WO2006057416A1 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
WO2006057416A1
WO2006057416A1 PCT/JP2005/021928 JP2005021928W WO2006057416A1 WO 2006057416 A1 WO2006057416 A1 WO 2006057416A1 JP 2005021928 W JP2005021928 W JP 2005021928W WO 2006057416 A1 WO2006057416 A1 WO 2006057416A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
shielding layer
optical filter
electromagnetic wave
adhesive
Prior art date
Application number
PCT/JP2005/021928
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiko Iijima
Masaaki Ishikawa
Masatomo Waki
Original Assignee
Sumitomo Osaka Cement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004340493A external-priority patent/JP2006153950A/en
Priority claimed from JP2004340551A external-priority patent/JP2006153955A/en
Priority claimed from JP2004360179A external-priority patent/JP2006173189A/en
Priority claimed from JP2005243968A external-priority patent/JP2007057889A/en
Priority claimed from JP2005284388A external-priority patent/JP2007094090A/en
Priority claimed from JP2005284439A external-priority patent/JP2007096049A/en
Application filed by Sumitomo Osaka Cement Co., Ltd. filed Critical Sumitomo Osaka Cement Co., Ltd.
Publication of WO2006057416A1 publication Critical patent/WO2006057416A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/448Near infrared shielding means

Definitions

  • the present invention relates to an optical filter and a method for manufacturing the same. More specifically, the present invention relates to a film-integrated optical filter used for a display surface of an optical image display device such as a plasma display, and a method for manufacturing the same.
  • Background art
  • a plasma display device (hereinafter abbreviated as PDP) includes a front glass substrate having a display electrode, a bus electrode, a dielectric layer and a protective layer, a display electrode, a dielectric layer and a stripe barrier rib.
  • a cell is formed by adhering a back glass substrate having a phosphor layer to the electrodes so that the electrodes are orthogonal to each other, and a discharge gas such as xenon is enclosed in the cell.
  • the plasma display device emits light when xenon discharge occurs when a voltage is applied between the data electrode and the display electrode, and when the xenon ions in the plasma state return to the base state, ultraviolet light is generated.
  • a plasma display device is provided with an antireflection film, a near-infrared absorption film, and a filter with an electromagnetic wave force function on the front surface of the glass substrate light emitting portion.
  • the plasma display device is considered to be useful as a wall-mounted display device because it has a small installation space as a thin display device.
  • a PDP device including a light emitting means as described in Japanese Patent Application Laid-Open No.
  • Patent Document 1 a certain amount of Because the optical filter means that is configured by laminating the film laminated body of several layers on the glass across the space is installed, it can not be said that sufficient weight reduction has been achieved, In fact, in order to hang a wall in a general household, the wall needs to be sufficiently strong, and it may be necessary to reinforce the wall itself in advance. In addition, there are drawbacks such as double reflection of external light on the display surface due to reflection on the front glass part of the PDP and the front and back surfaces of the optical filter. In general, the main electromagnetic shielding film used for optical film is an etched metal (copper) mesh, or the metal (copper) is exposed on the etched end face. Reflection color peculiar to metal (copper) has a defect in the color tone of the display image.
  • the main electromagnetic shielding film used for optical film is an etched metal (copper) mesh, or the metal (copper) is exposed on the etched end face. Reflection color peculiar to metal (copper) has a defect in the color tone of the display
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-0 3 1 9 8 5 9 Disclosure of Invention
  • the object of the present invention is to provide excellent antireflection properties, near-infrared shielding properties, and electromagnetic wave shielding properties, excellent durability and visibility, lightweight, and easy to manufacture and handle.
  • An object of the present invention is to provide an optical filter that can be used for a display surface of a display device such as a display device, and a method for manufacturing the same.
  • the optical filter according to the present invention includes a transparent base material, an antireflection layer formed on one surface of the transparent base material, and formed on the other surface of the base material, and stacked on each other.
  • Composite including electromagnetic shielding layer and near infrared shielding layer The exposed surface of the composite layer that is not bonded to the transparent substrate has adhesiveness.
  • the electromagnetic wave shielding layer in the composite layer is formed on the other surface of the transparent substrate, and the near infrared shielding layer is the electromagnetic wave shielding. It is formed on the layer and has adhesive performance, and forms an adhesive exposed surface.
  • the electromagnetic wave shielding layer in the composite layer is formed on the other surface of the transparent substrate, and the near-infrared shielding layer is It is formed on an electromagnetic wave shielding layer, and the adhesive exposed surface is formed by an adhesive layer formed on the other surface of the near infrared shielding layer.
  • the adhesive layer formed on the near-infrared ray shielding layer has a maximum absorption peak in a wavelength range from 585 nm to 600 nm. It is preferable to have.
  • the near-infrared shielding layer in the composite layer is formed on the other surface of the transparent substrate, and one surface of the electromagnetic wave shielding layer is The adhesive exposed surface is formed on the near infrared shielding layer, and the adhesive exposed surface is formed by an exposed surface of an adhesive layer formed on the other surface of the electromagnetic shielding layer.
  • the adhesive layer formed on the electromagnetic wave shielding layer preferably has a maximum absorption peak in a wavelength region from 585 nm to 600 nm. .
  • the near-infrared shielding layer in the composite layer is formed on the other surface of the transparent substrate, and one surface of the electromagnetic wave shielding layer is The adhesive exposed surface is bonded to the near-infrared shielding layer via a surface adhesive layer. It is formed by the exposed surface of the back surface adhesive layer formed on the other surface of the shielding layer.
  • optical filter of the present invention in particular its embodiment (1) (
  • the electromagnetic wave shielding layer is made of a metal mesh.
  • optical filter of the present invention in particular its embodiment (1) (
  • the electromagnetic wave shielding layer is
  • the first electrode connection portions are provided at two positions apart from each other in the peripheral portion of the electromagnetic wave shielding layer.
  • the electromagnetic wave shielding layer is
  • the catalyst layer is preferably formed of a metal layer formed by printing a catalyst ink in a mesh shape on the near-infrared shielding layer and performing a metal plating treatment thereon.
  • optical filter of the present invention in particular its embodiment (1) (
  • the surface of the electromagnetic wave shielding layer is preferably covered with a black metal.
  • the transparent base material has an external absorption capability.
  • the near infrared shielding layer is formed on the electromagnetic shielding layer by a printing method. Is preferred.
  • the front surface adhesive layer is formed on the one surface of the electromagnetic wave shielding layer, except that the first electrode joint portion is exposed. Covering the other whole surface, or It is preferably adhered to the near-infrared shielding layer, and the back surface adhesive layer preferably covers the entire surface of the other surface of the electromagnetic wave shielding layer.
  • an antireflection layer is formed on one surface of a transparent substrate, and an electromagnetic wave shielding layer and a near red layer laminated on each other surface of the transparent substrate. Forming a composite layer including an external shielding layer (however, the surface of the composite layer that is not in contact with the transparent substrate has adhesiveness), and forming them into an integral film Is included.
  • a ground electrode joint portion that is exposed without being covered at least two locations that are separated from each other in the peripheral portion of the electromagnetic wave shielding layer.
  • the optical filter of the present invention is excellent in antireflection, near-infrared shielding, electromagnetic wave shielding, durability in use and ease of visual observation of images, and is light in weight, and therefore easy to manufacture and handle. Thus, it is practically useful as an optical filter for the display surface of various display devices such as a plasma display device.
  • FIG. 1 is a cross-sectional explanatory view showing the configuration of the optical filter of the present invention.
  • FIG. 2 (a) is a longitudinal section showing an example of a laminated configuration of an embodiment (1) of the optical filter of the present invention.
  • Fig. 2- (b) is a plane explanatory diagram when the optical filter of Fig. 2- (a) is viewed from the direction of arrow A,
  • FIG. 3 is a plane explanatory view of another example of the embodiment (1) of the optical filter of the present invention.
  • FIG. 4 is a partial cross-sectional explanatory view of a device in which the embodiment (1) of the optical filter of the present invention is mounted on the display surface of the image display device.
  • FIG. 5_ (a) is a longitudinal cross-sectional explanatory view showing an example of the laminated structure of the embodiment (2) of the optical filter according to the present invention
  • FIG. (A) is an explanatory plan view when viewing the optical filter evening of (a) from the direction of arrow A,
  • FIG. 6 is a plane explanatory view of another example of the embodiment (2) of the optical filter according to the present invention.
  • FIG. 7 is a partial cross-sectional explanatory diagram of an apparatus in which the embodiment (2) of the optical filter of the present invention is mounted on the display surface of the image display apparatus.
  • FIG. 8 (a) is a longitudinal sectional view showing an example of the laminated structure of the embodiment (3) of the optical filter of the present invention, and FIG. ) When viewed from the direction of arrow A,
  • FIG. 9 is a plane explanatory view of another example of the embodiment (3) of the optical filter of the present invention.
  • FIG. 10 is a partial cross-sectional explanatory view of a device in which the embodiment (3) of the optical filter of the present invention is mounted on the display surface portion of the image display device
  • FIG. 11 is a cross-sectional explanatory view showing an example of a laminated structure of an embodiment (4) of the optical filter of the present invention.
  • FIG. 12 is an explanatory cross-sectional view showing a laminated structure of an electromagnetic wave shielding layer as an example of the embodiment (4) of the optical filter of the present invention and a front surface and a back surface adhesive layer;
  • FIG. 13 is a front explanatory view of the optical filter shown in FIG. 11.
  • FIG. 14 is a front explanatory view of another example of the embodiment (4) of the optical filter according to the present invention.
  • FIG. 15 shows still another embodiment (4) of the optical filter according to the present invention. It is front explanatory drawing of an example,
  • FIG. 16 is a partial cross-sectional explanatory view of an apparatus when the embodiment (4) of the optical filter of the present invention is mounted on an image display apparatus.
  • the optical filter according to the present invention includes a transparent base material, an antireflection layer formed on one surface of the transparent base material, and formed on the other surface of the base material, and laminated on each other.
  • an exposed surface of the composite layer that is not in contact with the transparent substrate has adhesiveness.
  • the electromagnetic wave shielding layer may be formed on the other surface of the substrate, or the near-infrared shielding layer on the other surface of the substrate. It may be formed.
  • FIG. 1 is an explanatory cross-sectional view showing the configuration of the optical filter of the present invention.
  • an optical filter 1 is composed of a sheet-like transparent substrate 2, an antireflection layer 3 formed on one surface, and a composite layer 4 formed on the opposite surface of the transparent substrate 2.
  • the composite layer 4 includes an electromagnetic wave shielding layer 5 and a near-infrared shielding layer 6 laminated and bonded thereto.
  • the composite layer 4 is composed of the electromagnetic wave shielding layer 5.
  • the transparent substrate 2 is laminated and fixed on the opposite surface.
  • the composite layer 4 may be laminated and fixed to the opposite surface of the transparent substrate in the near infrared shielding layer.
  • the transparent substrate 2, the antireflection layer 3, and the composite layer 4 including the electromagnetic wave shielding layer 5 and the near infrared shielding layer 6 are laminated and joined together to form an integral body. Form a film-like laminate ing.
  • the exposed surface 4a of the composite layer 4 that is not bonded to the transparent substrate 2 has adhesiveness.
  • each of functional layers such as an antireflection layer, an electromagnetic wave shielding layer, and a near-infrared shielding layer are formed and supported on separate transparent substrates, and It is formed by sequentially laminating a plurality of composites composed of each and a transparent base material carrying the same on the glass panel via an adhesive layer.
  • the plurality of functional layer-supporting composite films are formed through an adhesive layer.
  • an antireflection layer is formed and fixed on one surface of a transparent substrate (film), and the other surface of the transparent substrate is mutually attached.
  • a composite layer including an electromagnetic wave shielding layer and a near infrared ray shielding layer laminated and bonded is formed and fixed.
  • the optical filter of the present invention has a smaller number of component layers, a lower material cost, and a smaller number of manufacturing processes than the conventional transparent laminate for optical films. The manufacturing cost is also low.
  • the optical filter according to the present invention has excellent optical characteristics that the light transmittance is remarkably improved and the haze value is low due to the above configuration.
  • the optical filter can be connected to the desired optical display surface on the adhesively exposed surface. For example, it can be easily bonded and fixed to the image display surface of the plasma television.
  • the transparent base material used in the present invention is a transparent material
  • the material constituting the transparent substrate is preferably selected from transparent plastic materials.
  • Rate-, sheet-, or film-like polyester base materials, triacetyl cellulose base materials, polystrengthen Ponate base materials, polyether sulfone base materials, polyacrylate base materials, norbornene base materials, and amorphous Polyolefin base materials can be selected as appropriate, and the thickness is not particularly limited, usually 50 n! A film or plate of about ⁇ l Omm can be used.
  • PET substrate polyethylene terephthalate (hereinafter also referred to as PET) substrate is preferably used because of its excellent durability, solvent resistance, and productivity. Further, in order to adjust the color tone and transmittance, a colored one may be used.
  • PET polyethylene terephthalate
  • an ultraviolet shielding material for the transparent substrate.
  • the near-infrared absorbing dye contained in the composite layer usually has a low resistance to ultraviolet rays, so that the deterioration of the near-infrared absorbing dye can be suppressed by using an ultraviolet shielding material as the transparent substrate.
  • an ultraviolet shielding material for example, an ultraviolet absorbing compound such as benzophenone, benzotriazole, paraaminobenzoic acid, and salicylic acid can be used. Usually, a sufficient effect cannot be obtained if the ultraviolet absorber is not used in an added amount of a specific amount or more.
  • the amount of the ultraviolet absorber that can be contained in the coating layer is limited, and it is difficult to obtain the required ultraviolet shielding effect. is there.
  • the near-infrared shielding adhesive layer is located inside the transparent substrate, an ultraviolet absorber is applied to the transparent substrate itself having a thickness larger than that of the thin coating layer.
  • an optical film containing a sufficient amount of the UV absorber can be constructed. Therefore, it is possible to suppress deterioration of the near-infrared absorbing dye and maintain excellent near-infrared absorbing performance.
  • the ultraviolet transmittance is preferably 2% or less.
  • the configuration and composition of the antireflection layer formed on one surface of the transparent substrate are not particularly limited as long as the antireflection layer has a desired antireflection effect. Or may have a plurality of structures. Moreover, a conductive layer such as an antistatic layer and / or a thin film layer having a function such as antiglare may be further formed on the antireflection layer.
  • the antireflection layer includes a hard coat layer, a conductive medium refractive index layer laminated on the hard coat layer, a high refractive index layer laminated on the conductive medium refractive index layer, and the high refractive index layer. It is preferably composed of a low refractive index layer laminated thereon.
  • the antireflection layer having such a configuration is a conductive antireflection layer, and can prevent dust adhesion due to static electricity.
  • this conductive medium refractive layer has the function of a medium refractive index layer, it is possible to form an antireflection film with three layers of medium refraction, high refraction, and low refraction, thereby providing excellent antireflection. An effect is obtained.
  • the hard coat layer is formed of a resin component, but preferably contains oxide fine particles. By containing fine oxide particles, adhesion to a transparent substrate is improved.
  • the content of oxide fine particles in the hard coat layer is preferably 30% by mass to 80% by mass.
  • the content of the oxide fine powder is less than 30% by mass, the first transparent base material has poor adhesion to the middle refractive index layer, and the desired pencil hardness, film hardness such as steel wool strength, etc. Don't get Become.
  • the content of the oxide fine powder is more than 80% by mass, the content of the oxide fine powder becomes excessive, the film strength of the obtained hard coat layer is lowered, and the resulting hard coat layer has a whitening phenomenon. Recognized problems such as reduced flexibility of the film after curing and easy cracking.
  • the refractive index of the hard coat layer is preferably designed to be the same value as the average surface refractive index of the transparent substrate. This is to make the so-called “irregular color irregularity of the surface” inconspicuous by reducing the difference in the amplitude of the reflectance caused by the difference in the average refractive index of the surface of the transparent substrate and that of the hard coat layer It is because it can do.
  • the refractive index of the hard coat layer is preferably the same as or close to the refractive index calculated by the following formula: .
  • N Np-(Ns-Np) / 2
  • Ns Surface average refractive index of PET substrate
  • the oxide fine particles used in the hard coat layer include silicon oxide, aluminum oxide, antimony oxide, tin oxide, zirconium oxide, tantalum oxide, cerium oxide, titanium oxide, and the like.
  • the particle size of the oxide fine particles which is appropriately used for reasons such as being able to form a hard coat layer excellent in transparency without being colored, is preferably 100 or less. This is because in the fine oxide powder of particle system exceeding lOOnm, the resulting hard coat layer scatters light significantly due to Rayleigh scattering, and appears to be white and the transparency is lowered.
  • UV curable resin for example, UV curable resin, electron beam curing Resins, cationic polymerization resins, and the like can be mentioned.
  • ultraviolet curable resins are preferably used because they are inexpensive and have excellent adhesion to a transparent plastic film.
  • the UV curable resin may be any photosensitive resin used in the coating method (wet coating method).
  • acrylic resin, acrylic urethane resin, silicone resin, epoxy resin A resin or the like is preferably used for the reason that the dispersibility of the oxide fine powder is not impaired.
  • the hard coat layer in the antireflection layer is formed by, for example, applying a coating for forming a hard coat layer containing at least an organic resin component, oxide fine particles, and an organic solvent on a transparent substrate, drying, It is formed by ultraviolet irradiation.
  • the transparent hard coat layer-forming coating material is, for example, an organic solvent using an ordinary method using ultrasonic dispersion, a homogenizer, a sand mill, etc., using the oxide fine particles and the resin component as a dispersant. It can be obtained as an organic solvent-based paint mixed and dispersed in it.
  • the organic solvent can be selected from alcohols, glycols, acetates, ketones, etc., and these may be used singly or in combination of two or more.
  • the hard coat layer-forming paint is applied to one side of the transparent substrate, and is hardened by crosslinking by ultraviolet irradiation or the like to form a hard coat layer.
  • the thickness of this hard coat layer is 0.5 2 ⁇ ! It is preferably ⁇ 20 ⁇ , more preferably 0.5 to 2 ⁇ . If the film thickness is 0.5 mm or less, sufficient film hardness may not be achieved, and if it is 20 or more, the curling of the transparent substrate may increase.
  • the coating method various coating methods can be used. For example, a bar coating method, a gravure coating method, a slitco overnight method, a roll coating method, a dip coating method, etc. are appropriately selected. can do
  • the conductive middle refractive index layer formed on the hard coat layer preferably has conductivity, and includes fine particles having a middle refractive index and one binder component.
  • the conductive middle refractive index layer in the conductive middle refractive index layer The content of fine particles is
  • the content of the conductive medium refractive index fine particles is less than 50% by mass, the surface resistance value of the conductive medium refractive index layer increases, the conductivity deteriorates, and the filler component may decrease. For this reason, the adhesion with the hard coat layer may be insufficient.
  • the content of the conductive medium refractive index fine particles exceeds 95% by mass, the content of the binder component is relatively decreased, so that a sufficient amount of the conductive medium refractive index is contained in the binder matrix. Fine particles cannot be retained, and when applying another layer on the conductive medium refractive index layer, the film is likely to be scratched, which may cause poor appearance.
  • the conductive medium refractive index fine particles include antimony-containing tin oxide (hereinafter referred to as AT0), tin-containing indium oxide (hereinafter referred to as IT0), aluminum-containing zinc oxide, metal fine particles such as gold, silver, and palladium. It is preferably used for the reason that a conductive medium refractive index layer having excellent transparency and conductivity can be formed.
  • the average particle diameter of the conductive medium refractive index fine particles is preferably 1 to 1 OOnm. If it is less than the average particle size force, it tends to agglomerate at the time of coating, making it difficult to uniformly disperse the coating, further increasing the viscosity of the coating and causing poor dispersion. Also, if the average particle size of the conductive medium refractive index fine particles exceeds lOOnm, the resulting conductive medium refractive index layer remarkably diffuses light due to Rayleigh scattering, so that it appears white. Decrease There is.
  • binder component a substance produced from silicon alkoxide and / or a hydrolysis product is preferable.
  • the conductive medium refractive index layer is a conductive medium refractive index layer forming coating material comprising at least conductive medium refractive index fine particles, silicon alkoxide and / or a hydrolysis product thereof, and an organic solvent. It can be formed by applying and drying on the hard coat layer.
  • the conductive medium refractive index layer-forming coating material comprises the conductive medium refractive index oxide fine particles, silicon alkoxide and / or a hydrolysis product thereof, and other particles optionally added, using a dispersant. It can be dispersed in an organic solvent by an ordinary method using an ultrasonic disperser, a homogenizer, a sand mill or the like to obtain an organic solvent-based paint.
  • the silicon alkoxide can be selected from, for example, a tetraalkoxysilane compound, an alkyltrialkoxysilane compound, and the like, and examples of the organic solvent include alcohols, glycols, acetate esters, and ketones. These can be selected from a single species or a mixture of two or more species.
  • the conductive medium refractive index layer forming coating is applied on the transparent hard coat layer, and dried at 70 to 130 ° C. for 1 minute or longer, for example, and the optical film thickness is in the range of 140 dragons. It is preferable to adjust to.
  • the drying temperature exceeds 130 ° C, it is not preferable because the transparent plastic film used causes thermal deformation. Further, if it is less than 70 ° C, the curing rate is slow and the strength is not exhibited. Further, if the curing time is less than the minutes, the film strength is insufficient, which is not preferable.
  • coating methods include bar coating and gravure coating.
  • the method can be appropriately selected from the following methods: slitting method, slitting method, roll coating method, dip coating method, and the like.
  • the high refractive index layer formed on the conductive intermediate refractive index layer includes, for example, high refractive index fine particles and a binder component.
  • the content of high refractive index oxide fine particles in the refractive index layer is preferably 50% by mass or more, more preferably 60 to 95% by mass.
  • the content of the high refractive index oxide fine particles is less than 50%, the content of the binder component is relatively increased and the refractive index is lowered, so that a sufficiently high refractive index cannot be obtained, and the reflectance is excessive. May increase.
  • the content of the high refractive index oxide fine particles exceeds 95%, the high refractive index oxide fine particles cannot be sufficiently fixed by the binder component, and the transparent high refractive index layer is not fixed. When other layers are applied to the surface, scratches are likely to occur, and appearance defects may occur.
  • high refractive index oxide fine particles cerium oxide, zinc oxide, zirconium oxide, titanium oxide, tantalum oxide and the like are preferably used for the reason that a high refractive index layer excellent in transparency can be formed.
  • the average particle diameter of the fine refractive index oxide fine powder is preferably 1 to 100 nm. If the average particle size is less than 1 nm, aggregation tends to occur during coating, making uniform dispersion difficult for coating, further increasing the viscosity of the coating and causing poor dispersion. In addition, when the average particle diameter of the high refractive index oxide fine powder exceeds lOOnm, the resulting high refractive index layer remarkably diffuses light due to Rayleigh scattering, so that it appears white and the transparency is high. It may be insufficient.
  • silica derived from silicon alkoxide and / or a hydrolysis product thereof is preferable.
  • the high refractive index layer includes high refractive index oxide fine particles, a binder component, It is formed by applying and drying on a conductive middle refractive index layer using a transparent high refractive index forming paint containing at least an organic solvent.
  • the coating material for forming a high refractive index layer comprises ultrasonic waves using the above-mentioned high refractive index oxide fine powder, silicon alkoxide and z or a hydrolysis product thereof, and optionally added particles, using a dispersant. It can be dispersed in an organic solvent by an ordinary method using a disperser, a homogenizer, a sand mill, etc. to obtain an organic solvent-based paint.
  • the silicon alkoxide can be selected from, for example, a tetraalkoxysilane compound, an alkyltrialkoxysilane compound, and the like, and examples of the organic solvent include alcohols, glycols, acetate esters, and ketones. These can be selected from a single species or a mixture of two or more species.
  • the high refractive index layer-forming coating material is applied onto the conductive middle refractive index layer, and dried at 70 to 130 ° C. for 1 minute or longer to form a high refractive index layer.
  • the film thickness is preferably set to 1.2 to 2.5 times the optical film thickness of the low refractive index layer.
  • the film thickness design for anti-reflection is to set the film thickness of the high-refractive index layer and low-refractive index layer to 1/4 of the wavelength indicating the target minimum reflectivity (hereinafter referred to as the “potential wavelength”).
  • the reflected color of the part becomes strong, and it shows a tight bluish purple to reddish purple reflected color. Furthermore, it leads to an increase in luminous reflectance, which is an index of visual reflectance.
  • the optical film thickness of the low refractive index layer is 1.2 to 2.5 times. It was found that the problem can be solved by designing a design thicker than the design method. Regarding the drying temperature, if it exceeds 130 ° C, it may cause thermal deformation depending on the transparent plastic film used. Also, if it is less than 70 ° C, the curing rate is slow and sufficient strength may not be exhibited. Also, if the curing time is less than the strength of the film, the film strength may be insufficient.
  • the coating method can be appropriately selected from, for example, a bar coating method, a gravure coating method, a slitco overnight method, a mouthful ruco overnight method, a dip coating method, and the like.
  • the low refractive index layer laminated on the high refractive index layer is, for example, a high-refractive index layer forming coating containing silicon alkoxide and / or a hydrolysis product thereof, silicone oil, and an organic solvent. It is formed by coating on the refractive index layer and drying.
  • the refractive index of the low refractive index layer is preferably 0.1 or more smaller than the refractive index of the high refractive index layer.
  • the silicon alkoxide used as the coating material for forming the low refractive index layer can be appropriately selected from tetraalkoxysilane compounds, alkyltrialkoxysilane compounds, and the like, and the silicone oil can be a dialkylalkoxysilane. It can be suitably used from the lan compound.
  • the organic solvent can be appropriately selected from alcohols, glycols, acetates, and ketones. These may be used alone or in combination of two or more. .
  • silicone oil is contained in the transparent refractive index layer-forming coating in an amount of 0.01 to 5.0% by mass, the contact angle of the coating film with water becomes 90 ° or more, water repellency is exhibited, and slipperiness is achieved.
  • Antistatic and transparent film with antireflection film The film strength of the film (especially steel wool strength) is improved and antifouling properties can be imparted.
  • the silicone oil When the content of the silicone oil is less than 0.01% by mass, the silicone oil does not sufficiently bleed on the surface of the transparent low refractive index layer, and the contact angle with water is less than 90 °, and sufficient water repellency cannot be obtained. The film strength improvement and antifouling property of the transparent film with antistatic and antireflection film may not be obtained. If the content exceeds 5.0% by mass, the silicone oil becomes excessive on the surface of the transparent low refractive index layer, so that the contact angle with water exceeds 90 ° and sufficient water repellency is obtained. In order to inhibit the polymerization and curing reaction of silicon alkoxide and Z or its hydrolysis product, it may cause a decrease in film strength of the transparent film with antistatic / antireflection film.
  • drying temperature exceeds 130 ° C, it may cause thermal deformation depending on the transparent plastic film used. Also, if it is less than '70 ° C, the curing rate is slow and strength may not be exhibited. If the curing time is less than enough, the film strength may be insufficient.
  • the coating method can be appropriately selected from, for example, a bar coating method, a gravure coating method, a slit coating method, a mouth coating method, a dip coating method, and the like.
  • the antistatic / antireflection film prepared by the above method has a good antistatic effect, antireflection property, strong film hardness, and antifouling properties. The reason is considered as follows.
  • the presence of a large amount of inorganic compound filler in the transparent hard coat layer, the transparent conductive medium refractive index layer, and the transparent high refractive index layer increases the surface energy of the layer and wets each coating onto the surface of each layer.
  • the wettability-improving effect can improve the adhesion between the layers, thereby obtaining a stronger film strength than before.
  • the transparent low refractive index layer as the outermost layer contains silicone oil, and the water contact angle exceeds 90 ° and can impart water repellency. This water-repellent effect is sufficiently maintained even when rubbed with cotton cloth or the like, and higher antifouling properties than before can be obtained. The reason why the antifouling property lasts is thought to be because silicone oil is incorporated in the silica matrix and does not ooze out easily.
  • the composite layer included in the optical filter of the present invention is bonded onto the other surface of the transparent substrate, and includes an electromagnetic wave shielding layer laminated and bonded to each other, and a near infrared shielding layer. Yes, the exposed surface of the composite layer must have adhesiveness.
  • the composition / composition of the electromagnetic wave shielding layer contained in the composite layer formed on the other surface of the transparent substrate so that the optical filter has electromagnetic wave shielding properties and image transparency.
  • a metal mesh layer, a transparent conductive film containing a conductive substance, or the like can be used.
  • the metal mesh layer may be formed by printing a mesh pattern with a catalyst ink on a transparent base material and applying a gold plating to the mesh pattern.
  • a conductive material such as silver formed by vapor deposition, sputtering, or the like is used as the transparent conductive film layer.
  • the thickness of the electromagnetic shielding layer is preferably 1 to 10 / im.
  • the thickness of the metal mesh layer is greater than 10 m, the viewing angle becomes narrow and visibility is reduced. Furthermore, even if the surface is blackened, when viewed from an oblique direction, the metal The depth direction of the screen is difficult to be blackened, and the color tone of the metal is exposed, resulting in problems with the color tone of the screen.
  • the edge of the two sides of the metal mesh layer may be a metal film.
  • the near-infrared shielding performance of the near-infrared shielding adhesive layer contained in the composite layer preferably has a shielding property against near-infrared rays in the wavelength range of 800 to ll O Onm.
  • a near-infrared absorbing dye is contained in the resin matrix.
  • the near-infrared absorbing dye is not particularly limited as long as it has a shielding property against near infrared rays in the range of 800 to 1100 nm.
  • dimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes Systemic compounds, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds, triphenylmethane compounds, mercaptonaphthol compounds, etc. can be used. It may be used, or it may be used in combination with an aircraft, or two or more may be used in appropriate combination.
  • Dimmonium compounds have strong absorptivity with a molar extinction coefficient of about 100,000 in the near infrared region with a wavelength of 850 to l l O Onm, and thus have excellent near infrared shielding properties. Dimmonium compounds have a slight absorption in the visible light region with a wavelength of 400 to 500 nm and exhibit a yellowish brown transmission color, but the visible light transmission is superior to other near-infrared absorbing dyes. Therefore, it is preferable that at least one dimonium-based compound is contained in the near-infrared absorbing dye used in the optical film according to the present invention.
  • Near-infrared shielding adhesive layer exhibits practically sufficient near-infrared shielding properties
  • the near infrared transmittance at a wavelength of 850 to lOO Onm is 20% or less.
  • the preferred amount of the near-infrared absorbing dye in the near-infrared shielding adhesive layer varies depending on the thickness of the adhesive layer. When using a dimonium-based compound and designing the adhesive layer to have a thickness of about 5 to 50 m, blending a near-infrared absorbing dye compound with 100 parts by mass of the transparent resin used as a matrix The amount is preferably about 0.5 to 5.0 parts by mass.
  • the blending amount of the near-infrared ray absorbing dye compound with respect to 100 parts by mass of the transparent matrix resin exceeds 5 parts by mass, the segregation of the dye occurs in the obtained near-infrared shielding layer or the visible light transparency is increased. May decrease.
  • the second near-infrared absorbing dye has an absorption maximum at 750 to 900 nm and has substantially no absorption in the visible light region 1 More than one type of dye, for example, its absorption coefficient at its absorption maximum wavelength and its respective absorption coefficient at wavelengths of 450 nm (center wavelength of blue light), 525 nm (center wavelength of green light) and 620 nm (center wavelength of red light)
  • one or two or more near-infrared absorbing dyes having a ratio of 5.0 or more are used in combination, and the ratio of the extinction coefficients of the second near-infrared absorbing dyes is 8.0 or more.
  • the wavelength of 450 nm (the central wavelength of blue light) when the average transmittance of 850 to 900 nm required for practical use is 20% or less , 525nm (center wavelength of green light), and 620 ⁇ (center wavelength of red light) are less than 60% of visible light transmittance, and the transmittance in the visible light region may be insufficient in practice. .
  • Examples of the second near-infrared absorbing dye compound having the above-described characteristics include dithiol nickel complex compounds, indolium compounds, phthalocyanine compounds, naphthalocyanine compounds, and the like. Can be. In particular, phthalocyanine compounds and naphthalocyanine compounds are generally excellent in durability and can be suitably used. However, since naphthalocyanine compounds are more expensive, phthalocyanine compounds are more practical. Preferably used.
  • the composite layer includes an electromagnetic wave shielding layer bonded to the other surface of the transparent substrate, and a near infrared shielding layer formed on the electromagnetic wave shielding layer.
  • the near-infrared shielding layer may contain an adhesive, so that the exposed surface of the near-infrared shielding layer may exhibit adhesiveness, or the adhesive may be formed on the exposed surface of the near-infrared shielding layer.
  • the adhesive layer containing may be formed, and thereby the adhesive exposed surface may be formed.
  • a near-infrared shielding layer is formed on the other surface of the transparent substrate, and the electromagnetic shielding layer
  • One surface is bonded to the near-infrared shielding layer via a front surface adhesive layer containing an adhesive, and a surface adhesive layer containing an adhesive is formed on the other surface of the electromagnetic wave shielding layer.
  • the adhesive adhesive exposed surface of the composite layer may be formed by the back surface adhesive layer.
  • Adhesives contained in each of the adhesive layers are acrylic resin, polyester resin, epoxy resin, urethane resin, melamine resin, acrylonitrile-butadiene copolymer (NBR), and ethylene vinyl acetate copolymer ( It may contain one or more selected from EVA).
  • the concentration of the near-infrared absorbing dye in the mixture of the near-infrared absorbing dye and the adhesive is preferably 0, 5 to 5% by mass.
  • the visible wavelength of 590 nm is obtained.
  • the light transmittance is preferably 10% or more lower than the visible light transmittance at wavelengths of 450 nm, 525 nm, and 620 nm.
  • the contrast of a display such as a plasma display is improved, and the color tone correction function is enhanced.
  • the coloring material that selectively absorbs visible light having a wavelength of 590 nm is not particularly limited as long as it does not adversely affect the compositional alteration of the dimonium compound.
  • quinacridone pigments, azomethine compounds, cyanine compounds It is preferable to use a compound, a porphyrin compound, or the like.
  • FIG. Fig. 2-(a) is a longitudinal sectional view of this optical filter
  • Fig. 2-(b) is a front view of this optical filter when viewed in direction A.
  • the optical film 1 is formed on the transparent substrate 2, the antireflection layer 3 formed on one surface thereof, and the other surface of the transparent substrate 2.
  • an electromagnetic wave shielding layer 5 force is formed on the transparent substrate 2, and a near infrared shielding layer 6 is formed and fixed on the electromagnetic wave shielding layer 5. ing.
  • the electromagnetic wave shielding layer 5 preferably has two or more earth electrode connection parts, and the ground electrode connection parts are formed of the electromagnetic wave shielding layer 5. It is preferable that the peripheral portions 7 are provided at at least two locations that are separated from each other. For this reason, at least one part of the peripheral portion 7 of the electromagnetic wave shielding layer 5 is covered with the near infrared shielding layer 6 as shown in FIGS. 2 (a) and (b). It is preferable to be exposed to the outside without being exposed. For example, as shown in Fig.
  • the optical film 1 has a quadrilateral shape, especially a rectangular shape, at least two opposite sides ( That is, the exposed portion 7 for forming the ground electrode connection portion is formed at the edge portions of the upper and lower sides or both the left and right sides.
  • the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are subjected to treatment such as electric fitting or adhesion of a conductive tape.
  • a band-shaped metal film is formed. Since the upper and lower two edge portions 7 of the electromagnetic wave shielding layer 5 are not covered with the near infrared ray shielding layer 6, the upper and lower sides of the left and right two edge portions 8 on which the metal film is formed are not covered.
  • the end portion 9 is exposed without being covered at the left, right-upper and lower four corners of the electromagnetic wave shielding layer 5, and the exposed solid metal film portion 9 can be used as a ground electrode connecting portion. it can.
  • the ground electrode connection portion 7 is effective for taking out the electromagnetic wave captured by the electromagnetic wave shielding layer as electric energy and removing it from the optical filter.
  • FIG. 4 shows the situation when the optical filter embodiment (1) of the present invention is mounted on the display surface of an image display device, for example, the image display surface of a PDP (plasma display device) module.
  • the optical filter 1 is attached to the surface of the image display glass 1 2 placed in the housing 1 1 of the image display device 10, and the near-infrared shielding layer of the composite layer 4 is bonded and fixed by its adhesiveness.
  • the anti-reflection layer 3 is bonded to the casing 11 at the edge of the anti-reflection layer 3 so as to be stably held.
  • the anti-reflection layer 3 of the optical film evening 1 is facing the viewing direction V.
  • Electromagnetic wave shielding layer 5 has a ground electrode connection at the upper and lower edges, which is connected to ground 1 3 force S, and connected ground 1 3 as shown in Figure 4. It may be directly connected to the housing 1 3 or the crank Alternatively, it may be connected to the grounding means via a gasket (not shown).
  • the near-infrared shielding adhesive layer contained in the embodiment (1) of the optical filter of the present invention is formed of a mixture of a near-infrared absorbing dye and an adhesive (including a pressure-sensitive adhesive).
  • a near-infrared absorbing dye and an adhesive (including a pressure-sensitive adhesive).
  • an adhesive including a pressure-sensitive adhesive.
  • One or more selected from acrylic resin, polyester resin, epoxy resin, urethane resin, melamine resin, acrylonitrile-butadiene copolymer (NBR), and ethylene vinyl acetate copolymer (EVA) can be used.
  • the concentration of the near-infrared absorbing dye in the mixture of the near-infrared absorbing dye and the adhesive is preferably 0 to 5 to 5% by mass.
  • a transparent substrate preferably After forming an antireflection layer on the surface of a transparent substrate having ultraviolet absorbing performance, an electromagnetic wave shielding layer is formed on the back surface. Further, a near infrared shielding adhesive layer is formed on the electromagnetic shielding layer. At this time, it is preferable to expose the near-infrared shielding adhesive layer on the portion where the ground electrode lead-out portion is to be formed without forming a coating. After forming the near-infrared shielding adhesive layer, it is preferable to perform a defoaming and transparentizing step. As the defoaming method, a force that can be applied by pressurization or reduced pressure.
  • This near-infrared shielding adhesive layer may contain a coloring material for adjusting the color tone and transmittance of the dye and the optical filter that enhance the light emission in the wavelength region of Ne light.
  • the optical filter according to the present invention is used, it is affixed directly to the image display screen glass of the PDP module. It is possible to reduce the weight by about 5 kg in inch size. In addition, optical Since the filter itself is essentially a film laminate, it is approximately 30% lighter and the optical filter is approximately 40% thinner than the previous two-film film. It is possible to make it thinner. In addition, the film used as the base material is made to be a minimum, and the amount of adhesive used for bonding is reduced, which makes it possible to significantly reduce costs.
  • FIG. 5 In the embodiment (2) of the optical filter according to the present invention shown in (a) and (b), the antireflection layer 3 is formed on one surface of the transparent substrate 2 of the optical filter, The composite layer 4 is formed on the other surface of the transparent substrate 2, and the electromagnetic wave shielding layer 5 in the composite layer 4 is bonded to the other surface of the transparent substrate 2, and is close to the electromagnetic wave shielding layer 5.
  • An infrared shielding layer 6 is formed, and an adhesive exposed surface 4 a of the composite layer 4 is formed on the near infrared shielding layer 6 and is formed by an adhesive layer 2 1 containing an adhesive (including an adhesive). ing .
  • the near infrared shielding layer 6 is formed by a printing method (preferably a screen printing method), and the adhesive layer 21 is formed by a direct coating method such as a gravure method or by laminating a non-carrier film.
  • the earth electrode lead-out unit that can be used is effective for leaking from a display device such as a plasma panel, converting the electromagnetic wave captured by the electromagnetic wave shielding layer into an electric current, and grounding it via the housing of the display device. It is a thing.
  • the adhesive layer formed on the near-infrared shielding layer is formed of a transparent adhesive (including an adhesive), As such an adhesive, an acrylic resin can be used.
  • the adhesive layer is formed of an adhesive
  • the adhesive strength between the adhesive layer and the near-infrared shielding layer is preferably 1 to 10 NZ 2 5 ⁇ ⁇ ⁇ ⁇ at the initial stage, and more preferably 4 to 8 NZ 2 5 ⁇ .
  • the adhesive strength is in the range of 1 to 10 NZ 25 mm, when the optical filter is adhered to the display surface of the display, it can be held sufficiently practically, and the optical filter When it is necessary to peel off, it can be peeled off without any practical difficulty, and the expensive display unit can be used continuously, and the peeled optical film Can be reused. Further, the adhesive strength increases with time, and the adhesive strength at the time when the equilibrium is reached is more preferably 10 to 15 NZ 2 5 ⁇ .
  • the adhesive layer formed on the near-infrared shielding layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm.
  • An adhesive for forming such an adhesive layer can be selected from, for example, acrylic resins.
  • the adhesive layer has a maximum absorption peak in a wavelength range from 5 85 nm to 60 O nm, and from 5 85 nm.
  • Visible light transmittance in the wavelength range up to 600 nm is 4 5 O nm, 5 2
  • the visible light transmittance of the optical filter of the present invention in the wavelength range from 585 nm to 600 nm is defined as visible light in each of the wavelengths 4500 nm, 525 nm, and 620 nm. 10% or more lower than the transmittance of For this purpose, it is preferable to include a selectively absorbing colorant in the near infrared shielding layer.
  • the coloring material that selectively absorbs visible light having a wavelength of 590 nm is not particularly limited as long as it does not adversely affect the compositional change of the dimonium compound.
  • quinacridone pigments, azomethine compounds It is preferable to use a cyanine compound, a porphyrin compound, or the like.
  • Embodiment 2 of the optical filter of the present invention can be produced as follows.
  • an antireflection layer is formed on the surface of a transparent substrate, preferably a transparent substrate having ultraviolet absorbing ability, and then an electromagnetic wave shielding layer is formed on the back surface thereof. Further, a near infrared shielding layer is formed on the electromagnetic shielding layer by a printing method such as a screen printing method. At this time, it is preferable to expose the near-infrared shielding layer and the adhesive layer on the portion where the ground electrode take-out portion is provided without forming a coating.
  • the near infrared shielding layer obtained by printing the dye-containing ink forming the near infrared shielding layer on the metal mesh layer by a printing method such as a screen printing method. It is possible to omit the defoaming process and the clearing process.
  • the near-infrared shielding layer and the adhesive layer may further contain a colorant for adjusting the color tone and transmittance of the optical filter.
  • the adhesive layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm.
  • the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are subjected to electrical fitting or treatment such as conductive tape.
  • a solid metal film may be formed in a band shape.
  • the electromagnetic wave shielding layer 5 having the left and right belt edges 8 formed into a metal film the upper and lower edges 2 are left so that they are exposed.
  • the near-infrared shielding layer 6 may be coated (not shown).
  • the solid metal film left / right band edge 8 left • right • top • bottom 4 exposed metal film 9 exposed at the bottom corner should be used as the ground electrode extraction part. Can do.
  • FIG. 7 shows an example of a state in which the embodiment (2) of the optical filter of the present invention is mounted on a display surface of an image display device, for example, an image display surface of a PDP module.
  • an image display device for example, an image display surface of a PDP module.
  • it is directly attached to the image display surface, for example, the surface of the image display glass 12 of the PDP module 10, and its peripheral edge is joined and held to the casing 11 of the module 10.
  • the upper and lower edges of the electromagnetic wave shielding layer 5 are provided with ground electrode take-out portions, and a ground 1 3 is attached.
  • the ground 1 3 is a housing 1 as shown in FIG. It may be connected directly to 1 or may be electrically connected to a grounding means via a clip, clamp or gasket (not shown).
  • the optical filter 1 includes a transparent substrate 2 and an antireflection layer 3 formed on one surface thereof. And the composite layer 4 formed on the other surface of the transparent substrate 2, and in this composite layer, the near infrared shielding layer 6 force is formed on the other surface of the transparent substrate 2, and this near infrared An electromagnetic wave shielding layer 5 is formed and bonded on the shielding layer 6, and an adhesive exposed surface of the composite layer is formed by an adhesive layer 22 formed on the electromagnetic wave shielding layer 5.
  • an exposed portion 7 for forming a ground electrode connection portion is formed at the peripheral edge portion of the electromagnetic wave shielding layer 5 joined in an integral film shape.
  • the near-infrared shielding layer 6 can be formed by the same method as in the embodiments (1) and (2). Further, the electromagnetic wave shielding layer is also provided in the embodiments (1) and (2).
  • the metal mesh layer or the transparent conductive film containing a conductive substance can be formed by the same method, dimensions, and shape as those described above.
  • the metal mesh layer is formed in the shape of a mesh pattern by laminating a metal mesh on a near-infrared shielding layer, or applying a metal layer to a metal layer formed by plating a metal such as copper.
  • a paste containing a catalyst such as palladium can be printed in a mesh pattern shape, and a metal plating can be applied to the mesh pattern.
  • a conductive material such as silver formed by vapor deposition, sputtering, or the like is used as the transparent conductive film layer.
  • the multiple adhesive layers (3) are formed on the electromagnetic wave shielding layer to form the adhesive exposed surface of the composite layer.
  • This adhesive layer has the same composition, dimensions, shape, and characteristics as the adhesive layer of the embodiment (2).
  • the adhesive layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm, and from 585 nm to 60 nm.
  • the transmittance of visible light having a wavelength up to 0 nm is preferably 10% or more lower than the transmittance of visible light at wavelengths of 4500 nm, 5225 nm, and 620 nm.
  • the transmittance of visible light having a wavelength from 585 nm to 600 nm in the optical filter of the present invention is expressed as visible light in each of the wavelengths of 4500 nm, 525 nm, and 620 nm.
  • the coloring material that selectively absorbs visible light with a wavelength of 590 nm has an adverse effect on the compositional change of the dimonium compound.
  • quinacridone pigments, azomethine compounds, cyanine compounds, porphyrin compounds, and the like are preferably used.
  • an antireflection layer is formed on the surface of a transparent base material, preferably a transparent base material having ultraviolet absorbing performance, and then a composite layer is formed on the back surface thereof.
  • a composite layer is formed on the back surface thereof.
  • a near-infrared shielding layer is formed on the back surface of the transparent substrate, and an electromagnetic shielding layer is further formed on the near infrared shielding layer by a printing method such as a screen printing method.
  • An adhesive layer is formed on to form an exposed adhesive surface. At this time, it is preferable to expose the adhesive layer on the portion of the electromagnetic wave shielding layer where the earth electrode connecting portion is to be formed without forming a coating.
  • the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are formed into a solid metal film in a band shape by electric fitting or treatment with conductive tape or the like. May be.
  • the upper and lower two edge portions 7 are left exposed so that the adhesion layer 2 2 may be coated.
  • the solid metal film portions 9 exposed at the upper and lower four corners of the left and right belt-shaped edge portions 8 formed into a solid metal film can be used as the ground electrode connection portion.
  • FIG. 10 shows an example of a state in which the embodiment (3) of the optical filter of the present invention is mounted on the display surface of the image display device, for example, the image display surface of the PDP module.
  • the image display surface for example, the surface of the image display glass 12 of the PDP module 10
  • its peripheral edge is bonded and held to the casing 11 of the module 10.
  • the upper and lower edges of the electromagnetic wave shielding layer 5 are formed with ground electrode connections, and the earth 13 is attached.
  • the earth 13 is shown in FIG. As shown, it may be directly connected to the housing 11 or may be electrically connected to the grounding means via a clip, clamp or gasket (not shown).
  • an antireflection layer 3 is formed on one surface of the transparent substrate 2 of the optical filter 1, and the other surface of the transparent substrate 2 is formed.
  • the composite layer 4 is bonded, and in the composite layer 4, a near infrared shielding layer 6 is formed on the other surface of the transparent substrate 2, and the near infrared shielding layer 6 is bonded to the front surface.
  • the electromagnetic wave shielding layer 5 is bonded via the layer 2 3, and the adhesive exposed surface 4 a of the composite layer 4 is formed by the back surface adhesive layer 2 4 formed on the back surface of the electromagnetic wave shielding layer 5.
  • These component layers are joined in an integral film.
  • the front surface adhesive layer 2 3 and the back surface adhesive layer 24 are preferably connected to each other through an opening of a metal mesh forming the electromagnetic wave shielding layer 5.
  • a portion 7 exposed without being covered is formed on the peripheral edge portion of the electromagnetic wave shielding layer 5.
  • the front surface and the back surface adhesive layer formed on both the front and back surfaces of the electromagnetic wave shielding layer are each formed of a transparent adhesive (including a pressure-sensitive adhesive).
  • suitable adhesives include silicon resins and acrylic resins.
  • the adhesive strength is preferably 1 to 10 N / 2 5 thighs in the initial stage, more preferably 4 ⁇ 8 N / 2 5 dragons.
  • the adhesive strength is in the range of 1 to 10 N / 25 mm, when the optical filter is adhered to the surface of the PDP panel, the adhesive can be held sufficiently practically. However, the optical filter is peeled off.
  • the adhesive strength increases with time, and the adhesive strength at the time when equilibrium is reached is more preferably 10 to 15 N 25 mm.
  • the electromagnetic wave shielding material layer is formed of a metal mesh, it is preferable that a part of each of the front surface and back surface adhesive layers penetrate into the opening of the metal mesh and be connected to each other. Good.
  • the peripheral portion 7 of the electromagnetic wave shielding layer is not covered with the surface adhesive layer 2 3 but is exposed.
  • the back surface adhesive layer 24 covers the entire back surface of the electromagnetic wave shielding layer 5 to form an adhesive exposed surface 4 a.
  • the front surface and the back surface adhesive layers 23 and 24 are preferably connected to each other via an opening of a metal mesh forming the electromagnetic wave shielding layer 5.
  • FIG. 13 The plan view of the embodiment (4) of the optical filter of the present invention is shown in FIG. 13 so that the peripheral portion 7 is exposed on the electromagnetic wave shielding layer 5 and the back surface adhesive layer 24.
  • the antireflection layer 3, the transparent substrate 2, the near-infrared shielding layer 6, and the front surface adhesive layer 2 3 are laminated and integrated into a film.
  • the periphery of the electromagnetic wave shielding layer 5 may be a solid metal film to form a solid metal film part 8, or as shown in FIG.
  • the solid metal film portion 8 may be formed only at the edge portions of the left and right sides of the electromagnetic wave shielding layer 5 facing each other. It is preferable to provide ground electrode connection portions at two or more locations separated from each other in the solid metal film portion 8 shown in FIGS. 14 and 15, for example, at the four corners.
  • an antireflection layer is formed on a transparent substrate, preferably a transparent substrate containing an ultraviolet absorber.
  • the film having the near-infrared shielding layer formed on the back surface thereof has an adhesive layer on the front surface except for the electrode portion, and has an adhesion layer on the entire back surface.
  • the electromagnetic shielding layer may be a full-face mesh or the peripheral part may be a flat part, but the part corresponding to the ground electrode part is not covered with an adhesive. Since the adhesive layer is formed directly on the metal mesh without using a film such as PET film, the process of defoaming and clearing by pressurization or vacuum, which was required when using a metal mesh film, is used. Do not need.
  • the optical filter of the present invention can be significantly reduced in weight by directly attaching it to the front panel glass of the PDP panel.
  • it since it consists essentially of a single film, it is possible to significantly reduce costs and save resources by reducing the film used as the substrate and the adhesive used for bonding.
  • FIG. 16 shows the configuration (cross-section) when the embodiment (4) of the transparent film-like optical filter of the present invention is mounted on PDP.
  • the optical file according to the present invention is directly attached to the display surface 12 of the PDP panel 10 via the back surface adhesive layer 2 4.
  • the ground electrode connection portion 7 not covered with the front surface adhesive layer is attached with continuity through the ground 13 or the gasket (not shown) for taking out the electrode.
  • optical filter of the present invention is further illustrated by the following examples. The following measurement and evaluation were performed for the optical filter of the following example.
  • Luminous reflectance measured using a spectrophotometer (V-5570 manufactured by JASCO Corporation) in accordance with JISR 3 10 6
  • Adhesion In accordance with JISD 0 202, with the antireflection layer surface facing up, cut into the 1 cm square area of the film surface at 1 mm intervals parallel to each side of the vertical plane, and the surface The number of cells remaining after the peel test with an adhesive tape was measured.
  • Spectral transmittance Using a spectrophotometer (manufactured by JASCO Corporation V—570), measure the transmittance of each sample at wavelengths of 85, 95, and 100 nm. did.
  • Electromagnetic wave shielding property Measured according to the KE C method (one method of Kansai Electronics Industry Promotion Center).
  • an UV curable resin layer containing 50% by weight of a silicon oxide filler on one side is formed by about 1 / im.
  • a refractive index layer is formed, and a refractive index layer is formed thereon, which is composed of a silicon oxide layer containing 65% by weight of titanium oxide, and having a thickness of about 11 O nm.
  • a low-refractive index layer made of only silicon oxide and having a thickness of about 90 nm was formed to form an antireflection layer, and a protective film made of PET was laminated on the surface.
  • Dimmonium dyes containing a dimonium compound having a counter ion represented by (CH 3 S 0 2 ) 2 N ⁇ , and phthalocyanine dyes (Trademark: XX Color IR _ 10 A, manufactured by Nippon Shokubai Co., Ltd.) )
  • a mass ratio of 2: 1 and further containing an acrylic resin adhesive in an amount of 2500 times (mass) with respect to the total mass of the dye a near-infrared shielding adhesive layer (thickness 2) 5 ⁇ m) was formed.
  • the laminate is subjected to a transparent treatment for 1 hour in a vacuum chamber. Thus, an optical filter was produced.
  • the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. It has also been confirmed that it has excellent hardness, adhesion, durability in use, visibility of visible images, and lightness.
  • PET film containing an ultraviolet absorber with a thickness of 100 m as a transparent substrate Using Lum, an antireflection layer consisting of a hard coat layer, a conductive medium refractive index layer, a high refractive index layer, and a low refractive index layer is formed on one surface in the same manner as in Example 1. The film was laminated. Next, a paste containing palladium colloid is printed on the opposite surface of the PET film using a screen having a lattice-like (mesh-like) pattern of LZS 30/270 (m).
  • An ink containing xanone and toluene was printed by a screen printing method and dried to form a near-infrared shielding layer. Furthermore, an adhesive layer was applied and formed on the near-infrared shielding layer to produce an optical film.
  • the optical film according to the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and practically. It had sufficient hardness, adhesion, durability to use, and visibility of visible images.
  • a PET film having a thickness of 100 m containing an ultraviolet absorber was used, and a hard coat layer, a conductive intermediate refractive index layer, a high refractive index layer, An antireflection layer consisting of a low refractive index layer was formed, and a PET protective film was laminated on the surface.
  • the ink was printed by a screen printing method and dried to form a near infrared shielding layer. Further, an acrylic resin containing 0.1% of a porphyrin compound dye was applied on the near infrared shielding layer to form an adhesive layer, thereby producing an optical filter.
  • the obtained optical filter was subjected to the measurement evaluation.
  • Table 3 shows the evaluation results.
  • the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and practically sufficient hardness. Adhesion, durability in use, visibility of visible images, and light weight.
  • the near-infrared shielding layer and the selective absorption layer for light with a wavelength from 585 nm to 600 nm, that is, the adhesive layer are arranged as separate layers. It has been confirmed that the material can be handled easily and has high practicality as an optical filter for a display device such as a plasma display device.
  • a PET film containing a UV absorber with a thickness of 100 m was used as the transparent substrate, and a hard coat was applied on one side in the same manner as in Example 1.
  • An antireflection layer comprising a layer, a conductive middle refractive index layer, a high refractive index layer, and a low refractive index layer was formed, and a PET protective film was laminated on the surface.
  • a dimonium dye and a phthalocyanine dye which are dimonium compounds having a counteranion represented by the chemical formula: (CH 3 S 0 2 ) 2 N on the opposite surface of the PET film (Nippon Shokubai Co., Ltd., Trademark: IX Color IR-1OA) and transparent resin (methacrylate, cellulose, etc.), solvent (toluene, methyl ethyl ketone, ethyl acetate, etc.) A near infrared shielding layer was formed.
  • a black electromagnetic wave shielding layer was formed by immersing in an electroless copper plating solution, applying an electroless copper plating, followed by an electrolytic copper plating, and further applying an electrolytic plating of a Ni—Sn alloy.
  • An optical filter was prepared by applying an adhesive layer containing a pressure-sensitive adhesive on the electromagnetic wave shielding layer.
  • the obtained optical filter was subjected to the measurement evaluation.
  • Table 4 shows the evaluation results.
  • the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. Strength, durability, durability in use, visibility of visible images, and light weight.
  • a PET film having a thickness of 100 zm containing an ultraviolet absorber was used, and a hard coat layer, a conductive intermediate refractive index layer, a refractive index layer, An antireflection layer consisting of a low refractive index layer was formed, and a PET protective film was laminated on the surface.
  • a dimonium dye and a phthalocyanine dye (a dimonium compound having a counteranion represented by the chemical formula: (CH 3 S 0 2 ) 2 N-on the opposite surface of the PET film) Made by Nippon Shokubai Co., Ltd.
  • a black electromagnetic wave shielding layer was formed by immersing in an electrolytic copper plating solution, applying an electroless copper plating, followed by electrolytic copper plating, and further applying electrolytic plating of a NiSn alloy. On this electromagnetic wave shielding layer, an acrylic resin containing 0.1% of a porphyrin compound dye was applied to form an adhesive layer to produce an optical filter.
  • the obtained optical filter was subjected to the measurement evaluation.
  • the evaluation results are shown in Table 5.
  • Electromagnetic wave shielding 50dB or more As is apparent from Table 5, the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. It was confirmed that it has excellent strength, durability to use, visibility of visible image and light weight.
  • the near-infrared shielding layer and the selective absorption layer for light having a wavelength of 5 85 M to 60 nm, that is, the adhesive layer are arranged in separate layers, It was recognized that the components are easy to handle and have high practicality as an optical filter for a display device such as a plasma display device.
  • the mesh foil obtained by etching the copper foil is oxidized to blacken the surface, and in addition, a part of the front surface is secured as an electrode.
  • a front surface adhesive layer made of an agent was bonded, and a back surface adhesive layer made of a non-carrier pressure-sensitive adhesive was also bonded to the entire other surface to prepare an electromagnetic wave shielding layer-containing laminate.
  • An optical filter was prepared by laminating a composite film containing an antireflection / near infrared ray shielding layer and a laminate containing an electromagnetic wave shielding layer using a single wafer laminator.
  • the optical film according to the present invention has excellent transmittance, low reflectivity, electromagnetic wave shielding, near-infrared shielding and strength, and is lightweight, durable and It was confirmed that the visibility of the visible image was excellent.
  • the optical filter of the present invention and the manufacturing method thereof are antireflective, near infrared. It has excellent line shielding and electromagnetic wave shielding properties, excellent use durability, and visibility of visible images, is lightweight, and is easy to manufacture and handle.
  • a display device such as a plasma display device It is used as an optical fill of this product and has high practicality.

Abstract

Disclosed is an integrated film-like optical filter wherein an antireflective layer is formed on one side of a transparent base (such as a PET film), a composite layer including an electromagnetic shielding layer and a near-infrared blocking layer is bonded to the other side of the transparent base, and the exposed surface of the composite layer has adhesive properties. This optical filter is light in weight and is easy to produce and handle. In addition, the optical filter is excellent in in-use durability and visibility of visible images, and is useful as an optical filter for display surfaces of plasma displays or the like.

Description

明 細 書 光学フィルター 技術分野  Description Optical filter Technical field
本発明は光学フィル夕一及びその製造方法に関するものである。 更に詳しく述べるならば、 本発明は、 例えばプラズマディスプレイ などの光学的画像表示装置の表示面に'用いられる、 フィルム状に積 層一体化された光学フィルタ一及びその製造方法に関するものであ る。 背景技術  The present invention relates to an optical filter and a method for manufacturing the same. More specifically, the present invention relates to a film-integrated optical filter used for a display surface of an optical image display device such as a plasma display, and a method for manufacturing the same. Background art
プラズマディスプレイ装置 (以下、 PDPと略記することがある。 ) は、 表示電極、 バス電極、 誘電体層および保護層を有する前面ガ ラス基板と、 デ一夕電極、 誘電体層およびス トライプバリヤリブに 蛍光体層を有する背面ガラス基板とを、 電極が直交するように貼り 合せる事によりセルを形成し、 このセルの中に、 キセノン等の放電 ガスを封入して構成されている。 プラズマディスプレイ装置の発光 は、 データ電極と表示電極との間に電圧が印加されることによりキ セノンの放電が起こり、 プラズマ状態となったキセノンイオンが基 底状態に戻る際に紫外線を発生し、 この紫外線が蛍光体層を励起し て、 赤 (R) 、 緑 (G) 、 及び青 (B) 色光を発光させる。 これら可 視光の発光の過程で、 これらの可視光に加え、 近赤外線および電磁 波も発生する。 そのため、 プラズマディスプレイ装置には、 一般に ガラス基材のプラズマディスプレイ発光部の前面に、 反射防止膜、 近赤外線吸収膜、 および電磁波力ッ ト機能が付与されたフィルター が、 設置されている。 プラズマディスプレイ装置は、 薄型ディスプレイ装置として、 設 置スペースが小さく、 壁掛け表示装置などとして有用であると考え られている。 しかし、 上述したプラズマディスプレイ装置では、 例 えば、 特開平 1 0 — 3 1 9 8 5 9号公報 (特許文献 1 ) に記載され ているように発光手段を含む PDP装置上に、 それから、 一定の空間 を隔てて、 ガラス上に何層かのフィルムを積層したフィルム積層体 を貼り合わせて構成された光学フィルター手段を設置しているため 、 十分な軽量化が達成されているとはいえず、 実際、 一般の家庭用 家屋内の壁に掛けるためには、 壁が十分に強固であることが必要で あり、 予め壁自体に補強工事を施すことが必要となる場合もある。 また、 PDPの前面ガラス部、 光学フィルタ一の表面および裏面の反 射により、 外光が表示面に二重映りする等の欠点がある。 一般に光 学フィル夕一に用いられる電磁波遮蔽フィルムの主なものは、 エツ チング処理された金属 (銅) メッシュであるか、 そのエッチングさ れた端面に金属 (銅) が露出しているため、 金属 (銅) 特有の反射 色が表示画像の色調に不具合を与えている。 A plasma display device (hereinafter abbreviated as PDP) includes a front glass substrate having a display electrode, a bus electrode, a dielectric layer and a protective layer, a display electrode, a dielectric layer and a stripe barrier rib. A cell is formed by adhering a back glass substrate having a phosphor layer to the electrodes so that the electrodes are orthogonal to each other, and a discharge gas such as xenon is enclosed in the cell. The plasma display device emits light when xenon discharge occurs when a voltage is applied between the data electrode and the display electrode, and when the xenon ions in the plasma state return to the base state, ultraviolet light is generated. This ultraviolet light excites the phosphor layer to emit red (R), green (G), and blue (B) light. In the process of emitting these visible lights, in addition to these visible lights, near infrared and electromagnetic waves are also generated. Therefore, in general, a plasma display device is provided with an antireflection film, a near-infrared absorption film, and a filter with an electromagnetic wave force function on the front surface of the glass substrate light emitting portion. The plasma display device is considered to be useful as a wall-mounted display device because it has a small installation space as a thin display device. However, in the above-described plasma display device, for example, on a PDP device including a light emitting means as described in Japanese Patent Application Laid-Open No. Hei 10-319 859 (Patent Document 1), a certain amount of Because the optical filter means that is configured by laminating the film laminated body of several layers on the glass across the space is installed, it can not be said that sufficient weight reduction has been achieved, In fact, in order to hang a wall in a general household, the wall needs to be sufficiently strong, and it may be necessary to reinforce the wall itself in advance. In addition, there are drawbacks such as double reflection of external light on the display surface due to reflection on the front glass part of the PDP and the front and back surfaces of the optical filter. In general, the main electromagnetic shielding film used for optical film is an etched metal (copper) mesh, or the metal (copper) is exposed on the etched end face. Reflection color peculiar to metal (copper) has a defect in the color tone of the display image.
〔特許文献 1〕 特開平 1 0 — 3 1 9 8 5 9号公報 発明の開示  [Patent Document 1] Japanese Patent Application Laid-Open No. 10-0 3 1 9 8 5 9 Disclosure of Invention
本発明の目的は、 優れた反射防止性、 近赤外線遮蔽性、 及び電磁 波遮蔽性を併せ具備し、 耐久性及び視認性にも優れ、 軽量であって 製造および取り扱いが容易であり、 例えばプラズマディスプレイ装 置等の表示装置の表示面に用いることができる光学フィルタ一及び その製造方法を提供することにある。  The object of the present invention is to provide excellent antireflection properties, near-infrared shielding properties, and electromagnetic wave shielding properties, excellent durability and visibility, lightweight, and easy to manufacture and handle. An object of the present invention is to provide an optical filter that can be used for a display surface of a display device such as a display device, and a method for manufacturing the same.
本発明の光学フィルタ一は、 透明な基材と、 前記透明基材の一面 上に形成された反射防止層と、 前記基材の他の面上に形成され、 か つ互に積層されている電磁波遮蔽層及び近赤外線遮蔽層を含む複合 層とを含み、 これらが一体のフィルム状に形成されており、 かつ前 記複合層の、 前記透明基材に接合していない露出面が接着性を有す るものである。 The optical filter according to the present invention includes a transparent base material, an antireflection layer formed on one surface of the transparent base material, and formed on the other surface of the base material, and stacked on each other. Composite including electromagnetic shielding layer and near infrared shielding layer The exposed surface of the composite layer that is not bonded to the transparent substrate has adhesiveness.
本発明の光学フィルターの一実施態様 ( 1 ) において、 前記複合 層中の電磁波遮蔽層が、 前記透明基材の前記他の面上に形成され、 また前記近赤外線遮蔽層が、 前記電磁磁波遮蔽層上に形成され、 か つ接着性能を有していて、 接着性露出面を形成している。  In one embodiment (1) of the optical filter of the present invention, the electromagnetic wave shielding layer in the composite layer is formed on the other surface of the transparent substrate, and the near infrared shielding layer is the electromagnetic wave shielding. It is formed on the layer and has adhesive performance, and forms an adhesive exposed surface.
本発明の光学フィルターの他の実施態様 ( 2 ) において、 前記複 合層中の前記電磁波遮蔽層が、 前記透明基材の前記他の面上に形成 され、 また前記近赤外線遮蔽層が、 前記電磁波遮蔽層上に形成され ており、 前記接着性露出面が前記近赤外線遮蔽層の他の面上に形成 された接着剤層により形成されている。  In another embodiment (2) of the optical filter of the present invention, the electromagnetic wave shielding layer in the composite layer is formed on the other surface of the transparent substrate, and the near-infrared shielding layer is It is formed on an electromagnetic wave shielding layer, and the adhesive exposed surface is formed by an adhesive layer formed on the other surface of the near infrared shielding layer.
本発明の光学フィル夕一の実施態様 ( 2 ) において、 前記近赤外 線遮蔽層上に形成された接着剤層が、 5 8 5 nmから 6 0 0 體までの 波長域内に極大吸収ピークを有することが好ましい。  In the embodiment (2) of the optical filter according to the present invention, the adhesive layer formed on the near-infrared ray shielding layer has a maximum absorption peak in a wavelength range from 585 nm to 600 nm. It is preferable to have.
本発明の光学フィルターの他の実施態様 ( 3 ) において、 前記複 合層中の前記近赤外線遮蔽層が、 前記透明基材の前記他の面上に形 成され、 前記電磁波遮蔽層の一面が前記近赤外線遮蔽層上に形成さ れており、 かつ前記接着性露出面が、 前記電磁波遮蔽層の他の面上 に形成された接着剤層の露出面により形成されている。  In another embodiment (3) of the optical filter of the present invention, the near-infrared shielding layer in the composite layer is formed on the other surface of the transparent substrate, and one surface of the electromagnetic wave shielding layer is The adhesive exposed surface is formed on the near infrared shielding layer, and the adhesive exposed surface is formed by an exposed surface of an adhesive layer formed on the other surface of the electromagnetic shielding layer.
本発明の光学フィルターの実施態様 ( 3 ) において、 前記電磁波 遮蔽層上に形成された接着剤層が、 5 8 5 nmから 6 0 0 nmまでの波 長域内に極大吸収ピークを有することが好ましい。  In the embodiment (3) of the optical filter of the present invention, the adhesive layer formed on the electromagnetic wave shielding layer preferably has a maximum absorption peak in a wavelength region from 585 nm to 600 nm. .
本発明の光学フィルターの他の実施態様 ( 4 ) において、 前記複 合層中の前記近赤外線遮蔽層が、 前記透明基材の前記他の面上に形 成され、 前記電磁波遮蔽層の一面が、 前記近赤外線遮蔽層上に、 お もて面接着剤層を介して接着され、 前記接着性露出面が前記電磁波 遮蔽層の他の面に形成されたう ら面接着剤層の露出面により形成さ れている。 In another embodiment (4) of the optical filter of the present invention, the near-infrared shielding layer in the composite layer is formed on the other surface of the transparent substrate, and one surface of the electromagnetic wave shielding layer is The adhesive exposed surface is bonded to the near-infrared shielding layer via a surface adhesive layer. It is formed by the exposed surface of the back surface adhesive layer formed on the other surface of the shielding layer.
本発明の光学フィルタ —において、 特にその実施態様 ( 1 ) ( In the optical filter of the present invention, in particular its embodiment (1) (
2 ) , ( 3 ) 及び ( 4 ) のそれぞれにおいて 、 前記電磁波遮蔽層が 金属メッシュにより構成されていることが好ましい。 In each of 2), (3) and (4), it is preferable that the electromagnetic wave shielding layer is made of a metal mesh.
本発明の光学フィルタ —において、 特にその実施態様 ( 1 ) ( In the optical filter of the present invention, in particular its embodiment (1) (
2 ) , ( 3 ) 及び ( 4 ) のそれぞれにおいて 、 前記電磁波遮蔽層が In each of 2), (3) and (4), the electromagnetic wave shielding layer is
 ヽ
2個以上のアース電極接続部を有し、 前記ァース電極接続部が 、 刖 記電磁波遮蔽層の周縁部分の、 互に離間している 2箇所に設けられ ていることが好ましい。 It is preferable that two or more earth electrode connection portions are provided, and the first electrode connection portions are provided at two positions apart from each other in the peripheral portion of the electromagnetic wave shielding layer.
本発明の光学フィルタ一において、 特にその実施態様 ( 1 ) ( In the optical filter of the present invention, in particular, the embodiment (1) (
2 ) , ( 3 ) 及び ( 4 ) のそれぞれにおいて 、 前記電磁波遮蔽層がIn each of 2), (3) and (4), the electromagnetic wave shielding layer is
、 前記近赤外線遮蔽層上に、 触媒ィンクをメッシュ状に印刷し 、 そ の上に金属メツキ処理を施すことによって形成された金属層からな ることが好ましい。 The catalyst layer is preferably formed of a metal layer formed by printing a catalyst ink in a mesh shape on the near-infrared shielding layer and performing a metal plating treatment thereon.
本発明の光学フィルタ —において、 特にその実施態様 ( 1 ) ( In the optical filter of the present invention, in particular its embodiment (1) (
2 ) , ( 3 ) 及び ( 4 ) のそれぞれにおいて 、 前記電磁波遮蔽層の 表面が、 黒色金属により被覆されていることが好ましい。 In each of 2), (3) and (4), the surface of the electromagnetic wave shielding layer is preferably covered with a black metal.
本発明の光学フィル夕 —において、 特にその実施態様 ( 1 ) ( In the optical film according to the present invention, in particular, the embodiment (1) (
2 ) , ( 3 ) 及び ( 4 ) のそれぞれにおいて 、 前記透明基材が 、 外線吸収性能を有していることが好ましい。 In each of 2), (3) and (4), it is preferable that the transparent base material has an external absorption capability.
本発明の光学フィル夕 —において、 特に、 その実施態様 ( 1 ) 及 び ( 2 ) のそれぞれにおいて、 前記近赤外線遮蔽層が、 前記電磁波 遮蔽層上に、 印刷法により形成されたものであることが好ましい。  In the optical film according to the present invention, in particular, in each of the embodiments (1) and (2), the near infrared shielding layer is formed on the electromagnetic shielding layer by a printing method. Is preferred.
本発明の光学フィル夕一の実施態様 ( 4 ) において、 前記おもて 面接着剤層は、 前記電磁波遮蔽層の前記一面上において、 そのァ一 ス電極接合部を露出させたことを除き、 その他の全面を被覆し、 か つ前記近赤外線遮蔽層に接着しており、 前記う ら面接着剤層は、 前 記電磁波遮蔽層の前記他の面の全面を被覆していることが好ましい 本発明の光学フィルターの製造方法は、 本発明の光学フィルター を製造するために、 透明な基材の一面上に、 反射防止層を形成し、 前記透明基材の他の面上に、 互に積層された電磁波遮蔽層と近赤外 線遮蔽層とを含む複合層 (但し、 この複合層の、 前記透明基材に接 していない面が、 接着性を有する) を形成して、 これらを一体のフ イルム状に形成することを含むものである。 In an embodiment (4) of the optical film according to the present invention, the front surface adhesive layer is formed on the one surface of the electromagnetic wave shielding layer, except that the first electrode joint portion is exposed. Covering the other whole surface, or It is preferably adhered to the near-infrared shielding layer, and the back surface adhesive layer preferably covers the entire surface of the other surface of the electromagnetic wave shielding layer. In order to produce the optical filter of the present invention, an antireflection layer is formed on one surface of a transparent substrate, and an electromagnetic wave shielding layer and a near red layer laminated on each other surface of the transparent substrate. Forming a composite layer including an external shielding layer (however, the surface of the composite layer that is not in contact with the transparent substrate has adhesiveness), and forming them into an integral film Is included.
本発明の製造方法において、 前記電磁波遮蔽層の周縁部分の互に 離間している少なく とも 2箇所に、 被覆されることなく露出してい るアース電極接合部を設けることが好ましい。  In the production method of the present invention, it is preferable to provide a ground electrode joint portion that is exposed without being covered at least two locations that are separated from each other in the peripheral portion of the electromagnetic wave shielding layer.
本発明の光学フィルタ一は、 反射防止性、 近赤外線遮蔽性、 電磁 波遮蔽性、 使用耐久性及び画像の肉眼観察の容易性に優れ、 かつ軽 量であり、 従って、 製造及び取扱いが容易であって、 例えばプラズ マディスプレイ装置などの各種表示装置の表示面の光学フィルター として実用的に有用なものである。 図面の簡単な説明  The optical filter of the present invention is excellent in antireflection, near-infrared shielding, electromagnetic wave shielding, durability in use and ease of visual observation of images, and is light in weight, and therefore easy to manufacture and handle. Thus, it is practically useful as an optical filter for the display surface of various display devices such as a plasma display device. Brief Description of Drawings
図 1 は、 本発明の光学フィルターの構成を示す断面説明図であり 図 2において、 図 2— ( a ) は、 本発明の光学フィルタ一の実施 態様 ( 1 ) の一例の積層構成を示す縦断面説明図であり、 図 2— ( b ) は、 図 2— ( a ) の光学フィルターを矢印 Aの方向から見たと きの平面説明図であり、  FIG. 1 is a cross-sectional explanatory view showing the configuration of the optical filter of the present invention. In FIG. 2, FIG. 2 (a) is a longitudinal section showing an example of a laminated configuration of an embodiment (1) of the optical filter of the present invention. Fig. 2- (b) is a plane explanatory diagram when the optical filter of Fig. 2- (a) is viewed from the direction of arrow A,
図 3は、 本発明の光学フィルターの実施態様 ( 1 ) の他の例の平 面説明図であり、 図 4は、 本発明の光学フィルターの実施態様 ( 1 ) を画像表示装 置の表示面部に装着した装置の一部断面説明図であり、 FIG. 3 is a plane explanatory view of another example of the embodiment (1) of the optical filter of the present invention. FIG. 4 is a partial cross-sectional explanatory view of a device in which the embodiment (1) of the optical filter of the present invention is mounted on the display surface of the image display device.
図 5において、 図 5 _ ( a ) は、 本発明の光学フィル夕一の実施 態様 ( 2 ) の一例の積層構成を示す縦断面説明図であり、 図 5 — ( b ) は、 図 5— ( a ) の光学フィル夕一を矢印 Aの方向から見たと きの平面説明図であり、  In FIG. 5, FIG. 5_ (a) is a longitudinal cross-sectional explanatory view showing an example of the laminated structure of the embodiment (2) of the optical filter according to the present invention, and FIG. (A) is an explanatory plan view when viewing the optical filter evening of (a) from the direction of arrow A,
図 6は、 本発明の光学フィル夕一の実施態様 ( 2 ) の他の例の平 面説明図であり、  FIG. 6 is a plane explanatory view of another example of the embodiment (2) of the optical filter according to the present invention.
図 7は、 本発明の光学フィルターの実施態様 ( 2 ) を画像表示装 置の表示面部に装着した装置の一部断面説明図であり、  FIG. 7 is a partial cross-sectional explanatory diagram of an apparatus in which the embodiment (2) of the optical filter of the present invention is mounted on the display surface of the image display apparatus.
図 8において、 図 8— ( a ) は、 本発明の光学フィルターの実施 態様 ( 3 ) の一例の積層構成を示す縦断面説明図であり、 図 8 — ( b ) は、 図 8 — ( a ) の光学フィルターを矢印 Aの方向から見たと きの平面説明図であり、  In FIG. 8, FIG. 8 (a) is a longitudinal sectional view showing an example of the laminated structure of the embodiment (3) of the optical filter of the present invention, and FIG. ) When viewed from the direction of arrow A,
図 9は、 本発明の光学フィルターの実施態様 ( 3 ) の他の例の平 面説明図であり、  FIG. 9 is a plane explanatory view of another example of the embodiment (3) of the optical filter of the present invention.
図 1 0は、 本発明の光学フィルターの実施態様 ( 3 ) を画像表示 装置の表示面部に装着した装置の一部断面説明図であり、  FIG. 10 is a partial cross-sectional explanatory view of a device in which the embodiment (3) of the optical filter of the present invention is mounted on the display surface portion of the image display device
図 1 1は、 本発明の光学フィルターの実施態様 ( 4 ) の一例の積 層構造を示す断面説明図であり、  FIG. 11 is a cross-sectional explanatory view showing an example of a laminated structure of an embodiment (4) of the optical filter of the present invention.
図 1 2は、 本発明の光学フィルターの実施態様 ( 4 ) の一例の電 磁波遮蔽層と、 おもて面及びう ら面接着層との積層構造を示す断面 説明図であり、  FIG. 12 is an explanatory cross-sectional view showing a laminated structure of an electromagnetic wave shielding layer as an example of the embodiment (4) of the optical filter of the present invention and a front surface and a back surface adhesive layer;
図 1 3は、 図 1 1 に示された光学フィル夕一の正面説明図、 図 1 4は、 本発明の光学フィル夕一の実施態様 ( 4 ) の他の例の 正面説明図であり、  FIG. 13 is a front explanatory view of the optical filter shown in FIG. 11. FIG. 14 is a front explanatory view of another example of the embodiment (4) of the optical filter according to the present invention.
図 1 5は、 本発明の光学フィル夕一の実施態様 ( 4) の更に他の 例の正面説明図であり、 FIG. 15 shows still another embodiment (4) of the optical filter according to the present invention. It is front explanatory drawing of an example,
図 1 6は、 本発明の光学フィルターの実施態様 (4 ) を、 画像表 示装置に搭載したときの装置の一部断面説明図である。 発明を実施するための最良の形態  FIG. 16 is a partial cross-sectional explanatory view of an apparatus when the embodiment (4) of the optical filter of the present invention is mounted on an image display apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光学フィル夕一は、 透明な基材と、 この透明基材の一面 上に形成された反射防止層と、 前記基材の他の面上に形成され、 か つ互に積層されている電磁波遮蔽層及び近赤外線遮蔽層を含む複合 層を含むもので、 前記基材、 反射防止層及び複合層 (電磁波遮蔽層 及び近赤外線遮蔽層の積層体) がー体のフィルム状に接合されてお り、 かつ前記複合層の、 前記透明基材に接していない露出面が接着 性を有しているものである。 本発明の光学フィルタ一の複合層にお いて、 その電磁波遮蔽層が前記基材の他の面上に形成されていても よく、 或はその近赤外線遮蔽層において前記基材の他の面上に形成 されていてもよい。  The optical filter according to the present invention includes a transparent base material, an antireflection layer formed on one surface of the transparent base material, and formed on the other surface of the base material, and laminated on each other. A composite layer including an electromagnetic wave shielding layer and a near infrared shielding layer, wherein the base material, the antireflection layer, and the composite layer (a laminate of the electromagnetic wave shielding layer and the near infrared shielding layer) are joined in a film form. In addition, an exposed surface of the composite layer that is not in contact with the transparent substrate has adhesiveness. In the composite layer of the optical filter of the present invention, the electromagnetic wave shielding layer may be formed on the other surface of the substrate, or the near-infrared shielding layer on the other surface of the substrate. It may be formed.
図 1 は、 本発明の光学フィルターの構成を示す断面説明図である 。 図 1 において、 光学フィルタ一 1は、 シート状透明基材 2 と、 そ の一面上に形成された反射防止層 3 と、 透明基材 2の反対面上に形 成された複合層 4により構成され、 複合層 4は、 電磁波遮蔽層 5 と 、 それに積層接合された近赤外線遮蔽層 6 を含むものであって、 図 1の光学フィルター 1 においては、 複合層 4は、 その電磁波遮蔽層 5において、 前記透明基材 2の前記反対面に積層固定されている。 複合層 4は、 その近赤外線遮蔽層において、 透明基材の前記反対面 に積層固定されていてもよい。  FIG. 1 is an explanatory cross-sectional view showing the configuration of the optical filter of the present invention. In FIG. 1, an optical filter 1 is composed of a sheet-like transparent substrate 2, an antireflection layer 3 formed on one surface, and a composite layer 4 formed on the opposite surface of the transparent substrate 2. The composite layer 4 includes an electromagnetic wave shielding layer 5 and a near-infrared shielding layer 6 laminated and bonded thereto. In the optical filter 1 shown in FIG. 1, the composite layer 4 is composed of the electromagnetic wave shielding layer 5. The transparent substrate 2 is laminated and fixed on the opposite surface. The composite layer 4 may be laminated and fixed to the opposite surface of the transparent substrate in the near infrared shielding layer.
従って、 本発明の光学フィルター 1 においては、 透明基材 2、 反 射防止層 3、 並びに電磁波遮蔽層 5及び近赤外線遮蔽層 6を含む複 合層 4は、 互に積層接合されて、 一体のフィルム状積層体を形成し ている。 前記複合層 4の、 前記透明基材 2に接合されていない露出 面 4 aは接着性を有するものである。 Therefore, in the optical filter 1 of the present invention, the transparent substrate 2, the antireflection layer 3, and the composite layer 4 including the electromagnetic wave shielding layer 5 and the near infrared shielding layer 6 are laminated and joined together to form an integral body. Form a film-like laminate ing. The exposed surface 4a of the composite layer 4 that is not bonded to the transparent substrate 2 has adhesiveness.
従来の光学フィルター用透明積層体は、 例えば反射防止層、 電磁 波遮蔽層及び近赤外線遮蔽層などの機能層のそれぞれを、 互に別個 の透明基材上に形成担持させ、 これらの機能層のそれぞれと、 それ を担持している透明基材とからなる複数の複合体を、 それぞれ接着 剤層を介して、 ガラスパネル上に順次に積層することによって形成 されている。 また、 ガラスパネルを用いない従来のフィルムタイプ 光学フィルター用透明積層体においても、 前記複数枚の機能層担持 複合フィルムを接着剤層を介して結着して形成されていた。  Conventional transparent laminates for optical filters, for example, each of functional layers such as an antireflection layer, an electromagnetic wave shielding layer, and a near-infrared shielding layer are formed and supported on separate transparent substrates, and It is formed by sequentially laminating a plurality of composites composed of each and a transparent base material carrying the same on the glass panel via an adhesive layer. Moreover, even in the conventional transparent laminate for a film type optical filter that does not use a glass panel, the plurality of functional layer-supporting composite films are formed through an adhesive layer.
本発明の一体のフィルム状光学フィル夕一においては、 1枚の透 明基体 (フィルム) の 1面上に、 反射防止層が形成固定され、 前記 透明基材の他の面上に、 互に積層接合された電磁波遮蔽層及び近赤 外線遮蔽層を含む複合層が形成固定されている。 このため、 本発明 の光学フィルタ一は従来の光学フィル夕一用透明積層体にく らベて 、 それを構成する成分層の数が少なく、 材料コス トが低く、 製造ェ 程数も少なく、 製造コス トも低いという利点を有している。 さらに 、 本発明の光学フィルタ一は、 上記構成によって、 光透過率が、 著 しく向上し、 ヘーズ値が低い、 というすぐれた光学的特性を有して いる。 さらにまた、 本発明の一体のフィルム状光学フィルタ一の複 合層の露出面は、 接着性を有しているから、 光学フィルタ一を、 こ の接着性露出面において、 所望の光学的表示面、 例えばプラズマテ レビジョ ンの画像表示面に容易に接着固定することができる。  In the integrated film-like optical film according to the present invention, an antireflection layer is formed and fixed on one surface of a transparent substrate (film), and the other surface of the transparent substrate is mutually attached. A composite layer including an electromagnetic wave shielding layer and a near infrared ray shielding layer laminated and bonded is formed and fixed. For this reason, the optical filter of the present invention has a smaller number of component layers, a lower material cost, and a smaller number of manufacturing processes than the conventional transparent laminate for optical films. The manufacturing cost is also low. Furthermore, the optical filter according to the present invention has excellent optical characteristics that the light transmittance is remarkably improved and the haze value is low due to the above configuration. Furthermore, since the exposed surface of the composite layer of the integral film-like optical filter of the present invention has adhesiveness, the optical filter can be connected to the desired optical display surface on the adhesively exposed surface. For example, it can be easily bonded and fixed to the image display surface of the plasma television.
(透明基材)  (Transparent substrate)
本発明に用いられる透明基材は、 それが透明材料である限り、 そ の種類、 組成などに限定はない。 透明基材を構成する材料は、 一般 に透明プラスチック材料から選ばれることが好ましく、 例えば、 プ レート状又はシート状、 又はフィルム状のポリエステル系基材、 ト リアセチルセルロース基材、 ポリ力一ポネート基材、 ポリエーテル サルフォン基材、 ポリアクリ レート基材、 ノルボンネン系基材、 及 び非晶質ポリオレフィ ン系基材等から適宜選択することができ、 ま た、 その厚さにも特段の限定はなく、 通常 50 n!〜 l Omm程度のフィ ルム状またはプレート状のものを用いることができる。 ポリエステ ル系基材としては、 なかでもポリエチレンテレフタレート (以下 PE Tとも称する) 基材は、 耐久性、 耐溶剤性、 生産性等の点において すぐれているため好ましく用いられている。 また、 色調や透過率を 調整するため、 着色されたものを用いてもよい。 As long as the transparent base material used in the present invention is a transparent material, there is no limitation on its kind and composition. In general, the material constituting the transparent substrate is preferably selected from transparent plastic materials. Rate-, sheet-, or film-like polyester base materials, triacetyl cellulose base materials, polystrengthen Ponate base materials, polyether sulfone base materials, polyacrylate base materials, norbornene base materials, and amorphous Polyolefin base materials can be selected as appropriate, and the thickness is not particularly limited, usually 50 n! A film or plate of about ~ l Omm can be used. Among polyester-based substrates, polyethylene terephthalate (hereinafter also referred to as PET) substrate is preferably used because of its excellent durability, solvent resistance, and productivity. Further, in order to adjust the color tone and transmittance, a colored one may be used.
(透明基材の紫外線遮蔽性について)  (About UV shielding properties of transparent substrates)
本発明の光学フィルタ一においては、 紫外線遮蔽性を有する材料 を透明基材に用いることが好ましい。 これは、 通常、 複合層に含ま れる近赤外線吸収色素の、 紫外線に対する耐性が低いので、 透明基 材として紫外線遮蔽性を有する材料を用いることにより、 近赤外線 吸収色素の劣化を抑制することができるからである。 紫外線吸収剤 としては、 例えば、 ベンゾフエノン系、 ベンゾ卜リアゾール系、 パ ラアミノ安息香酸系、 及びサリチル酸系等の紫外線吸収性化合物を 用いることができる。 通常、 紫外線吸収剤は、 ある特定量以上の添 加量で使用しないと十分な効果は得られない。 一般に、 膜厚の薄い コーティ ング層に紫外線吸収剤を添加するときは、 コーティ ング層 が含有し得る紫外線吸収剤の量に制限があり、 必要とする紫外線遮 蔽効果を得ることが難しいことがある。 しかし、 本発明の光学フィ ルターでは、 透明基材の内側に近赤外線遮蔽接着層が位置するため 、 肉薄のコーティ ング層に比べると大きな厚さを有する透明基材自 身に、 紫外線吸収剤を含有させることにより、 十分な量の紫外線吸 収剤を含有する光学フィル夕一を構成することができ、 それによつ て、 近赤外線吸収色素の劣化を抑制し、 優れた近赤外線吸収性能を 維持することができる。 光学フィルターの紫外線遮蔽性能としてはIn the optical filter of the present invention, it is preferable to use an ultraviolet shielding material for the transparent substrate. This is because the near-infrared absorbing dye contained in the composite layer usually has a low resistance to ultraviolet rays, so that the deterioration of the near-infrared absorbing dye can be suppressed by using an ultraviolet shielding material as the transparent substrate. Because. As the ultraviolet absorber, for example, an ultraviolet absorbing compound such as benzophenone, benzotriazole, paraaminobenzoic acid, and salicylic acid can be used. Usually, a sufficient effect cannot be obtained if the ultraviolet absorber is not used in an added amount of a specific amount or more. Generally, when an ultraviolet absorber is added to a thin coating layer, the amount of the ultraviolet absorber that can be contained in the coating layer is limited, and it is difficult to obtain the required ultraviolet shielding effect. is there. However, in the optical filter of the present invention, since the near-infrared shielding adhesive layer is located inside the transparent substrate, an ultraviolet absorber is applied to the transparent substrate itself having a thickness larger than that of the thin coating layer. By containing, an optical film containing a sufficient amount of the UV absorber can be constructed. Therefore, it is possible to suppress deterioration of the near-infrared absorbing dye and maintain excellent near-infrared absorbing performance. The UV shielding performance of optical filters
、 380 nm以下の紫外領域において、 紫外線透過率が 2 %以下である ことが好ましい。 In the ultraviolet region of 380 nm or less, the ultraviolet transmittance is preferably 2% or less.
(反射防止層)  (Antireflection layer)
本発明の光学フィル夕一において、 透明基材の一面上に形成され る反射防止層の構成、 組成などには、 それが所望の反射防止効果を 有する限り、 格別の限定はなく、 単層構造を有していてもよく、 あ るいは複数構造を有してもよい。 また、 反射防止層上に、 帯電防止 層等の導電層及び/又は、 防眩等の機能を有する薄膜層をさらに形 成してもよい。  In the optical film according to the present invention, the configuration and composition of the antireflection layer formed on one surface of the transparent substrate are not particularly limited as long as the antireflection layer has a desired antireflection effect. Or may have a plurality of structures. Moreover, a conductive layer such as an antistatic layer and / or a thin film layer having a function such as antiglare may be further formed on the antireflection layer.
反射防止層は、 ハードコート層と、 このハードコート層上に積層 された導電性中屈折率層と、 この導電性中屈折率層上に積層された 高屈折率層と、 この高屈折率層上に積層された低屈折率層とからな るものであることが好ましい。  The antireflection layer includes a hard coat layer, a conductive medium refractive index layer laminated on the hard coat layer, a high refractive index layer laminated on the conductive medium refractive index layer, and the high refractive index layer. It is preferably composed of a low refractive index layer laminated thereon.
このような構成の反射防止層は導電性を有する反射防止層であつ て、 静電気によるほこりの付着等を防止できる。 また、 この導電性 中屈折層が、 中屈折率層の機能を併有することにより、 中屈折、 高 屈折、 低屈折の 3層による反射防止膜を形成することができ、 それ によって優れた反射防止効果が得られる。  The antireflection layer having such a configuration is a conductive antireflection layer, and can prevent dust adhesion due to static electricity. In addition, since this conductive medium refractive layer has the function of a medium refractive index layer, it is possible to form an antireflection film with three layers of medium refraction, high refraction, and low refraction, thereby providing excellent antireflection. An effect is obtained.
前記ハードコート層は、 樹脂成分により形成されるが、 酸化物微 粒子を含有することが好ましい。 酸化物微粒子を含有することによ り、 透明基材との密着性が向上する。  The hard coat layer is formed of a resin component, but preferably contains oxide fine particles. By containing fine oxide particles, adhesion to a transparent substrate is improved.
ハードコート層における酸化物微粒子の含有量は 3 0質量%〜 8 0質量%であることが好ましい。 酸化物微粉末の含有量が 3 0質量 %未満の場合、 第 1 の透明基材ゃ中屈折率層との密着性が低下し、 目的とする鉛筆硬度や、 スチールウール強度等の膜硬度が得られな くなる。 また、 酸化物微粉末の含有量が 8 0質量%より多い場合、 酸化物微粉末の含有量が過度となり、 得られるハードコート層の膜 強度が低下する、 得られるハードコート層に白化現象が認められる 、 硬化後の膜の屈曲性が低下しクラックが発生しやすくなる、 等の 問題が発生する。 The content of oxide fine particles in the hard coat layer is preferably 30% by mass to 80% by mass. When the content of the oxide fine powder is less than 30% by mass, the first transparent base material has poor adhesion to the middle refractive index layer, and the desired pencil hardness, film hardness such as steel wool strength, etc. Don't get Become. In addition, when the content of the oxide fine powder is more than 80% by mass, the content of the oxide fine powder becomes excessive, the film strength of the obtained hard coat layer is lowered, and the resulting hard coat layer has a whitening phenomenon. Recognized problems such as reduced flexibility of the film after curing and easy cracking.
また、 ハードコート層の屈折率は、 透明基材の表面平均屈折率と 同値になるように設計することが好ましい。 これは、 透明基材の表 面平均屈折率とハードコート層の屈折率差により発生する反射率の 振幅の差を小さくすることにより、 いわゆる 「表面の虹色の色むら 」 を目立たなくすることができるためである。 ただし、 透明基材と して易接着層付き PETフィルム用いた場合は、 ハードコート層の屈 折率を、 下記式にて算出される屈折率と同じか、 またはこれに近づ けることが好ましい。  The refractive index of the hard coat layer is preferably designed to be the same value as the average surface refractive index of the transparent substrate. This is to make the so-called “irregular color irregularity of the surface” inconspicuous by reducing the difference in the amplitude of the reflectance caused by the difference in the average refractive index of the surface of the transparent substrate and that of the hard coat layer It is because it can do. However, when a PET film with an easy-adhesion layer is used as the transparent substrate, the refractive index of the hard coat layer is preferably the same as or close to the refractive index calculated by the following formula: .
N = Np - ( Ns - Np) / 2  N = Np-(Ns-Np) / 2
N: 透明ハードコート層の屈折率  N: Refractive index of transparent hard coat layer
Np: PET易接着層の屈折率  Np: Refractive index of PET easy-adhesion layer
Ns : PET基材の表面平均屈折率  Ns: Surface average refractive index of PET substrate
また、 ハードコート層中に用いられる酸化物微粒子としては、 酸 化珪素、 酸化アルミニウム、 酸化アンチモン、 酸化錫、 酸化ジルコ 二ゥム、 酸化タンタル、 酸化セリウム、 酸化チタン等が、 該ハード コート層を着色することなく、 透明性に優れたハードコート層を形 成し得る等の理由により適宜用いられる、 この酸化物微粒子の粒子 径としては、 100龍以下のものが好ましい。 l OOnmを超える粒子系の 酸化物微粉末では、 得られるハードコート層がレイ リー散乱により 、 光を著しく散乱させ、 白く見えるようになって透明度が低下する ためである。  The oxide fine particles used in the hard coat layer include silicon oxide, aluminum oxide, antimony oxide, tin oxide, zirconium oxide, tantalum oxide, cerium oxide, titanium oxide, and the like. The particle size of the oxide fine particles, which is appropriately used for reasons such as being able to form a hard coat layer excellent in transparency without being colored, is preferably 100 or less. This is because in the fine oxide powder of particle system exceeding lOOnm, the resulting hard coat layer scatters light significantly due to Rayleigh scattering, and appears to be white and the transparency is lowered.
前記樹脂成分については、 たとえば紫外線硬化樹脂、 電子線硬化 樹脂、 カチオン重合系樹脂等が挙げられるが、 中でも紫外線硬化樹 脂のものは安価で、 透明プラスチックフィルムとの密着性に優れる ことから好適に用いられる。 紫外線硬化型樹脂には、 塗工法 (ゥェ ッ トコ一ティ ング法) に用いられる感光性の樹脂であればよく、 た とえば、 アクリル系樹脂、 アクリルウレタン系樹脂、 シリコーン系 樹脂、 エポキシ系樹脂等が前記酸化物微粉末の分散性を損なう こと がない等の理由から好適に用いられる。 For the resin component, for example, UV curable resin, electron beam curing Resins, cationic polymerization resins, and the like can be mentioned. Among them, ultraviolet curable resins are preferably used because they are inexpensive and have excellent adhesion to a transparent plastic film. The UV curable resin may be any photosensitive resin used in the coating method (wet coating method). For example, acrylic resin, acrylic urethane resin, silicone resin, epoxy resin A resin or the like is preferably used for the reason that the dispersibility of the oxide fine powder is not impaired.
本発明において、 反射防止層中のハードコート層は、 たとえば、 有機樹脂成分と、 酸化物微粒子と、 有機溶剤を少なく とも含有する ハードコート層形成用塗料を、 透明基材上に塗布、 乾燥、 紫外線照 射することにより形成される。  In the present invention, the hard coat layer in the antireflection layer is formed by, for example, applying a coating for forming a hard coat layer containing at least an organic resin component, oxide fine particles, and an organic solvent on a transparent substrate, drying, It is formed by ultraviolet irradiation.
前記透明ハードコート層形成用塗料は、 たとえば、 前記酸化物微 粒子と、 樹脂成分とを分散剤を使用して、 超音波分散、 ホモジナイ ザ一、 サンドミル等を用いた通常の方法で、 有機溶剤中に混合分散 させた、 有機溶剤系塗料として得ることができる。 前記の有機溶剤 は、 アルコール系、 グリコール系、 酢酸エステル系、 ケトン系など から選ぶことができ、 これらは、 単一種で用いてもよく、 2種類以 上混合して使用してもよい。  The transparent hard coat layer-forming coating material is, for example, an organic solvent using an ordinary method using ultrasonic dispersion, a homogenizer, a sand mill, etc., using the oxide fine particles and the resin component as a dispersant. It can be obtained as an organic solvent-based paint mixed and dispersed in it. The organic solvent can be selected from alcohols, glycols, acetates, ketones, etc., and these may be used singly or in combination of two or more.
そして、 透明基材の片面に、 前記ハードコート層形成塗料を、 塗 布し、 紫外線照射等により架橋硬化させ、 ハードコート層を形成す る。 このハードコート層の膜厚は、 0. 5 2 Π!〜 20 ΙΠであることが好 ましく、 より好ましくは 0. 5〜2 ΙΠである。 膜厚が 0. 5 ΠΙ以下では 充分な膜硬度の発現を図ることはできないことがあり、 またそれが 20 以上では、 透明基材のカーリ ングが大きくなることがある。  Then, the hard coat layer-forming paint is applied to one side of the transparent substrate, and is hardened by crosslinking by ultraviolet irradiation or the like to form a hard coat layer. The thickness of this hard coat layer is 0.5 2 Π! It is preferably ˜20 、, more preferably 0.5 to 2 ΙΠ. If the film thickness is 0.5 mm or less, sufficient film hardness may not be achieved, and if it is 20 or more, the curling of the transparent substrate may increase.
なお、 塗工法としては、 各種の塗工方法が可能であり、 たとえば 、 バ一コート法、 グラビアコート法、 スリ ッ トコ一夕一法、 ロール コ一夕一法、 ディ ップコート法などから適宜選択することができる ハードコート層上に形成される導電性中屈折率層は、 好ましくは 導電性を有し、 かつ中屈折率の微粒子とバインダ一成分とを含む 導電性中屈折率層における前記導電性中屈折率微粒子の含有量はAs the coating method, various coating methods can be used. For example, a bar coating method, a gravure coating method, a slitco overnight method, a roll coating method, a dip coating method, etc. are appropriately selected. can do The conductive middle refractive index layer formed on the hard coat layer preferably has conductivity, and includes fine particles having a middle refractive index and one binder component. The conductive middle refractive index layer in the conductive middle refractive index layer The content of fine particles is
50質量%以上であることが好ましく、 特に 70〜95%の範囲にあること がより好ましい。 前記導電性中屈折率微粒子の含有量が 50質量%未 満では、 導電性中屈折率層の表面抵抗値が増大し、 導電性が悪化す るとともに、 フィ ラー成分が減少することがあり、 このため、 ハー ドコート層との密着性が不十分になることがある。 一方、 前記導電 性中屈折率微粒子の含有量が 95質量%を超えると、 相対的にバイン ダー成分の含有量が低下するため、 バインダーマトリ ックス中に十 分な量の前記導電性中屈折率微粒子を保持することができず、 また 、 導電性中屈折率層上に他層を塗布する際に、 膜に傷が付きやすく なり外観不良を引き起こすことがある。 It is preferably 50% by mass or more, and more preferably in the range of 70 to 95%. When the content of the conductive medium refractive index fine particles is less than 50% by mass, the surface resistance value of the conductive medium refractive index layer increases, the conductivity deteriorates, and the filler component may decrease. For this reason, the adhesion with the hard coat layer may be insufficient. On the other hand, when the content of the conductive medium refractive index fine particles exceeds 95% by mass, the content of the binder component is relatively decreased, so that a sufficient amount of the conductive medium refractive index is contained in the binder matrix. Fine particles cannot be retained, and when applying another layer on the conductive medium refractive index layer, the film is likely to be scratched, which may cause poor appearance.
前記導電性中屈折率微粒子としては、 アンチモン含有酸化錫 (以 下 AT0と称す) 、 錫含有酸化インジウム (以下 IT0と称す) 、 アルミ ニゥム含有酸化亜鉛、 金、 銀、 パラジウム等の金属微粒子などが、 透明性および導電性に優れた導電性中屈折率層を形成し得る等の理 由により好適に使用される。  Examples of the conductive medium refractive index fine particles include antimony-containing tin oxide (hereinafter referred to as AT0), tin-containing indium oxide (hereinafter referred to as IT0), aluminum-containing zinc oxide, metal fine particles such as gold, silver, and palladium. It is preferably used for the reason that a conductive medium refractive index layer having excellent transparency and conductivity can be formed.
また、 前記導電性中屈折率微粒子の粒子径は、 平均粒径が、 1〜1 OOnmであることが好ましい。 平均粒径力 未満では、 塗料化時に 凝集を起こしやすく、 塗料化するための均一な分散が困難になり、 さらに塗料の粘度が増大し、 分散不良が生じたりすることがある。 また、 導電性中屈折率微粒子の平均粒径が l OOnmを超えると、 得ら れる導電性中屈折率層が、 レイ リー散乱によって著しく光を乱反射 させるため、 白く見えるようになってしまい、 透明性が低下するこ とがある。 The average particle diameter of the conductive medium refractive index fine particles is preferably 1 to 1 OOnm. If it is less than the average particle size force, it tends to agglomerate at the time of coating, making it difficult to uniformly disperse the coating, further increasing the viscosity of the coating and causing poor dispersion. Also, if the average particle size of the conductive medium refractive index fine particles exceeds lOOnm, the resulting conductive medium refractive index layer remarkably diffuses light due to Rayleigh scattering, so that it appears white. Decrease There is.
バインダー成分としては、 シリコンアルコキシド及び 又は加水 分解生成物から生成される物質が好ましい。  As the binder component, a substance produced from silicon alkoxide and / or a hydrolysis product is preferable.
本発明の光学フィルタ一において導電性中屈折率層は、 導電性中 屈折率微粒子とシリコンアルコキシド及び/又はその加水分解生成 物と、 有機溶剤とを少なく とも含む導電性中屈折率層形成用塗料を 用いて、 ハードコート層上に塗布、 乾燥させることにより形成する ことができる。  In the optical filter of the present invention, the conductive medium refractive index layer is a conductive medium refractive index layer forming coating material comprising at least conductive medium refractive index fine particles, silicon alkoxide and / or a hydrolysis product thereof, and an organic solvent. It can be formed by applying and drying on the hard coat layer.
前記導電性中屈折率層形成用塗料は、 前記の導電性中屈折率酸化 物微粒子と、 シリコンアルコキシド及び/またはその加水分解生成 物と場合により添加される他の粒子とを分散剤を用いて、 超音波分 散機、 ホモジナイザー、 サンドミル等を用いた通常の方法で有機溶 剤中に分散させ、 有機溶剤系塗料として得ることができる。  The conductive medium refractive index layer-forming coating material comprises the conductive medium refractive index oxide fine particles, silicon alkoxide and / or a hydrolysis product thereof, and other particles optionally added, using a dispersant. It can be dispersed in an organic solvent by an ordinary method using an ultrasonic disperser, a homogenizer, a sand mill or the like to obtain an organic solvent-based paint.
前記シリコンアルコキシドとしては、 たとえばテトラアルコキシ シラン系化合物、 アルキルトリアルコキシシラン系化合物等から選 ぶことができ、 また、 前記の有機溶剤としては、 アルコール系、 グ リコール系、 酢酸エステル系、 ケトン系などから選ぶことができ、 これらは単一種でもよく、 2種類以上の混合物として使用してもよ い。  The silicon alkoxide can be selected from, for example, a tetraalkoxysilane compound, an alkyltrialkoxysilane compound, and the like, and examples of the organic solvent include alcohols, glycols, acetate esters, and ketones. These can be selected from a single species or a mixture of two or more species.
そして、 透明ハードコート層上に前記透電性中屈折率層形成用塗 料を塗布し、 たとえば 70〜 130°Cで 1分以上乾燥して、 光学膜厚を、 140土 3 0龍の範囲に調整することが好ましい。  Then, the conductive medium refractive index layer forming coating is applied on the transparent hard coat layer, and dried at 70 to 130 ° C. for 1 minute or longer, for example, and the optical film thickness is in the range of 140 dragons. It is preferable to adjust to.
乾燥温度については 130°Cを超えると使用する透明プラスチック フィルムによっては熱変形を引き起こすために好ましくない。 また 、 7 0°C未満では硬化速度が遅くなり強度が発現しない。 また、 硬 化時間力 分未満では膜強度が不足するために好ましくない。  When the drying temperature exceeds 130 ° C, it is not preferable because the transparent plastic film used causes thermal deformation. Further, if it is less than 70 ° C, the curing rate is slow and the strength is not exhibited. Further, if the curing time is less than the minutes, the film strength is insufficient, which is not preferable.
なお、 塗工方法としては、 たとえばバ一コート法、 グラビアコ一 ト法、 スリ ッ トコ一夕一法、 ロールコ一夕一法、 ディ ップコート法 等などから適宜選択することができる。 Examples of coating methods include bar coating and gravure coating. The method can be appropriately selected from the following methods: slitting method, slitting method, roll coating method, dip coating method, and the like.
導電性中屈折率層上に形成される、 高屈折率層は、 例えば高屈折 率の酸化物微粒子とバインダー成分とを含むものである。  The high refractive index layer formed on the conductive intermediate refractive index layer includes, for example, high refractive index fine particles and a binder component.
髙屈折率層における高屈折率酸化物微粒子の含有量は、 50質量% 以上であることが好ましく、 特に 60〜95質量%であることがより好 ましい。 前記高屈折率酸化物微粒子の含有量が 50%未満では、 相対 的にバインダー成分の含有量が増加し屈折率の低下を起こし、 充分 な高屈折率化が得られず、 反射率が過度に増大することがある。 ま た、 前記高屈折率酸化物微粒子の含有量が 95%を超えると、 バイン ダー成分により高屈折率酸化物微粒子を十分に固定化することがで きず、 また、 この透明高屈折率層上に他層を塗布する際に傷が入り やすくなり、 さらに外観不良を起こすことがある。  The content of high refractive index oxide fine particles in the refractive index layer is preferably 50% by mass or more, more preferably 60 to 95% by mass. When the content of the high refractive index oxide fine particles is less than 50%, the content of the binder component is relatively increased and the refractive index is lowered, so that a sufficiently high refractive index cannot be obtained, and the reflectance is excessive. May increase. If the content of the high refractive index oxide fine particles exceeds 95%, the high refractive index oxide fine particles cannot be sufficiently fixed by the binder component, and the transparent high refractive index layer is not fixed. When other layers are applied to the surface, scratches are likely to occur, and appearance defects may occur.
前記高屈折率酸化物微粒子としては、 酸化セリウム、 酸化亜鉛、 酸化ジルコニウム、 酸化チタン、 酸化タンタル等が、 透明性に優れ た高屈折率層を形成しうる理由により好適に使用される。  As the high refractive index oxide fine particles, cerium oxide, zinc oxide, zirconium oxide, titanium oxide, tantalum oxide and the like are preferably used for the reason that a high refractive index layer excellent in transparency can be formed.
また、 髙屈折率酸化物微粉末の粒子径は、 平均粒径が、 l〜 100nm であることが好ましい。 平均粒径が lnm未満では、 塗料化時に凝集 を起こしやすく、 塗料化するための均一な分散が困難になり、 さら に塗料の粘度が増大し、 分散不良が生じたりすることがある。 また 、 高屈折率酸化物微粉末の平均粒径が l OOnmを超えると、 得られる 高屈折率層が、 レイ リー散乱によって著しく光を乱反射させるため 、 白く見えるようになってしまい、 透明性が不十分になることがあ る。  Further, the average particle diameter of the fine refractive index oxide fine powder is preferably 1 to 100 nm. If the average particle size is less than 1 nm, aggregation tends to occur during coating, making uniform dispersion difficult for coating, further increasing the viscosity of the coating and causing poor dispersion. In addition, when the average particle diameter of the high refractive index oxide fine powder exceeds lOOnm, the resulting high refractive index layer remarkably diffuses light due to Rayleigh scattering, so that it appears white and the transparency is high. It may be insufficient.
バインダ一成分としては、 シリコンアルコキシド及び/またはそ の加水分解生成物由来のシリカが好ましい。  As a binder component, silica derived from silicon alkoxide and / or a hydrolysis product thereof is preferable.
前記高屈折率層は、 高屈折率酸化物微粒子と、 バインダー成分と 有機溶剤とを少なく とも含有する、 透明高屈折率形成塗料を用いて 、 導電性中屈折率層上に塗布、 乾燥することにより形成される。 前記高屈折率層形成用塗料は、 前記の高屈折率酸化物微粉末と、 シリコンアルコキシド及び zまたはその加水分解生成物と場合によ り添加される粒子とを分散剤を用いて、 超音波分散機、 ホモジナイ ザ一、 サンドミル等を用いた通常の方法で有機溶剤中に分散させ、 有機溶剤系塗料として得ることができる。 The high refractive index layer includes high refractive index oxide fine particles, a binder component, It is formed by applying and drying on a conductive middle refractive index layer using a transparent high refractive index forming paint containing at least an organic solvent. The coating material for forming a high refractive index layer comprises ultrasonic waves using the above-mentioned high refractive index oxide fine powder, silicon alkoxide and z or a hydrolysis product thereof, and optionally added particles, using a dispersant. It can be dispersed in an organic solvent by an ordinary method using a disperser, a homogenizer, a sand mill, etc. to obtain an organic solvent-based paint.
前記シリコンアルコキシドとしては、 たとえばテトラアルコキシ シラン系化合物、 アルキルトリアルコキシシラン系化合物等から選 ぶことができ、 また、 前記の有機溶剤としては、 アルコール系、 グ リコール系、 酢酸エステル系、 ケトン系などから選ぶことができ、 これらは単一種でもよく、 2種類以上の混合物として使用してもよ い。  The silicon alkoxide can be selected from, for example, a tetraalkoxysilane compound, an alkyltrialkoxysilane compound, and the like, and examples of the organic solvent include alcohols, glycols, acetate esters, and ketones. These can be selected from a single species or a mixture of two or more species.
そして、 導電性中屈折率層上に前記高屈折率層形成用塗料を塗布 し、 たとえば 70〜1 3 0 °Cで 1分以上乾燥して高屈折率層を形成する。 その膜厚は低屈折率層の光学膜厚の 1 . 2〜 2 . 5倍に設定するこ とが好ましい。 これまで反射防止に係わる膜厚設計は、 高屈折率層 、 低屈折率層の膜厚を、 目標とする最低反射率を示す波長 (以下ポ トム波長と呼ぶ) の 1/4に設定することが一般的に知られているが 、 この手法で反射防止膜を作製した場合、 ボトム波長における反射 率は最も低くなるけれども、 それよりも長波長側、 及び低波長側で の反射率が増大し、 その部分の反射色が強くなり、 きつい青紫から 赤紫の反射色を呈する。 更には、 目視での反射率の指標である視感 度反射率の増大にもつながる。 これら長波長側、 及び低波長側の反 射率の増大を抑えるべく検討を行った結果、 前記のとおり、 低屈折 率層の光学膜厚を 1. 2〜 2. 5倍と、 これまでの設計方法より厚めに設 計することで解決することを見出した。 乾燥温度については、 それが 130°Cを超えると使用する透明ブラ スチックフィルムによっては熱変形を引き起こすことがある。 また 、 それが 7 0°C未満では硬化速度が遅くなり十分な強度が発現しな いことがある。 また、 硬化時間力 分未満では膜強度が不足するこ とがある。 Then, the high refractive index layer-forming coating material is applied onto the conductive middle refractive index layer, and dried at 70 to 130 ° C. for 1 minute or longer to form a high refractive index layer. The film thickness is preferably set to 1.2 to 2.5 times the optical film thickness of the low refractive index layer. Until now, the film thickness design for anti-reflection is to set the film thickness of the high-refractive index layer and low-refractive index layer to 1/4 of the wavelength indicating the target minimum reflectivity (hereinafter referred to as the “potential wavelength”). Although it is generally known that when an antireflection film is produced by this method, the reflectance at the bottom wavelength is the lowest, but the reflectance at the longer wavelength side and the lower wavelength side is increased. , The reflected color of the part becomes strong, and it shows a tight bluish purple to reddish purple reflected color. Furthermore, it leads to an increase in luminous reflectance, which is an index of visual reflectance. As a result of studies to suppress the increase in the reflectance on the long wavelength side and the low wavelength side, as described above, the optical film thickness of the low refractive index layer is 1.2 to 2.5 times, It was found that the problem can be solved by designing a design thicker than the design method. Regarding the drying temperature, if it exceeds 130 ° C, it may cause thermal deformation depending on the transparent plastic film used. Also, if it is less than 70 ° C, the curing rate is slow and sufficient strength may not be exhibited. Also, if the curing time is less than the strength of the film, the film strength may be insufficient.
なお、 塗工方法としては、 たとえばバーコート法、 グラビアコー ト法、 スリ ッ トコ一夕一法、 口一ルコ一夕一法、 ディ ップコ一ト法 等などから適宜選択することができる。  The coating method can be appropriately selected from, for example, a bar coating method, a gravure coating method, a slitco overnight method, a mouthful ruco overnight method, a dip coating method, and the like.
高屈折率層上に積層される低屈折率層は、 例えば、 シリコンアル コキシド及び/又は、 その加水分解生成物と、 シリコーンオイルと 、 有機溶剤と、 を含む低屈折率層形成用塗料を高屈折率層上に塗布 し乾燥することによって形成される。  The low refractive index layer laminated on the high refractive index layer is, for example, a high-refractive index layer forming coating containing silicon alkoxide and / or a hydrolysis product thereof, silicone oil, and an organic solvent. It is formed by coating on the refractive index layer and drying.
この低屈折率層の屈折率は、 高屈折率層の屈折率よりも 0. 1以上 小さいことが好ましい。 このような透明低屈折率層を設けることに より、 得られる反射防止層は極めて優れた反射防止性を示すものと なる。 この低屈折率層形成用塗料として用いられるシリコンアルコ キシドとしては、 テトラアルコキシシラン系化合物、 アルキルト リ アルコキシシラン系化合物等から適宜選択し使用することができる また、 前記シリコーンオイルとしては、 ジアルキルアルコキシシ ラン化合物から適宜使用することができる。 さらに前記の有機溶剤 としては、 アルコール系、 グリコール系、 酢酸エステル系、 ケトン 系から適宜選択することができ、 これらは単一種で使用しても、 2 種類以上を混合して使用してもよい。  The refractive index of the low refractive index layer is preferably 0.1 or more smaller than the refractive index of the high refractive index layer. By providing such a transparent low refractive index layer, the resulting antireflection layer exhibits extremely excellent antireflection properties. The silicon alkoxide used as the coating material for forming the low refractive index layer can be appropriately selected from tetraalkoxysilane compounds, alkyltrialkoxysilane compounds, and the like, and the silicone oil can be a dialkylalkoxysilane. It can be suitably used from the lan compound. Furthermore, the organic solvent can be appropriately selected from alcohols, glycols, acetates, and ketones. These may be used alone or in combination of two or more. .
透明屈折率層形成用塗料中にシリコーンオイル 0. 0 1〜 5. 0質量%を 含有させると、 塗膜の水に対する接触角が、 90 ° 以上となって、 撥 水性を発現し、 滑りやすくなり、 帯電防止 · 反射防止膜付き透明フ イルムの膜強度 (特にスチールウール強度) が向上し、 防汚性も付 与することができる。 If silicone oil is contained in the transparent refractive index layer-forming coating in an amount of 0.01 to 5.0% by mass, the contact angle of the coating film with water becomes 90 ° or more, water repellency is exhibited, and slipperiness is achieved. Antistatic and transparent film with antireflection film The film strength of the film (especially steel wool strength) is improved and antifouling properties can be imparted.
前記シリコーンオイルの含有量が 0. 01質量%未満では、 シリコー ンオイルが透明低屈折率層の表面に十分にじみでずに、 水に対する 接触角が 90 ° 未満となり、 十分な撥水性が得られず、 帯電防止 , 反 射防止膜付き透明フィルムの膜強度向上及び防汚性が得られないこ とがある。 また、 含有量が 5. 0質量%を超えると、 シリコーンオイル が透明低屈折率層の表面で過度となるために、 水に対する接触角が 90 ° を超え、 十分な撥水性が得られるけれども、 シリコンアルコキ シド及び Z又は、 その加水分解生成物の重合硬化反応を阻害するた めに、 帯電防止 · 反射防止膜付き透明フィルムの膜強度低下を引き 起こすことがある。  When the content of the silicone oil is less than 0.01% by mass, the silicone oil does not sufficiently bleed on the surface of the transparent low refractive index layer, and the contact angle with water is less than 90 °, and sufficient water repellency cannot be obtained. The film strength improvement and antifouling property of the transparent film with antistatic and antireflection film may not be obtained. If the content exceeds 5.0% by mass, the silicone oil becomes excessive on the surface of the transparent low refractive index layer, so that the contact angle with water exceeds 90 ° and sufficient water repellency is obtained. In order to inhibit the polymerization and curing reaction of silicon alkoxide and Z or its hydrolysis product, it may cause a decrease in film strength of the transparent film with antistatic / antireflection film.
乾燥温度については 130°Cを超えると使用する透明プラスチック フィルムによっては熱変形を引き起こすことがある。 また、' 7 0°C 未満では硬化速度が遅くなり強度が発現しないことがある。 また、 硬化時間力 Π分未満では膜強度が不足することがある。  If the drying temperature exceeds 130 ° C, it may cause thermal deformation depending on the transparent plastic film used. Also, if it is less than '70 ° C, the curing rate is slow and strength may not be exhibited. If the curing time is less than enough, the film strength may be insufficient.
なお、 塗工方法としては、 たとえばバーコート法、 グラビアコ一 ト法、 スリ ッ トコ一夕一法、 口一ルコ一夕一法、 ディ ップコート法 等などから適宜選択することができる。  The coating method can be appropriately selected from, for example, a bar coating method, a gravure coating method, a slit coating method, a mouth coating method, a dip coating method, and the like.
上記方法により作成された、 帯電防止 · 反射防止膜は、 良好な帯 電防止効果、 反射防止性を有し、 膜硬度が強く、 防汚性を有する等 の特徴を有する。 その理由は、 以下のように考えられる。  The antistatic / antireflection film prepared by the above method has a good antistatic effect, antireflection property, strong film hardness, and antifouling properties. The reason is considered as follows.
透明ハードコート層、 透明導電性中屈折率層及び、 透明高屈折率 層に多量の無機化合物フイ ラ一を存在させることにより、 層の表面 エネルギーを増大させて各層表面上への各塗料の濡れ性を著しく向 上させることができ、 この濡れ性改善効果により層間の密着性が向 上し、 これにより従来よりも強い膜強度を得ることができる。 さらに、 最外層ある透明低屈折率層には、 シリコーンオイルが含 有されており、 水に対する接触角が 90 ° を超え、 撥水性を付与する ことができる。 そしてこの撥水効果は、 綿布等で擦っても効果は十 分に維持され、 従来よりも高い防汚性を得ることができる。 防汚性 が持続する理由については、 シリコーンオイルが、 シリカマトリ ツ クス中に取り込まれており、 簡単に滲み出すことがないためと考え られる。 The presence of a large amount of inorganic compound filler in the transparent hard coat layer, the transparent conductive medium refractive index layer, and the transparent high refractive index layer increases the surface energy of the layer and wets each coating onto the surface of each layer. The wettability-improving effect can improve the adhesion between the layers, thereby obtaining a stronger film strength than before. Furthermore, the transparent low refractive index layer as the outermost layer contains silicone oil, and the water contact angle exceeds 90 ° and can impart water repellency. This water-repellent effect is sufficiently maintained even when rubbed with cotton cloth or the like, and higher antifouling properties than before can be obtained. The reason why the antifouling property lasts is thought to be because silicone oil is incorporated in the silica matrix and does not ooze out easily.
(複合層)  (Composite layer)
本発明の光学フィルターに含まれる複合層は、 透明基材の他の面 上に接合されるものであって、 互に積層され接合された電磁波遮蔽 層と、 近赤外線遮蔽層とを含むものであり、 複合層の露出面は接着 性を有していることが必要である。  The composite layer included in the optical filter of the present invention is bonded onto the other surface of the transparent substrate, and includes an electromagnetic wave shielding layer laminated and bonded to each other, and a near infrared shielding layer. Yes, the exposed surface of the composite layer must have adhesiveness.
(電磁波遮蔽層)  (Electromagnetic wave shielding layer)
本発明の光学フィルターにおいて、 透明基材の他の面上に形成さ れる複合層に含まれる電磁波遮蔽層の構成 · 組成などに格別の制限 はなく、 電磁波遮蔽性と画像の透過性を有するように形成されたも のであればよく、 例えば、 金属メッシュ層、 導電性物質を含む透明 導電膜などを用いることができる。  In the optical filter of the present invention, there is no particular limitation on the composition / composition of the electromagnetic wave shielding layer contained in the composite layer formed on the other surface of the transparent substrate, so that the optical filter has electromagnetic wave shielding properties and image transparency. For example, a metal mesh layer, a transparent conductive film containing a conductive substance, or the like can be used.
例えば、 金属メッシュ層としては、 透明基材に触媒インクでメッ シュパターンを印刷し、 これに金厲メツキを施して形成したもの等 を用いることができる。 また、 例えば、 透明導電膜層としては、 銀 等の導電性物質を蒸着、 スパッタ等により形成したものが用いられ る。  For example, the metal mesh layer may be formed by printing a mesh pattern with a catalyst ink on a transparent base material and applying a gold plating to the mesh pattern. For example, as the transparent conductive film layer, a conductive material such as silver formed by vapor deposition, sputtering, or the like is used.
さ らに、 電磁波遮蔽層の厚さは、 1 〜10 /i mであることが好まし い。 電磁波遮蔽層として金属メッシュ層を用いる場合、 金属メッシ ュ層の厚さが 10 mより厚いと視野角が狭くなり視認性が低下する 。 さらに表面を黒色化しても、 斜め方向から視認した場合、 金属メ ッシュの深さ方向は黒色化され難く、 金属の色調がむき出しになつ ており、 画面の色調に不具合を与える。 Furthermore, the thickness of the electromagnetic shielding layer is preferably 1 to 10 / im. When a metal mesh layer is used as the electromagnetic wave shielding layer, if the thickness of the metal mesh layer is greater than 10 m, the viewing angle becomes narrow and visibility is reduced. Furthermore, even if the surface is blackened, when viewed from an oblique direction, the metal The depth direction of the screen is difficult to be blackened, and the color tone of the metal is exposed, resulting in problems with the color tone of the screen.
また、 金属メッシュ層の 2辺の縁端部をべ夕金属膜としてもよい  Alternatively, the edge of the two sides of the metal mesh layer may be a metal film.
(近赤外線遮蔽接着層) (Near-infrared shielding adhesive layer)
本発明の光学フィルタ一において、 複合層に含まれる近赤外線遮 蔽接着層の近赤外線遮蔽性能は、 波長 : 800〜 l l O Onm領域の近赤外 線に対して、 遮蔽性を有することが好ましく、 例えば、 樹脂マトリ ックス中に近赤外線吸収色素が含有されたものであることが好まし い。  In the optical filter of the present invention, the near-infrared shielding performance of the near-infrared shielding adhesive layer contained in the composite layer preferably has a shielding property against near-infrared rays in the wavelength range of 800 to ll O Onm. For example, it is preferable that a near-infrared absorbing dye is contained in the resin matrix.
近赤外線吸収色素としては、 800〜 1 100nm領域の近赤外線に対し て遮蔽性を有するものであれば特に限定されないが、 例えば、 ジィ モニゥム系化合物、 アルミニウム系化合物、 フタロシアニン系化合 物、 有機金属錯体系化合物、 シァニン系化合物、 ァゾ系化合物、 ポ リメチン系化合物、 キノン系化合物、 ジフエニルメタン系化合物、 トリフエニルメタン系化合物、 メルカプトナフ トール系化合物等を 用いることができ、 またこれらは、 単一種で用いられてもよく、 又 、 無,機物と複合化したものを用いてもよく或は、 2種以上を適宜組 み合わせて用いてもよい。  The near-infrared absorbing dye is not particularly limited as long as it has a shielding property against near infrared rays in the range of 800 to 1100 nm. For example, dimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes Systemic compounds, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds, triphenylmethane compounds, mercaptonaphthol compounds, etc. can be used. It may be used, or it may be used in combination with an aircraft, or two or more may be used in appropriate combination.
ジィモ二ゥム系化合物は、 波長 850〜 l l O Onmの近赤外線領域に、 モル吸光係数が 10万程度の強い吸収性を有し、 従って近赤外線遮蔽 性に優れている。 ジィモ二ゥム系化合物は、 波長 400〜 500nmの可視 光領域に若干の吸収を有し黄褐色の透過色を呈するが、 しかし、 可 視光透過性が他の近赤外線吸収色素よりも優れているため、 本発明 の光学フィル夕一に用いられる近赤外線吸収色素中に、 少なく とも 1種ジィモ二ゥム系化合物が含まれていることが好ましい。  Dimmonium compounds have strong absorptivity with a molar extinction coefficient of about 100,000 in the near infrared region with a wavelength of 850 to l l O Onm, and thus have excellent near infrared shielding properties. Dimmonium compounds have a slight absorption in the visible light region with a wavelength of 400 to 500 nm and exhibit a yellowish brown transmission color, but the visible light transmission is superior to other near-infrared absorbing dyes. Therefore, it is preferable that at least one dimonium-based compound is contained in the near-infrared absorbing dye used in the optical film according to the present invention.
近赤外線遮蔽接着層が、 実用上十分な近赤外線遮蔽性を発現する ためには、 波長 850〜 l O O Onmの近赤外線の透過率が 20 %以下である ことが好ましい。 近赤外線遮蔽接着層中の近赤外線吸収色素の好ま しい配合量は、 接着層の厚さに依存して変動する。 ジィモ二ゥム系 化合物を使用し、 かつ、 接着層の厚さを 5〜50 m程度に設計する 場合、 マトリ ックスとして使用される透明樹脂 100質量部に対し、 近赤外線吸収性色素化合物の配合量は、 0. 5〜5. 0質量部程度とする ことが好ましい。 透明マ トリ ックス樹脂 100質量部に対する近赤外 線吸収色素化合物の配合量が、 5質量部をこえると、 得られる近赤 外線遮蔽層中において、 色素の偏析を生じたり、 また可視光透明性 の低下などを生ずることがある。 Near-infrared shielding adhesive layer exhibits practically sufficient near-infrared shielding properties For this purpose, it is preferable that the near infrared transmittance at a wavelength of 850 to lOO Onm is 20% or less. The preferred amount of the near-infrared absorbing dye in the near-infrared shielding adhesive layer varies depending on the thickness of the adhesive layer. When using a dimonium-based compound and designing the adhesive layer to have a thickness of about 5 to 50 m, blending a near-infrared absorbing dye compound with 100 parts by mass of the transparent resin used as a matrix The amount is preferably about 0.5 to 5.0 parts by mass. When the blending amount of the near-infrared ray absorbing dye compound with respect to 100 parts by mass of the transparent matrix resin exceeds 5 parts by mass, the segregation of the dye occurs in the obtained near-infrared shielding layer or the visible light transparency is increased. May decrease.
近赤外線遮蔽接着層にジィモ二ゥム系化合物を用いた場合、 さら に、 第 2の近赤外線吸収色素として、 750〜 900nmに吸収極大を有し 、 可視光領域に実質的に吸収がない 1種以上の色素、 例えば、 その 吸収極大波長における吸収係数と、 波長 450nm (青色光の中心波長 ) 、 525nm (緑色光の中心波長) 及び 620nm (赤色光の中心波長) に おけるそれぞれの吸光係数との比が、 いずれも 5. 0以上である 1種 又は 2種以上の近赤外線吸収色素を併用することが好ましく、 前記 第 2の近赤外線吸収色素の前記吸光係数の比が 8. 0以上であること がより好ましい。 前記吸光係数の比のいずれかが 5. 0未満であると きは、 実用上必要とされる 850〜 900nmの平均透過率が 20 %以下であ る場合、 波長 450nm (青色光の中心波長) 、 525nm (緑色光の中心波 長) 、 および 620ηιιι (赤色光の中心波長) における可視光線透過率 のいずれかが 60 %未満となり、 可視光領域の透過率が実用上不十分 になることがある。  When a dimonium-based compound is used in the near-infrared shielding adhesive layer, the second near-infrared absorbing dye has an absorption maximum at 750 to 900 nm and has substantially no absorption in the visible light region 1 More than one type of dye, for example, its absorption coefficient at its absorption maximum wavelength and its respective absorption coefficient at wavelengths of 450 nm (center wavelength of blue light), 525 nm (center wavelength of green light) and 620 nm (center wavelength of red light) Preferably, one or two or more near-infrared absorbing dyes having a ratio of 5.0 or more are used in combination, and the ratio of the extinction coefficients of the second near-infrared absorbing dyes is 8.0 or more. More preferably. When the ratio of the extinction coefficients is less than 5.0, the wavelength of 450 nm (the central wavelength of blue light) when the average transmittance of 850 to 900 nm required for practical use is 20% or less , 525nm (center wavelength of green light), and 620ηιιι (center wavelength of red light) are less than 60% of visible light transmittance, and the transmittance in the visible light region may be insufficient in practice. .
前記の特性を有する前記第 2の近赤外線吸収色素用化合物として は、 例えば、 ジチオールニッケル錯体系化合物、 インドリウム系化 合物、 フタロシアニン系化合物、 ナフタロシアニン系化合物等を用 いることができる。 特に、 フタロシアニン系化合物及びナフタロシ ァニン系化合物は、 一般的に耐久性に優れており、 好適に用いるこ とができるが、 ナフタロシアニン系化合物はより高価であるため、 フタロシアニン系化合物が、 実用上より好適に用いられる。 Examples of the second near-infrared absorbing dye compound having the above-described characteristics include dithiol nickel complex compounds, indolium compounds, phthalocyanine compounds, naphthalocyanine compounds, and the like. Can be. In particular, phthalocyanine compounds and naphthalocyanine compounds are generally excellent in durability and can be suitably used. However, since naphthalocyanine compounds are more expensive, phthalocyanine compounds are more practical. Preferably used.
本発明の光学フィル夕一において、 複合層が、 前記透明基材の前 記他の面上に接合された電磁波遮蔽層と、 この電磁波遮蔽層上に形 成された近赤外線遮蔽層とを含む場合、 この近赤外線遮蔽層には、 接着剤が含まれ、 従って近赤外線遮蔽層の露出面が接着性を示すも のであってもよく、 或は、 近赤外線遮蔽層の露出面上に接着剤を含 む接着層が形成されていて、 それによつて接着性露出面が形成され ていてもよい。  In the optical film according to the present invention, the composite layer includes an electromagnetic wave shielding layer bonded to the other surface of the transparent substrate, and a near infrared shielding layer formed on the electromagnetic wave shielding layer. In this case, the near-infrared shielding layer may contain an adhesive, so that the exposed surface of the near-infrared shielding layer may exhibit adhesiveness, or the adhesive may be formed on the exposed surface of the near-infrared shielding layer. The adhesive layer containing may be formed, and thereby the adhesive exposed surface may be formed.
また、 本発明の光学フィルターの複合層において、 近赤外線遮蔽 層が、 透明基材の前記他の面上に形成されていて、 電磁波遮蔽層の In the composite layer of the optical filter of the present invention, a near-infrared shielding layer is formed on the other surface of the transparent substrate, and the electromagnetic shielding layer
1面が接着剤を含有するおもて面接着層を介して前記近赤外線遮蔽 層に接合されており、 かつ電磁波遮蔽層の他の面には、 接着剤を含 むう ら面接着層が形成されていて、 このう ら面接着層により、 複合 層の接着性露出面が形成されていてもよい。 One surface is bonded to the near-infrared shielding layer via a front surface adhesive layer containing an adhesive, and a surface adhesive layer containing an adhesive is formed on the other surface of the electromagnetic wave shielding layer. The adhesive adhesive exposed surface of the composite layer may be formed by the back surface adhesive layer.
前記接着性を有する近赤外'線遮蔽層、 近赤外線遮蔽層上に形成さ れる接着層、 並びに電磁波遮蔽層のおもて、 う ら、 表面に形成され るおもて面及びう ら面接着層のそれぞれに含まれる接着剤は、 ァク リル系樹脂、 ポリエステル系樹脂、 エポキシ樹脂、 ウレタン樹脂、 メラミン樹脂、 アクリロニトリル—ブタジエン共重合体(NBR)、 及 びエチレン一酢酸ビニル共重合体 (EVA) などから選ばれた 1種以 上を含むものであってもよい。 接着剤が、 近赤外線遮蔽層中に含ま れる場合、 近赤外線吸収色素と接着剤との混合物中の近赤外線吸収 色素の濃度は 0 、 5 〜 5質量%であることが好ましい。  The near-infrared ray shielding layer having the adhesive property, the adhesive layer formed on the near-infrared shielding layer, and the electromagnetic shielding layer, the front surface formed on the surface and the back surface interview Adhesives contained in each of the adhesive layers are acrylic resin, polyester resin, epoxy resin, urethane resin, melamine resin, acrylonitrile-butadiene copolymer (NBR), and ethylene vinyl acetate copolymer ( It may contain one or more selected from EVA). When the adhesive is contained in the near-infrared shielding layer, the concentration of the near-infrared absorbing dye in the mixture of the near-infrared absorbing dye and the adhesive is preferably 0, 5 to 5% by mass.
更に、 本発明の光学フィル夕一において、 その波長 590nmの可視 光の透過率が、 波長 450nm、 525nm、 620nmの各々における可視光の 透過率より も 10 %以上低いことが好ましい。 このようにすると、 本 発明の光学フィルターを用いた場合、 プラズマディスプレイ等のデ イスプレイのコントラス ト性を向上させ、 色調補正機能が高くなる 。 本発明の光学フィルターの、 波長 590ηπιの可視光の透過率を、 波 長 450nm、 525nm, 620nmの各々における可視光の透過率よりも 10 % 以上低くするためには、 近赤外線遮蔽層中に選択吸収性色材を含有 させることが好ましい。 波長 590nmの可視光を選択的に吸収する色 材には、 前記ジィモニゥム化合物の組成上の変質に悪影響を与える ものでない限り、 特に制限はないが、 例えばキナクリ ドン顔料、 ァ ゾメチン系化合物、 シァニン系化合物、 及びポルフィ リ ン化合物等 を用いることが好ましい。 Furthermore, in the optical film according to the present invention, the visible wavelength of 590 nm is obtained. The light transmittance is preferably 10% or more lower than the visible light transmittance at wavelengths of 450 nm, 525 nm, and 620 nm. In this case, when the optical filter of the present invention is used, the contrast of a display such as a plasma display is improved, and the color tone correction function is enhanced. In order to reduce the visible light transmittance of the wavelength 590ηπι of the optical filter of the present invention by 10% or more than the visible light transmittance at wavelengths of 450 nm, 525 nm, and 620 nm, it is selected in the near infrared shielding layer. It is preferable to contain an absorptive color material. The coloring material that selectively absorbs visible light having a wavelength of 590 nm is not particularly limited as long as it does not adversely affect the compositional alteration of the dimonium compound. For example, quinacridone pigments, azomethine compounds, cyanine compounds It is preferable to use a compound, a porphyrin compound, or the like.
本発明の光学フィルターの一実施態様 ( 1 ) が図 2 に示されてい る。 図 2 — ( a ) は、 この光学フィルターの縦断説明図であり、 図 2 - ( b ) は、 この光学フィルターを、 方向 Aにおいて見たときの 正面図である。 図 2— ( a ) 及び ( b ) において、 光学フィル夕一 1は、 透明基材 2 と、 その 1面上に形成された反射防止層 3 と、 透 明基材 2の他の面上に形成された複合層 4とを含み、 この複合層 4 において、 電磁波遮蔽層 5力 前記透明基材 2上に形成されており 、 この電磁波遮蔽層 5上に、 近赤外線遮蔽層 6が形成され固定され ている。  One embodiment (1) of the optical filter of the present invention is shown in FIG. Fig. 2-(a) is a longitudinal sectional view of this optical filter, and Fig. 2-(b) is a front view of this optical filter when viewed in direction A. In FIG. 2 (a) and (b), the optical film 1 is formed on the transparent substrate 2, the antireflection layer 3 formed on one surface thereof, and the other surface of the transparent substrate 2. In the composite layer 4, an electromagnetic wave shielding layer 5 force is formed on the transparent substrate 2, and a near infrared shielding layer 6 is formed and fixed on the electromagnetic wave shielding layer 5. ing.
図 2 — ( a ) 及び ( b ) に示されているように、 電磁波遮蔽層 5 は 2個以上のアース電極接続部を有することが好ましく、 このァー ス電極接続部は、 電磁波遮蔽層 5の周縁部分 7の互に離間している 少なく とも 2箇所に設けられていることが好ましい。 このために、 電磁波遮蔽層 5の周縁部分 7の少なく とも 1部は、 図 2— ( a ) 及 び ( b ) に示されているように、 近赤外線遮蔽層 6によって被覆さ れることなく外部に露出していることが好ましい。 例えば、 図 2— ( a ) , ( b ) に示されているように、 光学フィル夕一 1が四辺形 、 特に矩形の形状を有する場合、 その 4辺のうちの少なく とも対向 する 2辺 (すなわち、 上下両辺、 又は左 · 右両辺) の縁端部にァー ス電極接続部形成用露出部 7 を形成する。 As shown in FIGS. 2 — (a) and (b), the electromagnetic wave shielding layer 5 preferably has two or more earth electrode connection parts, and the ground electrode connection parts are formed of the electromagnetic wave shielding layer 5. It is preferable that the peripheral portions 7 are provided at at least two locations that are separated from each other. For this reason, at least one part of the peripheral portion 7 of the electromagnetic wave shielding layer 5 is covered with the near infrared shielding layer 6 as shown in FIGS. 2 (a) and (b). It is preferable to be exposed to the outside without being exposed. For example, as shown in Fig. 2 (a) and (b), if the optical film 1 has a quadrilateral shape, especially a rectangular shape, at least two opposite sides ( That is, the exposed portion 7 for forming the ground electrode connection portion is formed at the edge portions of the upper and lower sides or both the left and right sides.
図 3 に示されている本発明の光学フィルターの態様において、 電 磁波遮蔽層 5 の左 · 右 2辺縁端部 8上には、 電気めつき、 又は導電 性テープの貼着などの処置によって、 帯状のベ夕金属膜が形成され ている。 このような電磁波遮蔽層 5の上下 2辺緣端部 7は、 近赤外 線遮蔽層 6 により被覆されていないから、 前記べ夕金属膜が形成さ れた左右 2辺緣端部 8 の上下端部 9は、 電磁波遮蔽層 5の左 , 右 - 上 · 下四隅において、 被覆されることなく露出していて、 この露出 しているベタ金属膜部分 9をアース電極接続部として利用すること ができる。 アース電極接続部 7は、 電磁波遮蔽層が捕捉した電磁波 を電気エネルギーとして、 取り出し、 光学フィルタ一から除去する ために有効なものである。  In the embodiment of the optical filter of the present invention shown in FIG. 3, the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are subjected to treatment such as electric fitting or adhesion of a conductive tape. A band-shaped metal film is formed. Since the upper and lower two edge portions 7 of the electromagnetic wave shielding layer 5 are not covered with the near infrared ray shielding layer 6, the upper and lower sides of the left and right two edge portions 8 on which the metal film is formed are not covered. The end portion 9 is exposed without being covered at the left, right-upper and lower four corners of the electromagnetic wave shielding layer 5, and the exposed solid metal film portion 9 can be used as a ground electrode connecting portion. it can. The ground electrode connection portion 7 is effective for taking out the electromagnetic wave captured by the electromagnetic wave shielding layer as electric energy and removing it from the optical filter.
本発明の光学フィルター実施態様 ( 1 ) を、 画像表示装置の表示 面、 例えば、 PDP (プラズマディスプレイ装置) モジュールの画像 表示面に装着したときの状況を、 図 4に示す。 図 4において、 画像 表示装置 1 0の筐体 1 1 中に配置された画像表示ガラス 1 2の表面 に、 光学フィルター 1が、 その複合層 4の近赤外線遮蔽層が、 その 接着性により接合固定され、 かつ、 筐体 1 1 に、 その反射防止層 3 の縁端部において接合されて、 安定に保持されている。 光学フィル 夕一 1 の反射防止層 3が、 視認方向 Vに対向している。 電磁波遮蔽 層 5の上 · 下縁端部にはアース電極接続部が形成されていて、 これ にアース 1 3力 S、 接続されているアース 1 3は、 図 4に示されてい るように、 筐体 1 3に直接接続されていてもよく、 或は、 クランク 又はガスケッ ト (図示されていない) を介して、 アース手段に導通 されていてもよい。 FIG. 4 shows the situation when the optical filter embodiment (1) of the present invention is mounted on the display surface of an image display device, for example, the image display surface of a PDP (plasma display device) module. In Fig. 4, the optical filter 1 is attached to the surface of the image display glass 1 2 placed in the housing 1 1 of the image display device 10, and the near-infrared shielding layer of the composite layer 4 is bonded and fixed by its adhesiveness. In addition, the anti-reflection layer 3 is bonded to the casing 11 at the edge of the anti-reflection layer 3 so as to be stably held. The anti-reflection layer 3 of the optical film evening 1 is facing the viewing direction V. Electromagnetic wave shielding layer 5 has a ground electrode connection at the upper and lower edges, which is connected to ground 1 3 force S, and connected ground 1 3 as shown in Figure 4. It may be directly connected to the housing 1 3 or the crank Alternatively, it may be connected to the grounding means via a gasket (not shown).
本発明の光学フィルターの実施態様 ( 1 ) に含まれる近赤外線遮 蔽接着層は、 近赤外線吸収色素と、 接着剤 (粘着剤を包含する) と の混合物により形成されていて、 接着剤としては、 アクリル系樹脂 、 ポリエステル系樹脂、 エポキシ樹脂、 ウレタン樹脂、 メラミン樹 脂、 アクリ ロニトリル—ブタジエン共重合体(NBR)、 及びエチレン 一酢酸ビニル共重合体 (EVA) などから選ばれた 1種以上を用いる ことができる。 この場合、 近赤外線吸収色素と接着剤との混合物中 の近赤外線吸収色素の濃度 0 、 5〜 5質量%であることが好ましい 本発明の光学フィルタ一を製造するには、 透明基材、 好ましくは 紫外線吸収性能を有する透明基材のー表面上に反射防止層を形成し た後、 その裏面に電磁波遮蔽層を形成する。 更に近赤外線遮蔽接着 層を電磁波遮蔽層の上に形成する。 この際、 アース電極取り出し部 を形成する部分上には、 近赤外線遮蔽接着層を被覆形成せずに露出 させておく ことが好ましい。 近赤外線遮蔽接着層を形成した後、 こ れに脱泡し透明化する工程を施すことが好ましい。 脱泡法としては 、 加圧または減圧により行うことができる力 連続的なロールツー ロールラミネートを行う場合は減圧により行う ことが好ましい。 こ の近赤外線遮蔽接着層には、 Ne光の波長領域の発光を力ッ 卜する染 料及び光学フィルターの色調及び透過率の調整のために着色材を含 有させてもよい。  The near-infrared shielding adhesive layer contained in the embodiment (1) of the optical filter of the present invention is formed of a mixture of a near-infrared absorbing dye and an adhesive (including a pressure-sensitive adhesive). One or more selected from acrylic resin, polyester resin, epoxy resin, urethane resin, melamine resin, acrylonitrile-butadiene copolymer (NBR), and ethylene vinyl acetate copolymer (EVA) Can be used. In this case, the concentration of the near-infrared absorbing dye in the mixture of the near-infrared absorbing dye and the adhesive is preferably 0 to 5 to 5% by mass. In order to produce the optical filter of the present invention, a transparent substrate, preferably After forming an antireflection layer on the surface of a transparent substrate having ultraviolet absorbing performance, an electromagnetic wave shielding layer is formed on the back surface. Further, a near infrared shielding adhesive layer is formed on the electromagnetic shielding layer. At this time, it is preferable to expose the near-infrared shielding adhesive layer on the portion where the ground electrode lead-out portion is to be formed without forming a coating. After forming the near-infrared shielding adhesive layer, it is preferable to perform a defoaming and transparentizing step. As the defoaming method, a force that can be applied by pressurization or reduced pressure. When continuous roll-to-roll lamination is performed, it is preferably performed by reducing the pressure. This near-infrared shielding adhesive layer may contain a coloring material for adjusting the color tone and transmittance of the dye and the optical filter that enhance the light emission in the wavelength region of Ne light.
本発明の光学フィル夕一を用いれば、 これを直接 PDPモジュール の画像表示面ガラスに貼り付けることにより、 従来のガラス付きフ ィルターを用いた場合と比較して 42インチサイズで約 4 kg、 50イン チサイズで約 5 kgの軽量化を実施することができる。 また、 光学フ ィルター自体も、 実質的に 1枚のフィルム状積層体からなるため、 これまでの 2枚のフィルムからなるフィル夕一に比べ、 約 30 %の軽 量化と、 光学フィルターの厚さを約 40 %薄くすることが可能となる また、 基材となるフィルムを最小限の 1枚としており、 また、 貼 合に用いる粘着剤使用量が削減され、 コス 卜の大幅な削減が可能と なる。 If the optical filter according to the present invention is used, it is affixed directly to the image display screen glass of the PDP module. It is possible to reduce the weight by about 5 kg in inch size. In addition, optical Since the filter itself is essentially a film laminate, it is approximately 30% lighter and the optical filter is approximately 40% thinner than the previous two-film film. It is possible to make it thinner. In addition, the film used as the base material is made to be a minimum, and the amount of adhesive used for bonding is reduced, which makes it possible to significantly reduce costs.
図 5 — ( a ) 及び ( b ) に示された本発明の光学フィル夕一の実 施態様 ( 2 ) において、 光学フィルター丄の透明基材 2の一面上に 反射防止層 3が形成され、 透明基材 2の他の面上に複合層 4が形成 され、 複合層 4中の電磁波遮蔽層 5が透明基材 2の他の面に接合さ れており、 電磁波遮蔽層 5 の上に近赤外線遮蔽層 6が形成され、 複 合層 4の接着性露出面 4 aは、 近赤外線遮蔽層 6上に形成され、 接 着剤 (粘着剤を包含する) を含む接着層 2 1 により形成されている 。 これらの成分層は、 一体のフィルム状に接合されている、 電磁波 遮蔽層 5の周縁部、 例えば、 図 5 _ ( b ) に図示されているように 、 上下面縁端部が、 近赤外線遮蔽層 6及び接着層 2 1 により被覆さ れることなく露出していて、 この縁端部にアース電極接続部を設け ることができる。 近赤外線遮蔽層 6は印刷法 (好ましくはスクリー ン印刷法) により形成され、 接着剤層 2 1 は、 グラビヤ法などのダ ィ レク ト塗工法又はノンキャ リアフィルムをラミネートすることに よって形成することができるアース電極取り出し部は、 プラズマパ ネルなどの表示器から漏洩し、 電磁波遮蔽層により捕捉された電磁 波を電流に変換し、 これを表示器の筐体などを介してアースするた めに有効なものである。  FIG. 5 — In the embodiment (2) of the optical filter according to the present invention shown in (a) and (b), the antireflection layer 3 is formed on one surface of the transparent substrate 2 of the optical filter, The composite layer 4 is formed on the other surface of the transparent substrate 2, and the electromagnetic wave shielding layer 5 in the composite layer 4 is bonded to the other surface of the transparent substrate 2, and is close to the electromagnetic wave shielding layer 5. An infrared shielding layer 6 is formed, and an adhesive exposed surface 4 a of the composite layer 4 is formed on the near infrared shielding layer 6 and is formed by an adhesive layer 2 1 containing an adhesive (including an adhesive). ing . These component layers are joined in the form of an integral film, and the periphery of the electromagnetic wave shielding layer 5, for example, as shown in FIG. 5 _ (b), the upper and lower edge edges are near infrared shielding. It is exposed without being covered with the layer 6 and the adhesive layer 21, and a ground electrode connection portion can be provided at the edge portion. The near infrared shielding layer 6 is formed by a printing method (preferably a screen printing method), and the adhesive layer 21 is formed by a direct coating method such as a gravure method or by laminating a non-carrier film. The earth electrode lead-out unit that can be used is effective for leaking from a display device such as a plasma panel, converting the electromagnetic wave captured by the electromagnetic wave shielding layer into an electric current, and grounding it via the housing of the display device. It is a thing.
本発明の光学フィルタ一において、 近赤外線遮蔽層上に形成され る接着剤層は透明な接着剤 (粘着剤を包含する) により形成され、 このような接着剤としては、 アクリル系樹脂を用いることができる 。 接着剤層が粘着剤から形成されている場合、 これと近赤外線遮蔽 層との間の粘着強度は、 初期において、 1〜 1 0 N Z 2 5匪である ことが好ましく、 より好ましくは 4〜 8 N Z 2 5 匪である。 粘着強 度が 1〜 1 0 N Z 2 5 mmの範囲内にあるとき、 光学フィル夕一を表 示器の表示表面に粘着したとき、 実用上十分に粘着保持することが でき、 しかも、 光学フィルターを剥離することが必要になったとき 、 実用上格段の困難なしに剥離することが可能であり、 高価な表示 器本体を継続して使用することができ、 かつ、 剥離した光学フィル 夕一を再使用することができる。 さらに前記粘着強度は経時的に上 昇し、 平衡に達した時点における粘着強度は 1 0〜 1 5 N Z 2 5 匪 であることがさらに好ましい。 In the optical filter of the present invention, the adhesive layer formed on the near-infrared shielding layer is formed of a transparent adhesive (including an adhesive), As such an adhesive, an acrylic resin can be used. When the adhesive layer is formed of an adhesive, the adhesive strength between the adhesive layer and the near-infrared shielding layer is preferably 1 to 10 NZ 2 5 に お い て at the initial stage, and more preferably 4 to 8 NZ 2 5 匪. When the adhesive strength is in the range of 1 to 10 NZ 25 mm, when the optical filter is adhered to the display surface of the display, it can be held sufficiently practically, and the optical filter When it is necessary to peel off, it can be peeled off without any practical difficulty, and the expensive display unit can be used continuously, and the peeled optical film Can be reused. Further, the adhesive strength increases with time, and the adhesive strength at the time when the equilibrium is reached is more preferably 10 to 15 NZ 2 5 匪.
本発明の光学フィルターにおいて、 近赤外線遮蔽層上に形成され る接着層は、 5 8 5 nmから 6 0 0 nmまでの波長域中に極大吸収ピ一 クを有するものであることが好ましい。 このような接着層を形成す るための接着剤は、 例えばァクリル系樹脂から選択することができ る。  In the optical filter of the present invention, the adhesive layer formed on the near-infrared shielding layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm. An adhesive for forming such an adhesive layer can be selected from, for example, acrylic resins.
更に、 本発明の光学フィルタ一において、 接着剤層は 5 8 5 nmか ら 6 0 O nmまでの波長域中に極大吸収ピークを有し、 5 8 5 nmから Further, in the optical filter of the present invention, the adhesive layer has a maximum absorption peak in a wavelength range from 5 85 nm to 60 O nm, and from 5 85 nm.
6 0 0 nmまでの波長域中の可視光の透過率が、 波長 4 5 O nm、 5 2Visible light transmittance in the wavelength range up to 600 nm is 4 5 O nm, 5 2
5 nm、 6 2 O nmの各々における可視光の透過率よりも 1 0 %以上低 いことが好ましい。 このようにすると、 本発明の光学フィルターを 用いた場合、 所謂ネオンカッ ト機能が付与され、 プラズマディスプ レイ等のディスプレイのコントラス ト性を向上させ、 色調補正機能 が高くなる。 本発明の光学フィルターの、 波長 5 8 5 nmから 6 0 0 nmまでの波長域中の可視光の透過率を、 波長 4 5 0 nm、 5 2 5 nm, 6 2 O nmの各々における可視光の透過率よりも 1 0 %以上低くする ためには、 近赤外線遮蔽層中に選択吸収性色材を含有させることが 好ましい。 波長 5 9 0 nmの可視光を選択的に吸収する色材には、 前 記ジィモニゥム化合物の組成上の変質に悪影響を与えるものでない 限り、 特に制限はないが、 例えばキナクリ ドン顔料、 ァゾメチン系 化合物、 シァニン系化合物、 及びポルフィ リ ン化合物等を用いるこ とが好ましい。 It is preferably 10% or more lower than the visible light transmittance at 5 nm and 6 2 O nm. In this case, when the optical filter of the present invention is used, a so-called neon cut function is imparted, the contrast of a display such as a plasma display is improved, and the color tone correction function is enhanced. The visible light transmittance of the optical filter of the present invention in the wavelength range from 585 nm to 600 nm is defined as visible light in each of the wavelengths 4500 nm, 525 nm, and 620 nm. 10% or more lower than the transmittance of For this purpose, it is preferable to include a selectively absorbing colorant in the near infrared shielding layer. The coloring material that selectively absorbs visible light having a wavelength of 590 nm is not particularly limited as long as it does not adversely affect the compositional change of the dimonium compound. For example, quinacridone pigments, azomethine compounds It is preferable to use a cyanine compound, a porphyrin compound, or the like.
本発明の光学フィルターの実施態様 2は、 下記のようにして製造 することができる。  Embodiment 2 of the optical filter of the present invention can be produced as follows.
本発明の光学フィル夕一は、 透明基材、 好ましくは紫外線吸収性 能を有する透明基材のー表面上に反射防止層を形成した後、 その裏 面に電磁波遮蔽層を形成する。 更に近赤外線遮蔽層を電磁波遮蔽層 の上にスクリーン印刷法などの印刷法により形成する。 この際、 ァ ース電極取り出し部を設ける部分上には、 近赤外線遮蔽層及び接着 剤層を被覆形成せずに露出させておく ことが好ましい。 電磁波遮蔽 層として金属メッシュを用いる場合においても、 この金属メッシュ 層上に、 近赤外線遮蔽層を形成する色素含有インクを、 スクリーン 印刷法などの印刷法により印刷することにより得られる近赤外線遮 蔽層に対する脱泡処理及び透明化処理を省略することが可能になる 。 この近赤外線遮蔽層及び接着層には、 光学フィルターの色調及び 透過率の調整のためにさらに着色材を含有させてもよい。 接着層は 、 5 8 5 nmから 6 0 0 nmまでの波長域中に極大吸収ピークを有する ものであることが好ましい。  In the optical film according to the present invention, an antireflection layer is formed on the surface of a transparent substrate, preferably a transparent substrate having ultraviolet absorbing ability, and then an electromagnetic wave shielding layer is formed on the back surface thereof. Further, a near infrared shielding layer is formed on the electromagnetic shielding layer by a printing method such as a screen printing method. At this time, it is preferable to expose the near-infrared shielding layer and the adhesive layer on the portion where the ground electrode take-out portion is provided without forming a coating. Even when a metal mesh is used as the electromagnetic wave shielding layer, the near infrared shielding layer obtained by printing the dye-containing ink forming the near infrared shielding layer on the metal mesh layer by a printing method such as a screen printing method. It is possible to omit the defoaming process and the clearing process. The near-infrared shielding layer and the adhesive layer may further contain a colorant for adjusting the color tone and transmittance of the optical filter. The adhesive layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm.
図 6に示されている、 本発明の光学フィル夕一の実施態様 ( 2 ) においては電磁波遮蔽層 5の左 · 右 2辺縁端部 8は、 電気めつき、 又は導電テープなどの処置により帯状にベタ金属膜化されていても よい。 このべ夕金属膜化された左 · 右帯状縁端部 8 を有する電磁波 遮蔽層 5上には、 その上 · 下 2辺縁端部 7が露出されるように残置 して、 近赤外線遮蔽層 6が被覆形成されていてもよい (図示されて いない) 。 この場合、 ベタ金属膜化された左 · 右帯状縁端部 8の左 • 右 · 上 · 下 4隅に露出しているべ夕金属膜部 9 を、 アース電極取 り出し部として利用することができる。 In the embodiment (2) of the optical filter according to the present invention shown in FIG. 6, the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are subjected to electrical fitting or treatment such as conductive tape. A solid metal film may be formed in a band shape. On the electromagnetic wave shielding layer 5 having the left and right belt edges 8 formed into a metal film, the upper and lower edges 2 are left so that they are exposed. The near-infrared shielding layer 6 may be coated (not shown). In this case, the solid metal film left / right band edge 8 left • right • top • bottom 4 exposed metal film 9 exposed at the bottom corner should be used as the ground electrode extraction part. Can do.
本発明の光学フィルターの実施態様 ( 2 ) を、 画像表示装置の表 示面、 例えば P D Pモジュールの画像表示面に装着する状態の一例 を図 7 に示す。 図 7 において、 画像表示面、 例えば、 P D Pモジュ ール 1 0の画像表示ガラス 1 2の表面に直接に貼着され、 その周縁 部をモジュール 1 0の筐体 1 1 に接合して保持される。 電磁波遮蔽 層 5の上 · 下縁端部には、 アース電極取り出し部が形成されていて 、 アース 1 3が取り付けられていて、 アース 1 3は、 図 7に示され ているように筐体 1 1 に直接接続されていてもよく、 或はクリ ップ 、 クランプ又はガスケッ 卜 (図示されていない) を介してアース手 段に導通されていてもよい。  FIG. 7 shows an example of a state in which the embodiment (2) of the optical filter of the present invention is mounted on a display surface of an image display device, for example, an image display surface of a PDP module. In FIG. 7, it is directly attached to the image display surface, for example, the surface of the image display glass 12 of the PDP module 10, and its peripheral edge is joined and held to the casing 11 of the module 10. . The upper and lower edges of the electromagnetic wave shielding layer 5 are provided with ground electrode take-out portions, and a ground 1 3 is attached. The ground 1 3 is a housing 1 as shown in FIG. It may be connected directly to 1 or may be electrically connected to a grounding means via a clip, clamp or gasket (not shown).
図 8— ( a) 及び ( b ) に示された本発明の光学フィルターの実 施態様 ( 3 ) において、 光学フィルター 1 は、 透明基材 2 と、 その 一面上に形成された反射防止層 3 と、 透明基材 2の他の面上に形成 された複合層 4により構成され、 この複合層中において、 近赤外線 遮蔽層 6力 透明基材 2の他の面上に形成され、 この近赤外線遮蔽 層 6上に電磁波遮蔽層 5が形成接合されており、 複合層の接着性露 出面は、 電磁波遮蔽層 5上に形成された接着層 2 2により形成され ている。 これらの成分層は、 一体のフィルム状を接合されている、 電磁波遮蔽層 5の周縁部に、 アース電極接続部を形成するための露 出部分 7が形成されていることが好ましい。  FIG. 8— In the embodiment (3) of the optical filter of the present invention shown in (a) and (b), the optical filter 1 includes a transparent substrate 2 and an antireflection layer 3 formed on one surface thereof. And the composite layer 4 formed on the other surface of the transparent substrate 2, and in this composite layer, the near infrared shielding layer 6 force is formed on the other surface of the transparent substrate 2, and this near infrared An electromagnetic wave shielding layer 5 is formed and bonded on the shielding layer 6, and an adhesive exposed surface of the composite layer is formed by an adhesive layer 22 formed on the electromagnetic wave shielding layer 5. In these component layers, it is preferable that an exposed portion 7 for forming a ground electrode connection portion is formed at the peripheral edge portion of the electromagnetic wave shielding layer 5 joined in an integral film shape.
本発明の光学フィルターの実施態様 ( 3 ) において、 近赤外線遮 蔽層 6は、 実施態様 ( 1 ) 及び ( 2 ) と同様の方法により形成する ことができる。 また、 電磁波遮蔽層も、 実施態様 ( 1 ) 及び ( 2 ) と同様の方法、 寸法、 形状により、 金属メッシュ層又は導電性物質 を含む透明導電膜などを用いて形成することができる。 In the embodiment (3) of the optical filter of the present invention, the near-infrared shielding layer 6 can be formed by the same method as in the embodiments (1) and (2). Further, the electromagnetic wave shielding layer is also provided in the embodiments (1) and (2). The metal mesh layer or the transparent conductive film containing a conductive substance can be formed by the same method, dimensions, and shape as those described above.
例えば、 金属メッシュ層は、 金属メッシュを近赤外線遮蔽層上に ラミネートし、 或は銅等の金属をメツキして形成された金属層にェ ッナングを施してメッシュパターンの形状に形成した の 、 及び近 赤外線遮蔽層上に 、 パラジウムなどの触媒を含有するぺ一ス 卜 (ィ ンク) をメッシュパターンの形状に印刷し、 それに金属メツキを施 したもの等を用いることができる。 また、 例えば 、 透明導電膜層と しては 、 銀等の導電性物質を蒸着、 スパッタ等により形成したもの が用いられる。  For example, the metal mesh layer is formed in the shape of a mesh pattern by laminating a metal mesh on a near-infrared shielding layer, or applying a metal layer to a metal layer formed by plating a metal such as copper. On the near-infrared shielding layer, a paste containing a catalyst such as palladium can be printed in a mesh pattern shape, and a metal plating can be applied to the mesh pattern. For example, as the transparent conductive film layer, a conductive material such as silver formed by vapor deposition, sputtering, or the like is used.
本発明の光学フィルターの実施態様 ( 3 ) の複 に今まれる接 着層は、 電磁波遮蔽層上に形成され、 複合層の接着性露出面を形成 する。 この接着層は、 前記実施態様 ( 2 ) の接着層と同様の組成、 寸法、 形状、 特性を有するものである。 更に、 本発明の光学フィル 夕一において、 接着層は 5 8 5 nmから 6 0 0 nmまでの波長域内に極 大吸収ピークを有するものであることが好ましく、 また 5 8 5 nmか ら 6 0 0 nmまでの波長を有する可視光の透過率が、 波長 4 5 0 nm, 5 2 5 nm, 6 2 O nmの各々における可視光の透過率よりも 1 0 %以 上低いことが好ましい。 このようにすると、 本発明の光学フィル夕 一を用いた場合、 所謂ネオンカッ ト機能が付与され、 プラズマディ スプレイ等のディスプレイのコントラス ト性を向上させ、 色調補正 機能が高くなる。 本発明の光学フィルタ一の、 波長 5 8 5 nmから 6 0 0 nmまでの波長を有する可視光の透過率を、 波長 4 5 0 nm、 5 2 5 nm, 6 2 0 nmの各々における可視光の透過率よりも 1 0 %以上低 くするためには、 近赤外線遮蔽層中に選択吸収性色材を含有させる ことが好ましい。 波長 5 9 0 nmの可視光を選択的に吸収する色材に は、 前記ジィモニゥム化合物の組成上の変質に悪影響を与えるもの でない限り、 特に制限はないが、 例えばキナクリ ドン顔料、 ァゾメ チン系化合物、 シァニン系化合物、 及びポルフィ リン化合物等を用 いることが好ましい。 In the optical filter according to the embodiment of the present invention, the multiple adhesive layers (3) are formed on the electromagnetic wave shielding layer to form the adhesive exposed surface of the composite layer. This adhesive layer has the same composition, dimensions, shape, and characteristics as the adhesive layer of the embodiment (2). Furthermore, in the optical film according to the present invention, the adhesive layer preferably has a maximum absorption peak in a wavelength range from 585 nm to 600 nm, and from 585 nm to 60 nm. The transmittance of visible light having a wavelength up to 0 nm is preferably 10% or more lower than the transmittance of visible light at wavelengths of 4500 nm, 5225 nm, and 620 nm. In this way, when the optical film according to the present invention is used, a so-called neon cut function is imparted, the contrast of a display such as a plasma display is improved, and the color correction function is enhanced. The transmittance of visible light having a wavelength from 585 nm to 600 nm in the optical filter of the present invention is expressed as visible light in each of the wavelengths of 4500 nm, 525 nm, and 620 nm. In order to lower the transmittance by 10% or more, it is preferable to include a selective absorbing colorant in the near infrared shielding layer. The coloring material that selectively absorbs visible light with a wavelength of 590 nm has an adverse effect on the compositional change of the dimonium compound. Unless otherwise specified, there is no particular limitation. For example, quinacridone pigments, azomethine compounds, cyanine compounds, porphyrin compounds, and the like are preferably used.
本発明の光学フィルターの実施態様 ( 3 ) を形成するには、 透明 基材、 好ましくは紫外線吸収性能を有する透明基材のー表面上に反 射防止層を形成した後、 その裏面に複合層を形成する。 複合層の形 成において、 透明基材の裏面に近赤外線遮蔽層を形成し、 更に近赤 外線遮蔽層上に電磁波遮蔽層をスクリーン印刷法などの印刷法によ り形成し、 電磁波遮蔽層上に接着剤層を形成して、 接着性露出面を 形成する。 この際、 電磁波遮蔽層の、 アース電極接続部を形成する 部分上には、 接着剤層を被覆形成せずに露出させておく ことが好ま しい。  In order to form the embodiment (3) of the optical filter of the present invention, an antireflection layer is formed on the surface of a transparent base material, preferably a transparent base material having ultraviolet absorbing performance, and then a composite layer is formed on the back surface thereof. Form. In forming the composite layer, a near-infrared shielding layer is formed on the back surface of the transparent substrate, and an electromagnetic shielding layer is further formed on the near infrared shielding layer by a printing method such as a screen printing method. An adhesive layer is formed on to form an exposed adhesive surface. At this time, it is preferable to expose the adhesive layer on the portion of the electromagnetic wave shielding layer where the earth electrode connecting portion is to be formed without forming a coating.
図 9 に示されている本発明の光学フィルターの実施態様において は電磁波遮蔽層 5の左 · 右 2辺縁端部 8は、 電気めつき、 又は導電 テープなどの処置により帯状にベタ金属膜化されていてもよい。 こ のべ夕金属膜化された左 · 右帯状縁端部 8 を有する電磁波遮蔽層 5 上には、 その上 · 下 2辺縁端部 7が露出されるように残置して、 接 着層 2 2が被覆形成されていてもよい。 この場合、 ベ夕金属膜化さ れた左 · 右帯状縁端部 8のそれぞれ上 , 下 4隅に露出しているベタ 金属膜部 9 を、 アース電極接続部として利用することができる。 本発明の光学フィルターの実施態様 ( 3 ) を、 画像表示装置の表 示面、 例えば P D Pモジュールの画像表示面に装着する状態の一例 を図 1 0に示す。 図 1 0 において、 画像表示面、 例えば、 P D Pモ ジュール 1 0の画像表示ガラス 1 2の表面に直接に貼着され、 その 周縁部をモジュール 1 0の筐体 1 1 に接合して保持される。 電磁波 遮蔽層 5の上 , 下縁端部には、 アース電極接続部が形成されていて 、 アース 1 3が取り付けられていて、 アース 1 3は、 図 1 0に示さ れているように筐体 1 1 に直接接続されていてもよく、 或はク リ ツ プ、 クランプ又はガスケッ 卜 (図示されていない) を介してアース 手段に導通されていてもよい。 In the embodiment of the optical filter according to the present invention shown in FIG. 9, the left and right two edge portions 8 of the electromagnetic wave shielding layer 5 are formed into a solid metal film in a band shape by electric fitting or treatment with conductive tape or the like. May be. On the electromagnetic wave shielding layer 5 having the left and right belt-like edge portions 8 formed into a metal film, the upper and lower two edge portions 7 are left exposed so that the adhesion layer 2 2 may be coated. In this case, the solid metal film portions 9 exposed at the upper and lower four corners of the left and right belt-shaped edge portions 8 formed into a solid metal film can be used as the ground electrode connection portion. FIG. 10 shows an example of a state in which the embodiment (3) of the optical filter of the present invention is mounted on the display surface of the image display device, for example, the image display surface of the PDP module. In FIG. 10, it is directly attached to the image display surface, for example, the surface of the image display glass 12 of the PDP module 10, and its peripheral edge is bonded and held to the casing 11 of the module 10. . The upper and lower edges of the electromagnetic wave shielding layer 5 are formed with ground electrode connections, and the earth 13 is attached. The earth 13 is shown in FIG. As shown, it may be directly connected to the housing 11 or may be electrically connected to the grounding means via a clip, clamp or gasket (not shown).
図 1 1 に示されている本発明の光学フィルターの実施態様 ( 4 ) において、 光学フィルター 1の透明基材 2の一面に反射防止層 3が 形成され、 透明基材 2の他の面上に複合層 4が接合されており、 複 合層 4において、 近赤外線遮蔽層 6が前記透明基材 2の前記他の面 上に形成され、 この近赤外線遮蔽層 6には、 おもて面接着層 2 3 を 介して、 電磁波遮蔽層 5が接合されていて、 複合層 4の接着性露出 面 4 aは、 電磁波遮蔽層 5のう ら面に形成されたう ら面接着層 2 4 によって形成されている。 これらの成分層は一体のフィルム状に接 合されている。 特に、 おもて面接着層 2 3 と、 う ら面接着層 2 4と は、 電磁波遮蔽層 5 を形成する金属メッシュの開口部を介して互に 連結されていることが好ましい。 電磁波遮蔽層 5の周縁部には、 ァ —ス電極接続部を設けるために、 被覆されずに露出している部分 7 が形成されていることが好ましい。  In the embodiment (4) of the optical filter of the present invention shown in FIG. 11, an antireflection layer 3 is formed on one surface of the transparent substrate 2 of the optical filter 1, and the other surface of the transparent substrate 2 is formed. The composite layer 4 is bonded, and in the composite layer 4, a near infrared shielding layer 6 is formed on the other surface of the transparent substrate 2, and the near infrared shielding layer 6 is bonded to the front surface. The electromagnetic wave shielding layer 5 is bonded via the layer 2 3, and the adhesive exposed surface 4 a of the composite layer 4 is formed by the back surface adhesive layer 2 4 formed on the back surface of the electromagnetic wave shielding layer 5. Has been. These component layers are joined in an integral film. In particular, the front surface adhesive layer 2 3 and the back surface adhesive layer 24 are preferably connected to each other through an opening of a metal mesh forming the electromagnetic wave shielding layer 5. In order to provide a ground electrode connection portion, it is preferable that a portion 7 exposed without being covered is formed on the peripheral edge portion of the electromagnetic wave shielding layer 5.
本発明の光学フィル夕一において、 電磁波遮蔽層の表裏両面上に 形成されるおもて面及びう ら面接着剤層はそれぞれ透明な接着剤 ( 粘着剤を包含する) により形成され、 このような接着剤としては、 シリコン系樹脂やアクリル系樹脂等を用いることができる。 おもて 面及びう ら面接着剤層が粘着剤から形成されている場合、 これらの 粘着強度は、 初期において、 1〜 1 0 N / 2 5腿であることが好ま しく、 より好ましくは 4〜 8 N / 2 5龍である。 粘着強度が 1 〜 1 0 N / 2 5 mmの範囲内にあるとき、 光学フィルターを P D Pパネル 表面に粘着したとき、 実用上十分に粘着保持することができ、 しか も、 光学フィルタ一を剥離することが必要になったとき、 実用上格 段の困難なしに剥離することが可能であり、 高価な表示器本体を継 続して使用することができ、 かつ、 剥離した光学フィルターを再使 用することができる。 さらに前記粘着強度は経時的に上昇し、 平衡 に達した時点における粘着強度は 1 0〜 1 5 N 2 5 mmであること がさらに好ましい。 電磁波遮蔽材層が金属メッシュにより形成され ているとき、 おもて面及びう ら面接着剤層のそれぞれの一部分は、 金属メッシュの開口部中に浸入して互に連結していることが好まし い。 In the optical film according to the present invention, the front surface and the back surface adhesive layer formed on both the front and back surfaces of the electromagnetic wave shielding layer are each formed of a transparent adhesive (including a pressure-sensitive adhesive). Examples of suitable adhesives include silicon resins and acrylic resins. When the front surface and back surface adhesive layers are formed of a pressure-sensitive adhesive, the adhesive strength is preferably 1 to 10 N / 2 5 thighs in the initial stage, more preferably 4 ~ 8 N / 2 5 dragons. When the adhesive strength is in the range of 1 to 10 N / 25 mm, when the optical filter is adhered to the surface of the PDP panel, the adhesive can be held sufficiently practically. However, the optical filter is peeled off. When it becomes necessary, it can be peeled off without any practical difficulty, and an expensive display unit can be used. It can be used continuously, and the peeled optical filter can be reused. Further, the adhesive strength increases with time, and the adhesive strength at the time when equilibrium is reached is more preferably 10 to 15 N 25 mm. When the electromagnetic wave shielding material layer is formed of a metal mesh, it is preferable that a part of each of the front surface and back surface adhesive layers penetrate into the opening of the metal mesh and be connected to each other. Good.
図 1 2 に示されているように、 電磁波遮蔽層の周縁部 7に、 おも て面接着層 2 3 により被覆されず、 露出している部分が形成されて いることが好ましい。 う ら面接着層 2 4は、 電磁波遮蔽層 5のう ら 面の全面を被覆し、 接着性露出面 4 aを形成している。 おもて面及 びう ら面接着層 2 3及び 2 4は、 電磁波遮蔽層 5 を形成する金属メ ッシュの開口部を介して、 互に連結していることが好ましい。  As shown in FIG. 12, it is preferable that the peripheral portion 7 of the electromagnetic wave shielding layer is not covered with the surface adhesive layer 2 3 but is exposed. The back surface adhesive layer 24 covers the entire back surface of the electromagnetic wave shielding layer 5 to form an adhesive exposed surface 4 a. The front surface and the back surface adhesive layers 23 and 24 are preferably connected to each other via an opening of a metal mesh forming the electromagnetic wave shielding layer 5.
本発明の光学フィルターの実施態様 ( 4 ) の平面図は図 1 3に示 されており、 電磁波遮蔽層 5及びう ら面接着層 2 4の上に、 その周 縁部 7が露出するように、 反射防止層 3、 透明基材 2、 近赤外線遮 蔽層 6及びおもて面接着層 2 3 とが積層され、 フィルム状に一体化 されている。  The plan view of the embodiment (4) of the optical filter of the present invention is shown in FIG. 13 so that the peripheral portion 7 is exposed on the electromagnetic wave shielding layer 5 and the back surface adhesive layer 24. The antireflection layer 3, the transparent substrate 2, the near-infrared shielding layer 6, and the front surface adhesive layer 2 3 are laminated and integrated into a film.
図 1 4に示されているように、 電磁波遮蔽層 5の周縁部が、 ベタ 金属膜化されて、 ベタ金属膜部 8が形成されていてもよく、 或は、 図 1 5に示されているように、 ベタ金属膜部 8が、 電磁波遮蔽層 5 の互に対向する左右 2辺の縁端部のみに形成されていてもよい。 図 1 4及び図 1 5 に示されているベタ金属膜部 8の互に離間した 2ケ 所以上に、 例えば、 4隅部に、 アース電極接続部を設けることが好 ましい。  As shown in FIG. 14, the periphery of the electromagnetic wave shielding layer 5 may be a solid metal film to form a solid metal film part 8, or as shown in FIG. As shown, the solid metal film portion 8 may be formed only at the edge portions of the left and right sides of the electromagnetic wave shielding layer 5 facing each other. It is preferable to provide ground electrode connection portions at two or more locations separated from each other in the solid metal film portion 8 shown in FIGS. 14 and 15, for example, at the four corners.
本発明の光学フィルターの実施態様 ( 4 ) を製造するには、 透明 基材、 好ましくは紫外線吸収剤を含有した透明基材上に反射防止層 を形成した後、 そのう ら面に近赤外線遮蔽層を形成したフィルムに 、 おもて面は電極部を除く部分に接着層を有し、 う ら面の全面に接 着層を有する電磁波遮蔽層を、 そのおもて面をフィルム側にしてラ ミネートする。 電磁波遮蔽層は全面メッシュであっても、 周辺部は ベ夕部であってもかまわないが、 アース電極部に相当する部分は接 着剤により被覆されていない。 接着層は P E Tフィルム等のフィル ムを介さず、 金属メッシュに直接形成されているので、 従来、 金属 メッシュフィルムを使用した場合に必要としていた加圧や真空によ り脱泡、 透明化する工程を必要としない。 In order to produce the embodiment (4) of the optical filter of the present invention, an antireflection layer is formed on a transparent substrate, preferably a transparent substrate containing an ultraviolet absorber. After the film is formed, the film having the near-infrared shielding layer formed on the back surface thereof has an adhesive layer on the front surface except for the electrode portion, and has an adhesion layer on the entire back surface. Laminate the layers with the front side facing the film. The electromagnetic shielding layer may be a full-face mesh or the peripheral part may be a flat part, but the part corresponding to the ground electrode part is not covered with an adhesive. Since the adhesive layer is formed directly on the metal mesh without using a film such as PET film, the process of defoaming and clearing by pressurization or vacuum, which was required when using a metal mesh film, is used. Do not need.
本発明の光学フィルターを用いれば、 これを直接 P D Pパネル前 面ガラスに貼り付けることにより、 P D Pの大幅な軽量化を実施す ることが可能となる。 また、 実質的に 1枚のフィルムからなるため 、 基材となるフィルムや貼合に用いる粘着剤等の削減から大幅なコ ス 卜の削減と省資源化が可能となる。  If the optical filter of the present invention is used, it can be significantly reduced in weight by directly attaching it to the front panel glass of the PDP panel. In addition, since it consists essentially of a single film, it is possible to significantly reduce costs and save resources by reducing the film used as the substrate and the adhesive used for bonding.
本発明の透明フィルム状光学フィルターの実施態様 ( 4 ) を P D Pに搭載するときの構成 (断面) を図 1 6に示す。 本発明の光学フ ィル夕一は、 P D Pパネル 1 0 の表示面 1 2にう ら面接着剤層 2 4 を介して直接貼り付けられる。 おもて面接着剤層により被覆されて いないアース電極接続部 7は、 電極を取り出すアース 1 3、 または ガスケッ ト (図示されていない) 等を介し、 導通をとつて装着され る。 実施例  FIG. 16 shows the configuration (cross-section) when the embodiment (4) of the transparent film-like optical filter of the present invention is mounted on PDP. The optical file according to the present invention is directly attached to the display surface 12 of the PDP panel 10 via the back surface adhesive layer 2 4. The ground electrode connection portion 7 not covered with the front surface adhesive layer is attached with continuity through the ground 13 or the gasket (not shown) for taking out the electrode. Example
本発明の光学フィルターを下記実施例によりさらに説明する。 下記実施例の光学フィルタ一について、 下記の測定及び評価を行 つた。  The optical filter of the present invention is further illustrated by the following examples. The following measurement and evaluation were performed for the optical filter of the following example.
( 1 ) 全光線透過率 : ヘイズメータ (日本電色社製) を用いて測定 した。 (1) Total light transmittance: measured using a haze meter (Nippon Denshoku Co., Ltd.) did.
( 2 ) ヘイズ値 : ヘイズメータ (日本電色社製) を用いて測定した  (2) Haze value: measured using a haze meter (Nippon Denshoku Co., Ltd.)
( 3 ) 視感反射率 : 分光光度計 (日本分光社製 V— 5 7 0 ) を用い て、 J I S R 3 1 0 6に準拠して測定した (3) Luminous reflectance: measured using a spectrophotometer (V-5570 manufactured by JASCO Corporation) in accordance with JISR 3 10 6
( 4 ) 鉛筆硬度 : 反射防止層面を上にし、 J I S K 5 6 0 0 — (4) Pencil hardness: J I S K 5 6 0 0 —
5— 4に準拠して 1 kg荷重下で傷がつかない最小 鉛筆硬度を測定した。  In accordance with 5-4, the minimum pencil hardness that does not damage under a 1 kg load was measured.
( 5 ) スチールウール強度 : 反射防止層面を上にし、 その上面上を (5) Steel wool strength: Anti-reflective layer side up, top surface
、 # 0 0 0 0スチールウールに 2 5 0 g / cm2の荷重を負荷しながら 1 0回 往復させたあとに発生した傷の数を測 定した。 # 0 0 0 0 The number of scratches that occurred after reciprocating 10 times while applying a load of 2500 g / cm 2 to steel wool was measured.
( 6 ) 密着性 : J I S D 0 2 0 2に準拠して反射防止層面を上 にし、 膜表面の 1 cm角の領域に、 そのたてよこの各 辺に平行に 1 mm間隔で切り込みをいれ、 その表面に 粘着テープによる剥離試験を施した後の残存する升 目の数を測定した。  (6) Adhesion: In accordance with JISD 0 202, with the antireflection layer surface facing up, cut into the 1 cm square area of the film surface at 1 mm intervals parallel to each side of the vertical plane, and the surface The number of cells remaining after the peel test with an adhesive tape was measured.
( 7 ) 分光透過率 : 分光光度計 (日本分光 (株) 製 V— 5 7 0 ) を 用い、 各試料の波長 8 5 0 nm、 9 5 0 nm、 1 0 0 0 nmにおける透過率を測定した。  (7) Spectral transmittance: Using a spectrophotometer (manufactured by JASCO Corporation V—570), measure the transmittance of each sample at wavelengths of 85, 95, and 100 nm. did.
( 8 ) 信頼性 :  (8) Reliability:
( i ) 8 0 °Cに設定した恒温器に、 各試料を入れ 1 0 0 0時間後 の分光透過率を測定した。  (i) Each sample was placed in a thermostat set at 80 ° C., and the spectral transmittance after 100 hours was measured.
(ii) 6 0 °C—相対湿度 9 0 %に設定した恒温恒湿試験器に、 各 試料を入れ 1 0 0 0時間後の分光透過率を測定した。 ( 9 ) 電磁波遮蔽性 : KE C法 (社団法人関西電子工業振興センタ 一法) に準拠して測定した。 (ii) Each sample was placed in a constant temperature and humidity tester set to 60 ° C—90% relative humidity, and the spectral transmittance after 100 hours was measured. (9) Electromagnetic wave shielding property: Measured according to the KE C method (one method of Kansai Electronics Industry Promotion Center).
実施例 1  Example 1
透明基材として紫外線吸収剤を含有している厚さ 1 0 0 / mの P E Tフィルムを用い、 その片面に 5 0重量%の酸化珪素フィ ラーを 含む紫外線硬化樹脂層を、 約 1 /imの厚さに成膜してハードコート 層を形成し、 その上に、 8 5重量%のアンチモン含有酸化錫を含む 酸化珪素層からなり、 かつ約 1 4 0 nmの厚さを有する、 導電性中屈 折率層を形成し、 その上に 6 5重量%の酸化チタンを含む酸化珪素 層からなり、 かつ約 1 1 O nmの厚さを有する、 髙屈折率層を形成し 、 その上に、 酸化珪素のみからなり、 かつ約 9 0 nmの厚さを有する 低屈折率層を形成して、 反射防止層を形成し、 その表面に P E T製 保護フィルムをラミネートした。 次に、 前記 P E Tフィルムの反対 面にパラジウムコロイ ド含有ペース トを LZ S = 3 0 / 2 7 0 ( a m) の格子状 (メッシュ状) のパターンを有するスクリーンを用い て印刷し、 これを無電解銅メツキ液中に浸漬して、 無電解銅メツキ を施し、 続いて電解銅メツキを施し、 さらに N i _ S n合金の電解 メツキを施してメッシュ状電磁波遮蔽層を形成した。 次に、 この電 磁波遮蔽層の表面に、 下記化学式 :  Using a PET film having a thickness of 100 / m containing a UV absorber as a transparent substrate, an UV curable resin layer containing 50% by weight of a silicon oxide filler on one side is formed by about 1 / im. Forming a thickness to form a hard coat layer, and further comprising a silicon oxide layer containing 85% by weight of antimony-containing tin oxide and having a thickness of about 140 nm. A refractive index layer is formed, and a refractive index layer is formed thereon, which is composed of a silicon oxide layer containing 65% by weight of titanium oxide, and having a thickness of about 11 O nm. A low-refractive index layer made of only silicon oxide and having a thickness of about 90 nm was formed to form an antireflection layer, and a protective film made of PET was laminated on the surface. Next, a paste containing palladium colloid was printed on the opposite surface of the PET film using a screen having a lattice-like (mesh) pattern of LZ S = 30/270 (am). It was immersed in an electrolytic copper plating solution, subjected to electroless copper plating, subsequently subjected to electrolytic copper plating, and further subjected to electrolytic plating of a Ni_Sn alloy to form a mesh electromagnetic wave shielding layer. Next, on the surface of this electromagnetic wave shielding layer, the following chemical formula:
( C H3 S 02) 2 N - により表されるカウンタ一イオンを有するジィモニゥム化合物を含 むジィモ二ゥム系色素と、 フタロシアニン系色素 (商標 : ィーェク スカラー I R _ 1 0 A、 日本触媒社製) とを、 質量比 2 : 1で含有 し、 さらに、 アクリル樹脂系接着剤を、 前記色素の合計質量に対し 、 2 5 0倍量 (質量) で含む、 近赤外線遮蔽接着層 (厚さ 2 5 ^ m ) を形成した。 Dimmonium dyes containing a dimonium compound having a counter ion represented by (CH 3 S 0 2 ) 2 N −, and phthalocyanine dyes (Trademark: XX Color IR _ 10 A, manufactured by Nippon Shokubai Co., Ltd.) ) In a mass ratio of 2: 1 and further containing an acrylic resin adhesive in an amount of 2500 times (mass) with respect to the total mass of the dye, a near-infrared shielding adhesive layer (thickness 2) 5 ^ m) was formed.
前記積層体に、 真空チャンバ一内において 1時間透明化処理を施 して、 光学フィルターを作製した。 The laminate is subjected to a transparent treatment for 1 hour in a vacuum chamber. Thus, an optical filter was produced.
得られた光学フィル夕一の 「全光線透過率」 、 「ヘイズ値」 、 「 視感反射率」 、 「鉛筆硬度」 、 「スチールウール硬度」 、 「密着性 」 、 「分光透過率 (近赤外部) 」 、 「信頼性試験 (高温 · 高湿での The total optical transmittance, haze value, luminous reflectance, pencil hardness, steel wool hardness, adhesion, spectral transmittance (near red) of the obtained optical film External) "," Reliability test (high temperature / high humidity)
1 0 0 0時間後の近赤外部の透過率変化) 」 、 「電磁波遮蔽性」 を 前記方法により測定し評価した。 評価結果を表 1 に示す。 Changes in transmittance in the near-infrared region after 100 hours) ”and“ electromagnetic wave shielding ”were measured and evaluated by the above methods. The evaluation results are shown in Table 1.
表 1 table 1
Figure imgf000039_0001
表 1から明らかなように、 本発明の光学フィルタ一は、 優れた光 透過率、 低ヘイズ値、 低反射性、 優れた電磁波遮蔽性及び近赤外線 遮蔽性を有しており、 しかも実用上十分な硬度、 密着性、 使用耐久 性、 可視画像の視認性、 及び軽量性を有することも確認された。
Figure imgf000039_0001
As is clear from Table 1, the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. It has also been confirmed that it has excellent hardness, adhesion, durability in use, visibility of visible images, and lightness.
実施例 2  Example 2
透明基材として厚さ 1 0 0 mの紫外線吸収剤を含む P E Tフィ ルムを用い、 その片面に実施例 1 と同様にして、 ハードコート層、 導電性中屈折率層、 高屈折率層、 低屈折率層からなる反射防止層を 形成し、 その表面に P E T製保護フィルムをラミネートした。 次に 、 前記 P E Tフィルムの反対面にパラジウムコロイ ド含有ペース ト を L Z S = 3 0 / 2 7 0 ( m ) の格子状 (メッシュ状) のパ夕一 ンを有するスクリーンを用いて印刷し、 これを無電解銅メツキ液中 に浸漬して、 無電解銅メツキを施し、 続いて電解銅メツキを施し、 さらに N i — S n合金の電解メツキを施してメッシュ状電磁波遮蔽 層を形成した。 次に、 この電磁波遮蔽層の表面に、 下記化学式 : PET film containing an ultraviolet absorber with a thickness of 100 m as a transparent substrate Using Lum, an antireflection layer consisting of a hard coat layer, a conductive medium refractive index layer, a high refractive index layer, and a low refractive index layer is formed on one surface in the same manner as in Example 1. The film was laminated. Next, a paste containing palladium colloid is printed on the opposite surface of the PET film using a screen having a lattice-like (mesh-like) pattern of LZS = 30/270 (m). Was immersed in an electroless copper plating solution, subjected to electroless copper plating, subsequently subjected to electrolytic copper plating, and further subjected to electrolytic plating of a Ni—Sn alloy to form a mesh-like electromagnetic wave shielding layer. Next, on the surface of this electromagnetic wave shielding layer, the following chemical formula:
( C H 3 S O 2 ) 2 N - により表されるカウン夕一イオンを有するジィモニゥム化合物を含 むジィモ二ゥム系色素と、 フタロシアニン系色素 (商標 : ィーェク スカラー I R— 1 0 A、 日本触媒社製) とを、 質量比 2 : 1で含有 し、 さらに、 メタァクリ レート系樹脂を、 前記色素の合計質量に対 し、 2 0 0倍量 (質量) で含み、 さらに溶剤として酢酸プチル、 シ クロへキサノン、 及びトルエンを含むインクを、 スクリーン印刷法 により印刷し、 乾燥して、 近赤外線遮蔽層を形成した。 さらに、 前 記近赤外線遮蔽層上に接着剤層を塗布形成して、 光学フィル夕一を 作製した。 A dimonium dye containing a dimonium compound having a county ion represented by (CH 3 SO 2 ) 2 N −, and a phthalocyanine dye (trademark: Jexcolor IR—10 A, manufactured by Nippon Shokubai Co., Ltd. ) In a mass ratio of 2: 1 and further containing a methacrylate resin in an amount of 200 times (mass) based on the total mass of the dye, and further containing butyl acetate as a solvent. An ink containing xanone and toluene was printed by a screen printing method and dried to form a near-infrared shielding layer. Furthermore, an adhesive layer was applied and formed on the near-infrared shielding layer to produce an optical film.
得られた光学フィルターを前記測定評価に供した。 評価結果を表 2に示す。 表 2 The obtained optical filter was subjected to the measurement evaluation. Table 2 shows the evaluation results. Table 2
Figure imgf000041_0001
表 2から明らかなように、 本発明の光学フィル夕一は、 優れた光 透過率、 低ヘイズ値、 低反射性、 優れた電磁波遮蔽性及び近赤外線 遮蔽性を有しており、 しかも実用上十分な硬度、 密着性、 使用耐久 性、 可視画像の視認性を有していた。
Figure imgf000041_0001
As is clear from Table 2, the optical film according to the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and practically. It had sufficient hardness, adhesion, durability to use, and visibility of visible images.
実施例 3  Example 3
透明基材として、 紫外線吸収剤を含む厚さ 1 0 0 mの P E Tフ イルムを用い、 その片面に実施例 1 と同様にして、 ハードコート層 、 導電性中屈折率層、 高屈折率層、 低屈折率層からなる反射防止層 を形成し、 その表面に P E T製保護フィルムをラミネートした。 次 に、 前記 P E Tフィルムの反対面にパラジウムコロイ ド含有ペース トを、 L Z S = 3 0 / 2 7 0 ( u rn) の格子状 (メッシュ状) のパ ターンを有するスクリ一ンを用いて印刷し、 これを無電解銅メッキ 液中に浸漬して、 無電解銅メツキを施し、 さらに電解銅メツキを施 し、 さらに N i — S n合金の電解メツキを施してメッシュ状電磁波 遮蔽層を形成した。 次に、 この電磁波遮蔽層の表面に、 下記化学式 As a transparent substrate, a PET film having a thickness of 100 m containing an ultraviolet absorber was used, and a hard coat layer, a conductive intermediate refractive index layer, a high refractive index layer, An antireflection layer consisting of a low refractive index layer was formed, and a PET protective film was laminated on the surface. Next, a paste containing palladium colloid is printed on the opposite surface of the PET film using a screen having a lattice-like (mesh-like) pattern of LZS = 30/270 (urn). This is electroless copper plating It was immersed in a liquid, electroless copper plating was applied, electrolytic copper plating was further applied, and electrolytic plating of Ni—Sn alloy was further applied to form a mesh-like electromagnetic wave shielding layer. Next, on the surface of this electromagnetic wave shielding layer, the following chemical formula
( C H 3 S 0 2 ) 2 N " (CH 3 S 0 2 ) 2 N "
により表されるカウン夕一イオンを有するジィモニゥム化合物を含 むジィモ二ゥム系色素と、 フタロシアニン系色素 (商標 : ィ一ェク スカラー I R _ 1 0 A、 日本触媒社製) とを、 質量比 2 : 1で含有 し、 さらに、 メタァクリ レート系樹脂を、 前記色素の合計質量に対 し、 2 0 0倍量 (質量) で含み、 さらに溶剤として酢酸プチル、 シ クロへキサノン、 及びトルエンを含むインクを、 スクリーン印刷法 により印刷し、 乾燥して、 近赤外線遮蔽層を形成した。 さらに、 前 記近赤外線遮蔽層上に、 ポルフィ リ ン化合物染料を 0 . 1 %含有さ せたアクリル樹脂を塗布して接着層を形成して、 光学フィルターを 作製した。 A dimonium dye containing a dimonium compound having a county ion represented by the formula: 2: 1, and further includes a methacrylate resin in an amount (mass) of 200 times the total mass of the dye, and further includes butyl acetate, cyclohexanone, and toluene as a solvent. The ink was printed by a screen printing method and dried to form a near infrared shielding layer. Further, an acrylic resin containing 0.1% of a porphyrin compound dye was applied on the near infrared shielding layer to form an adhesive layer, thereby producing an optical filter.
得られた光学フィルターを前記測定評価に供した。 評価結果を表 3に示す。 The obtained optical filter was subjected to the measurement evaluation. Table 3 shows the evaluation results.
表 3 Table 3
Figure imgf000043_0001
表 3から明らかなように、 本発明の光学フィルタ一は、 優れた光 透過率、 低ヘイズ値、 低反射性、 優れた電磁波遮蔽性及び近赤外線 遮蔽性を有し、 しかも実用上十分な硬度、 密着性、 使用耐久性、 可 視画像の視認性を有しており、 軽量であった。 また、 製造方法にお いては、 近赤外線遮蔽層と、 5 8 5 nmから 6 0 0 nmまでの波長の光 に対する選択吸収層、 すなわち接着層が別々の層として配置されて いることによって、 構成部材の取扱いが容易になり、 例えばプラズ マディスプレイ装置などの表示装置の光学フィル夕一として高い実 用性を有することが確認された。
Figure imgf000043_0001
As is apparent from Table 3, the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and practically sufficient hardness. Adhesion, durability in use, visibility of visible images, and light weight. In the manufacturing method, the near-infrared shielding layer and the selective absorption layer for light with a wavelength from 585 nm to 600 nm, that is, the adhesive layer are arranged as separate layers. It has been confirmed that the material can be handled easily and has high practicality as an optical filter for a display device such as a plasma display device.
実施例 4  Example 4
透明基材として厚さ 1 0 0 mの紫外線吸収剤を含有する P E T フィルムを用い、 その片面に実施例 1 と同様にして、 ハードコート 層、 導電性中屈折率層、 高屈折率層、 低屈折率層からなる反射防止 層を形成し、 その表面に P E T製保護フィルムをラミネートした。 次に、 前記 P E Tフィルムの反対面に化学式 : (C H3 S〇2) 2N一 で表されるカウンターァニオンを有するジィモ二ゥム系化合物であ るジィモ二ゥム系色素とフタロシアニン系色素 ( (株) 日本触媒製 、 商標 : ィ一ェクスカラー I R— 1 O A) と透明樹脂 (メタァクリ レート系、 セルロース系等) 、 溶剤 .(トルエン、 メチルェチルケト ン、 酢酸ェチル等) を含むインクを塗工し近赤外線遮蔽層を形成し た。 この近赤外線遮蔽層上にパラジウムコロイ ド含有べ一ス トを L / S = 3 0 / 2 7 0 ( n m) の格子状 (メッシュ状) のパターンを 有するスクリーンマスクを用いて印刷し、 これを無電解銅メツキ液 中に浸漬して、 無電解銅メツキを施し、 続いて電解銅メツキを施し 、 さらに N i — S n合金の電解メツキを施して黒色の電磁波遮蔽層 を形成した。 この電磁波遮蔽層上に粘着剤を含有する接着剤層を塗 ェし光学フィルターを作製した。 A PET film containing a UV absorber with a thickness of 100 m was used as the transparent substrate, and a hard coat was applied on one side in the same manner as in Example 1. An antireflection layer comprising a layer, a conductive middle refractive index layer, a high refractive index layer, and a low refractive index layer was formed, and a PET protective film was laminated on the surface. Next, a dimonium dye and a phthalocyanine dye, which are dimonium compounds having a counteranion represented by the chemical formula: (CH 3 S 0 2 ) 2 N on the opposite surface of the PET film (Nippon Shokubai Co., Ltd., Trademark: IX Color IR-1OA) and transparent resin (methacrylate, cellulose, etc.), solvent (toluene, methyl ethyl ketone, ethyl acetate, etc.) A near infrared shielding layer was formed. On this near-infrared shielding layer, a palladium colloid-containing base was printed using a screen mask having a lattice-like (mesh-like) pattern of L / S = 30/270 (nm). A black electromagnetic wave shielding layer was formed by immersing in an electroless copper plating solution, applying an electroless copper plating, followed by an electrolytic copper plating, and further applying an electrolytic plating of a Ni—Sn alloy. An optical filter was prepared by applying an adhesive layer containing a pressure-sensitive adhesive on the electromagnetic wave shielding layer.
得られた光学フィルターを前記測定評価に供した。 評価結果を表 4に示す。 The obtained optical filter was subjected to the measurement evaluation. Table 4 shows the evaluation results.
表 4 Table 4
Figure imgf000045_0001
表 4から明らかなように、 本発明の光学フィルタ一は、 優れた光 透過率、 低ヘイズ値、 低反射性、 優れた電磁波遮蔽性及び近赤外線 遮蔽性を有しており、 しかも実用上十分な強度、 耐久性、 使用耐久 性、 可視画像の視認性、 軽量性を有していることが確認された。
Figure imgf000045_0001
As is apparent from Table 4, the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. Strength, durability, durability in use, visibility of visible images, and light weight.
実施例 5  Example 5
透明基材として、 紫外線吸収剤を含有する厚さ 1 0 0 z mの P E Tフィルムを用い、 その片面に実施例 1 と同様にして、 ハードコー ト層、 導電性中屈折率層、 髙屈折率層、 低屈折率層からなる反射防 止層を形成し、 表面に P E T製保護フィルムをラミネートした。 次 に、 前記 P E Tフィルムの反対面に化学式 : ( C H 3 S〇 2 ) 2 N -で 表されるカウンターァニオンを有するジィモ二ゥム系化合物である ジィモ二ゥム系色素とフタロシアニン系色素 ( (株) 日本触媒製、 商標 : ィーェクスカラー I R— 1 O A ) と透明樹脂 (メタァクリ レ —卜系、 セルロース系等) 、 溶剤 (トルエン、 メチルェチルケトン 、 酢酸ェチル等) を含むインクを塗工し近赤外線遮蔽層を形成したAs a transparent substrate, a PET film having a thickness of 100 zm containing an ultraviolet absorber was used, and a hard coat layer, a conductive intermediate refractive index layer, a refractive index layer, An antireflection layer consisting of a low refractive index layer was formed, and a PET protective film was laminated on the surface. Next, a dimonium dye and a phthalocyanine dye (a dimonium compound having a counteranion represented by the chemical formula: (CH 3 S 0 2 ) 2 N-on the opposite surface of the PET film) Made by Nippon Shokubai Co., Ltd. Trademark: XX Color IR-1OA and transparent resin (Metaacrylic) -Non-infrared shielding layer was formed by applying ink containing solvent (such as cellulose and cellulose) and solvent (toluene, methyl ethyl ketone, ethyl acetate, etc.)
。 この近赤外線遮蔽層上にパラジウムコロイ ド含有ペース トを、 L / S = 3 0 / 2 7 0 ( n m) の格子状 (メッシュ状) のパターンを 有するスクリーンマスクを用いて印刷し、 これを無電解銅メツキ液 中に浸漬して、 無電解銅メツキを施し、 続いて電解銅メツキを施し 、 さらに N i S n合金の電解メツキを施して黒色の電磁波遮蔽層 を形成した。 この電磁波遮蔽層上にポルフィ リ ン化合物染料を 0 . 1 %含有するアクリル樹脂を塗布して接着層を形成し、 光学フィル ターを作製した。 . A paste containing palladium colloid was printed on the near-infrared shielding layer using a screen mask having a lattice-like (mesh-like) pattern of L / S = 30/270 (nm). A black electromagnetic wave shielding layer was formed by immersing in an electrolytic copper plating solution, applying an electroless copper plating, followed by electrolytic copper plating, and further applying electrolytic plating of a NiSn alloy. On this electromagnetic wave shielding layer, an acrylic resin containing 0.1% of a porphyrin compound dye was applied to form an adhesive layer to produce an optical filter.
 Size
得られた光学フィルターを前記測定評価に供した。 その評価結果 を表 5に示す。  The obtained optical filter was subjected to the measurement evaluation. The evaluation results are shown in Table 5.
表 5 Table 5
項目 実施例 5  Item Example 5
全光線透過率 32. 1%  Total light transmittance 32. 1%
ヘイズ値 1.4%  Haze value 1.4%
視感反射率 1.2%  Luminous reflectance 1.2%
鉛筆硬度 3 H以上  Pencil hardness 3 H or higher
スチールウール硬度 傷なし  Steel wool hardness No scratch
密着性 100/100  Adhesion 100/100
60°C - 90%/ 分光透過率 /信頼性 0時間 δΟ^ΖΙΟΟΟ時間  60 ° C-90% / Spectral transmittance / Reliability 0 hours δΟ ^ ΖΙΟΟΟ hours
1000時間 1000 hours
/ 595M / 595M
/ 850nm 4.2% 4.5% 5.5% / 850nm 4.2% 4.5% 5.5%
/ 950nm 1.7% 1.8% 2. 1%/ 950nm 1.7% 1.8% 2. 1%
/ lOOOnm 1.6% 1.8% 1.7% 電磁波遮蔽性 50dB以上 表 5から明らかなように、 本発明の光学フィルタ一は、 優れた光 透過率、 低ヘイズ値、 低反射性、 優れた電磁波遮蔽性及び近赤外線 遮蔽性を有しており、 しかも実用上十分な強度、 使用耐久性、 可視 画像の視認性及び軽量性を有していることが確認された。 / lOOOnm 1.6% 1.8% 1.7% Electromagnetic wave shielding 50dB or more As is apparent from Table 5, the optical filter of the present invention has excellent light transmittance, low haze value, low reflectivity, excellent electromagnetic wave shielding property and near infrared ray shielding property, and is practically sufficient. It was confirmed that it has excellent strength, durability to use, visibility of visible image and light weight.
また、 製造方法においては、 近赤外線遮蔽層と、 5 8 5 Mから 6 0 0 nmまでの波長を有する光に対する選択吸収層、 すなわち接着層 とが別々の層とに配置されていることによって、 構成部材の取扱い が容易であり、 例えばプラズマディスプレイ装置などの表示装置の 光学フィルタ一として高い実用性を有することが認められた。  In the manufacturing method, the near-infrared shielding layer and the selective absorption layer for light having a wavelength of 5 85 M to 60 nm, that is, the adhesive layer are arranged in separate layers, It was recognized that the components are easy to handle and have high practicality as an optical filter for a display device such as a plasma display device.
実施例 6  Example 6
透明基材として紫外線吸収剤を含む厚さ 1 0 0 ; mの P E Tフィ ルムを用い、 その片面に 30重量%のアンチモン含有酸化錫を含み、 約 1 /x mの厚さを有する U V硬化樹脂層を製膜してハードコート層 を形成し、 その上に、 フッ素含有酸化珪素層を、 l O O nmの厚さに 成膜して反射防止層を形成した。 次に、 前記 P E Tフィルムの反対 面に前記の近赤外線吸収色素とマトリ ックス樹脂とを溶媒中に溶解 または分散し、 得られた溶液を用いて近赤外線遮蔽層を形成し、 反 射防止 , 近赤外線遮蔽フィルムを作成した。 次に銅箔をエッチング 処理して得られたメッシュ箔を酸化処理し、 表面を黒色化し、 さら に、 おもて面の一部を電極として確保するため、 この部分を除いた 部分にノンキヤリァ粘着剤からなるおもて面接着剤層を貼合し、 う ら面全体にもノンキャ リア粘着剤からなるう ら面接着剤層を貼合し 、 電磁波遮蔽層含有積層体を作成した。 これら、 反射防止 · 近赤外 線遮蔽層含有複合フィルムと電磁波遮蔽層含有積層体とを枚葉式ラ ミネーターを用いて貼合し一体化した、 光学フィルタ一を作製した  A UV curable resin layer having a thickness of about 1 / xm containing 100 wt.m PET film containing 30% by weight of antimony on one side, using a PET film with a UV absorber as a transparent substrate. Then, a hard coat layer was formed, and a fluorine-containing silicon oxide layer was formed thereon to a thickness of lOO nm to form an antireflection layer. Next, the near-infrared absorbing dye and matrix resin are dissolved or dispersed in a solvent on the opposite surface of the PET film, and a near-infrared shielding layer is formed using the resulting solution to prevent reflection and near-reflection. An infrared shielding film was prepared. Next, the mesh foil obtained by etching the copper foil is oxidized to blacken the surface, and in addition, a part of the front surface is secured as an electrode. A front surface adhesive layer made of an agent was bonded, and a back surface adhesive layer made of a non-carrier pressure-sensitive adhesive was also bonded to the entire other surface to prepare an electromagnetic wave shielding layer-containing laminate. An optical filter was prepared by laminating a composite film containing an antireflection / near infrared ray shielding layer and a laminate containing an electromagnetic wave shielding layer using a single wafer laminator.
得られた光学フィル夕一を前記測定評価に供した。 評価結果を表 6 に示す。 The obtained optical film was subjected to the measurement evaluation. Table of evaluation results It is shown in 6.
表 6Table 6
Figure imgf000048_0001
表 6 に記載の測定評価結果により、 本発明の光学フィル夕一は、 優れた透過率、 低反射性、 電磁波遮蔽、 近赤外線遮蔽性と強度を有 しており、 さらに軽量で、 耐久性及び可視画像の視認性にも優れた ものであることが確認された。 産業上の利用可能性
Figure imgf000048_0001
According to the measurement evaluation results shown in Table 6, the optical film according to the present invention has excellent transmittance, low reflectivity, electromagnetic wave shielding, near-infrared shielding and strength, and is lightweight, durable and It was confirmed that the visibility of the visible image was excellent. Industrial applicability
本発明の光学フィルター及びその製造方法は反射防止性、 近赤外 線遮蔽性、 電磁波遮蔽性に優れており、 使用耐久性、 可視画像の視 認性、 にも優れていて、 軽量であって、 製造及び取り扱いが容易で あり、 例えばプラズマディスプレイ装置などの表示装置の光学フィ ル夕一として用いられるものであって、 高い実用性を有している。 The optical filter of the present invention and the manufacturing method thereof are antireflective, near infrared. It has excellent line shielding and electromagnetic wave shielding properties, excellent use durability, and visibility of visible images, is lightweight, and is easy to manufacture and handle. For example, a display device such as a plasma display device It is used as an optical fill of this product and has high practicality.

Claims

1 . 透明な基材と、 前記透明基材の一面上に形成された反射防止 層と、 前記基材の他の面上に形成され、 かつ互に積層されている電 磁波遮蔽層及び近赤外線遮蔽層を含む複合層とを含み、 これらが一 体のフィルム状に形成さ請れており、 かつ前記複合層の、 前記透明基 材に接合していない露出面が接着性を有する光学フィルター。 1. a transparent base material, an antireflection layer formed on one surface of the transparent base material, an electromagnetic wave shielding layer and a near infrared ray formed on the other surface of the base material and laminated with each other An optical filter comprising: a composite layer including a shielding layer, wherein the exposed surface of the composite layer that is not bonded to the transparent substrate has an adhesive property.
2 . 前記複合層において、 電磁波遮蔽層が、 前記透明基材の前記 他の面上に形成され、 また前記近赤外線遮蔽層が、 前記電磁波遮蔽 層上に形成され、 かつ接着性能を有していて、 前記接着性露出面を 形成している、 請求の範囲第 1項に記載の囲光学フィル夕一。  2. In the composite layer, an electromagnetic wave shielding layer is formed on the other surface of the transparent substrate, and the near infrared shielding layer is formed on the electromagnetic wave shielding layer, and has an adhesive performance. The surrounding optical film according to claim 1, wherein the adhesive exposed surface is formed.
3 . 前記複合層において、 前記電磁波遮蔽層が、 前記透明基材の 前記他の面上に形成され、 また前記近赤外線遮蔽層が、 前記電磁波 遮蔽層上に形成されており、 前記接着性露出面が、 前記近赤外線遮 蔽層の他の面上に形成された接着剤層により形成されている、 請求 の範囲第 1項に記載の光学フィルター。  3. In the composite layer, the electromagnetic shielding layer is formed on the other surface of the transparent substrate, and the near infrared shielding layer is formed on the electromagnetic shielding layer, and the adhesive exposure. The optical filter according to claim 1, wherein the surface is formed by an adhesive layer formed on the other surface of the near-infrared shielding layer.
4 . 前記近赤外線遮蔽層上に形成された接着剤層が、 5 8 5 nmか ら 6 0 0 Mまでの波長域内に極大吸収ピークを有する、 請求の範囲 第 3項に記載の光学フィルタ一。  4. The optical filter according to claim 3, wherein the adhesive layer formed on the near-infrared shielding layer has a maximum absorption peak in a wavelength range from 585 nm to 600 M. .
5 . 前記複合層において、 前記近赤外線遮蔽層が、 前記透明基材 の前記他の面上に形成され、 前記電磁波遮蔽層の一面が前記近赤外 線遮蔽層上に形成されており、 かつ前記接着性露出面が、 前記電磁 波遮蔽層の他の面上に形成された接着剤層の露出面により形成され ている、 請求の範囲第 1項に記載の光学フィルター。  5. In the composite layer, the near-infrared shielding layer is formed on the other surface of the transparent substrate, and one surface of the electromagnetic wave shielding layer is formed on the near-infrared ray shielding layer, and 2. The optical filter according to claim 1, wherein the adhesive exposed surface is formed by an exposed surface of an adhesive layer formed on the other surface of the electromagnetic wave shielding layer.
6 . 前記電磁波遮蔽層上に形成された接着剤層が、 5 8 5 nmから 6 0 0 nmまでの波長域内に極大吸収ピークを有する、 請求の範囲第 5項に記載の光学フィルター。 6. The optical filter according to claim 5, wherein the adhesive layer formed on the electromagnetic wave shielding layer has a maximum absorption peak in a wavelength range from 585 nm to 600 nm.
7. 前記複合層において、 前記近赤外線遮蔽層が、 前記透明基材 の前記他の面上に形成されており、 前記電磁波遮蔽層の〜面が、 前 記近赤外線遮蔽層上に、 おもて面接着剤層を介して接着されており 、 かつ前記接着性露出面が、 前記電磁波遮蔽層の他の面上に形成さ れたう ら面接着剤層の露出面により形成されている、 請求の範囲第 1項に記載の光学フィルター。 7. In the composite layer, the near-infrared shielding layer is formed on the other surface of the transparent substrate, and the ~ surface of the electromagnetic wave shielding layer is mainly on the near-infrared shielding layer. And the adhesive exposed surface is formed by an exposed surface of the back surface adhesive layer formed on the other surface of the electromagnetic wave shielding layer. The optical filter according to claim 1.
8. 前記電磁波遮蔽層が金属メッシュにより構成されている、 請 求の範囲第 1 , 2, 3 , 5及び 7項のいずれか 1項に記載の光学フ ィル夕一。  8. The optical filter according to any one of claims 1, 2, 3, 5 and 7, wherein the electromagnetic wave shielding layer is made of a metal mesh.
9 . 前記電磁波遮蔽層が 2個以上のアース電極接続部を有し、 前 記アース電極接続部が、 前記電磁波遮蔽層の周縁部分の、 互に離間 している 2箇所に設けられている、 請求の範囲第 1, 2 , 3 , 5及 び 7項のいずれか 1項に記載の光学フィル夕一。  9. The electromagnetic wave shielding layer has two or more earth electrode connection portions, and the earth electrode connection portions are provided at two positions apart from each other in the peripheral portion of the electromagnetic wave shielding layer. The optical filter according to any one of claims 1, 2, 3, 5 and 7.
1 0. 前記電磁波遮蔽層が、 前記近赤外線遮蔽層上に、 触媒イン クをメッシュ状に印刷し、 その上に金属メツキ処理を施すことによ つて形成された金属層からなる、 請求の範囲第 1, 2 , 3及び 5項 のいずれか 1項に記載の光学フィル夕一。  10. The electromagnetic wave shielding layer is composed of a metal layer formed by printing a catalyst ink on the near infrared shielding layer in a mesh shape and performing a metal plating treatment thereon. The optical filter according to any one of items 1, 2, 3 and 5.
1 1 . 前記電磁波遮蔽層の表面が、 黒色金属により被覆されてい る、 請求の範囲第 1, 2, 3 , 5及び 7項のいずれか 1項に記載の 光学フィルター。  11. The optical filter according to any one of claims 1, 2, 3, 5, and 7, wherein a surface of the electromagnetic wave shielding layer is covered with a black metal.
1 2. 前記透明基材が、 紫外線吸収性能を有している、 請求の範 囲第 1, 2 , 3 , 5及び 7項のいずれか 1項に記載の光学フィル夕  1 2. The optical filter according to any one of claims 1, 2, 3, 5, and 7, wherein the transparent substrate has an ultraviolet absorbing performance.
1 3. 前記近赤外線遮蔽層が、 前記電磁波遮蔽層上に、 印刷法に より形成されたものである、 請求の範囲第 1 , 2、 及び 3項のいず れか 1項に記載の光学フィルタ一。 1 3. The optical according to any one of claims 1, 2, and 3, wherein the near-infrared shielding layer is formed on the electromagnetic shielding layer by a printing method. Filter one.
1 4. 前記おもて面接着剤層は、 前記電磁波遮蔽層の前記一面上 において、 そのアース電極接合部を露出させたことを除き、 その他 の全面を被覆し、 かつ前記近赤外線遮蔽層に接着しており、 前記う ら面接着剤層は、 前記電磁波遮蔽層の前記他の面の全面を被覆して いる、 請求の範囲第 7項に記載の光学フィルター。 1 4. The front surface adhesive layer is on the one surface of the electromagnetic wave shielding layer. Except that the ground electrode joint is exposed, and the other surface is covered and adhered to the near infrared shielding layer, and the back surface adhesive layer is the other of the electromagnetic shielding layer. The optical filter according to claim 7, which covers the entire surface of the optical filter.
1 5 . 請求の範囲第 1項に記載の光学フィルターを製造するため に、 透明な基材の一面上に、 反射防止層を形成し、 前記透明基材の 他の面上に、 互に積層された電磁波遮蔽層と近赤外線遮蔽層とを含 む複合層 (但し、 この複合層の、 前記透明基材に接していない面が 、 接着性を有する) を形成して、 これらを一体のフィルム状に形成 することを含む、 光学フィル夕一の製造方法。  1 5. In order to produce the optical filter according to claim 1, an antireflection layer is formed on one surface of a transparent substrate, and the other layers of the transparent substrate are laminated on each other. Forming a composite layer including the electromagnetic wave shielding layer and the near infrared shielding layer (however, the surface of the composite layer not in contact with the transparent substrate has adhesiveness) A method for manufacturing an optical film, comprising:
1 6 . 前記電磁波遮蔽層の周縁部分の互に離間している少なく と も 2箇所に、 被覆されることなく露出しているアース電極接続部を 設ける、 請求の範囲第 1 5項に記載の光学フィルタ一の製造方法。  16. The ground electrode connection part which is exposed without being covered is provided in at least two places which are spaced apart from each other in the peripheral part of the electromagnetic wave shielding layer. A method for manufacturing an optical filter.
PCT/JP2005/021928 2004-11-25 2005-11-22 Optical filter WO2006057416A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004340493A JP2006153950A (en) 2004-11-25 2004-11-25 Optical filter
JP2004340551A JP2006153955A (en) 2004-11-25 2004-11-25 Optical filter
JP2004-340493 2004-11-25
JP2004-340551 2004-11-25
JP2004-360179 2004-12-13
JP2004360179A JP2006173189A (en) 2004-12-13 2004-12-13 Optical filter
JP2005243968A JP2007057889A (en) 2005-08-25 2005-08-25 Optical filter and its manufacturing method
JP2005-243968 2005-08-25
JP2005-284439 2005-09-29
JP2005-284388 2005-09-29
JP2005284388A JP2007094090A (en) 2005-09-29 2005-09-29 Optical filter and its manufacturing method
JP2005284439A JP2007096049A (en) 2005-09-29 2005-09-29 Optical filter and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2006057416A1 true WO2006057416A1 (en) 2006-06-01

Family

ID=36498150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021928 WO2006057416A1 (en) 2004-11-25 2005-11-22 Optical filter

Country Status (3)

Country Link
KR (1) KR20070088630A (en)
TW (1) TW200628851A (en)
WO (1) WO2006057416A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509984B (en) * 2008-02-13 2010-07-28 三星康宁精密琉璃株式会社 Optical filter and display device having the same
CN101452083B (en) * 2007-12-06 2011-09-28 鸿富锦精密工业(深圳)有限公司 Optical element and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176492B2 (en) * 2007-11-06 2013-04-03 住友金属鉱山株式会社 Near-infrared absorbing adhesive, near-infrared absorbing filter for plasma display panel, and plasma display panel
KR101924174B1 (en) * 2018-04-04 2019-02-22 (주)유티아이 Near-infrared filter and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195774A (en) * 2001-12-27 2003-07-09 Sumitomo Chem Co Ltd Optical filter for display device
JP2003307615A (en) * 2002-04-15 2003-10-31 Sumitomo Chem Co Ltd Optical filter using transparent resin as substrate
JP2004117545A (en) * 2002-09-24 2004-04-15 Mitsui Chemicals Inc Method for manufacturing display filter
JP2004281839A (en) * 2003-03-18 2004-10-07 Nitto Denko Corp Optical laminated filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195774A (en) * 2001-12-27 2003-07-09 Sumitomo Chem Co Ltd Optical filter for display device
JP2003307615A (en) * 2002-04-15 2003-10-31 Sumitomo Chem Co Ltd Optical filter using transparent resin as substrate
JP2004117545A (en) * 2002-09-24 2004-04-15 Mitsui Chemicals Inc Method for manufacturing display filter
JP2004281839A (en) * 2003-03-18 2004-10-07 Nitto Denko Corp Optical laminated filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452083B (en) * 2007-12-06 2011-09-28 鸿富锦精密工业(深圳)有限公司 Optical element and method for manufacturing same
CN101509984B (en) * 2008-02-13 2010-07-28 三星康宁精密琉璃株式会社 Optical filter and display device having the same

Also Published As

Publication number Publication date
KR20070088630A (en) 2007-08-29
TW200628851A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
EP1724741A1 (en) Transparent laminate
KR100215589B1 (en) Transparent laminate and optical filter for display using same
US6965191B2 (en) Display filter, display apparatus, and method for production of the same
JP4837654B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP2002323861A (en) Manufacturing method for filter for display
JP2008311565A (en) Composite filter for display
JP3004271B2 (en) Display filters
JP2006153950A (en) Optical filter
WO2006057416A1 (en) Optical filter
JP3311697B2 (en) Optical filter
JP4093927B2 (en) Transparent conductive film and optical filter using the same
JP2007096049A (en) Optical filter and its manufacturing method
JP5195146B2 (en) Optical filter for display and manufacturing method thereof
JP2008300393A (en) Electromagnetic wave shielding filter for display, composite filter and manufacturing method therefor
JP2002323860A (en) Optical filter for display and display device and protective plate for display using the same
JP2000147245A (en) Optical filter
KR101167226B1 (en) Transparent laminate
JP4004161B2 (en) Transparent laminate and display filter using the same
JP2006173189A (en) Optical filter
JP2009014913A (en) Filter substrate used for display filter, and display filter using the filter substrate
JP2008191395A (en) Plasma display panel and near infrared ray absorption filter for same
JP2004304373A (en) Filter for display and method for manufacturing the same
JP2007057889A (en) Optical filter and its manufacturing method
JP2008292745A (en) Front glass filter for plasma display and method for manufacturing the filter
JP2006153955A (en) Optical filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077010928

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580039998.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811310

Country of ref document: EP

Kind code of ref document: A1