二原動ギア 発電機 31 First prime mover gear Second prime mover generator
第一従動ギア 第二従動ギア シャフト ボールベアリング 動翼  1st driven gear 2nd driven gear Shaft Ball bearing Rotor blade
ブレード 閉塞板 Blade obstruction plate
案内翼 Guide wing
案内板体 羽根部材 内面部材 外面部材 回収刃 Guide plate body Blade member Inner surface member Outer surface member Recovery blade
盆状部材 多孔質部材 網 Basin member Porous member Net
板体 Plate
フィン Fin
ガイド翼 Guide wing
導風板 Wind guide plate
ガイド板 Guide plate
ボノレト Bonoleto
ナット Nut
冷却液体循環管路 冷却液体循環管体 冷却部 82 一方支軸 Cooling liquid circulation pipe Cooling liquid circulation pipe Cooling section 82 One spindle
83 流入口  83 Inlet
84 流出口  84 Outlet
85 注入口  85 inlet
86 回収口  86 Collection port
88 孔  88 holes
89 摺接部材  89 Sliding member
89a 溝  89a groove
89b 溝  89b groove
90 加温液体循環管路  90 Heated liquid circulation line
90a 加温液体循環管体  90a Heated liquid circulation tube
91 加温部  91 Heating part
92 他方支軸  92 Other spindle
93 流入口  93 Inlet
94 流出口  94 Outlet
95 注入口  95 Inlet
96 回収口  96 Collection port
97 送給管  97 Feed pipe
98 孔  98 holes
99 噴出口  99 spout
100 孔  100 holes
101 摺接部  101 Sliding part
102 一方通路  102 One way passage
103 他方通路  103 Other passage
104 隔壁  104 Bulkhead
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[第一実施形態] [First embodiment]
以下、添付図面にもとづいて、本発明の第一実施形態に係る対流温度差原動装置 について詳細に説明する。 Hereinafter, based on the attached drawings, a convection temperature difference prime mover according to a first embodiment of the present invention Will be described in detail.
[0024] 図 1〜16に、対流温度差原動装置 S1を示している。 1 to 16 show a convection temperature difference prime mover S1.
この対流温度差原動装置 S1は、円筒状の外郭 1と、内筒 10と、外筒 20とを備えて いる。内筒 10は、外郭 1に回転可能に軸支され、さらに、軸方向一端に気体の供給 口 11が形成され、他端に気体の排出口 12が形成されている。外筒 20は、外郭 1及 び内筒 10に対して回転可能に設けられ、さらに、その壁部が外郭 1と内筒 10との間 に位置する。  The convection temperature difference prime mover S1 includes a cylindrical outer shell 1, an inner cylinder 10, and an outer cylinder 20. The inner cylinder 10 is rotatably supported by the outer shell 1, and further, a gas supply port 11 is formed at one end in the axial direction, and a gas discharge port 12 is formed at the other end. The outer cylinder 20 is provided so as to be rotatable with respect to the outer casing 1 and the inner casing 10, and the wall portion thereof is positioned between the outer casing 1 and the inner cylinder 10.
また、対流温度差原動装置 S1は、気体が、内筒 10の供給口 11から内筒 10の内部 を通って排出口 12に至る一方流路 Ra及び内筒 10の排出口 12から内筒 10の外側 を通って供給口 11に至る他方流路 Rbを通るように、気体に温度差を付与して、気体 の対流を生じさせる。対流温度差原動装置 S1は、気体の対流によって内筒 10及び 外筒 20を回転させ、動力取得機構 30から動力を得る。  In addition, the convection temperature differential prime mover S1 is configured such that the gas flows from the supply port 11 of the inner cylinder 10 through the inside of the inner cylinder 10 to the discharge port 12 and from the discharge port 12 of the inner cylinder 10 to the inner cylinder 10 A temperature difference is given to the gas so as to pass through the other flow path Rb leading to the supply port 11 through the outside of the gas, thereby causing convection of the gas. The convection temperature difference prime mover S1 rotates the inner cylinder 10 and the outer cylinder 20 by gas convection and obtains power from the power acquisition mechanism 30.
ここで、気体として、例えば、二酸ィ匕炭素が用いられる。また、気体に温度差を付与 するために、気体を加温する加温液体および気体を冷却する冷却液体が用いられる 。この加温液体および冷却液体は、例えば、潤滑能力を有するオイルである。  Here, for example, diacid carbon is used as the gas. In addition, in order to impart a temperature difference to the gas, a heating liquid that heats the gas and a cooling liquid that cools the gas are used. The heating liquid and the cooling liquid are, for example, oil having a lubricating ability.
[0025] 詳しくは、図 1〜3,図 5〜7,図 12〜15に示すように、内筒 10の一端及び他端の 少なくともいずれか一方に、後述の一方支軸 82又は他方支軸 92に回転可能に挿通 される管状の内筒回転軸 13が設けられている。また、外筒 20に、内筒回転軸 13に 回転可能に挿通される管状の外筒回転軸 23が設けられている。 Specifically, as shown in FIGS. 1 to 3, FIGS. 5 to 7, and FIGS. 12 to 15, at least one of the one end and the other end of the inner cylinder 10 is provided with one support shaft 82 or the other support shaft described later. A tubular inner cylinder rotating shaft 13 that is rotatably inserted in 92 is provided. The outer cylinder 20 is provided with a tubular outer cylinder rotating shaft 23 that is rotatably inserted into the inner cylinder rotating shaft 13.
本実施形態においては、内筒 10は、一端及び他端の両方に内筒回転軸 13が設 けられている。すなわち、内筒 10の一端に、他方支軸 92に回転可能に挿通される管 状の内筒回転軸 13 (13a)が設けられ、内筒 10の他端に、一方支軸 82に回転可能 に挿通される管状の内筒回転軸 13 ( 13b)が設けられて 、る。内筒 10の一端側の内 筒回転軸 13 (13a)は、他方支軸 92に回転可能に挿通されている。また、内筒 10の 他端側の内筒回転軸 13 (13b)は、図 3に示すように、内筒 10の底部中央に設けた 管状体 14と、内筒 10の軸方向一端側が管状体 14の内側にスプライン歯車で連結さ れた軸管体 15とを備えている。  In the present embodiment, the inner cylinder 10 is provided with an inner cylinder rotating shaft 13 at both one end and the other end. That is, at one end of the inner cylinder 10, a tubular inner cylinder rotating shaft 13 (13a) that is rotatably inserted into the other supporting shaft 92 is provided, and at the other end of the inner cylinder 10, it can rotate on one supporting shaft 82. A tubular inner cylinder rotating shaft 13 (13b) inserted through is provided. The inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 is rotatably inserted into the other support shaft 92. Also, as shown in FIG. 3, the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 includes a tubular body 14 provided at the center of the bottom of the inner cylinder 10, and one end in the axial direction of the inner cylinder 10 is tubular. A shaft tube body 15 connected to the inside of the body 14 by a spline gear is provided.
軸管体 15は、外郭 1の内部に設けた架台 2の天板 4に、貫通した状態で設けられて いる。架台 2は、土台 laに立設される円筒状の側壁 3と、側壁 3の上端縁に設けられ る天板 4とを備えており、内部に冷却液体を溜めることができるようなつている。 The shaft tube body 15 is provided in a state of penetrating the top plate 4 of the gantry 2 provided in the outer shell 1. Yes. The gantry 2 includes a cylindrical side wall 3 erected on the base la and a top plate 4 provided at the upper edge of the side wall 3 so that the cooling liquid can be stored inside.
内筒 10は、外筒 20の底部に載置された状態で、外筒 20に支持される。本実施形 態においては、内筒 10は、例えば、その外周縁の周速が約 lOOmZsで回転する。  The inner cylinder 10 is supported by the outer cylinder 20 while being placed on the bottom of the outer cylinder 20. In the present embodiment, the inner cylinder 10 rotates, for example, at a peripheral speed of its outer peripheral edge of about lOOmZs.
[0026] また、外筒 20には、その一端に他方支軸 92に回転可能に挿通される外筒回転軸 23 (23a)と、他端に内筒 10の他端側の内筒回転軸 13 (13b)に回転可能に挿通さ れる外筒回転軸 23 (23b)とが設けられて 、る。外筒 20の一端側の外筒回転軸 23 ( 23a)は、外郭 1の上部に設けた支持台 5に支持される三角錐状の支持部材 24を備 えた構成としている。この支持部材 24は、支持台 5に設けたロート状の受け部 6に回 転可能に挿入されて支持され、外筒 20全体は、受け部 6に吊下して支持される。受 け部 6の内側であって支持台 5と外郭 1で囲まれる空間は、加温液体が満たされてい る。 [0026] The outer cylinder 20 has an outer cylinder rotating shaft 23 (23a) rotatably inserted into the other support shaft 92 at one end, and an inner cylinder rotating shaft on the other end side of the inner cylinder 10 at the other end. 13 (13b) is provided with an outer cylinder rotating shaft 23 (23b) that is rotatably inserted. The outer cylinder rotating shaft 23 (23a) on one end side of the outer cylinder 20 is configured to include a triangular pyramid-shaped support member 24 supported by a support base 5 provided on the upper portion of the outer shell 1. The support member 24 is rotatably inserted into and supported by a funnel-shaped receiving portion 6 provided on the support base 5, and the entire outer cylinder 20 is supported by being suspended from the receiving portion 6. A space inside the receiving part 6 and surrounded by the support 5 and the outer shell 1 is filled with a warming liquid.
また、外筒 20の他端側の外筒回転軸 23 (23b)は、外筒 10の底部中央に設けられ 、内筒 10の軸方向他端側の軸管体 15に回転可能に挿通されている。本実施形態に おいては、外筒 20は、例えば、その外周縁の周速が約 50mZsで回転する。  The outer cylinder rotating shaft 23 (23b) on the other end side of the outer cylinder 20 is provided at the center of the bottom of the outer cylinder 10, and is rotatably inserted into the shaft tube body 15 on the other axial end side of the inner cylinder 10. ing. In the present embodiment, the outer cylinder 20 rotates, for example, at a peripheral speed of the outer peripheral edge of about 50 mZs.
[0027] 動力取得機構 30は、内筒 10の他端側の内筒回転軸 13 (13b)に設けられる第一 原動ギア 31と、外筒 20の他端側の外筒回転軸 23 (23b)に外筒 20の底壁を介して 設けられる第二原動ギア 32と、第一原動ギア 31及び第二原動ギア 32の少なくともの いずれか 1つに連係して駆動される発電機 33とを備えた構成としている。 The power acquisition mechanism 30 includes a first driving gear 31 provided on the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10, and an outer cylinder rotating shaft 23 (23b on the other end side of the outer cylinder 20). ) Through a bottom wall of the outer cylinder 20, and a generator 33 driven in linkage with at least one of the first driving gear 31 and the second driving gear 32. It has a configuration with.
詳しくは、動力取得機構 30は、第一原動ギア 31に嚙合する第一従動ギア 34と、第 二原動ギア 32に嚙合する第二従動ギア 35と、発電機 33に接続されるシャフト 36とを 備え、このシャフト 36の回転により発電機 33を作動させる。第一原動ギア 31及び第 一従動ギア 34は、外郭 1の内部に設けた架台 2の内部に位置させられている。  Specifically, the power acquisition mechanism 30 includes a first driven gear 34 meshed with the first driving gear 31, a second driven gear 35 meshed with the second driving gear 32, and a shaft 36 connected to the generator 33. The generator 33 is operated by the rotation of the shaft 36. The first driving gear 31 and the first driven gear 34 are positioned inside the gantry 2 provided inside the outer shell 1.
また第二原動ギア 32及び第二従動ギア 35は、架台 2の外側に設けられている。さ らに、シャフト 36は、外郭 1にボールベアリング 37を介して回転可能に軸支されてい る。  The second driving gear 32 and the second driven gear 35 are provided outside the gantry 2. Further, the shaft 36 is rotatably supported by the outer shell 1 via a ball bearing 37.
[0028] また、図 1, 2, 5に示すように、内筒 10の一端に、供給口 11から流入した気体を受 けて内筒 10に回転力を付与する動翼 40が設けられている。この動翼 40は、内筒 10 の一端側において、内筒 10の回転軸を中心に等角度関係で、軸方向にほぼ沿って 列設され、後述のガイド翼 70により導かれた気体を受ける面を有した複数のブレード 41と、ブレード 41群の内筒 10の軸方向上側を閉塞する閉塞板 42とを備えている。 気体は、これらのブレード 41の側方力も流入し内筒 10の下方へ流れる。 In addition, as shown in FIGS. 1, 2, and 5, a rotor blade 40 is provided at one end of the inner cylinder 10 to receive the gas flowing in from the supply port 11 and apply a rotational force to the inner cylinder 10. Yes. This rotor blade 40 has an inner cylinder 10 A plurality of blades 41 having a surface for receiving gas guided by guide vanes 70 described later, arranged in an equiangular relationship around the rotation axis of the inner cylinder 10 and substantially along the axial direction. And a closing plate 42 for closing the upper side in the axial direction of the inner cylinder 10 of the blade 41 group. The gas also flows into the lower side of the inner cylinder 10 due to the side force of the blades 41 flowing in.
[0029] さらに、図 13, 14に示すように、内筒 10の他端であってその外方に、案内翼 50が 設けられている。案内翼 50は、排出口 12から排出された気体を受けて、内筒 10に 回転力を付与するとともに、排出口 12から排気された気体を他方流路 Rbの気体の 流通方向に導く。 Furthermore, as shown in FIGS. 13 and 14, a guide vane 50 is provided at the other end of the inner cylinder 10 and outside thereof. The guide vane 50 receives the gas discharged from the discharge port 12, applies a rotational force to the inner cylinder 10, and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb.
この案内翼 50は、排出口 12からの気体を他方流路 Rbの気体の流通方向に方向 転換させる椀状の案内板体 51と、この案内板体 51の内部に複数設けられる羽根部 材 52とを備えている。案内板体 51は、内側に内筒 10の排出口 12が位置するように 、開口部の径が内筒 10よりも大きく形成され、開口端部と内筒 10の外壁との間に、 気体の送出口を形成している。また、案内板体 51の中央底部は、内筒 10の他端側 の内筒回転軸 13 (13b)に挿通され、内筒回転軸 13 (13b)に固定されている。羽***材 52は、案内板体 51の底部に吹き付けられ、案内板体 51の周方向外側に流れ る、気体を受ける面を備え、動翼 40が内筒 10に付与する回転力と同じ向きの回転力 を内筒 10に付与する。  The guide blade 50 includes a bowl-shaped guide plate body 51 that changes the gas from the discharge port 12 in the direction of gas flow in the other flow path Rb, and a plurality of blade member members 52 provided inside the guide plate body 51. And. The guide plate body 51 is formed so that the diameter of the opening is larger than the inner cylinder 10 so that the discharge port 12 of the inner cylinder 10 is located on the inner side. It forms the outlet. The center bottom portion of the guide plate 51 is inserted into the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 and fixed to the inner cylinder rotating shaft 13 (13b). The blade member 52 is blown onto the bottom of the guide plate body 51 and has a gas receiving surface that flows outward in the circumferential direction of the guide plate body 51, and has the same direction as the rotational force applied to the inner cylinder 10 by the rotor blade 40. A rotational force is applied to the inner cylinder 10.
[0030] さらにまた、内筒 10の内部に、一方通路 Raを通る気体及び冷却液体が通過可能 な多孔質部材 60が設けられている。多孔質部材 60は、卷回したシート状の金属製 網 61としてある。多孔質部材 60は、網 61を卷回した構成としてあるので、構造が簡 単になる。また、網 61の上下に、多数の通孔が形成された板体 62が設けられている そしてまた、内筒 10の内部であって一方流路 Raの供給口 11側に、滞留した気体 を排出口 12側に押し込むフィン 65が設けられている。このフィン 65は、後述の送給 管 97の下縁に垂下されて設けられ、円周一方向に凹曲されている。フィン 65は、内 筒 10の回転により、内筒 10内の気体に渦流を形成し、内筒 10の上部に滞留した気 体を下降しやすくする。  [0030] Furthermore, a porous member 60 through which the gas passing through the one passage Ra and the cooling liquid can pass is provided inside the inner cylinder 10. The porous member 60 is a rolled sheet-like metal net 61. Since the porous member 60 has a structure in which the net 61 is wound, the structure becomes simple. In addition, a plate body 62 having a large number of through holes is provided above and below the net 61. Also, the accumulated gas is provided inside the inner cylinder 10 and on the supply port 11 side of the flow path Ra. A fin 65 to be pushed into the discharge port 12 side is provided. The fin 65 is provided so as to be suspended from a lower edge of a feed pipe 97 described later, and is bent in one circumferential direction. The fin 65 forms a vortex in the gas in the inner cylinder 10 by the rotation of the inner cylinder 10, and makes it easier for the gas staying in the upper part of the inner cylinder 10 to descend.
[0031] また、外筒 20の一端側の内周に、供給口 11に気体を導く複数のガイド翼 70が設 けられている。このガイド翼 70は、導風板 71を備えている。導風板 71は、動翼 40の 外周部を囲繞する部位に等角度関係で列設され、軸方向に沿う面を有している。導 風板 71は、円周一方向に凹曲され、凹曲した面により供給口 11に流入する気体に 遠心力を付与している。また、このガイド翼 70は、椀状のガイド板 72を備えている。ガ イド板 72は、外筒 20の上壁に挿通されるボルト 73とガイド板 72に設けたナット 74に より、外筒 20の上壁から吊り下げられている。 [0031] In addition, a plurality of guide vanes 70 that guide gas to the supply port 11 are provided on the inner periphery of one end side of the outer cylinder 20. It is The guide blade 70 includes a wind guide plate 71. The air guide plate 71 is arranged in an equiangular relationship at a portion surrounding the outer peripheral portion of the rotor blade 40, and has a surface along the axial direction. The air guide plate 71 is concaved in one circumferential direction, and imparts centrifugal force to the gas flowing into the supply port 11 by the concave surface. Further, the guide blade 70 is provided with a bowl-shaped guide plate 72. The guide plate 72 is suspended from the upper wall of the outer tube 20 by a bolt 73 inserted into the upper wall of the outer tube 20 and a nut 74 provided on the guide plate 72.
[0032] また、対流温度差原動装置 S 1は、内筒 10内に冷却液体を散布することにより、一 方流路 Raを通る気体を冷却し、かつ、冷却液体を循環させる、冷却液体循環管路 8 0を備えている。また、冷却液体循環管路 80の途中に、冷却液体を冷却する冷却部 81が設けられている。  [0032] Further, the convection temperature difference prime mover S1 cools the gas passing through the one-way channel Ra and circulates the cooling liquid by spraying the cooling liquid into the inner cylinder 10. Line 80 is provided. A cooling unit 81 for cooling the cooling liquid is provided in the middle of the cooling liquid circulation pipe 80.
冷却液体循環管路 80は、外郭 1に設けられ、一端側に冷却液体の流入口 83を有 し、他端側に内筒 10に冷却液体を散布する多数の流出口 84を有している。また、冷 却液体循環管路 80は、内筒 10および外筒 20の他端を軸支する一方支軸 82と、冷 却液体循環管体 80aとを備えている。冷却液体循環管体 80aは、一方支軸 82の流 入口 83に供給される冷却液体を注入する注入口 85と、一方流路 Raの気体を冷却し た後、内筒 10の排出口 12から流出した冷却液体を回収する回収口 86とを備え、回 収口 86から再び注入口 85に冷却液体を循環させる。  The cooling liquid circulation pipe 80 is provided in the outer shell 1, has a cooling liquid inlet 83 on one end side, and has a number of outlets 84 for spraying the cooling liquid on the inner cylinder 10 on the other end side. . Further, the cooling liquid circulation pipe 80 includes a first support shaft 82 that pivotally supports the other ends of the inner cylinder 10 and the outer cylinder 20, and a cooling liquid circulation pipe body 80a. The cooling liquid circulation pipe 80a is supplied from the inlet 85 for injecting the cooling liquid supplied to the inlet 83 of the one support shaft 82, and the outlet 12 of the inner cylinder 10 after cooling the gas in the one passage Ra. A recovery port 86 for recovering the cooled cooling liquid is provided, and the cooling liquid is circulated from the collection port 86 to the injection port 85 again.
[0033] 一方支軸 82は、一方の端が外郭 1に接地した状態で直立して 、る。一方支軸 82の 他方の端側の管壁に、複数の流入口 83が設けられて 、る。  On the other hand, the support shaft 82 stands upright with one end in contact with the outer shell 1. On the other hand, a plurality of inflow ports 83 are provided on the tube wall on the other end side of the support shaft 82.
また、一方支軸 82は、内筒 10の他端側の内筒回転軸 13 (13b)が挿通される位置 に、この内筒回転軸 13に一方支軸 82内の冷却液体を供給する供給孔 82aが設けら れている。  The one support shaft 82 supplies the cooling liquid in the one support shaft 82 to the inner tube rotation shaft 13 at a position where the inner tube rotation shaft 13 (13b) on the other end side of the inner tube 10 is inserted. A hole 82a is provided.
冷却液体循環管体 80aの注入口 85は、架台 2の内部の空間を介して、一方支軸 8 2の流入口 83に接続されている。また、冷却液体循環管体 80aの回収口 86は、外郭 1に設けられている。この回収口 86は、孔 88および摺接部材 89の溝 89aを介して、 冷却液体を回収している。孔 88は、外筒 20の他端部に外筒 20の周方向に沿って複 数列設されている。また、摺接部材 89は、外筒 20の一端部の表面に摺接するととも に、外郭 1に複数列設された孔 88を囲繞する。 冷却部 81は、冷却液体循環管体 80aの途中に設けられている。本実施形態にお いては、この冷却部 81により冷却された冷却液体の温度は、約— 50°Cになる。 The inlet 85 of the cooling liquid circulation pipe 80 a is connected to the inlet 83 of the one support shaft 82 through the space inside the gantry 2. The recovery port 86 of the cooling liquid circulation pipe 80a is provided in the outer shell 1. The recovery port 86 recovers the cooling liquid through the hole 88 and the groove 89a of the sliding contact member 89. The holes 88 are provided in a plurality of rows along the circumferential direction of the outer cylinder 20 at the other end of the outer cylinder 20. The sliding contact member 89 is in sliding contact with the surface of one end of the outer cylinder 20 and surrounds a plurality of holes 88 provided in the outer shell 1. The cooling unit 81 is provided in the middle of the cooling liquid circulation pipe body 80a. In the present embodiment, the temperature of the cooling liquid cooled by the cooling unit 81 is about −50 ° C.
[0034] さらに、対流温度差原動装置 S 1は、内筒 10と外筒 20との間に加温液体を散布す ることにより、他方流路 Rbを通る気体を加温し、かつ、加温液体を循環させる、加温 液体循環管路 90を備えている。また、加温液体循環管路 90の途中に、加温液体を 加温する加温部 91が設けられて ヽる。 [0034] Further, the convection temperature difference prime mover S1 heats the gas passing through the other flow path Rb by spraying a warming liquid between the inner cylinder 10 and the outer cylinder 20, and further heats the gas. A warming liquid circulation line 90 for circulating warm liquid is provided. Further, a heating unit 91 for heating the heated liquid is provided in the middle of the heated liquid circulation line 90.
加温液体循環管路 90は、他方支軸 92と、筒体 10aと、加温液体循環管体 90aとを 備えている。他方支軸 92は、外郭 1に設けられており、一端側に加温液体の流入口 93を有し、他端側に流出口 94を有しており、内筒 10及び外筒 20の一端を軸支する 。筒体 10aは、内筒 10を覆っており、内筒 10との間に、他方支軸 92の流出口 94から の加温液体が流通する流通路が形成され、かつ、外筒 20に向けて液体が流出する 多数の噴出口 99が形成されている。加温液体循環管体 90aは、他方支軸 92の流入 口 93に接続される注入口 95と、加温液体を回収する回収口 96とを備え、回収口 96 力も再び注入口 95に加温液体を循環させる。上記加温液体は、注入口 95から注入 され、流通路を通って噴出口 99から外筒 20に向けて噴出し、他方流路 Rbの気体を 加温する。  The warming liquid circulation pipe 90 includes the other support shaft 92, a cylindrical body 10a, and a warming liquid circulation pipe 90a. The other support shaft 92 is provided on the outer shell 1, has a warming liquid inlet 93 on one end side, and an outlet 94 on the other end, and has one end of the inner cylinder 10 and the outer cylinder 20. To support. The cylindrical body 10 a covers the inner cylinder 10, and a flow passage is formed between the inner cylinder 10 and the heated liquid from the outlet 94 of the other support shaft 92, and is directed toward the outer cylinder 20. As a result, a number of spouts 99 through which liquid flows out are formed. The heated liquid circulation tube 90a includes an inlet 95 connected to the inlet 93 of the other support shaft 92 and a recovery port 96 for recovering the heated liquid, and the recovery port 96 force is also heated to the inlet 95 again. Circulate the liquid. The warming liquid is injected from the injection port 95, is ejected from the ejection port 99 toward the outer cylinder 20 through the flow path, and warms the gas in the other flow path Rb.
筒体 10aは、内筒 10に対して、回転自在に設けられている。  The cylinder 10a is provided to be rotatable with respect to the inner cylinder 10.
[0035] 他方支軸 92は、一端に、加温液体循環管体 90aの注入口 95が接続される流入口 93が形成されている。流出口 94は、他方支軸 92の他端に形成され、内筒 10の一端 側の内筒回転軸 13 (13a)の内部に位置している。また、内筒 10の一端側の内筒回 転軸 13 (13a)は、下端が閉塞されるとともに、その内部は、筒体 10aの流通路に複 数の送給管 97を介して連通している。送給管 97は、内筒 10の周方向に等角度関係 で列設されている。 [0035] The other support shaft 92 is formed with an inlet 93 at one end to which the inlet 95 of the heated liquid circulation tube 90a is connected. The outlet 94 is formed at the other end of the other support shaft 92 and is located inside the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10. Further, the lower end of the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 is closed, and the inside thereof communicates with the flow passage of the cylinder 10a via a plurality of feed pipes 97. ing. The feed pipes 97 are arranged in an equiangular relationship in the circumferential direction of the inner cylinder 10.
筒体 10aの噴出口 99は、筒体 10aの外周面全体に亘つて設けられている。他方支 軸 92に、供給孔 92aが設けられており、この供給孔 92aは、内部を流れる加温液体 を、受け部 6の内側であって支持台 5と外郭 1で囲まれる空間に供給する。本実施形 態においては、噴出口 99から噴出する加温液体には、約 10kgZcm2〜100kgZc m2 (lMPa〜: LOMPa)の圧力がかけられている。 [0036] 加温液体循環管体 90aの回収口 96は、外郭 1に設けられている。この回収口 96は 、外筒 20の冷却液体を回収する回収口 86に連通する孔 88の上側に、外筒 20の周 方向に沿って複数列設された孔 98と、摺接部材 89の溝 89aの上側に設けた別の溝 89bとを介して、加温液体を回収している。 The jet port 99 of the cylinder 10a is provided over the entire outer peripheral surface of the cylinder 10a. The other support shaft 92 is provided with a supply hole 92a, and this supply hole 92a supplies the heated liquid flowing inside to the space surrounded by the support 5 and the outer shell 1 inside the receiving portion 6. . In the present embodiment, a pressure of about 10 kgZcm 2 to 100 kgZcm 2 (lMPa˜: LOMPa) is applied to the heated liquid ejected from the jet port 99. [0036] The recovery port 96 of the heated liquid circulation tube 90a is provided in the outer shell 1. The recovery port 96 has a plurality of holes 98 arranged in a row along the circumferential direction of the outer tube 20 and a sliding contact member 89 on the upper side of the hole 88 communicating with the recovery port 86 for recovering the cooling liquid of the outer tube 20. The heated liquid is recovered through another groove 89b provided on the upper side of the groove 89a.
冷却液体が流入する孔 88と加温液体が流入する孔 98の間には、外筒 20の壁面 に押し付けられて流れる冷却液体と加温液体とを仕切る凸条 25が設けられている。 加温部 91は、加温液体循環管体 90aの途中に設けられている。本実施形態にお いては、この加温部 91で加温された加温液体は、約 200°C〜250°C〖こなる。  Between the hole 88 through which the cooling liquid flows and the hole 98 through which the warming liquid flows, a ridge 25 is provided to partition the cooling liquid and the warming liquid that are pressed against the wall surface of the outer cylinder 20 and flow. The heating unit 91 is provided in the middle of the heated liquid circulation tube 90a. In the present embodiment, the heated liquid heated by the heating unit 91 is about 200 ° C. to 250 ° C.
また、図示しないが、冷却液体循環管路 80及び加温液体循環管路 90は、各回収 口 96力ら注入口 95にこれらの液体を吸 、上げるポンプを備えて!/、る。  Although not shown, the cooling liquid circulation line 80 and the warming liquid circulation line 90 are provided with pumps that suck and raise these liquids into the inlet 95 from each recovery port 96! /
[0037] また、対流温度差原動装置 S 1には、内筒回転軸 13及び外筒回転軸 23から漏れ 出て外郭 1内の土台 la上に溜まった潤滑油としての冷却液体及び加温液体を架台 2内に送るギアポンプ 8が設けられている。このギアポンプ 8は、作動のためのプーリ 8 aを備え、このプーリ 8aとシャフト 36に設けたプーリ 36aとに掛けられたベルトを介して 、シャフト 36の回転に連動して作動する。  In addition, the convection temperature difference prime mover S 1 has a cooling liquid and a heating liquid as lubricating oil that leaks from the inner cylinder rotating shaft 13 and the outer cylinder rotating shaft 23 and accumulates on the base la in the outer shell 1. A gear pump 8 is provided to feed the gas into the gantry 2. The gear pump 8 includes a pulley 8 a for operation, and operates in conjunction with the rotation of the shaft 36 via a belt hung on the pulley 8 a and a pulley 36 a provided on the shaft 36.
[0038] 次に、この対流温度差原動装置 S1を作動させるシステムの一例について説明する 図 17に示すように、このシステムにおいて、冷却液体循環管体 80aは、冷却部 81 の上流側及び下流側に夫々設けられる逆止弁 110と、冷却液体循環管体 80a中の 気泡を排出するガス抜き弁 111とを備えている。加温液体循環管体 90aは、加温部 9 1の上流側に設けられる逆止弁 112と、加温液体循環管体 90a中の気泡を排出する ガス抜き弁 113とを備えている。また、冷却部 81は、ラジェ一タカもなつている。加温 部 91は、 LPガス貯留槽 9 laからの LPガスを燃焼して加温液体を加温する。  [0038] Next, an example of a system for operating the convection temperature difference prime mover S1 will be described. As shown in FIG. 17, in this system, the cooling liquid circulation pipe 80a is provided on the upstream side and the downstream side of the cooling unit 81. And a degassing valve 111 for discharging bubbles in the cooling liquid circulation pipe body 80a. The warming liquid circulation tube 90a includes a check valve 112 provided on the upstream side of the heating unit 91 and a gas vent valve 113 that discharges bubbles in the warming liquid circulation tube 90a. In addition, the cooling unit 81 has a raje-taka. The heating unit 91 burns LP gas from the LP gas storage tank 9 la to heat the heating liquid.
[0039] さらに、このシステムには、冷却液体循環管体 80aを流れる冷却液体と加温液体循 環管体 90aを流れる加温液体の流量を調整する流量調整機構 120が設けられてい る。 Furthermore, this system is provided with a flow rate adjusting mechanism 120 that adjusts the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a.
この流量調整機構 120は、冷却液体循環管体 80aを流れる冷却液体及び加温液 体循環管体 90aを流れる加温液体から、両方の液体の一部を取り込んで、常時は、 各管体 80a, 90aから取り込んだ液体とほぼ同量の液体を各管体 80a, 90aに流入 する。これに対し、流量調整機構 120は、冷却液体循環管体 80a及び加温液体循環 管体 90aのいずれか一方を流れる液体の流量力 他方を流れる管体 80a, 90aの液 体の流量よりも少なくなつた場合、流量の少なくなつた一方の管体 80a, 90aに、優先 的に取り込んだ液体を流入させる。 The flow rate adjusting mechanism 120 takes in a part of both of the liquid from the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a. Approximately the same amount of liquid taken from the tubes 80a and 90a flows into the tubes 80a and 90a. On the other hand, the flow rate adjusting mechanism 120 is less than the flow rate of the liquid flowing through one of the cooling liquid circulating tube 80a and the heated liquid circulating tube 90a, and the flow rate of the liquid flowing through the tubes 80a and 90a flowing through the other. In such a case, the liquid taken in preferentially flows into one of the pipe bodies 80a and 90a having a low flow rate.
詳しくは、流量調整機構 120は、上流側分岐管 121と、上流側分岐管 122と、主管 123と、下流側分岐管 124と、下流側分岐管 125とを備えている。上流側分岐管 121 は、冷却液体循環管体 80aの回収口 86と冷却部 81よりも回収口 86側の逆止弁 110 との間で、冷却液体を分岐する。上流側分岐管 122は、加温液体循環管体 90aの回 収口 96と加温部 91よりも回収口 96側の逆止弁 112との間で、加温液体を分岐する 。主管 123は、上流側分岐管 121, 122が合流するとともに常時作動するポンプ 123 aを備えている。下流側分岐管 124は、主管 123から分岐して冷却液体循環管体 80 aに合流するとともに加温液体循環管体 90aを流れる加温液体の流量にもとづいて 開閉する。下流側分岐管 125は、主管 123から分岐して加温液体循環管体 90aに合 流するとともに冷却液体循環管体 80aを流れる冷却液体の流量にもとづいて開閉す る。  Specifically, the flow rate adjusting mechanism 120 includes an upstream branch pipe 121, an upstream branch pipe 122, a main pipe 123, a downstream branch pipe 124, and a downstream branch pipe 125. The upstream branch pipe 121 branches the cooling liquid between the recovery port 86 of the cooling liquid circulation pipe body 80a and the check valve 110 closer to the recovery port 86 than the cooling unit 81. The upstream branch pipe 122 branches the heated liquid between the collection port 96 of the heated liquid circulation pipe body 90 a and the check valve 112 on the recovery port 96 side of the heating unit 91. The main pipe 123 is provided with a pump 123a that always operates while the upstream branch pipes 121 and 122 merge. The downstream branch pipe 124 branches from the main pipe 123 and merges with the cooling liquid circulation pipe 80a and opens and closes based on the flow rate of the warming liquid flowing through the warming liquid circulation pipe 90a. The downstream branch pipe 125 branches from the main pipe 123 and joins the heated liquid circulation pipe 90a, and opens and closes based on the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe 80a.
各上流側分岐管 121, 122には、逆止弁 119が設けられ、上流側分岐管 121から 冷却液体循環管体 80a及び上流側分岐管 122から加温液体循環管体側 90aへの 逆流を防止する。  Each upstream branch pipe 121, 122 is provided with a check valve 119 to prevent backflow from the upstream branch pipe 121 to the cooling liquid circulation pipe 80a and from the upstream branch pipe 122 to the warming liquid circulation pipe 90a. To do.
また、冷却液体循環管体 80aに接続される下流側分岐管 124に、電磁弁 127が備 えられている。電磁弁 127は、加温液体循環管体 90aの加温部 91と加温部 91の上 流側の逆止弁 112との間に設けられ、加温液体循環管体 90aを流れる加温液体の 流量を計測する加温液体流量測定器 126が測定した流量にもとづいて、開閉する。 この電磁弁 127は、常時は開状態であるが、加温液体流量測定器 126で測定された 加温液体の流量が一定量以下になると、スィッチ 128がオンになり、電源 150に接続 されて作動し、下流側分岐管 124を閉状態にする。  The downstream branch pipe 124 connected to the cooling liquid circulation pipe body 80a is provided with a solenoid valve 127. The electromagnetic valve 127 is provided between the warming portion 91 of the warming liquid circulation tube 90a and the check valve 112 on the upstream side of the warming portion 91, and the warming liquid flowing through the warming liquid circulation tube 90a. Opening and closing based on the flow rate measured by the heated liquid flow meter 126 for measuring the flow rate. This solenoid valve 127 is normally open, but when the flow rate of the warming liquid measured by the warming liquid flow meter 126 falls below a certain amount, the switch 128 is turned on and connected to the power source 150. Operates and closes the downstream branch pipe 124.
また、加温液体循環管体 90aに接続される下流側分岐管 125に、電磁弁 130が備 えられている。電磁弁 130は、冷却液体循環管体 80aの冷却部 91と冷却部 91よりも 上流側の逆止弁 110との間に設けられ、冷却液体循環管体 80aを流れる冷却液体 の流量を計測する冷却液体流量測定器 129が測定した流量にもとづいて、開閉する 。この電磁弁 130は、常時は開状態であるが、冷却液体流量測定器 129で測定され た冷却液体の流量が一定量以下になると、スィッチ 131がオンになり、電源 150に接 続されて作動し、下流側分岐管 125を閉状態にする。 In addition, a solenoid valve 130 is provided in the downstream branch pipe 125 connected to the heated liquid circulation pipe body 90a. Solenoid valve 130 is more than cooling part 91 and cooling part 91 of cooling liquid circulation pipe body 80a. Based on the flow rate measured by the cooling liquid flow rate measuring device 129, which is provided between the upstream side check valve 110 and measures the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a. This solenoid valve 130 is normally open, but when the cooling liquid flow rate measured by the cooling liquid flow meter 129 falls below a certain amount, the switch 131 is turned on and connected to the power source 150 to operate. Then, the downstream branch pipe 125 is closed.
[0041] また、流量調整機構 120は、受け部材 135と、タンク 136と、補給管 137とを備えて いる。 In addition, the flow rate adjustment mechanism 120 includes a receiving member 135, a tank 136, and a supply pipe 137.
受け部材 135は、外筒 20と摺接部材 89の摺接部位から漏れた冷却液体及び加温 液体を受ける。受け部材 135は、外筒 20の下部及び摺動部材 89を覆うように、断面 がほぼ U字状に形成され、内部 135aに冷却液体及び加温液体が溜められる。 タンク 136は、受け部材 135からの液体が溜められ、また、揮発する等して減少した 液体を補充するための液体の補充口 136aを備えている。タンク 136は、回収管 138 を介して受け部材 135の内部 135aに連通している。  The receiving member 135 receives the cooling liquid and the heated liquid that have leaked from the sliding contact portions of the outer cylinder 20 and the sliding contact member 89. The receiving member 135 has a substantially U-shaped cross section so as to cover the lower portion of the outer cylinder 20 and the sliding member 89, and a cooling liquid and a warming liquid are stored in the interior 135a. The tank 136 is provided with a liquid replenishing port 136a for accumulating liquid from the receiving member 135 and replenishing liquid that has decreased due to volatilization or the like. The tank 136 communicates with the interior 135a of the receiving member 135 through the recovery pipe 138.
補給管 137は、タンク 136に溜められた液体が所定量を超えると、タンク 136内の 液体を主管 123に補給する。補給管 137は、上流側分岐管 121, 122の合流点とポ ンプ 123aとの間に合流している。また、補給管 137は、補給管 137を開閉する電磁 弁 141と、主管 137から液体が逆流しないようにするための逆止弁 142とを備えてい る。電磁弁 141は、タンク 136内の液体の量を測定する液体量測定器 139により、主 管 123と補給管 137との合流点と、各上流側分岐管 121, 122の合流点との間に設 けられた電磁弁 140とともに開閉する。  The supply pipe 137 supplies the liquid in the tank 136 to the main pipe 123 when the amount of liquid stored in the tank 136 exceeds a predetermined amount. The supply pipe 137 joins between the junction of the upstream branch pipes 121 and 122 and the pump 123a. The supply pipe 137 includes an electromagnetic valve 141 for opening and closing the supply pipe 137 and a check valve 142 for preventing liquid from flowing back from the main pipe 137. Solenoid valve 141 is connected between the confluence of main pipe 123 and replenishment pipe 137 and the confluence of upstream branch pipes 121 and 122 by liquid amount measuring device 139 that measures the amount of liquid in tank 136. It opens and closes with the installed solenoid valve 140.
[0042] この電磁弁 140及び電磁弁 141の動作は次のようになる。 The operations of the solenoid valve 140 and the solenoid valve 141 are as follows.
液体量測定器 139がタンク 136内の液体の量が所定量よりも少ないことを検知する と、スィッチ 143により電源 150が電磁弁 141に接続され、電磁弁 141が閉じ、電磁 弁 140は、電源 150から切断され開く。この場合、上流側分岐管 121, 122からの液 体力 ポンプ 123aで吸引される。また、液体量測定器 139がタンク 136内の液体の 量が所定量よりも多いことを検知すると、スィッチ 143により電源 150が電磁弁 140に 接続されて電磁弁 140が閉じ、電磁弁 141は、電源 150から切断され開く。この場合 、タンク 136内の液体力 ポンプ 123aで吸引される。 [0043] さらに、冷却液体及び加温液体を流す前に、冷却液体循環管体 80aを用いて、内 筒 10及び外筒 20を回転させるための気体を外筒 20内に供給するコンプレッサ 145 が設けられている。コンプレッサ 145からの気体は、冷却部 81の下流側に設けた逆 止弁 110により、冷却部 81側に流入しない。 When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is less than the predetermined amount, the power supply 150 is connected to the solenoid valve 141 by the switch 143, the solenoid valve 141 is closed, and the solenoid valve 140 is Disconnected from 150 and opened. In this case, the fluid is pumped from the upstream branch pipes 121 and 122 by the liquid force pump 123a. When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is larger than the predetermined amount, the switch 143 connects the power source 150 to the solenoid valve 140 and closes the solenoid valve 140. Disconnect from power supply 150 and open. In this case, suction is performed by the liquid force pump 123a in the tank 136. [0043] Further, before flowing the cooling liquid and the heating liquid, a compressor 145 that supplies a gas for rotating the inner cylinder 10 and the outer cylinder 20 into the outer cylinder 20 using the cooling liquid circulation pipe 80a is provided. Is provided. The gas from the compressor 145 does not flow into the cooling unit 81 due to the check valve 110 provided on the downstream side of the cooling unit 81.
また、図 17において、 146は、冷却液体循環管体 80aの内部を流れる冷却液体の 圧力を計測する圧力計である。  In FIG. 17, reference numeral 146 denotes a pressure gauge that measures the pressure of the cooling liquid flowing inside the cooling liquid circulation tube 80a.
[0044] したがって、このシステムによれば、第一実施形態に係る対流温度差原動装置 S1 は、以下のように作動する。 [0044] Therefore, according to this system, the convection temperature difference prime mover S1 according to the first embodiment operates as follows.
まず、コンプレッサ 145により外筒 20内に気体が入れられる。この状態で、冷却液 体循環管路 80により冷却液体が循環され、加温液体循環管路 90により加温液体が 循環される。  First, gas is introduced into the outer cylinder 20 by the compressor 145. In this state, the cooling liquid is circulated through the cooling liquid circulation line 80 and the warming liquid is circulated through the heating liquid circulation line 90.
この際、冷却液体は、冷却液体循環管路 80の冷却液体循環管体 80aを経て注入 口 85から架台 2に供給され、続いて、一方支軸 82の流入口 83から一方支軸 82内を 通過し、流出口 84から内筒 10内に流出する。その後、冷却液体は、内筒 10内の一 方流路 Raの気体を冷却し、排出口 12及び案内翼 50を通って回収口 86から冷却液 体循環管体 80aを通り、再び注入口 85に導かれる。この冷却液体は、気体の冷却に より加温されるが、冷却液体循環管体 80aの途中で、冷却部 81により再び冷却され る。そのため、内筒 10内に散布される冷却液体は、冷却されて温度が低い状態にな り、一方流路 Raの気体の冷却状態が良好になる。  At this time, the cooling liquid is supplied from the inlet 85 to the gantry 2 through the cooling liquid circulation pipe 80a of the cooling liquid circulation pipe 80, and then the inside of the one spindle 82 from the inlet 83 of the one spindle 82. Passes through and flows out from the outlet 84 into the inner cylinder 10. Thereafter, the cooling liquid cools the gas in the one-way channel Ra in the inner cylinder 10, passes through the discharge port 12 and the guide vane 50, passes from the recovery port 86 through the cooling liquid circulation tube 80 a, and again enters the injection port 85. Led to. The cooling liquid is heated by the cooling of the gas, but is cooled again by the cooling unit 81 in the middle of the cooling liquid circulation pipe body 80a. Therefore, the cooling liquid sprayed into the inner cylinder 10 is cooled to a low temperature state, while the cooling state of the gas in the flow path Ra is improved.
[0045] 一方、加温液体は、加温液体循環管路 90により、他方支軸 92の流入口 93から他 方支軸 92内,内筒 10の一端側の内筒回転軸 13 (13a)内,送給管 97及び流通路を 通過し、噴出口 99から内筒 10外に噴出する。続いて、加温液体は、他方流路 Rbの 気体を加温した後、回収口 86から加温液体循環管体 90aを通り再び注入口 95に導 かれる。この加温液体は、他方流路 Rbの気体の加温により冷却されるが、加温液体 循環管体 90aの途中で、加温部 91により再び加温される。そのため、内筒 10と外筒 20との間に散布される加温液体は、再び温度が高い状態になり、他方流路 Rbの気 体の加温状態が良好になる。 On the other hand, the warming liquid is heated by the warming liquid circulation conduit 90 from the inlet 93 of the other support shaft 92 into the other support shaft 92 and the inner cylinder rotating shaft 13 on one end side of the inner cylinder 10 (13a). It passes through the inside, the feed pipe 97 and the flow passage, and is ejected from the spout 99 to the outside of the inner cylinder 10. Subsequently, the warming liquid warms the gas in the other flow path Rb, and then is led from the recovery port 86 through the warming liquid circulation tube 90a to the inlet 95 again. This heated liquid is cooled by heating the gas in the other flow path Rb, but is heated again by the heating unit 91 in the middle of the heated liquid circulation pipe body 90a. Therefore, the warming liquid sprayed between the inner cylinder 10 and the outer cylinder 20 is in a high temperature state again, and the warming state of the gas in the other flow path Rb is improved.
この場合、他方流路 Rbを流通する気体は、噴出口 99から噴出した加温液体により 外筒 20と内筒 10の間の空間で直接加温させられる。したがって、他方流路 Rbの気 体は、外筒 20の外部に出ることなく加温されるので、他方流路 Rbの構造が簡単にな る。 In this case, the gas flowing through the other channel Rb is caused by the heated liquid ejected from the ejection port 99. It is heated directly in the space between the outer cylinder 20 and the inner cylinder 10. Therefore, the gas in the other flow path Rb is heated without going out of the outer cylinder 20, so that the structure of the other flow path Rb is simplified.
また、一方支軸 82を冷却液体循環管路 80の一部として兼用し、他方支軸 92をカロ 温液体循環管路 90の一部として兼用しているので、これらの液体が流出させられる 専用の管路を別途設けた場合に比較して構造が簡単になる。そのため、一方流路 R aと他方流路 Rbに生じる気体の対流に、悪影響が発生しなくなり、気体の対流におけ るエネルギーのロスが低減され、この対流のエネルギーが回転力として内筒 10及び 外筒 20に効率よく付与される。  Also, since one support shaft 82 is also used as part of the cooling liquid circulation conduit 80 and the other support shaft 92 is also used as part of the caloric liquid circulation conduit 90, these liquids can flow out. Compared with the case where a separate pipe line is provided, the structure is simplified. As a result, the gas convection generated in the one flow path Ra and the other flow path Rb no longer has an adverse effect, and energy loss in the gas convection is reduced. Efficiently applied to the outer cylinder 20.
[0046] また、この際、冷却液体循環管体 80aを流れる冷却液体の流量が少なくなると、こ れを冷却液体流量測定器 129が検知し、スィッチ 131がオンになり、電磁弁 130が 閉じる。そのため、主管 123の液体は、下流側分岐管 124のみに流れ、冷却液体循 環管体 80aに流入する。一方、加温液体循環管体 90aを流れる加温液体の流量が 少なくなると、これを加温液体流量測定器 126が検知し、スィッチ 128がオンになり、 電磁弁 127が閉じる。そのため、主管 123の液体が下流側分岐管 125のみに流れ、 加温液体循環管体 90aに流入する。  At this time, when the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a decreases, this is detected by the cooling liquid flow rate measuring device 129, the switch 131 is turned on, and the electromagnetic valve 130 is closed. Therefore, the liquid in the main pipe 123 flows only in the downstream branch pipe 124 and flows into the cooling liquid circulation pipe body 80a. On the other hand, when the flow rate of the heated liquid flowing through the heated liquid circulation tube 90a decreases, the heated liquid flow rate measuring device 126 detects this, the switch 128 is turned on, and the solenoid valve 127 is closed. Therefore, the liquid in the main pipe 123 flows only into the downstream branch pipe 125 and flows into the heated liquid circulation pipe body 90a.
すなわち、冷却液体循環管体 80aを流れる冷却液体と加温液体循環管体 90aを流 れる加温液体の流量は、一定量以上に確保される。  That is, the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a are ensured to be equal to or larger than a certain amount.
[0047] また、タンク 136内に溜まった液体が増えてくると、液体量測定器 139がこれを検知 する。この際、スィッチ 143が電磁弁 141側に電源 150を接続し、電磁弁 141を開く とともに、電磁弁 140を閉じる。これにより、タンク 136内の液体がポンプ 123aで吸引 され、冷却液体循環管体 80a及び加温液体循環管体 90aに流入する。そのため、液 体が漏れて冷却液体循環管路 80を流れる冷却液体及び加温液体循環管路 90を流 れる加温液体が少なくなつても、適時に補充することができる。  [0047] When the amount of liquid accumulated in the tank 136 increases, the liquid amount measuring device 139 detects this. At this time, the switch 143 connects the power source 150 to the solenoid valve 141 side, opens the solenoid valve 141, and closes the solenoid valve 140. As a result, the liquid in the tank 136 is sucked by the pump 123a and flows into the cooling liquid circulation pipe body 80a and the heated liquid circulation pipe body 90a. Therefore, even if the liquid leaks and the cooling liquid flowing through the cooling liquid circulation pipe 80 and the warming liquid flowing through the warming liquid circulation pipe 90 are reduced, they can be replenished in a timely manner.
[0048] これにより、内筒 10の供給口 11から内筒 10の内部を通って排出口 12に至る一方 流路 Ra及び内筒 10の排出口 12から内筒 10の外側を通って供給口 11に至る他方 流路 Rbを通る気体の対流が生じる。この対流により、動翼 40および案内翼 50を介し て、内筒 10が回転する。 内筒 10が回転すると、この回転力は、他端側の内筒回転軸 13 (13b) ,第一原動ギ ァ 31,第一従動ギア 34,シャフト 36,第二従動ギア 35,第二原動ギア 32及び外筒 2 0の他端側の外筒回転軸 23 (23b)を介して、外筒 20に伝わり、外筒 20も内筒 10の 回転方向と同方向に回転する。 [0048] Accordingly, the supply port 11 from the supply port 11 of the inner cylinder 10 passes through the inside of the inner tube 10 to the discharge port 12, and the supply port passes from the discharge port 12 of the inner cylinder 10 to the outside of the inner tube 10 through the outside. Convection of gas through the other flow path Rb leading to 11. By this convection, the inner cylinder 10 rotates through the moving blade 40 and the guide blade 50. When the inner cylinder 10 is rotated, this rotational force is applied to the inner cylinder rotating shaft 13 (13b) on the other end side, the first driving gear 31, the first driven gear 34, the shaft 36, the second driven gear 35, and the second driving power. The outer cylinder 20 is transmitted to the outer cylinder 20 via the outer cylinder rotating shaft 23 (23b) on the other end side of the gear 32 and the outer cylinder 20, and the outer cylinder 20 also rotates in the same direction as the rotation direction of the inner cylinder 10.
[0049] この際、他方流路 Rbの構造が簡単になり、気体の対流におけるエネルギーのロス が低減されているので、この対流のエネルギーが回転力として内筒 10及び外筒 20 に効率よく付与される。  [0049] At this time, since the structure of the other flow path Rb is simplified and energy loss in gas convection is reduced, this convection energy is efficiently applied to the inner cylinder 10 and the outer cylinder 20 as a rotational force. Is done.
また、この際、内筒 10内で冷却されて降下し排出口 12に至った一方流路 Raの気 体は、内筒 10の他端に設けた排出口 12から順次排出されて、案内翼 50に至る。こ の案内翼 50において、気体は、案内板体 51に衝止して、案内板体 51の周方向外 側であって他方流路 Rbの気体の流通方向に沿うように導かれるとともに、案内板体 5 1の内部に設けた羽根部材 52の面に衝止していき、内筒 10を回転させる。  At this time, the gas in the one-sided passage Ra that has been cooled down in the inner cylinder 10 and descended to the discharge port 12 is sequentially discharged from the discharge port 12 provided at the other end of the inner tube 10 to be guided vanes. Up to 50. In this guide vane 50, the gas strikes the guide plate body 51 and is guided along the flow direction of the gas in the other flow path Rb outside the guide plate body 51 in the circumferential direction. The inner cylinder 10 is rotated by stopping against the surface of the blade member 52 provided inside the plate 51.
[0050] また、案内翼 50の羽根部材 52に当接した気体は、他方流路 Rbの気体の流通方向 であって内筒 10の回転方向と逆向きに送出され、外筒 20と内筒 10の間の空間に至 る。  [0050] The gas in contact with the blade member 52 of the guide vane 50 is sent in the direction of gas flow in the other flow path Rb and in the direction opposite to the rotation direction of the inner cylinder 10, and the outer cylinder 20 and the inner cylinder It leads to a space between 10.
この際、排出口 12からの気体は、他方流路 Rbの流通方向に向力つて吹き出され、 外筒 20内の下部に滞留しに《なる。これにより、気体の対流が円滑に行なわれる。 このように、排出口 12から排出された気体は、渦流になって上昇する。  At this time, the gas from the discharge port 12 is blown out in the flow direction of the other flow path Rb and stays in the lower part in the outer cylinder 20. Thereby, convection of gas is performed smoothly. Thus, the gas discharged from the discharge port 12 rises as a vortex.
[0051] そして、他方流路 Rbの気体は、加温液体の加温による膨張と渦流によって付与さ れる遠心力により、圧縮された状態で外筒 20上部のガイド翼 70に至り、ガイド板 72 に衝止して、その流通方向が外筒 20の周方向内側に向けられる。 [0051] The gas in the other flow path Rb reaches the guide blade 70 in the upper portion of the outer cylinder 20 in a compressed state by the centrifugal force imparted by the expansion and vortex flow of the heated liquid, and guide plate 72 The distribution direction is directed to the inside of the outer cylinder 20 in the circumferential direction.
この際、ガイド翼 70において、気体は、導風板 71の凹曲面に衝止する。そして、導 風板 71によって、流向がほぼ半径方向に変更する。ガイド翼 70の各導風板 71は、 円周一方向に凹曲されているので、気体は、さらに遠心力が付与されて流向が変更 する。そして、気体は、ブレード 41の外周部の供給口 11から流入し、動翼 40のブレ ード 41に衝止するとともに、動翼 40の内周部に抜けて内筒 10の内部に流入する。そ のため、動翼 40のブレード 41に、ガイド翼 70により圧縮されて遠心力が付与された 気体が、ほぼ直角に衝止するので、動翼 40のブレード 41は、気体の力を充分に受 けることができ、気体のエネルギーを内筒 10の回転力に変換する変換効率が大幅に 向上し、発電効率が向上する。また、この際、気体は、ブレード 41間でさらに圧縮さ れて、流速が極めて速くなるので、ブレード 41に衝止するエネルギーが高められ、対 流のエネルギーが、内筒 10の回転力として効率よく内筒 10に付与される。 At this time, the gas impinges on the concave curved surface of the air guide plate 71 in the guide blade 70. Then, the flow direction is changed almost in the radial direction by the air guide plate 71. Since each air guide plate 71 of the guide blade 70 is bent in one circumferential direction, the flow direction of the gas is changed by further applying a centrifugal force. Then, the gas flows in from the supply port 11 on the outer peripheral portion of the blade 41, stops at the blade 41 of the moving blade 40, flows into the inner peripheral portion of the moving blade 40, and flows into the inner cylinder 10. . For this reason, the gas compressed by the guide blade 70 and applied with centrifugal force to the blade 41 of the moving blade 40 impinges at a substantially right angle, so that the blade 41 of the moving blade 40 has sufficient gas force. Receiving Therefore, the conversion efficiency for converting gas energy into the rotational force of the inner cylinder 10 is greatly improved, and the power generation efficiency is improved. At this time, the gas is further compressed between the blades 41, and the flow velocity becomes extremely fast. Therefore, the energy to strike the blades 41 is increased, and the convection energy is efficiently used as the rotational force of the inner cylinder 10. Often given to the inner cylinder 10.
[0052] 供給口 11から動翼 40のブレード 41群を通過して内筒 10内に入った気体は、その 対流エネルギーが動翼 40を介して内筒 10の回転力に変換されるとともに、ある程度 温度が高くなつている。したがって、上記気体は、内筒 10の上部に滞留しょうとする。 しかし、この気体は、内筒 10の回転とともに回転するフィン 65により排出口 12側に押 し込まれる。すなわち、供給口 11から入った気体は、ほとんど滞留すること無く排出 口 12側に移動するので、気体の対流状態が良好になる。  [0052] The gas that has entered the inner cylinder 10 through the blade 41 group of the rotor blade 40 from the supply port 11 is converted into the rotational force of the inner cylinder 10 via the rotor blade 40, and The temperature is getting higher to some extent. Therefore, the gas tends to stay in the upper part of the inner cylinder 10. However, this gas is pushed into the discharge port 12 by the fins 65 that rotate as the inner cylinder 10 rotates. That is, the gas entering from the supply port 11 moves to the discharge port 12 side with almost no stagnation, so that the convection state of the gas becomes good.
そして、この気体は、再び排出口 12に至り上記と同様に他方流路 Rbと一方流路 R aを循環して、内筒 10と外筒 20とを回転させる。  Then, this gas reaches the discharge port 12 again, circulates in the other flow path Rb and the one flow path Ra in the same manner as described above, and rotates the inner cylinder 10 and the outer cylinder 20.
[0053] 内筒 10が回転しているとき、内筒 10内で、冷却液体は、多孔質部材 60の網 61に 衝止し、回転した内筒 10の遠心力で網 61の網目力も外側に移動し、内筒 10の内面 に至り、内筒 10の内面を流下して、排出口 12から内筒 10の外部に排出される。この 場合、冷却液体は、多孔質部材 60の網 61に一時的に留まるので、多孔質部材 60 が無い場合と比較して、一方流路 Raの冷却液体に接触する時間が長くなり、一方流 路 Raを流通する気体との熱交換効率が向上し、一方流路 Raを流通する気体がより 冷却される。そのため、一方流路 Raを流通する気体は、下降しやすくなり、気体の流 速が極めて速くなる。  [0053] When the inner cylinder 10 is rotating, in the inner cylinder 10, the cooling liquid stops against the mesh 61 of the porous member 60, and the mesh force of the mesh 61 is also outside due to the centrifugal force of the rotated inner cylinder 10. , Reaches the inner surface of the inner cylinder 10, flows down the inner surface of the inner cylinder 10, and is discharged from the discharge port 12 to the outside of the inner cylinder 10. In this case, since the cooling liquid stays temporarily in the mesh 61 of the porous member 60, the time of contact with the cooling liquid in the one flow path Ra becomes longer compared to the case without the porous member 60, and the one- Heat exchange efficiency with the gas flowing through the channel Ra is improved, while the gas flowing through the channel Ra is further cooled. For this reason, the gas flowing through the one-way channel Ra tends to descend, and the flow velocity of the gas becomes extremely fast.
[0054] また、外筒 20内では、冷却液体及び加温液体は、遠心力により外筒 20の内壁に 押し付けられて溜まっていくとともに、孔 88, 98から溝 89a, 89bを通って各回収口 8 6, 96から回収される。この際、凸条 25により孔 88と孔 98の間が隔てられているので 、冷却液体と加温液体とがほとんど混ざらなくなり、冷却液体と加温液体とを分けて回 収することができる。そのため、回収した冷却液体の温度があまり上がらず、また、回 収した加温液体の温度もあまり下がらな!/、ので、冷却部 81による冷却液体の冷却及 び加温部 91による加温液体の加温を効率よく行なうことができる。  [0054] Further, in the outer cylinder 20, the cooling liquid and the warming liquid are pressed against the inner wall of the outer cylinder 20 by centrifugal force and accumulated, and are collected from the holes 88 and 98 through the grooves 89a and 89b. Recovered from mouths 8 6, 96. At this time, since the holes 88 and 98 are separated by the ridges 25, the cooling liquid and the heating liquid are hardly mixed, and the cooling liquid and the heating liquid can be collected separately. For this reason, the temperature of the recovered cooling liquid does not rise so much, and the temperature of the recovered warming liquid does not drop much! /, So cooling of the cooling liquid by the cooling unit 81 and heating liquid by the heating unit 91 Can be efficiently heated.
[0055] さらにまた、対流によって内筒 10と外筒 20が回転すると、動力取得機構 30は、内 筒 10及び外筒 20が同方向に回転するので、この両方力も動力を得ることができる。 すなわち、内筒 10の回転力が、内筒 10の他端側の内筒回転軸 13 (13b) ,第一原 動ギア 31,第一従動ギア 34,シャフト 36及び第二従動ギア 35を介して、外筒 20の 第二原動ギア 32に伝達され、外筒 20自体も第二原動ギア 32を回転させるので、こ の第一原動ギア 31の回転が発電機 33に伝達され、この発電機 33により発電される また、内筒 10及び外筒 20は、内筒 10の内筒回転軸 13の軸受部及び外筒 20の外 筒回転軸 23の軸受部に、冷却液体や加温液体が潤滑油として供給されるので、円 滑に回転する。 [0055] Furthermore, when the inner cylinder 10 and the outer cylinder 20 are rotated by convection, the power acquisition mechanism 30 Since the cylinder 10 and the outer cylinder 20 rotate in the same direction, both these forces can also obtain power. That is, the rotational force of the inner cylinder 10 is transmitted through the inner cylinder rotating shaft 13 (13b), the first driving gear 31, the first driven gear 34, the shaft 36, and the second driven gear 35 on the other end side of the inner cylinder 10. Since the outer cylinder 20 itself also rotates the second driving gear 32, the rotation of the first driving gear 31 is transmitted to the generator 33, which is transmitted to the second driving gear 32 of the outer cylinder 20. Further, the inner cylinder 10 and the outer cylinder 20 are supplied with cooling liquid or heating liquid in the bearing part of the inner cylinder rotating shaft 13 of the inner cylinder 10 and the bearing part of the outer cylinder rotating shaft 23 of the outer cylinder 20. Since it is supplied as lubricating oil, it rotates smoothly.
[0056] [第二実施形態] [0056] [Second Embodiment]
図 18〜21は、本発明の第二実施形態に係る対流温度差原動装置 S2を示してい る。  18 to 21 show a convection temperature difference prime mover S2 according to the second embodiment of the present invention.
この対流温度差原動装置 S2は、上記の対流温度差原動装置 S1とは異なり、内筒 10と外筒 20の相対回転により、冷却液体と加温液体とを回収する機構が設けられて いる。  Unlike the convection temperature difference prime mover S1, the convection temperature difference prime mover S2 is provided with a mechanism for recovering the cooling liquid and the heated liquid by the relative rotation of the inner cylinder 10 and the outer cylinder 20.
[0057] 詳しくは、案内翼 50は、内筒回転軸 13 (13b)の周囲に設けられ、この内筒回転軸 13 (13b)から内筒 10の外側に向力 凹曲面を有した案内板体 51と、この案内板体 5 1の内部に設けられる羽根部材 52とを備えている。  More specifically, the guide vane 50 is provided around the inner cylinder rotation shaft 13 (13b), and the guide plate has a concave force curve on the outside of the inner cylinder 10 from the inner cylinder rotation shaft 13 (13b). A body 51 and a blade member 52 provided inside the guide plate body 51 are provided.
また、案内翼 50の案内板体 51は、案内板体 51の内面を形成する内面部材 53と、 内面部材 53の外側に設けられ内面部材 53との間に排出ロカもの冷却液体が流通 し、冷却液体循環管体 80aの回収口 86に連通する空間が形成される外面部材 54と を備えている。内面部材 53の開口縁部には、内筒 10の回転により生じた遠心力で、 内面部材 53の内側で軸方向外側に集まる冷却液体が流入する複数の孔 100が、列 設されている。  Further, the guide plate body 51 of the guide blade 50 has a discharge liquid of the discharged rocker between the inner surface member 53 that forms the inner surface of the guide plate body 51 and the inner surface member 53 provided outside the inner surface member 53. And an outer surface member 54 in which a space communicating with the recovery port 86 of the cooling liquid circulation pipe body 80a is formed. A plurality of holes 100 are arranged in the opening edge portion of the inner surface member 53 through which cooling liquid that flows in the axially outside inside the inner surface member 53 flows due to the centrifugal force generated by the rotation of the inner cylinder 10.
[0058] さらに、案内翼 50の周囲には、外筒 20内部の下部付近に、外筒 20の軸方向外側 に設けた凹部に溜まった加温液体をかき取る回収刃 55と、回収刃 55の下側に設け られ、外面部材 54との間に回収刃 55からの加温液体が流通し、加温液体循環管体 90aの回収口 96に連通する空間が形成される盆状の盆状部材 56とが設けられてい る。 [0058] Further, around the guide blade 50, a recovery blade 55 that scrapes off the heated liquid collected in a recess provided on the outer side in the axial direction of the outer cylinder 20 near the lower portion inside the outer cylinder 20, and a recovery blade 55 A basin-shaped basin in which the heated liquid from the recovery blade 55 circulates between the outer surface member 54 and the outer surface member 54, and a space communicating with the recovery port 96 of the heated liquid circulation tube 90a is formed. With member 56 The
また、一方支軸 82に挿通される内筒回転軸 13 (13b)の軸管体 15は、上下に設け た摺接部 101により一方支軸 82に回転可能に摺接する。また、軸管体 15は、一方 支軸 82との間に、冷却液体が流通する一方通路 102及び加温液体が流通する他方 通路 103が形成されている。この内筒回転軸 13 (13b)は、内部が隔壁 104で仕切ら れており、一方通路 102と他方通路 103とを隔てている。一方通路 102は、冷却液体 循環管体 80aの一部となっており、上端側で内面部材 53と外面部材 54との間の空 間に連通する回収口 86に形成されている。また、他方通路 103は、加温液体循環管 体 90aの一部となっており、上端側で外面部材 54と盆状部材 56との間の空間に連 通する回収口 96が設けられて 、る。  Further, the shaft tube body 15 of the inner cylinder rotation shaft 13 (13b) inserted through the one support shaft 82 is slidably contacted with the one support shaft 82 by a sliding contact portion 101 provided at the top and bottom. Further, the shaft tube body 15 is formed with a first passage 102 through which the cooling liquid flows and a second passage 103 through which the heating liquid flows, between the first support shaft 82. The inner cylinder rotating shaft 13 (13b) is internally partitioned by a partition wall 104 and separates the one passage 102 and the other passage 103 from each other. On the other hand, the passage 102 is a part of the cooling liquid circulation pipe body 80a, and is formed in the recovery port 86 communicating with the space between the inner surface member 53 and the outer surface member 54 on the upper end side. The other passage 103 is a part of the heated liquid circulation pipe 90a, and is provided with a recovery port 96 communicating with the space between the outer surface member 54 and the tray member 56 on the upper end side. The
また、筒体 10aは、その上端が、ガイド翼 70の導風板 71に接合され、ガイド翼 70と ともに回転するようになっている。また、筒体 10aの内周の上部及び下部は、内筒に 対して摺動する。  Further, the upper end of the cylindrical body 10 a is joined to the air guide plate 71 of the guide blade 70, and rotates together with the guide blade 70. Further, the upper and lower portions of the inner periphery of the cylinder 10a slide relative to the inner cylinder.
他の構成は、第一実施形態の対流温度差原動装置 S 1とほぼ同様である。  Other configurations are substantially the same as those of the convection temperature difference prime mover S 1 of the first embodiment.
この対流温度差原動装置 S2を作動させる場合、上記の第一実施形態と同様にし、 冷却液体循環管路 80により冷却液体が循環され、加温液体循環管路 90に加温液 体が循環され、内筒 10及び外筒 20が回転する。  When operating the convection temperature difference prime mover S2, the cooling liquid is circulated through the cooling liquid circulation line 80 and the heated liquid is circulated through the heating liquid circulation line 90 in the same manner as in the first embodiment. The inner cylinder 10 and the outer cylinder 20 rotate.
そして、内筒 10及び外筒 20が回転した状態では、一方支軸 82の流出口 84から流 出した冷却液体は、内筒 10の内壁を流下して案内板体 51の内面部材 53に落下し、 遠心力で案内板体 51の開口縁部に集まり、孔 100から回収口 86に至り冷却液体循 環管体 80aに回収される。また、筒体 10aの流出口 99から流出した加温液体は、外 筒 20の遠心力により凹部に溜まるとともに、回収刃 55によりかき取られて回収口 96 から加温液体循環管体 90aに回収される。この場合、冷却液体は、外筒 20側に漏れ 出ることなく回収されるので、より加温液体と混ざり難くなり、別々に回収できる。その ため、回収した冷却液体の温度があまり上がらず、また、回収した加温液体の温度も あまり下がらな 、ので、冷却部 81による冷却及び加温部 91による加温を効率よく行 なうことができる。  When the inner cylinder 10 and the outer cylinder 20 are rotated, the cooling liquid flowing out from the outlet 84 of the one support shaft 82 flows down the inner wall of the inner cylinder 10 and falls to the inner surface member 53 of the guide plate body 51. Then, it collects at the opening edge of the guide plate 51 by centrifugal force, reaches the recovery port 86 from the hole 100, and is recovered in the cooling liquid circulation pipe 80a. The heated liquid flowing out from the outlet 99 of the cylinder 10a is accumulated in the recess by the centrifugal force of the outer cylinder 20, and is scraped off by the recovery blade 55 and recovered from the recovery port 96 to the heated liquid circulation pipe 90a. Is done. In this case, since the cooling liquid is recovered without leaking to the outer cylinder 20 side, it becomes more difficult to mix with the warming liquid and can be recovered separately. For this reason, the temperature of the recovered cooling liquid does not rise so much, and the temperature of the recovered warming liquid does not drop so much. Therefore, cooling by the cooling unit 81 and heating by the heating unit 91 should be performed efficiently. Can do.
さらに、外筒 20の回転により、ガイド翼 70の導風板 71を介して筒体 10aも回転して 噴出口 99自体も回転するので、噴出口 99からの加温液体も回転運動するようになる 。そのため、加温液体と他方流路 Rbの気体の回転がほぼ同じになり、流体摩擦が少 なくなり、気体の対流が円滑に行なわれるので、対流によるエネルギーが、効率よく 内筒 10及び外筒 20に回転力として付与される。 Further, due to the rotation of the outer cylinder 20, the cylinder 10a also rotates via the air guide plate 71 of the guide blade 70. Since the spout 99 itself also rotates, the heated liquid from the spout 99 also rotates. For this reason, the rotation of the gas in the heated liquid and the other flow path Rb is almost the same, fluid friction is reduced, and gas convection is performed smoothly, so that the energy from the convection is efficiently increased by the inner cylinder 10 and the outer cylinder 20 Is applied as a rotational force.
他の作用及び効果は上記の第一実施形態と同様である。  Other operations and effects are the same as those in the first embodiment.
[0060] [第三実施形態] [0060] [Third embodiment]
次に、図 22を用い、本発明の第三実施形態に係る対流温度差原動装置 S3につい て説明する。  Next, the convection temperature difference prime mover S3 according to the third embodiment of the present invention will be described with reference to FIG.
この対流温度差原動装置 S3は、上記の第二実施形態に係る対流温度差原動装 置 S2とほぼ同様な構成としてある力 これと異なり、冷却液体及び加温液体を同じ回 収口 86で回収し、冷却液体循環管体 80aと加温液体循環管体 90aの一部が兼用さ れる構成としてある。  The convection temperature difference prime mover S3 has a force that is substantially the same as the convection temperature difference prime mover S2 according to the second embodiment. Unlike this, the cooling liquid and the warming liquid are collected at the same collection port 86. However, the cooling liquid circulation pipe 80a and a part of the warming liquid circulation pipe 90a are combined.
詳しくは、この対流温度差原動装置 S3は、外面部材 54がなぐ冷却液体は、案内 翼 50の開口力 外筒 20側に流出する。  Specifically, in this convection temperature difference prime mover S3, the cooling liquid that the outer surface member 54 has flows out to the opening force outer cylinder 20 side of the guide blade 50.
また、一方支軸 82に同軸に挿通される軸管体 15からなる回収管が設けられている 。この回収管は、上部に、案内板体 51の内面部材 53と盆状部材 56の間の空間に連 通する回収口 86が設けられ、下端側で冷却液体循環管体 80a及び加温液体循環 管体 90aを共用する回収管体 300に連通している。  In addition, a recovery pipe comprising a shaft tube body 15 that is coaxially inserted into the one support shaft 82 is provided. The recovery pipe is provided at its upper part with a recovery port 86 that communicates with the space between the inner surface member 53 of the guide plate body 51 and the tray-shaped member 56. The cooling liquid circulation pipe 80a and the heated liquid circulation are provided at the lower end side. It communicates with the collection tube 300 that shares the tube 90a.
他の構成は、上記の実施形態と同様である。  Other configurations are the same as those in the above embodiment.
[0061] この対流温度差原動装置 S3を作動させる場合、上記の実施形態と同様にし、冷却 液体循環管路 80により冷却液体が循環され、加温液体循環管路 90に加温液体が 循環され、内筒 10及び外筒 20が回転する。 When operating this convection temperature difference prime mover S3, the cooling liquid is circulated through the cooling liquid circulation line 80 and the heated liquid is circulated through the heating liquid circulation line 90 in the same manner as in the above embodiment. The inner cylinder 10 and the outer cylinder 20 rotate.
そして、内筒 10及び外筒 20が回転した状態では、一方支軸 82の流出口 84から流 出した冷却液体は、内筒 10の内壁を流下して案内板体 51に落下し、遠心力で外筒 20側に出て行く。そして、冷却液体は、筒体 10aの流出口 84から流出した加温液体 とともに、外筒 20の遠心力により凹部に溜まるとともに、回収刃 55によりかき取られて 回収口 86から回収管体 300に回収される。この場合、冷却液体と加温液体とを分け て回収しないので、それだけ構造が簡単になる。 他の作用及び効果は上記の実施形態と同様である。 Then, in a state where the inner cylinder 10 and the outer cylinder 20 are rotated, the cooling liquid flowing out from the outlet 84 of the one support shaft 82 flows down the inner wall of the inner cylinder 10 and falls onto the guide plate body 51, thereby causing centrifugal force. Go out to the outer cylinder 20 side. The cooling liquid, together with the heated liquid flowing out from the outlet 84 of the cylinder 10a, accumulates in the recess by the centrifugal force of the outer cylinder 20, and is scraped off by the recovery blade 55 to the recovery tube 300 from the recovery port 86. To be recovered. In this case, the cooling liquid and the heating liquid are not collected separately, so that the structure becomes simple. Other actions and effects are the same as in the above embodiment.
[0062] [第四実施形態] [0062] [Fourth embodiment]
また、図 23〜25には、本発明の第四実施形態に係る対流温度差原動装置 S4を 示している。  23 to 25 show a convection temperature difference prime mover S4 according to the fourth embodiment of the present invention.
この対流温度差原動装置 S4は、第二実施形態に係る対流温度差原動装置 S2と ほぼ同様であるが、これと異なり、一方支軸 82の下端が土台 laから切り離されるとと もに、この下端が内筒 10の他端側の内筒回転軸 13 (13b)の内側に、内筒回転軸 1 3 (13b)と同軸に溶接固定されている。そして、この一方支軸 82は、内筒 10と連係し て回転可能になっている。また、この一方支軸 82は、その下端の開口が、冷却液体 の流入口 83に形成されて!、る。  This convection temperature difference prime mover S4 is substantially the same as the convection temperature difference prime mover S2 according to the second embodiment, but unlike this, the lower end of the support shaft 82 is separated from the base la, and this The lower end is welded and fixed coaxially with the inner cylinder rotating shaft 13 (13b) inside the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10. The one support shaft 82 is rotatable in conjunction with the inner cylinder 10. Further, the opening of the lower end of the one support shaft 82 is formed in the cooling liquid inlet 83.
[0063] また、図 23, 24に示すように、ガイド翼 70は、筒体 10aと一体となっており、内筒 10 に対して回転可能である。外筒 20は、ガイド翼 70に、遊星歯車機構 170を介して、 動力を伝達可能にしている。 Further, as shown in FIGS. 23 and 24, the guide blade 70 is integrated with the cylindrical body 10 a and is rotatable with respect to the inner cylinder 10. The outer cylinder 20 can transmit power to the guide vane 70 via the planetary gear mechanism 170.
この遊星歯車機構 170は、内筒 10の回転速度 VIと、ガイド翼 70によって回転させ られる筒体 10aの回転速度 V2と、外筒 20の回転速度 V3との関係が、 V1 >V2>V 3となるように歯車の嚙合関係が定められている。また、遊星歯車機構 170のギア比 は、外筒 20の内周の周速と、筒体 10aの外周の周速とがほぼ同じになるように設定さ れている。  In this planetary gear mechanism 170, the relationship between the rotational speed VI of the inner cylinder 10, the rotational speed V2 of the cylindrical body 10a rotated by the guide blade 70, and the rotational speed V3 of the outer cylinder 20 is V1> V2> V3 The meshing relationship of the gears is determined so that The gear ratio of the planetary gear mechanism 170 is set so that the inner peripheral speed of the outer cylinder 20 and the outer peripheral speed of the cylindrical body 10a are substantially the same.
また、図 23に示すように、対流温度差原動装置 S4には、外筒 20の経年変化による 異常を検知する検知機構が設けられている。この検知機構は、外筒 20の肉厚を薄く した肉薄部 175を有し、肉薄部 175が、外筒 20の経年変化により穴があいたとき、外 郭内の気圧の上昇にともな 、外郭上部力 漏れ出る気体を検知できるようにして 、る  Further, as shown in FIG. 23, the convection temperature difference prime mover S4 is provided with a detection mechanism for detecting an abnormality due to the secular change of the outer cylinder 20. This detection mechanism has a thin part 175 in which the thickness of the outer cylinder 20 is reduced. When the thin part 175 has a hole due to secular change of the outer cylinder 20, the outer cylinder 20 increases with the increase in atmospheric pressure. Upper force Make it possible to detect leaking gas
[0064] さらに、図 25に示すように、上記の各実施形態に係る対流温度差原動装置 SI, S 2, S3と異なり、多くの導風板 71が設けられるとともに、その凹曲した面が、先端にい くに従って曲率半径が漸次小さくなるように形成されている。また、ブレード 41は、動 翼 40の平均径を直径とする円弧の曲率と同じに形成され、その傾斜角は回転速度 の効率が最適になるように定められて 、る。 他の構成は、第二実施形態の対流温度差原動装置 S2とほぼ同じになっている。 Further, as shown in FIG. 25, unlike the convection temperature difference prime movers SI, S 2 and S3 according to the above-described embodiments, a large number of air guide plates 71 are provided, and the concave curved surface is provided. In addition, the radius of curvature gradually decreases as the distance from the tip increases. The blade 41 is formed to have the same curvature as an arc whose diameter is the average diameter of the rotor blade 40, and the inclination angle is determined so that the efficiency of the rotational speed is optimized. The other configuration is substantially the same as the convection temperature difference prime mover S2 of the second embodiment.
[0065] この対流温度差原動装置 S4を作動させる場合、上記の実施形態と同様にし、冷却 液体循環管路 80により冷却液体が循環され、加温液体循環管路 90に加温液体が 循環され、内筒 10及び外筒 20が回転する。 When this convection temperature difference prime mover S4 is operated, the cooling liquid is circulated through the cooling liquid circulation line 80 and the heated liquid is circulated through the heating liquid circulation line 90 in the same manner as in the above embodiment. The inner cylinder 10 and the outer cylinder 20 rotate.
この場合、内筒 10及び外筒 20が回転した状態においては、遊星歯車機構 170に より、外筒 20の回転が低速になる。そのため、外筒 20の外郭 1内の気体に対しての 摩擦抵抗が低減されるようになり、内筒 10及び外筒 20からの動力の出力効率が向 上する。  In this case, when the inner cylinder 10 and the outer cylinder 20 are rotated, the rotation of the outer cylinder 20 is slowed down by the planetary gear mechanism 170. Therefore, the frictional resistance against the gas in the outer shell 1 of the outer cylinder 20 is reduced, and the output efficiency of power from the inner cylinder 10 and the outer cylinder 20 is improved.
また、遊星歯車機構 170により、外筒 20の内周の周速と、筒体 10aの外周の周速 がほぼ同じになるので、外筒 20と筒体 10aとの間にほとんど摩擦抵抗が生じなくなり 、内筒 10及び外筒 20からの動力の出力効率が向上する。さらに、外筒 20の内周の 周速と、筒体 10aの外周の周速がほぼ同じになるので、内筒 10の外側の気体の発 熱が抑制される。  In addition, the planetary gear mechanism 170 causes the inner peripheral speed of the outer cylinder 20 and the outer peripheral speed of the cylindrical body 10a to be substantially the same, so that a frictional resistance is generated between the outer cylinder 20 and the cylindrical body 10a. As a result, the output efficiency of power from the inner cylinder 10 and the outer cylinder 20 is improved. Furthermore, since the peripheral speed of the inner periphery of the outer cylinder 20 and the peripheral speed of the outer periphery of the cylinder 10a are substantially the same, the heat generation of the gas outside the inner cylinder 10 is suppressed.
[0066] さらにまた、ガイド翼 70の導風板 71は、凹曲した面の半径が小さいので、他方流路 Rbを流通する気体に付与する折り返しの遠心力が強くなる。すなわち、ガイド翼 70 の導風板 71でガイドされて供給口 11に流入する気体を受ける動翼 40のブレード 41 への動力の伝達が確実になり、内筒 10が確実に回転する。  [0066] Furthermore, since the air guide plate 71 of the guide vane 70 has a small radius of the concave surface, the folded centrifugal force applied to the gas flowing through the other flow path Rb is increased. That is, transmission of power to the blade 41 of the rotor blade 40 that receives the gas flowing into the supply port 11 guided by the air guide plate 71 of the guide blade 70 is ensured, and the inner cylinder 10 is reliably rotated.
また、経年変化により肉薄部 175に穴があくと、穴から外筒 20の気体が外郭 1内に 漏れ出るとともに、外郭 1内の気圧が上昇して、外郭 1からも気体が漏れ出る。この漏 れ出た気体を検知することで、外筒 20の経年変化による異常を検知することができる 他の作用,効果は、上記の実施形態と同様である。  Further, when the thin portion 175 has a hole due to secular change, the gas in the outer cylinder 20 leaks into the outer shell 1 from the hole, and the atmospheric pressure in the outer shell 1 rises, and the gas leaks from the outer shell 1. By detecting this leaked gas, it is possible to detect an abnormality due to the secular change of the outer cylinder 20, and other actions and effects are the same as in the above embodiment.
[0067] [第五実施形態] [0067] [Fifth embodiment]
図 26〜33には、本発明の第五実施形態に係る対流温度差原動装置 S5を示して いる。  26 to 33 show a convection temperature difference prime mover S5 according to the fifth embodiment of the present invention.
この対流温度差原動装置 S5は、第四実施形態に係る対流温度差原動装置 S4と 同様に、一方支軸 82が内筒回転軸 13 (13b)に対して回転可能に設けられている。 また、第四実施形態に係る対流温度差原動装置 S4と異なり、一方支軸 82の下端に 、ロッド 306が設けられている。このロッド 306は、一方支軸 82の下端を閉塞し、この 一方支軸 82と同動するとともに、内筒回転軸 13 (13b)に軸受 305を介して摺接する In the convection temperature difference prime mover S5, like the convection temperature difference prime mover S4 according to the fourth embodiment, one support shaft 82 is provided to be rotatable with respect to the inner cylinder rotary shaft 13 (13b). Further, unlike the convection temperature difference prime mover S4 according to the fourth embodiment, the lower end of one support shaft 82 A rod 306 is provided. The rod 306 closes the lower end of the one support shaft 82, and moves together with the one support shaft 82, and slidably contacts the inner cylinder rotating shaft 13 (13b) via the bearing 305.
[0068] この対流温度差原動装置 S5は、上記の遊星歯車機構 170 (以下「第 1の遊星歯車 機構 170」という)の他に、一方支軸 82に、内筒回転軸 13 (13b)からの動力を伝達 するための第 2の遊星歯車機構 310を備え、一方支軸 82が内筒 10に連係して回転 することができる。 [0068] In addition to the planetary gear mechanism 170 (hereinafter referred to as "first planetary gear mechanism 170"), the convection temperature difference prime mover S5 is connected to the one support shaft 82 from the inner cylinder rotary shaft 13 (13b). The second planetary gear mechanism 310 for transmitting the motive power is provided, and the support shaft 82 can rotate in conjunction with the inner cylinder 10.
[0069] 第 2の遊星歯車機構 310は、図 28, 32に示すように、軸が一方支軸 82の下端に設 けたロッド 306に固定されて、一方支軸 82と同動する中央の歯車 311と、この歯車 3 11の周囲に配置され、内筒回転軸 13 ( 13b)の下端部に設けた円盤体 312に回転 可能に軸支される 3つの歯車 313とを備えている。円盤体 312は、その中央が内筒 回転軸 13 (13b)の下端部に設けた右ネジに螺合されて、内筒回転軸 13 (13b)に結 合されている。また、周囲の 3つの歯車 312は、土台 laに立設された筒状のガイド部 材 315の内部に設けたギア 316に嚙合されている。  As shown in FIGS. 28 and 32, the second planetary gear mechanism 310 has a central gear that is fixed to a rod 306 provided at the lower end of the one support shaft 82 and moves with the one support shaft 82. 311 and three gears 313 disposed around the gear 311 and rotatably supported by a disk body 312 provided at the lower end portion of the inner cylinder rotary shaft 13 (13b). The center of the disk body 312 is screwed into a right screw provided at the lower end of the inner cylinder rotation shaft 13 (13b), and is coupled to the inner cylinder rotation shaft 13 (13b). The three surrounding gears 312 are meshed with a gear 316 provided inside a cylindrical guide member 315 standing on the base la.
また、この第 2の遊星歯車機構 310は、外郭 1の内部の下部に設けた仕切板 317に より、外郭 1の内部空間の下側に形成された部屋に設けられている。仕切板 317は、 その中央に、内筒回転軸 13 (13b)を軸支する平軸受 321が設けられている。  The second planetary gear mechanism 310 is provided in a room formed below the inner space of the outer shell 1 by a partition plate 317 provided in the lower portion of the outer shell 1. The partition plate 317 is provided at its center with a plain bearing 321 that supports the inner cylinder rotary shaft 13 (13b).
さらに、歯車 311及び歯車 313の嚙合関係は、内筒 10の回転速度 VIと、内筒 10 の内筒回転軸 13 (13b)によって回転させられる一方支軸 82の回転速度 V4との関 係が、 V4>V1となるように定められている。  Further, the meshing relationship between the gear 311 and the gear 313 is related to the rotational speed VI of the inner cylinder 10 and the rotational speed V4 of the one support shaft 82 rotated by the inner cylinder rotating shaft 13 (13b) of the inner cylinder 10. V4> V1.
[0070] また、図 26〜29に示すように、筒体 10aは、上下を変換可能に設けられる。筒体 1 Oaの下部は、外筒 20に固定された複数のアーム 314に取り付けられた筒状体 315 に挿通される。筒体 10aの上部は、ガイド翼 70の導風板 71に設けられた筒状体 316 に揷通される。そして、筒体 10aは、筒状体 315, 316のいずれか一方に摺接してガ イドされ、いずれか他方に連結される。筒体 10aと筒状体 315, 316との連結は、各 筒状体 315, 316に設けた複数のスリットに、筒体 10aの上下いずれか一方側の表 面の周方向に突設された複数の凸状体 318を嵌合して行なわれる。  In addition, as shown in FIGS. 26 to 29, the cylinder 10a is provided so as to be convertible up and down. A lower portion of the cylindrical body 1 Oa is inserted into a cylindrical body 315 attached to a plurality of arms 314 fixed to the outer cylinder 20. The upper part of the cylindrical body 10 a is passed through a cylindrical body 316 provided on the air guide plate 71 of the guide blade 70. The cylindrical body 10a is guided by sliding in contact with either one of the cylindrical bodies 315 and 316, and is connected to the other. The cylindrical body 10a and the cylindrical bodies 315 and 316 are connected to a plurality of slits provided in the cylindrical bodies 315 and 316 so as to project in the circumferential direction of the upper or lower surface of the cylindrical body 10a. This is performed by fitting a plurality of convex bodies 318 together.
[0071] また、図 26に示すように、一方支軸 82の上部に、一方流路 Raの供給口 11側に滞 留した気体を下側に押し込むためのフィン 320が設けられている。このフィン 320は、 図 33に示すように、一方支軸 82に揷通される管体 321と、管体 321の周囲に設けら れた 4枚の羽根 322とを備えてなる。 In addition, as shown in FIG. 26, the upper portion of the one support shaft 82 is stagnated on the supply port 11 side of the one flow path Ra. Fins 320 are provided to push the retained gas downward. As shown in FIG. 33, the fin 320 includes a tube body 321 passed through the one support shaft 82 and four blades 322 provided around the tube body 321.
また、内筒 10の内部は、一方支軸 82に卷回されて設けられた多孔質部材 60がな い構成となっている。  Further, the inside of the inner cylinder 10 is configured such that the porous member 60 provided around the one support shaft 82 is not provided.
さらに、内筒 10の排出口 12側に、内周面に沿って突設されるリング状の突条 330 が設けられている。この突条 330は、断面が矩形状に形成されている。  Furthermore, a ring-shaped protrusion 330 protruding along the inner peripheral surface is provided on the discharge port 12 side of the inner cylinder 10. The ridge 330 has a rectangular cross section.
他の構成は、第四実施形態の対流温度差原動装置 S4とほぼ同じになっている。  The other configuration is substantially the same as the convection temperature difference prime mover S4 of the fourth embodiment.
[0072] この対流温度差原動装置 S5は、設置時において、筒体 10aを外筒 20と同動させる 場合には、凸状体 318を、アーム 314を備えた筒状体 315のスリットに嵌合した状態 で凸状体 318がある側を下側にするとともに、筒状体 316を筒体 10aに挿通し、ァー ム 314の先端を外筒 20の内壁に接合する。 [0072] When the convection temperature difference prime mover S5 moves the cylindrical body 10a with the outer cylinder 20 at the time of installation, the convex body 318 is fitted into the slit of the cylindrical body 315 including the arm 314. In the combined state, the side with the convex body 318 is set to the lower side, the cylindrical body 316 is inserted into the cylindrical body 10a, and the tip of the arm 314 is joined to the inner wall of the outer cylinder 20.
一方、筒体 10aをガイド翼 70と同動させる場合には、筒体 10aを凸状体 318がある 側を上側にし、筒状体 315を筒体 10aに揷通するとともに、筒状体 316を挿通して凸 状体 318にこの筒状体 316のスリットを嵌合する。そして、筒状体 315のアーム 314を 外筒 20の内壁に接合する。  On the other hand, when the cylindrical body 10a is moved together with the guide blade 70, the cylindrical body 10a is placed on the side where the convex body 318 is located, the cylindrical body 315 is passed through the cylindrical body 10a, and the cylindrical body 316 is provided. And the slit of the cylindrical body 316 is fitted into the convex body 318. Then, the arm 314 of the cylindrical body 315 is joined to the inner wall of the outer cylinder 20.
[0073] 対流温度差原動装置 S5を作動させる場合、上記の実施形態と同様にし、冷却液 体循環管路 80により冷却液体が循環され、加温液体循環管路 90に加温液体が循 環され、内筒 10及び外筒 20が回転する。 [0073] When operating the convection temperature difference prime mover S5, the cooling liquid is circulated through the cooling liquid circulation line 80 and the warming liquid is circulated in the heating liquid circulation line 90 in the same manner as in the above embodiment. Then, the inner cylinder 10 and the outer cylinder 20 rotate.
この場合、内筒 10が回転した状態においては、第 2の遊星歯車機構 310により、一 方支軸 82の回転が内筒 10の回転よりも高速になる。そのため、一方流路 Raの供給 口 11側に滞留した気体がフィン 320により高速で排出口 12側に押し込まれるので、 内筒 10内部の気体の気流が高速になり、それだけ対流が円滑に行なわれ、動力が 得やすくなる。  In this case, when the inner cylinder 10 is rotated, the second planetary gear mechanism 310 makes the rotation of the one support shaft 82 faster than the rotation of the inner cylinder 10. Therefore, the gas staying on the supply port 11 side of the one-way channel Ra is pushed into the discharge port 12 side at high speed by the fins 320, so that the gas flow inside the inner cylinder 10 becomes high-speed and the convection is smoothly performed. It becomes easier to get power.
[0074] また、フィン 320により、排出口 12側に押し込まれた一方流路 Raの気体は、フィン 3 20の回転及び内筒 10の回転により渦流となるとともに、渦流による遠心力で内筒 10 の内周面側に圧縮される。そして、この気体により、内筒 10の内周面近傍に圧縮気 体層が形成される。圧縮気体層の気体は、排出口 11側で突条 330に衝突するととも に、この突条 330を乗り越えて排出口 12から排出される。 [0074] Further, the gas in the one flow path Ra pushed into the discharge port 12 side by the fin 320 becomes a vortex by the rotation of the fin 320 and the rotation of the inner cylinder 10, and the inner cylinder 10 by the centrifugal force due to the vortex flow. It is compressed to the inner peripheral surface side. The compressed gas layer is formed in the vicinity of the inner peripheral surface of the inner cylinder 10 by this gas. The gas in the compressed gas layer collides with the ridge 330 on the outlet 11 side. In addition, it goes over the ridge 330 and is discharged from the discharge port 12.
この際、一方流路 Raの気体は、突条 330に衝突しその流速がある程度制限される すなわち、突条 330が無い場合、内筒 10の内周面近傍の排出口 12側の気体は、 排出口 12から順次排出され、その密度が供給口 11側に比較して大幅に低くなり、圧 縮気体層の気体の密度が不均一になりやすくなる。これに対し、突条 330を設けた 場合、突条 330で内筒 10内周面近傍の気体の流れを制限し、排出口 12側に気体を 留めるので、内筒 10の内周面全面に亘つてほぼ均一にすることができる。これにより 、流出口 84からの冷却液体は、気体が均一に分布した圧縮気体層に散布され、この 気体を冷却するので、冷却効率が向上し、動力が得やすくなる。  At this time, the gas in the one-way channel Ra collides with the ridge 330 and its flow velocity is limited to some extent, that is, when there is no ridge 330, the gas on the outlet 12 side near the inner peripheral surface of the inner cylinder 10 is The gas is sequentially discharged from the discharge port 12 and its density is significantly lower than that on the supply port 11 side, and the density of the gas in the compressed gas layer tends to be uneven. On the other hand, when the protrusion 330 is provided, the protrusion 330 limits the gas flow in the vicinity of the inner peripheral surface of the inner cylinder 10 and keeps the gas on the discharge port 12 side. It can be made almost uniform throughout. As a result, the cooling liquid from the outlet 84 is dispersed in the compressed gas layer in which the gas is uniformly distributed, and the gas is cooled, so that the cooling efficiency is improved and power is easily obtained.
[0075] また、設置時に筒体 10aをガイド翼 70または外筒 20のいずれかと同動するように選 択できるので、筒状体 316を介してガイド翼 70と同動させると、筒体 10aを高速で回 転させることができる。また、一方、筒状体 315及びアーム 314を介して外筒 20と同 動させると、筒体 10aを低速で回転させることができる。 [0075] Further, since the cylinder 10a can be selected to move together with either the guide vane 70 or the outer cylinder 20 at the time of installation, the cylinder 10a can be moved together with the guide vane 70 via the tubular body 316. Can be rotated at high speed. On the other hand, when the outer cylinder 20 is moved through the cylindrical body 315 and the arm 314, the cylindrical body 10a can be rotated at a low speed.
他の作用,効果は、上記の実施形態と同様である。  Other actions and effects are the same as in the above embodiment.
[0076] [第六実施形態] [0076] [Sixth embodiment]
図 34は、本発明の第六実施形態に係る対流温度差原動装置 S6を示している。 この対流温度差原動装置 S6は、第一実施形態に係る対流温度差原動装置 S1と ほぼ同様であるが、これと異なり、一方支軸 82が内筒と一体に回転可能になっており 、その下端の開口が、冷却液体の流入口 83に形成されている。  FIG. 34 shows a convection temperature difference prime mover S6 according to the sixth embodiment of the present invention. This convection temperature difference prime mover S6 is substantially the same as the convection temperature difference prime mover S1 according to the first embodiment, but unlike this, the support shaft 82 can rotate integrally with the inner cylinder. An opening at the lower end is formed in the cooling liquid inlet 83.
また、動力取得機構 30は、内筒 10の一端側の内筒回転軸 13 (13a)に設けられ該 内筒回転軸 13 (13a)の回転を取出すタイミングベルト伝動機構 400と、外筒 20の他 端側の外筒回転軸 23 (23b)の回転を取出すタイミングベルト伝動機構 401とから構 成されている。  The power acquisition mechanism 30 includes a timing belt transmission mechanism 400 provided on the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 and extracting the rotation of the inner cylinder rotating shaft 13 (13a). The timing belt transmission mechanism 401 extracts the rotation of the outer cylinder rotating shaft 23 (23b) on the other end side.
[0077] さらに、内筒 10の一端に、供給口 11から流入した気体を受けて内筒 10に回転力を 付与する動翼 40が設けられている。この動翼 40は、内筒 10の一端側において、内 筒 10の回転軸を中心に等角度関係で列設され、外筒 20に設けたガイド翼 70により 導かれた気体を受ける面を有し気体を上側から内筒 10内に導ぐ複数のブレード 41 を備えている。 Furthermore, a moving blade 40 that receives gas flowing from the supply port 11 and applies a rotational force to the inner cylinder 10 is provided at one end of the inner cylinder 10. The rotor blades 40 are arranged on one end side of the inner cylinder 10 at an equiangular relationship around the rotation axis of the inner cylinder 10 and have a surface for receiving the gas guided by the guide blades 70 provided on the outer cylinder 20. Plural blades that guide the gas into the inner cylinder 10 from above 41 It has.
一方、外筒 20に設けたガイド翼 70は、動翼 40のブレード 41に対応させて等角度 関係で列設された導風板 71を備え、内筒 10の外側を通って供給口 11に至る他方 流路 Rbからの気体を反転させて、動翼 40のブレード 41の上側からこのブレード 41 に送給する。そのため、鉛直方向に気体が流入させられるので、ブレード 41での気 体の受けが確実になり、回転効率が向上する。  On the other hand, the guide blade 70 provided in the outer cylinder 20 includes a baffle plate 71 arranged in an equiangular relationship corresponding to the blade 41 of the rotor blade 40, and passes through the outer side of the inner cylinder 10 to the supply port 11. The gas from the other flow path Rb is reversed and fed to the blade 41 from the upper side of the blade 41 of the rotor blade 40. For this reason, since the gas is allowed to flow in the vertical direction, the gas is surely received by the blade 41, and the rotation efficiency is improved.
[0078] さらにまた、内筒 10の他端の外方に、案内翼 50が設けられている。案内翼 50は、 排出口 12から排出された気体を受けて、内筒 10に回転力を付与し、排出口 12から 排気された気体を他方流路 Rbの気体の流通方向に導く。この案内翼 50は、排出口 12からの気体を他方流路 Rbの気体の流通方向に反転させる椀状の案内板体 51と 、この案内板体 51に複数設けられる羽根部材 52とを備えている。案内板体 51は、外 筒 20に固定されている。これにより、案内翼 50と外筒 20とは、同回転する。他の作用 ,効果は、上記と同様である。  Furthermore, a guide vane 50 is provided outside the other end of the inner cylinder 10. The guide vane 50 receives the gas discharged from the discharge port 12, applies a rotational force to the inner cylinder 10, and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb. The guide vane 50 includes a bowl-shaped guide plate body 51 that reverses the gas from the discharge port 12 in the gas flow direction of the other flow path Rb, and a plurality of blade members 52 provided on the guide plate body 51. Yes. The guide plate body 51 is fixed to the outer cylinder 20. Thereby, the guide vane 50 and the outer cylinder 20 rotate in the same direction. Other functions and effects are the same as described above.
[0079] <応用例>  [0079] <Application example>
図 35には、本発明の第一実施形態に係る対流温度差原動装置を作動させるシス テムの応用例を示している。  FIG. 35 shows an application example of a system for operating the convection temperature difference prime mover according to the first embodiment of the present invention.
このシステムの対流温度差原動装置 S1は、冷却部よりも上流側の冷却液体循環管 体と加温部よりも上流側の加温液体循環管体の一部が兼用されており、途中で分岐 し、冷却液体循環管体と加温液体循環管体とに分かれて ヽる。  The convection temperature difference prime mover S1 of this system is a part of the cooling liquid circulation pipe upstream of the cooling section and the warming liquid circulation pipe upstream of the heating section. The cooling liquid circulation pipe and the heated liquid circulation pipe are separated.
詳しくは、対流温度差原動装置 S 1は、その冷却液体循環管路 80及び加温液体循 環管路 90上に、冷却液体及び加温液体を回収する回収口 156を上流側に備えた 回収管体 155を備えている。この回収管体 155の下流側において、冷却液体循環管 体 80a及び加温液体循環管体 90aに分岐している。また、冷却液体循環管体 80a及 び加温液体循環管体 90aに分岐する分岐点よりも上流側には、逆止弁 157が設けら れている。  Specifically, the convection temperature difference prime mover S 1 is provided with a recovery port 156 for recovering the cooling liquid and the warming liquid on the cooling liquid circulation line 80 and the warming liquid circulation line 90 on the upstream side. A tube 155 is provided. On the downstream side of the recovery pipe body 155, it branches off into a cooling liquid circulation pipe body 80a and a heated liquid circulation pipe body 90a. Further, a check valve 157 is provided on the upstream side of the branching point where the cooling liquid circulation pipe 80a and the heated liquid circulation pipe 90a branch.
[0080] また、このシステムには、回収管 155から迂回する迂回管 160が設けられている。  Further, in this system, a bypass pipe 160 that bypasses the recovery pipe 155 is provided.
迂回管 160の途中には、ポンプ 160aが設けられており、このポンプ 160aは、回収管 155を流れる液体を吸引するとともに、この液体を逆止弁 157よりも下流側の回収管 155へ流入させる。また、タンク 136に溜められた液体を回収管体迂回管 160に補充 する補給管 161が設けられている。この補給管 161は、タンク 136に設けられた液体 量測定器 139が測定した液体量にもとづいて開閉される。 In the middle of the bypass pipe 160, a pump 160a is provided. The pump 160a sucks the liquid flowing through the recovery pipe 155, and draws this liquid downstream of the check valve 157. To 155. In addition, a supply pipe 161 for replenishing the liquid stored in the tank 136 to the recovery pipe bypass pipe 160 is provided. The supply pipe 161 is opened and closed based on the liquid amount measured by the liquid amount measuring device 139 provided in the tank 136.
[0081] 補給管 161は、補給管 161を開閉する電磁弁 163と、迂回管 160から液体が逆流 しないようにするための逆止弁 164とを備えている。電磁弁 163は、タンク 136内の液 体の量を測定する液体量測定器 139により、補給管 161と迂回管 160の合流点より も上流側に設けられた電磁弁 162とともに開閉する。  [0081] The supply pipe 161 includes an electromagnetic valve 163 that opens and closes the supply pipe 161 and a check valve 164 for preventing liquid from flowing backward from the bypass pipe 160. The electromagnetic valve 163 is opened and closed together with the electromagnetic valve 162 provided on the upstream side of the junction of the supply pipe 161 and the bypass pipe 160 by the liquid amount measuring device 139 that measures the amount of the liquid in the tank 136.
この電磁弁 162及び電磁弁 163の動作は、次のようになる。液体量測定器 139がタ ンク 136内の液体の量が所定量よりも少ないことを検知すると、スィッチ 143により電 源 150を電磁弁 163に接続し、電磁弁 163を閉じる。一方、電磁弁 162は、電源 150 から切断されて開く。この場合、回収管 155からの液体力 ポンプ 160aで吸引させら れ、回収管 155に戻される。また、液体量測定器 139がタンク 136内の液体の量が 所定量よりも大きいことを検知すると、スィッチ 143により電源 150が電磁弁 162に接 続されて電磁弁 162を閉じる。一方、電磁弁 163は、電源 150から切断されて開く。 この場合、タンク 136内の液体は、ポンプ 160aで吸引させられる。  The operations of the solenoid valve 162 and the solenoid valve 163 are as follows. When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is less than the predetermined amount, the switch 143 connects the power source 150 to the electromagnetic valve 163 and closes the electromagnetic valve 163. On the other hand, the electromagnetic valve 162 is disconnected from the power source 150 and opened. In this case, the liquid is pumped from the recovery pipe 155 by the liquid force pump 160 a and returned to the recovery pipe 155. When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is larger than a predetermined amount, the power supply 150 is connected to the electromagnetic valve 162 by the switch 143 and the electromagnetic valve 162 is closed. On the other hand, the solenoid valve 163 is disconnected from the power source 150 and opened. In this case, the liquid in the tank 136 is sucked by the pump 160a.
[0082] このシステムと対流温度差原動装置 S1によれば、冷却液体と加温液体を一緒に回 収ロ 156で回収し、かつ、外筒 20と摺接部材 89の間から漏れ出た冷却液体及び加 温液体を、適時に迂回管 160を介して冷却液体循環管路 80と加温液体循環管路 9 0に戻すことができるので、冷却液体と加温液体とを冷却液体循環管路 80と加温液 体循環管路 90に所定量流すことができる。  [0082] According to this system and the convection temperature difference prime mover S1, the cooling liquid and the warming liquid are collected together by the collecting rod 156, and the cooling leaked from between the outer cylinder 20 and the sliding contact member 89 is performed. Since the liquid and the warming liquid can be returned to the cooling liquid circulation line 80 and the warming liquid circulation line 90 through the bypass pipe 160 at appropriate times, the cooling liquid and the warming liquid can be returned to the cooling liquid circulation line. A predetermined amount can flow through 80 and the heated liquid circulation line 90.
また、冷却液体と加温液体を別々に回収しないので、構造が簡単になり、対流温度 差原動装置 S1の設置コストが低減される。  In addition, since the cooling liquid and the heating liquid are not collected separately, the structure is simplified and the installation cost of the convection temperature difference prime mover S1 is reduced.
他の作用,効果は上記のものと同様である。  Other actions and effects are the same as those described above.
[0083] なお、本発明の各実施形態に係る各対流温度差原動装置 SI, S2, S3, S4, S5 において、内筒 10及び外筒 20の形状を、円筒状にした力 これに限定されるもので なぐ図 36中(a) , (b) , (c) , (d) , (e) , (f) , (g) , (h)に示すように、種々の形状に してもよく、適宜設計変更して差し支えない。  [0083] In each of the convection temperature difference prime movers SI, S2, S3, S4, S5 according to the embodiments of the present invention, the inner cylinder 10 and the outer cylinder 20 have a cylindrical force. As shown in Fig. 36 (a), (b), (c), (d), (e), (f), (g), (h), various shapes can be used. Of course, the design can be changed as appropriate.

Claims

請求の範囲 The scope of the claims
[1] 外郭と、該外郭に回転可能に軸支され、軸方向一端に気体の供給口が形成され、 他端に気体の排出口が形成された内筒と、上記外郭及び内筒に対して回転可能に 設けられ、壁部が外郭と内筒との間に位置する外筒とを備え、気体が、上記内筒の 供給ロカ 該内筒の内部を通って排出口に至る一方流路及び該内筒の排出口から 該内筒の外側を通って供給口に至る他方流路を通るように、上記気体に温度差を付 与して気体の対流を生じさせ、該気体の対流により上記内筒及び外筒を回転させて 動力を得る対流温度差原動装置において、  [1] An outer shell, an inner cylinder rotatably supported by the outer shell, a gas supply port formed at one end in the axial direction, and a gas discharge port formed at the other end, and the outer shell and the inner tube The inner wall is provided between the outer shell and the inner cylinder, and the gas is supplied to the inner cylinder, and the gas flows through the inner cylinder to the discharge port. In addition, a temperature difference is applied to the gas so as to pass through the other flow path from the discharge port of the inner cylinder to the supply port through the outside of the inner cylinder, thereby generating gas convection. In the convection temperature difference prime mover for obtaining power by rotating the inner cylinder and the outer cylinder,
上記内筒に、上記供給ロカ 流入した上記気体を受けて該内筒に回転力を付与 する動翼を設け、  The inner cylinder is provided with a moving blade that receives the gas flowing into the supply locus and applies a rotational force to the inner cylinder,
上記内筒内に冷却液体を散布して、上記一方流路を通る気体を冷却し、かつ、該 冷却液体を循環させる冷却液体循環管路を設け、該冷却液体循環管路の途中に、 該冷却液体を冷却する冷却部を設け、  A cooling liquid is sprayed into the inner cylinder, a gas passing through the one flow path is cooled, and a cooling liquid circulation conduit for circulating the cooling liquid is provided. In the middle of the cooling liquid circulation conduit, A cooling unit for cooling the cooling liquid is provided,
上記内筒と外筒との間に加温液体を散布して、上記他方流路を通る気体を加温し 、かつ、該加温液体を循環させる加温液体循環管路を設け、該加温液体循環管路 の途中に、該加温液体を加温する加温部を設けたことを特徴とする対流温度差原動 装置。  A warming liquid is sprayed between the inner cylinder and the outer cylinder, the gas passing through the other flow path is heated, and a warming liquid circulation conduit for circulating the warming liquid is provided. A convection temperature difference prime mover characterized in that a warming section for warming the warming liquid is provided in the middle of the warm liquid circulation line.
[2] 上記冷却液体循環管路が、一端側に、上記外郭に設けられた冷却液体の流入口 を有し、他端側に、上記内筒に該冷却液体を散布する多数の流出口を有し、さらに、 上記内筒と外筒の他端を回転可能にする一方支軸,上記一方支軸の流入口に接続 される注入口,上記一方流路の気体を冷却した後上記内筒の排出ロカ 流出した 冷却流体を回収する回収口,及び,上記回収口から再び上記注入口に冷却液体を 循環させる冷却液体循環管体を備え、  [2] The cooling liquid circulation pipe has a cooling liquid inlet provided in the outer shell on one end side, and a plurality of outlets for spraying the cooling liquid on the inner cylinder on the other end side. And having the other end of the inner cylinder and the outer cylinder rotatable, an inlet connected to the inlet of the one spindle, and the inner cylinder after cooling the gas in the one flow path A recovery port for recovering the cooling fluid that has flowed out, and a cooling liquid circulation pipe that circulates the cooling liquid from the recovery port to the inlet again.
上記加温液体循環管路が、一端側に、上記外郭に設けられ加温液体の流入口を 有し、他端側に、流出口を有し、さらに、上記内筒と外筒の一端を軸支する他方支軸 ,上記内筒の外側を覆い、該内筒との間に上記他方支軸の流出口からの加温液体 が流通可能な流通路を形成し、かつ、上記外筒に向けて加温液体を噴射する多数 の噴射口が形成された筒体,上記他方支軸の流入口に接続される注入口,上記筒 体の噴射口力 噴射された加温液体を回収する回収口,及び,上記回収口力 再 び上記注入口に加温液体を循環させる加温液体循環管体を備えたことを特徴とする 請求項 1記載の対流温度差原動装置。 The warming liquid circulation conduit is provided at one end side with an inlet for the warming liquid provided at the outer shell, has an outlet at the other end, and further has one end of the inner cylinder and the outer cylinder. The other support shaft that supports the shaft covers the outside of the inner cylinder, forms a flow passage through which the heated liquid from the outlet of the other support shaft can flow, and is formed in the outer cylinder. A cylinder formed with a number of injection ports for injecting the heated liquid toward the injection port, an injection port connected to the inlet of the other support shaft, and the cylinder An outlet force of the body comprises a recovery port for recovering the injected heated liquid, and a heated liquid circulation tube for circulating the heated liquid to the recovery port force and the inlet again. Item 1. A convection temperature difference prime mover according to item 1.
[3] 上記内筒に、上記一方支軸又は他方支軸に回転可能に挿通される管状の内筒回 転軸を設け、上記外筒に、該内筒回転軸と同軸の管状の外筒回転軸を設け、上記 内筒回転軸及び外筒回転軸の両方力 動力を得る動力取得機構を設けたことを特 徴とする請求項 2記載の対流温度差原動装置。  [3] The inner cylinder is provided with a tubular inner cylinder rotation shaft that is rotatably inserted into the one support shaft or the other support shaft, and the outer cylinder has a tubular outer cylinder coaxial with the inner cylinder rotation shaft. 3. The convection temperature difference prime mover according to claim 2, further comprising a power acquisition mechanism provided with a rotary shaft to obtain power from both the inner cylinder rotary shaft and the outer cylinder rotary shaft.
[4] 上記動力取得機構が、上記内筒回転軸に設けられる第一原動ギア,上記外筒回 転軸に設けられる第二原動ギア,第一原動ギアに嚙合する第一従動ギア,第二原動 ギアに嚙合する第二従動ギア,第一従動ギアと第二従動ギアが取り付けられるシャフ ト,及び,該シャフトに連係して駆動される発電機を備えたことを特徴とする請求項 3 記載の対流温度差原動装置。  [4] The power acquisition mechanism includes a first driving gear provided on the inner cylinder rotating shaft, a second driving gear provided on the outer cylinder rotating shaft, a first driven gear meshing with the first driving gear, 4. A second driven gear meshing with the driving gear, a shaft to which the first driven gear and the second driven gear are attached, and a generator driven in association with the shaft. Convection temperature difference prime mover.
[5] 上記外筒の一端側の内周に、上記供給口に設けた動翼に気体を導くガイド翼を設 け、  [5] On the inner circumference of one end side of the outer cylinder, a guide blade for guiding gas to the moving blade provided at the supply port is provided,
上記動翼が、上記内筒の一端側に、該内筒の回転軸を中心に等角度関係で列設 され、さらに、上記ガイド翼により導かれた気体を受ける面を有した複数のブレードを 備え、  A plurality of blades each having a surface for receiving the gas guided by the guide blades, wherein the rotor blades are arranged on one end side of the inner tube at an equiangular relationship around the rotation axis of the inner tube. Prepared,
上記ガイド翼が、上記動翼のブレードに対応させて等角度関係で列設された複数 の導風板を備えたことを特徴とする請求項 1, 2, 3又は 4記載の対流温度差原動装 置。  The convection temperature difference driving device according to claim 1, wherein the guide blade includes a plurality of air guide plates arranged in an equiangular relationship so as to correspond to the blade of the moving blade. Equipment.
[6] 上記導風板を、円周一方向に凹曲して形成し、該導風板の凹曲した面によって、 上記供給口に流入する気体に遠心力を付与することを特徴とする請求項 5記載の対 流温度差原動装置。  [6] The air guide plate is formed by being bent in one circumferential direction, and a centrifugal force is applied to the gas flowing into the supply port by the concave surface of the air guide plate. The convection temperature difference prime mover according to Item 5.
[7] 上記内筒の他端の外方に、上記排出ロカ 排出された気体を受けて該内筒に回 転力を付与するとともに該排出口から排気された気体を上記他方流路の気体の流通 方向に導く案内翼を設けたことを特徴とする請求項 5又は 6記載の対流温度差原動 装置。  [7] Outside the other end of the inner cylinder, the gas discharged from the discharge loci is applied to the inner cylinder to apply a rotational force, and the gas exhausted from the outlet is supplied to the gas in the other channel. The convection temperature difference prime mover according to claim 5 or 6, characterized in that a guide vane is provided for guiding in the flow direction.
[8] 上記内筒の内部に、上記一方通路を通る気体及び冷却液体が通過可能な多孔質 部材を設けたことを特徴とする請求項 1, 2, 3, 4, 5, 6又は 7記載の対流温度差原 動装置。 [8] Porous material that allows gas and cooling liquid passing through the one passage to pass through the inner cylinder. The convection temperature difference driving device according to claim 1, 2, 3, 4, 5, 6 or 7, wherein a member is provided.
[9] 上記多孔質部材を、卷回されたシート状の金属製網としたことを特徴とする請求項 [9] The porous member is a wound sheet-like metal net,
8記載の対流温度差原動装置。 8. Convection temperature difference prime mover according to 8.
[10] 上記内筒の内周であって上記一方流路の供給口側に、滞留した気体を排出口側 に押し込むフィンを設けたことを特徴とする請求項 1, 2, 3, 4, 5, 6, 7, 8又は 9記載 の対流温度差原動装置。 [10] The fin according to claim 1, 2, 3, 4, wherein an inner periphery of the inner cylinder is provided on the supply port side of the one flow path to push the accumulated gas into the discharge port side. Convection temperature difference prime mover according to 5, 6, 7, 8 or 9.
[11] 上記一方支軸を、上記内筒と連係して回転可能とし、該一方支軸に、上記一方流 路の供給口側に滞留した気体を排出口側に押し込むフィンを設けたことを特徴とす る請求項 1, 2, 3, 4, 5, 6, 7, 8又は 9記載の対流温度差原動装置。 [11] The one support shaft is rotatable in conjunction with the inner cylinder, and the one support shaft is provided with a fin for pushing the gas staying on the supply port side of the one flow channel toward the discharge port side. The convection temperature difference prime mover according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
PCT/JP2005/011580 2004-12-28 2005-06-24 Convection temperature difference prime motive power device WO2006070497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550596A JPWO2006070497A1 (en) 2004-12-28 2005-06-24 Convection temperature difference prime mover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-381023 2004-12-28
JP2004381023 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070497A1 true WO2006070497A1 (en) 2006-07-06

Family

ID=36614624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011580 WO2006070497A1 (en) 2004-12-28 2005-06-24 Convection temperature difference prime motive power device

Country Status (2)

Country Link
JP (1) JPWO2006070497A1 (en)
WO (1) WO2006070497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088617A1 (en) * 2014-12-01 2016-06-09 阿部 俊廣 Temperature-difference energy conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JP2000303947A (en) * 1999-04-26 2000-10-31 Toshihiro Abe Highly efficient method and its device for convection flow temperature difference prime mover
JP2000356181A (en) * 1999-06-11 2000-12-26 Toshihiro Abe Super efficient double rotating method and its device for convection temperature difference prime mover
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JP2000303947A (en) * 1999-04-26 2000-10-31 Toshihiro Abe Highly efficient method and its device for convection flow temperature difference prime mover
JP2000356181A (en) * 1999-06-11 2000-12-26 Toshihiro Abe Super efficient double rotating method and its device for convection temperature difference prime mover
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088617A1 (en) * 2014-12-01 2016-06-09 阿部 俊廣 Temperature-difference energy conversion device
JP2016104969A (en) * 2014-12-01 2016-06-09 阿部 俊廣 Temperature difference energy conversion device

Also Published As

Publication number Publication date
JPWO2006070497A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
CN110537024B (en) Energy recovery cycle turbine integrated with capillary gas compressor
US8893469B2 (en) Oil bypass channel deaerator for a geared turbofan engine
CN104903548B (en) The variable bleeder valve of gas-turbine unit two-freedom for obtaining ice
CN1982702B (en) Wind energy turbine
EP2801721B1 (en) Wind turbine blade and deicing method for the same
EP2166221A2 (en) Water turbine with water circulation
JP6604964B2 (en) Turbine assembly
BR102016025308A2 (en) gas turbine engine
JP2017089635A (en) Method and system for cooling aircraft engine fluid
FR2540936A1 (en) IMPROVEMENT TO GAS TURBOMACHINE LUBRICATION SYSTEMS
JP2010031722A (en) Wind-driven electric power generator
JPH0243076B2 (en)
JP5301460B2 (en) Rotating device
WO2010120791A2 (en) Energy efficient cooling tower system utilizing auxiliary cooling tower
JP2010007649A (en) Wind power generation device
WO2006070497A1 (en) Convection temperature difference prime motive power device
CN110158409B (en) Highway pitch construction tool
CN117307693A (en) Gearbox assembly with lubricant extraction volume ratio
US4009576A (en) Regenerator for rotary Rankine cycle engines
JP6964915B1 (en) Liquid circulation type power generator
CN115095556A (en) Steam pressure matcher
CN212645026U (en) Biomass boiler flue gas heating air source heat pump air inlet system
SE526993C2 (en) Wind turbines as well as obtaining electrical energy from such
CN211448880U (en) Flow force power generation device
JPH06147098A (en) Convection type temperature gradient prime mover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550596

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05752869

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5752869

Country of ref document: EP