JP2000303947A - Highly efficient method and its device for convection flow temperature difference prime mover - Google Patents

Highly efficient method and its device for convection flow temperature difference prime mover

Info

Publication number
JP2000303947A
JP2000303947A JP11118280A JP11828099A JP2000303947A JP 2000303947 A JP2000303947 A JP 2000303947A JP 11118280 A JP11118280 A JP 11118280A JP 11828099 A JP11828099 A JP 11828099A JP 2000303947 A JP2000303947 A JP 2000303947A
Authority
JP
Japan
Prior art keywords
convection
temperature difference
peripheral wall
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11118280A
Other languages
Japanese (ja)
Inventor
Toshihiro Abe
阿部俊廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11118280A priority Critical patent/JP2000303947A/en
Publication of JP2000303947A publication Critical patent/JP2000303947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate electricity pollution-free, durable and high in efficiency at low cost by forming a high pressure super efficient tornade of a centrifugal separation type within each cylinder by the difference in low temperature between the surface layer water and deep layer water of the ocean and the like, to mix the deep layer nutritious water (cold water) with the surface layer water to activated fishing ground, and to adjust rainfall of low atmospheric pressure of typhoon by lowing of the surface layer water temperature by large-sized power generation. SOLUTION: High pressure air within a heating convection flow path 6 comprising a high temperature transfer spiral bellows formed in a great number of cylinders 1 vertically floated at intervals, is heated by surface layer water to reduce weight so as to be raised up while being spirally rotated, and simultaneously, high pressure gas in the vicinity of V-shaped fins of a cold water path in deep layer water and the like, becomes heavier, and thereby descends downward so as to centrifugally enter into a cooling convection path with pressure, so that it is turned out to be rotated at high speed. Massive torque is thereby generated by a cynerigistic effect and centrifugal separation pressure, and the leading rotation of a circumferential wall rotor 7 thereby allows fluid friction to be markedly decreased, and enables electric power high in output to be generated at extraordinary low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自然界のどこにでも
有る低温度差の海水やあるいは雪や地下水、温泉等の排
熱を用いるのに適した対流温度差原動機の高効率法とそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency method and a device for a convection temperature difference motor suitable for using waste heat of seawater having a low temperature difference or snow, groundwater, hot springs and the like, which are present everywhere in nature.

【0002】[0002]

【従来の技術】従来の対流温度差原動機の代表例として
特開平6−147098号公報等に開示される対流温度
差原動機は図1、図2、図3に示す様に熱交換を行う気
体を密閉するシリンダAとその内部に冷水を通すパイプ
Bにスパイラル状に巻付く冷却対流路Cとその外周部に
は加温対流路Dとその間には肉厚の断熱する対流路周壁
Eを固着しBに冷水等とDは温水等で加温する事で双方
の対流路CとDにタービンFを回転させる対流を発生さ
せていた。
2. Description of the Related Art As a typical example of a conventional convection temperature difference motor, a convection temperature difference motor disclosed in Japanese Patent Application Laid-Open No. 6-147098 discloses a gas that performs heat exchange as shown in FIGS. A cooling counter flow path C spirally wound around a cylinder A to be hermetically sealed and a pipe B through which cold water passes, and a heating counter flow path D on the outer periphery thereof and a thick heat insulating counter flow path peripheral wall E interposed therebetween are fixed. By heating cold water or the like to B and hot water or the like to D, convection for rotating the turbine F is generated in both convection passages C and D.

【0003】[0003]

【発明が解決しようとする課題】然しながら上記従来の
如く冷却対流路C内の高圧の気体100が冷却収縮され
て高比重になり長距離のスパイラル回転をしてその遠心
力により対流路周壁Eに加圧されて高摩擦が発生し更に
高速回転のためにエネルギーロスが膨大であった。
However, as described above, the high-pressure gas 100 in the cooling counter flow path C is cooled and contracted to have a high specific gravity and spirally rotates for a long distance, and the centrifugal force causes the centrifugal force to cause the counter flow path peripheral wall E to move. High friction was generated by pressurization, and energy loss was enormous due to high-speed rotation.

【0004】更に密閉するシリンダA内に発電機を圧設
しオイルシール無しで発電する場合高圧の気体100内
での風損等が出力の低下をさせていた他、図1の様に出
力軸を外部に突出させて利用する際、高圧の気体100
の漏れを防ぐオイルシール等の高圧下での耐久性と高摩
擦も上記とプラスされて起動用モーター及びバッテリー
等が必要であった。
Further, when a generator is pressurized in the cylinder A to be hermetically sealed and power is generated without an oil seal, wind power in the high-pressure gas 100 causes the output to decrease, and as shown in FIG. When projecting to the outside and using it, high pressure gas 100
The durability under high pressure and the high friction of an oil seal and the like for preventing leakage of the oil were added to the above, and a starting motor and a battery were required.

【0005】又、特に大型の機種を製作する場合等は熱
交換用の平面状フィンでは面幅状の熱伝導距離が長く熱
交換率を極端に減少させていた他、シリンダAに高圧の
気体100が加圧されるためにシリンダA壁を肉厚にし
なければならず重くなるばかりか外部からの熱交換率も
出力を低下させていた等、利用済の排熱等の再利用等も
提案されていなかった。
In particular, when manufacturing a large model, etc., the flat fins for heat exchange have a long heat conduction distance in the form of a flat surface and extremely reduce the heat exchange rate. Since the wall of the cylinder A must be made thicker because the 100 is pressurized, it becomes heavier, and the heat exchange rate from the outside also lowers the output. Had not been.

【0006】[0006]

【課題を解決するための手段】この発明は上記課題を解
決するためになしたもので、その解決手段として図6を
参照しながら説明すると請求項1に記載の流体物(安定
の気体100等)が対流する加温対流路6と冷却対流路
13の中間周壁を回転出来る様にする事で、該双対流路
6と13を対流する高圧の気体100の誘導により該周
壁回転体7がその高圧気体100の高摩擦を激減させる
他、タービンとしても利用しているが高圧の気体100
の摩擦を減少させる為であれば該中間の周壁回転体7の
みならず対流路周壁全体に適要する事が出来る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and will be described with reference to FIG. 6 as a means of solving the problems. ) Can rotate the intermediate peripheral wall of the heating convection passage 6 and the cooling convection passage 13 where the convection occurs, so that the high-pressure gas 100 convecting the dual passages 6 and 13 induces the peripheral wall rotator 7 to rotate. In addition to drastically reducing the high friction of the high-pressure gas 100, the high-pressure gas 100 is also used as a turbine.
In order to reduce the friction, it is necessary not only for the intermediate peripheral wall rotating body 7 but also for the entire peripheral wall of the counter flow path.

【0007】請求項2に記載の周壁回転体7の周壁面を
絞り波型(コルゲートパイプ)状にし、その波の谷間の
流路に対流圧受プレート8と9(対流抵抗体)を所定の
間隔で設け対流する気体100の圧力をその対流圧受プ
レート8と9で受けその反動で該周壁回転体7を強力に
誘導回転させてその回転力を利用している。
[0007] The peripheral wall of the peripheral wall rotating body 7 according to the second aspect is formed in a corrugated pipe shape (corrugated pipe), and convection pressure receiving plates 8 and 9 (convective resistor) are provided at predetermined intervals in a flow path between the valleys of the waves. The convective pressure receiving plates 8 and 9 receive the pressure of the convective gas 100, and the peripheral wall rotator 7 is strongly guided and rotated by the reaction thereof to utilize the rotational force.

【0008】請求項3に記載の周壁回転体7の周壁面を
絞り波型状にしても固定設の双対流路6と13と周壁回
転体7の間隙は必要不可欠であるために対流中の気体1
00は必ず漏れてしまう。それを食い止めるために該気
体100が対流圧受プレート8と9に衝突する時の反動
圧を漏れ流出方向と反発させるために対流圧受プレート
8と9を傾け設置している。
[0008] Even if the peripheral wall of the peripheral wall rotator 7 according to the third aspect is formed into a corrugated shape, the gap between the fixed dual flow paths 6 and 13 and the peripheral wall rotator 7 is indispensable. Gas 1
00 always leaks. The convective pressure receiving plates 8 and 9 are inclined to repel the reaction pressure generated when the gas 100 collides with the convective pressure receiving plates 8 and 9 in the direction of leakage and outflow.

【0009】請求項4に記載のスパイラルの冷却パイプ
10とV型フィン12を一体化して熱交換率を上げると
共に高圧の気体100が高速対流する時の振動等も減少
させるために構造的強度を高くして、この構造は加温対
流路にも利用が可能である。
The spiral cooling pipe 10 and the V-shaped fins 12 are integrated to increase the heat exchange rate and to reduce the structural strength in order to reduce the vibration and the like when the high-pressure gas 100 flows at high speed. Higher, this structure can also be used for heated convection channels.

【0010】請求項5に記載のスパイラル状の冷却パイ
プ10の上流方向からV型フィン12内にも冷水等を通
し熱交換率を上げる様にするために1例としてスパイラ
ル状の冷却パイプ10壁に多数の流通口11を設け、こ
の構造は加温対流路にも利用可能である。
In order to increase the heat exchange rate by passing cold water or the like from the upstream of the spiral cooling pipe 10 into the V-shaped fins 12, the wall of the spiral cooling pipe 10 is an example. Are provided with a large number of flow ports 11, and this structure can also be used for a heating counter flow path.

【0011】請求項6に記載の冷却対流路13を冷却す
る冷却パイプ10をスパイラル巻状の間隙18と巻型内
径を所定の大きさを持たせて成型し巻付方向を流体直下
起動路53としてその巻付端部の開口部に起動用ファン
22を設けてその流体直下起動路53で冷却直下された
高圧の気体100の対流圧等で、その起動用ファン22
と連結する該周壁回転体7を自己起動させる様にし、こ
の他、起動回転手段は実施例にも示してある。
A cooling pipe 10 for cooling the cooling channel 13 according to claim 6 is formed by forming the spiral wound gap 18 and the inner diameter of the winding die to have a predetermined size, and the winding direction is the fluid-directed starting path 53. The startup fan 22 is provided at the opening of the winding end portion, and the startup fan 22 is operated by the convection pressure of the high-pressure gas 100 directly cooled by the startup path 53 immediately below the fluid.
The peripheral wall rotator 7 connected to the rotator is self-activated. In addition, the activation rotation means is also shown in the embodiment.

【0012】請求項7に記載の周壁回転体7と連結する
起動用ファン22が目的回転に達した時にその起動用フ
ァン22の羽角が遠心力又は、風圧等により0角に接近
させて回転風損と羽間流量を減らすと共にその高圧の気
体100のメイン流路を変更させて該起動用ファン22
の外周部と連結する該周壁回転体7の内周部下端に有す
るファンノズル21から該高圧の気体100を遠心加速
させて出力の増加をさせている。
When the starting fan 22 connected to the peripheral wall rotating body 7 reaches the target rotation, the wing angle of the starting fan 22 approaches the zero angle due to centrifugal force or wind pressure. In addition, the main flow path of the high-pressure gas 100 is changed and the starting fan 22
The high-pressure gas 100 is centrifugally accelerated from the fan nozzle 21 provided at the lower end of the inner peripheral portion of the peripheral wall rotator 7 connected to the outer peripheral portion of the peripheral wall 7 to increase the output.

【0013】請求項8に記載の周壁回転体7の軸受付近
のシリンダ1壁にセンター通気口25を設け該周壁回転
体7の遠心力で該センター通気口25より気体100を
導入させて該周壁回転体7の外周部に近接する冷却対流
路13及び加温対流路6内に高圧の気体100とさせて
利用する事と該周壁回転体7の出力軸を該シリンダ1壁
よりオイルシール無しで突出させる事が出来そのオイル
シールの摩擦と耐久性を無視できる様にしている。又、
該シリンダ1の壁面の中心付近に通気口を設けて該セン
ター通気口25の代用も可能である。
A center vent 25 is provided in the wall of the cylinder 1 near the bearing of the peripheral wall rotator 7 according to claim 8, and gas 100 is introduced from the center vent 25 by centrifugal force of the peripheral wall rotator 7. The high-pressure gas 100 is used in the cooling flow path 13 and the heating flow path 6 close to the outer periphery of the rotating body 7 and the output shaft of the circumferential wall rotating body 7 is used without the oil seal from the cylinder 1 wall. It can be made to protrude so that the friction and durability of the oil seal can be ignored. or,
It is also possible to provide a ventilation port near the center of the wall surface of the cylinder 1 and use the center ventilation port 25 instead.

【0014】請求項9に記載の密閉するシリンダ1内を
流体対流室に発電機室シリンダ42を発電機室としてプ
レート等にて分室し双方の高圧の気体100を上記請求
項8の方法等により移動させ該発電機室シリンダ42内
の減圧による風損を減らすと共に流体対流室の高圧の気
体100の圧力を別タンクにも出入させて出力の増減調
整をさせ高圧の気体100の安全確保を高めながら該発
電機室シリンダ42内の該発電機室より電気エネルギー
として外部に取り出す様にしている。
The inside of the cylinder 1 to be sealed according to claim 9 is divided into a fluid convection chamber by a plate or the like, with the generator chamber cylinder 42 serving as a generator chamber, and both high-pressure gases 100 are separated by the method of claim 8 or the like. It is moved to reduce the windage loss due to the reduced pressure in the generator room cylinder 42, and the pressure of the high-pressure gas 100 in the fluid convection chamber is moved into and out of another tank to increase or decrease the output, thereby enhancing the safety of the high-pressure gas 100. Meanwhile, electric energy is taken out from the generator room in the generator room cylinder 42 as electric energy.

【0015】請求項10に記載の冷却対流路13と加温
対流路6の横V型の開口部を該周壁回転体7側に接近さ
せる方向にし該双方の対流路断面積を大きくして出力を
上げている。
The lateral V-shaped openings of the cooling flow path 13 and the heating flow path 6 according to the tenth aspect are directed toward the peripheral wall rotating body 7 so that the cross-sectional areas of both the flow paths are increased. Is raised.

【0016】請求項11に記載の該周壁回転体7の内部
に設ける冷却パイプ10の端部が該周壁回転体7と高速
回転体する高圧の気体100の妨害にならない様にする
ため該周壁回転体7の軸受部中心を通り外部に出し該周
壁回転体7の他端には遠心クラッチ付出力ギヤ28を設
けている。
In order to prevent the end of the cooling pipe 10 provided inside the peripheral wall rotating body 7 according to claim 11 from interfering with the peripheral wall rotating body 7 and the high-pressure gas 100 rotating at high speed, the peripheral wall rotation is performed. An output gear 28 with a centrifugal clutch is provided at the other end of the peripheral wall rotating body 7 through the center of the bearing portion of the body 7 to the outside.

【0017】請求項12に記載の熱交換用スパイラル状
ジャバラ5の辺の曲や長さを変化させて成型し内部の流
量断面と外部表面積と加温対流路6の断面積を熱交換す
る高圧の気体100の密度に調和出来る様にして熱交換
率を上げている。又、この手段はV型フィン12にも可
能である。
A high pressure for exchanging the internal flow rate cross section, the external surface area, and the cross sectional area of the heated counter flow path 6 by changing the shape and the length of the side of the spiral bellows 5 for heat exchange according to claim 12 and changing the length thereof. The heat exchange rate is raised so that the density of the gas 100 can be adjusted. This means is also possible for the V-shaped fins 12.

【0018】請求項13に記載のシリンダ1の壁面にス
パイラル状ジャバラ5等を接着させて熱交換面積の拡大
と内圧によるジャバラ折畳力でそのシリンダ1軸方向強
度と周辺強度及び相対的にその該スパイラル状ジャバラ
5の強度を補強させている。又、V型フィン22をスパ
イラル状に巻き該ジャバラ5を成型する事も可能であ
る。
A spiral bellows 5 or the like is adhered to the wall surface of the cylinder 1 according to claim 13 to expand the heat exchange area and fold the bellows due to the internal pressure to achieve the strength in the axial direction of the cylinder 1 and the peripheral strength, and the relative strength. The strength of the spiral bellows 5 is reinforced. Further, the bellows 5 can be formed by winding the V-shaped fin 22 in a spiral shape.

【0019】請求項14に記載のスパイラル状ジャバラ
5を図示しない密閉シリンダとしても兼用させて外周部
の伸縮防止用として細長プレート等を所定間隔を持たせ
て接着し直接的に海水等に浮遊させて表層水を加温水と
してその間隔より流入させそのジャバラ5の広面積で熱
交換率を高くし深層冷水との温度差エネルギーを効率良
く利用している。
The spiral bellows 5 according to the present invention is also used as a closed cylinder (not shown), and an elongated plate or the like is attached at a predetermined interval to prevent expansion and contraction of the outer peripheral portion and is directly floated in seawater or the like. In this way, the surface water is heated as warming water to flow in from the interval, the heat exchange rate is increased over a wide area of the bellows 5, and the energy of the temperature difference from the deep cold water is efficiently used.

【0020】請求項15に記載の周壁回転体7とその内
部に設ける冷却対流路13又は、外部に設ける加温対流
路6の一方のみで構成される種類の装置を必要に応じて
設置し原動力を利用しながらその排気熱を利用して冷房
又は、暖房する事も出来る。(図4と図5も参照)
An apparatus of a type constituted by only the peripheral wall rotating body 7 according to claim 15 and one of the cooling pair flow path 13 provided inside thereof and the heating pair flow path 6 provided outside thereof is installed as necessary, and It is also possible to perform cooling or heating using the exhaust heat while utilizing. (See also FIGS. 4 and 5)

【0021】[0021]

【発明の実施の形態】以下本発明の実施の形態例を図4
及び至図7に基づき説明する。
FIG. 4 shows an embodiment of the present invention.
7 and FIG.

【0022】図6は本発明の実施例を示す立体部分切開
図であり本実施例では本発明の図4と図5を組合せ改良
した対流温度差原動機の高効率法とその装置を例えば、
地下等に設置し温泉の排熱又は、太陽熱と冷水等の温度
差エネルギーを発電用として用いた例を示すと共に海洋
等に浮遊等させて利用する時は支柱を外す等して利用出
来る様にしている。
FIG. 6 is a three-dimensional partial cutaway view showing an embodiment of the present invention. In this embodiment, a high-efficiency method of a convection temperature difference motor, which is an improved combination of FIG. 4 and FIG.
It shows an example where it is installed in the basement or the like and uses the waste heat of hot springs or the temperature difference energy between solar heat and cold water for power generation, and when floating and used in the ocean etc. ing.

【0023】本実施例の発電装置は、シリンダ1と加温
パイプ4と加温対流路6と冷却パイプ10と冷却対流路
13と周壁回転体7と発電機31とを備えている。
The power generator of this embodiment includes a cylinder 1, a heating pipe 4, a heating channel 6, a cooling pipe 10, a cooling channel 13, a peripheral rotating body 7, and a generator 31.

【0024】シリンダ1は自然対流も利用するために縦
型に成型され内部に熱交換を行なう気体100が導入さ
れる様になっている。この熱交換を行なう気体100と
しては空気や窒素等の安定気体が採用出来る他水等の液
体でも良い。
The cylinder 1 is formed in a vertical shape in order to utilize natural convection, and a gas 100 for exchanging heat is introduced into the cylinder. The gas 100 for performing the heat exchange may be a stable gas such as air or nitrogen, or may be a liquid such as water.

【0025】上記構成の本発明の対流温度差原動機の高
効率とその装置の回転起動からの順は、密閉するシリン
ダ1内の流体直下起動路53(トンネル)壁を成型する
スパイラル状の冷却パイプ10に冷却水等を供給すると
その(トンネル)内の加温対流路6からの高圧の気体1
00が冷却収縮により更に重くなり降下し続けその(ト
ンネル)出口にある起動用ファン22が徐々に目標回転
まで下記との相乗効果で加速する。
The high efficiency of the convection temperature difference prime mover of the present invention having the above configuration and the order from the rotation start of the device are as follows. A spiral cooling pipe for molding a wall immediately below the fluid 53 (tunnel) in the closed cylinder 1. When cooling water or the like is supplied to 10, high-pressure gas 1 from heating channel 6 in the (tunnel)
00 is further heavier due to the cooling contraction and continues to descend, and the starting fan 22 at the (tunnel) outlet is gradually accelerated to the target rotation by a synergistic effect with the following.

【0026】次いでその起動用ファン22の羽角が外周
部から受ける風圧で徐々に閉鎖されその羽間を通過して
いた気体100は起動用ファンアーム20と連結回転し
ている周壁回転体7の内周開口部のファンノズル21よ
り回転放出される。
Next, the wing angle of the starting fan 22 is gradually closed by the wind pressure received from the outer peripheral portion, and the gas 100 passing between the wings of the fan 22 is rotated by the peripheral wall rotating body 7 connected to the starting fan arm 20. It is rotationally discharged from the fan nozzle 21 in the peripheral opening.

【0027】その回転放出される高圧気体100の強力
な遠心力により該高圧気体100の回転半径が拡大され
るために冷却対流路13には流体引込圧と加温対流路6
には流体押込圧が加わり高圧気体100の対流を加速す
るために動力が発生する。
Since the rotating radius of the high-pressure gas 100 is enlarged by the strong centrifugal force of the high-pressure gas 100 which is rotated and discharged, the cooling suction passage 13 has a fluid suction pressure and a heating suction passage 6.
, A fluid pushing pressure is applied, and power is generated to accelerate convection of the high-pressure gas 100.

【0028】次にその動力を発生した高圧気体100は
回転しながら加温対流路6に取り入れられて上昇し低比
重回転しながら再度該トンネル内に入りその壁を成型す
るスパイラル状の冷却パイプ10の間隙より冷却対流路
13内に回転流入されて上記流体引込圧でスパイラル回
転加速されながらその遠心力で加圧された該周壁回転体
7の内部から誘導回転力が増加していく事になる。よっ
て冷却されて収縮した高比重に加わる遠心力と加温され
て膨張した低比重に加わる遠心力の差で発生するスパイ
ラル対流により回転エネルギーが生じる。
Next, the high-pressure gas 100 that has generated the power is taken into the heating counter flow path 6 while rotating, rises, and enters the tunnel again while rotating at a low specific gravity to form a spiral cooling pipe 10 for molding its wall. The rotational rotational force is introduced into the cooling flow passage 13 from the gap, and the rotational rotational force is increased from the inside of the peripheral wall rotating body 7 pressurized by the centrifugal force while being spirally accelerated by the fluid suction pressure. . Therefore, rotational energy is generated by the spiral convection generated by the difference between the centrifugal force applied to the cooled and contracted high specific gravity and the centrifugal force applied to the heated and expanded low specific gravity.

【0029】[0029]

【実施例】次から本発明の実施例による高効率法とその
装置等を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high efficiency method according to an embodiment of the present invention and its apparatus will be described in detail below.

【0030】加温対流路6と冷却対流路13を対流する
気体100の誘導により該周壁回転体7が回転するため
にその気体100の高摩擦が激減する様にして出力を大
幅にアップさせている。
Since the peripheral wall rotator 7 is rotated by the induction of the gas 100 convectively flowing through the heating convection passage 6 and the cooling convection passage 13, the high friction of the gas 100 is sharply reduced, so that the output is greatly increased. I have.

【0031】回転させる周壁回転体7を絞波型状にしそ
の谷間の流路に対流圧受プレート8と9(対流抵抗体)
を所定の間隔で設け対流する気体100の圧力をその対
流圧受プレート8又は、9で受けた反動で周壁回転体7
を強力に誘導回転させその回転を利用して発電機31を
回転させている。
The peripheral wall rotator 7 to be rotated is formed into a chopping shape, and convection pressure receiving plates 8 and 9 (convection resistors) are provided in the flow paths between the valleys.
Are provided at predetermined intervals, and the pressure of the convective gas 100 is received by the convective pressure receiving plate 8 or 9 so that the peripheral wall rotating body 7
, And the generator 31 is rotated using the rotation.

【0032】上記の様に絞り波型状にしても個設の両方
の加温対流路6又は、冷却対流路13と周壁回転体7の
間隙は必要不可欠であるために気体100はその間隙よ
り漏れてしまうことになる。それを食い止めるために気
体100が対流圧受プレート8と9に衝突する時の反動
圧を漏れ流出する方向と反発させるために対流圧受プレ
ート8と9を傾け設置にしている。
As described above, the gap between both the heating counter flow path 6 or the cooling counter flow path 13 and the peripheral wall rotating body 7 is indispensable even with the throttle corrugated shape. It will leak. The convective pressure receiving plates 8 and 9 are inclined so as to prevent the reaction pressure when the gas 100 collides with the convective pressure receiving plates 8 and 9 from leaking and flowing out.

【0033】スパイラルの冷却パイプ10とV型フィン
12を一体化にして熱交換率を上げると共に高圧高速対
流する際の振動等も減少させるために構造的強度を高く
している。
The spiral cooling pipe 10 and the V-shaped fins 12 are integrated to increase the heat exchange rate and to increase the structural strength in order to reduce vibrations and the like during high-pressure high-speed convection.

【0034】スパイラルの冷却パイプ10の外周壁に流
通口11を設けるか冷却パイプ10の上流方向からV型
フィン12内部にも冷却水等を通し熱交換率を上げる様
にしている。
A flow port 11 is provided on the outer peripheral wall of the spiral cooling pipe 10 or cooling water or the like is passed from the upstream of the cooling pipe 10 to the inside of the V-shaped fin 12 to increase the heat exchange rate.

【0035】冷却対流路13を冷却するパイプ10をス
パイラル巻上の間隙と巻型内径を所定の大きさを持たせ
て成型し巻付方向を流体直下起動路53としてその巻付
け端部の開口部に起動用ファン22を設けてその流体直
下起動路53で冷却直下された流体圧のみで、その起動
用ファン22と連結する周壁回転体7を自己起動させる
様にしている。
The pipe 10 for cooling the cooling flow path 13 is formed with a predetermined space between the spiral winding and the inner diameter of the winding form, and the winding direction is defined as a fluid-direct starting path 53 and the opening at the winding end thereof. The start-up fan 22 is provided in the section, and the peripheral wall rotating body 7 connected to the start-up fan 22 is self-started only by the fluid pressure directly cooled by the cooling path immediately below the fluid.

【0036】周壁回転体7と連結する起動用ファン22
が目標回転に達した時に起動用ファン22の羽間が遠心
力又は、風圧等により0角に接近させて回転抵抗と羽間
流量を減らすと共にその気体100のメイン流路を変更
させて起動用ファン22の外周部と連結する周壁回転体
7の内周部下端に有する出力開口部であるファンノズル
21から流体を遠心加速させて出力の増加をさせてい
る。
A starting fan 22 connected to the peripheral wall rotating body 7
When the rotation of the fan reaches the target rotation, the space between the blades of the starting fan 22 approaches the zero angle by centrifugal force or wind pressure to reduce the rotational resistance and the flow amount between the blades and change the main flow path of the gas 100 for the starting. The fluid is centrifugally accelerated from a fan nozzle 21 which is an output opening at the lower end of the inner peripheral portion of the peripheral wall rotating body 7 connected to the outer peripheral portion of the fan 22 to increase the output.

【0037】周壁回転体7の軸受付近の密閉するシリン
ダ1の下部に有る分室プレート24に流体出入口(セン
ター通気口25)を設け周壁回転体7の遠心力でセンタ
ー通気口25より気体100を導入させて周壁回転体7
の外周部に近接する冷却対流路13及び加温対流路6内
とその付近に気体100を高圧とさせて利用する事と周
壁回転体7の出力ギヤ28を分室プレート24(分室プ
レートを設けない場合はシリンダ1)よりオイルシール
無しで軸出しさせる事が出来るので高速回転と高圧摩擦
による発熱及び耐久性を考慮する必要がなくなる。
A fluid port (center vent 25) is provided in the compartment plate 24 at the lower part of the cylinder 1 to be hermetically sealed near the bearing of the peripheral wall rotator 7, and gas 100 is introduced from the center vent 25 by the centrifugal force of the peripheral wall rotator 7. Let the surrounding wall rotating body 7
The high pressure of the gas 100 is used in and around the cooling flow path 13 and the heating flow path 6 close to the outer peripheral portion of the cooling water passage 13, and the output gear 28 of the peripheral wall rotating body 7 is connected to the compartment plate 24 (the compartment plate is not provided). In this case, since the shaft can be centered from the cylinder 1) without an oil seal, it is not necessary to consider heat generation and durability due to high speed rotation and high pressure friction.

【0038】密閉するシリンダ1を流体対流室と発電機
室に分室プレート24で分室し双方の高圧の気体100
を周壁回転体7の遠心力により移動させ発電機室の減圧
による風損を減らすと共に流体対流室の気体100の圧
力を図に示していない別タンクにも出入させて出力の増
減調整をさせ高圧の気体100の安全確保を高めながら
シリンダ1内の発電機31の室より電気エネルギーとし
て外部に取り出す様にしている。
The cylinder 1 to be hermetically sealed is divided into a fluid convection chamber and a generator chamber by a partition plate 24, and both high-pressure gas 100
Is moved by the centrifugal force of the peripheral wall rotating body 7 to reduce the windage loss due to the decompression of the generator room, and at the same time, the pressure of the gas 100 in the fluid convection chamber is moved into and out of another tank (not shown) to increase or decrease the output, thereby increasing the pressure. The gas 100 is taken out from the chamber of the generator 31 in the cylinder 1 as electric energy while ensuring the safety of the gas 100.

【0039】冷却パイプ10及び加温パイプ4と一体化
させるV型フィン又は、スパイラル状ジャバラ5で成型
する双方の対流路6と13の開口部を周壁回転体7側に
断面積を大きくして出力を上げている。
The cross-sectional areas of the V-shaped fins integrated with the cooling pipe 10 and the heating pipe 4 or the openings of the counterflow paths 6 and 13 formed by the spiral bellows 5 are increased toward the peripheral wall rotating body 7. The output is increasing.

【0040】周壁回転体7の内部に設ける冷却パイプ1
0と周壁回転体7と共に高速回転する気体100の回転
等の妨害にならないようにするために周壁回転体7の軸
部中心を冷却パイプ10等を通す様にしている。
Cooling pipe 1 provided inside peripheral wall rotating body 7
In order to prevent the rotation of the gas 100 rotating at high speed together with the peripheral wall rotating body 7, the center of the shaft of the peripheral wall rotating body 7 is passed through the cooling pipe 10 or the like.

【0041】熱交換用のスパイラル状ジャバラ5の辺の
曲や長さを変化させて成型し内部の流量断面と外部表面
積と加温対流路6の断面積を熱交換する気体100の密
度に調和出来る様にし熱交換率を上げている 又、スパ
イラル状ジャバラ5はスパイラル三角型パイプでも良
い。
The spiral bellows 5 for heat exchange is formed by changing the curvature and length of the sides, and the internal flow rate cross section, the external surface area, and the cross sectional area of the heating convection passage 6 are adjusted to the density of the gas 100 for heat exchange. The heat exchange rate is increased as much as possible. The spiral bellows 5 may be a spiral triangular pipe.

【0042】シリンダ1の壁面にスパイラル状のV型フ
ィン又は、スパイラル状ジャバラ5を接着させて熱交換
面積の拡大と内圧によるジャバラ5の折畳力でそのシリ
ンダ軸方向の圧力強度と周辺強度及び相対的ジャバラ5
の強度を補強させている。
A spiral V-shaped fin or a spiral bellows 5 is adhered to the wall surface of the cylinder 1 to expand the heat exchange area and to fold the bellows 5 due to the internal pressure, so that the pressure strength in the axial direction of the cylinder, the peripheral strength, and the like. Relative bellows 5
Has been reinforced.

【0043】スパイラル状ジャバラ5を密閉のシリンダ
の代替とし外周部の軸方向の伸び縮み防止用として細長
プレートを外周部の軸方向長手に所定間隔を持たせて接
着し直接的に海水等に浮遊させて表層水を加温水等とし
てその間隔より流入させそのジャバラの大面積で熱交換
率を高くし深水冷水との温度差エネルギーを効率良く利
用も出来る。ジャバラを軸方向に成型した時は細長プレ
ートをそのジャバラ状シリンダに巻付ける様にする。要
するにジャバラと細長プレートは常に交差させる等する
がネット状でも良い。
The spiral bellows 5 is used as a substitute for a closed cylinder, and an elongated plate is adhered at a predetermined interval in the axial direction of the outer peripheral portion to prevent expansion and contraction of the outer peripheral portion in the axial direction, and directly floated in seawater or the like. Then, the surface water is flowed in from the space as heated water or the like from the interval, the heat exchange rate is increased in the large area of the bellows, and the energy of the temperature difference with the deep cold water can be used efficiently. When the bellows is molded in the axial direction, the elongated plate is wound around the bellows-like cylinder. In short, the bellows and the elongated plate are always crossed, but may be in a net shape.

【0044】密閉のシリンダ1を設けず周壁回転体7と
その内部に設ける冷却対流路13の単組体を加温流体の
ある場所に設置する事でその場所の加温流体が冷却体流
路13内を冷却降下する時にスパイラル回転した流体の
誘導により周壁回転体7を回転させる事も可能であると
共にその場所の冷房も出来る様にしている 又、その逆
利用で暖房する事も可能である。
By disposing a single unit of the peripheral wall rotating body 7 and the cooling counter flow path 13 provided therein without providing the closed cylinder 1 at a location where the heating fluid is present, the heating fluid at that location is cooled. It is possible to rotate the peripheral wall rotating body 7 by guiding the fluid that has been spirally rotated when cooling down the interior of the chamber 13 and to cool the place. .

【0045】又、シリンダ1の中央下端部には遠心クラ
ッチ付出力ギヤ28に発電用ギヤ29がかみ合い電磁ク
ラッチ30を連結して発電機31が回転する様になって
いる。
An output gear 28 with a centrifugal clutch is engaged with an output gear 28 with a centrifugal clutch at the center lower end of the cylinder 1 so that an electromagnetic clutch 30 is connected to rotate a generator 31.

【0046】遠心クラッチ付出力ギヤ28は回転トルク
の少ない起動時はフリーになり正常回転になった時だけ
自動的に連結する様にしている。
The output gear 28 with the centrifugal clutch is free at the time of start-up with a small rotational torque, and is automatically connected only at the time of normal rotation.

【0047】又、電磁クラッチ30は発電機31の故障
時やオーバー負荷時等の予備用として作動させる他、図
に示していないが発電機31は何台でもよい。
The electromagnetic clutch 30 is operated as a backup when the generator 31 fails or overloads, and the number of the generators 31 may be any, although not shown.

【0048】メンテナンス時には発電機室シリンダ42
を降下させるためにシリンダ内部のガスをコック37で
抜きローフランジ47のフランジボルト49を外しジャ
ッキ用ボルト48を利用して切り離す事が出来キャスタ
ー44でスライドをさせて設置用支柱50間から外部に
抜出す事が出来る。
At the time of maintenance, the generator room cylinder 42
In order to lower the gas, the gas inside the cylinder is removed by the cock 37, the flange bolt 49 of the low flange 47 is removed, and it can be separated using the bolt 48 for the jack. Can be pulled out.

【0049】又、発電機室シリンダ42のコック37を
開放したまま周壁回転体7を高速回転させるとその遠心
力で内部にある気体が該周壁回転体7の周辺に圧縮され
て該周壁回転体7の中心部は負圧になる。
When the peripheral wall rotator 7 is rotated at a high speed while the cock 37 of the generator chamber cylinder 42 is open, the gas inside is compressed by the centrifugal force around the peripheral wall rotator 7 and the peripheral wall rotator 7 is compressed. The center of 7 has a negative pressure.

【0050】すると分室プレート24のセンター通気口
25より発電室シリンダ42内の気体が吸い込まれ減圧
される。よってコック37より外気が発電機室シリンダ
42内に吸い込まれる事になる。
Then, the gas in the power generation chamber cylinder 42 is sucked from the center vent 25 of the compartment plate 24 and decompressed. Therefore, outside air is drawn into the generator room cylinder 42 from the cock 37.

【0051】又、発電を停止させるために温水及び冷水
の供給を止めれば双対流路6と13の温度差がなくなる
ために流体の対流が止まりやがて周壁回転体7も止まり
吸い込まれた外気がコック37より排出されるために安
全率もアップする。
If the supply of hot and cold water is stopped in order to stop the power generation, the temperature difference between the dual flow paths 6 and 13 disappears, so that the convection of the fluid stops. Since it is discharged from 37, the safety factor also increases.

【0052】起動用ファン22のスタート時の羽角間の
ファンノズル21の総合間隙より加温対流路6の断面積
と周壁回転体7の総合間隙の方を大きく設計しファンノ
ズル21の羽間がスタート時のノズルの役目をする様に
している。然し、起動用ファン22は回転の立上を早く
するだけである。
The cross-sectional area of the heating flow path 6 and the total gap of the peripheral wall rotating body 7 are designed to be larger than the total gap of the fan nozzle 21 between the blade angles at the start of the starting fan 22 so that the distance between the blades of the fan nozzle 21 is increased. It plays the role of a nozzle at the start. However, the startup fan 22 only speeds up the rotation.

【0053】又、設計上シリンダ1を長く作れば加温対
流路6と該周壁回転体7の間隙を通過する起動時の漏流
体を流体圧受プレート8と9で受けさせ起動用ファン2
2の代用をさせる事も可能であり起動用ファン22を取
外しその部分は開放状態にする事も出来る 尚、タンバ
ックルファン16で起動用ファン22の代用も可能であ
る。
Also, if the cylinder 1 is made long in design, the fluid pressure receiving plates 8 and 9 receive the leakage fluid at the time of startup passing through the gap between the heated counter flow path 6 and the peripheral wall rotating body 7 so that the startup fan 2
Alternatively, the starting fan 22 can be removed and its portion can be opened. The tambuckle fan 16 can also be used as a substitute for the starting fan 22.

【0054】流体圧受プレート8又は、9の型状又は、
間隔及び数量等を変えて出力及び特性を変化させる事が
出来る。(特性変更手段1)
The shape of the fluid pressure receiving plate 8 or 9 or
The output and characteristics can be changed by changing the interval, quantity, and the like. (Characteristic changing means 1)

【0055】例えば、8の流体圧受プレートを取外す事
により加温対流路6内の高圧気体100等が断面積に合
った流体のスパイラル回転をする事になる。(特性変更
手段2)
For example, by removing the fluid pressure receiving plate 8, the high-pressure gas 100 or the like in the heating counter flow path 6 performs a spiral rotation of the fluid according to the sectional area. (Characteristic changing means 2)

【0056】この事から加温対流路6だけの回転を無視
するとすればスパイラル状ジャバラ5は途中から軸方向
に直進する多重のジャバラでも良い事になる。(特性変
更手段3)
From this, if the rotation of the heating channel 6 alone is neglected, the spiral bellows 5 may be a multiple bellows that goes straight in the axial direction from the middle. (Characteristic changing means 3)

【0057】又、単に熱交換だけを考慮するのであれば
加温対流路6は多数の温水パイプをシリンダ1の壁面を
軸方向に直進させる物でも良い事になる。(特性変更手
段4)
If only heat exchange is taken into consideration, the heating channel 6 may be formed by a number of hot water pipes which are made to move straight on the wall surface of the cylinder 1 in the axial direction. (Characteristic change means 4)

【0058】シリンダ1の内周壁に加温パイプ4を成型
するためにスパイラル状ジャバラ5を溶接し熱伝導の平
面を増加させ周壁回転体7の方向に加温対流路6の断面
積を広く取り効率を上げている。(特性変更手段5)等
が特に重要視される。
In order to form the heating pipe 4 on the inner peripheral wall of the cylinder 1, a spiral bellows 5 is welded to increase the plane of heat conduction, and the sectional area of the heating passage 6 is increased in the direction of the peripheral wall rotating body 7. Improving efficiency. (Characteristic changing means 5) is particularly important.

【0059】周壁回転体7の上端部にはタンドーナツ1
7を溶接しそれと連結するタンバックルファン16等で
回転体の中心を調整出来る様にしタンバックルホルダー
15に接続している。
At the upper end of the peripheral wall rotating body 7,
7 is connected to the tanbuckle holder 15 so that the center of the rotating body can be adjusted by a tanbuckle fan 16 or the like connected thereto.

【0060】又、タンバックルファン16の羽角は対流
される高圧の気体100等の密度に合わせ効率良く調整
出来る様にしている。(然し、タンバックルファン16
は高効率にするが必ずしも必要な物ではない)
The blade angle of the tambuckle fan 16 can be adjusted efficiently according to the density of the high-pressure gas 100 or the like to be convected. (But, tan buckle fan 16
Is highly efficient, but not always necessary)

【0061】タンバックルホルダー15は上部のスラス
トベアリング64と連結しその中心部から冷却用メイン
パイプ14が外部に出ていて対流する高圧の気体100
等及び周壁回転体7の回転状態の妨害にならない様にし
ている。
The tan buckle holder 15 is connected to the upper thrust bearing 64, and the cooling main pipe 14 extends from the center thereof to the outside.
The rotation state of the peripheral wall rotating body 7 and the like is not obstructed.

【0062】軸受シリンダ60内にはグリースが入りメ
ンテナンス時には軸受フランジ58を開放するためにボ
ルト57を外す。
Grease enters the bearing cylinder 60, and the bolt 57 is removed to open the bearing flange 58 during maintenance.

【0063】軸受フランジ58には軸受ガスケット59
を入れ高圧の気体100で口径が変形しない様に溝を設
けている。(運転の停止時も高圧の気体100を密閉し
て利用する場合)
A bearing gasket 59 is provided on the bearing flange 58.
And a groove is provided so that the diameter is not deformed by the high-pressure gas 100. (When the high-pressure gas 100 is used closed even when the operation is stopped)

【0064】又、発電機室シリンダ42の上端部にフラ
ンジガスケット45を圧入する溝を切りその中に角型フ
ランジ46と一体化するシリンダ1の下端部がフランジ
ガスケット45を介して圧入され高圧の気体100の漏
れを完全に止めている。
Further, a groove for press-fitting the flange gasket 45 is cut into the upper end of the generator chamber cylinder 42, and the lower end of the cylinder 1 integrated with the square flange 46 is press-fitted through the flange gasket 45 so as to be high pressure. Leakage of gas 100 is completely stopped.

【0065】冷却用メインパイプ14の中間付近内部に
メインパイプチョーク19を設け冷却パイプ10内に冷
却水等が分流する様にし両方の冷却効果を出している。
A main pipe choke 19 is provided in the vicinity of the middle of the cooling main pipe 14 so that cooling water or the like is diverted into the cooling pipe 10 to exert both cooling effects.

【0066】又、冷却メインパイプ14は上下の軸受と
冷却パイプ10を支持していてメンテナンス時には下部
のローパイプ33を取外しシリンダ1と図面上一体化さ
れない物は全部取外す事が出来る。
Further, the cooling main pipe 14 supports the upper and lower bearings and the cooling pipe 10, so that the lower pipe 33 can be removed at the time of maintenance so that all the parts not integrated with the cylinder 1 in the drawing can be removed.

【0067】尚、スパイラル状冷却パイプ10及び加温
パイプ4は2平行巻や多層巻でも良く多重巻にして体長
を長く作る程熱交換率が高くなる。
The spiral cooling pipe 10 and the heating pipe 4 may be formed of two parallel windings or multi-layer windings, and may be formed of multiple windings to increase the heat exchange rate as the body length is increased.

【0068】冷却パイプ10の内周部の軸方向に図に示
していない細長プレートを回転する流体の抵抗が少なく
なる状態で接着し構造的強度を上げる事も出来る。(ス
パイラル冷却パイプ10のたわみ防止)
An elongated plate (not shown) may be bonded in the axial direction of the inner peripheral portion of the cooling pipe 10 in a state in which the resistance of the fluid rotating on the elongated plate is reduced so as to increase the structural strength. (Prevention of deflection of spiral cooling pipe 10)

【0069】又、冷却対流路13の内周部は回転対流す
る高圧の気体100が遠心力により平均的に圧入される
様にスパイラルギャップ18が狭く成型されている。
(図面上は見やすくするために広い)
The spiral gap 18 is formed narrow in the inner peripheral portion of the cooling convection passage 13 so that the high-pressure gas 100 rotating and convection is press-fitted on average by centrifugal force.
(Wide on the drawing to make it easier to see)

【0070】冷却パイプ10はスパイラル状に成型され
ていてその内周部はトンネル状になりそれを流体直下起
動路53としその内部で冷却されて重くなった流体の直
下で起動用ファン22を回転起動させている。
The cooling pipe 10 is formed in a spiral shape, and its inner peripheral portion is formed in a tunnel shape. The cooling pipe 10 is used as a starting path 53 immediately below the fluid, and the starting fan 22 is rotated immediately below the fluid that has been cooled and heavier inside. Has been started.

【0071】起動用ファン22の羽角は定角丁板23で
調整されその位置まで自荷重で下がり降下した流体が斜
角面を通過させて起動回転力に利用している。
The wing angle of the starting fan 22 is adjusted by the fixed square plate 23, and the fluid which has dropped to its position under its own load and descended passes through the bevel and is used for the starting rotational force.

【0072】目標回転まで達した時は羽に当たる風の揚
力により図面に示す様に斜面角を失って風損を減らして
いる。
When the rotation reaches the target rotation, the slope angle is lost as shown in the drawing due to the lift of the wind hitting the wings to reduce windage loss.

【0073】又、起動用ファン22は羽角を失う時まで
流路が徐々に切替わり周壁回転体7の下端内部の風量自
動調整もかねるファンノズル21より流出する。
Further, the flow path of the starting fan 22 is gradually switched until the blade angle is lost, and the starting fan 22 flows out from the fan nozzle 21 which also serves to automatically adjust the air volume inside the lower end of the peripheral wall rotating body 7.

【0074】このファンノズル21より流出する高圧高
密度の気体100は冷却されて比重が重く高速回転され
ているためその遠心力により対流全体が加速されて該周
壁回転体7も加速するその相乗効果でエネルギー量が増
加していく。
The high-pressure, high-density gas 100 flowing out of the fan nozzle 21 is cooled, has a high specific gravity, and is rotated at high speed. Therefore, the centrifugal force accelerates the entire convection and also accelerates the peripheral wall rotating body 7. Increases the amount of energy.

【0075】又、別の角度から説明すると冷却対流路1
3の冷却された高比重の気体100と加温対流路6の加
温膨張による低比重の気体100を遠心分離すると重い
物は周壁回転体7の内部から外周部へと行き軽い物は外
部から内部に入ろうとし対流が生じる。
Another description will be given from another angle.
When the cooled high specific gravity gas 100 and the low specific gravity gas 100 due to the heating / expansion of the heating channel 6 are centrifuged, heavy objects go from the inside of the peripheral wall rotator 7 to the outer periphery and light objects come from the outside. Convection occurs when trying to enter the interior.

【0076】この事から高圧の気体100の対流圧力は
冷気体100の遠心力マイナス暖気体100の遠心力で
ある事になる。よって冷却対流路13では対流する高圧
の気体100を十分に冷やして収縮させその比重を高く
して強力な遠心力を作り一方加温対流路ではその逆の事
を行わせる。
From this, the convection pressure of the high-pressure gas 100 is equal to the centrifugal force of the cold gas 100 minus the centrifugal force of the warm gas 100. Therefore, the convection high-pressure gas 100 is sufficiently cooled and shrunk in the cooling convection passage 13 to increase its specific gravity to generate a strong centrifugal force, while the heating convection passage performs the reverse.

【0077】要するに冷気の遠心力を出来るだけ強くし
暖気の遠心力を0に近くする方法なのである。
In short, the centrifugal force of the cold air is increased as much as possible, and the centrifugal force of the warm air is close to zero.

【0078】そこで暖気の遠心力を相殺させるのがタン
バックルファン16であり遠心力を変化させる高圧の気
体100等の密度と回転数に合わせ羽角を調整出来る様
にしている。
The buckle fan 16 cancels the centrifugal force of the warm air, and the blade angle can be adjusted according to the density and rotation speed of the high-pressure gas 100 or the like that changes the centrifugal force.

【0079】これは単に回転体の中心から外周部に高圧
の気体100を移動させようとする遠心力圧をタンバッ
クルファン16の回転する羽角を利用し外周部から回転
中心部に集める圧力を作りその不要な遠心力を減らす様
にしている。
In this method, centrifugal pressure for moving the high-pressure gas 100 from the center of the rotating body to the outer periphery is simply collected from the outer periphery to the center of rotation using the rotating blade of the tambuckle fan 16. The unnecessary centrifugal force is reduced.

【0080】この様にして温度差を与えるだけで重力に
より対流する大自然の現象をよりコンパクトに濃縮した
中で数万倍の重力を遠心力で作り多数のノウハウにより
そのエネルギーを効率良く取り出すことにある。
In this way, by concentrating the phenomenon of nature, which convects by gravity only by giving a temperature difference, to a more compact, a centrifugal force is used to create a tens of thousands of gravitational force, and the energy is efficiently extracted by a large number of know-how. It is in.

【0081】この様にして本発明機を利用した発電法は
さらに夏及び冬の季節の様に大電力消費量に合わせて自
然界の温度差も高くなる他夜間には蓄熱された熱量で十
分であるために設備利用率も100%に近くなり低コス
トで安定した電力を提供出来る事になる。
In this manner, the power generation method using the present invention further increases the temperature difference in the natural world in accordance with the large power consumption, such as in the summer and winter seasons, and the amount of heat stored during the night is sufficient. For this reason, the facility utilization rate is close to 100%, and stable power can be provided at low cost.

【0082】又、本発明機は高熱量・酸素・高温液体か
ら気化及び液化にも繰り返す必要がないために安全で小
型で抜群の耐久性を持ち長年間無公害の激安電力を作る
事になる。
Further, since the present invention does not need to repeat the vaporization and liquefaction from high calorie, oxygen and high temperature liquids, it is safe, compact, has excellent durability, and produces long-term non-polluting super-low power. .

【0083】尚、本発明機への海草の付着防止には、そ
の周囲に微電流を通電する。
In order to prevent seagrass from adhering to the machine of the present invention, a small current is applied to the periphery thereof.

【0084】前記の本発明機を海洋に浮遊させたとすれ
ば表層温水がスパイラル状ジャバラに熱を奪われながら
降下し養分の多い深層冷水は本発明機の下部より深層方
向に設けたパイプより本発明機内部を上昇し表層部へと
波動力等を利用して送り出されながら漁場の活性化と共
に発電もする事になる。
If the above-mentioned airplane of the present invention is floated in the ocean, the surface hot water falls while heat is taken up by the spiral bellows, and the deep cold water with much nutrients is supplied from a pipe provided deeper than the lower part of the airplane. While the inside of the inventor goes up and is sent out to the surface layer using wave power or the like, the fishing ground is activated and power is generated.

【0085】又、本発明機を多数ワイヤーネット状に連
結して浮遊させる等して深層水を交換させる等すれば表
層水の水温を降下させる事も可能になり秋季の台風等の
発生等もコントロール出来ると共に無公害の電力を多量
に提供する事も可能となる。
Further, if deep water is exchanged by connecting and floating a large number of the present invention in a wire net shape, the temperature of surface water can be lowered, and the occurrence of a typhoon or the like in autumn can be achieved. It is possible to control and provide a large amount of pollution-free power.

【0086】特別仕様として図5の冷却パイプ10と周
壁回転体7から成る単組体を気温の高い場所に設置し該
冷却パイプ10の下端口より冷水等を流入させると前記
0025と0026に示した作用により回転し始め、重
くなった冷気が下部より流出しその冷気の配管場所等を
冷房しながら回転動力を利用出来る。
As a special specification, a single unit composed of the cooling pipe 10 and the peripheral wall rotating body 7 shown in FIG. 5 is installed in a place where the temperature is high, and cold water or the like flows from the lower end of the cooling pipe 10 as shown in 0025 and 0026 above. The rotation starts due to the action, and the heavy cold air flows out from the lower part, and the rotating power can be used while cooling the piping location of the cold air.

【0087】又、逆に冷却パイプ10の上端口より温水
等を流入させると逆気流になり回転も逆転であるがギヤ
等で正転にして利用し上方より流出させる暖気で暖房等
に利用する事が出来る。
Conversely, when hot water or the like flows in from the upper end of the cooling pipe 10, a reverse airflow occurs and the rotation is also reversed. I can do things.

【0088】図4は図5と組合わせて回転出力を増大さ
せる為に考案されたもので、更に改良させて図6の実施
例を発明している。又、図4は高密度流体室の冷暖房に
適するものである。
FIG. 4 is designed to increase the rotational output in combination with FIG. 5, and is further improved to invent the embodiment of FIG. FIG. 4 is suitable for cooling and heating of a high-density fluid chamber.

【0089】温度差1℃のエネルギー量は落差427メ
ートルのエネルギー量に等しい。 1) 1tn/S×1m×9.8N=9.8KW/S 2) 9.8KW/S÷4.19J=2.34Kカロリ
ー 3) 2.340カロリー÷(100cm)3乗=0.
00234カロリー 4) 1℃÷0.00234カロリー=427mの落差
エネルギーは温度差1℃に等しい 5) 6℃÷0.00234カロリー=2.58Kmの
落差 6) 2tn/S×9.8N×2.58Km=5万KW
The amount of energy at a temperature difference of 1 ° C. is equal to the amount of energy at a drop of 427 meters. 1) 1tn / S × 1m × 9.8N = 9.8KW / S 2) 9.8KW / S {4.19J = 2.34K calories 3) 2.340 calories} (100cm) cubed = 0.
00234 calories 4) The drop energy of 1 ° C. = 0.00234 calories = 427 m is equal to the temperature difference of 1 ° C. 5) 6 ° C. ÷ 0.00234 calories = 2.58 km drop 6) 2 tn / S × 9.8 N × 2. 58Km = 50,000KW

【0090】[0090]

【発明の効果】この本発明によればスパイラル冷却対流
路と加温対流路の中間周壁を双方の対流路で発生した遠
心分離対流の誘導により回転出来る様にし双方の対流路
摩擦を激減させて効率を上げ更にその対流路周壁を回転
体として利用出来る様にしたため従来機のタービンを取
り外す事が出来その分のタービンロスも無くなるために
出力が大幅にアップさせる効果がある。
According to the present invention, the intermediate peripheral wall of the spiral cooling convection passage and the heating convection passage can be rotated by the induction of the centrifugal convection generated in both convection passages, and the friction of both convection passages is drastically reduced. Since the efficiency is increased and the peripheral wall of the counter flow path can be used as a rotating body, the turbine of the conventional machine can be removed, and the turbine loss corresponding to that can be eliminated.

【0091】更にスパイラルの冷却対流路を成型するV
型フィンの内部までも冷却水等を流通させるために特大
機種類でも熱交換率が良く高出力になり、及びそのV型
フィンと一体化するスパイラルパイプの遠心力無効中心
部を活用して自然対流起動回転路として生かし、高出力
と低コスト化させる効果がある。
Further, V for forming a spiral cooling channel
The heat exchange rate is good and high output even in the case of oversized models because the cooling water flows through the inside of the mold fins. Naturally utilizing the centrifugal force invalid center of the spiral pipe integrated with the V-shaped fins Utilizing as a convection start rotation path, there is an effect of high output and low cost.

【0092】更にシリンダ内周壁にはスパイラル状ジャ
バラを接着してシリンダ壁を補強すると共にそれにより
成型された断面三角型を加温パイプとして、そのジャバ
ラにより拡大された裏の熱交換面を直加熱V型の加温対
流路として熱交換率を上げる他そのV型広開口部を周壁
回転体に向け近接させ出力をアップさせて従来の対流温
度差原動機では出来なかった高出力で小型化と安全と低
コストが実現化する事により無公害で激安の電気を作る
事が出来る。
Further, a spiral bellows is adhered to the inner peripheral wall of the cylinder to reinforce the cylinder wall, and a triangular cross section formed by the same is used as a heating pipe to directly heat the heat exchange surface on the back enlarged by the bellows. In addition to increasing the heat exchange rate as a V-shaped heating counter flow path, the V-shaped wide opening is brought close to the rotating body of the peripheral wall to increase the output, and high output and miniaturization and safety that were not possible with the conventional convection temperature difference motor By realizing low cost, it is possible to produce pollution-free and cheap electricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の対流温度差原動機の断面図FIG. 1 is a cross-sectional view of a conventional convection temperature difference motor.

【図2】従来の対流温度差原動機の断面図FIG. 2 is a sectional view of a conventional convection temperature difference motor.

【図3】従来の対流温度差原動機の断面図FIG. 3 is a sectional view of a conventional convection temperature difference motor.

【図4】本発明の周壁回転体とその内周部の立体部分断
面図
FIG. 4 is a three-dimensional partial cross-sectional view of the peripheral wall rotating body of the present invention and its inner peripheral part.

【図5】本発明の周壁回転体とその外周部の立体部分切
取り断面図
FIG. 5 is a three-dimensional partially cutaway cross-sectional view of the peripheral wall rotating body of the present invention and its outer peripheral part.

【図6】本発明の実施例を示す立体部分切開図FIG. 6 is a partial cutaway view showing an embodiment of the present invention.

【図7】本発明機を海洋に浮遊連鎖させて利用する海洋
前方の断面図
FIG. 7 is a cross-sectional view of the ocean front in which the aircraft of the present invention is used in a floating chain in the ocean.

【符号の説明】[Explanation of symbols]

1 シリンダ 1’ 開放型シリンダ 2 保温補強剤 3 加温パイプ口 4 加温パイプ 4’ 円型加温パイプ 5 スパイラル状ジャバラ 6 加温対流路 7 周壁回転体 8,9 対流圧受プレート 10 冷却パイプ 11 流通口 12 V型フィン 12’ 平型フィン 13 冷却対流路 14 冷却用メインパイプ 15 タンバックルホルダー 16 タンバックルファン 16’ 回転体ブレス 17 タンドーナツ 18 スパイラルギャップ 19 メインパイプチョーク 20 起動用ファンアーム 21 ファンノズル 22 起動用ファン 23 定角丁板 24 分室プレート 25 センター通気口 26 起動ファン軸受 27 出口軸受 28 遠心クラッチ付出力ギヤ 29 発電用ギヤ 30 電磁クラッチ 31 発電機 32 パイプソケット 33 ローパイプ 34 ローガスケット 35 ローナット 36 ローエルボ 37 コック 38 出力電源 39 電源パッキン 40 発電室リブ 41 発電機台 42 発電機室シリンダ 43 シリンダリブ 44 キャスター 45 フランジガスケット 46 角型フランジ 47 ローフランジ 48 ジャッキ用ボルト 49 フランジボルト 50 設置用支柱 51 支柱台座 52 取付けボルト 53 流体直下起動路 54 アッパナット 55 平ワッシャ 56 アッパーガスケット 57 軸受フランジボルト 58 軸受フランジ 59 軸受フランジガスケット 60 軸受シリンダ 61 フランジナット 62 軸受ナット 63 ベアリングナット 64 スラストベアリング 100 気体 DESCRIPTION OF SYMBOLS 1 Cylinder 1 'Open-type cylinder 2 Heat retention reinforcing agent 3 Heating pipe opening 4 Heating pipe 4' Circular heating pipe 5 Spiral bellows 6 Heating counter flow path 7 Peripheral wall rotating body 8, 9 Convection pressure receiving plate 10 Cooling pipe 11 Flow port 12 V-shaped fin 12 ′ Flat fin 13 Cooling flow path 14 Cooling main pipe 15 Tan buckle holder 16 Tan buckle fan 16 ′ Rotating body breath 17 Tan donut 18 Spiral gap 19 Main pipe choke 20 Starting fan arm 21 Fan Nozzle 22 Starting fan 23 Fixed square plate 24 Separation plate 25 Center ventilation port 26 Starting fan bearing 27 Outlet bearing 28 Output gear with centrifugal clutch 29 Power generation gear 30 Electromagnetic clutch 31 Generator 32 Pipe socket 33 Low pipe 34 Low gasket 3 Low nut 36 Low elbow 37 Cock 38 Output power supply 39 Power supply packing 40 Power generation room rib 41 Generator stand 42 Power generation room cylinder 43 Cylinder rib 44 Caster 45 Flange gasket 46 Square flange 47 Low flange 48 Jack bolt 49 Flange bolt 50 Installation column Reference Signs List 51 support pedestal 52 mounting bolt 53 fluid direct start path 54 upper nut 55 flat washer 56 upper gasket 57 bearing flange bolt 58 bearing flange 59 bearing flange gasket 60 bearing cylinder 61 flange nut 62 bearing nut 63 bearing nut 64 thrust bearing 100 gas

【従来機の符号】[Sign of conventional machine]

A 密閉シリンダ B 冷水パイプ C 冷却対流路 D 加温対流路 E 対流路周壁 F タービン A Closed cylinder B Cold water pipe C Cooling channel D Heating channel E Channel wall F Turbine

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】対流路の周壁を回転出来る様にして該対流
路内の流体の摩擦を減少させた事を特徴とした対流温度
差原動機の高効率法とその装置
1. A high-efficiency method and apparatus for a convection temperature difference motor, wherein the peripheral wall of the convection passage is rotatable to reduce the friction of the fluid in the convection passage.
【請求項2】請求項1に記載の周壁回転体の壁面を絞り
波型状に成型しその波の谷部の流路を食い止める様な対
流抵抗体(対流圧受プレート)を所定間隔で設けた事を
特徴とした対流温度差原動機の高効率法とその装置
2. A convection resistor (convection pressure receiving plate) is formed at a predetermined interval so that the wall surface of the peripheral wall rotator according to claim 1 is formed into a squeezed corrugated shape and a flow channel in a valley portion of the wave is stopped. High Efficiency Method of Convection Temperature Difference Engine and Its Apparatus
【請求項3】請求項2の対流圧受プレートを傾け設置に
し、それに衝突した反動流体圧を該周壁回転体と該対流
路の間隙から漏出する流体方向と反発させその漏出を減
少させる事を特徴とした対流温度差原動機の高効率法と
その装置
3. The convection pressure receiving plate according to claim 2, wherein the convection pressure receiving plate is inclined, and the reaction fluid pressure colliding against the convection pressure receiving plate is repelled by the direction of fluid leaking from the gap between the peripheral wall rotating body and the convection passage to reduce the leakage. High Efficiency Method of Convection Temperature Difference Engine and Its Equipment
【請求項4】スパイラル状パイプと一体化したV型フィ
ンを成型し熱交換率と構造的強度を高くした事を特徴と
した対流温度差原動機の高効率法とその装置
4. A high-efficiency method of a convection temperature difference motor and an apparatus therefor, characterized in that a V-shaped fin integrated with a spiral pipe is molded to increase heat exchange rate and structural strength.
【請求項5】スパイラル状パイプと一体化したV型フィ
ン内の通路に熱媒流体を通し熱交換率を上げた事を特徴
とした対流温度差原動機の高効率法とその装置
5. A high-efficiency method and apparatus for a convection temperature difference motor, characterized in that a heat medium fluid is passed through a passage in a V-shaped fin integrated with a spiral pipe to increase a heat exchange rate.
【請求項6】スパイラル状パイプで成型した円筒型内周
部の流体が温度差により自然体流させる様にしてその対
流圧で起動用のファンにより起動回転させる事を特徴と
した対流温度差原動機の高効率法とその装置
6. A convection temperature difference motor characterized in that a fluid in an inner peripheral portion of a cylindrical shape formed by a spiral pipe is caused to flow naturally by a temperature difference and is started and rotated by a starting fan at the convection pressure. High efficiency method and its equipment
【請求項7】起動用ファンの羽間を対流する流量を該羽
角度にて調整出来る様にしその分量は起動用ファンと連
結する周壁回転体の開口部から流出される事を特徴とし
た対流温度差原動機の高効率法とその装置
7. The convection characterized in that the flow rate of convection between the blades of the starting fan can be adjusted by the blade angle, and the amount of the convection flows out of the opening of the peripheral wall rotating body connected to the starting fan. High efficiency method of temperature difference motor and its equipment.
【請求項8】シリンダ壁の内部回転軸付近に流体出入口
を設け回転体の遠心力で該出入口より流体を導入させて
該回転体の周壁付近に遠心圧縮させて高圧流体として利
用する事を特徴とした対流温度差原動機の高効率法とそ
の装置
8. A fluid inlet / outlet is provided near an internal rotation axis of a cylinder wall, and fluid is introduced from the inlet / outlet by centrifugal force of a rotating body, and is centrifugally compressed near a peripheral wall of the rotating body to be used as a high-pressure fluid. High Efficiency Method of Convection Temperature Difference Engine and Its Equipment
【請求項9】密閉するシリンダを流体対流室と発電機室
にプレート等にて分室し双方の高圧流体を移動出来る様
にして発電機室の減圧により風損を減少させながら電力
として外部に取り出す様にした事を特徴とした対流温度
差原動機の高効率法とその装置
9. A closed cylinder is divided into a fluid convection chamber and a generator chamber by a plate or the like so that both high-pressure fluids can be moved, and the power is taken out as electric power while reducing windage by reducing the pressure in the generator chamber. High Efficiency Method for Convection Temperature Difference Motor and its Apparatus
【請求項10】流体の対流路を成型する熱交換用パイプ
成型体を周壁回転体側に該対流路断面状の開口部を広く
出来る様にした事を特徴とした対流温度差原動機の高効
率法とその装置
10. A high-efficiency method for a convection temperature difference prime mover, characterized in that a heat exchange pipe molded body for molding a convection flow path for a fluid is formed such that an opening having a cross-sectional shape of the convection flow path can be widened on a peripheral wall rotating body side. And its equipment
【請求項11】周壁回転体の端部の軸受けの中心を該周
壁回転体の内部に設けた冷却パイプを通し該軸受部の一
端には該周壁回転体の出力軸を設けた事を特徴とした対
流温度差原動機の高効率法とその装置
11. The output shaft of the peripheral wall rotator is provided at one end of the bearing through a cooling pipe provided inside the peripheral wall rotator at the center of the bearing at the end of the peripheral wall rotator. High Efficiency Method and Apparatus for a Convection Temperature Difference Engine
【請求項12】熱交換用のスパイラル状のジャバラや三
角パイプの辺の曲や長さを変化させて成型し該スパイラ
ル状三角パイプの内外の流路断面を熱交換的に調和出来
る様にした事を特徴とした対流温度差原動機の高効率法
とその装置
12. A spiral-shaped bellows for heat exchange or a triangular pipe having a curved side and a length changed to form a cross section of the flow path inside and outside of the spiral triangular pipe in a heat exchange manner. High Efficiency Method of Convection Temperature Difference Engine and Its Apparatus
【請求項13】シリンダの壁面にスパイラル状のジャバ
ラ又はV型フィン等を接着させて断面三角型に近いパイ
プとその外部に対流路を成型した事を特徴とした対流温
度差原動機の高効率法とその装置
13. A high-efficiency method for a convection temperature difference motor, characterized in that a spiral bellows or a V-shaped fin is adhered to a wall surface of a cylinder to form a pipe having a substantially triangular cross section and a convection passage formed outside the pipe. And its equipment
【請求項14】ジャバラ状のシリンダ外周部の伸縮防止
用として細長プレート等を所定の間隔で接着した事を特
徴とした対流温度差原動機の高効率法とその装置
14. A high-efficiency method and apparatus for a convection temperature difference motor, characterized in that elongated plates or the like are adhered at predetermined intervals to prevent expansion and contraction of the bellows-shaped cylinder outer peripheral portion.
【請求項15】周壁回転体とその内部又は外部に設けた
対流路のみで構成し原動力を出力しながらその排気を利
用し冷房又は暖房とした事を特徴とした対流温度差原動
機の高効率法とその装置
15. A high-efficiency method for a convection temperature difference prime mover characterized by comprising only a peripheral wall rotating body and a convection passage provided inside or outside thereof and using the exhaust air to perform cooling or heating while outputting motive power. And its equipment
JP11118280A 1999-04-26 1999-04-26 Highly efficient method and its device for convection flow temperature difference prime mover Pending JP2000303947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11118280A JP2000303947A (en) 1999-04-26 1999-04-26 Highly efficient method and its device for convection flow temperature difference prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11118280A JP2000303947A (en) 1999-04-26 1999-04-26 Highly efficient method and its device for convection flow temperature difference prime mover

Publications (1)

Publication Number Publication Date
JP2000303947A true JP2000303947A (en) 2000-10-31

Family

ID=14732765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11118280A Pending JP2000303947A (en) 1999-04-26 1999-04-26 Highly efficient method and its device for convection flow temperature difference prime mover

Country Status (1)

Country Link
JP (1) JP2000303947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
WO2006070497A1 (en) * 2004-12-28 2006-07-06 Toshihiro Abe Convection temperature difference prime motive power device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
US6681576B1 (en) 2000-10-27 2004-01-27 Toshihiro Abe Convective power generating method and device
WO2006070497A1 (en) * 2004-12-28 2006-07-06 Toshihiro Abe Convection temperature difference prime motive power device
JPWO2006070497A1 (en) * 2004-12-28 2008-06-12 阿部 俊廣 Convection temperature difference prime mover

Similar Documents

Publication Publication Date Title
CN1982702B (en) Wind energy turbine
CN101568723A (en) Wind-driven generator
KR20020038921A (en) Supercharging system for gas turbines
RU2493505C2 (en) Method to convert thermal energy under low temperature into thermal energy under relatively high temperature with mechanical energy and back
CN110094313A (en) The base bearing cooling system and wind power generating set of wind power generating set
US20140133965A1 (en) Method and apparatus for energy recovery from fluid flows
CN102562170B (en) Low-temperature hydraulic turbine
CA2710932A1 (en) Rotating device
WO2002036963A1 (en) Convective power generating method and device
CN112902437A (en) Solar photovoltaic and air source heat pump combined water heater
CN206202653U (en) A kind of ship waste heat air conditioning system
CN107304754A (en) The deformation type Rankine cycle Low Temperature Difference energy development system of energy is adopted using buoyancy
JP2000303947A (en) Highly efficient method and its device for convection flow temperature difference prime mover
CN117212085A (en) Bearing structure for wind driven generator
CN214891949U (en) Shape memory alloy-based refrigerating and heating device
JPH06147098A (en) Convection type temperature gradient prime mover
CN207251435U (en) Megawatt-level permanent magnet is vortexed flexible gearing
CN112502924A (en) Thermal power generation method and design of components contained in thermal power generation method
CN208269429U (en) A kind of cogeneration system
CN207920776U (en) Wind power generating set
CN105569818B (en) Engine exhaust gas utilizes device and automobile
TW202024473A (en) Wind power driven air compressing device
CN212718644U (en) Precooling combined flange plate
JP2003322078A (en) Air straightening device for wave power generation and turbine system
RU2457149C2 (en) Thermobalanced dirigible