WO2006067972A1 - インタリーブ装置およびインタリーブ方法 - Google Patents

インタリーブ装置およびインタリーブ方法 Download PDF

Info

Publication number
WO2006067972A1
WO2006067972A1 PCT/JP2005/022570 JP2005022570W WO2006067972A1 WO 2006067972 A1 WO2006067972 A1 WO 2006067972A1 JP 2005022570 W JP2005022570 W JP 2005022570W WO 2006067972 A1 WO2006067972 A1 WO 2006067972A1
Authority
WO
WIPO (PCT)
Prior art keywords
start position
bits
retransmissions
index
reading
Prior art date
Application number
PCT/JP2005/022570
Other languages
English (en)
French (fr)
Inventor
Katsuyoshi Naka
Daichi Imamura
Tomohiro Imai
Junya Yamazaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN200580042485XA priority Critical patent/CN101076960B/zh
Priority to EP05814623.4A priority patent/EP1819079B1/en
Priority to US11/722,144 priority patent/US7969957B2/en
Publication of WO2006067972A1 publication Critical patent/WO2006067972A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to an interleaving apparatus and an interleaving method, and more particularly to an interleaving apparatus and an interleaving method for interleaving data that is multicarrier transmitted by a plurality of carriers having different center frequencies.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM symbols obtained by OFDM modulation are less susceptible to frequency selective fading. This is because, in OFDM symbols, data is mapped to multiple subcarriers with different frequencies, so the transmission quality is degraded due to frequency selective fading. Because it is only.
  • Non-Patent Document 1 by using a combination of OFDM modulation and bit interleaving, subcarrier bits whose transmission quality is degraded by frequency selective fading are used. Error correction can be performed, and the influence of frequency selective fading can be further suppressed. That is, the transmitting side does not map consecutive bits to the same subcarrier, so that even if an erroneous bit occurs due to frequency selective fading, the receiving side is mapped to another subcarrier with good transmission quality. Error correction can be performed from the previous and next bits.
  • Non-Patent Document 1 "IEEE Wireless LAN Edition -A compilation based on IEEE Std. 802. 11TM 1999 (R2003) and its amendments" IEEE, New York, Standard IEEE 802.11, 2 November 003
  • bit group 10 mapped to For this reason, retransmission of data is requested from the receiving side, but the bit group 10 is mapped to subcarriers near the frequency f even when it is retransmitted. Therefore, the frequency selective hue
  • An object of the present invention is to provide an interleaving apparatus and an interleaving method capable of preventing an increase in the number of retransmissions and improving throughput.
  • An interleaving device includes a holding means for holding a bit string composed of a plurality of bits, the bit string written in a writing order in which the plurality of bits are two-dimensionally arranged, and a held bit string.
  • Reading means for reading the plurality of bits in a reading order different from the writing order, and transmitting means for mapping the plurality of read bits to a plurality of carriers having different frequencies in the reading order and transmitting
  • a retransmission control unit that counts the number of retransmissions for which retransmission is requested for the plurality of transmitted bits, and the reading unit changes the start position of the reading order according to the number of retransmissions. Further configuration is adopted.
  • the interleaving method includes a holding step of holding a bit string composed of a plurality of bits, the bit string written in a writing order in which the plurality of bits are two-dimensionally arranged, and the held bit string
  • a retransmission control step for counting the number of retransmissions requested to be retransmitted for the plurality of bits, wherein the reading step changes the start position of the reading order according to the number of retransmissions. .
  • the start position of the reading sequence of the bit string held in the two-dimensional array is changed for each retransmission, and the read bits are sequentially mapped to a plurality of subcarriers and transmitted. For this reason, the same bit is mapped to a different subcarrier for each retransmission, and the propagation characteristics of the subcarrier transmitting each bit change for each retransmission. Therefore, the bit error rate held in the two-dimensional array is averaged. As a result, it is possible to prevent an increase in the number of retransmissions and improve the throughput.
  • FIG. 1 is a diagram showing an example of frequency selective fading
  • FIG. 2 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 A diagram showing an example of a bit reading order determined by the first index.
  • FIG. 5 A diagram showing an example of the reading order of bits determined by the second index.
  • FIG. 6 A diagram showing an example of the reading order of bits determined by the third index.
  • FIG. 7B is a diagram showing an example of mapping at the first retransmission
  • FIG. 7C Diagram showing an example of mapping at the second retransmission
  • FIG. 7D A diagram showing an example of mapping during the third retransmission
  • FIG. 8 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a radio communication apparatus according to Embodiment 3 of the present invention.
  • FIG. 10A is a diagram showing an example of starting position candidate determination
  • FIG. 10B is a diagram showing another example of starting position candidate determination
  • FIG. 2 is a block diagram showing a configuration of a radio communication apparatus provided with the interleave apparatus according to Embodiment 1 of the present invention.
  • the radio communication apparatus shown in FIG. 2 includes an error correction code key unit 101, an interno 102, a mapping unit 103, an IFFT (Inverse Fast Fourier Transform) unit 104, and a GI (Guard Interval).
  • IFFT Inverse Fast Fourier Transform
  • GI Guard Interval
  • Insertion unit 105 Insertion unit 105, IQ (ln-phase quadrature) modulation unit 106, RF (Radio Frequency) transmission unit 107, RF reception unit 108, IQ demodulation unit 109, GI removal unit 110, FFT (Fast Fourier Transform: high speed) (Flier conversion) unit 111, demapping unit 112, dinger bar 113, error correction decoding unit 114, retransmission request extraction unit 115, and retransmission control unit 116.
  • FFT Fast Fourier Transform: high speed
  • the interleaver 102 includes a data holding unit 1021, a first index calculation unit 1022, a second index calculation unit 1023, a third index calculation unit 1024, and a reading unit 1025.
  • Error correction code section 101 performs error correction encoding on transmission data, and sequentially outputs a bit string obtained by error correction encoding to interleaver 102.
  • Interleaver 102 rearranges the order of bit strings obtained by performing error correction coding and outputs the result to mapping section 103.
  • the data holding unit 1021 holds the bit string output from the error correction code key unit 101 in a two-dimensional array. At this time, the data holding unit 1021 writes and holds the number of bits mapped to one OFDM symbol in a predetermined number of rows and columns. Specifically, the data holding unit 1021 writes each bit by repeatedly arranging a predetermined number (for example, 16) of bit strings in the row direction (horizontal direction) in order from the first bit. Then, the data holding unit 1021 uses the order in which each bit is written as an index of each bit.
  • a predetermined number for example, 16
  • the index of the first bit in the first row is “0”
  • the index of the last bit in the first row is “15”
  • the first bit in the second row The index of “16” and the index of the last bit in the second row are “31”, etc.
  • the first index calculation unit 1022 sequentially calculates the first index for reading the bit string arranged in the row direction in the data holding unit 1021 in the column direction (vertical direction). That is, in the example described above, first index calculation section 1022 calculates first index “0” for the bit of index “0” and first index for the bit of index “16”. Calculate “1”. That is, the first index calculation unit 1022 uses the index k of each bit, the total number of bits N held in the data holding unit 1021, and the total number of columns c,
  • Equation (1) “mod” indicates a remainder operation, and “(k mod c)” means a remainder when index k is divided by the total number of columns c. “Floor” indicates the floor function, and “floo r (k / c)” means the largest integer that does not exceed the quotient when the index k is divided by the total number of columns c.
  • the second index calculation unit 1023 When the second index calculation unit 1023 reads the bit string held in the data holding unit 1021 in accordance with the first index, the second index calculation unit 1023 is a second index for reversing the order of the upper bit and the lower bit from which the even column force is also read.
  • the index is calculated sequentially. That is, in the case of the above example, the second index calculation unit 1023 reads the bits held in the second column according to the first index, for example, index “1” (first index “12”), “17 “(1 indentus“ 13 ”) are read out in the order of bits, and if they are read out according to the second index, the bits are read out in the order of“ 17 ”and“ 1 ”. That is, the second index calculation unit 1023 uses the first index i, the total number of bits N held in the data holding unit 1021, and the total number of columns c to calculate the second index j by the following equation (2).
  • N and s when the modulation method is BPSK, QPSK, 16Q AM, and 64QAM are as shown in Fig. 3, respectively.
  • Third index calculation section 1024 sequentially calculates a third index for reading out a different starting position (sequence) force depending on the number of retransmissions of the bit string held in data holding section 1021. That is, in the case of the above-described example, the third index calculation unit 1024 calculates the third index “0” for the bit of the index “0” (second index “0”), for example, for the first transmission, and the first time When retransmitting, the third index “0” is calculated for the bit of index “4” (second index “48”). That is, the third index calculation unit 1024
  • Equation (3) when cZc is an integer, the entire d-dimensional array of bits has a universal d
  • the start position candidates are arranged, and the effect of averaging the error rate is the highest.
  • the order in which each start position candidate becomes the start position is determined.
  • the third index calculation unit 1024 does not need to retransmit the bit string held in the data holding unit 1021, so the third index calculation unit 1024 sends data to the reading unit 1025. Instructs the bit string held in the holding unit 1021 to be read and discarded.
  • the calculation of the first index, the second index, and the third index will be described in detail later with a specific example.
  • the reading unit 1025 reads the bit string held in the data holding unit 1021 in the order according to the third index, and outputs it to the mapping unit 103.
  • the reading unit 1025 is connected to the receiving side.
  • ACK is received from, the bit string held in the data holding unit 1021 is read and discarded according to the instruction of the third index calculation unit 1024.
  • Mapping section 103 maps the bit string output from interleaver 102 to the corresponding subcarrier.
  • IFFT section 104 performs an inverse fast Fourier transform on the bit string mapped to each subcarrier to generate an OFDM symbol.
  • the GI insertion unit 105 copies the tail part of the OFDM symbol at the head and inserts a guard interval.
  • IQ modulation section 106 IQ-modulates the OFDM symbol after insertion of the guard interval for each subcarrier, and outputs the obtained OFDM signal to RF transmission section 107.
  • RF transmitting section 107 performs predetermined radio transmission processing (DZA conversion, up-conversion, etc.) on the OFDM signal, and transmits it via an antenna.
  • DZA conversion, up-conversion, etc. predetermined radio transmission processing
  • RF receiving section 108 receives an OFDM signal including ACK or NACK transmitted from the receiving side, and performs predetermined radio reception processing (down-conversion, AZD conversion, etc.).
  • IQ demodulating section 109 performs IQ demodulation on the received signal for each subcarrier, and outputs the obtained OFDM symbol to GI removing section 110.
  • GI removal section 110 removes the guard interval from the OFDM symbol.
  • FFT section 111 performs fast Fourier transform on the OFDM symbol after removal of the guard interval, and outputs a bit string for each subcarrier to demapping section 112.
  • Demapping section 112 demaps the bit string for each subcarrier output from FFT section 111.
  • the error correction decoding unit 114 performs error correction decoding on the bit string after dingtering, outputs received data, and outputs ACK or NACK to the retransmission request extraction unit 115.
  • retransmission request extraction section 115 notifies retransmission to the retransmission control section 116 when retransmission is requested from the receiving side, and corrects the error. If the output from the decoding unit 114 is NACK, the receiving side also notifies the retransmission control unit 116 that retransmission is requested.
  • retransmission control section 116 Based on the notification from retransmission request extraction section 115, retransmission control section 116 counts the number of retransmissions, and if retransmission is not requested, notifies third index calculation section 1024 to that effect and data holding section. The bit string held in 1021 is discarded, and if retransmission is requested, the third index calculation unit 1024 is notified of the number of retransmissions.
  • the number of retransmissions refers to the number of times the same transmission data is retransmitted, and is equal to the number of times NACK is received continuously. In other words, if ACK is also received after receiving certain data, the next data will be transmitted again. If NACK is received for this data, the first retransmission will be performed. The number of retransmissions is 1. Furthermore, if the NACK is received again after the first retransmission, the second retransmission is performed, and the number of retransmissions is 2.
  • the OFDM signal received via the antenna is subjected to predetermined radio reception processing by the RF receiving unit 108, IQ demodulated by the IQ demodulating unit 109, and the guard interval is removed by the GI removing unit 110.
  • the OFDM symbol after removal of the guard interval is subjected to fast Fourier transform by the FFT unit 111, and the bit string for each subcarrier is demapped by the demapping unit 112.
  • the bit string obtained by demapping is prepared for the receiving side by the dintar bar 113.
  • a dingtery is performed to restore the interleaving performed by the interleaver. Therefore, when the receiving side is a wireless communication apparatus having the same configuration as that of the own apparatus, the above equations (4) to (6) are used to restore the interleaving by the interleaving 102. A tally is performed. Then, the dingerized bit string is error-corrected by an error correction decoding unit 114, and received data is output, and ACK or NACK is output to the retransmission request extraction unit 115.
  • retransmission request extraction section 115 determines whether the output from error correction decoding section 114 is ACK or NACK, and if it is ACK, the signal transmitted from its own device is received. Therefore, the retransmission control unit 116 is notified of the fact that a retransmission has been requested. Also, if the output from the error correction decoding unit 114 is NACK, it means that the signal transmitted by itself is correctly received on the receiving side! As a result, the retransmission control unit 116 is notified.
  • third fact calculation section 1024 is notified to that effect, and when retransmission is requested, the number of retransmissions is transmitted to third index calculation section 1024. 1024 is notified.
  • the third index calculation unit 1024 instructs the reading unit 1025 to read and discard the bit string held in the data holding unit 1021, and read the data.
  • the bit string held in the data holding unit 1021 is discarded by the unit 1025. Thereafter, new transmission data is transmitted for the first time.
  • the third index calculation unit 1024 calculates a third index different from the previous transmission and holds it in the data holding unit 1021
  • the bit string is read by reading unit 1025 in the order of the third index, and the transmission data is retransmitted.
  • interleaving by interleaver 102 at the time of initial transmission or retransmission request will be described.
  • Transmission data is error-corrected by the error correction code key unit 101 at the time of initial transmission, and the obtained bit string is output to the data holding unit 1021 in the interleaver 102.
  • the bit string is a force that is held in two dimensions by the data holding unit 1021.
  • 16 bits are written in the row direction (lateral direction), for example.
  • the order in which the bit string is written into the data holding unit 1021 is an index of each bit. That is, for example, the index of the bit in the first column of the first row is “0”, the index of the bit of the 16th column in the first row is “15”, and the index of the bit in the first column of the second row Becomes “16”.
  • the total number of bits simultaneously held in the data holding unit 1021 is equal to the number of bits transmitted by one OFDM symbol.
  • 192 bits from index “0” to “191” are one OFDM It is an example in the case of being transmitted by a symbol.
  • the data holding unit 1021 increases and decreases the number of rows (12 in FIG. 4).
  • the first index calculation unit 1022 calculates the first index.
  • the first index is calculated by the above-described formula (1).
  • the formula (1) is represented by the following formula (7).
  • the first index i is calculated by substituting the index k in Equation (7), the first index i will increase in the order of the dashed arrows in FIG. In other words, the first index “0”, “1”, etc. for the bits of the indexes “0”, “16”,. ' ⁇ "190" and "191" are calculated.
  • the calculated first index is output to the second index calculation unit 1023, and then the second index calculation unit 1023 calculates the second index.
  • the second index is calculated by the above-described equation (2).
  • the equation (2) is as the following equation (8).
  • Equation (8) becomes Equation (9) below.
  • the second index j is calculated by substituting the first index i into equation (9), the dashed arrow in FIG. As indicated by the mark, the size of the second index of the odd and even rows adjacent to each other in the even column is reversed. That is, the first index “0” (index “0"), “1” (index “1"), ..., “191” (index “191"), "190” (index “175")
  • the second index “0”, “1”,..., “190”, “191” is calculated for the bit.
  • the calculated second index is output to the third index calculation unit 1024, and then the third index calculation unit 1024 calculates the third index.
  • the third index is calculated by the above-described equation (3).
  • the equation (3) is expressed by the following equation (10).
  • equation (10) becomes the following equation (11).
  • the third index m is equal to the second index j.
  • the third index m is output to the reading unit 1025, and the bit string held in the data holding unit 1021 is read by the reading unit 1025 sequentially from the bit of the third index “0”. That is, the reading position 1025 causes the start position shown in FIG.
  • the bit string is read from the device 201 in the order of the broken-line arrows.
  • the number of retransmissions r is 1, so that the bit of the second index “48” (index “4”) becomes the third index “0”, and the reading unit 1025 As a result, the bit string is read from the start position 202 shown in FIG.
  • the bit of the second index “96” becomes the third index “0”, and the read is performed.
  • the unit 1025 reads the bit string from the start position 203 shown in FIG.
  • the starting position force according to the number of retransmissions as described above is output to the mapping unit 103, and the 4 bits surrounded by a double frame in Fig. 6 are mapped to one subcarrier. .
  • 16QAM modulation is performed by the IQ modulation unit 106, 4 bits surrounded by a double frame in FIG. 6 become one symbol and are mapped to the same subcarrier.
  • the 48 bit power S mapping in the fourth column from the first column power in FIG. 6 is performed on subcarrier group 301, and 5 in FIG.
  • the 48 bits in the 8th column are mapped from the column force, and the subcarrier group 303 for control data is excluded, and the 48 bits in the 12th column from the 9th column in Fig. 6 are pinned to the subcarrier group 304.
  • 48 bits in the 16th column from the 13th column force in FIG. 6 are mapped to the subcarrier group 305.
  • the subcarrier group 301 is subjected to the 9th IJ bit power S mapping from the fifth column power in FIG. 6 and the subcarrier group 302 in FIG. 9 ⁇ IJ eye force et al. 12 ⁇ IJ eye bit force S-mapped and subcarrier group 304 in Fig. 13 13 ⁇ IJ eye force et al. 16 ⁇ IJ bit force ⁇ mapped and sub-carrier group 305 in 1 row of Fig. 6
  • the bit in the fourth column is mapped.
  • the bits mapped to the respective subcarrier groups 301 to 305 are different as shown in Figs. 7C and 7D, respectively. Yes.
  • the same bit is mapped to a different subcarrier for each retransmission. For this reason, even if the frequency selective fading characteristics do not change, the propagation characteristics of the subcarriers that transmit each bit change for each retransmission, and the reception power of the subcarriers that transmit the same bits always drops. Therefore, an increase in the number of retransmissions can be prevented.
  • IFFT section 104 performs inverse fast Fourier transform
  • GI insertion section 105 inserts a guard interval into the generated OFDM symbol.
  • the OFDM symbol after insertion of the guard interval is IQ-modulated for each subcarrier by the IQ modulation unit 106, subjected to predetermined radio transmission processing by the RF transmission unit 107, and transmitted via the antenna.
  • the same bit is mapped to a different subcarrier for each retransmission.
  • the propagation characteristics of the subcarriers that transmit each bit for each retransmission change, an increase in the number of retransmissions can be prevented and throughput can be improved.
  • the modulation method is 16QAM
  • read start position candidates corresponding to the number of retransmissions are set at 4 power points at intervals of 4 columns
  • the interleaver size, modulation scheme, and start position candidate can be implemented with various changes.
  • the feature of the second embodiment of the present invention is that, in two successive transmissions (for example, the first retransmission and the second retransmission), the starting position from which the bit string is read out from the interlino is greatly different, and at the time of retransmission. The point is that the subcarriers to which the same bit is mapped are further separated.
  • FIG. 8 is a block diagram showing a configuration of a wireless communication apparatus provided with the interleave apparatus according to the present embodiment.
  • the radio communication apparatus shown in FIG. 8 includes a retransmission number conversion unit 401 in addition to the radio communication apparatus shown in FIG. [0071]
  • Retransmission count conversion section 401 converts the retransmission count notified from retransmission control section 116 and outputs the converted retransmission count to third index calculation section 1024.
  • retransmission number conversion section 401 converts the number of retransmissions so that the read start position of the bit string held in data holding section 1021 is as far as possible from the previous transmission.
  • the number of candidates is equally divided into X to form groups of starting position candidates, and each group d
  • the number of resends r ′ after conversion is obtained from the number of resends r by the following equation (12) so that one start position candidate becomes the start position in order.
  • r, (l / x) X (r mod (floor (c / c) + (floor (c / c) —lXr mod x))--(12)
  • retransmission number conversion section 401 converts the number of retransmissions to 2 at the first retransmission, converts the number of retransmissions to 1 at the second retransmission, and the number of retransmissions different from the actual number of retransmissions is the third index calculation section.
  • the power to calculate the third index by the third index calculation unit 1024 since the number of retransmissions is converted, the first column is the start position at the first transmission, and 1 The 9th column is the start position for the second retransmission, the 5th column is the start position for the second retransmission, and the 13th column is the start position for the third retransmission. Therefore, compared to Embodiment 1, the frequency of the subcarrier to which the same bit is mapped is greatly separated for each retransmission, and a greater frequency diversity effect can be obtained.
  • Equation (12) the start position candidates are equally divided into X. Therefore, in the first X transmissions including the first transmission, the start position candidates of different groups are changed every time. Thus, the average frequency diversity effect at X times is maximized. Therefore, the average retransmission number power X required until one OFDM symbol is correctly received by the receiving side may be determined with reference to past retransmission conditions and the like. In other words, it is necessary to receive correctly. X should be determined so that the average frequency diversity effect is maximized at the average number of retransmissions.
  • reading is performed after the number of retransmissions is converted so that the frequency of the subcarrier to which the same bit is mapped differs greatly from the previous transmission. Since the start position is changed, the frequency of subcarriers that transmit the same bit is greatly different for each retransmission, and a frequency diversity effect is obtained. As a result, an increase in the number of retransmissions can be prevented more reliably.
  • a feature of Embodiment 3 of the present invention is that a start position from which a bit string is read out from an interleaver is determined according to frequency selective fading characteristics.
  • FIG. 9 is a block diagram showing a configuration of a wireless communication apparatus provided with the interleave apparatus according to the present embodiment.
  • the wireless communication device shown in FIG. 9 includes a power measurement unit 5001 and a start position determination unit 502 in addition to the wireless communication device of FIG. 2, and a third index calculation unit instead of the third index calculation unit 1024 of FIG. Have 1024a.
  • Power measurement section 501 measures the power for each subcarrier in the process of fast Fourier transform by FFT section 111.
  • Start position determination section 502 determines a read start position candidate for each retransmission of the bit string held in data holding section 1021, from the power measurement result for each subcarrier. Specifically, the start position determination unit 502 determines a start position candidate by excluding the position of a bit mapped to a subcarrier where power is reduced, or is highly important for a subcarrier where power is reduced. The starting position candidate is determined so that a specific bit such as a bit is not mapped.
  • start position determination section 502 starts based on the power measurement result so that the bit mapped to the subcarrier with low power is preferentially mapped to the subcarrier with high power in the next transmission. Position candidates may be determined. In this case, the start position determination unit 502 determines, based on the power measurement result, that the bit mapped to the subcarrier having the lowest power has the highest power in the next transmission and is mapped to the subcarrier. The By determining, the averaging of the error rate can be promoted.
  • Third index calculation section 1024a selects a different start position from the start position candidates determined by start position determination section 502 according to the number of retransmissions, and obtains a third index corresponding to the selected start position. . That is, the third index calculation unit 1024a sets the third index of the bit at the start position selected for each retransmission to “0” regardless of a specific expression such as Expression (3) described in Embodiment 1. Thereafter, the third index is obtained in the same ascending order as the second index.
  • the start position determination unit 502 when the power measurement unit 501 measures the power for each subcarrier, for example, when the frequency power characteristic as shown in FIG. 10A is obtained, the start position determination unit 502 Two start position candidates are determined: a start position candidate in which the bit of index “0” is mapped to subcarrier 601 and a start position candidate in which the bit of index “0” is mapped to subcarrier 602. Similarly, for example, when frequency-power characteristics as shown in FIG. 1OB are obtained, the start position determination unit 502 determines four start position candidates corresponding to the subcarriers 603 to 606. That is, the start position determination unit 502 flexibly determines the start position candidates and the number of start position candidates according to the power measurement result.
  • the determined start position candidate is notified to third index calculation section 1024a, and the third index is obtained.
  • the start position candidate is started with a different start position candidate for each retransmission.
  • the third index of the position bit is “0”.
  • the third indictor calculation unit 1024a sets a start position candidate that is different for each retransmission in a predetermined order as a start position regardless of a specific formula or the like.
  • the start position determination unit 502 can determine start position candidates having irregular column intervals.
  • the start position selected by third index calculation section 1024a is transmitted to the receiving side as broadcast information.
  • the receiving side can accurately perform the diving.
  • the start position candidates for reading bits are adaptively determined based on the power measurement result for each subcarrier, the same bits are consecutive.
  • an increase in the number of retransmissions can be more reliably prevented.
  • the interleaving device includes a holding means for holding a bit string composed of a plurality of bits, the bit string written in a writing order in which the plurality of bits are two-dimensionally arranged.
  • Reading means for reading the plurality of bits from the held bit string in a reading order different from the writing order, and transmitting the plurality of read bits mapped to a plurality of carriers having different frequencies in the reading order
  • a retransmission control unit that counts the number of retransmissions for which retransmission is requested for the plurality of transmitted bits, and the reading unit sets the start position of the reading order as the number of retransmissions.
  • the configuration is changed according to the situation.
  • the start position of the reading sequence of the bit string held in the two-dimensional array is changed for each retransmission, and the read bits are sequentially mapped to a plurality of carriers and transmitted. For this reason, the same bit is mapped to a different carrier for each retransmission, and the propagation characteristics of the carrier transmitting each bit change for each retransmission. As a result, it is possible to prevent an increase in the number of retransmissions and improve the throughput.
  • the interleaving apparatus is the interleave apparatus according to the first aspect, wherein the reading means calculates an index that increases a value in order of reading for each of the plurality of bits.
  • the index calculator is configured to calculate a minimum index for the bit at the start position for each number of retransmissions.
  • the interleaving apparatus is the interleave apparatus according to the first aspect, wherein the reading means is a plurality of start position candidates set at regular intervals in the two-dimensional array. A configuration is adopted in which one is the start position for each retransmission.
  • the start positions selected from the start position candidates set at regular intervals are selected. Therefore, the start position for each number of retransmissions can be determined by calculation using the number of retransmissions.
  • the reading means sandwiches at least one start position candidate between the start position in the previous number of retransmissions.
  • a configuration is adopted in which the start position candidate is set as the start position at the current number of retransmissions.
  • An interleaving apparatus is the interleaving apparatus according to the first aspect, wherein receiving means for receiving a multicarrier signal including the plurality of carriers, and received multicarrier signal power for each carrier. Measuring means for measuring power, and determining means for determining a plurality of start position candidates according to the measured power for each carrier, wherein the reading means is one of the plurality of start position candidates. Is used as the starting position for each number of retransmissions.
  • the determining means excludes a position in the two-dimensional array of bits mapped to a carrier having power of a predetermined level or less.
  • a configuration for determining the start position candidate is adopted.
  • the bit at the start position is frequency-selective fading for every number of retransmissions.
  • the determining means does not map the same bit to a carrier of power equal to or lower than a predetermined level in the number of consecutive retransmissions.
  • the configuration of determining the starting position candidate of the is adopted. [0100] According to this configuration, since the same bit is not mapped to a low-power carrier in two consecutive transmissions, the power is low, and the bit mapped to the carrier is preferentially powered by the next transmission. Is mapped to a high carrier, and an increase in the number of retransmissions can be prevented more reliably.
  • An interleaving method includes a holding step of holding a bit string composed of a plurality of bits, the bit string written in a writing order in which the plurality of bits are two-dimensionally arranged.
  • the start position of the reading sequence of the bit string held in the two-dimensional array is changed for each retransmission, and the read bits are sequentially mapped to a plurality of carriers and transmitted. For this reason, the same bit is mapped to a different carrier for each retransmission, and the propagation characteristics of the carrier transmitting each bit change for each retransmission. As a result, it is possible to prevent an increase in the number of retransmissions and improve the throughput.
  • the interleaving apparatus and interleaving method of the present invention can prevent an increase in the number of retransmissions and improve the throughput.
  • the interleaving apparatus interleaves data that is multi-carrier transmitted by a plurality of carriers having different frequencies. It is useful as an interleaving method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 再送回数の増大を防止し、スループットの向上をするインタリーブ装置およびインタリーブ方法。このインターリーブ装置を備える無線通信装置において、データ保持部(1021)はビット列を二次元に配列して保持する。第1インデックス算出部(1022)は行方向に並べられたビット列を列方向に読み出すための第1インデックスを順次算出する。第2インデックス算出部(1023)は第1インデックスに従ってビット列を読み出す際に、偶数列から読み出される上位ビットと下位ビットとの順序を逆転させるための第2インデックスを順次算出する。第3インデックス算出部(1024)は再送回数に応じて異なる開始位置からビット列を読み出すための第3インデックスを順次算出する。読出部(1025)は第3インデックスに従った順序でビット列を読み出す。マッピング部(103)は読み出されたビット列をそれぞれ対応するサブキャリアにマッピングする。

Description

明 細 書
インタリーブ装置およびインタリーブ方法
技術分野
[0001] 本発明は、インタリーブ装置およびインタリーブ方法に関し、特に互いに中心周波 数が異なる複数のキャリアによってマルチキャリア伝送されるデータをインタリーブす るインタリーブ装置およびインタリーブ方法に関する。
背景技術
[0002] 近年盛んに検討されて 、る IEEE (Institute of Electrical and Electronics Engineers ) 802. 11aや IEEE802. l lgなどの規格に準拠した無線 LAN (Local Area Networ k)においては、無線伝送方式として OFDM (Orthogonal Frequency Division Multipl exing:直交周波数分割多重)変調が採用されている。 OFDM変調は、周波数が互 いに直交する複数のサブキャリアを用いてデータを伝送することにより、周波数利用 効率を向上させつつ高速データ伝送を実現する技術である。
[0003] また、 OFDM変調されて得られる OFDMシンボルは、周波数選択性フェージング の影響を受けにくい。これは、 OFDMシンボルにおいては、データが周波数の異な る複数のサブキャリアにマッピングされているため、周波数選択性フェージングによつ て伝送品質が劣化するのは一部のサブキャリアにマッピングされるデータのみである ことによる。
[0004] カロえて、例えば非特許文献 1に記載されて 、るように、 OFDM変調とビットインタリ ーブを組み合わせて用いることにより、周波数選択性フェージングによって伝送品質 が劣化するサブキャリアのビットを誤り訂正することができ、周波数選択性フェージン グの影響をさらに抑制することができる。すなわち、送信側が同一のサブキャリアに連 続するビットをマッピングしな 、ことにより、周波数選択性フェージングによって誤った ビットが生じても、受信側は、伝送品質が良好な他のサブキャリアにマッピングされた 前後のビットから誤り訂正を行うことができる。
非特許文献 1: "IEEE Wireless LAN Edition -A compilation based on IEEE Std. 802. 11TM 1999(R2003) and its amendments" IEEE, New York, Standard IEEE 802.11, 2 003年 11月
発明の開示
発明が解決しょうとする課題
[0005] ところで、周波数選択性フェージングによって、特定のサブキャリアの伝送品質の劣 化が激し ヽ場合は、受信側で誤り訂正を行っても十分な誤り率を達成することができ ず、データの再送が必要となることがある。し力しながら、初回送信時と再送時の周波 数選択性フェージングの特性に変化がなければ、誤ったビットは再送時にも伝送品 質が劣悪なサブキャリアにマッピングされてしま 、、再送効率が悪 、と 、う問題がある
[0006] 具体的には、例えば図 1に示すような周波数選択性フェージングを有する伝搬路を OFDMシンボルが伝送される場合、周波数選択性フェージングにより周波数 f付近
1 のサブキャリアの受信電力が急激に落ち込んでいるため、周波数 f付近のサブキヤリ
1
ァにマッピングされるビット群 10について、十分な誤り率が達成されないことがある。 このため、受信側からデータの再送が要求されるが、ビット群 10は、再送される場合 にも周波数 f付近のサブキャリアにマッピングされる。したがって、周波数選択性フエ
1
一ジングの特性が変化するまでは、ビット群 10が正確に受信される可能性が低ぐ再 送回数の増大を招 、てしまう。
[0007] 本発明の目的は、再送回数の増大を防止し、スループットの向上を図ることができ るインタリーブ装置およびインタリーブ方法を提供することである。
課題を解決するための手段
[0008] 本発明に係るインタリーブ装置は、複数のビットからなるビット列であって、前記複 数のビットが二次元配列される書き込み順序で書き込まれたビット列を保持する保持 手段と、保持されたビット列力 前記複数のビットを前記書き込み順序とは異なる読 み出し順序で読み出す読出手段と、読み出された前記複数のビットを周波数が異な る複数のキャリアに前記読み出し順序でマッピングして送信する送信手段と、送信さ れた前記複数のビットに対して再送が要求される再送回数を計数する再送制御手段 と、を有し、前記読出手段は、前記読み出し順序の開始位置を再送回数に応じて変 更する構成を採る。 [0009] 本発明に係るインタリーブ方法は、複数のビットからなるビット列であって、前記複 数のビットが二次元配列される書き込み順序で書き込まれたビット列を保持する保持 ステップと、保持されたビット列力も前記複数のビットを前記書き込み順序とは異なる 読み出し順序で読み出す読出ステップと、読み出された前記複数のビットを周波数 が異なる複数のキャリアに前記読み出し順序でマッピングして送信する送信ステップ と、送信された前記複数のビットに対して再送が要求される再送回数を計数する再送 制御ステップと、を有し、前記読出ステップは、前記読み出し順序の開始位置を再送 回数に応じて変更するようにした。
[0010] これらによれば、二次元配列で保持されたビット列の読み出し順序の開始位置を再 送ごとに変更し、読み出されたビットを順次複数のサブキャリアにマッピングして送信 する。このため、同一のビットが再送ごとに異なるサブキャリアにマッピングされること になり、再送ごとに各ビットを伝送するサブキャリアの伝搬特性が変化する。したがつ て、二次元配列で保持されているビットの誤り率は平均化される。結果として、再送回 数の増大を防止し、スループットの向上を図ることができる。
発明の効果
[0011] 本発明によれば、再送回数の増大を防止し、スループットの向上を図ることができる 図面の簡単な説明
[0012] [図 1]周波数選択性フェージングの一例を示す図
[図 2]本発明の実施の形態 1に係る無線通信装置の構成を示すブロック図
[図 3]変調方式に応じて定まる変数の例を示す図
[図 4]第 1インデックスによって定まるビットの読み出し順序の例を示す図
[図 5]第 2インデックスによって定まるビットの読み出し順序の例を示す図
[図 6]第 3インデックスによって定まるビットの読み出し順序の例を示す図
[図 7A]初回送信時のマッピングの例を示す図
[図 7B]1回目の再送時のマッピングの例を示す図
[図 7C]2回目の再送時のマッピングの例を示す図
[図 7D]3回目の再送時のマッピングの例を示す図 [図 8]本発明の実施の形態 2に係る無線通信装置の構成を示すブロック図
[図 9]本発明の実施の形態 3に係る無線通信装置の構成を示すブロック図
[図 10A]開始位置候補決定の一例を示す図
[図 10B]開始位置候補決定の他の一例を示す図
発明を実施するための最良の形態
[0013] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0014] (実施の形態 1)
図 2は、本発明の実施の形態 1に係るインタリーブ装置を備えた無線通信装置の構 成を示すブロック図である。図 2に示す無線通信装置は、誤り訂正符号ィ匕部 101、ィ ンタリーノ 102、マッピング部 103、 IFFT (Inverse Fast Fourier Transform:逆高速フ 一リエ変換)部 104、 GI (Guard Interval:ガードインターバル)揷入部 105、 IQ (ln-ph ase Quadrature)変調部 106、 RF (Radio Frequency:無線周波数)送信部 107、 RF 受信部 108、 IQ復調部 109、 GI除去部 110、 FFT(Fast Fourier Transform:高速フ 一リエ変換)部 111、デマッピング部 112、ディンタリーバ 113、誤り訂正復号ィ匕部 11 4、再送要求抽出部 115、および再送制御部 116を有している。
[0015] また、インタリーバ 102は、データ保持部 1021、第 1インデックス算出部 1022、第 2 インデックス算出部 1023、第 3インデックス算出部 1024、および読出部 1025を有し ている。
[0016] 誤り訂正符号ィ匕部 101は、送信データを誤り訂正符号化し、誤り訂正符号化して得 られるビット列を順次インタリーバ 102へ出力する。
[0017] インタリーバ 102は、誤り訂正符号ィ匕して得られるビット列の順序を並び替え、マツ ビング部 103へ出力する。
[0018] 具体的には、データ保持部 1021は、誤り訂正符号ィ匕部 101から出力されるビット 列を二次元に配列して保持する。このとき、データ保持部 1021は、 1つの OFDMシ ンボルにマッピングされる分のビットを所定の行数および列数に書き込んで保持する 。具体的には、データ保持部 1021は、ビット列を先頭のビットから順に行方向(横方 向)に所定数 (例えば 16)ずつ並べることを繰り返して各ビットを書き込む。そして、デ ータ保持部 1021は、各ビットが書き込まれた順番を各ビットのインデックスとする。す なわち、例えば行方向に 16個ずつビットが並べられる場合は、 1行目の先頭ビットの インデックスを「0」、 1行目の最後のビットのインデックスを「15」、 2行目の先頭ビット のインデックスを「16」、 2行目の最後のビットのインデックスを「31」などとする。
[0019] 第 1インデックス算出部 1022は、データ保持部 1021に行方向に並べられたビット 列を列方向(縦方向)に読み出すための第 1インデックスを順次算出する。すなわち、 第 1インデックス算出部 1022は、上述した例の場合、インデックス「0」のビットに対し ては第 1インデックス「0」を算出し、インデックス「16」のビットに対しては第 1インデッ タス「1」を算出する。つまり、第 1インデックス算出部 1022は、各ビットのインデックス k 、データ保持部 1021に保持されて 、る総ビット数 N 、および総列数 cを用いて、
CBPS
以下の式(1)により第 1インデックス iを算出する。
[0020] i=(N /c)(k mod c)+floor(k/c) …ひ)
CBPS
k=0,l, - - -,N -1
CBPS
ただし、式(1)において、「mod」は剰余演算を示し、「(k mod c)」はインデックス kを 総列数 cで割ったときの剰余を意味している。また、「floor」はフロア関数を示し、「floo r (k/c)」はインデックス kを総列数 cで割ったときの商を超えな ヽ最大の整数を意味 している。
[0021] 第 2インデックス算出部 1023は、データ保持部 1021に保持されたビット列を第 1ィ ンデッタスに従って読み出す際に、偶数列力も読み出される上位ビットと下位ビットと の順序を逆転させるための第 2インデックスを順次算出する。すなわち、第 2インデッ タス算出部 1023は、上述した例の場合、例えば 2列目に保持されたビットを第 1イン デッタスに従って読み出せばインデックス「1」(第 1インデックス「12」)、「17」(第 1ィ ンデッタス「13」)の順にビットが読み出されるところ、第 2インデックスに従って読み出 せばインデックス「17」、「1」の順にビットが読み出されるようにする。つまり、第 2イン デッタス算出部 1023は、第 1インデックス i、データ保持部 1021に保持されている総 ビット数 N 、および総列数 cを用いて、以下の式 (2)により第 2インデックス jを算出
CBPS
する。
[0022] j=s X floor(i/s)+(i+N floor(c X i/N 》mod s - - - (2)
CBPS CBPS
ί=0,1,· · ·,Ν -1
CBPS ただし、式(2)において、 s=max (N /2, 1)であり、 N は変調方式に応じた 1
BPSC BPSC
シンボルで伝送されるビット数である。したがって、変調方式が BPSK、 QPSK、 16Q AM、および 64QAMのときの N および sは、それぞれ図 3のようになる。
BPSC
[0023] 第 3インデックス算出部 1024は、データ保持部 1021に保持されたビット列を再送 回数に応じて異なる開始位置 (列)力 読み出すための第 3インデックスを順次算出 する。すなわち、第 3インデックス算出部 1024は、上述した例の場合、例えば初回送 信時にはインデックス「0」(第 2インデックス「0」 )のビットに対して第 3インデックス「0」 を算出し、 1回目の再送時にはインデックス「4」(第 2インデックス「48」)のビットに対 して第 3インデックス「0」を算出する。つまり、第 3インデックス算出部 1024は、第 2ィ
K再送回数!:、異なる開始位置候補間の列間隔 c、データ保持部 1021に 保持されている総ビット数 N 、および総列数 cを用いて、以下の式 (3)により第 3ィ
CBPS
ンデックス mを算出する。
[0024] m=(((floor(c/c )— r )mod(floor(c/c )》 X c X N /c+i)mod N · · · (3)
d p d d CBPS CBPS
r =r mod(floor(c/ c ))
P d
FO, I , - - * ,N -I
CBPS
なお、式(3)において、 cZcが整数となる場合にビットの二次元配列全体に万遍な d
く開始位置候補が配置されることになり、誤り率を平均化する効果が最も高くなる。ま た、再送回数 rから rを定義することにより、各開始位置候補が開始位置となる順番が
P
循環的になり、誤り率を平均化する効果を高めている。したがって、式(3)において、 rの代わりに再送回数 rをそのまま用いても、再送回数ごとに異なる開始位置力もビッ
P
トが読み出されることにはなる。
[0025] また、第 3インデックス算出部 1024は、受信側から ACKが受信された場合は、デ ータ保持部 1021に保持されたビット列を再送する必要がなくなるため、読出部 1025 に対してデータ保持部 1021に保持されたビット列を読み出して破棄するよう指示す る。なお、第 1インデックス、第 2インデックス、および第 3インデックスの算出について は、後に具体例を挙げて詳述する。
[0026] 読出部 1025は、データ保持部 1021に保持されたビット列を第 3インデックスに従 つた順序で読み出し、マッピング部 103へ出力する。また、読出部 1025は、受信側 から ACKが受信された場合は、第 3インデックス算出部 1024の指示に従って、デー タ保持部 1021に保持されたビット列を読み出して破棄する。
[0027] マッピング部 103は、インタリーバ 102から出力されるビット列をそれぞれ対応する サブキャリアにマッピングする。
[0028] IFFT部 104は、各サブキャリアにマッピング後のビット列に対して逆高速フーリエ 変換を行い、 OFDMシンボルを生成する。
[0029] GI揷入部 105は、 OFDMシンボルの末尾部分を先頭に複製してガードインターバ ルを挿入する。
[0030] IQ変調部 106は、ガードインターバル挿入後の OFDMシンボルをサブキャリアごと に IQ変調し、得られた OFDM信号を RF送信部 107へ出力する。
[0031] RF送信部 107は、 OFDM信号に対して所定の無線送信処理 (DZA変換、アップ コンバートなど)を施し、アンテナを介して送信する。
[0032] RF受信部 108は、受信側から送信された ACKまたは NACKを含む OFDM信号 を受信し、所定の無線受信処理 (ダウンコンバート、 AZD変換など)を施す。
[0033] IQ復調部 109は、受信信号をサブキャリアごとに IQ復調し、得られた OFDMシン ボルを GI除去部 110へ出力する。
[0034] GI除去部 110は、 OFDMシンボルからガードインターバルを除去する。
[0035] FFT部 111は、ガードインターバル除去後の OFDMシンボルに対して高速フーリ ェ変換を行 、、サブキャリアごとのビット列をデマッピング部 112へ出力する。
[0036] デマッピング部 112は、 FFT部 111から出力されるサブキャリアごとのビット列をデ マッピングする。
[0037] ディンタリーバ 113は、受信側のインタリーバによるインタリーブを元に戻すようにビ ット列の順序を並び替える。すなわち、ディンタリーバ 113は、自装置と同様の構成 の無線通信装置と通信を行う場合は、インタリーバ 102によるインタリーブを元に戻す ように、第 3インデックス力 順に第 2インデックス、第 1インデックス、および元のイン デッタスを算出する。具体的には、ディンタリーバ 113は、以下の式 (4)〜(6)によつ て、上述の式(1)〜(3)の逆の演算を行い、第 3インデックス m力 順に第 2インデッ タス j、第 1インデックス i、および元のインデックス kを算出する。 [0038] j=((r mod(floor(c/c )》 X c X N /c+m)mod N · · · (4)
d d CBPS CBPS
i=s X floorO/s)+0+floor(c X j/N ))mod s "- (5)
CBPS
k=c X i-(N - l)floor(c X i/N ) · '· (6)
CBPS CBPS
誤り訂正復号ィ匕部 114は、ディンタリーブ後のビット列を誤り訂正復号ィ匕し、受信デ ータを出力するとともに、 ACKまたは NACKを再送要求抽出部 115へ出力する。
[0039] 再送要求抽出部 115は、誤り訂正復号ィ匕部 114からの出力が ACKであれば、受 信側から再送が要求されて 、な ヽ旨を再送制御部 116へ通知し、誤り訂正復号化部 114からの出力が NACKであれば、受信側力も再送が要求されて 、る旨を再送制 御部 116へ通知する。
[0040] 再送制御部 116は、再送要求抽出部 115からの通知に基づいて再送回数を計数 するとともに、再送が要求されていなければその旨を第 3インデックス算出部 1024へ 通知してデータ保持部 1021に保持されたビット列を破棄させるようにし、再送が要求 されていれば再送回数を第 3インデックス算出部 1024へ通知する。ここで、再送回 数とは、同一の送信データを再送する回数のことで、 NACKが連続して受信された 回数に等しい。すなわち、あるデータを送信後に受信側力も ACKが受信されれば、 新たに次のデータが送信される力 このデータに対して NACKが受信されれば 1回 目の再送を行うことになるため、再送回数は 1となる。さらに、 1回目の再送後、再び N ACKが受信されれば 2回目の再送を行うことになり、再送回数は 2となる。
[0041] 次いで、本実施の形態に係る無線通信装置による送信データのインタリーブ動作 について、具体例を挙げながら図 4〜7を参照して説明する。なお、以下では、受信 側から送信された ACKまたは NACKを含む OFDM信号が受信された後の動作に ついて説明する。
[0042] アンテナを介して受信された OFDM信号は、 RF受信部 108によって所定の無線 受信処理が施され、 IQ復調部 109によって IQ復調され、 GI除去部 110によってガー ドインターバルが除去される。そして、ガードインターバル除去後の OFDMシンボル は、 FFT部 111によって高速フーリエ変換され、デマッピング部 112によってサブキ ャリアごとのビット列がデマッピングされる。
[0043] デマッピングされて得られたビット列は、ディンタリーバ 113によって、受信側に備え られたインタリーバによるインタリーブを元に戻すディンタリーブが施される。したがつ て、受信側が自装置と同様の構成を有する無線通信装置である場合は、インタリー ノ 102によるインタリーブを元に戻すように、上述の式 (4)〜(6)が用いられてディン タリーブが行われる。そして、ディンタリーブ後のビット列は、誤り訂正復号化部 114 によって誤り訂正符号ィ匕され、受信データが出力されるとともに、 ACKまたは NACK が再送要求抽出部 115へ出力される。
[0044] そして、再送要求抽出部 115によって、誤り訂正復号ィ匕部 114からの出力が ACK であるか NACKであるかが判定され、 ACKである場合は自装置から送信された信 号が受信側で正しく受信されたことを意味して 、るため、再送が要求されて 、な 、旨 が再送制御部 116へ通知される。また、誤り訂正復号ィ匕部 114からの出力が NACK である場合は自装置力 送信された信号が受信側で正しく受信されて 、な 、ことを 意味して!/、るため、再送が要求されて 、る旨が再送制御部 116へ通知される。
[0045] そして、再送制御部 116によって、再送が要求されていない場合はその旨が第 3ィ ンデッタス算出部 1024へ通知され、再送が要求されている場合は再送回数が第 3ィ ンデッタス算出部 1024へ通知される。
[0046] 再送が要求されていない場合は、第 3インデックス算出部 1024によって、データ保 持部 1021に保持されているビット列を読み出して破棄するように読出部 1025に対 する指示が出され、読出部 1025によって、データ保持部 1021に保持されているビ ット列が破棄される。その後、新たな送信データが初回送信される。
[0047] 一方、再送が要求されている場合 (再送要求時)は、第 3インデックス算出部 1024 によって、前回の送信時とは異なる第 3インデックスが算出され、データ保持部 1021 に保持されているビット列が第 3インデックスの順番に読出部 1025によって読み出さ れ、送信データが再送される。
[0048] 以下では、初回送信時または再送要求時におけるインタリーバ 102によるインタリ ーブについて説明する。
[0049] 送信データは、初回送信時に誤り訂正符号ィ匕部 101によって誤り訂正符号ィ匕され 、得られたビット列がインタリーバ 102内のデータ保持部 1021へ出力される。ビット列 は、データ保持部 1021によって二次元に配置されて保持される力 このときビット列 は、図 4に実線矢印で示すように、行方向(横方向)に例えば 16ビットずつ書き込ま れる。そして、ビット列がデータ保持部 1021に書き込まれる順番は、各ビットのインデ ックスとなる。すなわち、例えば、 1行目の 1列目のビットのインデックスは「0」となり、 1 行目の 16列目のビットのインデックスは「15」となり、 2行目の 1列目のビットのインデッ タスは「16」となる。また、データ保持部 1021に同時に保持される総ビット数は、 1つ の OFDMシンボルによって伝送されるビット数に等しぐ図 4は、インデックス「0」から 「 191」の 192ビットが 1つの OFDMシンボルによって伝送される場合の例である。同 時に保持される総ビット数が増減する場合は、データ保持部 1021は、行数(図 4では 12)を増減させて保持する。
[0050] データ保持部 1021にビット列が保持されると、まず、第 1インデックス算出部 1022 によって第 1インデックスが算出される。第 1インデックスは、上述した式(1)によって 算出され、例えば図 4に示す例では式(1)は、以下の式(7)のようになる。
[0051] i=(192/16)(k mod 16)+floor(k/16) - - - (7)
k=0,l, - - -,191
式(7)〖こインデックス kを代入して第 1インデックス iを算出すれば、図 4の破線矢印 の順に第 1インデックス iが大きくなつていくことになる。つまり、 1列目力も順に列方向 に並ぶインデックス「0」、「16」、 · · ·、「175」、「191」のビットに対して、第 1インデック ス「0」、「1」、 · ' ·「190」、「191」が算出される。
[0052] 算出された第 1インデックスは、第 2インデックス算出部 1023へ出力され、次いで、 第 2インデックス算出部 1023によって第 2インデックスが算出される。第 2インデックス は、上述した式(2)によって算出され、例えば図 4に示す例では式(2)は、以下の式( 8)のようになる。
[0053] j=s X floor(i/s)+(i+192-floor(16 X i/192))mod s · · · (8)
ί=0,1,· · ·, 191
さらに、例えば IQ変調部 106における変調方式を 16QAMとすれば、図 3より s = 2 であるため、式(8)は以下の式(9)のようになる。
[0054] j=2 X floor(i/2)+(i+192-floor(16 X i/192))mod 2 · · · (9)
式(9)に第 1インデックス iを代入して第 2インデックス jを算出すれば、図 5の破線矢 印のように、偶数列において隣接する奇数行と偶数行のビットの第 2インデックスの大 小が逆転することになる。つまり、第 1インデックス「0」(インデックス「0」)、「1」(インデ ックス「1」)、 · · ·、「191」(インデックス「191」)、「190」(インデックス「175」)のビット に対して、第 2インデックス「0」、「1」、 · · ·、「190」、「191」が算出される。
[0055] 式(9)においては、 IQ変調部 106における変調方式を 16QAMとした力 16QA Mによって変調される場合、奇数行のビットは復調時に誤りにくい上位ビットとなり、 偶数行のビットは復調時に誤りやすい下位ビットとなる。そこで、第 2インデックスを算 出することにより、半数の列(偶数列)において上位ビットおよび下位ビットとなるビット が逆転し、例えば 2行目のインデックス「16」から「31」のビットが、常に 1行目のインデ ックス「0」から「15」のビットより誤りやすくなることを防止することができる。つまり、連 続したビットの誤りを防止することができる。以上のような第 2インデックスの算出まで は、初回送信時にのみ行われ、再送要求時には、初回送信時に算出された第 2イン デッタスから以下の第 3インデックスの算出のみが行われる。
[0056] 算出された第 2インデックスは、第 3インデックス算出部 1024へ出力され、次いで、 第 3インデックス算出部 1024によって第 3インデックスが算出される。第 3インデックス は、上述した式(3)によって算出され、例えば図 4に示す例では式(3)は、以下の式( 10)のようになる。
[0057] m=(((floor(16/c )-r )mod(floor(16/c ))) X c X 12+j)mod 192 - - - (10)
d p d d
r =r mod(floor 16/c )
P d
』·=0,1,· · ·, 191
さらに、例えば再送回数に応じてビット列の読み出し開始位置力 列ずつ後ろにな つていくとすれば、 c =4となるため、式(10)は以下の式(11)のようになる。
d
[0058] m=(((4-r )mod 4) X 4 X 12+j)mod 192 …(11)
P
r =r mod 4
P
ここで、初回送信が行われる場合は、再送回数 rは 0であるため、第 3インデックス m は第 2インデックス jと等しくなる。この第 3インデックス mは、読出部 1025へ出力され、 データ保持部 1021に保持されたビット列が第 3インデックス「0」のビットから順に読出 部 1025によって読み出される。すなわち、読出部 1025によって、図 6に示す開始位 置 201からビット列が破線矢印の順で読み出される。
[0059] また、 1回目の再送が行われる場合は、再送回数 rは 1であるため、第 2インデックス 「48」(インデックス「4」)のビットが第 3インデックス「0」となり、読出部 1025によって、 図 6に示す開始位置 202からビット列が破線矢印の順で読み出される。
[0060] 同様に、 2回目の再送が行われる場合は、再送回数 rは 2であるため、第 2インデッ タス「96」(インデックス「8」)のビットが第 3インデックス「0」となり、読出部 1025によつ て、図 6に示す開始位置 203からビット列が破線矢印の順で読み出される。
[0061] そして、 3回目の再送が行われる場合は、再送回数 rは 3であるため、第 2インデック ス「144」(インデックス「12」)のビットが第 3インデックス「0」となり、読出部 1025によ つて、図 6に示す開始位置 204からビット列が破線矢印の順で読み出される。
[0062] このように再送回数に応じた開始位置力 読み出されたビット列は、マッピング部 1 03へ出力され、図 6において二重枠で囲まれる 4ビットが 1つのサブキャリアにマツピ ングされる。なお、ここでは IQ変調部 106によって 16QAM変調されることとしている ため、図 6において二重枠で囲まれる 4ビットが 1シンボルとなり、同一のサブキャリア にマッピングされることになる。
[0063] したがって、初回送信時には、図 7Aに示すように、サブキャリア群 301に図 6の 1列 目力ら 4列目の 48個のビット力 Sマッピングされ、サブキャリア群 302に図 6の 5列目力 ら 8列目の 48個のビットがマッピングされ、さらに制御データ用のサブキャリア群 303 を除外してサブキャリア群 304に図 6の 9列目力ら 12列目の 48個のビットがマツピン グされ、サブキャリア群 305に図 6の 13列目力ら 16列目の 48個のビットがマッピング される。
[0064] 一方、 1回目の再送時には、図 7Bに示すように、サブキャリア群 301に図 6の 5列目 力ら 9歹 IJ目のビット力 Sマッピングされ、サブキャリア群 302に図 6の 9歹 IJ目力ら 12歹 IJ目 のビット力 Sマッピングされ、サブキャリア群 304に図 6の 13歹 IJ目力ら 16歹 IJ目のビット力 ^ マッピングされ、サブキャリア群 305に図 6の 1列目力ら 4列目のビットがマッピングさ れる。
[0065] 以下、同様に、 2回目および 3回目の再送時には、それぞれ図 7Cおよび図 7Dに示 すように、それぞれのサブキャリア群 301〜305にマッピングされるビットが異なって いる。つまり、再送回数に応じて第 3インデックスを算出することにより、同一のビットが 再送ごとに異なるサブキャリアにマッピングされることになる。このため、周波数選択 性フェージングの特性が変化しなくても、再送ごとに各ビットを伝送するサブキャリア の伝搬特性が変化し、同一のビットを伝送するサブキャリアの受信電力が常に落ち込 んでいることがなぐ再送回数の増大を防止することができる。
[0066] 各ビットがサブキャリアにマッピングされると、 IFFT部 104によって逆高速フーリエ 変換が行われ、生成された OFDMシンボルに GI揷入部 105によってガードインター バルが挿入される。ガードインターバル挿入後の OFDMシンボルは、 IQ変調部 106 によってサブキャリアごとに IQ変調され、 RF送信部 107によって所定の無線送信処 理が施された上でアンテナを介して送信される。
[0067] 以上のように、本実施の形態によれば、再送回数に応じてインタリーバに保持され たビット列の読み出しの開始位置を変更するため、同一のビットが再送ごとに異なる サブキャリアにマッピングされ、再送ごとに各ビットを伝送するサブキャリアの伝搬特 性が変化することにより、再送回数の増大を防止し、スループットの向上を図ることが できる。
[0068] なお、本実施の形態においては、インタリーバサイズとして総列数を 16とし、変調方 式が 16QAM、再送回数に応じた読み出しの開始位置候補が 4列間隔で 4力所設定 される場合について説明したが、インタリーバサイズ、変調方式、および開始位置候 補は種々変更しても実施可能である。
[0069] (実施の形態 2)
本発明の実施の形態 2の特徴は、連続する 2回の送信 (例えば 1回目の再送と 2回 目の再送)において、インタリーノ からビット列が読み出される開始位置がより大きく 異なるようにして、再送時に同一のビットがマッピングされるサブキャリアをさらに大き く離す点である。
[0070] 図 8は、本実施の形態に係るインタリーブ装置を備えた無線通信装置の構成を示 すブロック図である。同図において、図 2と同じ部分には同じ符号を付し、その説明を 省略する。図 8に示す無線通信装置は、図 2の無線通信装置に加えて再送回数変 換部 401を有している。 [0071] 再送回数変換部 401は、再送制御部 116から通知される再送回数を変換して、変 換後の再送回数を第 3インデックス算出部 1024へ出力する。具体的には、再送回数 変換部 401は、データ保持部 1021に保持されたビット列の読み出しの開始位置が 前回の送信時とはできるだけ離れるように、再送回数の変換を行う。
[0072] 本実施の形態にぉ 、ては、例えば、データ保持部 1021に保持されて 、るビット列 の総列数 cと異なる開始位置間の列間隔 cと力ら、開始位置となり得る候補数は cZc d
であるが、この候補数を X等分して開始位置候補のグループを形成し、各グループ d
の 1つの開始位置候補が順に開始位置となるように、以下の式(12)によって再送回 数 rから変換後の再送回数 r'を求める。
[0073] r,=(l/x) X (r mod(floor(c/c》+(floor(c/c )— lXr mod x)) - -- (12)
d d
実施の形態 1と同様の例では総列数 c = 16、列間隔 c =4であり、ここでは、 4力所
d
の開始位置候補(1列目、 5列目、 9列目、および 13列目)を 2等分する(すなわち x= 2)場合を考えると、式(12)より r=0ならば r, =0、 r= lならば r, = 2、 r= 2ならば r, = 1、 r= 3ならば r, = 3となる。したがって、再送回数変換部 401によって、 1回目の 再送時には再送回数が 2へ変換され、 2回目の再送時には再送回数が 1へ変換され 、実際の再送回数とは異なる再送回数が第 3インデックス算出部 1024へ出力される
[0074] そして、第 3インデックス算出部 1024によって第 3インデックスが算出される力 本 実施の形態においては、再送回数が変換されているため、初回送信時は 1列目が開 始位置となり、 1回目の再送時は 9列目が開始位置となり、 2回目の再送時は 5列目 が開始位置となり、 3回目の再送時は 13列目が開始位置となる。このため、実施の形 態 1と比べて、同一のビットがマッピングされるサブキャリアの周波数が再送ごとに大 きく離れることになり、より大きな周波数ダイバーシチ効果が得られる。
[0075] なお、式(12)にお 、ては開始位置候補を X等分して 、るため、初回送信を含めた 最初の X回の送信では、毎回異なるグループの開始位置候補が開始位置となり、こ の X回における平均の周波数ダイバーシチ効果が最大となる。したがって、過去の再 送状況などを参照して、 1つの OFDMシンボルが受信側に正しく受信されるまでに 要する平均的な再送回数力 Xを決定しても良い。つまり、正しく受信されるまでに要 する平均的な再送回数における平均の周波数ダイバーシチ効果が最大となるように Xを決定すれば良い。
[0076] 以上のように、本実施の形態によれば、同一のビットがマッピングされるサブキャリア の周波数が前回の送信時とはより大きく異なるように、再送回数を変換した上で読み 出しの開始位置を変更するため、同一のビットを伝送するサブキャリアの周波数が再 送ごとに大きく離れ、周波数ダイバーシチ効果が得られる。結果として、再送回数の 増大をさらに確実に防止することができる。
[0077] (実施の形態 3)
本発明の実施の形態 3の特徴は、インタリーバからビット列が読み出される開始位 置を周波数選択性フエージングの特性に応じて決定する点である。
[0078] 図 9は、本実施の形態に係るインタリーブ装置を備えた無線通信装置の構成を示 すブロック図である。同図において、図 2と同じ部分には同じ符号を付し、その説明を 省略する。図 9に示す無線通信装置は、図 2の無線通信装置に加えて電力測定部 5 01および開始位置決定部 502を有するとともに、図 2の第 3インデックス算出部 1024 に代えて第 3インデックス算出部 1024aを有して 、る。
[0079] 電力測定部 501は、 FFT部 111による高速フーリエ変換の過程で、サブキャリアご との電力を測定する。
[0080] 開始位置決定部 502は、サブキャリアごとの電力測定結果から、データ保持部 102 1に保持されたビット列の再送ごとの読み出しの開始位置候補を決定する。具体的に は、開始位置決定部 502は、電力が落ち込んでいるサブキャリアにマッピングされる ビットの位置を除外して開始位置候補を決定したり、電力が落ち込んでいるサブキヤ リアに重要度が高 、ビットなどの特定のビットがマッピングされな 、ように開始位置候 補を決定したりする。
[0081] また、開始位置決定部 502は、電力測定結果に基づいて、電力が低いサブキヤリ ァにマッピングされたビットは優先的に次の送信で電力が高いサブキャリアにマツピ ングされるように開始位置候補を決定しても良い。この場合、開始位置決定部 502は 、電力測定結果に基づいて、最も電力が低いサブキャリアにマッピングされたビットが 次の送信では最も電力が高!、サブキャリアにマッピングされるように開始位置候補を 決定することにより、誤り率の平均化を促進することができる。
[0082] 第 3インデックス算出部 1024aは、開始位置決定部 502によって決定された開始位 置候補から再送回数に応じて異なる開始位置を選択し、選択された開始位置に対応 する第 3インデックスを求める。すなわち、第 3インデックス算出部 1024aは、実施の 形態 1で述べた式 (3)などの特定の式に依らず、再送ごとに選択された開始位置の ビットの第 3インデックスを「0」とし、以降第 2インデックスと同様の昇順で第 3インデッ タスを求める。
[0083] 本実施の形態においては、電力測定部 501によってサブキャリアごとの電力が測定 された結果、例えば図 10Aに示すような周波数 電力特性が得られた場合、開始位 置決定部 502によって、サブキャリア 601にインデックス「0」のビットがマッピングされ るような開始位置候補およびサブキャリア 602にインデックス「0」のビットがマッピング されるような開始位置候補の 2つの開始位置候補が決定される。同様に、例えば図 1 OBに示すような周波数—電力特性が得られた場合、開始位置決定部 502によって、 サブキャリア 603〜606に対応する 4つの開始位置候補が決定される。つまり、開始 位置決定部 502は、電力の測定結果に応じて、開始位置候補および開始位置候補 の数を柔軟に決定する。
[0084] 決定された開始位置候補は、第 3インデックス算出部 1024aへ通知され、第 3イン デッタスが求められるが、本実施の形態においては、再送ごとに異なる開始位置候補 を開始位置として、開始位置のビットの第 3インデックスを「0」とする。このとき、第 3ィ ンデッタス算出部 1024aは、特定の式などに依らず、所定の順序で再送ごとに異な る開始位置候補を開始位置とする。このように特定の式などに依らず開始位置が選 択されるため、開始位置決定部 502は、互いの列間隔が不規則な開始位置候補を 決定することちできる。
[0085] また、本実施の形態においては、第 3インデックス算出部 1024aによって選択され た開始位置が受信側へ報知情報として送信される。これにより受信側は、ディンタリ ーブを正確に行うことができる。
[0086] 以上のように、本実施の形態によれば、サブキャリアごとの電力測定結果に基づい て、ビットを読み出す開始位置の候補を適応的に決定するため、同一のビットが連続 して周波数選択性フェージングの影響を受けるサブキャリアにマッピングされることを 防止することができる。結果として、再送回数の増大をさらに確実に防止することがで きる。
[0087] 本発明の第 1の態様に係るインタリーブ装置は、複数のビットからなるビット列であつ て、前記複数のビットが二次元配列される書き込み順序で書き込まれたビット列を保 持する保持手段と、保持されたビット列から前記複数のビットを前記書き込み順序と は異なる読み出し順序で読み出す読出手段と、読み出された前記複数のビットを周 波数が異なる複数のキャリアに前記読み出し順序でマッピングして送信する送信手 段と、送信された前記複数のビットに対して再送が要求される再送回数を計数する再 送制御手段と、を有し、前記読出手段は、前記読み出し順序の開始位置を再送回数 に応じて変更する構成を採る。
[0088] この構成によれば、二次元配列で保持されたビット列の読み出し順序の開始位置 を再送ごとに変更し、読み出されたビットを順次複数のキャリアにマッピングして送信 する。このため、同一のビットが再送ごとに異なるキャリアにマッピングされることになり 、再送ごとに各ビットを伝送するキャリアの伝搬特性が変化する。結果として、再送回 数の増大を防止し、スループットの向上を図ることができる。
[0089] 本発明の第 2の態様に係るインタリーブ装置は、上記第 1の態様において、前記読 出手段は、前記複数のビットそれぞれに対して、読み出す順に値が大きくなるインデ ックスを算出するインデックス算出部、を有し、前記インデックス算出部は、再送回数 ごとの開始位置にあるビットに対して最小のインデックスを算出する構成を採る。
[0090] この構成によれば、各ビットに対して、再送回数ごとの開始位置力も読み出す順に 値が大きくなるインデックスが算出されるため、インデックスに従ってビットを読み出す ことにより、確実に再送回数ごとの開始位置が変更される。また、数式を用いた演算 によって読み出し順序を決定することができる。
[0091] 本発明の第 3の態様に係るインタリーブ装置は、上記第 1の態様において、前記読 出手段は、前記二次元配列において規則的な間隔で設定された複数の開始位置候 補のうち 1つを再送回数ごとの開始位置とする構成を採る。
[0092] この構成によれば、規則的な間隔で設定された開始位置候補カゝら開始位置を選択 するため、再送回数を用いた演算により再送回数ごとの開始位置を決定することがで きる。
[0093] 本発明の第 4の態様に係るインタリーブ装置は、上記第 3の態様において、前記読 出手段は、前回の再送回数における開始位置との間に少なくとも 1つの開始位置候 補を挟んだ開始位置候補を今回の再送回数における開始位置とする構成を採る。
[0094] この構成によれば、連続する再送回数においては少なくとも 1つの開始位置候補を 挟んだ開始位置を選択するため、連続する再送回数において、同一のビットは、より 周波数が離れたキャリアにマッピングされることになり、周波数ダイバーシチ効果を得 ることがでさる。
[0095] 本発明の第 5の態様に係るインタリーブ装置は、上記第 1の態様において、前記複 数のキャリアを含むマルチキャリア信号を受信する受信手段と、受信されたマルチキ ャリア信号力 キャリアごとの電力を測定する測定手段と、測定されたキャリアごとの 電力に応じて複数の開始位置候補を決定する決定手段と、をさらに有し、前記読出 手段は、前記複数の開始位置候補のうち 1つを再送回数ごとの開始位置とする構成 を採る。
[0096] この構成によれば、キャリアごとの電力に応じて決定された開始位置候補力 再送 回数ごとの開始位置を選択するため、常に周波数選択性フェージングの特性の変化 に応じて決定された最適な開始位置力 ビットを読み出すことになり、再送回数の増 大をさらに確実に防止することができる。
[0097] 本発明の第 6の態様に係るインタリーブ装置は、上記第 5の態様において、前記決 定手段は、所定レベル以下の電力のキャリアにマッピングされるビットの前記二次元 配列における位置を除外して開始位置候補を決定する構成を採る。
[0098] この構成によれば、低電力のキャリアにマッピングされるビットの位置を除外して開 始位置候補を決定するため、すべての再送回数にぉ 、て開始位置のビットを周波数 選択性フェージングの影響を受けないキャリアにマッピングすることができる。
[0099] 本発明の第 7の態様に係るインタリーブ装置は、上記第 5の態様において、前記決 定手段は、連続する再送回数において同一のビットが所定レベル以下の電力のキヤ リアにマッピングされないための開始位置候補を決定する構成を採る。 [0100] この構成によれば、連続する 2回の送信において同一のビットが低電力のキャリア にマッピングされな 、ため、電力が低 、キャリアにマッピングされたビットは優先的に 次の送信で電力が高いキャリアにマッピングされ、再送回数の増大をさらに確実に防 止することができる。
[0101] 本発明の第 8の態様に係るインタリーブ方法は、複数のビットからなるビット列であつ て、前記複数のビットが二次元配列される書き込み順序で書き込まれたビット列を保 持する保持ステップと、保持されたビット列力 前記複数のビットを前記書き込み順序 とは異なる読み出し順序で読み出す読出ステップと、読み出された前記複数のビット を周波数が異なる複数のキャリアに前記読み出し順序でマッピングして送信する送 信ステップと、送信された前記複数のビットに対して再送が要求される再送回数を計 数する再送制御ステップと、を有し、前記読出ステップは、前記読み出し順序の開始 位置を再送回数に応じて変更するようにした。
[0102] この方法によれば、二次元配列で保持されたビット列の読み出し順序の開始位置 を再送ごとに変更し、読み出されたビットを順次複数のキャリアにマッピングして送信 する。このため、同一のビットが再送ごとに異なるキャリアにマッピングされることになり 、再送ごとに各ビットを伝送するキャリアの伝搬特性が変化する。結果として、再送回 数の増大を防止し、スループットの向上を図ることができる。
[0103] 本明細書は、 2004年 12月 21日出願の特願 2004— 369683に基づく。この内容 はすべてここに含めておく。
産業上の利用可能性
[0104] 本発明のインタリーブ装置およびインタリーブ方法は、再送回数の増大を防止し、 スループットの向上を図ることができ、例えば互いに周波数が異なる複数のキャリア によってマルチキャリア伝送されるデータをインタリーブするインタリーブ装置および インタリーブ方法として有用である。

Claims

請求の範囲
[1] 複数のビットからなるビット列であって、前記複数のビットが二次元配列される書き 込み順序で書き込まれたビット列を保持する保持手段と、
保持されたビット列力 前記複数のビットを前記書き込み順序とは異なる読み出し 順序で読み出す読出手段と、
読み出された前記複数のビットを周波数が異なる複数のキャリアに前記読み出し順 序でマッピングして送信する送信手段と、
送信された前記複数のビットに対して再送が要求される再送回数を計数する再送 制御手段と、を有し、
前記読出手段は、
前記読み出し順序の開始位置を再送回数に応じて変更するインタリーブ装置。
[2] 前記読出手段は、
前記複数のビットそれぞれに対して、読み出す順に値が大きくなるインデックスを算 出するインデックス算出部、を有し、
前記インデックス算出部は、
再送回数ごとの開始位置にあるビットに対して最小のインデックスを算出する請求 項 1記載のインタリーブ装置。
[3] 前記読出手段は、
前記二次元配列において規則的な間隔で設定された複数の開始位置候補のうち 1つを再送回数ごとの開始位置とする請求項 1記載のインタリーブ装置。
[4] 前記読出手段は、
前回の再送回数における開始位置との間に少なくとも 1つの開始位置候補を挟ん だ開始位置候補を今回の再送回数における開始位置とする請求項 3記載のインタリ ーブ装置。
[5] 前記複数のキャリアを含むマルチキャリア信号を受信する受信手段と、
受信されたマルチキャリア信号力 キャリアごとの電力を測定する測定手段と、 測定されたキャリアごとの電力に応じて複数の開始位置候補を決定する決定手段と 、をさらに有し、 前記読出手段は、
前記複数の開始位置候補のうち 1つを再送回数ごとの開始位置とする請求項 1記 載のインタリーブ装置。
[6] 前記決定手段は、
所定レベル以下の電力のキャリアにマッピングされるビットの前記二次元配列にお ける位置を除外して開始位置候補を決定する請求項 5記載のインタリーブ装置。
[7] 前記決定手段は、
連続する再送回数において同一のビットが所定レベル以下の電力のキャリアにマツ ビングされないための開始位置候補を決定する請求項 5記載のインタリーブ装置。
[8] 複数のビットからなるビット列であって、前記複数のビットが二次元配列される書き 込み順序で書き込まれたビット列を保持する保持ステップと、
保持されたビット列力 前記複数のビットを前記書き込み順序とは異なる読み出し 順序で読み出す読出ステップと、
読み出された前記複数のビットを周波数が異なる複数のキャリアに前記読み出し順 序でマッピングして送信する送信ステップと、
送信された前記複数のビットに対して再送が要求される再送回数を計数する再送 制御ステップと、を有し、
前記読出ステップは、
前記読み出し順序の開始位置を再送回数に応じて変更するインタリーブ方法。
PCT/JP2005/022570 2004-12-21 2005-12-08 インタリーブ装置およびインタリーブ方法 WO2006067972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200580042485XA CN101076960B (zh) 2004-12-21 2005-12-08 交织装置和交织方法
EP05814623.4A EP1819079B1 (en) 2004-12-21 2005-12-08 Interleave apparatus and interleave method
US11/722,144 US7969957B2 (en) 2004-12-21 2005-12-08 Interleave apparatus and interleave method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-369683 2004-12-21
JP2004369683A JP4624095B2 (ja) 2004-12-21 2004-12-21 インタリーブ装置およびインタリーブ方法

Publications (1)

Publication Number Publication Date
WO2006067972A1 true WO2006067972A1 (ja) 2006-06-29

Family

ID=36601574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022570 WO2006067972A1 (ja) 2004-12-21 2005-12-08 インタリーブ装置およびインタリーブ方法

Country Status (5)

Country Link
US (1) US7969957B2 (ja)
EP (1) EP1819079B1 (ja)
JP (1) JP4624095B2 (ja)
CN (1) CN101076960B (ja)
WO (1) WO2006067972A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785223A (zh) * 2007-07-30 2010-07-21 京瓷株式会社 Ofdm发送装置和ofdm接收装置及交织方法
JP2010541460A (ja) * 2007-10-04 2010-12-24 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるデータインターリービング方法及び装置
CN101335691B (zh) * 2007-06-28 2012-09-12 华为技术有限公司 一种数据传输方法、交织器和通信装置
US9712279B2 (en) 2007-10-04 2017-07-18 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
US11533128B2 (en) 2017-01-09 2022-12-20 Qualcomm Incorporated Rate-matching scheme for control channels using polar codes

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816776A1 (en) * 2006-02-07 2007-08-08 Alcatel Lucent Device and method for mitigating effects of impulse noise on data packet transfer
KR101350603B1 (ko) * 2007-03-21 2014-01-16 삼성전자주식회사 이동 통신시스템에서 부호 생성 장치 및 방법
JP5106193B2 (ja) * 2007-03-23 2012-12-26 パナソニック株式会社 無線送信装置
JP2009033623A (ja) * 2007-07-30 2009-02-12 Kyocera Corp Ofdm送信装置及びofdm受信装置並びにインターリーブ方法
KR101492566B1 (ko) * 2008-03-26 2015-02-12 삼성전자주식회사 광대역 무선통신 시스템에서 복합 자동 재전송 요청을지원하기 위한 장치 및 방법
CN101594212B (zh) * 2008-05-30 2012-11-07 上海贝尔阿尔卡特股份有限公司 通信***中采用交织规则重排的数据重传方法及其装置
CN101729191B (zh) * 2008-10-27 2013-08-07 华为技术有限公司 一种比特数据处理的方法和装置
CN102379110B (zh) * 2009-03-31 2015-04-29 法国电信公司 将数据码元映射到子信道中的方法和模块、发射机和***
US8514797B2 (en) * 2010-08-03 2013-08-20 Qualcomm Incorporated Dynamic bit allocation for communication networks subject to burst interference
WO2012063754A1 (ja) 2010-11-09 2012-05-18 シャープ株式会社 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
CA2972643C (en) 2014-03-21 2020-05-26 Huawei Technologies Co., Ltd. Polar code rate matching method and apparatus
RU2691885C2 (ru) * 2014-03-24 2019-06-18 Хуавэй Текнолоджиз Ко., Лтд. Способ согласования скорости полярного кода и устройство согласования скорости полярного кода
KR101558172B1 (ko) * 2014-10-14 2015-10-08 숭실대학교산학협력단 오류 분산을 위한 인터리빙 방법 및 장치, 이를 수행하기 위한 기록매체
JP2019106564A (ja) * 2016-04-19 2019-06-27 シャープ株式会社 送信装置および受信装置
CN105959082B (zh) * 2016-04-22 2019-01-25 东南大学 基于多进制编码与高阶调制的联合编码调制方法、装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1124344A1 (en) 1999-08-20 2001-08-16 Matsushita Electric Industrial Co., Ltd. Ofdm communication device
WO2003013046A1 (en) 2001-07-27 2003-02-13 Soma Networks, Inc. Method, system and apparatus for transmitting interleaved data between stations
JP2003283460A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd マルチキャリア送信装置およびマルチキャリア送信方法
JP2003309535A (ja) * 2002-04-12 2003-10-31 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、マルチキャリア受信装置及びマルチキャリア送信方法
JP2004112471A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
US20040199846A1 (en) 2002-04-12 2004-10-07 Atsushi Matsumoto Multicarrier communication apparatus and multicarrier communication method
WO2004088853A1 (ja) 2003-03-28 2004-10-14 Matsushita Electric Industrial Co., Ltd. 無線送信装置、無線受信装置及び無線送信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602875A (en) * 1995-01-13 1997-02-11 Motorola, Inc. Method and apparatus for encoding and decoding information in a digtial communication system
JP2000124816A (ja) * 1998-10-14 2000-04-28 Oki Electric Ind Co Ltd 符号化インタリーブ装置
JP2001332980A (ja) * 2000-05-19 2001-11-30 Sony Corp インタリーブ装置及びインタリーブ方法
US7170849B1 (en) * 2001-03-19 2007-01-30 Cisco Systems Wireless Networking (Australia) Pty Limited Interleaver, deinterleaver, interleaving method, and deinterleaving method for OFDM data
JP2002288036A (ja) * 2001-03-27 2002-10-04 Nec Corp メモリ読出し回路およびice
JP3931100B2 (ja) * 2002-03-12 2007-06-13 株式会社日立コミュニケーションテクノロジー ターボ復号器並びにターボ符号器及びターボ符号器、復号器を含む無線基地局
JP4115784B2 (ja) * 2002-09-11 2008-07-09 三菱電機株式会社 再送制御方法および通信装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1124344A1 (en) 1999-08-20 2001-08-16 Matsushita Electric Industrial Co., Ltd. Ofdm communication device
WO2003013046A1 (en) 2001-07-27 2003-02-13 Soma Networks, Inc. Method, system and apparatus for transmitting interleaved data between stations
JP2004537238A (ja) * 2001-07-27 2004-12-09 ソマ ネットワークス インコーポレイテッド インターリーブされたデータを局間で伝送する方法、システム、及び装置
JP2003283460A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd マルチキャリア送信装置およびマルチキャリア送信方法
JP2003309535A (ja) * 2002-04-12 2003-10-31 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、マルチキャリア受信装置及びマルチキャリア送信方法
US20040199846A1 (en) 2002-04-12 2004-10-07 Atsushi Matsumoto Multicarrier communication apparatus and multicarrier communication method
JP2004112471A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
WO2004088853A1 (ja) 2003-03-28 2004-10-14 Matsushita Electric Industrial Co., Ltd. 無線送信装置、無線受信装置及び無線送信方法
JP2004304268A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1819079A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335691B (zh) * 2007-06-28 2012-09-12 华为技术有限公司 一种数据传输方法、交织器和通信装置
CN101785223A (zh) * 2007-07-30 2010-07-21 京瓷株式会社 Ofdm发送装置和ofdm接收装置及交织方法
JP2010541460A (ja) * 2007-10-04 2010-12-24 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるデータインターリービング方法及び装置
US8266500B2 (en) 2007-10-04 2012-09-11 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
US8522112B2 (en) 2007-10-04 2013-08-27 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
US8856612B2 (en) 2007-10-04 2014-10-07 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
US9712279B2 (en) 2007-10-04 2017-07-18 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
US11533128B2 (en) 2017-01-09 2022-12-20 Qualcomm Incorporated Rate-matching scheme for control channels using polar codes

Also Published As

Publication number Publication date
EP1819079A1 (en) 2007-08-15
US20090092118A1 (en) 2009-04-09
EP1819079A4 (en) 2012-05-02
CN101076960B (zh) 2012-07-18
JP4624095B2 (ja) 2011-02-02
JP2006180092A (ja) 2006-07-06
EP1819079B1 (en) 2013-07-24
US7969957B2 (en) 2011-06-28
CN101076960A (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
WO2006067972A1 (ja) インタリーブ装置およびインタリーブ方法
US10148394B2 (en) Methods and apparatus for mapping modulation symbols to resources in OFDM systems
US7986741B2 (en) Method and apparatus of improved circular buffer rate matching for turbo-coded MIMO-OFDM wireless systems
US11916818B2 (en) Transmitter and method for transmitting data block in wireless communication system
CN113824532B (zh) 发送数据帧的方法、接收数据帧的方法及通信装置
US8599696B2 (en) Method of processing adaptive hybrid automatic repeat request (HARQ) scheme by selecting a start point of data block in a mother code
JP2007329592A (ja) インタリーブ装置及び通信装置
CN115769521A (zh) 使用预测误差值映射比特位置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580042485.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11722144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005814623

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814623

Country of ref document: EP