JP2022156075A - Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method - Google Patents

Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method Download PDF

Info

Publication number
JP2022156075A
JP2022156075A JP2021059588A JP2021059588A JP2022156075A JP 2022156075 A JP2022156075 A JP 2022156075A JP 2021059588 A JP2021059588 A JP 2021059588A JP 2021059588 A JP2021059588 A JP 2021059588A JP 2022156075 A JP2022156075 A JP 2022156075A
Authority
JP
Japan
Prior art keywords
plate
hole
flow
laminar flow
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021059588A
Other languages
Japanese (ja)
Inventor
興仁 結城
Koji Yuki
里奈 小笠原
Rina Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2021059588A priority Critical patent/JP2022156075A/en
Publication of JP2022156075A publication Critical patent/JP2022156075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

To equalize differential pressure-flow characteristics in respective flow channels of a laminar flow element.SOLUTION: A laminar flow element 10 includes a plurality of plate-like members 20-60 vertically laminated when a plate thickness direction is defined as a vertical direction. Flow channel through-holes 31, 51 to be a flow channel are formed in the plate-like members 30, 50. The plate-like member 40 includes an upstream side take-out hole 43 and a downstream side take-out hole 44 for upwardly taking out pressure of a fluid which flows through the flow channel through-hole 31. The plate-like member 60 includes an upstream side take-out hole 61 and a downstream side take-out hole 62 for upwardly taking out pressure of a fluid which flows through the flow channel through-hole 51. The upstream side take-out holes 43, 61 are arranged to be coincide with each other when viewed from the vertical direction. The downstream side take-out holes 44, 62 are arranged to be coincide with each other when viewed from the vertical direction. The flow channel through-holes 31, 51 are formed to have the same shape.SELECTED DRAWING: Figure 1

Description

本発明は、層流素子、層流型流量計、及び、層流素子の製造方法に関する。 The present invention relates to a laminar flow element, a laminar flow meter, and a method of manufacturing a laminar flow element.

層流型流量計は、液体又は気体などの流体が層流状態で層流素子内を流れる際に発生する圧力降下が体積流量に比例する現象を利用した流量計である。層流素子には、薄板に流路となる貫通孔をエッチングなどで形成し、その薄板の上下を別の薄板で挟み込むことで流路を形成した素子がある。このようなタイプの層流素子は、薄板の積層枚数つまり流路の数で流量レンジを容易に調整できる。このような層流素子を用いた層流型流量計として、特許文献1には、層流素子(3)が内部流路を有したボディ(1)に形成された凹部(1h)内に配置され、当該凹部を塞ぐように上流側圧力センサ(21)が設けられ、この凹部よりも下流側に下流側圧力センサ(22)が設けられた層流型流量計(括弧書きは特許文献1の参照符号を示す)が開示されている。この層流型流量計では、上下流の2つの圧力センサによって検出された各圧力の差圧に基づいて流量が特定される。 A laminar flow meter is a flow meter that utilizes the phenomenon that the pressure drop that occurs when a fluid such as liquid or gas flows in a laminar flow state in a laminar flow element is proportional to the volumetric flow rate. A laminar flow element includes an element in which a flow path is formed by forming a through-hole, which will be a flow path, in a thin plate by etching or the like, and sandwiching the thin plate above and below with another thin plate. In such a type of laminar flow element, the flow rate range can be easily adjusted by the number of laminated thin plates, that is, the number of flow paths. As a laminar flow meter using such a laminar flow element, Patent Document 1 discloses that a laminar flow element (3) is arranged in a recess (1h) formed in a body (1) having an internal flow path. An upstream pressure sensor (21) is provided so as to block the recess, and a downstream pressure sensor (22) is provided downstream of the recess (brackets are in Patent Document 1 ) are disclosed. In this laminar flow meter, the flow rate is specified based on the differential pressure between the pressures detected by two upstream and downstream pressure sensors.

特開2016-35462号公報JP 2016-35462 A

特許文献1に開示された層流型流量計では、上流側圧力センサによる圧力の検出位置が層流素子の入口の直上なので、上流側圧力センサにより検出された圧力に外部圧損が含まれてしまう。さらに、下流側圧力センサが層流素子から離れた位置に配置されているため、下流側圧力センサにより検出される圧力が層流素子での圧力降下を正しく反映していないおそれがある。このように、特許文献1に記載の層流型流量計では、上下流の2つの圧力センサでそれぞれ検出される圧力の差圧が、実際の差圧と異なってしまうことがある。従って、特許文献1に記載の層流型流量計において、仮に、流路の数(流量レンジ)を変更した複数の層流素子それぞれで発生する実際の差圧を同じとしても、上流側圧力センサと下流側圧力センサで検出された圧力の差圧は流路の数に応じて異なってしまうことになる。このため、計測された差圧に基づく特性である差圧-流量特性が流路の数によって異なってしまうことがある。 In the laminar flow meter disclosed in Patent Document 1, the pressure detected by the upstream pressure sensor is directly above the inlet of the laminar flow element, so the pressure detected by the upstream pressure sensor includes external pressure loss. . Furthermore, since the downstream pressure sensor is located away from the laminar flow element, the pressure detected by the downstream pressure sensor may not accurately reflect the pressure drop across the laminar flow element. As described above, in the laminar flow meter disclosed in Patent Document 1, the differential pressure detected by the two upstream and downstream pressure sensors may differ from the actual differential pressure. Therefore, in the laminar flow meter described in Patent Document 1, even if the actual differential pressure generated in each of the plurality of laminar flow elements with different numbers of flow paths (flow range) is the same, the upstream pressure sensor and the pressure difference detected by the downstream pressure sensor will differ according to the number of flow paths. Therefore, the differential pressure-flow characteristic, which is the characteristic based on the measured differential pressure, may differ depending on the number of flow paths.

本発明は、上記課題に鑑みてなされたものであり、流路の数が異なる複数の層流素子間の差圧-流量特性を等しくすることを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to equalize differential pressure-flow rate characteristics among a plurality of laminar flow elements having different numbers of flow paths.

上記課題を解決するため、本発明の第1の観点に係る層流素子は、板厚方向を上下方向としたときに前記上下方向に積層された複数の板状部材を備え、内部に流体が流れる層流素子であって、前記流体を前記層流素子内に導入する導入用貫通孔と、前記導入用貫通孔よりも下流側に位置し、前記流体を前記層流素子の外部に排出する排出用貫通孔とが形成された第1板状部材と、前記第1板状部材の上に積層される複数の第2板状部材であり、前記導入用貫通孔により導入された前記流体の一部を前記排出用貫通孔に導く流路となる流路貫通孔を備える複数の第2板状部材と、前記複数の第2板状部材のうちの前記上下方向において隣同士の第2板状部材の間にそれぞれ配置される1以上の第3板状部材であり、1つ上及び1つ下の前記流路貫通孔それぞれの上流部に連通し、1つ下の前記流路貫通孔に流入した前記流体の一部を1つ上の前記流路貫通孔に導く上流側貫通孔と、1つ上及び1つ下の前記流路貫通孔それぞれの前記上流部より下流の下流部に連通し、1つ上の前記流路貫通孔を流れる前記流体の一部を1つ下の前記流路貫通孔に導く下流側貫通孔と、1つ下の前記流路貫通孔を流れる前記流体の圧力を上方に取り出す、前記上流側貫通孔と前記下流側貫通孔との間に配置された上流側取出孔、及び、前記上流側取出孔よりも下流側に形成された下流側取出孔と、を備える1以上の第3板状部材と、前記複数の第2板状部材のうち最も上に位置する第2板状部材の上に積層され、1つ下の前記流路貫通孔を流れる前記流体の圧力を上方に取り出す、上流側取出孔及び当該上流側取出孔よりも下流側に位置する下流側取出孔を備える第4板状部材と、を備え、前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記上流側取出孔が、前記上下方向から見て前記流路貫通孔を流れる前記流体の流れ方向における同じ位置に配置されており、前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記下流側取出孔が、前記上下方向から見て前記流れ方向における同じ位置に配置されており、前記複数の第2板状部材それぞれの前記流路貫通孔が同じ形状に形成されている。 In order to solve the above problems, a laminar flow element according to a first aspect of the present invention includes a plurality of plate-like members stacked in the vertical direction when the plate thickness direction is the vertical direction, and a fluid is contained therein. A flowing laminar flow element, comprising: an introduction through hole for introducing the fluid into the laminar flow element; and an introduction through hole located downstream of the introduction through hole for discharging the fluid to the outside of the laminar flow element. A first plate-shaped member in which a discharge through-hole is formed, and a plurality of second plate-shaped members stacked on the first plate-shaped member, wherein the fluid introduced through the introduction through-hole is discharged. a plurality of second plate-like members having flow channel through-holes serving as flow channels for partially leading to the discharge through-holes, and second plates of the plurality of second plate-like members that are adjacent to each other in the vertical direction one or more third plate-like members arranged between the respective plate-like members, communicating with upstream portions of the channel through-holes one above and one below, and communicating with the channel through-holes one below an upstream through hole that guides a part of the fluid that has flowed into the flow channel through hole one above, and a downstream part downstream from the upstream part of each of the flow channel through holes one above and one below a downstream through-hole that communicates with and guides a portion of the fluid flowing through the flow-path through-hole one above to the flow-path through-hole one below, and the fluid flowing through the flow-path through-hole one below an upstream extraction hole arranged between the upstream through-hole and the downstream through-hole, and a downstream extraction hole formed downstream of the upstream extraction hole, for extracting the pressure of and a second plate-shaped member positioned at the highest position among the plurality of second plate-shaped members, and flows through the channel through-hole one level below. a fourth plate-shaped member having an upstream extraction hole and a downstream extraction hole located downstream of the upstream extraction hole for extracting the pressure of the fluid upward; The upstream extraction holes of the member and the fourth plate-like member are arranged at the same position in the flow direction of the fluid flowing through the flow channel through-hole when viewed from the vertical direction, and the at least one The downstream extraction holes of the third plate-shaped member and the fourth plate-shaped member are arranged at the same position in the flow direction when viewed from the vertical direction, and each of the plurality of second plate-shaped members are formed in the same shape.

前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記上流側取出孔が、前記上下方向から見て一致している、ようにしてもよい。 The upstream extraction holes of the one or more third plate-like members and the fourth plate-like member may be aligned when viewed in the vertical direction.

前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記下流側取出孔が、前記上下方向から見て一致している、ようにしてもよい。 The downstream extraction holes of the one or more third plate-like members and the fourth plate-like member may be aligned when viewed in the vertical direction.

前記上流側貫通孔の前記流れ方向と直交する方向の長さである幅は、前記流路貫通孔よりも広い、ようにしてもよい。 A width, which is a length of the upstream through-hole in a direction orthogonal to the flow direction, may be wider than that of the flow-path through-hole.

前記下流側貫通孔の前記流れ方向と直交する方向の長さである幅は、前記流路貫通孔よりも広い、ようにしてもよい。 A width, which is a length of the downstream through-hole in a direction orthogonal to the flow direction, may be wider than that of the flow-path through-hole.

本発明の第2の観点に係る層流型流量計は、上記層流素子と、前記層流素子が収容される凹部と、前記第1板状部材の前記導入用貫通孔に前記流体を供給する上流流路と、前記第1板状部材の前記排出用貫通孔から前記流体が流入する下流流路と、を備える流路部材と、を備え、前記層流素子の前記第4板状部材は、上下方向から見た場合に、前記第1板状部材、前記第2板状部材、及び、前記第3板状部材よりも大きく、前記第1板状部材、前記第2板状部材、前記第3板状部材、及び、前記第4板状部材は、それぞれ、上下方向に隣り合う板状部材と接合されており、前記第4板状部材の、前記第1板状部材、前記第2板状部材、及び、前記第3板状部材から張り出した周縁部が、シール部材を介して、前記流路部材の前記凹部の外縁部に固定されている。 A laminar flow meter according to a second aspect of the present invention supplies the fluid to the laminar flow element, the recess accommodating the laminar flow element, and the introduction through hole of the first plate member. and a downstream channel into which the fluid flows from the discharge through-hole of the first plate-shaped member, wherein the fourth plate-shaped member of the laminar flow element is larger than the first plate-shaped member, the second plate-shaped member, and the third plate-shaped member when viewed from above and below, and the first plate-shaped member, the second plate-shaped member, The third plate-shaped member and the fourth plate-shaped member are respectively joined to adjacent plate-shaped members in the vertical direction. The second plate-shaped member and the peripheral edge projecting from the third plate-shaped member are fixed to the outer edge of the recess of the flow path member via a seal member.

本発明の第3の観点に係る層流素子の製造方法は、上記層流素子の製造方法であって、前記層流素子に流す前記流体の流量に応じて、前記第2板状部材及び前記第3板状部材の数を決定し、決定した数の前記第2板状部材及び前記第3板状部材を積層して、前記層流素子を製造する、ようにしてもよい。 A method of manufacturing a laminar flow element according to a third aspect of the present invention is the method of manufacturing the laminar flow element described above, wherein the second plate-like member and the The number of the third plate members may be determined, and the determined number of the second plate members and the third plate members may be stacked to manufacture the laminar flow element.

本発明によれば、流路の数が異なる複数の層流素子間の差圧-流量特性を同じにすることができる。 According to the present invention, it is possible to make the differential pressure-flow rate characteristics the same among a plurality of laminar flow elements having different numbers of flow paths.

図1は、本発明の一実施形態に係る層流素子の断面図及び層流型流量計の構成図である。FIG. 1 is a cross-sectional view of a laminar flow element and a configuration diagram of a laminar flow meter according to an embodiment of the present invention. 図2は、図1の層流素子の分解斜視図である。2 is an exploded perspective view of the laminar flow element of FIG. 1. FIG. 図3は、図1の層流素子の各板状部材を上下方向から見た平面図である。FIG. 3 is a plan view of each plate-like member of the laminar flow element of FIG. 1 as seen from above and below. 図4は、図1の層流素子の平面図である。4 is a plan view of the laminar flow element of FIG. 1. FIG. 図5は、図1の層流素子等の断面図であり、流路を流れる流体を矢印で示す図である。FIG. 5 is a cross-sectional view of the laminar flow element of FIG. 1, etc., and shows the fluid flowing through the flow path with arrows. 図6は、変形例に係る層流素子の平面図である。FIG. 6 is a plan view of a laminar flow element according to a modification.

本発明の実施の形態について図面を参照しながら説明する。図1に示すように、本実施の形態に係る層流型流量計1は、流路部材3と、上流側圧力センサ4と、下流側圧力センサ5と、演算回路7と、層流素子10と、を備える。層流型流量計1は、配管の途中等に配置され、配管を流れる流体(被測定流体)の流量を計測する。流体は、液体でも、気体でもよい。 An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the laminar flow meter 1 according to the present embodiment includes a flow channel member 3, an upstream pressure sensor 4, a downstream pressure sensor 5, an arithmetic circuit 7, and a laminar flow element 10. And prepare. A laminar flow meter 1 is arranged in the middle of a pipe or the like, and measures the flow rate of a fluid (fluid to be measured) flowing through the pipe. A fluid may be a liquid or a gas.

流路部材3は、内部に、流体が流れる上流流路3A及び下流流路3Bを備える。さらに、流路部材3は、層流素子10を収容する収容凹部3Cを備える。流体は、上流流路3Aから収容凹部3Cの層流素子10内に流入し、層流素子10内を流れ、その後、下流流路3Bを流れる。 The flow channel member 3 includes therein an upstream flow channel 3A and a downstream flow channel 3B through which fluid flows. Further, the flow path member 3 includes a recess 3C for housing the laminar flow element 10. As shown in FIG. The fluid flows from the upstream channel 3A into the laminar flow element 10 of the housing recess 3C, flows through the laminar flow element 10, and then flows through the downstream channel 3B.

上流側圧力センサ4は、層流素子10内を流れる流体の上流側の圧力を検出する。下流側圧力センサ5は、層流素子10内を流れる流体の下流側の圧力を検出する。演算回路7は、マイクロコンピュータ等から構成され、上流側圧力センサ4が検出した圧力と、下流側圧力センサ5が検出した圧力との差圧を算出し、算出した差圧に基づいて流体の流量を算出する。算出された流量は、不図示の表示装置又は外部装置に出力される。 The upstream pressure sensor 4 detects the upstream pressure of the fluid flowing through the laminar flow element 10 . The downstream pressure sensor 5 detects the downstream pressure of the fluid flowing through the laminar flow element 10 . The arithmetic circuit 7 is composed of a microcomputer or the like, calculates the differential pressure between the pressure detected by the upstream pressure sensor 4 and the pressure detected by the downstream pressure sensor 5, and determines the flow rate of the fluid based on the calculated differential pressure. Calculate The calculated flow rate is output to a display device (not shown) or an external device.

図1~図4に示すように、層流素子10は、板厚方向を上下方向としたときのこの上下方向に積層された金属製の板状部材20~60を備える。各板状部材20~60は、下から上に向かって、板状部材20、板状部材30、板状部材40、板状部材50、板状部材60の順に積層されている。各板状部材20~60は、長方形であり、長手方向が流体の上流から下流に向かう方向に設定されている。各板状部材20~60は、拡散接合等により互いに接合されている。 As shown in FIGS. 1 to 4, the laminar flow element 10 includes metal plate-like members 20 to 60 stacked vertically when the plate thickness direction is taken as the vertical direction. The plate-like members 20 to 60 are stacked in the order of plate-like member 20, plate-like member 30, plate-like member 40, plate-like member 50, and plate-like member 60 from bottom to top. Each of the plate-like members 20-60 is rectangular, and the longitudinal direction is set in the direction from upstream to downstream of the fluid. The plate-shaped members 20 to 60 are bonded together by diffusion bonding or the like.

板状部材20の長手方向の一端部には、上流流路3Aが繋がっており、流体を層流素子10内に導入する導入用貫通孔21が設けられている。板状部材20の長手方向の他端分には、下流流路3Bが繋がっており、層流素子10内を流れる流体を層流素子10の外部つまり下流流路3Bに排出する排出用貫通孔22が設けられている。 One longitudinal end of the plate-like member 20 is connected to the upstream flow path 3A and provided with an introduction through hole 21 for introducing fluid into the laminar flow element 10 . The downstream channel 3B is connected to the other end of the plate member 20 in the longitudinal direction, and a discharge through hole for discharging the fluid flowing inside the laminar flow element 10 to the outside of the laminar flow element 10, that is, to the downstream channel 3B. 22 are provided.

板状部材30は、導入用貫通孔21から層流素子10内に流入した流体の一部の流路となる、長手方向に長尺な長方形の流路貫通孔31を備える。流路貫通孔31は、板状部材30の1つ下の板状部材20の主面、及び、板状部材30の1つ上の板状部材40の主面に挟まれて流路となり、導入用貫通孔21により導入された流体の一部を排出用貫通孔22に導くように構成されている。流路貫通孔31つまり流路は、流体を層流状態で流すように形成されている。なお、前記の主面は、板状部材の表面のうち面積が最も広い面であり、ここでは板状部材20の上面及び板状部材40の下面である。 The plate-like member 30 includes a longitudinally elongated rectangular channel through-hole 31 that serves as a channel for part of the fluid that has flowed into the laminar flow element 10 from the introduction through-hole 21 . The flow channel through-hole 31 is sandwiched between the main surface of the plate-shaped member 20 one level below the plate-shaped member 30 and the main surface of the plate-shaped member 40 one level above the plate-shaped member 30 to form a flow channel, It is configured to guide part of the fluid introduced through the introduction through-hole 21 to the discharge through-hole 22 . The channel through-hole 31, ie, the channel, is formed so as to allow the fluid to flow in a laminar flow state. The main surface is the surface having the largest area among the surfaces of the plate-like member, and is the upper surface of the plate-like member 20 and the lower surface of the plate-like member 40 here.

板状部材30は、板状部材50と同形状に形成されている。すなわち、板状部材50は、板状部材30の流路貫通孔31と同形状の流路貫通孔51を備える。流路貫通孔51は、板状部材50の1つ下の板状部材40の主面(上面)、及び、板状部材50の1つ上の板状部材60の主面(下面)に挟まれ流路となり、導入用貫通孔21により導入された流体の一部を排出用貫通孔22に導く。流路貫通孔51つまり流路は、流体を層流状態で流すように形成されている。流路貫通孔31及び流路貫通孔51、つまり、板状部材30及び50により形成されている各流路は、同じ形状に形成され、上下方向からみたときに一致する。 The plate-like member 30 is formed in the same shape as the plate-like member 50 . That is, the plate-like member 50 is provided with the channel through-holes 51 having the same shape as the channel through-holes 31 of the plate-like member 30 . The flow path through-hole 51 is sandwiched between the main surface (upper surface) of the plate-like member 40 that is one lower than the plate-like member 50 and the main surface (lower surface) of the plate-like member 60 that is one higher than the plate-like member 50 . A portion of the fluid introduced through the introduction through-hole 21 is guided to the discharge through-hole 22 . The channel through hole 51, ie, the channel, is formed so as to allow the fluid to flow in a laminar flow state. The channel through-holes 31 and the channel through-holes 51, that is, the respective channels formed by the plate members 30 and 50, are formed in the same shape and match when viewed from above and below.

板状部材40は、板状部材30と板状部材50との間に配置されている。板状部材40は、長手方向の上流側端部に形成された上流側貫通孔41と、下流側端部に形成された下流側貫通孔42と、を備える。上流側貫通孔41は、板状部材40の1つ下の板状部材30及び1つ上の板状部材50の流路貫通孔31及び51それぞれの上流部に連通している。上流側貫通孔41は、1つ下の流路貫通孔31に流入した流体の一部を1つ上の流路貫通孔51に導くように構成されている。下流側貫通孔42は、流路貫通孔31及び51それぞれの、前記上流部よりも下流の下流部に連通している。下流側貫通孔42は、1つ上の板状部材50の流路貫通孔51を流れる流体の一部を1つ下の板状部材30の流路貫通孔31に導くように構成されている。 The plate-like member 40 is arranged between the plate-like member 30 and the plate-like member 50 . The plate-like member 40 includes an upstream through-hole 41 formed at an upstream end in the longitudinal direction, and a downstream through-hole 42 formed at a downstream end. The upstream through-hole 41 communicates with the upstream portions of the flow-path through-holes 31 and 51 of the plate-like member 30 one level below the plate-like member 40 and the plate-like member 50 one level above. The upstream through hole 41 is configured to guide part of the fluid that has flowed into the flow channel through hole 31 one level below to the flow channel through hole 51 one level above. The downstream through-hole 42 communicates with the downstream portion of each of the channel through-holes 31 and 51, which is downstream of the upstream portion. The downstream through-hole 42 is configured to guide part of the fluid flowing through the flow-path through-hole 51 of the plate-shaped member 50 one above to the flow-path through-hole 31 of the plate-shaped member 30 one below. .

板状部材40は、さらに、その1つ下の流路貫通孔31を流れる流体の圧力を上方に取り出す、上流側取出孔43と、上流側取出孔43よりも下流側に形成された下流側取出孔44と、を備える。各取出孔43及び44は、上流側貫通孔41と下流側貫通孔42との間に配置されている。 The plate-like member 40 further includes an upstream extraction hole 43 for extracting upward the pressure of the fluid flowing through the channel through hole 31 one level below, and a downstream extraction hole 43 formed on the downstream side of the upstream extraction hole 43 . and an extraction hole 44 . Each extraction hole 43 and 44 is arranged between the upstream through hole 41 and the downstream through hole 42 .

上流又は下流側の貫通孔41及び42は、板状部材20の導入又は排出用の貫通孔21及び22とそれぞれ同形状で同一位置つまり互いに一致するように形成されている。貫通孔41及び42は、貫通孔21及び22とともに流体の流量を確保するため矩形形状で大きく形成されている一方、上流又は下流側の取出孔43及び44は、圧力の取り出し用なので、流量を大きく確保する必要がなく、貫通孔41及び42よりも小さく円形状に形成されている。 The through-holes 41 and 42 on the upstream or downstream side are formed to have the same shape and the same position as the through-holes 21 and 22 for introducing or discharging the plate member 20, respectively, that is, to coincide with each other. The through-holes 41 and 42, together with the through-holes 21 and 22, are large and rectangular in shape to ensure the flow rate of the fluid. It does not need to be large, and is formed in a circular shape smaller than the through holes 41 and 42 .

上流側取出孔43の位置は上流側の貫通孔21及び41から流体の流れが層流に発達するまでの助走距離Liを取った位置に設置する事が望ましい。層流Reはレイノルズ数が2300より小さい流れとして定義され、下記の数式(1)で計算される。また、助走距離Liは下記の数式(2)で計算される。下記式中のdは流路貫通孔の代表長さ、uは流体の流速、ρは流体の密度、μは流体の粘性係数である。

Figure 2022156075000002
Figure 2022156075000003
The position of the upstream extraction hole 43 is preferably set at a position where a run-up distance Li is taken until the fluid flow develops into a laminar flow from the through holes 21 and 41 on the upstream side. A laminar flow Re is defined as a flow with a Reynolds number of less than 2300 and is calculated by Equation (1) below. Also, the run-up distance Li is calculated by the following formula (2). In the following formula, d is the representative length of the channel through hole, u is the flow velocity of the fluid, ρ is the density of the fluid, and μ is the viscosity coefficient of the fluid.
Figure 2022156075000002
Figure 2022156075000003

板状部材60は、板状部材50の上に積層され、1つ下の板状部材50の流路貫通孔51を流れる流体の圧力を上方に取り出す、上流側取出孔61と当該上流側取出孔61よりも下流側に位置する下流側取出孔62と、を備える。上下方向から見たときに、上流側取出孔61は、板状部材40の上流側取出孔43と同形状で同一位置つまり互いに一致するように形成されている。同様に、下流側取出孔62は、板状部材40の下流側取出孔44と同形状で同一位置つまり互いに一致するように形成されている。 The plate-like member 60 is stacked on the plate-like member 50, and has an upstream extraction hole 61 and an upstream extraction hole 61 for extracting upward the pressure of the fluid flowing through the flow channel through-hole 51 of the plate-like member 50 one level below. and a downstream extraction hole 62 located downstream of the hole 61 . The upstream extraction hole 61 has the same shape as the upstream extraction hole 43 of the plate-like member 40 and is formed at the same position, that is, to coincide with each other when viewed from above and below. Similarly, the downstream extraction hole 62 is formed to have the same shape and the same position as the downstream extraction hole 44 of the plate-like member 40, that is, to coincide with each other.

板状部材20~50は、同じ大きさに形成されており、積層状態の板状部材20~50は、全体として直方体形状を有する。他方、板状部材60は、板状部材20~50よりも大きく形成されている。板状部材60は、その下に接続された板状部材20~50の側面から外側に張り出した周縁部60Aを有する。周縁部60Aには、層流素子10を流路部材3に締め付け固定するボルトB1及びB2がそれぞれ通る4つの貫通孔63及び4つの貫通孔64を備える。ボルトB1は、上流側圧力センサ4を貫通して、貫通孔63を通って、流路部材3の収容凹部3Cの周辺に設けられた螺合孔と螺合する。ボルトB2は、下流側圧力センサ5を貫通して、貫通孔64を通って、流路部材3の収容凹部3Cの周辺に設けられた螺合孔と螺合する。これらにより、層流素子10は、圧力センサ4及び5とともに、流路部材3に締め付け固定される。上流側圧力センサ4は、上流側取出孔61を覆うように配置され、上流側取出孔61により取り出された圧力を検出する。下流側圧力センサ5は、下流側取出孔62を覆うように配置され、下流側取出孔62により取り出された圧力を検出する。 The plate-like members 20 to 50 are formed to have the same size, and the plate-like members 20 to 50 in the laminated state have a rectangular parallelepiped shape as a whole. On the other hand, the plate member 60 is formed larger than the plate members 20-50. The plate member 60 has a peripheral edge portion 60A projecting outward from the side surfaces of the plate members 20 to 50 connected thereunder. The peripheral portion 60A is provided with four through holes 63 and four through holes 64 through which bolts B1 and B2 for tightening and fixing the laminar flow element 10 to the flow channel member 3 pass respectively. The bolt B<b>1 passes through the upstream pressure sensor 4 , passes through the through hole 63 , and is screwed into a screw hole provided around the housing recess 3</b>C of the flow path member 3 . The bolt B<b>2 passes through the downstream pressure sensor 5 , passes through the through hole 64 , and is screwed into a screw hole provided around the housing recess 3</b>C of the flow path member 3 . As a result, the laminar flow element 10 and the pressure sensors 4 and 5 are clamped and fixed to the flow path member 3 . The upstream pressure sensor 4 is arranged to cover the upstream extraction hole 61 and detects the pressure extracted through the upstream extraction hole 61 . The downstream pressure sensor 5 is arranged to cover the downstream extraction hole 62 and detects the pressure extracted through the downstream extraction hole 62 .

図1に示すように、層流素子10と流路部材3の収容凹部3Cの底面との間には、板状部材20の導入用貫通孔21の周囲を囲むシール部材S1及び排出用貫通孔22の周囲を囲むシール部材S2が介在している。これにより、上流流路3Aと導入用貫通孔21との接続部分及び下流流路3Bと排出用貫通孔22との接続部分がシールされている。 As shown in FIG. 1, between the laminar flow element 10 and the bottom surface of the housing recess 3C of the flow channel member 3, a sealing member S1 surrounding the introduction through hole 21 of the plate member 20 and a discharge through hole are provided. A seal member S2 surrounding the circumference of 22 is interposed. As a result, the connecting portion between the upstream channel 3A and the introduction through hole 21 and the connecting portion between the downstream channel 3B and the discharge through hole 22 are sealed.

層流素子10と上流側圧力センサ4との間にはシール部材S3が介在しており、これにより、層流素子10の上流側取出孔61と上流側圧力センサ4の流体の流入部との接続部分がシールされている。層流素子10と下流側圧力センサ5との間にはシール部材S4が介在しており、これにより、層流素子10の下流側取出孔62と下流側圧力センサ5の流体の流入部との接続部分がシールされている。 A seal member S3 is interposed between the laminar flow element 10 and the upstream pressure sensor 4, thereby preventing the upstream extraction hole 61 of the laminar flow element 10 and the fluid inlet portion of the upstream pressure sensor 4 from being separated. The connections are sealed. A sealing member S4 is interposed between the laminar flow element 10 and the downstream pressure sensor 5, thereby preventing the fluid inflow portion of the downstream pressure sensor 5 from the downstream extraction hole 62 of the laminar flow element 10. The connections are sealed.

流路部材3と板状部材60の周縁部60Aとの間には、流路部材3の周囲を囲むシール部材S5が介在しており、これにより、層流素子10を構成する各部材の接合部のいずれかから流体がリークしても、流路部材3から流体が外部へリークすることが抑制される。 A seal member S5 surrounding the flow path member 3 is interposed between the flow path member 3 and the peripheral edge portion 60A of the plate-like member 60, whereby the members constituting the laminar flow element 10 are joined together. Even if the fluid leaks from any of the portions, the fluid is prevented from leaking to the outside from the flow path member 3 .

図5の矢印に示すように、流路部材3の上流流路3Aを流れる流体は、層流素子10の板状部材20の導入用貫通孔21から層流素子10内に流入する。導入用貫通孔21から流入した流体の一部は、この導入用貫通孔21と連通している板状部材30の流路貫通孔31を流れる。導入用貫通孔21から流入した流体の残りは、板状部材40の上流側貫通孔41を介して、その1つ上の板状部材50の流路貫通孔51に流入する。流路貫通孔51を流れる流体は、下流側貫通孔42、流路貫通孔31の下流端部、及び、導入用貫通孔21を介して流路部材3の下流流路3Bに流れる。流路貫通孔31を流れる流体は、流路貫通孔51から下流流路3Bに流れる流体と合流して、導入用貫通孔21を介して流路部材3の下流流路3Bに流れる。 As indicated by arrows in FIG. 5 , the fluid flowing through the upstream channel 3A of the channel member 3 flows into the laminar flow element 10 through the introduction through holes 21 of the plate member 20 of the laminar flow element 10 . A portion of the fluid that has flowed in from the introduction through-hole 21 flows through the flow path through-hole 31 of the plate-like member 30 communicating with the introduction through-hole 21 . The rest of the fluid that has flowed in from the introduction through-hole 21 flows through the upstream through-hole 41 of the plate-shaped member 40 and into the channel through-hole 51 of the plate-shaped member 50 one above. The fluid flowing through the flow channel through hole 51 flows to the downstream flow channel 3B of the flow channel member 3 via the downstream through hole 42, the downstream end portion of the flow channel through hole 31, and the introduction through hole 21. The fluid flowing through the flow channel through hole 31 joins the fluid flowing from the flow channel through hole 51 to the downstream flow channel 3B and flows through the introduction through hole 21 to the downstream flow channel 3B of the flow channel member 3 .

流路貫通孔31を流れる流体の上流側の圧力は、板状部材40の上流側取出孔43により取り出される。取り出された当該圧力は、板状部材50の流路貫通孔51及び板状部材60の上流側取出孔61を介して上流側圧力センサ4に伝達されて、上流側圧力センサ4により検出される。同様に、流路貫通孔31を流れる流体の下流側の圧力は、板状部材40の下流側取出孔44により取り出され、流路貫通孔51及び下流側取出孔62を介して下流側圧力センサ5により検出される。流路貫通孔51を流れる流体の上流側及び下流側の圧力は、上流側取出孔61及び下流側取出孔62により取り出され、各圧力センサ4及び5によりそれぞれ検出される。このようなことにより、上流側圧力センサ4は、流路貫通孔31及び51それぞれを流れる流体の上流位置の圧力を検出する。下流側圧力センサ5は、流路貫通孔31及び51それぞれを流れる流体の下流位置の圧力を検出する。 The upstream pressure of the fluid flowing through the channel through-hole 31 is taken out by the upstream-side take-out hole 43 of the plate-shaped member 40 . The extracted pressure is transmitted to the upstream pressure sensor 4 via the flow passage through hole 51 of the plate member 50 and the upstream extraction hole 61 of the plate member 60, and detected by the upstream pressure sensor 4. . Similarly, the pressure on the downstream side of the fluid flowing through the flow channel through hole 31 is taken out by the downstream extraction hole 44 of the plate-like member 40 and is passed through the flow channel through hole 51 and the downstream extraction hole 62 to the downstream pressure sensor. 5 is detected. The upstream and downstream pressures of the fluid flowing through the flow passage through-hole 51 are extracted by the upstream extraction hole 61 and the downstream extraction hole 62 and detected by the pressure sensors 4 and 5, respectively. Thus, the upstream pressure sensor 4 detects the pressure at the upstream position of the fluid flowing through the passage through holes 31 and 51 respectively. The downstream pressure sensor 5 detects the pressure at the downstream position of the fluid flowing through the passage through holes 31 and 51 respectively.

図1~図5に示すように、本実施の形態では、流路貫通孔31と流路貫通孔51とが同一形状で形成され、上流側取出孔43と上流側取出孔61とが上下方向から見たときに上流側貫通孔41と下流側貫通孔42との間で一致する位置及び形状に形成され、かつ、下流側取出孔44と下流側取出孔62とが上下方向から見たときに上流側貫通孔41と下流側貫通孔42との間で一致する位置及び形状に形成されている。従って、流路貫通孔31と流路貫通孔51とのそれぞれにより形成される各流路についての差圧-流量特性(圧力センサ4及び5で検出された各圧力の差圧に対する流量の特性)は同じとなる。層流素子10を流れる流体の流量を増やしたい場合、板状部材30及び40の組み合わせを層流素子10に挿入するのみで、他の流路貫通孔31及び51(流路)それぞれと同じ差圧-流量特性を有する流路貫通孔(流路)を追加できる。なお、一般に、層流素子10を流れる流体の体積流量Qはn本の流路貫通孔(流路)を通過する流量Qsの和(下記の数式(3)参照)として表され、流量Qsは、下記の数式(4)のような関係で表される。数式(4)のwは流路貫通孔の幅、hは流路貫通孔の厚み、μは流体の粘性係数、Lは流路長さ、ΔPは上流側圧力センサ4と下流側圧力センサ5とにより検出された各圧力の差圧を表す。この実施の形態では、流路貫通孔31と流路貫通孔51とが同一形状で形成されるため(差圧-流量特性が同じであるため)、数式(4)のwh/12μLは、流路貫通孔31と流路貫通孔51とで同じとなる。このため、この実施の形態では、1の流路貫通孔の流量Qsに板状部材30及び40の組み合わせの数を乗じることで、全体の流量が容易に得られる。

Figure 2022156075000004
Figure 2022156075000005
As shown in FIGS. 1 to 5, in the present embodiment, the channel through-hole 31 and the channel through-hole 51 are formed in the same shape, and the upstream extraction hole 43 and the upstream extraction hole 61 are arranged vertically. When viewed from above, the upstream through-hole 41 and the downstream through-hole 42 are formed to have matching positions and shapes, and when the downstream extraction hole 44 and the downstream extraction hole 62 are viewed from above and below The positions and shapes of the upstream through-holes 41 and the downstream through-holes 42 are the same. Therefore, the differential pressure-flow characteristic for each flow channel formed by the flow channel through-hole 31 and the flow channel through-hole 51 (characteristic of the flow rate with respect to the differential pressure of each pressure detected by the pressure sensors 4 and 5) are the same. When it is desired to increase the flow rate of the fluid flowing through the laminar flow element 10, simply by inserting the combination of the plate-like members 30 and 40 into the laminar flow element 10, the same difference as the other flow path through-holes 31 and 51 (flow paths) can be obtained. Channel through-holes (channels) with pressure-flow characteristics can be added. In general, the volumetric flow rate Q of the fluid flowing through the laminar flow element 10 is expressed as the sum of the flow rates Qs (see the following formula (3)) passing through n passage through holes (flow paths), and the flow rate Qs is , is represented by a relationship such as the following formula (4). In Equation (4), w is the width of the channel through hole, h is the thickness of the channel through hole, μ is the viscosity coefficient of the fluid, L is the channel length, and ΔP is the upstream pressure sensor 4 and the downstream pressure sensor 5. represents the differential pressure of each pressure detected by and. In this embodiment, since the channel through-hole 31 and the channel through-hole 51 are formed in the same shape (because the differential pressure-flow characteristics are the same), wh 3 /12 μL in Equation (4) is The channel through hole 31 and the channel through hole 51 are the same. Therefore, in this embodiment, by multiplying the flow rate Qs of one channel through-hole by the number of combinations of the plate members 30 and 40, the total flow rate can be easily obtained.
Figure 2022156075000004
Figure 2022156075000005

板状部材20を第1板状部材、板状部材30及び50を第2板状部材、板状部材40を第3板状部材、板状部材60を第4板状部材として、第1板状部材の上に積層された複数の第2板状部材のうちの上下方向において隣同士の第2板状部材の間にそれぞれに1以上の第3板状部材を配置することで、上述のように各第3板状部材の流路貫通孔(流路)についての差圧-流量特性を同じにすることができる。そして、各第3板状部材の流路貫通孔(流路)についての差圧-流量特性を同じとすることで、層流素子全体での差圧-流量特性は、層流素子10を通過する全体の流量を各流路貫通孔の数で除すれば、流路貫通孔の数によらず同じとなる。このため、層流型流量計1の設計変更時に流路貫通孔の数を変更して流量レンジを変更した場合でも、流路貫通孔の数の異なる各層流型流量計1間、ないし各層流素子10間の流量-差圧特性(一流路当たりの差圧-流量特性をいう。単に層流型流量計1又は層流素子10の流量-差圧特性といった場合、この特性は、一流路当たりの差圧-流量特性をいう)は変わらないように取り扱える。層流素子10の製造方法においては、層流素子10に流す流体の流量に応じて、第2板状部材及び第3板状部材の数を決定し、決定した数の第2板状部材及び第3板状部材を積層して、層流素子を製造することで、第2板状部材及び第3板状部材の数によらず、層流素子全体の差圧-流量特性を、層流素子10を通過する全体の流量を各流路貫通孔の枚数で除すれば、同じにできる。つまり、第2板状部材及び第3板状部材の数によらず、層流素子の流量-差圧特性(一流路当たりの差圧-流量特性)を同じにできる。これにより、層流型流量計1の流量レンジの変更のたびに層流素子の差圧-流量特性を導出するなどの手間が不要となり、当該設計変更が容易となる。 The plate-like member 20 is the first plate-like member, the plate-like members 30 and 50 are the second plate-like members, the plate-like member 40 is the third plate-like member, and the plate-like member 60 is the fourth plate-like member. By arranging one or more third plate-shaped members between each of the second plate-shaped members that are adjacent to each other in the vertical direction among the plurality of second plate-shaped members stacked on the shaped members, the above-described Thus, it is possible to make the differential pressure-flow characteristics of the channel through-holes (channels) of the respective third plate members the same. By making the differential pressure-flow characteristics of the channel through-holes (channels) of each third plate member the same, the differential pressure-flow characteristics of the entire laminar flow element pass through the laminar flow element 10. If the total flow rate is divided by the number of channel through-holes, the flow rate is the same regardless of the number of channel through-holes. For this reason, even if the flow rate range is changed by changing the number of passage through-holes when the design of the laminar flow meter 1 is changed, the laminar flow between the laminar flow meters 1 with different numbers of passage through-holes or each laminar flow The flow rate-differential pressure characteristic between the elements 10 (refers to the differential pressure-flow rate characteristic per flow path. When simply referring to the flow rate-differential pressure characteristic of the laminar flow meter 1 or the laminar flow element 10, this characteristic is (refers to the differential pressure-flow characteristic of ) can be treated as unchanged. In the method of manufacturing the laminar flow element 10, the numbers of the second plate-like members and the third plate-like members are determined according to the flow rate of the fluid flowing through the laminar flow element 10, and the determined number of the second plate-like members and the By stacking the third plate-shaped members to manufacture the laminar flow element, the differential pressure-flow characteristics of the entire laminar flow element can be The same can be achieved by dividing the total flow rate passing through the element 10 by the number of flow passage through-holes. In other words, the flow rate-differential pressure characteristics (differential pressure per channel-flow rate characteristics) of the laminar flow element can be made the same regardless of the number of the second plate members and the third plate members. This eliminates the trouble of deriving the differential pressure-flow characteristic of the laminar flow element each time the flow range of the laminar flow meter 1 is changed, facilitating design changes.

また、この実施の形態では、板状部材60(第4板状部材)が、上下方向から見た場合に、板状部材20~50(第1~第3板状部材)よりも大きく形成されており、板状部材20~60からはみ出した周縁部60Aは、シール部材S5を介して、流路部材3の収容凹部3Cの外縁部に固定されている。これにより、層流素子10を流路部材3に固定するときに用いられるシール部材を少なくできる。すなわち、従来は、層流素子10の板状部材20~60が全て同じ大きさに形成され、層流素子10は、別のカバー部材によってカバーされて、流路部材3の収容凹部3Cに収容及び固定されていた。このため、従来は、層流素子10とカバー部材との間と、カバー部材と流路部材3との間との両者に別個のシール部材を使用していたが、本実施の形態では、シール部材が1つ分削減される。このように、本実施の形態では、少ないシール部材により層流型流量計1の必要箇所をシールできる。 Further, in this embodiment, the plate-like member 60 (fourth plate-like member) is formed to be larger than the plate-like members 20 to 50 (first to third plate-like members) when viewed in the vertical direction. A peripheral edge portion 60A protruding from the plate-shaped members 20 to 60 is fixed to the outer edge portion of the housing recess 3C of the flow path member 3 via a sealing member S5. As a result, the number of sealing members used when fixing the laminar flow element 10 to the channel member 3 can be reduced. That is, conventionally, the plate-like members 20 to 60 of the laminar flow element 10 are all formed to have the same size, and the laminar flow element 10 is covered by another cover member and accommodated in the accommodation recess 3C of the channel member 3. and was fixed. For this reason, conventionally, separate sealing members were used between the laminar flow element 10 and the cover member and between the cover member and the flow path member 3. One member is reduced. As described above, in the present embodiment, necessary portions of the laminar flow meter 1 can be sealed with a small number of sealing members.

さらに、図4に示すように、導入用貫通孔21及び上流側貫通孔41の、流路貫通孔31及び51を流れる流体の流れ方向(上下流方向)と直交する方向の長さである幅は、流路貫通孔31及び51よりも広い。同様に、排出用貫通孔22及び下流側貫通孔42の上下流方向と直交する方向の長さである幅は、流路貫通孔31及び51よりも広い。これにより、板状部材20~50の各位置にずれが生じたとしたとしても、貫通孔同士の上下方向から見たときの重なる面積が減少しない。例えば、板状部材20の位置と板状部材30の位置とがずれたとしても、導入用貫通孔21と流路貫通孔31とが上下方向から見て重なる面積は減らないため流路貫通孔に流入する流量や流れ方が一定となる。これにより上記位置ずれによって差圧-流量特性が変化してしまうことが抑制される。 Furthermore, as shown in FIG. 4, the width of the introduction through-hole 21 and the upstream through-hole 41, which is the length in the direction orthogonal to the flow direction (upstream/downstream direction) of the fluid flowing through the flow path through-holes 31 and 51 is wider than the passage through holes 31 and 51 . Similarly, the width of the discharge through-hole 22 and the downstream through-hole 42 , which is the length in the direction orthogonal to the upstream/downstream direction, is wider than the channel through-holes 31 and 51 . As a result, even if the positions of the plate-like members 20 to 50 are displaced, the overlapping areas of the through-holes when viewed in the vertical direction do not decrease. For example, even if the plate-like member 20 and the plate-like member 30 are displaced from each other, the overlapping area of the introduction through-hole 21 and the flow-path through-hole 31 does not decrease, so the flow-path through-hole does not decrease. The flow rate and flow direction of the As a result, it is possible to prevent the differential pressure-flow characteristic from changing due to the positional deviation.

なお、板状部材30及び50の流路貫通孔31及び51といった、複数の第2板状部材の各流路貫通孔が同形状であれば、板状部材30及び50などの各板状部材20~60の外形は異なってもよい。ただし、板状部材30及び50といった複数の第2板状部材を同形状とすることで、層流素子の構成要素を共通化でき、層流素子の製造コストを軽減することができる。同様に、板状部材40といった複数の第3板状部材を同形状とすることで、層流素子の構成要素を共通化でき、層流素子の製造コストを軽減することができる。 If the channel through-holes of the plurality of second plate-like members, such as the channel through-holes 31 and 51 of the plate-like members 30 and 50, have the same shape, each plate-like member such as the plate-like members 30 and 50 The profile of 20-60 may be different. However, by forming the plurality of second plate-like members such as the plate-like members 30 and 50 into the same shape, the constituent elements of the laminar flow element can be shared, and the manufacturing cost of the laminar flow element can be reduced. Similarly, by forming the plurality of third plate-like members such as the plate-like member 40 to have the same shape, the constituent elements of the laminar flow element can be shared, and the manufacturing cost of the laminar flow element can be reduced.

上流側取出孔43及び上流側取出孔61つまり複数の上流側の取出孔は、上下方向から見て、板状部材30及び50の流路貫通孔31及び51といった、複数の第2板状部材の各流路貫通孔を流れる流体の流れ方向(上下流方向)における同じ位置に配置されていればよい。下流側取出孔44及び下流側取出孔62つまり複数の下流側の取出孔も、上下方向から見て前記流れ方向における同じ位置に配置されていればよい。例えば、図6に示すように、上流側取出孔43及び上流側取出孔61、又は、下流側取出孔44及び下流側取出孔62は、流れ方向に直交する幅方向においてずれていてもよい。上流側又は下流側取出孔を、流体の流れ方向(上下流方向)における同じ位置とすることで、各流路貫通孔についての差圧-流量特性を同じとすることができるため、流路貫通孔の数の異なる層流素子間で同じ差圧-流量特性を得る事が出来る。 The upstream extraction holes 43 and the upstream extraction holes 61, that is, the plurality of upstream extraction holes are the plurality of second plate-like members such as the passage through holes 31 and 51 of the plate-like members 30 and 50 when viewed from above and below. may be arranged at the same position in the flow direction (upstream/downstream direction) of the fluid flowing through each flow passage through hole. The downstream extraction holes 44 and the downstream extraction holes 62, that is, the plurality of downstream extraction holes may also be arranged at the same position in the flow direction when viewed from above and below. For example, as shown in FIG. 6, the upstream extraction hole 43 and the upstream extraction hole 61, or the downstream extraction hole 44 and the downstream extraction hole 62 may be shifted in the width direction orthogonal to the flow direction. By locating the upstream or downstream extraction holes at the same position in the fluid flow direction (upstream/downstream direction), it is possible to make the differential pressure-flow rate characteristics the same for each flow path through hole. The same differential pressure-flow characteristics can be obtained between laminar flow elements with different numbers of holes.

板状部材40といった第3板状部材及び板状部材60といった第4板状部材の下流側貫通孔と下流側取出孔とは同じ貫通孔としてもよい。この場合、当該貫通孔及び排出用貫通孔22は、上下方向から見たときに重なる、特に、同じ位置にあるとよい。また、当該貫通孔及び排出用貫通孔22を同じ形状にして上下方向からみたときに一致させてもよい。 The downstream through-holes and the downstream extraction holes of the third plate-shaped member such as the plate-shaped member 40 and the fourth plate-shaped member such as the plate-shaped member 60 may be the same through-hole. In this case, the through-hole and the discharge through-hole 22 preferably overlap when viewed in the vertical direction, particularly at the same position. Further, the through hole and the discharge through hole 22 may be made to have the same shape and be aligned when viewed from the vertical direction.

上流及び下流の圧力センサ4及び5は、1の差圧センサとして構成されてもよい。 The upstream and downstream pressure sensors 4 and 5 may be configured as one differential pressure sensor.

[本発明の範囲]
以上、実施の形態及び変形例を参照して本発明を説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。例えば、本発明には、本発明の技術思想の範囲内で当業者が理解し得る、上記の実施の形態及び変形例に対する様々な変更が含まれる。上記実施の形態及び変形例に挙げた各構成は、矛盾の無い範囲で適宜組み合わせることができる。
[Scope of the present invention]
Although the present invention has been described with reference to the embodiments and modifications, the present invention is not limited to the above embodiments and modifications. For example, the present invention includes various modifications to the above embodiments and modifications that can be understood by those skilled in the art within the scope of the technical idea of the present invention. The configurations described in the above embodiments and modified examples can be appropriately combined within a consistent range.

1…層流型流量計、3…流路部材、3A…上流流路、3B…下流流路、3C…収容凹部、4…上流側圧力センサ、5…下流側圧力センサ、7…演算回路、10…層流素子、20…板状部材、21…導入用貫通孔、22…排出用貫通孔、30…板状部材、31…流路貫通孔、40…板状部材、41…上流側貫通孔、42…下流側貫通孔、43…上流側取出孔、44…下流側取出孔、50…板状部材、51…流路貫通孔、60…板状部材、60A…周縁部、61…上流側取出孔、62…下流側取出孔、63,64…貫通孔、S1~S5…シール部材。 REFERENCE SIGNS LIST 1 Laminar flow meter 3 Flow path member 3A Upstream flow path 3B Downstream flow path 3C Receiving recess 4 Upstream pressure sensor 5 Downstream pressure sensor 7 Arithmetic circuit DESCRIPTION OF SYMBOLS 10... Laminar flow element 20... Plate-shaped member 21... Introduction through-hole 22... Discharge through-hole 30... Plate-like member 31... Flow-path through-hole 40... Plate-like member 41... Upstream side penetration Holes 42 Downstream through hole 43 Upstream extraction hole 44 Downstream extraction hole 50 Plate member 51 Flow path through hole 60 Plate member 60A Periphery 61 Upstream Side extraction hole 62 Downstream extraction hole 63, 64 Through hole S1 to S5 Seal member.

Claims (7)

板厚方向を上下方向としたときに前記上下方向に積層された複数の板状部材を備え、内部に流体が流れる層流素子であって、
前記流体を前記層流素子内に導入する導入用貫通孔と、前記導入用貫通孔よりも下流側に位置し、前記流体を前記層流素子の外部に排出する排出用貫通孔とが形成された第1板状部材と、
前記第1板状部材の上に積層される複数の第2板状部材であり、前記導入用貫通孔により導入された前記流体の一部を前記排出用貫通孔に導く流路となる流路貫通孔を備える複数の第2板状部材と、
前記複数の第2板状部材のうちの前記上下方向において隣同士の第2板状部材の間にそれぞれ配置される1以上の第3板状部材であり、1つ上及び1つ下の前記流路貫通孔それぞれの上流部に連通し、1つ下の前記流路貫通孔に流入した前記流体の一部を1つ上の前記流路貫通孔に導く上流側貫通孔と、1つ上及び1つ下の前記流路貫通孔それぞれの前記上流部より下流の下流部に連通し、1つ上の前記流路貫通孔を流れる前記流体の一部を1つ下の前記流路貫通孔に導く下流側貫通孔と、1つ下の前記流路貫通孔を流れる前記流体の圧力を上方に取り出す、前記上流側貫通孔と前記下流側貫通孔との間に配置された上流側取出孔、及び、前記上流側取出孔よりも下流側に形成された下流側取出孔と、を備える1以上の第3板状部材と、
前記複数の第2板状部材のうち最も上に位置する第2板状部材の上に積層され、1つ下の前記流路貫通孔を流れる前記流体の圧力を上方に取り出す、上流側取出孔及び当該上流側取出孔よりも下流側に位置する下流側取出孔を備える第4板状部材と、を備え、
前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記上流側取出孔が、前記上下方向から見て前記流路貫通孔を流れる前記流体の流れ方向における同じ位置に配置されており、
前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記下流側取出孔が、前記上下方向から見て前記流れ方向における同じ位置に配置されており、
前記複数の第2板状部材それぞれの前記流路貫通孔が同じ形状に形成されている、
層流素子。
A laminar flow element comprising a plurality of plate-shaped members stacked in the vertical direction when the plate thickness direction is the vertical direction, and in which a fluid flows,
An introduction through-hole for introducing the fluid into the laminar flow element and a discharge through-hole located downstream of the introduction through-hole for discharging the fluid to the outside of the laminar flow element are formed. a first plate member;
A plurality of second plate-shaped members stacked on the first plate-shaped member, the flow path serving as a flow path for guiding part of the fluid introduced through the introduction through-hole to the discharge through-hole a plurality of second plate members having through holes;
one or more third plate-like members arranged between the second plate-like members adjacent to each other in the vertical direction among the plurality of second plate-like members; an upstream through-hole that communicates with the upstream part of each flow-path through-hole and guides part of the fluid that has flowed into the flow-path through-hole that is one lower, to the flow-path through-hole that is one above; and the upstream portion of each of the flow channel through-holes one lower and communicating with the downstream portion of each of the flow channel through-holes one lower, and part of the fluid flowing through the flow channel through-hole one lower and an upstream take-out hole disposed between the upstream through-hole and the downstream through-hole for extracting upward the pressure of the fluid flowing through the channel through-hole one level below. and a downstream extraction hole formed downstream of the upstream extraction hole;
An upstream extraction hole that is stacked on the uppermost second plate-shaped member among the plurality of second plate-shaped members and that extracts upward the pressure of the fluid flowing through the channel through-hole one level below. and a fourth plate-shaped member having a downstream extraction hole located downstream of the upstream extraction hole,
The upstream extraction holes of the one or more third plate-like members and the fourth plate-like member are arranged at the same positions in the flow direction of the fluid flowing through the flow channel through-holes when viewed from the vertical direction. has been
the downstream extraction holes of the one or more third plate-shaped members and the fourth plate-shaped member are arranged at the same position in the flow direction when viewed from the vertical direction;
the passage through-holes of each of the plurality of second plate-like members are formed in the same shape,
Laminar flow element.
前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記上流側取出孔が、前記上下方向から見て一致している、
請求項1に記載の層流素子。
the upstream extraction holes of the one or more third plate-shaped members and the fourth plate-shaped member are aligned when viewed from the vertical direction;
The laminar flow device according to claim 1.
前記1以上の第3板状部材と前記第4板状部材とのそれぞれの前記下流側取出孔が、前記上下方向から見て一致している、
請求項1又は2に記載の層流素子。
the downstream extraction holes of the one or more third plate-shaped members and the fourth plate-shaped member are aligned when viewed from the vertical direction;
The laminar flow device according to claim 1 or 2.
前記上流側貫通孔の前記流れ方向と直交する方向の長さである幅は、前記流路貫通孔よりも広い、
請求項1から3のいずれか1項に記載の層流素子。
The width, which is the length of the upstream through hole in the direction perpendicular to the flow direction, is wider than the flow channel through hole,
The laminar flow device according to any one of claims 1 to 3.
前記下流側貫通孔の前記流れ方向と直交する方向の長さである幅は、前記流路貫通孔よりも広い、
請求項1から4のいずれか1項に記載の層流素子。
A width, which is a length of the downstream through-hole in a direction orthogonal to the flow direction, is wider than that of the flow channel through-hole,
The laminar flow device according to any one of claims 1 to 4.
請求項1から5のいずれか1項に記載の層流素子と、
前記層流素子が収容される凹部と、前記第1板状部材の前記導入用貫通孔に前記流体を供給する上流流路と、前記第1板状部材の前記排出用貫通孔から前記流体が流入する下流流路と、を備える流路部材と、を備え、
前記層流素子の前記第4板状部材は、上下方向から見た場合に、前記第1板状部材、前記第2板状部材、及び、前記第3板状部材よりも大きく、
前記第1板状部材、前記第2板状部材、前記第3板状部材、及び、前記第4板状部材は、それぞれ、上下方向に隣り合う板状部材と接合されており、
前記第4板状部材の、前記第1板状部材、前記第2板状部材、及び、前記第3板状部材から張り出した周縁部が、シール部材を介して、前記流路部材の前記凹部の外縁部に固定されている、
層流型流量計。
a laminar flow device according to any one of claims 1 to 5;
The fluid flows from a concave portion in which the laminar flow element is accommodated, an upstream flow path that supplies the fluid to the introduction through-hole of the first plate-shaped member, and the discharge through-hole of the first plate-shaped member. a flow channel member comprising a downstream flow channel into which
The fourth plate-like member of the laminar flow element is larger than the first plate-like member, the second plate-like member, and the third plate-like member when viewed from above and below,
the first plate-shaped member, the second plate-shaped member, the third plate-shaped member, and the fourth plate-shaped member are joined to adjacent plate-shaped members in the vertical direction,
Peripheral portions of the fourth plate-like member projecting from the first plate-like member, the second plate-like member, and the third plate-like member extend through the recesses of the flow path member via the seal member. fixed to the outer edge of the
Laminar flow meter.
請求項1から5のいずれか1項に記載の層流素子の製造方法であって、
前記層流素子に流す前記流体の流量に応じて、前記第2板状部材及び前記第3板状部材の数を決定し、決定した数の前記第2板状部材及び前記第3板状部材を積層して、前記層流素子を製造する、
層流素子の製造方法。
A method for manufacturing a laminar flow device according to any one of claims 1 to 5,
determining the number of the second plate-like member and the third plate-like member according to the flow rate of the fluid flowing through the laminar flow element, and determining the determined number of the second plate-like member and the third plate-like member; to manufacture the laminar flow element,
A method for manufacturing a laminar flow element.
JP2021059588A 2021-03-31 2021-03-31 Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method Pending JP2022156075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021059588A JP2022156075A (en) 2021-03-31 2021-03-31 Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021059588A JP2022156075A (en) 2021-03-31 2021-03-31 Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method

Publications (1)

Publication Number Publication Date
JP2022156075A true JP2022156075A (en) 2022-10-14

Family

ID=83558699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059588A Pending JP2022156075A (en) 2021-03-31 2021-03-31 Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method

Country Status (1)

Country Link
JP (1) JP2022156075A (en)

Similar Documents

Publication Publication Date Title
EP1879004B1 (en) Flow rate measuring device
EP2600116A1 (en) Flow measurement structure and flow measurement device
CN106979806B (en) Flow rate measuring unit and flow rate control unit
EP3012593B1 (en) Ultrasonic flow meter device
JP2014077679A (en) Flow meter
JP4926519B2 (en) Gas flow measurement structure of ultrasonic gas meter
CN113155207A (en) Differential pressure type flowmeter
JP2022156075A (en) Laminar flow element, laminar flow type flow-meter, and laminar flow element manufacturing method
KR101194458B1 (en) Flow measuring device
US10605636B2 (en) Flowmeter
JP6228768B2 (en) Fluid resistance device
KR20190075466A (en) Printed Circuit Type Heat Exchanger Having Intermediate Plate
JP2004316685A (en) Flow passage unit, layered part, and manufacturing method of layered part
WO2006059466A1 (en) Rectified flow restricting device
JP6819863B2 (en) Bypass unit, flow meter base, flow control device base, flow meter, and flow control device
CN106979807B (en) Flow rate measuring unit and flow rate control unit
JP5465703B2 (en) Flow sensor
KR102065498B1 (en) A ultrasonic gas flow meter with laminar flow
JPH07119636B2 (en) Flowmeter
JP2020148485A (en) Laminar flow element and laminar flow type flowmeter
JP2014215061A (en) Flow rate measurement device
KR20240082100A (en) Mass flow measuring apparatus
JP2020139847A (en) Laminar flow element, fluid controller, and semiconductor manufacturing device
JP2005030795A (en) Measurement channel section, channel unit, and gas meter
EP3273025A1 (en) Laminar flow module