WO2006069513A1 - Poudre de nickel spherique ultrafine presentant une densite apres tassement elevee et procede de preparation par voie humide - Google Patents

Poudre de nickel spherique ultrafine presentant une densite apres tassement elevee et procede de preparation par voie humide Download PDF

Info

Publication number
WO2006069513A1
WO2006069513A1 PCT/CN2005/001861 CN2005001861W WO2006069513A1 WO 2006069513 A1 WO2006069513 A1 WO 2006069513A1 CN 2005001861 W CN2005001861 W CN 2005001861W WO 2006069513 A1 WO2006069513 A1 WO 2006069513A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
nickel
wet
density
powder according
Prior art date
Application number
PCT/CN2005/001861
Other languages
English (en)
Chinese (zh)
Inventor
Guoduan He
Original Assignee
Chengdu Chemphys Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Chemphys Chemical Industry Co., Ltd. filed Critical Chengdu Chemphys Chemical Industry Co., Ltd.
Priority to JP2007548671A priority Critical patent/JP4837675B2/ja
Publication of WO2006069513A1 publication Critical patent/WO2006069513A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention belongs to the technical field of manufacturing powder materials, and in particular to a wet manufacturing method of high-vibration density ultra-fine spherical metal nickel powder and a high-vibration ultra-spherical spherical metal nickel powder prepared by the method. Background technique
  • the nickel powder produced by these methods has one or more of the following problems: irregular shape, too small density, too high manufacturing cost, and a wide range of particle size distribution.
  • the method of preparing nickel powder by the solution reduction method is generally carried out in two steps.
  • the first step is to prepare a nickel hydroxide colloid, a nickel carbonate colloid or a nickel basic salt at room temperature, which is a liquid phase nucleation reaction;
  • the second step is to reduce the nickel hydroxide colloid, the nickel carbonate colloid or the hydrated hydrazine under a certain temperature condition.
  • the basic salt of nickel, which forms metal nickel powder belongs to the oxidation-reduction reaction.
  • the basic chemical reaction of the two steps is -
  • JP4-74810 discloses a nickel powder prepared by reducing a nickel salt by using a hydrazine hydrate and a hypophosphorous acid (or sodium borohydride) mixed reducing agent, which has a small density, a large particle size, an irregular shape, and agglomeration.
  • Japanese Patent No. Hei 5-51610 discloses a method for directly reducing Ni(OH) 2 using a ruthenium or osmium compound.
  • the nickel powder obtained by the method has a small density, a large particle size, a wide powder distribution, and poor process stability.
  • JP 8-246001 discloses a nickel powder prepared by a vapor phase reduction method using NiCl 2 , which is a high-shear density nickel powder, but has a wide particle size distribution range, high production cost, and great equipment investment, and is not easy to carry out on a large scale. produce.
  • the method consumes a large amount of heating energy, and the NiCl 2 is heated to a vaporization temperature of >900 Q C in the crucible, and the vaporized NiCl 2 vapor is loaded into a specific reaction vessel through Ar (argon) gas, and H 2 gas is introduced at the same time.
  • Nickel powder is produced at a given temperature.
  • the resulting nickel powder is sent to the cooling vessel for indirect cooling under the protection of Ar gas.
  • the heating vaporization, H 2 reaction vessel and cooler of the method are all special equipments, and a large amount of energy consumption and inert gas of Ar gas are used, and the productivity is small and the cost is high. Summary of the invention
  • the object of the present invention is to overcome the above deficiencies and to provide a solution reduction method which can greatly reduce the production cost, the density can be compared with the NiCl 2 vapor phase reduction method, and the particle size distribution range is narrow, which can be easily mass-produced.
  • the invention provides a wet manufacturing method of high-vibration density ultra-micro spherical metal nickel powder, the method comprising the following steps:
  • the above polyol is at least one of glycerol, butyltriol, tetrabutylol and diethylene glycol, and other polyols may also be used.
  • the barium salt is at least one of barium sulfate, barium nitrate, barium chloride, barium acetate, and barium formate, and other barium salts may also be used.
  • the above polyol is added in an amount of 10 to 500% by weight based on the weight of nickel in the reaction system.
  • the above nickel sulfate solution has a molar concentration of 0.1 to 2.5 mol/L.
  • the above-mentioned barium salt is used in an amount of 0.0002 to 0.2% by weight based on the weight of nickel in the reaction system.
  • the above hydrazine or hydrazine has a hydrate concentration of 10 to 80% by weight.
  • the number of moles of the above nickel sulfate [(moles of sodium hydroxide) / 2 moles of sodium carbonate] is 0.39 to 0.94:1.
  • the molar ratio of the hydrazine or hydrazine hydrate to nickel sulfate is from 1.0 to 2.0:1.
  • the present invention also provides a high tap density ultrafine spherical metallic nickel powder produced by the method described above.
  • the above high-density ultrafine spherical metallic nickel powder has an average particle diameter of 0.2 to 1.0 ⁇ m, a particle size distribution of ⁇ 60% of its average particle diameter, and a tap density of more than 3.9 g/cm 3 .
  • Figure 1 is an electron micrograph of a high tap density ultrafine spherical metallic nickel powder prepared in Example 4.
  • Fig. 2 is a graph showing the particle size distribution of the high-shear density ultrafine spherical metallic nickel powder prepared in Example 4.
  • Fig. 3 is an electron micrograph of the high tap density ultrafine spherical metallic nickel powder prepared in Example 3.
  • Fig. 4 is a graph showing the particle size distribution of the high-shear density ultrafine spherical metallic nickel powder prepared in Example 3. detailed description
  • the method of the invention is to react a nickel sulfate solution with a mixed solution of NaOH and Na 2 CO 3 to form a precipitate of M(OH) 2 and NiC0 3 'Ni(OH) 2 , and add a polyol and a phosphonium salt at a pH of 8.5 to 12.5.
  • a hydrate of ruthenium or osmium is added to reduce Ni(OH) 2 and NiC0 3 _Ni(OH) 2 to obtain a high tap density with an average particle diameter of 0.2 ⁇ . ⁇ .
  • Ultra micro spherical metal nickel powder Ultra micro spherical metal nickel powder.
  • the present invention is characterized in that a polyhydric alcohol is added to the reduction system, and its good dispersion and unique adsorption properties are utilized to effectively prevent agglomeration of nickel powder during reduction.
  • a polyhydric alcohol is added to the reduction system, and its good dispersion and unique adsorption properties are utilized to effectively prevent agglomeration of nickel powder during reduction.
  • the growth of the nickel powder particles in all directions tends to be uniform, so that the produced nickel powder has good hooking property, smooth surface and good sphericity.
  • the addition of the cerium salt nucleating agent ensures that the oxidation-reduction reaction proceeds smoothly and stably, and at the same time, the nickel and magnetic properties are weakened, so that the formation of nickel powder during the reduction is more dense, thereby obtaining a high-density nickel powder.
  • the invention can prepare a high-vibration density with an average particle diameter of 0.2 ⁇ 1 ⁇ and a controllable particle size, and a spherical metal nickel powder having a large tap density, a smooth surface and a low oxidation rate (oxygen content ⁇ 0.5%). Strong oxidation resistance (120 ⁇ 140°C does not increase oxygen content when placed in air for 2 hours), the particle size distribution range is narrow, as shown in the following table - Average particle size distribution, tap density, specific surface area
  • the invention can greatly reduce environmental pollution, has low equipment investment, low production cost, and is suitable for large industrial production.
  • the produced nickel powder can be widely used in multilayer ceramic chip capacitors (MLCC) and powders.
  • MLCC multilayer ceramic chip capacitors
  • the solution used in the present invention is distilled water, acid, and alkali, and the raw material is a relatively pure industrial product. In the production process, there is no COD organic oxygen consumption discharge; the mother liquor can be recycled; the overflow of trace ammonia-containing tail gas is pumped into the acid tank and reacted with sulfuric acid to form ammonium sulfate; no dust or waste residue is generated, and the process operation has little environmental pollution.
  • JSM-5900 electronic scanning microscope, manufactured by NEC Corporation, Japan was obtained by SEM test under the following conditions: 20 KU, 10000 to 20000 magnification.
  • the detection data is obtained by DIP method (Digital image processing), and the microscopic digital image analysis system is the supporting software of JSM-5900 electron microscope.
  • the data was obtained by a JZ-1 tap density meter (manufactured by China CDGX Corporation).
  • Oxygen content The data was obtained by TC-434 Nitrogen Analyzer (manufactured by LECO, USA). The test conditions were: sample lg, The He carrier gas was introduced, the temperature was measured at 3000 ° C, and the measurement time was 40 seconds.
  • the test conditions are: 0.6g of sample is degassed and pretreated for 2 hours under vacuum condition of 150 Q C, and the adsorption medium is high. Pure nitrogen, measured at 77.35K liquid nitrogen temperature.
  • Example 1
  • the nickel powder prepared by the above method was observed to have a regular spherical shape under a 20,000-fold electron microscope, and the surface was smooth, the average particle diameter was 0.9 ⁇ m, the particle size distribution range was 0.5 to 1.2 ⁇ m, and the tap density was 4.85 g/cm 3 .
  • the content is 0.28%, and the specific surface area is 1.13 m 2 /g.
  • the nickel powder obtained by the above method was observed to have a regular spherical shape under a 20,000-fold electron microscope, the surface was smooth, the average particle diameter was 0.8 ⁇ m, the particle size distribution range was 0.5 to 1.2 ⁇ , the tap density was 4.7 g/cm 3 , and the oxygen content was obtained. 0.37%, specific surface area is 1.21 m 2 /g.
  • Example 3
  • Example 4 (See Figures 3 and 4), the sphericity is good, the surface is smooth, the particle size distribution is narrow, the tap density is 4.65 g/cm 3 , the oxygen content is 0.38%, and the specific surface area is 1.28 m 2 /g.
  • Example 4 .
  • the nickel powder prepared by the above method is spherical under the electron microscope of 20,000 times, has a surface-like shape, an average particle diameter of 0.9 ⁇ m, a particle size distribution range of 0.3 to 2.5 ⁇ , and a tap density of 2.5 g/cm 3 .
  • the oxygen content was 1.28% and the specific surface area was 8.26 m 2 /g. Comparative example
  • the nickel powder prepared by the above method is observed to have a regular spherical shape under a 20,000-fold electron microscope, and has a smooth surface, an average particle diameter of ⁇ . ⁇ , a particle size distribution range of 0.5 to 1.3 ⁇ , a tap density of 4.5 g/cm 3 , and oxygen. The content is 0.38% and the specific surface area is 1.25 m 2 /g. Comparative Example 3:
  • the nickel powder prepared by the above method is spherical under the electron microscope of 20,000 times, the surface is not smooth, the average particle diameter is 0.82 ⁇ , the particle size distribution range is 0.4 to 1.8 ⁇ , the tap density is 2.8 g/cm 3 , oxygen The content was 1.32% and the specific surface area was 5.63 m 2 /g. Comparative Example 4:

Abstract

La présente invention concerne un procédé de préparation par voie humide d’une poudre de nickel sphérique ultrafine présentant une densité après tassement élevée. Le procédé comprend la mise en réaction de sulfate de nickel avec une solution mixte d’hydroxyde de sodium et de carbonate de sodium afin de générer de l’hydroxyde de nickel et un sel de nickel basique, l’ajout d’alcool polyhydrique en tant qu’agent contrôlant l’apparence, l’ajout de sel d’yttrium en tant qu’agent formant un noyau cristallin et l’utilisation d’hydrazine ou d’hydrate d’hydrazine en tant que réducteur de manière à produire une excellente poudre de nickel sphérique présentant une densité après tassement élevée, une distribution granulométrique étroite, une forte résistance à l’oxydation, une bonne dispersibilité et une granulométrie moyenne de 0,2 lum. La présente invention permet d’augmenter la densité après tassement de la poudre de nickel préparée selon des procédés humides et de réduire la pollution de l’environnement et d’avoir de meilleurs coûts de production. La poudre de nickel préparée selon la présente invention est utilisée dans le cadre de condensateurs céramiques stratifiés microélectroniques, de la métallurgie des poudres, de matériaux magnétiques et autres.
PCT/CN2005/001861 2004-12-28 2005-11-07 Poudre de nickel spherique ultrafine presentant une densite apres tassement elevee et procede de preparation par voie humide WO2006069513A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007548671A JP4837675B2 (ja) 2004-12-28 2005-11-07 高タップ密度超微細球形金属ニッケル粉及びその湿式製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410081611.X 2004-12-28
CNB200410081611XA CN1265921C (zh) 2004-12-28 2004-12-28 高振实密度超微球形金属镍粉的湿法制造方法

Publications (1)

Publication Number Publication Date
WO2006069513A1 true WO2006069513A1 (fr) 2006-07-06

Family

ID=34847212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001861 WO2006069513A1 (fr) 2004-12-28 2005-11-07 Poudre de nickel spherique ultrafine presentant une densite apres tassement elevee et procede de preparation par voie humide

Country Status (3)

Country Link
JP (1) JP4837675B2 (fr)
CN (1) CN1265921C (fr)
WO (1) WO2006069513A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481501A (zh) * 2020-11-12 2021-03-12 阳谷祥光铜业有限公司 一种利用脱铜终液制备镍粉的方法
CN114203326A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 石墨烯封装超薄镍-63辐射源薄膜及其制备方法、应用
CN114433864A (zh) * 2022-01-17 2022-05-06 淮安中顺环保科技有限公司 一种纳米镍粉的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601199B2 (en) * 2006-01-19 2009-10-13 Gm Global Technology Operations, Inc. Ni and Ni/NiO core-shell nanoparticles
CN100444433C (zh) * 2006-12-27 2008-12-17 河南师范大学 一种球形氢氧化镍表面金属化的方法
CN100436008C (zh) * 2007-04-10 2008-11-26 北京科技大学 一种金属镍纳米线的化学制备方法
CN102423808A (zh) * 2011-12-14 2012-04-25 天津工业大学 一种银纳米线的快速高浓度合成方法
CN106270545A (zh) * 2015-06-12 2017-01-04 中国振华集团云科电子有限公司 一种高振实密度贵金属粉体的制备方法
JP6834235B2 (ja) * 2016-08-10 2021-02-24 住友金属鉱山株式会社 水酸化ニッケル粒子の製造方法
JP6772646B2 (ja) * 2016-08-10 2020-10-21 住友金属鉱山株式会社 酸化ニッケル微粉末及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087121A (ja) * 1998-09-11 2000-03-28 Murata Mfg Co Ltd 金属粉末およびその製造方法ならびに導電性ペースト
US20030164065A1 (en) * 2000-05-30 2003-09-04 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2004060002A (ja) * 2002-07-29 2004-02-26 Murata Mfg Co Ltd 導電性ペースト用金属粉末の製造方法、導電性ペースト用金属粉末、導電性ペースト、および積層セラミック電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474810A (ja) * 1990-07-18 1992-03-10 Agency Of Ind Science & Technol ニッケル基金属微粉末の製造法
JP3197454B2 (ja) * 1995-03-10 2001-08-13 川崎製鉄株式会社 積層セラミックコンデンサー用ニッケル超微粉
JP2991700B2 (ja) * 1997-09-11 1999-12-20 三井金属鉱業株式会社 ニッケル微粉末の製造方法
JP4059035B2 (ja) * 2002-08-20 2008-03-12 株式会社村田製作所 ニッケル粉末の製造方法、ニッケル粉末、導電性ペーストおよび積層セラミック電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087121A (ja) * 1998-09-11 2000-03-28 Murata Mfg Co Ltd 金属粉末およびその製造方法ならびに導電性ペースト
US20030164065A1 (en) * 2000-05-30 2003-09-04 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2004060002A (ja) * 2002-07-29 2004-02-26 Murata Mfg Co Ltd 導電性ペースト用金属粉末の製造方法、導電性ペースト用金属粉末、導電性ペースト、および積層セラミック電子部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIAO R. ET AL.: "Preparation of Ultrafine and Spherical Nickel Powders by Aqueous Reducing Method", CHINESE JOURNAL OF INORGANIC CHEMISTRY, vol. 19, no. 10, October 2003 (2003-10-01), NANJI, CHINA, pages 1047 - 1052 *
LIAO R. ET AL.: "Study on the Preparation of Spherical Nickel Powders of High Tap Density", ELECTRONIC COMPONENTS & MATERIALS, vol. 22, no. 3, March 2003 (2003-03-01), CHENGDU, CHINA, pages 28 - 30, AND 34 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481501A (zh) * 2020-11-12 2021-03-12 阳谷祥光铜业有限公司 一种利用脱铜终液制备镍粉的方法
CN112481501B (zh) * 2020-11-12 2022-09-27 阳谷祥光铜业有限公司 一种利用脱铜终液制备镍粉的方法
CN114203326A (zh) * 2021-12-13 2022-03-18 中国核动力研究设计院 石墨烯封装超薄镍-63辐射源薄膜及其制备方法、应用
CN114433864A (zh) * 2022-01-17 2022-05-06 淮安中顺环保科技有限公司 一种纳米镍粉的制备方法

Also Published As

Publication number Publication date
JP4837675B2 (ja) 2011-12-14
CN1265921C (zh) 2006-07-26
CN1631589A (zh) 2005-06-29
JP2008525640A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
WO2006069513A1 (fr) Poudre de nickel spherique ultrafine presentant une densite apres tassement elevee et procede de preparation par voie humide
JP5047064B2 (ja) ニッケルナノ粒子の製造方法
JP5706881B2 (ja) ニッケルナノ粒子の製造方法
JP5993764B2 (ja) 複合ニッケル粒子
WO2014104032A1 (fr) Procédé de production d'une poudre de cuivre, poudre de cuivre et pâte de cuivre
JP6168837B2 (ja) 銅微粒子およびその製造方法
JP2007270312A (ja) 銀粉の製造方法及び銀粉
JP2012525506A (ja) 銀粒子およびその製造方法
CN111348676B (zh) 一种多孔金属氧化物纳米片及其制备方法和应用
JP5924481B2 (ja) 銀微粒子の製造法及び該銀微粒子の製造法によって得られた銀微粒子並びに該銀微粒子を含有する導電性ペースト
CN112452315A (zh) 一种高温抗烧结催化剂的应用
Huaman et al. Size-controlled monodispersed nickel nanocrystals using 2-octanol as reducing agent
US20110233480A1 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
CN116890110B (zh) 一种可低温烧结的微米银粉及制备方法
CN116917063A (zh) 软磁性金属粉末
JP2007314867A (ja) ニッケル粉末の製造方法
JP6082278B2 (ja) ニッケルナノ粒子の表面改質方法
JP4505633B2 (ja) hcp構造のニッケル粉の製法
JP5985216B2 (ja) 銀粉
CN112846213B (zh) 一种低氧含量高分散纳米球形钴粉的制备方法
JP2010275578A (ja) 銀粉及びその製造方法
JP5993763B2 (ja) 複合ニッケル粒子
JP4061462B2 (ja) 複合微粒子並びに導電性ペースト及び導電性膜
JP2011214144A (ja) 金属複合ニッケルナノ粒子の製造方法
JP5076135B2 (ja) hcp構造をもつニッケル粉の製法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007548671

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806437

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806437

Country of ref document: EP