WO2006046704A1 - メタルハライドランプおよび照明装置 - Google Patents

メタルハライドランプおよび照明装置 Download PDF

Info

Publication number
WO2006046704A1
WO2006046704A1 PCT/JP2005/019910 JP2005019910W WO2006046704A1 WO 2006046704 A1 WO2006046704 A1 WO 2006046704A1 JP 2005019910 W JP2005019910 W JP 2005019910W WO 2006046704 A1 WO2006046704 A1 WO 2006046704A1
Authority
WO
WIPO (PCT)
Prior art keywords
halide
metal
lamp
halides
metal halide
Prior art date
Application number
PCT/JP2005/019910
Other languages
English (en)
French (fr)
Inventor
Takahito Kashiwagi
Masazumi Ishida
Mikio Matsuda
Kozo Uemura
Original Assignee
Toshiba Lighting & Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting & Technology Corporation filed Critical Toshiba Lighting & Technology Corporation
Priority to EP05805339A priority Critical patent/EP1806766A1/en
Priority to JP2006542347A priority patent/JPWO2006046704A1/ja
Priority to US11/662,499 priority patent/US20080001543A1/en
Publication of WO2006046704A1 publication Critical patent/WO2006046704A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component

Definitions

  • the present invention relates to a metal halide lamp essentially free of mercury and a lighting device using the same.
  • a light emitting portion having a pair of electrodes inside and a light emitting tube having a ceramic material force each having a thin tube portion at both ends of the light emitting portion, and inside the light emitting tube,
  • a low wattage type metal halide lamp in which a metal halide containing at least one of thulium halide, holmium halide, and cerium halide and sodium halide is enclosed, and the inside of the light emitting portion.
  • Arc tube shape parameter LeZ (H value should be in the range of 0.45 to 0.65) where the distance between the electrodes is Le (mm) and the inner diameter of the tube at the center of the light emitter is ⁇ i (mm)
  • metal halide lamps that are essentially free of mercury are known (see, for example, Patent Document 2).
  • a metal halide that mainly emits light in the visible region is used as a second halogenated material, which has a high vapor pressure and is less likely to emit light in the visible region than the first halogenated metal. Enclosed with first halogenated material.
  • the distance between the electrodes is 4 mm
  • the first halogen power dysprosium iodide (Dyl) lmg
  • neodymium iodide (Ndl) lmg are used.
  • a metal halide lamp for a liquid crystal projector that encloses LUGON (Ar) 500 Torr and lights up at an input power of 150 W is described.
  • LUGON Ar
  • Znl zinc iodide
  • the distance between the electrodes is 30 mm, and the first halogen ion is used.
  • a metal-no-ride lamp that lights up at an input power of 2kW is described.
  • Znl zinc iodide
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-272560
  • Patent Document 2 Japanese Patent Laid-Open No. 11-238488
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-076670
  • Patent Document 2 a metal nitride having substantially the same electrical characteristics and light-emitting characteristics as a conventional metal halide lamp enclosing mercury without using mercury with a large environmental load. A lamp was obtained. However, it is expected that a metal halide lamp having a light emitting efficiency higher than that of the conventional metal halide lamp will be used without essentially using mercury.
  • the D-line of sodium has a wavelength of 589 nm, which is far from the peak wavelength of 555 nm in the visibility curve. It is necessary to further improve efficiency.
  • the discharge medium contains a large amount of sodium, the lamp voltage becomes low. Therefore, it is necessary to increase the lamp current in order to supply the desired lamp power. As a result, there is a problem that the design of the electrode and the airtight container becomes difficult such as increasing the electrode shaft diameter, and the design of the ballast becomes difficult.
  • Patent Document 2 Although a metal halide lamp having electric characteristics and light emission characteristics similar to those of a conventional metal halide lamp is obtained, the luminous efficiency is comparable to that of a metal halide lamp containing mercury. .
  • the present invention provides a metal nanoride lamp that has the same electrical characteristics and almost the same light emission characteristics as a mercury-free metal nitride lamp that does not enclose mercury, but has almost the same light emission characteristics.
  • the porpose is to do.
  • the metal nitride lamp includes: a translucent airtight container having a discharge space therein; a pair of electrodes sealed in the airtight container and facing the discharge space; All halides contained in a hermetic container, including halogenated substances, second halogenated substances and rare gases, the first halogenated substances being mainly luminescent metal halides.
  • the largest inclusion ratio of thulium (Tm) halide is included, and the alkali metal halide is at most less than 10% by mass, and the second halide is mainly a metal halide that forms a ramp voltage.
  • a discharge medium enclosed in a container It is characterized in that provided to! / Ru a.
  • the airtight container is translucent means that it is caused by discharge. This means that the visible light generated in the desired wavelength range is derived outside.
  • the hermetic container may be made of any material that is translucent and fire-resistant enough to withstand the normal operating temperature of the lamp. For example, quartz glass or translucent ceramics can be used. Note that translucent ceramics include translucent alumina and yttrium.
  • YAG yttrium oxide
  • A1N aluminum nitride
  • the hermetic container has a discharge space therein.
  • the airtight container includes an enclosing portion.
  • the surrounding portion has an appropriate shape, for example, a spherical shape, an elliptical spherical shape, or a substantially cylindrical shape.
  • Various values can be selected for the volume of the discharge space depending on the rated lamp power of the metal halide lamp, the distance between the electrodes, and the like.
  • a lamp for a liquid crystal projector it can be 0. Ice or less.
  • automotive headlamps it can be 0.05cc or less.
  • it can be either lcc or more depending on the rated lamp power.
  • the pair of sealing portions are means for sealing the surrounding portion and supporting the shaft portion of the electrode here, and contributing to airtight introduction of current from the lighting circuit to the electrode. Arranged at both ends of the enclosure.
  • the electrode is sealed, and the lighting circuit force is preferably sealed as an appropriate hermetic sealing conduction means inside the sealing portion in order to introduce current into the electrode in a gastight manner.
  • Metal foil is buried in an airtight manner.
  • the sealing metal foil functions as a current conducting conductor while cooperating with the sealing portion so that the sealing portion is embedded inside the sealing portion and the sealing portion keeps the inside of the enclosure portion of the hermetic container airtight.
  • the airtight container has quartz glass power
  • molybdenum (Mo) is the most suitable material.
  • the method for embedding the sealing metal foil in the sealing portion is not particularly limited, but, for example, medium forces such as a reduced pressure sealing method, a pinch sealing method, and a combination method thereof can be appropriately selected and employed.
  • the hermetic container has translucent ceramics force
  • a metal seal using metal instead of the frit material can be used.
  • the airtight container communicates with the enclosure. A small-diameter cylindrical portion can be formed.
  • the sealing portion is disposed at the end portion of the small-diameter cylindrical portion, and the electrode shaft is extended into the small-diameter cylindrical portion so that the cable rally between the electrode shaft and the inner surface of the small-diameter cylindrical portion Is formed along the axial direction of the small-diameter cylindrical portion.
  • the pair of electrodes is sealed in an airtight container and disposed so as to face the discharge space.
  • the distance between the electrodes formed between the pair of electrodes is preferably 2 mm or less, and may be 0.5 mm.
  • the center value is 4.2mm.
  • it can be set to 6 mm or less for small and small interelectrode distances, and 6 mm or more for medium to large lamps.
  • a refractory and conductive metal such as pure tungsten (W), a dopant (for example, scandium (Sc), aluminum (A1), potassium (K) and silicon ( Doped tundane containing one or more selected from group groups such as Si), tritium tungsten containing yttrium oxide, rhenium (Re) or tandane monorhenium (W— Re) alloy Etc.
  • W tungsten
  • a dopant for example, scandium (Sc), aluminum (A1), potassium (K) and silicon
  • a straight rod-shaped wire rod having a large diameter portion at the tip can be used as the electrode.
  • a coil made of an electrode constituent material can be wound around the tip of the electrode shaft.
  • the pair of electrodes have the same structure when operated with alternating current, but when operated with direct current, the anode generally has a greater temperature rise, so the heat dissipation area is larger than that of the cathode, and therefore the main part is thicker. Can be used.
  • the discharge medium is a characteristic component in the first aspect of the present invention, and includes the first and second halides and the rare gas.
  • the first halogen compound contains at least thulium (Tm) halide as a main component, and the alkali metal halide is set to a predetermined amount or less.
  • the second The halide 1 is mainly composed of a metal halide that contributes to visible light emission.
  • thulium (Tm) halide is sealed as a maximum sealing ratio with respect to all metal halides sealed in an airtight container.
  • thulium halide itself has the effect of increasing the potential gradient between the electrodes, and thus the lamp voltage, in the presence of the second halide described later, and is suitable for light emission as a mercury-free lamp.
  • Metal halide As the halogen of thulium halide, iodine is suitable because it has a moderate reactivity. If desired, either bromine or chlorine can be used, and any desired two or more of iodine, bromine and chlorine can be used. May be used. Further, thulium is a light-emitting metal that is extremely effective in improving the light-emitting efficiency because its emission peak coincides with the peak of the visibility curve.
  • Alkali metal halides are allowed to be enclosed within a range of less than 10% by mass (including 0%) with respect to all metal halides enclosed in an airtight container. If the sealing ratio of alkali metal is 10% by mass or more, the lamp voltage tends to decrease, which is not preferable from the viewpoint of forming the lamp voltage. However, if the sealing ratio of the alkali metal is less than 10% by mass, the decrease in lamp voltage is minimized, while the luminous efficiency, lamp life improvement and light color adjustment, especially color deviation improvement are possible. become. From this point of view, if the required lamp voltage can be secured, sealing is allowed within the above range. In addition, Preferably it is 2-8 mass%, More preferably, it is 3-7 mass%, Furthermore, one layer, Preferably it is 4-6 mass%.
  • alkali metal one or a plurality of groups of sodium (Na), cesium (Cs) and lithium (Li) can be selectively encapsulated.
  • Sodium (Na) mainly contributes to the improvement of luminous efficiency.
  • Cesium (Cs) contributes to the improvement of life characteristics by optimizing the discharge arc temperature.
  • Lithium (Li) contributes to improved red color rendering
  • the first metal halide can encapsulate the following metal halide as desired.
  • Rare earth metal consisting of praseodymium (Pr), cerium (Ce) and samarium (Sm)
  • Pr praseodymium
  • Ce cerium
  • Sm samarium
  • the rare earth metal is useful as a luminescent metal next to thulium halide, and is allowed to be encapsulated at an encapsulation ratio below a predetermined amount. That is, any of the rare earth metals has an innumerable emission line spectrum near the peak wavelength of the visibility characteristic curve, and can contribute to the improvement of luminous efficiency.
  • the halide is allowed to be selectively encapsulated as a subcomponent for the purpose of obtaining desired color rendering properties and Z or color temperature.
  • the second halogen compound has a higher vapor pressure than the first halogen compound, and mainly determines the lamp voltage in the metal halide discharge lamp.
  • “High vapor pressure” means that the vapor pressure during lighting is high, but it is not necessary to be too high like mercury, and preferably the pressure in the airtight container during lighting is about 5 atm or less. . Therefore, it is not limited to a specific metal halide as long as the above conditions are satisfied.
  • the second halide is mainly composed of a metal halide that forms a lamp voltage.
  • a metal halide that forms a lamp voltage.
  • One or more selected metal halides can be used as the subject. And most of them have lower vapor pressure than mercury and the adjustment range of lamp voltage is narrower than mercury. However, the range of adjustment of the lamp voltage can be expanded by mixing and enclosing a plurality of these as required. For example, All is incomplete
  • the lamp voltage does not change even if 3 is added.
  • the lamp voltage can be increased. Furthermore, if another second halide is added, a higher lamp voltage can be obtained.
  • the second halogenated material is emitted in the visible region as compared to the metal of the first halogenated material. It is also a metal halide that is difficult to light. “It is hard to emit light in the visible range compared to the metal of the first halide” means that there is less visible light emission in an absolute sense, but in a relative sense, not so much. . This is because Fe and Ni emit more in the ultraviolet region than in the visible region, but Ti, A1 and Zn emit more in the visible region. Therefore, when these metals that emit a large amount of light in the visible region are caused to emit light alone, energy is concentrated on the metal, so that light is emitted in the visible region.
  • the second halide metal has a higher energy level than the first halide metal and is difficult to emit light
  • the first and second halogenated compounds coexist. Then, the energy concentrates on the light emission of the first halide, so the metal emission of the second halide is reduced.
  • the second halogenated material has a small ratio to the total visible light emitted by the discharge lamp, which is not prohibited from the emission of visible light, and has little influence.
  • the second halogenated material must have an encapsulation ratio of 5 to 20% by mass with respect to all metal halides enclosed in the hermetic container.
  • the sealing ratio is less than 5% by mass, the lamp voltage is not sufficiently formed.
  • it exceeds 20% by mass there is no problem with the formation of the lamp voltage, but the decrease in luminous efficiency becomes remarkable.
  • the noble gas mainly acts as a buffer gas and a starting gas.
  • One kind of gnolepe such as neon (Ne), anoregon (Ar), xenon (Xe), and krypton (Kr) can be encapsulated alone or in combination.
  • the filling pressure of the rare gas can be appropriately set according to the use of the metal nitride lamp.
  • xenon has a relatively small thermal conductivity because its atomic weight is larger than other rare gases, so that it is lit by sealing it at 1 atmosphere or more, preferably 5 atmospheres or more. This contributes to the formation of the lamp voltage immediately afterwards, and emits white visible light when the halide vapor pressure is low, contributing to the rise of the luminous flux.
  • the preferable sealing pressure of xenon is 6 atmospheres or more, more preferably in the range of 8 to 16 atmospheres. For this reason, it is possible to satisfy the standards of white light emission as the HID light source for automobile headlamps and the rise of luminous flux immediately after lighting.
  • a component including an airtight container, a pair of electrodes, and a discharge medium can be disposed inside the outer tube as an arc tube.
  • the outer tube can be any desired shape and size. Further, the inside of the outer tube may be airtight with respect to the outside, or may be communicated with the outside air. In the former case, an inert gas such as argon or nitrogen can be sealed as required. Further, the outer tube can be formed using a translucent material such as quartz glass, hard glass, and soft glass.
  • the airtight container can be fixedly disposed at a predetermined position in the reflection mirror.
  • a mirror having a dichroic mirror formed on the inner surface of the glass substrate can be used.
  • the discharge medium is sealed as the maximum sealing ratio among all the metal halides sealed in the hermetic container.
  • Tm thulium
  • the light emission of the metal halide lamp becomes dominant. What is the emission of thulium? Since there are many emission lines near the peak wavelength of the viewing sensitivity curve at 555 nm, a high luminous efficiency can be obtained as a whole.
  • thulium has a higher ionic potential compared to alkali metals such as sodium, and the inclusion of thulium halides does not cause a decrease in lamp voltage.
  • the present inventor has found that there is an action of increasing the lamp voltage in proportion to the enclosed amount in the presence of the soot. When the lamp voltage is increased, it becomes easier to avoid an increase in lamp current when the required lamp power is applied, so that the design of the electrode and the hermetic vessel is facilitated.
  • the rated lamp power of the metal halide lamp can be freely set from a wide range of values, for example, set to an arbitrary value of several kW or less. be able to. It can be used in various ways, and is suitable for automotive headlamps, projections, and general lighting. Therefore, an airtight container with an appropriate shape and size according to the rated lamp power and application, and an appropriate distance between electrodes. In addition, an appropriate amount of discharge medium can be provided.
  • the metal nitride lamp includes a fire-resistant and light-transmitting airtight container having a discharge space therein; a pair of electrodes sealed in the airtight container and facing the discharge space; 1st halide, 2nd halide and noble gas, the first halide is mainly a luminescent metal halide, and all metal halides enclosed in an airtight container Among the metal halides that contain the largest enclosure ratio of thulium (Tm) halides, the second halide is mainly the metal halide power that forms the lamp voltage, and all metal halides enclosed in the hermetic vessel The ionization potential of the metal forming all metal halides is 5.4 eV or more, and is essentially free of mercury and enclosed in an airtight container. It is characterized in that it is equipped with a discharged discharge medium;
  • the second aspect of the present invention stipulates that the first and second metal halides are selected and sealed according to their ionization potential values.
  • the ionic potential (eV) of metal that can be enclosed as a halide in the airtight container is shown in parentheses after the metal element symbol.
  • Second metal halide Mg (7. 644), Fe (7. 87), Co (7. 864), Cr (6. 7 65), Zn (9. 394), Ni ( 7.635), Mn (7.432), A1 (5.986), Sb (8.642), Bi (7.287), Re (9.323), Ga (5.999), Ti (6 84), Zr (6. 837),
  • alkali metals such as Na (ionization potential 5.14 eV) and Li (5. 392) have ion ion potentials of less than 5.4 eV, and the lamp voltage decreases as the amount of encapsulated metal increases. Therefore, in this embodiment, the alkali metal is not substantially contained.
  • the metal halide lamp is the metal halide lamp of the first or second aspect, wherein the discharge medium is all metal halide sealed in an airtight container.
  • the inclusion ratio H (mass%) of thulium (Tm) halide to the product is It is characterized by satisfying.
  • the third aspect of the present invention defines the range of the inclusion ratio H of the total halide to the total halogenated compounds that can be generally employed to achieve the object of the present invention.
  • the range is preferably 50 to 80% by mass. Inclusion ratio H force exceeds 3 ⁇ 40% by mass
  • the metal nitride lamp is the metal nanoride lamp of any one of the first to third aspects, wherein the discharge medium is composed of praseodymium in the first halogenated material.
  • the discharge medium is composed of praseodymium in the first halogenated material.
  • Pr cerium
  • Sm samarium
  • forces also include one or more selected rare earth metal halides, and rare earth metal halides containing calorium thulium (Tm) halides. It is characterized by an encapsulation ratio of 50% by mass or more with respect to all halogenated substances.
  • the fourth aspect of the present invention defines a rare earth metal halide that can be encapsulated in addition to thulium (Tm) halide, and a suitable enclosure ratio range when encapsulating them. That is, the metals of the praseodymium (Pr), cerium (Ce), and samarium (Sm) groups all have an emission line spectrum near the peak of the visibility curve, and some of the thulium halides are part of these.
  • the inclusion ratio range of rare earth metal halides contained in the above group is all metals in which the entire rare earth metal halide including thulium (Tm) halide is enclosed in the lamp.
  • the content of 50% by mass or more based on the halogenated material is preferable in order to satisfy the object of the present invention.
  • the metal halide lamp is the metal halide lamp according to any one of the first to fourth aspects.
  • the discharge medium is made of a first halide. It is characterized in that it contains at least one kind of (Tl) halide and indium (In) halide.
  • thallium (T1) halide a green component of thallium having an emission line at a wavelength of 535 nm can be added during light emission.
  • the range of the inclusion ratio of thallium halides that can be generally adopted is less than 30% by mass with respect to all the metal halides to be enclosed.
  • the inclusion ratio range of thallium halide is 30% by mass or more, the decrease in luminous efficiency becomes significant.
  • the blue component can be increased during light emission of the halide and also contributes to lamp voltage formation.
  • the lighting device of the present invention includes: a lighting device main body; a metal lamp and a ride lamp of a book disposed in the lighting device main body; and a lighting device that lights the metal lamp and the ride lamp. It is characterized.
  • the illuminating device is a concept including all devices using a metal nitride lamp as a light source.
  • a metal nitride lamp for example, outdoor and indoor lighting fixtures, automobile headlamps, image or video projection devices, marker lights, signal lights, indicator lights, chemical reaction devices, inspection devices, and the like.
  • the illuminating device main body refers to the remaining part of the illuminating device excluding the metal halide lamp and the lighting circuit.
  • the lighting device can easily control the metal nitride lamp. Further, the lighting device may be arranged at a position separated from the lighting device main body force only by being arranged in the lighting device main body.
  • thulium halide is encapsulated at the maximum encapsulation ratio, and the second halogenide is encapsulated, whereby thulium emission becomes dominant and high emission is achieved.
  • the lamp voltage can be increased, and it has the same electrical characteristics as a mercury-containing metal nanoride lamp, even though it does not contain mercury, and a mercury-containing metal nanoride lamp.
  • Metal-no-ride run with almost the same or better luminous efficiency And a lighting device using the same.
  • FIG. 1 is a front view showing a first embodiment for carrying out the metal halide lamp of the present invention.
  • FIG. 3 is a front view showing a second embodiment for carrying out the metal halide lamp of the present invention.
  • FIG. 4 is a process diagram showing the procedure for sealing the translucent ceramic arc tube of the second form shown in FIG.
  • FIG. 5 is a conceptual diagram showing a first embodiment of a sealing device for a light-transmitting ceramic airtight container.
  • FIG. 6 is a conceptual diagram showing a second embodiment of a sealing device for a light-transmitting ceramic airtight container.
  • FIG. 7 is a conceptual diagram showing a third embodiment of a sealing device for a light-transmitting ceramic airtight container.
  • FIG. 8 is a conceptual front view and plan view showing a first form of sealing of a light-transmitting ceramic airtight container.
  • FIG. 9 Conceptual front view and plan view showing a second form of sealing of a light-transmitting ceramic airtight container.
  • FIG. 10 Conceptual front view showing a third mode of sealing a light-transmitting ceramic airtight container.
  • FIG. 11 Conceptual part showing a fourth mode of sealing of a light-transmitting ceramic airtight container.
  • Fig. 1 is a front view showing a first embodiment for carrying out the metal halide lamp of the present invention.
  • This embodiment is a metal lamp and a lamp lamp for an automobile headlamp as an application example of the present invention.
  • the metal lamp lamp MHL is composed of an arc tube IT, an insulating tube ⁇ , an outer tube ⁇ , and a base ⁇ . Lit horizontally.
  • the arc tube IT includes an airtight container 1, a pair of electrodes 2, 2, a sealing metal foil 3, a pair of external lead wires 4A, 4B, and a discharge medium force.
  • the hermetic container 1 is made of quartz glass and includes a surrounding portion la and a pair of sealing portions lb and lb.
  • the surrounding portion la is hollow and the outer shape is formed into a spindle shape.
  • a pair of long and narrow sealing portions lal are formed at both ends of the surrounding portion la, and an elongated, substantially cylindrical discharge space lc is formed inside.
  • the internal volume of the discharge space lc is 0. Ice or less.
  • the sealing tube Id is not cut and extends integrally from the end of the sealing portion lb, and extends into the base B. Yes.
  • the pair of electrodes 2 and 2 has a doped tungsten linear force, the diameter of the shaft portion is the same across the distal end portion, the intermediate portion, and the proximal end portion in the axial direction, and one of the distal end portion and the intermediate portion is the same. Is exposed in the discharge space lc. Further, the base end portion of the electrode 2 is welded to a sealing metal foil 3 to be described later embedded in the sealing portion lb and the intermediate portion is loosely supported by the sealing portion lb. It is arranged at the predetermined position!
  • the sealing metal foil 3 is made of molybdenum foil, and is hermetically embedded in the sealing part lb of the hermetic container 1.
  • the discharge medium also has a metal halide and a rare gas power.
  • the metal halide includes a first halide, primarily a second halide that contributes to forming a lamp voltage, and a noble gas.
  • the first halide mainly contributes to the desired light emission, and at least thulium (Tm) halide is the maximum for all metal halides enclosed in the hermetic container 1. It shall be included in the enclosing ratio.
  • Tm thulium
  • a rare earth metal halide other than thulium, thallium (T1), indium (In), and Z or an alkali metal halide are encapsulated as required.
  • the second halide is a metal halide that has a relatively high vapor pressure and is less likely to emit light in the visible region than the first halide. Difficult to emit light in the visible range has little effect on the emission color of the entire lamp, and in the coexistence with the first halide, there is little visible light emission by the metal constituting the second halide Means that. For example, a group of the following groups: selected one or more metal halides? It becomes.
  • the second halide is, for example, magnesium (Mg), iron (Fe), cobalt (Co), chromium (Cr), zinc (Zn), nickel (Ni), manganese (Mn), aluminum (A1) , Antimony (Sb), bismuth (Bi), beryllium (Be), rhenium (Re), gallium (Ga), titanium (Ti), zirconium (Zr) and hafnium (Hf).
  • the noble gas is selected from forces such as neon (Ne), argon (Ar), xenon (Xe), and krypton (Kr).
  • the pair of external lead wires 4A and 4B have their distal ends welded to the other end of the sealing metal foil 3 in the sealing portions lb at both ends of the hermetic container 1, and their proximal ends led out to the outside.
  • the external lead wire 4A led out from the discharge vessel IT to the right is folded back along the outer tube OT described later, introduced into the base B described later, and disposed on the outer peripheral surface of the base B. It is connected to one base terminal tl that forms a ring shape.
  • the external lead wire 4B led out from the discharge vessel IT to the left is drawn along the tube axis and led into the base B, which is shown in the figure! Connect to the other cap terminal.
  • the outer tube OT has a UV-cutting performance, accommodates the discharge vessel IT therein, and discharges the diameter-reduced portions 5 at both ends (only one end on the right is shown in the figure). Glass welded to the sealed part lb of the container IT. However, the inside of the outer pipe OT communicates with the outside air that is not airtight.
  • the insulating tube T is made of a ceramic tube and covers the external lead wire 4A.
  • the base B is standardized for use as an automobile headlamp, and supports and supports the discharge vessel IT and the outer tube OT along the central axis. It is detachably attached to the back.
  • a ring-shaped base terminal tl disposed on the outer peripheral surface of the cylindrical portion so that it can be connected to a lamp socket (not shown) on the power source side when mounted, and formed inside the cylindrical portion.
  • the other end terminal in the form of a pin is provided so as to protrude in the axial direction at the center in the recessed portion opened at one end.
  • Example 1 is the metal head / ride lamp for an automobile headlamp shown in FIG.
  • Airtight container 1 Maximum outer diameter 6.5 mm, sphere length 6.5 mm, maximum inner diameter 2.4 mm, Internal volume 0.025cc
  • a pair of electrodes Made of doped tungsten, shaft diameter 0.3 mm, total length 10 mm,
  • Discharge medium Znl (12. 1) Inl (3. 1) — T1I (12. 1) —
  • the number in 0 is the enclosing ratio
  • Discharge medium HgO. 2mg-ScI (16. 67) — Nal (83. 33)
  • Luminous characteristics Total luminous flux 35501m, Luminous efficiency 101. 41m / W, Color temperature 4200K, Average color rendering index Ra65. 0 Comparative example above As can be understood from the specifications, electrical characteristics, and light emission characteristics, 1 corresponds to the current metal halide lamp for automotive headlamps that contains mercury.
  • Example 1 the electrical characteristics are almost the same as the comparative example rather than the mercury-free lamp whose lamp voltage is known, and the luminous characteristics are the total luminous flux and the average color rendering index. Ra is clearly better. Also, the luminous efficiency is a value with a slightly high color temperature close to daylight white (5000K).
  • Discharge medium Znl (13. 8) — Inl (3.4) — T1I (13. 8) —
  • Tml (69. 0) 0.5 mg
  • the numbers in parentheses are the enclosing ratio (mass%)
  • Luminous characteristics Total luminous flux 38411m, Luminous efficiency 98.71mZW, Color temperature 5158K, Average color rendering index Ra81. 0 According to Example 2 The electrical characteristics are almost the same as in Comparative Example 1, and the luminous characteristics are clearly superior in total luminous flux and average color rendering index Ra. In addition, the luminous efficiency is somewhat low, but they are almost the same, and the color temperature is close to neutral white (5000K).
  • Discharge medium Znl (10. 8) — T1I (10. 8) — Tml (60. 1)
  • Lamp voltage 78. OV Lamp current 0.500A
  • Luminous characteristics Total luminous flux 34461m, luminous efficiency 88. 61mZW, color temperature 5158K, average color rendering index Ra81. 0
  • the electrical characteristics are almost the same as the comparative example, and the luminous characteristics are the average color rendering index. Ra is clearly better.
  • the total luminous flux is almost the same, and the color temperature at which the luminous efficiency is low is close to daylight white (5000K).
  • Airtight container 1 Maximum outer diameter 6. Omm, sphere length 6.5mm, maximum inner diameter 2.4mm,
  • Discharge medium Znl (13. 0) - ⁇ (7. 0) — Tml (72. 0) —
  • Luminous characteristics Total luminous flux 50001m, luminous efficiency 1001mZW, color temperature 4200K,
  • Discharge medium HgO. 2mg-ScI (16. 67) — Nal (83. 33)
  • Luminous characteristics Total luminous flux 55001m, luminous efficiency 11 llm / W, color temperature 4300K,
  • Example 4 the electrical characteristics and the light emission characteristics are almost the same as those of Comparative Example 2.
  • FIG. 2 is a graph showing the relationship between the electric potential gradient and the luminous efficiency using the type of metal halide to be encapsulated and the encapsulating ratio as parameters.
  • the horizontal axis represents the potential gradient (VZ mm), and the vertical axis represents the efficiency (lmZW).
  • the above efficiency means luminous efficiency.
  • Each curve in the figure is as follows. Each curve was created based on data obtained by measurement using a metal halide lamp manufactured by changing the discharge medium according to the same specifications as in Example 1. It is.
  • the inclusion ratio of thulium halide is 0.0% by mass for symbol strength, 60.0% by mass for symbol ⁇ , and 74% by mass for symbol garden.
  • thulium (Tm) halide as a rare earth metal halide, praseodymium! :
  • Symbol ⁇ is thulium (Tm)
  • symbol ⁇ is cerium (Ce)
  • symbol garden is neodymium
  • symbol ⁇ is praseodymium.
  • Curve "ramp voltage forming metal ratio" enclosed mass ratio of thulium halide 25%, indium halide 3%, zinc iodide Znl 33.3, 50.0 and 60.0%
  • 33.3%
  • symbol ⁇ 50.0%
  • symbol garden 60.0%.
  • FIG. 3 is a front view showing a second embodiment for carrying out the metal halide lamp of the present invention.
  • This embodiment is a metal nitride lamp that can be implemented for general illumination as one application example of the present invention, and is a translucent airtight container 1, a pair of electrodes 2, 2, and a pair of external leads. It consists of wires 4, 4, a pair of sealants 6, 6 and a discharge medium.
  • the above translucent airtight container 1, The pair of electrodes 2 and 2, the pair of external lead wires 4 and 4, the pair of sealants 6 and 6 and the discharge medium are integrated to form a translucent ceramic arc tube IT, and illustration thereof is omitted. Sealed in an outer tube for use.
  • the translucent airtight container 1 is made of translucent ceramics having translucent alumina ceramic force, and includes an enclosing portion la and a pair of elongated cylindrical portions 1 and 1, and includes a plurality of the following: It is formed by a shrink fit structure of the constituent parts.
  • the surrounding portion la has a bowl shape, and is composed of an intermediate cylindrical portion lal and a pair of hemispherical portions la2 and la2 continuous to both ends thereof.
  • the cylindrical part lb has an elongated pipe shape, and the tip communicates with the central part of the hemispherical part la2 of the surrounding part la.
  • the alternate long and short dash line is the central axis indicating the tube axis position.
  • the airtight container 1 has a total length of 35 mm, the outer diameter of the surrounding portion la is 6 mm, the inner diameter is 5 mm, the outer diameter of the cylindrical portion 1 is 1.7 mm, and the inner diameter is 0.7 mm.
  • the electrode 2 has an outer diameter of the shaft portion of 0.3 mm, and the outer lead wire 4 has an outer diameter of 0.65 mm.
  • the electrode 2 also has a rod-like physical strength of doped tungsten, the tip faces the inside of the enclosure la of the hermetic container 1, the base end is butt welded to the tip of the external lead wire 4, and the middle part is a cylindrical part 1 is inserted while forming a rally that is a slight gap around it.
  • the external lead wire 4 is composed of a niobium rod-like body, the distal end portion is inserted into the end portion of the cylindrical portion 1, and the proximal end portion is led out to the outside.
  • the sealant 5 also serves as a melt-solidifying force of the frit glass, that is, a ceramic compound, and enters the cylindrical portion 1 to cover the distal end portion of the external lead wire 4 and a part of the proximal end portion of the electrode 2. ing.
  • the discharge medium is the same as that in the first embodiment, but surplus halide H is turned into a liquid phase during lighting and stays at the position shown in the figure in the mold rally.
  • the coldest part
  • P is formed at the tip of the excess halogenated material H on the discharge space lc side.
  • FIG. 4 is a process diagram showing a procedure for sealing the translucent ceramic arc tube of the second embodiment shown in FIG.
  • the sealing process proceeds from the leftmost process (a) to the rightmost process (e) in the figure.
  • Step (a) is the unsealed hermetic container 1, and the portion surrounded by the dotted circle of the cylindrical portion ⁇ located on the upper side in the figure is sealed first.
  • the electrode mount M is inserted to the cylindrical portion ⁇ force to a predetermined position.
  • the electrode mount ⁇ is made by welding the electrode 2 and the external lead wire 4 in advance.
  • a stopper s is formed at a predetermined position of the line 4. That is, the position where the stopper s contacts the end surface of the cylindrical portion lb ′ is the predetermined insertion position.
  • step (c) a donut shape is formed in advance from above the external lead wire 4 of the electrode mount M.
  • the part to be sealed containing the frit glass powder HG is heated using, for example, a laser beam.
  • step (1) When the frit glass powder G is melted in step (1), the glass frit enters the inside from the end face of the cylindrical portion 1 and surrounds the insertion portion of the external lead wire 4. After cooling, the IT sealing of the translucent ceramic arc tube is completed.
  • FIG. 5 is a conceptual diagram showing a first embodiment of a sealing device for a light-transmitting ceramic hermetic container.
  • 11 is a sealing channel
  • 12 is a dry box
  • 13 is a YAG laser
  • 14 is an optical fino
  • 15 is a laser head
  • 16 is an exhaust system
  • 17 is an enclosed gas system
  • IT is a translucent ceramics arc tube. It is.
  • FIG. 6 is a conceptual diagram showing a second embodiment of a sealing device for a light-transmitting ceramic hermetic container.
  • the sealing chamber 11 is provided with an xy stage therein. There is also a door between the sealing chamber 11 and the dry box 12! /
  • FIG. 7 is a conceptual diagram showing a third embodiment of a sealing device for a light-transmitting ceramic hermetic container.
  • the sealing chamber 11 locally surrounds only the sealing portion of the light-transmitting ceramic hermetic container IT, and the sealing chamber 11, the laser head 15, the exhaust system 16, and the sealed gas system 17 are dry.
  • the sealing chamber 11 locally surrounds only the sealing portion of the light-transmitting ceramic hermetic container IT, and the sealing chamber 11, the laser head 15, the exhaust system 16, and the sealed gas system 17 are dry.
  • FIG. 8 is a conceptual front view showing a first form of sealing of a light-transmitting ceramic hermetic container. It is.
  • the cylindrical portion 1 is sealed in order to avoid undesirably heating the portions other than the scheduled sealing portion 21 and the frit glass powder G in the cylindrical portion lb of the hermetic container 1.
  • a portion adjacent to the planned portion 21 is heated by the laser beam 23 while being surrounded by a cylindrical heat absorbing member 22.
  • the endothermic member 22 absorbs heat when the planned sealing portion 21 is heated, the region of the cylindrical portion 1 adjacent to the planned sealing portion 21 that is not irradiated with the laser beam is also heated together and the temperature rises. The As a result, the frit glass can easily enter the inside of the cylindrical portion 1 and a good sealing portion can be formed.
  • reference numeral 13 denotes a laser head.
  • FIG. 9 is a conceptual front view and plan view showing a second form of sealing of the light-transmitting ceramic hermetic container. This embodiment is different from the first embodiment shown in FIG. 8 in that protrusions p with a 90 ° interval are provided around the lower part of the cylindrical endothermic member 22.
  • FIG. 10 is a conceptual front view and plan view showing a third form of sealing of the light-transmitting ceramic hermetic container.
  • the heat absorbing member 22 has a truncated conical shape V, and easily and reliably shields heat from the light-transmitting ceramic airtight container located below the heat absorbing member 22. Preventing undesired temperature rise in the part.
  • FIG. 11 is a conceptual partial cross-sectional front view showing a fourth embodiment of sealing of a light-transmitting ceramic hermetic container.
  • the heat-absorbing member 22 is fitted with a heat-shielding member 23 at the boundary between the enveloped portion 1a and the cylindrical portion 1 of a force-transmitting ceramic airtight container having a cylindrical shape as in FIG. Seal together.
  • the heat shielding member 23 is configured to block the irradiation of the laser beam to the surrounding portion la of the light-transmitting ceramic airtight container located below the heat shielding member 23.
  • the heat shield member 23 also has a disk-like force having a donut shape made of a heat shield material, and has a through hole 23a for loose insertion into the cylindrical portion 1 at the center.
  • the present invention can be applied to various uses such as general lighting as well as vehicle headlamps.

Landscapes

  • Discharge Lamp (AREA)

Abstract

 水銀を封入しないにもかかわらず水銀入りのメタルハライドランプと電気特性が同等で、発光特性がほぼ同等ないし優れているメタルハライドランプおよび照明装置を提供する。  メタルハライドランプMHLは、気密容器1と、一対の電極2と、第1のハロゲン化物、第2のハロゲン化物および希ガスを含み、第1のハロゲン化物は主として発光金属のハロゲン化物であり、気密容器内に封入されている全ての金属ハロゲン化物中で最大封入比率のツリウム(Tm)ハロゲン化物を含み、かつ、アルカリ金属ハロゲン化物が多くても10質量%未満であり、第2のハロゲン化物は主としてランプ電圧を形成する金属ハロゲン化物からなり、かつ、気密容器内に封入されている全ての金属ハロゲン化物に対して5~20質量%であり、水銀を本質的に含まないで構成されていて気密容器内に封入された放電媒体とを具備している。

Description

明 細 書
メタルハライドランプおよび照明装置
技術分野
[0001] 本発明は、水銀を本質的に含まないメタルハライドランプおよびこれを用いた照明 装置に関する。
背景技術
[0002] 内部に一対の電極を有する発光部と、発光部の両端部に細管部をそれぞれ有す るセラミック材料力もなる発光管を備え、発光管の内部には封入物として、ハロゲンィ匕 ジイスプロシゥム、ハロゲン化ツリウム、ハロゲン化ホルミウム、および、ハロゲン化セリ ゥムのうち少なくとも一種と、ハロゲンィ匕ナトリウムとを含む金属ハロゲンィ匕物が封入さ れた低ワットタイプのメタルノヽライドランプであって、発光部内における電極間距離を Le (mm)および発光部の中央部の管内径を φ i(mm)としたとき、発光管形状パラメ ータ LeZ (H値が 0.45〜0.65の範囲を満足していることにより、特定の点灯方向に よる発光色変動を抑制でき、ランプ寿命特性を向上させ、点灯方向自由形で高効率 '長寿命のメタルノヽライドランプを得ることは既知である(特許文献 1参照)。
[0003] また、水銀を本質的に含まな 、メタルハライドランプは既知である(例えば、特許文 献 2参照。 ) 0特許文献 2に記載されたメタルノ、ライドランプは、水銀に代えて相対的 に蒸気圧が大きくて、かつ第 1のハロゲンィ匕物の金属に比較して可視域に発光しにく い金属のハロゲンィヒ物を第 2のハロゲンィヒ物として主たる可視域発光を行う金属のハ ロゲン化物を第 1のハロゲンィ匕物ととともに封入している。
[0004] また、特許文献 2中には、実施形態 1として電極間距離 4mm、第 1のハロゲンィ匕物 力 ¾ゥ化ジスプロシウム(Dyl ) lmgおよびヨウ化ネオジム(Ndl ) lmgを、希ガスがァ
3 3
ルゴン (Ar) 500Torrを、それぞれ封入していて、入力電力 150Wで点灯する液晶 プロジェクタ用のメタルハライドランプが記載されて 、る。この実施形態にぉ 、ては、 第 2のハロゲンィ匕物として例えばヨウ化亜鉛 (Znl ) 8mgを封入した場合、ランプ電圧
2
73 V、発光効率 681mZW、色温度 9160Kである。
[0005] さらに、特許文献 2中には、実施形態 8として電極間距離 30mm、第 1のハロゲンィ匕 物が臭化ジスプロシウム(DyBr )、臭化ホルミウム(HoBr )および臭化ツリウム (Tm
3 3
Br )のそれぞれ 4mgを、希ガスがアルゴン (Ar) lOOTorrを、それぞれ封入していて
3
、入力電力 2kWで点灯するメタルノヽライドランプが記載されている。この実施形態に おいては、第 2のハロゲンィ匕物として例えばヨウ化亜鉛 (Znl ) 30mgを封入した場合
2
のランプ電圧 112V、発光効率 921mZW、色温度 5340K、平均演色評価数 Ra73 である。
[0006] 一方、色温度 3500K程度のウォームホワイトや 3900〜4200Kの-ユートラルホヮ イトの光色を実現するためにナトリウム (Na)を用いると、ナトリウムはそのイオン半径 力 S小さいために容易に拡散してしまうので問題があるとして、第 1のグループの金属 ハロゲン化物が沸点 1000°C以上で、少なくともジスプロシウム(Dy)およびカルシゥ ム(Ca)を用いることが知られて 、る(特許文献 3参照。)。
[0007] 特許文献 1:特開 2003— 272560号公報
特許文献 2:特開平 11― 238488号公報
特許文献 3:特開 2001— 076670号公報
発明の開示
発明が解決しょうとする課題
[0008] 特許文献 1に記載された発明は、緩衝ガスとして水銀を封入する必要があり、環境 負荷物質を使用するのは好ましくない。
[0009] 特許文献 2に記載された発明によれば、環境負荷の大きな水銀を使用しないで水 銀を封入した従来のメタルノヽライドランプとほぼ同様な電気特性および発光特性を有 するメタルノヽライドランプが得られた。しかし、水銀を本質的に使用しないで、従来以 上の発光効率を有するメタルハライドランプの出現が期待されて 、る。
[0010] 白色系の発光を高効率で発生する物質としてナトリウムが用いられているが、ナトリ ゥムの D線は、波長 589nmであり、視感度曲線のピーク波長の 555nmから離れてい るので、さらなる効率向上を図る必要がある。
[0011] 一方、メタルノヽライドランプにおいて、発光効率を高めるためには、上述のように発 光金属にナトリウムを用いる方法の他に、発光管の最冷部温度を上昇させる方法が 一般的に知られている。 [0012] ところが、発光管を構成する気密容器の耐熱性やナトリウムの反応性などさまざまな 規制を受けるために、上記のような手段だけでは大幅な発光効率の向上が困難であ る。カロえて、水銀を封入しないメタルノヽライドランプ (以下。便宜上「水銀フリーランプ」 という。)の場合、ナトリウムは、発光効率に寄与するものの電極間の電位傾度、した 力 てランプ電圧の点では低下要因となる。放電媒体がナトリウムを多く含む場合、ラ ンプ電圧が低くなるので、所望のランプ電力を投入するためにはランプ電流を増加さ せる必要がある。その結果、電極軸径を大きくするなど電極や気密容器の設計が困 難になるばかりか、安定器の設計も困難になるという問題がある。
[0013] ところで、特許文献 2の場合、従来のメタルノヽライドランプとほぼ同様な電気特性お よび発光特性を有するメタルノヽライドランプが得られるものの発光効率が水銀入りの メタルハライドランプと同等程度である。
[0014] また、特許文献 3の場合、ジスプロシウムおよびカルシウムを用いることを必須として V、るため、演色評価数 R9は高!、ものの発光効率は 601mZWと極めて低!、。
[0015] 本発明は、水銀を封入しないにもかかわらず水銀入りのメタルノヽライドランプと電気 特性が同等で、発光特性がほぼ同等な ヽし優れて!/ヽるメタルノヽライドランプを提供す ることを目的とする。
課題を解決するための手段
[0016] 本発明の第 1の態様において、メタルノヽライドランプは、内部に放電空間を有する 透光性の気密容器と;気密容器に封装されて放電空間に臨む一対の電極と;第 1の ハロゲンィ匕物、第 2のハロゲンィ匕物および希ガスを含み、第 1のハロゲンィ匕物は主と して発光金属のハロゲンィ匕物であり、気密容器内に封入されている全ての金属ハロ ゲン化物中で最大封入比率のツリウム (Tm)ハロゲン化物を含み、かつ、アルカリ金 属ハロゲンィ匕物が多くても 10質量%未満であり、第 2のハロゲンィ匕物は主としてラン プ電圧を形成する金属ハロゲンィ匕物カゝらなり、かつ、気密容器内に封入されている 全ての金属ハロゲン化物に対して 5〜20質量%であり、水銀を本質的に含まな!/、で 構成されて ヽて気密容器内に封入された放電媒体と;を具備して!/ヽることを特徴とし ている。
[0017] 〔気密容器について〕 本発明において、気密容器が透光性であるとは、放電によ つて発生した所望波長域の可視光を外部に導出することを意味する。気密容器は、 透光性を有して 、て、ランプの通常の作動温度に十分耐える耐火性の材料であれば 、どのようなもので作られていてもよい。例えば、石英ガラスや透光性セラミックスなど を用いることができる。なお、透光性セラミックスとしては、透光性アルミナ、イットリウム
—アルミニウム—ガーネット (YAG)、イットリウム酸ィ匕物 (YOX)と、多結晶非酸化物 、例えばアルミニウム窒化物 (A1N)などの多結晶または単結晶のセラミックスなどを 用いることができる。なお、必要に応じて、気密容器の内面に耐ハロゲン性または耐 金属性の透明性被膜を形成するか、気密容器の内面を改質することが許容される。
[0018] また、気密容器は、その内部に放電空間を有している。そして、放電空間を包囲す るために、気密容器は、包囲部を備えている。包囲部は、その内部が適当な形状、 例えば球状、楕円球状、ほぼ円柱状などの形状をなしている。放電空間の容積は、メ タルノヽライドランプの定格ランプ電力、電極間距離などに応じてさまざまな値が選択 され得る。例えば、液晶プロジェクタ用ランプの場合、 0. Ice以下にすることができる 。自動車前照灯用ランプの場合、 0. 05cc以下にすることができる。また、一般照明 用ランプの場合、定格ランプ電力に応じて lcc以上および以下のいずれにすることも できる。
[0019] また、包囲部の両端に一対の封止部を備えていることが許容される。一対の封止部 は、包囲部を封止するとともに、電極の軸部がここに支持され、かつ、点灯回路から 電流を電極へ気密に導入するのに寄与する手段であり、一般的には包囲部の両端 に配設されている。気密容器の材質が石英ガラスの場合、電極を封装し、かつ、点灯 回路力も電流を電極へ気密に導入するために、好適には封止部の内部に適当な気 密封止導通手段として封着金属箔を気密に埋設している。なお、封着金属箔は、封 止部の内部に埋設されて封止部が気密容器の包囲部の内部を気密に維持するのに 封止部と協働しながら電流導通導体として機能するための手段であり、気密容器が 石英ガラス力もなる場合、材料としてはモリブデン (Mo)が最適である。封着金属箔を 封止部に埋設する方法は、特段限定されないが、例えば減圧封止法、ピンチシール 法およびこれらの組み合わせ法などの中力も適宜選択して採用することができる。
[0020] 一方、気密容器が透光性セラミックス力 なる場合の封止手段としては、例えばフリ ット材を透光性セラミックスと導入導体の間に流し込んで封止するフリット封着ゃフリツ ト材に代えて金属を用いる金属封着などを用いることができる。また、気密容器の封 止部を所要の比較的低い温度に保持しながら気密容器内に形成される放電空間の 最冷部温度を所望の比較的高い温度に維持するために、包囲部に連通する小径筒 部を形成することができる。この構造の場合、封止部は小径筒部の端部部分に配設 されるとともに、小径筒部内に電極軸を延在させて電極軸と小径筒部の内面との間 にキヤビラリーラリーと称される僅かな隙間を小径筒部の軸方向に沿って形成する。
[0021] 〔一対の電極について〕 本発明において、一対の電極は、気密容器に封装され て放電空間に離間して臨むように配設される。一対の電極の間に形成される電極間 距離は、液晶プロジェクタなどの場合、好適には 2mm以下であり、 0. 5mmのもので あってもよい。前照灯用としては中心値で 4. 2mmが規格化されている。一般照明用 ランプの場合、小形で電極間距離の小さいものでは 6mm以下、中形ないし大形で は 6mm以上に設定することができる。
[0022] また、電極の構成材としては、耐火性で、導電性の金属、例えば純タングステン (W )、ドープ剤(例えばスカンジウム(Sc)、アルミニウム (A1)、カリウム (K)およびケィ素( Si)などのグループカゝら選択された一種または複数種)を含有するドープドタンダステ ン、酸ィ匕トリウムを含有するトリエーテッドタングステン、レニウム (Re)またはタンダステ ン一レニウム (W— Re)合金などを用いて形成することができる。
[0023] さらに、小形のランプの場合、直棒状の線材ゃ先端部に径大部を形成した線材を 電極として用いることができる。中形ないし大形の電極の場合、電極軸の先端部に電 極構成材製のコイルを卷回したりすることができる。なお、一対の電極は、交流で作 動する場合、同一構造とするが、直流で作動する場合、一般に陽極は温度上昇が激 しいから、陰極より放熱面積の大きい、したがって主部が太いものを用いることができ る。
[0024] 〔放電媒体について〕 放電媒体は、本発明の第 1の態様における特徴的構成部 分であり、第 1および第 2のハロゲン化物および希ガスを含んで構成されている。
[0025] (第 1のハロゲンィ匕物) 第 1のハロゲンィ匕物は、少なくとも主成分としてツリウム( Tm)ハロゲンィ匕物を含み、アルカリ金属ハロゲンィ匕物を所定量以下とする。また、第 1のハロゲン化物は、主として可視光の発光に寄与する金属のハロゲン化物により構 成される。
[0026] ツリウム (Tm)ハロゲンィ匕物は、気密容器内に封入されている全ての金属ハロゲン 化物に対して最大封入比率として封入されているものとする。また、ツリウムハロゲン 化物は、後述する第 2のハロゲンィ匕物との共存下において、それ自体電極間の電位 傾度、したがってランプ電圧を高くする作用を有していて、水銀フリーランプとして好 適な発光金属のハロゲン化物である。ツリウムハロゲン化物のハロゲンとしては、適度 の反応性を有していることからヨウ素が好適である力 所望により臭素および塩素の いずれかでもよぐまたヨウ素、臭素および塩素のうち所望の二種以上を用いてもよ い。さらに、ツリウムは、その発光のピークが視感度曲線のピークに一致するので、発 光効率を向上させるのに極めて効果的な発光金属である。
[0027] アルカリ金属のハロゲンィ匕物は、気密容器内に封入されている全ての金属ハロゲン 化物に対して 10質量%未満 (0%を含む。)の範囲内で封入することが許容される。 アルカリ金属の封入比率が 10質量%以上になると、ランプ電圧が低下しやすくなる ので、ランプ電圧の形成の観点からは好ましくない。し力しながら、アルカリ金属の封 入比率が 10質量%未満であれば、ランプ電圧の低下は最小限に抑制される一方、 発光効率、ランプ寿命改善および光色調整、特に色偏差改善が可能になる。このよ うな観点から、所要のランプ電圧を確保できる場合には、上記の範囲内であれば封 入が許容される。なお、好ましくは 2〜8質量%、より好ましくは 3〜7質量%、なお一 層好ましくは 4〜6質量%である。
[0028] また、アルカリ金属としては、ナトリウム(Na)、セシウム(Cs)およびリチウム(Li)のグ ループの一種または複数種を選択的に封入することができる。なお、ナトリウム (Na) は、主として発光効率向上に寄与する。セシウム (Cs)は、放電アーク温度の適正化 による寿命特性の向上に寄与する。リチウム (Li)は、赤色演色性の改善に寄与する
[0029] また、第 1のハロゲンィ匕物は、所望により以下の金属ハロゲン化物を封入することが できる。
(1)プラセオジム (Pr)、セリウム (Ce)およびサマリウム(Sm)からなる希土類金属の 一種または複数種のハロゲンィ匕物
上記希土類金属は、ツリウムハロゲンィ匕物に次いで発光金属として有用であり、所 定量以下の封入比率で封入することが許容される。すなわち、上記希土類金属は、 そのいずれも視感度特性曲線のピーク波長付近で無数の輝線スペクトルを有するた め、発光効率向上に寄与することができる。
(2)タリウム (T1)または Zおよびインジウム(In)のハロゲン化物
上記ハロゲン化物は、所望の演色性および Zまたは色温度などを得るなどの目的 で副成分として選択的に封入することが許容される。
[0030] (第 2のハロゲンィ匕物) 第 2のハロゲンィ匕物は、第 1のハロゲンィ匕物に比較し て蒸気圧が高くて、メタルハライド放電ランプにおけるランプ電圧を主として決定して いる。なお、「蒸気圧が大きい」とは、点灯中の蒸気圧が高いことを意味するが、水銀 のように大きすぎる必要はなぐ好ましくは点灯中の気密容器内の圧力は 5気圧程度 以下である。したがって、上記の条件を備えていれば特定の金属のハロゲンィ匕物に 限定されない。
[0031] また、第 2のハロゲンィ匕物は、主としてランプ電圧を形成する金属ハロゲン化物によ り構成され、例えばマグネシウム(Mg)、鉄 (Fe)、コノ レト(Co)、クロム(Cr)、亜鉛 ( Zn)、ニッケル (Ni)、マンガン(Mn)、アルミニウム(A1)、アンチモン(Sb)、ベリリウム (Be)、レニウム(Re)、ガリウム(Ga)、チタン (Ti)、ジルコニウム(Zr)およびハフ-ゥ ム(Hf)力もなるグループ力 選択された一種または複数種の金属のハロゲンィ匕物を 主体として用いることができる。そして、その殆どが水銀より蒸気圧が低ぐまたランプ 電圧の調整範囲が水銀より狭い。しかし、必要に応じてこれらを複数種混合して封入 することにより、ランプ電圧の調整範囲を拡大することができる。例えば、 Allが不完
3 全蒸発の状態になって 、て、し力も所望のランプ電圧が得られて 、な 、場合に All
3 を追加してもランプ電圧は変わらな 、。
[0032] これに対して、 Allの追加に代えて Znlを添加すれば、 Znlの作用により生じる分
3 2 2
のランプ電圧が加算されるので、ランプ電圧を増加させることができる。さらに、他の 第 2のハロゲンィ匕物を添加すれば、より高いランプ電圧を得ることができる。
[0033] さらに、第 2のハロゲンィ匕物は、第 1のハロゲンィ匕物の金属に比較して可視域に発 光しにくい金属のハロゲンィ匕物でもある。「第 1のハロゲン化物の金属に比較して可 視域に発光しにく 、」とは、絶対的な意味で可視光の発光が少な 、と 、う意味ではな ぐ相対的な意味である。なぜなら、確かに Feや Niは、紫外域発光の方が可視域発 光より多いが、 Ti、 A1および Znなどは可視域に発光が多い。したがって、これらの可 視域発光の多い金属を単独で発光させると、エネルギーが当該金属に集中するので 、可視域発光が多い。しかし、第 2のハロゲン化物の金属が第 1のハロゲンィ匕物の金 属よりエネルギー準位が高いために発光しにくいのであれば、第 1および第 2のハロ ゲンィ匕物が共存している状態では、エネルギーが第 1のハロゲンィ匕物の発光に集中 するので、第 2のハロゲン化物の金属の発光は少なくなる。
[0034] したがって、第 2のハロゲンィ匕物は、可視光の発光が禁止されるものではなぐ放電 ランプが放射する全可視光に対する割合が小さくて影響が少ないものである。
[0035] さらにまた、第 2のハロゲンィ匕物は、その封入比率が気密容器内に封入されている 全ての金属ハロゲン化物に対して 5〜20質量%でなければならない。封入比率が 5 質量%未満になると、ランプ電圧の形成が不十分になる。また、 20質量%を超えると 、ランプ電圧の形成は問題がないが、発光効率の低下が顕著になる。
[0036] (希ガス) 希ガスは、主として緩衝ガスおよび始動ガスとして作用する。そして、 ネオン(Ne)、ァノレゴン(Ar)、キセノン(Xe)およびクリプトン(Kr)などのグノレープの 一種を単独で、または複数種を混合して封入することができる。希ガスの封入圧力は 、メタルノヽライドランプの用途に応じて適宜設定することができる。
[0037] 希ガスの中でもキセノンは、その原子量が他の希ガスより大きいため、熱伝導率が 相対的に小さいので、これを 1気圧以上、好適には 5気圧以上封入することにより、点 灯直後のランプ電圧形成に寄与するとともに、ハロゲン化物の蒸気圧が低い段階で 白色の可視光発光を行い、光束立ち上がりに寄与するので、前照灯用のメタルハラ イドランプの場合に効果的である。この場合、キセノンの好ましい封入圧は、 6気圧以 上、より好適には 8〜16気圧の範囲である。このため、点灯直後からの光束立ち上が りと自動車前照灯用の HID光源としての白色発光の規格を満足することができる。
[0038] (水銀) 本発明において、水銀 (Hg)は、全く含まないのが環境負荷物質削減 のために好ま U、ことである力 不純物程度に含んで!/、ても許容される。 [0039] 〔その他の構成について〕 本発明においては、以下の構成を所望により選択的 に付加することができる。
[0040] 1. (外管) 気密容器、一対の電極および放電媒体を備えた構成部分を発光管と して、外管の内部に配設することができる。外管は、任意所望の形状および大きさに することができる。また、外管の内部を外部に対して気密にしてもよいし、外気に連通 させてもよい。前者の場合、必要に応じてアルゴン、窒素などの不活性ガスを封入す ることができる。さらに、外管は、石英ガラス、硬質ガラスや軟質ガラスなどの透光性 材料を用いて形成することができる。
[0041] 2. (反射ミラー) 気密容器を反射ミラー内の所定の位置に固定的に配設すること ができる。なお、反射ミラーには、ガラス基体の内面にダイクロイツクミラーを形成した 物を用いることができる。
[0042] 〔本発明の第 1の態様における作用について〕 本発明の第 1の態様において、放 電媒体は、気密容器に封入される全ての金属ハロゲン化物のうちで最大封入比率と して封入されているツリウム (Tm)のハロゲン化物を含んでいることにより、メタルハラ イドランプの発光は、ツリウムの発光が支配的になる。ツリウムの発光は、?見感度曲線 のピーク波長の 555nm付近で多くの輝線スペクトルを有しているので、全体として高 い発光効率が得られる。
[0043] また、ツリウムは、そのイオンィ匕ポテンシャルがナトリウムなどアルカリ金属に比較し て高ぐツリウムハロゲンィ匕物の封入がランプ電圧低下要因にならないば力りでなぐ 驚くべきことに第 2のハロゲンィ匕物との共存下においては、封入量に比例してランプ 電圧を高くする作用のあることを本発明者は見出した。ランプ電圧が高くなれば、所 要のランプ電力を投入するに当たりランプ電流の増加を回避しやすくなるので、電極 や気密容器の設計が容易になる。
[0044] さらに、本発明の第 1の態様において、メタルノヽライドランプの定格ランプ電力は、 広範囲の値の中から自由に設定することができ、例えば数 kW以下の任意の値に設 定することができる。用途においても多様であることを許容し、例えば自動車前照灯 用、プロジェクシヨン用、一般照明用などに適している。したがって、定格ランプ電力 および用途に応じて適当な形状および大きさの気密容器、適当な値の電極間距離 ならびに適当な値の放電媒体の封入量とすることができる。
[0045] 本発明の第 2の態様において、メタルノヽライドランプは、内部に放電空間を有する 耐火性で透光性の気密容器と;気密容器に封装されて放電空間に臨む一対の電極 と;第 1のハロゲンィ匕物、第 2のハロゲンィ匕物および希ガスを含み、第 1のハロゲンィ匕 物は主として発光金属のハロゲンィ匕物であり、気密容器内に封入されている全ての 金属ハロゲンィ匕物中で最大封入比率のツリウム (Tm)ハロゲン化物を含み、第 2のハ ロゲン化物は主としてランプ電圧を形成する金属ハロゲンィ匕物力 なり、かつ、気密 容器内に封入されている全ての金属ハロゲンィ匕物に対して 5〜20質量%であり、全 ての金属ハロゲン化物を形成する金属のイオン化ポテンシャルが 5. 4eV以上であり 、水銀を本質的に含まないで構成され、気密容器内に封入された放電媒体と;を具 備して 、ることを特徴として!/、る。
[0046] 本発明の第 2の態様は、第 1および第 2の金属ハロゲン化物を、そのイオン化ポテ ンシャルの値により選択して封入するように構成することを規定したもので、本態様に おいて気密容器の内部にハロゲンィ匕物として封入し得る金属のイオンィ匕ポテンシャ ル (eV)を金属元素記号の後にある括弧の中に示す。
(1)第 1のハロゲン化物の金属: Tm (6. 18)、 Pr(5. 42)、 Ce (5. 47)、 Sm (5. 63) 、 In(5. 786)、 T1(6. 108)
(2)第 2のハロゲンィ匕物の金属: Mg (7. 644)、 Fe (7. 87)、 Co (7. 864)、 Cr (6. 7 65)、 Zn(9. 394)、 Ni(7. 635)、 Mn (7. 432)、 A1 (5. 986)、 Sb (8. 642)、 Bi (7 . 287) , Re (9. 323) , Ga (5. 999)、 Ti (6. 84) , Zr (6. 837)、
Hf (7)
これに対して、 Na (イオン化ポテンシャル 5. 14eV) , Li(5. 392)などのアルカリ金 属は、そのイオンィ匕ポテンシャルが 5. 4eV未満であり、封入量が多くなるほどランプ 電圧が低下する。したがって、本態様においては、アルカリ金属は、実質的に含まな いようにするものとする。
[0047] 本発明の第 3の態様において、メタルノヽライドランプは、第 1または第 2の態様のメ タルノヽライドランプにおいて、放電媒体は、気密容器内に封入されている全ての金属 ハロゲンィ匕物に対するツリウム (Tm)ハロゲン化物の封入比率 H (質量%)が下式 を満足することを特徴として 、る。
[0048] 30 <H く 90
Tm
本発明の第 3の態様は、本発明の目的を達成するために一般的に採用し得るッリ ゥムハロゲン化物の全ノヽロゲン化物に対する封入比率 H の範囲を規定して 、る。
Tm
封入比率 H が 30質量%未満になると、本発明の効果が少なくなる。また、 90質量
Tm
範囲を超えると、発光効率は問題がないものの、色温度や色度の所望値を得に《な る。なお、好適には 50〜80質量%の範囲である。封入比率 H 力 ¾0質量%を超え
Tm
ると、発光効率およびランプ電圧形成は問題がないものの、ペレツトイ匕が困難になり、 製造コストが上昇する。
[0049] 本発明の第 4の態様において、メタルノヽライドランプは、第 1ないし第 3の態様のい ずれか一のメタルノヽライドランプにおいて、放電媒体は、第 1のハロゲンィ匕物がプラセ オジム (Pr)、セリウム (Ce)およびサマリウム(Sm)のグループ力も選択された希土類 金属の一種または複数種のハロゲンィ匕物を含み、ツリウム (Tm)ハロゲンィ匕物をカロえ た希土類金属ハロゲンィ匕物の全ハロゲンィ匕物に対する封入比率が 50質量%以上で あることを特徴としている。
[0050] 本発明の第 4の態様は、ツリウム (Tm)ハロゲン化物以外に封入が許容される希土 類金属ハロゲン化物およびそれらを封入する場合の好適な封入比率範囲を規定し ている。すなわち、プラセオジム(Pr)、セリウム(Ce)およびサマリウム(Sm)のグルー プの金属は、そのいずれも視感度曲線のピーク近傍に輝線スペクトルを有しており、 ツリウムハロゲン化物の一部をこれらの金属のハロゲン化物に代える力、またはッリウ ムハロゲン化物にカ卩えて添加するものである。すなわち、上記希土類金属ハロゲンィ匕 物は、ツリウムハロゲンィ匕物に対する副成分として封入することができる。
[0051] 上記グループ中に含まれる希土類金属ハロゲン化物の一般的に採用し得る封入 比率範囲は、ツリウム (Tm)ハロゲンィ匕物を含む希土類金属ハロゲンィ匕物全体がラン プに封入される全ての金属ハロゲンィ匕物に対して 50質量%以上となっているのが本 発明の目的を満足するうえで好ましい。
[0052] 本発明の第 5の態様において、メタルノヽライドランプは、第 1ないし第 4の態様のい ずれか一のメタルハライドランプにおいて、放電媒体は、第 1のハロゲンィ匕物がタリゥ ム(Tl)ハロゲン化物およびインジウム(In)ハロゲン化物の少なくとも一種を含んで!/ヽ ることを特徴としている。
[0053] タリウム (T1)ハロゲン化物は、波長 535nmに輝線を有するタリウムの緑色成分を発 光中に加えることができる。本態様の場合、一般的に採用し得るタリウムハロゲンィ匕 物の封入比率範囲は、封入される全ての金属ハロゲン化物に対して 30質量%未満 である。タリウムハロゲンィ匕物の封入比率範囲が 30質量%以上になると、発光効率 の低下が顕著になる。なお、好適には 15質量%未満の範囲で封入するのがよい。
[0054] また、インジウム(In)ハロゲン化物を添加することにより、ハロゲン化物の発光中に 青色成分を増加させることができるとともに、ランプ電圧形成にも寄与する。
の改善に寄与する。
[0055] 本発明の照明装置は、照明装置本体と;照明装置本体に配設された本のメタル ノ、ライドランプと;メタルノ、ライドランプを点灯する点灯装置と;を具備して 、ることを特 徴としている。
[0056] 本発明において、照明装置は、メタルノヽライドランプを光源とする全ての装置を含 む概念である。例えば、屋外用および屋内用の各種照明器具、 自動車前照灯、画像 または映像投射装置、標識灯、信号灯、表示灯、化学反応装置、検査装置などであ る。
[0057] 照明装置本体は、照明装置からメタルハライドランプおよび点灯回路を除いた残余 の部分をいう。
[0058] 点灯装置は、電子化点灯装置を用いることにより、メタルノヽライドランプの制御が容 易になるので好ましい。また、点灯装置は、照明装置本体に配設するだけでなぐ照 明装置本体力 離間した位置に配置されるのであってもよい。
発明の効果
[0059] 本発明によれば、ツリウムハロゲンィ匕物を最大封入比率で封入しているとともに、第 2のハロゲンィ匕物を封入していることにより、ツリウムの発光が支配的になって高発光 効率になるのに加えて、ランプ電圧を高くすることができ、水銀を封入しないにもかか わらず水銀入りのメタルノヽライドランプと同等の電気特性を有するとともに、水銀入り のメタルノヽライドランプとほぼ同等ないし優れた発光効率を有するメタルノヽライドラン プおよびこれを用いた照明装置を提供することができる。
図面の簡単な説明
[0060] [図 1]本発明のメタルノヽライドランプを実施するための第 1の形態を示す正面図
[図 2]封入する金属ハロゲンィ匕物の種類および封入比率をパラメータとする電位傾度 と発光効率との関係を示すグラフ
[図 3]本発明のメタルノヽライドランプを実施するための第 2の形態を示す正面図
[図 4]図 3に示す第 2の形態の透光性セラミックス発光管を封止する際の手順を示す 工程図
[図 5]透光性セラミックス製気密容器の封止装置の第 1の形態を示す概念図
[図 6]透光性セラミックス製気密容器の封止装置の第 2の形態を示す概念図
[図 7]透光性セラミックス製気密容器の封止装置の第 3の形態を示す概念図
[図 8]透光性セラミックス製気密容器の封止の第 1の形態を示す概念的正面図および 平面図
[図 9]透光性セラミックス製気密容器の封止の第 2の形態を示す概念的正面図および 平面図
[図 10]透光性セラミックス製気密容器の封止の第 3の形態を示す概念的正面図 [図 11]透光性セラミックス製気密容器の封止の第 4の形態を示す概念的一部断面正 面図
符号の説明
[0061] 1…気密容器、 la…包囲部、…封止部、 lb…電極、 lc…放電空間、 2…封着金属 箔、 3Α、 3Β· ··外部リード線、 Β· ··口金、 IT…発光管、 MHL…メタルノヽライドランプ、 ΟΤ· ··外管、 T…絶縁チューブ
発明を実施するための最良の形態
[0062] 以下、図面を参照して本発明を実施するための形態を説明する。
[0063] 図 1は、本発明のメタルノヽライドランプを実施するための第 1の形態を示す正面図 である。本形態は、本発明の一適用例としての自動車前照灯用のメタルノ、ライドラン プであり、図においてメタルノヽライドランプ MHLは、発光管 IT、絶縁チューブ Τ、外 管 ΟΤおよび口金 Βからなり、水平点灯される。 [0064] 発光管 ITは、気密容器 1、一対の電極 2、 2、封着金属箔 3、一対の外部リード線 4 A、 4Bおよび放電媒体力 なる。
[0065] 気密容器 1は、石英ガラスからなり、包囲部 laおよび一対の封止部 lb、 lbを備えて いる。包囲部 laは、中空で外形が紡錘形状に成形されてなり、その両端に一対の細 長い封止部 lalがー体に形成されているとともに、内部に細長いほぼ円柱状の放電 空間 lcが形成されている。放電空間 lcの内容積は、 0. Ice以下である。なお、図に おいて、左方の封止部 lbを形成した後、封止管 Idが切断されないで封止部 lbの端 部から一体に延長していて、口金 B内へ延在している。
[0066] 一対の電極 2、 2は、ドープドタングステン線力 なり、軸方向の先端部、中間部およ び基端部にわたり軸部の直径が同じで、かつ、先端部および中間部の一部が放電 空間 lc内に露出している。また、電極 2の基端部が封止部 lbに埋設された後述する 封着金属箔 3に溶接されるとともに、中間部が封止部 lbに緩く支持されることによつ て気密容器 1の所定の位置に配設されて!/ヽる。
[0067] 封着金属箔 3は、モリブデン箔からなり、気密容器 1の封止部 lb内に気密に埋設さ れている。
[0068] 放電媒体は、金属ハロゲンィ匕物および希ガス力もなる。
[0069] 金属ハロゲン化物は、第 1のハロゲン化物、主としてランプ電圧を形成するのに寄 与する第 2のハロゲン化物および希ガスを含んでいる。
[0070] 第 1のハロゲンィ匕物は、主として所望の発光を行うのに寄与し、少なくともツリウム (T m)ハロゲンィ匕物を気密容器 1内に封入される全ての金属ハロゲンィ匕物に対して最大 封入比率で含んでいるものとする。また、所望によりツリウム以外の希土類元素金属 ハロゲン化物、タリウム(T1)、インジウム(In)、および Zまたはアルカリ金属ハロゲン 化物などが適量封入される。
[0071] 第 2のハロゲンィ匕物は、蒸気圧が相対的に大きくて、第 1のハロゲンィ匕物に比較し て可視域に発光しにくい金属のハロゲン化物である。可視域に発光しにくいとは、ラ ンプ全体の発光色に与える影響が僅かで、第 1のハロゲンィ匕物との共存下において 、第 2のハロゲンィ匕物を構成する金属による可視光放射が少ないことを意味する。例 えば、下記グループの中力 選択された一種または複数種の金属のハロゲンィ匕物か らなる。また、第 2のハロゲンィ匕物は、例えばマグネシウム(Mg)、鉄 (Fe)、コバルト( Co)、クロム(Cr)、亜鉛(Zn)、ニッケル(Ni)、マンガン(Mn)、アルミニウム(A1)、ァ ンチモン(Sb)、ビスマス(Bi)、ベリリウム(Be)、レニウム(Re)、ガリウム(Ga)、チタン (Ti)、ジルコニウム(Zr)およびハフニウム(Hf)からなる。
[0072] 希ガスは、例えばネオン (Ne)、アルゴン (Ar)、キセノン (Xe)およびクリプトン (Kr) など力 選択されている。
[0073] 一対の外部リード線 4A、 4Bは、その先端が気密容器 1の両端の封止部 lb内にお いて封着金属箔 3の他端に溶接され、基端側が外部へ導出されている。図において 放電容器 ITから右方へ導出された外部リード線 4Aは、中間部が後述する外管 OT に沿って折り返されて後述する口金 B内に導入されて口金 Bの外周面に配設されたリ ング状をなす一方の口金端子 tlに接続している。また、図において放電容器 ITから 左方へ導出された外部リード線 4Bは、管軸に沿って延在して口金 B内に導出されて 図示されて!ヽな ヽ中央に配設されたピン状をなす他方の口金端子に接続して ヽる。
[0074] 外管 OTは、紫外線カット性能を備えており、内部に放電容器 ITを収納していて、 両端の縮径部 5 (図では右方の一端のみが示されている。 )が放電容器 ITの封止部 lbにガラス溶着している。しかし、外管 OTの内部は気密ではなぐ外気に連通して いる。
[0075] 絶縁チューブ Tは、セラミックスのチューブからなり、外部リード線 4Aを被覆して 、る
[0076] 口金 Bは、自動車前照灯用として規格ィ匕されて ヽるもので、放電容器 ITおよび外管 OTを中心軸に沿って植立して支持していて、自動車前照灯の背面に着脱可能に装 着される。また、装着時に電源側のランプソケット(図示しない。)と接続し得るように筒 状部の外周面に配設されたリング状をなす一方の口金端子 tlと、筒状部の内部に形 成された一端開放の凹部内において中央で軸方向に突出して配設されたピン状を なす他方の口金端子とを備えて構成されて!ヽる。
実施例 1
[0077] 実施例 1は、図 1に示す自動車前照灯用のメタルノ、ライドランプである。
[0078] 気密容器 1:最大外径 6. 5mm、球体長 6. 5mm、最大内径 2. 4mm、 内容積 0. 025cc
一対の電極:ドープドタングステン製、軸径 0. 3mm、全長 10mm、
電極間距離 4. 2mm
放電媒体 : Znl (12. 1) Inl (3. 1)— T1I (12. 1)—
2
Tml (64. 2)— Lil (8. 5) =0. 7mgゝ
3
0内の数字は封入比率
(質量%)、Xel3気圧
電気特性 :ランプ電圧 66. 7V、ランプ電流 0. 584A、ランプ電力 38. 9W 発光特性 :全光束 39831m、発光効率 102. 41m/W,色温度 4827K、 平均演色評価数 Ra85. 9
[比較例 1]
放電媒体 : HgO. 2mg-ScI (16. 67)— Nal (83. 33)
3
=0. 3mg、()内の数字は封入比率 (質量%)、Xe5気圧
その他の仕様は実施例 1と同じ。
電気特性 :ランプ電圧 85. 0V、ランプ電流 0. 412A、ランプ電力 35. 0W 発光特性 :全光束 35501m、発光効率 101. 41m/W,色温度 4200K、 平均演色評価数 Ra65. 0 上記の比較例 1は、その仕様ならびに電気特性および発光特性カゝら理解できるよう に、現行の水銀を封入する自動車前照灯用のメタルハライドランプに相当している。
[0080] これに対して、実施例 1によれば、電気特性は、ランプ電圧が既知の水銀フリーラン プよりは比較例に近くて概ね同等であり、発光特性は全光束および平均演色評価数 Raが明らかに優れている。また、発光効率はやや高ぐ色温度が昼白色(5000K) に近い値である。
実施例 2
[0081] 放電媒体 : Znl (13. 8)— Inl (3. 4)— T1I (13. 8)—
2
Tml (69. 0) =0. 5mg、()内の数字は封入比率 (質量%)、 Xel3気圧
その他の仕様は実施例 1と同じ。
電気特性 :ランプ電圧 78. OV、ランプ電流 0. 500A、ランプ電力 38. 9W 発光特性 :全光束 38411m、発光効率 98. 71mZW、色温度 5158K、 平均演色評価数 Ra81. 0 実施例 2によれば、電気特性が比較例 1とほぼ同等であり、発光特性は全光束およ び平均演色評価数 Raが明らかに優れている。また、発光効率はやや低いが概ね同 等であり、色温度が昼白色(5000K)に近い値である。
実施例 3
[0083] 放電媒体 : Znl (10. 8)— T1I (10. 8)— Tml (60. 1)
2 3
Prl (18. 3) =0. 6mg
3 、()内の数字は封入比率 (質量%)、
Xel3気圧
その他の仕様は実施例 1と同じ。
[0084] 電気特性 :ランプ電圧 78. OV、ランプ電流 0. 500A、ランプ電力 38. 9W
発光特性 :全光束 34461m、発光効率 88. 61mZW、色温度 5158K、 平均演色評価数 Ra81. 0 実施例 3によれば、電気特性が比較例とほぼ同等であり、発光特性は平均演色評 価数 Raが明らかに優れている。また、全光束がほぼ同等であり、発光効率が低ぐ色 温度が昼白色(5000K)に近い値である。
実施例 4
気密容器 1 :最大外径 6. Omm、球体長 6. 5mm、最大内径 2. 4mm、
内容積 0. 025cc
放電媒体 : Znl (13. 0) -ΤΠ (7. 0)— Tml (72. 0)—
2 3
Nal (8. 0) =0. 8mg、()内の数字は封入比率 (質量%)、
Xel3気圧
その他の仕様は実施例 1と同じ。 電気特性 :ランプ電圧 75V、ランプ電流 0. 8A、ランプ電力 50W
発光特性 :全光束 50001m、発光効率 1001mZW、色温度 4200K、
平均演色評価数 Ra81、色偏差 0. 0045
[比較例 2]
放電媒体 : HgO. 2mg-ScI (16. 67)— Nal (83. 33)
3
=0. 7mg、()内の数字は封入比率 (質量%)、Xe5気圧
その他の仕様は比較例 1と同じ。
[0087] 電気特性 :ランプ電圧 85. 0V、ランプ電流 0. 71A、ランプ電力 50W
発光特性 :全光束 55001m、発光効率 11 llm/W,色温度 4300K、
平均演色評価数 Ra65. 0
実施例 4によれば、電気特性および発光特性が比較例 2とほぼ同等である。
[0088] 次に、封入する金属ハロゲン化物の種類および封入比率を変化させたときに、ラン プ電圧と発光効率とがどのような影響を受けるかについて調査した結果を図 2に基づ いて説明する。
[0089] 図 2は、封入する金属ハロゲン化物の種類および封入比率をパラメータとする電 位傾度と発光効率との関係を示すグラフである。図において、横軸は電位傾度 (VZ mm)を、縦軸は効率 (lmZW)を、それぞれ示す。なお、上記効率は発光効率を意 味する。図中の各曲線は以下のとおりである。いずれの曲線も、実施例 1におけるの と基本的に同様な仕様にぉ ヽて、放電媒体をそれぞれ変更して製作したメタルハラ イドランプを用いて測定して得たデータに基づ 、て作成したものである。
[0090] 曲線「Tm比率 1」および「Tm比率 2」:実施例 1において、ツリウムハロゲン化物(T ml )の封入比率を変化させたもので、前者はランプ電力 35Wで点灯した場合、後者
3
は同じく 49Wで点灯させた場合である。ツリウムハロゲンィ匕物の封入比率は、記号參 力 0. 0質量%、記号▲が 60. 0質量%、記号園が 74質量%である。
[0091] 曲線「希土類元素金属種」:封入質量比率が希土類金属ハロゲンィ匕物 25%、イン ジゥムハロゲン化物 InI3%、ヨウ化亜鉛 Znl 40%、タリウムハロゲン化物 T1I32%で
3
あり、希土類金属ハロゲン化物としてツリウム (Tm)ハロゲン化物、プラセオジムに!:) ハロゲン化物、セリウム(Ce)ハロゲン化物およびネオジム(Nd)ハロゲン化物を封入 したそれぞれの場合である。記号參がツリウム (Tm)、記号♦がセリウム (Ce)、記号 園がネオジム、記号▲がプラセオジムである。
[0092] 曲線「ランプ電圧形成用金属比率」:封入質量比率がツリウムハロゲンィ匕物 25%、 インジウムハロゲン化物 3%、ヨウ化亜鉛 Znl 33. 3、 50. 0および 60. 0%ならびに
3
タリウムハロゲンィ匕物 T1I残部である。なお、ヨウ化亜鉛 Znlの封入質量比率は、記号
3
參が 33. 3%、記号▲が 50. 0%、記号園が 60. 0%である。
[0093] 曲線「アルカリ金属比率」:封入質量比率がツリウムハロゲンィ匕物 25%、インジウム ハロゲン化物 3%、ヨウ化亜鉛 Znl 33%およびタリウムハロゲン化物 T1I39%に対し
3
て、ナトリウムハロゲンィ匕物を添カ卩し、かつナトリウムハロゲンィ匕物の封入質量比率を
11. 7%、 33. 7%および 50. 7%に変化した場合である。なお、ヨウ化ナトリウム (Na I)の封入質量比率は、記号參が 50. 7%、記号▲が 33. %、記号園が 11. 7%であ る。
[0094] 図 2から次のことが分かる。すなわち、曲線「Tm比率 1」および「Tm比率 2」カも理 解できるように、ツリウムハロゲン化物の封入質量比率が大きくなるにしたがって電位 傾度および効率の数値が大きくなる。また、最冷部温度が高いほど電位傾度および 効率の数値が大きくなる。
[0095] 曲線「希土類元素金属種」からは、ツリウムハロゲンィ匕物の方がその他の希土類金 属ハロゲンィ匕物より電位傾度および効率の数値が大きくなる。また、 pr、 Nd、 Ce、 T mの順に上記数値が大きくなる。
[0096] 曲線「ランプ電圧形成用金属比率」からは、ヨウ化亜鉛 (Znl )の封入質量比率が
3
大きくなるほど電位傾度は大きくなるが、一方で効率の数値が小さくなる。
[0097] 曲線「アルカリ金属比率」からは、ヨウ化ナトリウム (Nal)の封入質量比率が大きくな るほど発光効率は高くなるが、電位傾度は低下する。
[0098] 図 3は、本発明のメタルノヽライドランプを実施するための第 2の形態を示す正面図 である。本形態は、本発明の一適用例としての一般照明用として実施をすることがで きるメタルノヽライドランプであり、透光性気密容器 1、一対の電極 2、 2、一対の外部リ ード線 4、 4、一対の封止剤 6、 6および放電媒体からなる。上記透光性気密容器 1、 一対の電極 2、 2、一対の外部リード線 4、 4、一対の封止剤 6、 6および放電媒体は、 一体化されて透光性セラミックス発光管 ITを構成し、図示を省略している外管内に封 装されて、使用に供される。
[0099] 透光性気密容器 1は、透光性アルミナセラミックス力 なる透光性セラミックス製であ り、包囲部 laおよび一対の細長い筒状部 1 、 1 を備えていて、以下に示す複数 の構成部分の焼き嵌め構造により形成されている。包囲部 laは、俵形をなし、中間 の円筒部 lalとその両端に連続する一対の半球部 la2、 la2からなる。筒状部 lb ま 、細長いパイプ状をなしていて、先端が包囲部 laの半球部 la2の中央部に連通して いる。なお、図中の 1点鎖線は管軸位置を示す中心軸線である。発光管 ITの一例を 示せば、気密容器 1は、全長 35mmで、包囲部 laの外径 6mm、内径 5mm、筒状部 1 の外径 1. 7mm、内径 0. 7mmである。電極 2は、軸部の外径 0. 3mm、外部リ ード線 4の外径 0. 65mmである。
[0100] 電極 2は、ドープドタングステンの棒状体力もなり、先端が気密容器 1の包囲部 laの 内部に臨み、基端が外部リード線 4の先端に突合せ溶接され、中間部が筒状部 1 の内部に周囲に僅かな隙間であるキヤビラリーラリーを形成しながら挿通している。
[0101] 外部リード線 4は、ニオブの棒状体からなり、先端部が筒状部 1 の端部内部に挿 入し、基端部が外部へ導出されている。
[0102] 封止剤 5は、フリットガラスすなわちセラミックスコンパウンドの溶融固化体力もなり、 筒状部 1 内に進入して外部リード線 4の先端部および電極 2の基端部の一部を被 覆している。
[0103] 放電媒体は、第 1の実施の形態におけるのと同様であるが、点灯中余剰のハロゲン 化物 Hが液相となってキヤビラリーラリー内部の図の位置に滞留する。なお、最冷部
G
Pは、余剰のハロゲンィ匕物 Hの放電空間 lc側の先端部に形成される。
T G
[0104] 図 4は、図 3に示す第 2の形態の透光性セラミックス発光管を封止する際の手順を 示す工程図である。
[0105] 封止工程は、図において左端の工程 (a)から右端の工程 (e)に向けて進行する。
[0106] 工程 (a)は、未封止の気密容器 1であり、図において上側に位置する筒状部 Γの 点線円で囲んだ部分を最初に封止する。 [0107] 工程 (b)において、電極マウント Mを筒状部 Γ力 所定の位置まで挿入する。な
Ε
お、電極マウント Μは、電極 2および外部リード線 4を予め溶接してなり、外部リード
Ε
線 4の所定位置にはストッパー sを形成してある。すなわち、ストッパー sが筒状部 lb' の端面に当接した位置が所定の挿入位置となる。
[0108] 工程 (c)において、電極マウント M の外部リード線 4の上から予めドーナッツ状に
E
成形したフリットガラス粉体 HGを挿入する。
[0109] 工程 (d)にお 、て、フリットガラス粉体 HGを含む封止予定部を例えばレーザービー ムなどを用いて加熱する。
[0110] 工程 )において、フリットガラス粉体 Gが溶融すると、ガラスフリットが筒状部 1 の 端面から内部に進入し、外部リード線 4の挿入部分を包囲する。その後、冷却すれば 透光性セラミックス発光管の IT封止が終了する。
[0111] 次に、図 5ないし図 7を参照して透光性セラミックス発光管 ITの封止装置の構成例 について説明する。なお、各図において、同一符号は同一部分である。
[0112] 図 5は、透光性セラミックス製気密容器の封止装置の第 1の形態を示す概念図で ある。図において、 11は封着チャンノ 、 12はドライボックス、 13は YAGレーザ、 14は 光ファイノく、 15はレーザヘッド、 16は排気系、 17は封入ガス系、 ITは透光性セラミツ タス発光管である。なお、レーザビーム源 13として YAGレーザを用いることにより、気 密容器 1の加熱が容易になり、良好な封止を行うことができる。
[0113] 図 6は、透光性セラミックス製気密容器の封止装置の第 2の形態を示す概念図で ある。本形態において、封着チャンバ 11は、その内部に xyステージを備えている。ま た、封着チャンバ 11とドライボックス 12との間に扉が配設されて!/、る。
[0114] 図 7は、透光性セラミックス製気密容器の封止装置の第 3の形態を示す概念図で ある。本形態において、封着チャンバ 11は、透光性セラミックス製気密容器 ITの封止 部のみを局部的に包囲するとともに、封着チャンバ 11、レーザヘッド 15、排気系 16 および封入ガス系 17をドライボックス 12内に収納して!/、る。
[0115] 次に、透光性セラミックス製気密容器の封止の態様について説明する。なお、図に おいて、図 3と同一部分については同一符号を付して説明は省略する。
[0116] 図 8は、透光性セラミックス製気密容器の封止の第 1の形態を示す概念的正面図 である。本形態においては、気密容器 1の筒状部 lb こおける封止予定部 21および フリットガラス粉体 G以外の部分が不所望に加熱されるのを回避するために、筒状部 1 の封止予定部 21に隣接する部分を円筒状の吸熱部材 22で包囲しながらレーザ ビーム 23で加熱する。
[0117] 吸熱部材 22は、封止予定部 21の加熱時に吸熱するので、レーザビームが照射さ れない封止予定部 21に隣接する筒状部 1 の領域も一緒に加熱されて温度上昇す る。その結果、フリットガラスが筒状部 1 の内部に進入しやすくなり、良好な封止部 を形成することができる。
[0118] なお、レーザビーム 23は、焦点 P1に向かって収束する。そして、レーザビーム 23 の焦点位置 P1を図において上下方向へ可変にして、焦点距離 dlを可調整とするこ とで、デフォーカス距離 d2を変化させると、封止予定部 21の加熱程度を可調整にし ている。なお、図中、符号 13はレーザヘッドである。
[0119] 図 9は、透光性セラミックス製気密容器の封止の第 2の形態を示す概念的正面図 および平面図である。本形態においては、円筒状をなす吸熱部材 22の下部の周囲 に 90° 間隔の突起 pを有している点で図 8に示す第 1の形態と異なる。
[0120] 図 10は、透光性セラミックス製気密容器の封止の第 3の形態を示す概念的正面 図および平面図である。本形態においては、吸熱部材 22は、切頭円錐形状をなして V、て、吸熱部材 22の下方に位置する透光性セラミックス製気密容器の部分に対する 遮熱を容易、かつ、確実にして、当該部分の不所望な温度上昇を防止する。
[0121] 図 11、透光性セラミックス製気密容器の封止の第 4形態を示す概念的一部断面 正面図である。本形態において、吸熱部材 22は、図 8と同様に円筒形状をなしてい る力 透光性セラミックス製気密容器の包囲部 1 aと筒状部 1 との境界部に遮熱部 材 23を嵌合させて封止を行う。これにより、遮熱部材 23の下方に位置する透光性セ ラミックス製気密容器の包囲部 laに対するレーザビームの照射を遮熱部材 23により 遮断するように構成している。なお、遮熱部材 23は、遮熱性の材質のドーナッツ状を なした円盤力もなり、中心部に筒状部 1 に緩く挿入するための通孔 23aを有して 、 る。
[0122] このため、封止時に透光性セラミックス製気密容器の包囲部 laの不所望な加熱が 行われなくなる。
産業上の利用可能性
車両の前照灯用だけでなぐその他一般照明用など種々の用途にも適用できる。

Claims

請求の範囲
[1] 内部に放電空間を有する透光性の気密容器と;
気密容器に封装されて放電空間に臨む一対の電極と;
第 1のハロゲンィ匕物、第 2のハロゲンィ匕物および希ガスを含み、第 1のハロゲン化物 は主として発光金属のハロゲンィ匕物であり、気密容器内に封入されている全ての金 属ハロゲン化物中で最大封入比率のツリウム (Tm)ハロゲン化物を含み、かつ、アル カリ金属ハロゲンィ匕物が 10質量%未満であり、第 2のハロゲンィ匕物は主としてランプ 電圧を形成する金属ハロゲンィ匕物カゝらなり、かつ、気密容器内に封入されている全 ての金属ハロゲン化物に対して 5〜20質量%であり、水銀を本質的に含まな!/、で構 成されて!/ヽて気密容器内に封入された放電媒体と;
を具備していることを特徴とするメタルノヽライドランプ。
[2] 放電媒体は、アルカリ金属ハロゲンィ匕物がナトリウム (Na)、セシウム (Cs)およびリ チウム (Li)のグループ力 選択された一種または複数種のハロゲンィ匕物を主体とし て含んでいることを特徴とする請求項 1記載のメタルノヽライドランプ。
[3] 内部に放電空間を有する透光性の気密容器と;
気密容器に封装されて放電空間に臨む一対の電極と;
第 1のハロゲンィ匕物、第 2のハロゲンィ匕物および希ガスを含み、第 1のハロゲン化物 は主として発光金属のハロゲンィ匕物であり、気密容器内に封入されている全ての金 属ハロゲンィヒ物中で最大封入比率のツリウム (Tm)ハロゲン化物を含み、第 2のハロ ゲンィ匕物は主としてランプ電圧を形成する金属ハロゲンィ匕物力もなり、かつ、気密容 器内に封入されている全ての金属ハロゲンィ匕物に対して 5〜20質量%であり、全て の金属ハロゲン化物を形成する金属のイオン化ポテンシャルが 5. 4eV以上であり、 水銀を本質的に含まな!/、で構成され、気密容器内に封入された放電媒体と; を具備していることを特徴とするメタルノヽライドランプ。
[4] 放電媒体は、気密容器内に封入されている全ての金属ハロゲン化物に対するッリ ゥム (Tm)ハロゲン化物の封入比率 H (質量%)が下式を満足することを特徴とする
Tm
請求項 1な!、し 3の!、ずれか一記載のメタルハライドランプ。
30<H < 90
[5] 放電媒体は、第 1のハロゲンィ匕物がプラセオジム(Pr)、セリウム(Ce)およびサマリ ゥム(Sm)のグループ力 選択された希土類金属の一種または複数種のハロゲンィ匕 物を含み、ツリウム (Tm)ハロゲンィ匕物をカ卩えた希土類金属ハロゲンィ匕物の全ノヽロゲ ン化物に対する封入比率が 50質量%以上であることを特徴とする請求項 1ないし 4 の!、ずれか一記載のメタルハライドランプ。
[6] 放電媒体は、第 1のハロゲンィ匕物がタリウム (T1)ハロゲン化物およびインジウム (In) ハロゲンィ匕物の少なくとも一種を含んで 、ることを特徴とする請求項 1な 、し 5の 、ず れか一記載のメタルハライドランプ。
[7] 照明装置本体と;
照明装置本体に配設された請求項 1な 、し 6の 、ずれか一記載のメタルノ、ライドラ ンプと;
メタルハライドランプを点灯する点灯装置と;
を具備していることを特徴とする照明装置。
PCT/JP2005/019910 2004-10-29 2005-10-28 メタルハライドランプおよび照明装置 WO2006046704A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05805339A EP1806766A1 (en) 2004-10-29 2005-10-28 Metal halide lamp and lighting equipment
JP2006542347A JPWO2006046704A1 (ja) 2004-10-29 2005-10-28 メタルハライドランプおよび照明装置
US11/662,499 US20080001543A1 (en) 2004-10-29 2005-10-28 Metal Halide Lamp and Lighting Equipment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004317276 2004-10-29
JP2004-317276 2004-10-29
JP2004-366196 2004-12-17
JP2004366196 2004-12-17
JP2004374760 2004-12-24
JP2004-374760 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006046704A1 true WO2006046704A1 (ja) 2006-05-04

Family

ID=36227944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019910 WO2006046704A1 (ja) 2004-10-29 2005-10-28 メタルハライドランプおよび照明装置

Country Status (4)

Country Link
US (1) US20080001543A1 (ja)
EP (1) EP1806766A1 (ja)
JP (1) JPWO2006046704A1 (ja)
WO (1) WO2006046704A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050867A1 (fr) * 2006-10-27 2008-05-02 Toshiba Lighting & Technology Corporation Lampe de décharge à haute pression, matériel d'éclairage et dispositif correspondant à la lampe
JP2008218192A (ja) * 2007-03-05 2008-09-18 Osram Melco Toshiba Lighting Kk 高圧放電ランプおよび照明器具
JP2009272119A (ja) * 2008-05-07 2009-11-19 Car Mate Mfg Co Ltd 自動車前照灯用メタルハライドランプ
US8018156B2 (en) * 2006-02-22 2011-09-13 Osram Ag High-pressure discharge lamp having a ceramic discharge vessel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903598A3 (en) * 2006-09-22 2010-01-06 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus.
EP2112684A3 (en) * 2008-04-25 2010-06-16 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting equipment
US20100033106A1 (en) * 2008-08-08 2010-02-11 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp lighting system and lighting equipment
DE102009052999A1 (de) * 2009-11-12 2011-05-19 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
US8339044B2 (en) 2010-12-28 2012-12-25 General Electric Company Mercury-free ceramic metal halide lamp with improved lumen run-up
JP5699714B2 (ja) * 2011-03-18 2015-04-15 岩崎電気株式会社 セラミックメタルハライドランプ及びそれを用いた照明器具
CN103839751B (zh) * 2013-12-20 2016-08-03 广西南宁智翠科技咨询有限公司 一种金属卤化物灯药丸
JP2020107522A (ja) * 2018-12-27 2020-07-09 東芝ライテック株式会社 メタルハライドランプおよび紫外線照射装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915012B1 (ja) * 1966-03-09 1974-04-11
JPH06111772A (ja) * 1992-09-29 1994-04-22 Toshiba Lighting & Technol Corp 高圧放電灯
JPH1186795A (ja) * 1997-07-21 1999-03-30 Patent Treuhand Ges Elektr Gluehlamp Mbh 照明システム
JPH11238488A (ja) * 1997-06-06 1999-08-31 Toshiba Lighting & Technology Corp メタルハライド放電ランプ、メタルハライド放電ランプ点灯装置および照明装置
JP2000182564A (ja) * 1998-12-14 2000-06-30 Patent Treuhand Ges Elektr Gluehlamp Mbh 水銀を含まないメタルハライドランプ
JP2001076670A (ja) * 1999-08-10 2001-03-23 Patent Treuhand Ges Elektr Gluehlamp Mbh 水銀を含まないメタルハライドランプ
JP2001313001A (ja) * 2000-04-28 2001-11-09 Toshiba Lighting & Technology Corp メタルハライドランプおよび自動車用前照灯装置
JP2003297282A (ja) * 2002-04-02 2003-10-17 Patent Treuhand Ges Elektr Gluehlamp Mbh イオン化可能な封入物を形成するための金属ハロゲン化物封入物、およびメタルハライドランプ
JP2004006357A (ja) * 2002-05-16 2004-01-08 Osram Sylvania Inc 電気ランプ、高輝度放電ランプ、電気ランプの作動方法
JP2004111390A (ja) * 2002-09-13 2004-04-08 Patent Treuhand Ges Elektr Gluehlamp Mbh 自動車前照灯用高圧放電ランプ
JP2004111373A (ja) * 2002-08-30 2004-04-08 Matsushita Electric Ind Co Ltd 金属蒸気放電ランプおよび照明装置
JP2004172056A (ja) * 2002-11-22 2004-06-17 Koito Mfg Co Ltd 放電ランプ装置用水銀フリーアークチューブ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150337A1 (en) * 2000-04-28 2001-10-31 Toshiba Lighting & Technology Corporation Mercury-free metal halide lamp and a vehicle lighting apparatus using the lamp
US20040056600A1 (en) * 2002-09-19 2004-03-25 Lapatovich Walter P. Electric lamp with condensate reservoir and method of operation thereof
US6984938B2 (en) * 2002-08-30 2006-01-10 Matsushita Electric Industrial Co., Ltd Metal vapor discharge lamp and lighting apparatus capable of stable maintenance of characteristics
EP1455382A3 (en) * 2003-03-03 2007-12-05 Osram-Melco Toshiba Lighting Ltd. High-intensity discharge lamp and lighting device therewith

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915012B1 (ja) * 1966-03-09 1974-04-11
JPH06111772A (ja) * 1992-09-29 1994-04-22 Toshiba Lighting & Technol Corp 高圧放電灯
JPH11238488A (ja) * 1997-06-06 1999-08-31 Toshiba Lighting & Technology Corp メタルハライド放電ランプ、メタルハライド放電ランプ点灯装置および照明装置
JPH1186795A (ja) * 1997-07-21 1999-03-30 Patent Treuhand Ges Elektr Gluehlamp Mbh 照明システム
JP2000182564A (ja) * 1998-12-14 2000-06-30 Patent Treuhand Ges Elektr Gluehlamp Mbh 水銀を含まないメタルハライドランプ
JP2001076670A (ja) * 1999-08-10 2001-03-23 Patent Treuhand Ges Elektr Gluehlamp Mbh 水銀を含まないメタルハライドランプ
JP2001313001A (ja) * 2000-04-28 2001-11-09 Toshiba Lighting & Technology Corp メタルハライドランプおよび自動車用前照灯装置
JP2003297282A (ja) * 2002-04-02 2003-10-17 Patent Treuhand Ges Elektr Gluehlamp Mbh イオン化可能な封入物を形成するための金属ハロゲン化物封入物、およびメタルハライドランプ
JP2004006357A (ja) * 2002-05-16 2004-01-08 Osram Sylvania Inc 電気ランプ、高輝度放電ランプ、電気ランプの作動方法
JP2004111373A (ja) * 2002-08-30 2004-04-08 Matsushita Electric Ind Co Ltd 金属蒸気放電ランプおよび照明装置
JP2004111390A (ja) * 2002-09-13 2004-04-08 Patent Treuhand Ges Elektr Gluehlamp Mbh 自動車前照灯用高圧放電ランプ
JP2004172056A (ja) * 2002-11-22 2004-06-17 Koito Mfg Co Ltd 放電ランプ装置用水銀フリーアークチューブ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018156B2 (en) * 2006-02-22 2011-09-13 Osram Ag High-pressure discharge lamp having a ceramic discharge vessel
WO2008050867A1 (fr) * 2006-10-27 2008-05-02 Toshiba Lighting & Technology Corporation Lampe de décharge à haute pression, matériel d'éclairage et dispositif correspondant à la lampe
EP2091304A1 (en) * 2006-10-27 2009-08-19 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, lighting equipment, and high-pressure discharge lamp device
EP2091304A4 (en) * 2006-10-27 2011-04-27 Toshiba Lighting & Technology HIGH-PRESSURE DISCHARGE LAMP, ILLUMINATOR AND HIGH-PRESSURE DISCHARGE LAMP UNIT
JP2008218192A (ja) * 2007-03-05 2008-09-18 Osram Melco Toshiba Lighting Kk 高圧放電ランプおよび照明器具
JP2009272119A (ja) * 2008-05-07 2009-11-19 Car Mate Mfg Co Ltd 自動車前照灯用メタルハライドランプ

Also Published As

Publication number Publication date
JPWO2006046704A1 (ja) 2008-05-22
US20080001543A1 (en) 2008-01-03
EP1806766A1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
WO2006046704A1 (ja) メタルハライドランプおよび照明装置
KR101079746B1 (ko) 차량 헤드라이트용 고압 방전 램프
JP4891596B2 (ja) マグネシウム及びインジウムを有するメタルハライドランプの化学成分
JP2003168391A (ja) 放電ランプ装置用水銀フリーアークチューブ
JP2005276830A (ja) 放電ランプ用のタリウム不含のメタルハライド充填物及び該充填物を含有する放電ランプ
US7573203B2 (en) Mercury-free high-pressure discharge lamp and luminaire using the same
JP2003288859A (ja) メタルハライドランプおよび自動車用前照灯装置
JP2004288617A (ja) 高圧放電ランプおよび照明装置
JP2007115652A (ja) 高圧放電ランプおよび照明装置
JP2004349242A (ja) 高圧放電ランプおよび照明装置
JP2006221928A (ja) 高圧放電ランプ
EP1763067A1 (en) Metal halidee lamp, lighting device for metal halide lamp and headlight
JP2004288615A (ja) 高圧放電ランプおよび照明装置
JP2008177160A (ja) 高圧放電ランプおよび照明装置
JP2004288606A (ja) 高圧放電ランプおよび照明装置
JP2006244735A (ja) 高圧放電ランプおよび光学機器
JP2008218192A (ja) 高圧放電ランプおよび照明器具
WO2008050867A1 (fr) Lampe de décharge à haute pression, matériel d&#39;éclairage et dispositif correspondant à la lampe
JPH11162411A (ja) 高圧放電ランプおよび照明装置
JP2007115653A (ja) 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置
JP2008084815A (ja) 高圧放電ランプ、高圧放電ランプの製造方法および照明装置
JP2011175830A (ja) 高圧放電ランプ
JP2011175856A (ja) 高圧放電ランプおよび照明装置
JP2008103320A (ja) 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置
JP2007299621A (ja) 高圧放電ランプおよび照明装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542347

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005805339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662499

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580037407.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005805339

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11662499

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005805339

Country of ref document: EP