WO2006059466A1 - Rectified flow restricting device - Google Patents

Rectified flow restricting device Download PDF

Info

Publication number
WO2006059466A1
WO2006059466A1 PCT/JP2005/020508 JP2005020508W WO2006059466A1 WO 2006059466 A1 WO2006059466 A1 WO 2006059466A1 JP 2005020508 W JP2005020508 W JP 2005020508W WO 2006059466 A1 WO2006059466 A1 WO 2006059466A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
hole
flow path
inlet
outlet
Prior art date
Application number
PCT/JP2005/020508
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Chinda
Original Assignee
Fujikura Rubber Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Rubber Ltd. filed Critical Fujikura Rubber Ltd.
Priority to JP2006547714A priority Critical patent/JPWO2006059466A1/en
Publication of WO2006059466A1 publication Critical patent/WO2006059466A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Definitions

  • the present invention relates to a rectifying and restricting device for restricting a flow path.
  • Orifices have been generally used as a throttling device used in various applications.
  • an orifice that narrows the flow path with a short flow path generates indefinite undulations, shock waves, boundary layer separation point fluctuations, stagnation, etc., and so the pressure fluctuation of the outlet side pressure (secondary pressure) is large. There was a problem.
  • a fine tube has been used as a throttling device that can reduce pressure fluctuation on the secondary side and rectify the pressure.
  • the laminar flow channel can be made long and the flow distribution can be made uniform, so that the pressure fluctuation on the secondary side can be reduced.
  • there is a limit to the length of the micropipe and manufacturing costs that are difficult to miniaturize are high.
  • An object of the present invention is to provide a rectifying and throttle device that can easily form a long laminar flow channel regardless of a fine pipe.
  • the present invention has been made based on the viewpoint that a long laminar flow channel is obtained by stacking a plurality of plate members, regardless of the fine tube.
  • the rectifying and restricting device of the present invention includes an inlet plate having an air inlet hole; an outlet plate having an air outlet hole; and a plurality of spacers stacked alternately between the inlet plate and the outlet plate.
  • the intermediate flow path plate and the intermediate flow path plate, and the intermediate flow path plate and the spacer plate extend along the surface of the intermediate flow path plate between the inlet hole of the inlet plate and the outlet hole of the outlet plate. It is characterized by having a channel hole that forms a bent channel.
  • the inlet hole of the inlet plate can be positioned at different planar positions.
  • the intermediate flow path plate is provided with a pair of independent flow path holes positioned at the same plane position as the inlet hole of the inlet plate and the outlet hole of the outlet plate.
  • a channel hole for communicating the pair of independent channel holes can be provided.
  • the intermediate channel plate has a first intermediate channel plate having a channel hole at the same plane position as the inlet hole of the inlet plate, and a channel hole at the same plane position as the outlet hole of the outlet plate.
  • a second intermediate flow path plate is prepared, and the spacer plate is provided with a flow path hole for communicating the flow path hole of the first intermediate plate and the flow path hole of the second intermediate flow path plate.
  • the second intermediate flow path plates can be stacked alternately with the spacer plate in between.
  • the inlet hole of the inlet plate and the outlet hole of the outlet plate may be located at the same planar position.
  • the channel hole is formed so as to reach the outlet hole through the curved channel along the surfaces of the intermediate channel plate and the spacer plate.
  • a bridge portion is formed in the direction connecting the inlet hole of the inlet plate and the outlet hole of the outlet plate in a plan view to prevent deformation of the flow channel. Can do.
  • the inlet plate and the outlet plate can be used in the same shape, with the phase changed (inverted 180 °). Furthermore, the plurality of intermediate flow path plates stacked can also have the same shape.
  • the thickness of the intermediate flow path plate and the spacer plate, the inlet hole of the inlet plate, the outlet hole of the outlet plate, the maximum diameter of the flow path holes of the intermediate flow channel plate and the spacer plate, The number of spacer plates can be determined according to the application and specifications of the diaphragm unit.
  • the rectifying and throttle device according to the present invention can be used for various applications. For example, it can be used in combination with a differential pressure flow meter, an electropneumatic conversion type regulator, an air panel, a pressure vessel, and the like.
  • FIG. 1 and FIG. 2 show a first embodiment of a rectifying and throttle device according to the present invention.
  • the rectifying and drawing device 100 is configured by laminating four types (three types) of external circular plates.
  • the four types of circular plates are an inlet plate 111, an outlet plate 112, an intermediate flow path plate 113, and a spacer plate 114.
  • Each of the inlet plate 111 and the outlet plate 112 has an inlet hole 111a and an outlet hole 112a at their eccentric positions, and the planar positions of the inlet hole 11la and the outlet hole 112a are different (but the inlet hole 111a and The outlet hole 112a is in a rotationally symmetric position, and the inlet plate 111 and the outlet plate 112 can use the same shape plate material).
  • the intermediate flow path plate 113 is provided with a pair of independent flow path holes 113a and 113b in the same plane position as the inlet hole 111a and the outlet hole 112a.
  • the spacer plate 114 is provided with the flow path holes 113a and 113b. Is provided with a channel hole (horizontally long (oval) channel hole) 114a. In this flow path hole 114a, as shown by a chain line in FIG. 1, a single slit extending in the direction connecting the flow path holes 113a and 113b and a plurality of bridging portions 114b are formed to change the flow gap (deformation). ) Can prevent power S.
  • the inlet plate 111, the spacer plate 114, the intermediate flow path plate 113, and the outlet plate 112 are formed by alternately laminating the spacer plate 114 and the intermediate flow path plate 113 on the inlet plate 111, and finally.
  • the outlet plate 112 is stacked on the spacer plate 114.
  • the phase (planar position) of the inlet hole 111a, the channel hole 113a, and the channel hole 114a are matched, and the phase (plane position) of the outlet hole 112a, the channel hole 113b, and the channel hole 114a are matched,
  • the laminated part is bonded to form a bent flow path and completed.
  • the bent flow path is a flow path from the inlet hole 11 la through the plurality of flow path holes 113a (flow path holes 114a) to the flow path hole 113b through the outlet plate 112 and the intermediate flow path plate 113, and the inlet hole 111a. From the inlet plate 111 and the intermediate flow path plate 113 to the flow path hole 113b, between the inlet hole 111a and the adjacent intermediate flow path plate 113 (the flow path hole 114a of the spacer plate 114) ) To the passage hole 113b, and the passage hole 113b communicates with the outlet hole 112a. For these channels, the plate thickness and channel hole size are set so that the channel cross-sectional area does not change.
  • the bridging portion 114b in the channel hole 1 14a can also be used for the purpose of minimizing the change in the channel cross-sectional area.
  • the outlet plate 112 is protruded from the inlet hole 111a of the inlet plate 111.
  • a sufficiently long channel (laminar channel) reaching the hole 112a can be secured. That is, uncertain vortex, shock wave, boundary layer separation point fluctuation, stagnation, etc. can be suppressed.
  • the inlet plate 111, the outlet plate 112, the intermediate flow path plate 113, and the spacer plate 114 have a flat circular shape, and the hole shape of each plate has an oval shape. However, these flat shapes have a degree of freedom. is there.
  • Each plate can be formed of a metal plate, a resin plate, a ceramic plate, a rubber plate, or the like.
  • FIG. 3 shows another embodiment of a rectifying and throttle device according to the present invention.
  • the rectifying and drawing device 100A of this embodiment is composed of only three types (two types) of plate materials.
  • the inlet plate 111, the outlet plate 112, and the spacer plate 114 are the same as in the first embodiment, and the first intermediate channel plate 111A and the second intermediate channel plate 112A are the inlet plate 111 and the outlet. It has the same shape as the plate 112, and has channel holes ll lAa and 112Aa, respectively.
  • This rectifying and restricting device 100A includes a spacer plate 114, a second intermediate flow path plate 112A, a spacer plate 114, a first intermediate flow path plate 111A, and a spacer plate 114 on an inlet plate 111.
  • the second intermediate flow path plate 112A is alternately stacked, and the outlet plate 112 is stacked on the spacer plate 114.
  • the inlet hole 11 la and the channel hole 11 lAa, the outlet hole 112a and the channel hole 112Aa are respectively in the same position in a plane, and the plane positions of the inlet hole 11 la and the outlet hole 112a are different.
  • the bent flow path is formed in a zigzag shape in the order of the inlet hole l l la, the flow path hole 112Aa, and the flow path hole l l lAa, and finally reaches the outlet hole 112a.
  • the phase (planar position) of the outlet hole 112a may coincide with the inlet hole 111a.
  • the cross-sectional area of the flow path depends on the thickness of the intermediate flow path plate 113 and the spacer plate 114 and the diameters of the flow path holes 113a and 113b and the flow path hole 114a.
  • the thickness depends on the thicknesses of the first and second intermediate flow path plates 111A and 1128 and the spacer plate 114 and the diameters of the flow path holes 1118 &, 112Aa and the flow path hole 114a.
  • the rectifying and throttle device 100 (100A) of the present invention can be used for various applications, and the applications are not limited. An example is shown below in Figure 4.
  • Figure 4 shows the principle applied to the differential pressure flow meter.
  • the inlet hole 11 la of the flow straightening device 100 (100A) is connected to the compressed air source 20 and detects the differential pressure between the inlet hole 11 la side (primary side) and the outlet hole 112a (secondary side).
  • a pressure sensor (differential pressure detecting means) 21 is provided.
  • an absolute pressure sensor (absolute pressure detecting means) 22 for detecting the absolute pressure of the outlet hole 112a is provided.
  • the arithmetic circuit 22a integrates the differential pressure detected by the differential pressure sensor 21 and the absolute pressure detected by the absolute pressure sensor 22, and calculates the flow rate at the outlet hole.
  • FIG. 5 shows an example in which the rectifying throttle device 100 (100A) of the present invention is combined with the electropneumatic conversion air regulator 23 so that a more accurate secondary pressure can be taken out.
  • the electropneumatic conversion air regulator 23 is connected to the compressed air source 20 and can take out a constant secondary pressure regardless of the pressure of the compressed air source 20.
  • the analog input signal electrical input amount
  • the secondary pressure taken out changes.
  • the extraction pressure of the electropneumatic conversion air regulator 23 is input to the inlet hole 11 la of the rectifying throttle device 100 (100A), and the differential pressure between the inlet hole 11 la and the outlet hole 112a is calculated by the differential pressure sensor 21. To detect.
  • the differential pressure signal proportional to the flow rate is calculated by the calculation circuit 22a and fed back to the input signal of the electropneumatic conversion air regulator 23.
  • the conventional electropneumatic conversion air regulator 23 it is possible to construct a more responsive air control system by monitoring the force that feeds back only the pressure signal and the flow rate signal.
  • FIG. 6 shows an example in which a rectifying and throttle device 100 (100A) of the present invention is interposed between an air spring 24 for vibration isolation and an air tank (accumulator) 25 to obtain stable damping performance. It is. Conventionally, by connecting the air panel 24 and the air tank 25 through an orifice (orifice), when vibration occurs, the air is moved back and forth between the air panel 24 and the air tank 25 to add attenuation and resonate. The technology to suppress the peak is known. By replacing the diaphragm of such a vibration damping device with the rectifying diaphragm device 100 (100A) of the present invention, a more excellent damping performance can be obtained.
  • FIG. 7 shows a pressure rectifier / throttle device 100 (100A) according to the present invention attached to a pressure vessel (air tank) 26. This is an example of connection.
  • the compressed air in the pressure vessel 26 is taken out through the rectifying and throttle device 100 (100A).
  • a stable laminar air can be taken out.
  • FIG. 8 shows a pressure vessel (air tank) 27, a rectifier throttle device 100 (100A) for detecting the inflow / outflow in addition to the rectifier throttle device 100 (100A) for extraction shown in FIG. 7 (left side of the figure). This is an example of connecting (right side of the figure).
  • the outlet hole 112a of the flow control device 100 (100A) for detecting the inflow / outflow flow rate is closed, and the differential pressure sensor 28 that detects the differential pressure between the inlet hole 111a and the outlet hole 112a and the absolute pressure at the outlet hole 112a
  • An absolute pressure detection sensor 29 for detection is provided.
  • this pressure container by integrating the differential pressure detected by the differential pressure sensor 28 and the absolute pressure detected by the absolute pressure detection sensor 29, the flow rate of the compressed air flowing into and out of the pressure vessel 27 can be detected. it can.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of a rectifying and throttle device according to the present invention, in which plane shapes of respective plates are drawn together.
  • FIG. 2 is an exploded perspective view of the rectifying and throttle device shown in FIG.
  • FIG. 3 is a cross-sectional view including another plan view corresponding to FIG. 1, showing another embodiment of the present invention.
  • FIG. 4 is a block diagram showing an example of a differential pressure flow meter using a rectifying and throttle device according to the present invention.
  • FIG. 5 is a block diagram showing an example in which the rectifying and throttle device according to the present invention is combined with an air regulator.
  • FIG. 6 is a block diagram showing an example in which the rectifying and throttle device according to the present invention is combined with an air panel device.
  • FIG. 7 is a block diagram showing an example in which the flow straightening device according to the present invention is combined with a pressure vessel.
  • FIG. 8 is a block diagram showing another example in which the flow straightening device according to the present invention is combined with a pressure vessel.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Air-Flow Control Members (AREA)

Abstract

[PROBLEMS] To provide a rectified flow restricting device capable of easily forming a long laminar-flow channel without resorting to a minute tube. [MEAS FOR SOLVING PROBLEMS] A rectified flow restricting device comprising an inlet plate having an inlet air hole; an outlet plate having an outlet air hole; and a plurality of spacer plates and intermediate flow channel plates alternately superposed one above another between the inlet plate and the outlet plate. The intermediate flow channel plates each have a pair of flow channel holes corresponding to the inlet hole and outlet hole, while the spacer plates each have a single flow channel hole leading to the pair of flow channel holes in the intermediate flow channel plate, and a bent flow channel extending along the surface of the intermediate flow channel plate is formed between the inlet hole in the inlet plate and the outlet hole in the outlet plate.

Description

明 細 書  Specification
整流絞り装置  Rectification diaphragm device
技術分野  Technical field
[0001] 本発明は、流路を絞る整流絞り装置に関する。  [0001] The present invention relates to a rectifying and restricting device for restricting a flow path.
背景技術  Background art
[0002] 各種の用途に用いられている絞り装置は、従来一般にオリフィスが用いられていた 。し力 ながら、単に短い流路で流路を絞るオリフィスは、不確定うず、衝撃波、境界 層剥離ポイント変動、よどみなどが発生するため、出口側圧力(二次圧力)の圧力変 動が大きいという問題があった。  [0002] Orifices have been generally used as a throttling device used in various applications. However, an orifice that narrows the flow path with a short flow path generates indefinite undulations, shock waves, boundary layer separation point fluctuations, stagnation, etc., and so the pressure fluctuation of the outlet side pressure (secondary pressure) is large. There was a problem.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 二次側の圧力変動を小さくし整流化することができる絞り装置として従来、微細管 が用いられていた。十分長い微細管によれば、層流流路を長くとることができ、流量 分布を均一化することができるため、二次側の圧力変動を小さくすることができる。し 力 ながら、微細管の長さには限度があり、小型化が難しぐ製造コストが高い。  [0003] Conventionally, a fine tube has been used as a throttling device that can reduce pressure fluctuation on the secondary side and rectify the pressure. With a sufficiently long micropipe, the laminar flow channel can be made long and the flow distribution can be made uniform, so that the pressure fluctuation on the secondary side can be reduced. However, there is a limit to the length of the micropipe, and manufacturing costs that are difficult to miniaturize are high.
[0004] 本発明は、微細管によらず、簡単に長い層流流路を形成することができる整流絞り 装置を得ることを目的とする。  [0004] An object of the present invention is to provide a rectifying and throttle device that can easily form a long laminar flow channel regardless of a fine pipe.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、微細管によらず、複数の板材を重ねることで長い層流流路を得るという 着眼に基づレ、てなされたものである。  [0005] The present invention has been made based on the viewpoint that a long laminar flow channel is obtained by stacking a plurality of plate members, regardless of the fine tube.
[0006] すなわち本発明の整流絞り装置は、空気の入口穴を有する入口板;空気の出口穴 を有する出口板;及びこの入口板と出口板との間に交互に積層された複数のスぺー サ板と中間流路板;を有しており、この中間流路板とスぺーサ板は、入口板の入口穴 と出口板の出口穴との間に該中間流路板の表面に沿う曲折流路を形成する流路穴 を備えてレ、ることを特徴としてレ、る。  [0006] That is, the rectifying and restricting device of the present invention includes an inlet plate having an air inlet hole; an outlet plate having an air outlet hole; and a plurality of spacers stacked alternately between the inlet plate and the outlet plate. The intermediate flow path plate and the intermediate flow path plate, and the intermediate flow path plate and the spacer plate extend along the surface of the intermediate flow path plate between the inlet hole of the inlet plate and the outlet hole of the outlet plate. It is characterized by having a channel hole that forms a bent channel.
[0007] 入口板の入口穴、出口板の出口穴、及びスぺーサ板と中間流路板の流路穴の設 置態様には大きい自由度がある。 [0008] それらの一例を挙げると、入口板の入口穴と出口板の出口穴は、異なる平面位置 に位置させること力 Sできる。 [0007] There is a great degree of freedom in the arrangement of the inlet hole of the inlet plate, the outlet hole of the outlet plate, and the channel holes of the spacer plate and the intermediate channel plate. [0008] For example, the inlet hole of the inlet plate and the outlet hole of the outlet plate can be positioned at different planar positions.
[0009] 中間流路板には、入口板の入口穴と出口板の出口穴と同じ平面位置に位置する 一対の独立した流路穴を設け、スぺーサ板には、中間流路板のこの一対の独立した 流路穴を連通させる流路穴を設けることができる。 [0009] The intermediate flow path plate is provided with a pair of independent flow path holes positioned at the same plane position as the inlet hole of the inlet plate and the outlet hole of the outlet plate. A channel hole for communicating the pair of independent channel holes can be provided.
[0010] あるいは、中間流路板には、入口板の入口穴と同じ平面位置に流路穴を有する第 一中間流路板と、出口板の出口穴と同じ平面位置に流路穴を有する第二の中間流 路板とを用意し、スぺーサ板には、第一中間板の流路穴と第二中間流路板の流路穴 を連通させる流路穴を設け、この第一、第二の中間流路板をスぺーサ板を挟んで交 互に積層することができる。 [0010] Alternatively, the intermediate channel plate has a first intermediate channel plate having a channel hole at the same plane position as the inlet hole of the inlet plate, and a channel hole at the same plane position as the outlet hole of the outlet plate. A second intermediate flow path plate is prepared, and the spacer plate is provided with a flow path hole for communicating the flow path hole of the first intermediate plate and the flow path hole of the second intermediate flow path plate. The second intermediate flow path plates can be stacked alternately with the spacer plate in between.
[0011] この第一、第二の中間流路板を用いる態様では、入口板の入口穴と出口板の出口 穴とは、同じ平面位置に位置させてもよい。  [0011] In the embodiment using the first and second intermediate flow path plates, the inlet hole of the inlet plate and the outlet hole of the outlet plate may be located at the same planar position.
[0012] いずれの態様でも、入口穴から入った空気のすべてが直接出口穴に至ることがなく [0012] In any of the embodiments, all of the air entering from the inlet hole does not directly reach the outlet hole.
、中間流路板とスぺーサ板の表面に沿う曲折流路を経て出口穴に至るように、流路 穴を形成する。 Then, the channel hole is formed so as to reach the outlet hole through the curved channel along the surfaces of the intermediate channel plate and the spacer plate.
[0013] スぺーサ板の流路穴内には、平面的に見て、入口板の入口穴と出口板の出口穴を 結ぶ方向に向く橋絡部を形成し流路の変形防止を図ることができる。  [0013] In the flow path hole of the spacer plate, a bridge portion is formed in the direction connecting the inlet hole of the inlet plate and the outlet hole of the outlet plate in a plan view to prevent deformation of the flow channel. Can do.
[0014] 別の視点は、板材の種類を減らし製造コストを下げる点にある。入口板と出口板は 同一形状とし、位相を変えて(180°反転させて)用いることができる。さらには、積層 された複数の中間流路板も同一形状とすることができる。 [0014] Another viewpoint is to reduce the production cost by reducing the types of plate materials. The inlet plate and the outlet plate can be used in the same shape, with the phase changed (inverted 180 °). Furthermore, the plurality of intermediate flow path plates stacked can also have the same shape.
[0015] 中間流路板及びスぺーサ板の厚さ、入口板の入口穴、出口板の出口穴、中間流 路板及びスぺーサ板の流路穴の最大径、中間流路板とスぺーサ板の枚数は、絞り 装置の用途、仕様に応じて定めることができる。 [0015] The thickness of the intermediate flow path plate and the spacer plate, the inlet hole of the inlet plate, the outlet hole of the outlet plate, the maximum diameter of the flow path holes of the intermediate flow channel plate and the spacer plate, The number of spacer plates can be determined according to the application and specifications of the diaphragm unit.
[0016] 本発明による整流絞り装置は、各種の用途に用いることができる。例えば、差圧流 量計、電空変換式レギユレータ、空気パネ、圧力容器等と組み合わせて用いることが できる。 The rectifying and throttle device according to the present invention can be used for various applications. For example, it can be used in combination with a differential pressure flow meter, an electropneumatic conversion type regulator, an air panel, a pressure vessel, and the like.
発明の効果  The invention's effect
[0017] 本発明によれば、微細管によらず、簡単に長い層流流路を形成することができる整 流絞り装置を得ることができる。 [0017] According to the present invention, it is possible to easily form a long laminar flow channel regardless of the fine tube. A flow restrictor can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 図 1及び図 2は、本発明による整流絞り装置の第一の実施形態を示している。この 実施形態では、 4種類(3種類)の外形円形板材を積層して整流絞り装置 100が構成 されている。 4種類の円形板材は、入口板 111、出口板 112、中間流路板 113及び スぺーサ板 114である。入口板 111と出口板 112はそれぞれ、その偏心位置に入口 穴 111aと出口穴 112aを有しており、入口穴 11 laと出口穴 112aの平面位置は異な つている(しかし、入口穴 111 aと出口穴 112aは回転対称位置にあり、入口板 111と 出口板 112は同一形状の板材を用いることができる)。中間流路板 113は、入口穴 1 11aと出口穴 112aと同じ平面位置に独立した一対の流路穴 113aと 1 13bを備えて おり、スぺーサ板 114は、この流路穴 113aと 113bを連通させる流路穴 (横長(小判 状)流路穴) 114aを備えている。この流路穴 114aには、図 1に鎖線で示すように、流 路穴 113aと 113bを結ぶ方向に延びる 1なレ、し複数の橋絡部 114bを形成して流路 すきまの変化 (変形)を防ぐこと力 Sできる。  FIG. 1 and FIG. 2 show a first embodiment of a rectifying and throttle device according to the present invention. In this embodiment, the rectifying and drawing device 100 is configured by laminating four types (three types) of external circular plates. The four types of circular plates are an inlet plate 111, an outlet plate 112, an intermediate flow path plate 113, and a spacer plate 114. Each of the inlet plate 111 and the outlet plate 112 has an inlet hole 111a and an outlet hole 112a at their eccentric positions, and the planar positions of the inlet hole 11la and the outlet hole 112a are different (but the inlet hole 111a and The outlet hole 112a is in a rotationally symmetric position, and the inlet plate 111 and the outlet plate 112 can use the same shape plate material). The intermediate flow path plate 113 is provided with a pair of independent flow path holes 113a and 113b in the same plane position as the inlet hole 111a and the outlet hole 112a. The spacer plate 114 is provided with the flow path holes 113a and 113b. Is provided with a channel hole (horizontally long (oval) channel hole) 114a. In this flow path hole 114a, as shown by a chain line in FIG. 1, a single slit extending in the direction connecting the flow path holes 113a and 113b and a plurality of bridging portions 114b are formed to change the flow gap (deformation). ) Can prevent power S.
[0019] これらの入口板 111、スぺーサ板 114、中間流路板 113及び出口板 112は、入口 板 111上にスぺーサ板 114と中間流路板 113を交互に積層配置し、最後にスぺー サ板 114上に出口板 112を積層配置する。このとき、入口穴 111aと流路穴 113a及 び流路穴 114aの位相(平面位置)を一致させ、出口穴 112aと流路穴 113b及び流 路穴 114aの位相(平面位置)を一致させ、積層部分を接着等して曲折流路を形成し て完成する。曲折流路は、入口穴 11 laから複数の流路穴 113a (流路穴 114a)を経 て出口板 112と中間流路板 113の間を通り流路穴 113bに至る流路、入口穴 111aか ら入口板 111と中間流路板 113の間を通り流路穴 113bに至る流路、入口穴 111 aか ら隣り合う中間流路板 113の間(スぺーサ板 114の流路穴 114a)を通り流路穴 113b に至る流路に大別され、流路穴 113bは出口穴 112aに連通している。これらの流路 は、流路断面積が変化しないように、板厚及び流路穴の大きさを設定する。流路穴 1 14a内の橋絡部 114bは、流路断面積の変化を極小にする目的でも用いることができ る。  [0019] The inlet plate 111, the spacer plate 114, the intermediate flow path plate 113, and the outlet plate 112 are formed by alternately laminating the spacer plate 114 and the intermediate flow path plate 113 on the inlet plate 111, and finally. The outlet plate 112 is stacked on the spacer plate 114. At this time, the phase (planar position) of the inlet hole 111a, the channel hole 113a, and the channel hole 114a are matched, and the phase (plane position) of the outlet hole 112a, the channel hole 113b, and the channel hole 114a are matched, The laminated part is bonded to form a bent flow path and completed. The bent flow path is a flow path from the inlet hole 11 la through the plurality of flow path holes 113a (flow path holes 114a) to the flow path hole 113b through the outlet plate 112 and the intermediate flow path plate 113, and the inlet hole 111a. From the inlet plate 111 and the intermediate flow path plate 113 to the flow path hole 113b, between the inlet hole 111a and the adjacent intermediate flow path plate 113 (the flow path hole 114a of the spacer plate 114) ) To the passage hole 113b, and the passage hole 113b communicates with the outlet hole 112a. For these channels, the plate thickness and channel hole size are set so that the channel cross-sectional area does not change. The bridging portion 114b in the channel hole 1 14a can also be used for the purpose of minimizing the change in the channel cross-sectional area.
[0020] 以上の整流絞り装置 100によると、入口板 111の入口穴 111aから出口板 112の出 口穴 112aに至る十分長い流路 (層流流路)を確保することができる。すなわち、不確 定うず、衝撃波、境界層剥離ポイント変動、よどみなどを抑えることができる。図示例 では、入口板 111、出口板 112、中間流路板 113及びスぺーサ板 114を平面円形と し、各板の穴形状を長円形としたが、これらの平面形状には自由度がある。各板は、 金属板の他、樹脂板、セラミック板、ゴム板等の材質から形成可能である。 [0020] According to the rectifying and restricting device 100 described above, the outlet plate 112 is protruded from the inlet hole 111a of the inlet plate 111. A sufficiently long channel (laminar channel) reaching the hole 112a can be secured. That is, uncertain vortex, shock wave, boundary layer separation point fluctuation, stagnation, etc. can be suppressed. In the illustrated example, the inlet plate 111, the outlet plate 112, the intermediate flow path plate 113, and the spacer plate 114 have a flat circular shape, and the hole shape of each plate has an oval shape. However, these flat shapes have a degree of freedom. is there. Each plate can be formed of a metal plate, a resin plate, a ceramic plate, a rubber plate, or the like.
[0021] 図 3は、本発明による整流絞り装置の別の実施形態を示している。この実施形態の 整流絞り装置 100Aは、 3種類(2種類)の板材だけで構成されている。入口板 111、 出口板 112及びスぺーサ板 114は、第一の実施形態と同一であり、第一の中間流路 板 111 Aと第二の中間流路板 112Aは、入口板 111と出口板 112と同一形状をなし ていて、それぞれ流路穴 l l lAa、 112Aaを有している。  [0021] Fig. 3 shows another embodiment of a rectifying and throttle device according to the present invention. The rectifying and drawing device 100A of this embodiment is composed of only three types (two types) of plate materials. The inlet plate 111, the outlet plate 112, and the spacer plate 114 are the same as in the first embodiment, and the first intermediate channel plate 111A and the second intermediate channel plate 112A are the inlet plate 111 and the outlet. It has the same shape as the plate 112, and has channel holes ll lAa and 112Aa, respectively.
[0022] この整流絞り装置 100Aは、入口板 111の上に、スぺーサ板 114、第二中間流路 板 112A、スぺーサ板 114、第一中間流路板 111A、スぺーサ板 114、第二中間流 路板 112Aと交互に重ね、スぺーサ板 114上に出口板 1 12を重ねて配置する。入口 穴 11 laと流路穴 11 lAa、出口穴 112aと流路穴 112Aaはそれぞれ平面的に同じ位 置とし、入口穴 11 laと出口穴 112aの平面位置は異ならせる。この実施形態では、曲 折流路は、入口穴 l l la、流路穴 112Aa、流路穴 l l lAa、の順にジグザグ状に形成 され、最終的に出口穴 112aに至る。この実施形態では、出口穴 112aの位相(平面 位置)は、入口穴 111aと一致させてもよい。  This rectifying and restricting device 100A includes a spacer plate 114, a second intermediate flow path plate 112A, a spacer plate 114, a first intermediate flow path plate 111A, and a spacer plate 114 on an inlet plate 111. The second intermediate flow path plate 112A is alternately stacked, and the outlet plate 112 is stacked on the spacer plate 114. The inlet hole 11 la and the channel hole 11 lAa, the outlet hole 112a and the channel hole 112Aa are respectively in the same position in a plane, and the plane positions of the inlet hole 11 la and the outlet hole 112a are different. In this embodiment, the bent flow path is formed in a zigzag shape in the order of the inlet hole l l la, the flow path hole 112Aa, and the flow path hole l l lAa, and finally reaches the outlet hole 112a. In this embodiment, the phase (planar position) of the outlet hole 112a may coincide with the inlet hole 111a.
[0023] 以上の整流絞り装置 100Aによると、入口板 111の入口穴 111aから出口板 1 12の 出口穴 112aに至るさらに十分長い流路 (層流流路)を確保することができる。  [0023] According to the rectifying and restricting device 100A described above, a sufficiently long flow path (laminar flow path) from the inlet hole 111a of the inlet plate 111 to the outlet hole 112a of the outlet plate 1 12 can be secured.
[0024] 流路断面積は、第一の実施形態では中間流路板 113とスぺーサ板 114の板厚及 び流路穴 113a、 113bと流路穴 114aの径に依存し、第二の実施形態では第一、第 二の中間流路板 111A、 112八とスぺーサ板114の板厚及び流路穴111八&、 112A aと流路穴 114aの径に依存する。これらは、用途に応じ適宜定めることができ、本実 施形態の構成によれば、スぺーサ板の板厚管理により、数 x m程度の狭い隙間を安 定して実現することができる。  In the first embodiment, the cross-sectional area of the flow path depends on the thickness of the intermediate flow path plate 113 and the spacer plate 114 and the diameters of the flow path holes 113a and 113b and the flow path hole 114a. In this embodiment, the thickness depends on the thicknesses of the first and second intermediate flow path plates 111A and 1128 and the spacer plate 114 and the diameters of the flow path holes 1118 &, 112Aa and the flow path hole 114a. These can be appropriately determined according to the application, and according to the configuration of this embodiment, a narrow gap of about several m can be stably realized by managing the thickness of the spacer plate.
[0025] 入口板 111と出口板 112は、中間流路板 113、 111A、 112Aとは別の厚さで形成 してもよいが、同一仕様とすればコストダウンを図ることができる。 [0026] 本発明の整流絞り装置 100 (100A)は、各種の用途に用いることができ、その用途 は問わない。図 4以下にその例を示す。図 4は差圧流量計に適用した原理図である。 整流絞り装置 100 (100A)の入口穴 11 laは、圧縮空気源 20に接続されており、入 口穴 11 la側(一次側)と出口穴 112a (二次側)の差圧を検出する差圧センサ(差圧 検出手段) 21が設けられている。また、出口穴 112aの絶対圧を検出する絶対圧セン サ(絶対圧検出手段) 22が設けられている。演算回路 22aは、差圧センサ 21で検出 された差圧と、絶対圧センサ 22で検出した絶対圧とを積算し、出口穴における流量 を演算する。 [0025] Although the inlet plate 111 and the outlet plate 112 may be formed with a thickness different from that of the intermediate flow path plates 113, 111A, 112A, the cost can be reduced if they have the same specifications. [0026] The rectifying and throttle device 100 (100A) of the present invention can be used for various applications, and the applications are not limited. An example is shown below in Figure 4. Figure 4 shows the principle applied to the differential pressure flow meter. The inlet hole 11 la of the flow straightening device 100 (100A) is connected to the compressed air source 20 and detects the differential pressure between the inlet hole 11 la side (primary side) and the outlet hole 112a (secondary side). A pressure sensor (differential pressure detecting means) 21 is provided. Further, an absolute pressure sensor (absolute pressure detecting means) 22 for detecting the absolute pressure of the outlet hole 112a is provided. The arithmetic circuit 22a integrates the differential pressure detected by the differential pressure sensor 21 and the absolute pressure detected by the absolute pressure sensor 22, and calculates the flow rate at the outlet hole.
[0027] 図 5は、本発明の整流絞り装置 100 (100A)を電空変換式空気レギユレータ 23と 組み合わせてより正確な二次圧力を取り出すことができるようにした例を示している。 電空変換式空気レギユレータ 23は、圧縮空気源 20に接続されており、圧縮空気源 2 0の圧力に拘わらず一定の二次圧力を取り出すことができる。そして、アナログ入力 信号 (電気入力量)を大小に変化させると取出二次圧力が変化する。このようなレギ ユレータは周知である。この実施形態では、電空変換式空気レギユレータ 23の取出 圧力を整流絞り装置 100 (100A)の入口穴 11 laに入力し、差圧センサ 21によって 入口穴 11 laと出口穴 112aとの差圧を検出する。上述原理から流量に比例する差圧 信号は、演算回路 22aによって演算され、電空変換式空気レギユレータ 23の入力信 号に対してフィードバックされている。従来の電空変換式空気レギユレータ 23では、 圧力信号のみをフィードバックしていた力 さらに流量信号をカ卩えることで、より応答 性の速いエア制御システムの構築が可能となる。  FIG. 5 shows an example in which the rectifying throttle device 100 (100A) of the present invention is combined with the electropneumatic conversion air regulator 23 so that a more accurate secondary pressure can be taken out. The electropneumatic conversion air regulator 23 is connected to the compressed air source 20 and can take out a constant secondary pressure regardless of the pressure of the compressed air source 20. When the analog input signal (electrical input amount) is changed to a larger or smaller value, the secondary pressure taken out changes. Such regulators are well known. In this embodiment, the extraction pressure of the electropneumatic conversion air regulator 23 is input to the inlet hole 11 la of the rectifying throttle device 100 (100A), and the differential pressure between the inlet hole 11 la and the outlet hole 112a is calculated by the differential pressure sensor 21. To detect. From the above principle, the differential pressure signal proportional to the flow rate is calculated by the calculation circuit 22a and fed back to the input signal of the electropneumatic conversion air regulator 23. With the conventional electropneumatic conversion air regulator 23, it is possible to construct a more responsive air control system by monitoring the force that feeds back only the pressure signal and the flow rate signal.
[0028] 図 6は、本発明の整流絞り装置 100 (100A)を除振用の空気バネ 24とエアタンク( アキュームレータ) 25との間に介在させて、安定した減衰性能が得られるようにした例 である。従来から、空気パネ 24とエアタンク 25とを絞り(オリフィス)を介して結合する ことにより、振動が発生した場合に空気パネ 24とエアタンク 25の間で空気を行き来さ せることで減衰を付加し共振ピークを抑制させる技術が知られてレ、る。このような振動 減衰装置の絞りを本発明の整流絞り装置 100 (100A)に置き換えることで、より優れ た減衰性能を得ることができる。  FIG. 6 shows an example in which a rectifying and throttle device 100 (100A) of the present invention is interposed between an air spring 24 for vibration isolation and an air tank (accumulator) 25 to obtain stable damping performance. It is. Conventionally, by connecting the air panel 24 and the air tank 25 through an orifice (orifice), when vibration occurs, the air is moved back and forth between the air panel 24 and the air tank 25 to add attenuation and resonate. The technology to suppress the peak is known. By replacing the diaphragm of such a vibration damping device with the rectifying diaphragm device 100 (100A) of the present invention, a more excellent damping performance can be obtained.
[0029] 図 7は、圧力容器 (エアタンク) 26に本発明の取出用整流絞り装置 100 (100A)を 接続した例である。圧力容器 26内の圧縮空気を、この整流絞り装置 100 (100A)を 介して取り出す。この圧力容器 26によれば、安定した層流の空気を取り出すことがで きる。 [0029] FIG. 7 shows a pressure rectifier / throttle device 100 (100A) according to the present invention attached to a pressure vessel (air tank) 26. This is an example of connection. The compressed air in the pressure vessel 26 is taken out through the rectifying and throttle device 100 (100A). According to the pressure vessel 26, a stable laminar air can be taken out.
[0030] 図 8は、圧力容器 (エアタンク) 27に、図 7の取出用の整流絞り装置 100 (100A) ( 図の左方)に加え、流出入流量検出用の整流絞り装置 100 (100A) (図の右方)を接 続した例である。流出入流量検出用の整流絞り装置 100 (100A)の出口穴 112aは 閉塞されており、入口穴 111aと出口穴 112aの差圧を検出する差圧センサ 28と、出 口穴 112aの絶対圧を検出する絶対圧検出センサ 29が設けられている。この圧力容 器によれば、差圧センサ 28の検出する差圧と絶対圧検出センサ 29の検出する絶対 圧を積算することで、圧力容器 27への圧縮空気の入出流流量を検出することができ る。  [0030] FIG. 8 shows a pressure vessel (air tank) 27, a rectifier throttle device 100 (100A) for detecting the inflow / outflow in addition to the rectifier throttle device 100 (100A) for extraction shown in FIG. 7 (left side of the figure). This is an example of connecting (right side of the figure). The outlet hole 112a of the flow control device 100 (100A) for detecting the inflow / outflow flow rate is closed, and the differential pressure sensor 28 that detects the differential pressure between the inlet hole 111a and the outlet hole 112a and the absolute pressure at the outlet hole 112a An absolute pressure detection sensor 29 for detection is provided. According to this pressure container, by integrating the differential pressure detected by the differential pressure sensor 28 and the absolute pressure detected by the absolute pressure detection sensor 29, the flow rate of the compressed air flowing into and out of the pressure vessel 27 can be detected. it can.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]本発明による整流絞り装置の一実施形態を示す、各板の平面形状を併せて描 いた断面図である。  FIG. 1 is a cross-sectional view illustrating an embodiment of a rectifying and throttle device according to the present invention, in which plane shapes of respective plates are drawn together.
[図 2]図 1の整流絞り装置の分解斜視図である。  2 is an exploded perspective view of the rectifying and throttle device shown in FIG.
[図 3]本発明の別の実施形態を示す、図 1に対応する平面図を含む断面図である。  FIG. 3 is a cross-sectional view including another plan view corresponding to FIG. 1, showing another embodiment of the present invention.
[図 4]本発明による整流絞り装置を用いた差圧流量計の例を示すブロック図である。  FIG. 4 is a block diagram showing an example of a differential pressure flow meter using a rectifying and throttle device according to the present invention.
[図 5]本発明による整流絞り装置を空気レギユレータに組み合わせた例を示すブロッ ク図である。  FIG. 5 is a block diagram showing an example in which the rectifying and throttle device according to the present invention is combined with an air regulator.
[図 6]本発明による整流絞り装置を空気パネ装置に組み合わせた例を示すブロック図 である。  FIG. 6 is a block diagram showing an example in which the rectifying and throttle device according to the present invention is combined with an air panel device.
[図 7]本発明による整流絞り装置を圧力容器に組み合わせた例を示すブロック図であ る。  FIG. 7 is a block diagram showing an example in which the flow straightening device according to the present invention is combined with a pressure vessel.
[図 8]本発明による整流絞り装置を圧力容器に組み合わせた別の例を示すブロック 図である。  FIG. 8 is a block diagram showing another example in which the flow straightening device according to the present invention is combined with a pressure vessel.
符号の説明  Explanation of symbols
[0032] 100 100A 整流絞り装置 [0032] 100 100A rectifier
111 入口板 111a 入口穴 111 Entrance plate 111a inlet hole
112 出口板 112 Exit plate
112a 出口穴 112a Outlet hole
113 111A 112A 中間流路板 113a 113b lllAa 112Aa 流路穴 114 スぺーサ板  113 111A 112A Intermediate channel plate 113a 113b lllAa 112Aa Channel hole 114 Spacer plate
114a 流路穴 114a Channel hole
114b 橋絡部 114b bridge

Claims

請求の範囲 The scope of the claims
[1] 空気の入口穴を有する入口板;  [1] inlet plate with air inlet holes;
空気の出口穴を有する出口板;及び  An outlet plate having an air outlet hole; and
この入口板と出口板との間に交互に積層された複数のスぺーサ板と中間流路板; を備え、  A plurality of spacer plates and intermediate flow path plates stacked alternately between the inlet plate and the outlet plate;
この中間流路板とスぺーサ板は、上記入口板の入口穴と出口板の出口穴との間に 該中間流路板の表面に沿う曲折流路を形成する流路穴を備えていることを特徴とす る整流絞り装置。  The intermediate flow path plate and the spacer plate include a flow path hole that forms a curved flow path along the surface of the intermediate flow path plate between the inlet hole of the inlet plate and the outlet hole of the outlet plate. A rectifying diaphragm device characterized by this.
[2] 請求項 1記載の整流絞り装置において、入口板の入口穴と出口板の出口穴は、異な る平面位置に位置している整流絞り装置。  [2] The rectifying and throttle device according to claim 1, wherein the inlet hole of the inlet plate and the outlet hole of the outlet plate are located at different plane positions.
[3] 請求項 1または 2記載の整流絞り装置において、中間流路板は、入口板の入口穴と 出口板の出口穴と同じ平面位置に位置する一対の独立した流路穴を備え、スぺー サ板は、中間流路板の上記一対の独立した流路穴を連通させる流路穴を備えてい る整流絞り装置。 [3] The rectifying and restricting device according to claim 1 or 2, wherein the intermediate flow path plate includes a pair of independent flow path holes positioned at the same plane position as the inlet hole of the inlet plate and the outlet hole of the outlet plate, The pacer plate is provided with a flow path hole for communicating the pair of independent flow path holes of the intermediate flow path plate with each other.
[4] 請求項 2記載の整流絞り装置において、中間流路板は、入口板との入口穴と同じ平 面位置に流路穴を有する第一中間流路板と、出口板の出口穴と同じ平面位置に流 路穴を有する第二の中間流路板とを備え、スぺーサ板は、第一中間板の流路穴と第 二中間流路板の流路穴を連通させる流路穴を備え、上記第一、第二の中間流路板 はスぺーサ板を挟んで交互に積層されている整流絞り装置。  [4] The rectifying and restricting device according to claim 2, wherein the intermediate flow path plate includes a first intermediate flow path plate having a flow path hole at the same plane position as the inlet hole of the inlet plate, and an outlet hole of the outlet plate. A second intermediate flow path plate having a flow path hole at the same plane position, and the spacer plate is a flow path that connects the flow path hole of the first intermediate plate and the flow path hole of the second intermediate flow path plate. A rectifying and throttle device having holes, wherein the first and second intermediate flow path plates are alternately stacked with a spacer plate interposed therebetween.
[5] 請求項 1ないし 4のいずれ力、 1項記載の整流絞り装置において、上記スぺーサ板の 流路穴内には、平面的に見て、入口板の入口穴と出口板の出口穴を結ぶ方向に向 けて橋絡部が形成されている整流絞り装置。  [5] The rectifying and restricting device according to any one of claims 1 to 4, wherein, in the flow path hole of the spacer plate, the inlet hole of the inlet plate and the outlet hole of the outlet plate are viewed in plan view. A rectifying throttle device in which a bridging portion is formed in the direction connecting the two.
PCT/JP2005/020508 2004-11-30 2005-11-09 Rectified flow restricting device WO2006059466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547714A JPWO2006059466A1 (en) 2004-11-30 2005-11-09 Rectification diaphragm device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004346801 2004-11-30
JP2004-346801 2004-11-30

Publications (1)

Publication Number Publication Date
WO2006059466A1 true WO2006059466A1 (en) 2006-06-08

Family

ID=36564903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020508 WO2006059466A1 (en) 2004-11-30 2005-11-09 Rectified flow restricting device

Country Status (3)

Country Link
JP (1) JPWO2006059466A1 (en)
TW (1) TW200625045A (en)
WO (1) WO2006059466A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174574A (en) * 2008-01-22 2009-08-06 Fukushima Nobuyuki Flow regulation valve and connection fitting using the same
CN109341788A (en) * 2018-12-24 2019-02-15 西北工业大学 Small-sized laminar flow element
CN110355913A (en) * 2019-08-20 2019-10-22 南通松达智能科技有限公司 A kind of very-short-reach measurement rectifying noise-reduction composite integrated flow passage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448867B (en) * 2011-12-02 2014-08-11 Ind Tech Res Inst Flow regulating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434500A (en) * 1964-12-23 1969-03-25 Dresser Ind Fluid pressure reducer
US3532126A (en) * 1967-11-01 1970-10-06 Gen Electric Ganged variable fluidic resistor device
JPS4620884Y1 (en) * 1970-01-17 1971-07-20
JPS5221435U (en) * 1975-08-05 1977-02-15
JPS6397796U (en) * 1986-12-16 1988-06-24
JPH0425094U (en) * 1990-06-26 1992-02-28
JPH0988907A (en) * 1995-09-27 1997-03-31 Nikkoshi Prod Kk Fluid flow control device and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434500A (en) * 1964-12-23 1969-03-25 Dresser Ind Fluid pressure reducer
US3532126A (en) * 1967-11-01 1970-10-06 Gen Electric Ganged variable fluidic resistor device
JPS4620884Y1 (en) * 1970-01-17 1971-07-20
JPS5221435U (en) * 1975-08-05 1977-02-15
JPS6397796U (en) * 1986-12-16 1988-06-24
JPH0425094U (en) * 1990-06-26 1992-02-28
JPH0988907A (en) * 1995-09-27 1997-03-31 Nikkoshi Prod Kk Fluid flow control device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174574A (en) * 2008-01-22 2009-08-06 Fukushima Nobuyuki Flow regulation valve and connection fitting using the same
CN109341788A (en) * 2018-12-24 2019-02-15 西北工业大学 Small-sized laminar flow element
CN110355913A (en) * 2019-08-20 2019-10-22 南通松达智能科技有限公司 A kind of very-short-reach measurement rectifying noise-reduction composite integrated flow passage device

Also Published As

Publication number Publication date
TW200625045A (en) 2006-07-16
JPWO2006059466A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
CN105144013B (en) Control valve for fluids
CN105637336B (en) MEMS pressure sensor with integrated baffle
CN102645249B (en) There is the flow sensor assembly of integrated bypass passage
WO2006059466A1 (en) Rectified flow restricting device
JPS59195141A (en) Fluid control mechanism
US6928865B2 (en) Thermal flowmeter having a laminate structure
JP2010117201A (en) Flowmeter
JP3964920B2 (en) Thermal flow meter
US11686603B2 (en) Pressure type flowmeter and fluid control device
JP6228768B2 (en) Fluid resistance device
JP5160809B2 (en) Thermal flow meter
JP3871566B2 (en) Thermal flow meter
JP4076992B2 (en) Thermal flow meter
JP2022156075A (en) Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method
JPH07119636B2 (en) Flowmeter
JP4087687B2 (en) Flowmeter
TW201132943A (en) Flow calculation system, accumulated type gas panel device and base plate
JP4691236B2 (en) Gas flow meter
JPH082576Y2 (en) Extra-fine channel laminar flow meter
JPH06221885A (en) Eddy flowmeter
JP4485854B2 (en) Thermal flow sensor
JP3637051B2 (en) Thermal flow meter
JP2005291923A (en) Thermal type flowmeter
JPH0875512A (en) Fluidic flowmeter
JP2020139847A (en) Laminar flow element, fluid controller, and semiconductor manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806170

Country of ref document: EP

Kind code of ref document: A1